Science.gov

Sample records for parts manufacturing complex

  1. Advanced manufacturing rules check (MRC) for fully automated assessment of complex reticle designs: Part II

    NASA Astrophysics Data System (ADS)

    Straub, J. A.; Aguilar, D.; Buck, P. D.; Dawkins, D.; Gladhill, R.; Nolke, S.; Riddick, J.

    2006-10-01

    Advanced electronic design automation (EDA) tools, with their simulation, modeling, design rule checking, and optical proximity correction capabilities, have facilitated the improvement of first pass wafer yields. While the data produced by these tools may have been processed for optimal wafer manufacturing, it is possible for the same data to be far from ideal for photomask manufacturing, particularly at lithography and inspection stages, resulting in production delays and increased costs. The same EDA tools used to produce the data can be used to detect potential problems for photomask manufacturing in the data. In the previous paper, it was shown how photomask MRC is used to uncover data related problems prior to automated defect inspection. It was demonstrated how jobs which are likely to have problems at inspection could be identified and separated from those which are not. The use of photomask MRC in production was shown to reduce time lost to aborted runs and troubleshooting due to data issues. In this paper, the effectiveness of this photomask MRC program in a high volume photomask factory over the course of a year as applied to more than ten thousand jobs will be shown. Statistics on the results of the MRC runs will be presented along with the associated impact to the automated defect inspection process. Common design problems will be shown as well as their impact to mask manufacturing throughput and productivity. Finally, solutions to the most common and most severe problems will be offered and discussed.

  2. Manufacturing of a Complex Preform by RTM. Processes Parameters and Quality of the Part

    NASA Astrophysics Data System (ADS)

    Soulat, D.; Hivet, G.; Agogue, R.; Cordier-Telmar, A.

    2011-05-01

    The shear deformation and the evolution of the fibre volume fraction of carbon braided reinforcement are studied during the performing step of the RTM process. The determination of these quantities is necessary for their influence on the permeability component for the simulation of the resin injection step. During the performing the complex preform is studied at several scale with an analytical model based on fishnet approach. Numerical results in terms of shear angle, position of the reinforcement, fibre volume fraction, are compared to quantities extract from tomographies realized on composite piece after the resin injection. The model can optimize specific parameters of the braid reinforcement used for this application.

  3. Manufacturing complexity analysis

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1977-01-01

    The analysis of the complexity of a typical system is presented. Starting with the subsystems of an example system, the step-by-step procedure for analysis of the complexity of an overall system is given. The learning curves for the various subsystems are determined as well as the concurrent numbers of relevant design parameters. Then trend curves are plotted for the learning curve slopes versus the various design-oriented parameters, e.g. number of parts versus slope of learning curve, or number of fasteners versus slope of learning curve, etc. Representative cuts are taken from each trend curve, and a figure-of-merit analysis is made for each of the subsystems. Based on these values, a characteristic curve is plotted which is indicative of the complexity of the particular subsystem. Each such characteristic curve is based on a universe of trend curve data taken from data points observed for the subsystem in question. Thus, a characteristic curve is developed for each of the subsystems in the overall system.

  4. Cleaning and Cleanliness Measurement of Additive Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Mitchell, Mark A.; Edwards, Kevin

    2017-01-01

    Additive Manufacturing processes allow for the manufacture of complex three dimensional components that otherwise could not be manufactured. Post treatment processes require the removal of any remnant bulk powder that may become entrapped within small cavities and channels within a component. This project focuses on several gross cleaning methods and the verification metrics associated with additive manufactured parts for oxygen propulsion usage.

  5. Manufacturing of Composite Parts Via VARTM

    DTIC Science & Technology

    2007-11-02

    Control ØAdvanced VARTM Processing F RTM -like Parts G Surface Quality G Dimensional Tolerances F Co-Injection Resin Transfer Molding G In-Plane G...UD-CCM l 2 July 2003 D. Heider J. W. Gillespie, Jr. UD-CCM 00000 MANUFACTURING OF COMPOSITE PARTS VIA VARTM Report Documentation Page Form...COVERED - 4. TITLE AND SUBTITLE Manufacturing Of Composite Parts Via VARTM 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  6. Software for integrated manufacturing systems, part 2

    NASA Technical Reports Server (NTRS)

    Volz, R. A.; Naylor, A. W.

    1987-01-01

    Part 1 presented an overview of the unified approach to manufacturing software. The specific characteristics of the approach that allow it to realize the goals of reduced cost, increased reliability and increased flexibility are considered. Why the blending of a components view, distributed languages, generics and formal models is important, why each individual part of this approach is essential, and why each component will typically have each of these parts are examined. An example of a specification for a real material handling system is presented using the approach and compared with the standard interface specification given by the manufacturer. Use of the component in a distributed manufacturing system is then compared with use of the traditional specification with a more traditional approach to designing the system. An overview is also provided of the underlying mechanisms used for implementing distributed manufacturing systems using the unified software/hardware component approach.

  7. Manufacturing of GLARE Parts and Structures

    NASA Astrophysics Data System (ADS)

    Sinke, J.

    2003-07-01

    GLARE is a hybrid material consisting of alternating layers of metal sheets and composite layers, requiring special attention when manufacturing of parts and structures is concerned. On one hand the applicable manufacturing processes for GLARE are limited, on the other hand, due to the constituents and composition of the laminate, it offers new opportunities for production. One of the opportunities is the manufacture of very large skin panels by lay-up techniques. Lay-up techniques are common for full composites, but uncommon for metallic structures. Nevertheless, large GLARE skin panels are made by lay-up processes. In addition, the sequences of forming and laminating processes, that can be selected, offer manufacturing options that are not applicable to metals or full composites. With respect to conventional manufacturing processes, the possibilities for Fibre Metal Laminates in general, are limited. The limits are partly due to the different failure modes, partly due to the properties of the constituents in the laminate. For machining processes: the wear of the cutting tools during machining operations of GLARE stems from the abrasive nature of the glass fibres. For the forming processes: the limited formability, expressed by a small failure strain, is related to the glass fibres. However, although these manufacturing issues may restrict the use of manufacturing processes for FMLs, application of these laminates in aircraft is not hindered.

  8. Intelligent freeform manufacturing of complex organs.

    PubMed

    Wang, Xiaohong

    2012-11-01

    Different from the existing tissue engineering strategies, rapid prototyping (RP) techniques aim to automatically produce complex organs directly from computer-aided design freeform models with high resolution and sophistication. Analogous to building a nuclear power plant, cell biology (especially, renewable stem cells), implantable biomaterials, tissue engineering, and single/double/four nozzle RP techniques currently enable researchers in the field to realize a part of the task of complex organ manufacturing. To achieve this multifaceted undertaking, a multi-nozzle rapid prototyping system which can simultaneously integrate an anti-suture vascular system, multiple cell types, and a cocktail of growth factors in a construct should be developed. This article reviews the pros and cons of the existing cell-laden RP techniques for complex organ manufacturing. It is hoped that with the comprehensive multidisciplinary efforts, the implants can virtually replace the functions of a solid internal organ, such as the liver, heart, and kidney. © 2012, Copyright the Author. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. Visual inspection reliability for precision manufactured parts

    DOE PAGES

    See, Judi E.

    2015-09-04

    Sandia National Laboratories conducted an experiment for the National Nuclear Security Administration to determine the reliability of visual inspection of precision manufactured parts used in nuclear weapons. In addition visual inspection has been extensively researched since the early 20th century; however, the reliability of visual inspection for nuclear weapons parts has not been addressed. In addition, the efficacy of using inspector confidence ratings to guide multiple inspections in an effort to improve overall performance accuracy is unknown. Further, the workload associated with inspection has not been documented, and newer measures of stress have not been applied.

  10. Out-of-Autoclave Manufacturing of Aerospace Representative Parts

    NASA Astrophysics Data System (ADS)

    Cauberghs, Julien

    The use of carbon fibre reinforced composites for aerospace structures has seen a high increase in recent years, and is still growing. The high stiffness-to-weight ratio of these materials makes them ideal for primary structures on airplanes, satellites, and spacecrafts. Nevertheless, the manufacturing of composites remains very costly since it requires equipment investment such as an autoclave, and very qualified workers. Out-of-autoclave manufacturing technology is very promising since it only requires a traditional oven, while still aiming at similar part quality. However, the absence of positive pressure compared with an autoclave makes it more difficult to achieve low porosity parts. This research investigates the manufacturing of complex features with out-of autoclave prepreg technology. The features studied are tight-radius corners with a curvature change, and ply drop-offs. Ply drop-offs tests were conducted to identify if porosity is higher at ply terminations. In corners, the bagging arrangement was modified to achieve the most uniform thickness in areas of curvature change, even with small radii. The conclusions from these studies provided us with guidelines to manufacture larger representative parts, which included these features. The representative parts were tested for porosity, thickness uniformity, mechanical performance, and glass transition temperature (Tg). A total of four representative parts were manufactured with out-of-autoclave technology, and one more was manufactured with an autoclave to allow for a proper comparison between the two processes. The materials used were MTM45-1 5 harness satin and CYCOM5320 plain weave for the out-of-autoclave parts, and CYCOM5276-1 plain weave for the autoclave part. The effect of ply drop-offs on porosity was found to be negligible. Thickness deviation in corners was attributed to a combination of consumable bridging, prepreg's bulk factor and inter-ply shear. Overall, out-of-autoclave prepregs showed

  11. Manufacturing technology methodology for propulsion system parts

    NASA Astrophysics Data System (ADS)

    McRae, M. M.

    1992-07-01

    A development history and a current status evaluation are presented for lost-wax casting of such gas turbine engine components as turbine vanes and blades. The most advanced such systems employ computer-integrated manufacturing methods for high process repeatability, reprogramming versatility, and feedback monitoring. Stereolithography-based plastic model 3D prototyping has also been incorporated for the wax part of the investment casting; it may ultimately be possible to produce the 3D prototype in wax directly, or even to create a ceramic mold directly. Nonintrusive inspections are conducted by X-radiography and neutron radiography.

  12. Cleaning of parts for new manufacturing and parts rebuilding

    NASA Astrophysics Data System (ADS)

    Doherty, Jeff

    1994-06-01

    Parts cleaning is the largest single expense, and the most time consuming activity, in rebuilding and new manufacturing. On average, 25% to 40% of the total labor and overhead burden is spent on cleaning. EPA and OSHA pressures add to the burden by making some methods and chemicals obsolete. Some of the processes and chemicals in current use will be curtailed and or outlawed in the future. How can a shops and industries make long term decisions or capital investments in cleaning and process improvements when the government keeps changing its rules? At the MART Corporation in Saint Louis, Missouri, we manufacture a line of cabinet-style batch cleaning machines known as Power Washers. Twenty years ago MART invented and patented the Power Washer process, a cleaning method that recycles wash solution and blasts contaminates as they are washed off the more heavily contaminated parts. Since the initial invention MART has continued to R&D the washing process and develop ancillary systems that comply with EPA and OSHA regulations. For applications involving new industrial parts or items requiring specification cleaned surfaces. MART provides filtration and solution conditioning systems, part drying operations, and triple rinsing. Units are available in stainless steel or higher alloys. We are not alone in the washer manufacturing business. You have many choices of cleaning solutions (no pun intended) which will perform in your operations and yield good results. As a manufacturer, we are interested in your success with our equipment. We have all heard the horror stories of companies having selected inappropriate cleaning systems and or processes which then brought the company to its knees, production wise. Assembly, appearance, warranty, and performance shortcomings of finished products can often be directly related to the cleaning process and its shortcomings.

  13. Structure Property Studies for Additively Manufactured Parts

    SciTech Connect

    Milenski, Helen M; Schmalzer, Andrew Michael; Kelly, Daniel

    2015-08-17

    Since the invention of modern Additive Manufacturing (AM) processes engineers and designers have worked hard to capitalize on the unique building capabilities that AM allows. By being able to customize the interior fill of parts it is now possible to design components with a controlled density and customized internal structure. The creation of new polymers and polymer composites allow for even greater control over the mechanical properties of AM parts. One of the key reasons to explore AM, is to bring about a new paradigm in part design, where materials can be strategically optimized in a way that conventional subtractive methods cannot achieve. The two processes investigated in my research were the Fused Deposition Modeling (FDM) process and the Direct Ink Write (DIW) process. The objectives of the research were to determine the impact of in-fill density and morphology on the mechanical properties of FDM parts, and to determine if DIW printed samples could be produced where the filament diameter was varied while the overall density remained constant.

  14. 15 CFR Supplement No. 2 to Part 783 - Manufacturing Activities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Manufacturing Activities No. Supplement No. 2 to Part 783 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 783—Manufacturing Activities The following constitute manufacturing activities that require...

  15. 15 CFR Supplement No. 2 to Part 783 - Manufacturing Activities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Manufacturing Activities No. Supplement No. 2 to Part 783 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 783—Manufacturing Activities The following constitute manufacturing activities that require...

  16. 15 CFR Supplement No. 2 to Part 783 - Manufacturing Activities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 2 2014-01-01 2014-01-01 false Manufacturing Activities No. Supplement No. 2 to Part 783 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 783—Manufacturing Activities The following constitute manufacturing activities that require...

  17. 15 CFR Supplement No. 2 to Part 783 - Manufacturing Activities

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Manufacturing Activities No. Supplement No. 2 to Part 783 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 783—Manufacturing Activities The following constitute manufacturing activities that require...

  18. 15 CFR Supplement No. 2 to Part 783 - Manufacturing Activities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Manufacturing Activities No. Supplement No. 2 to Part 783 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 783—Manufacturing Activities The following constitute manufacturing activities that require...

  19. Anomaly Detection In Additively Manufactured Parts Using Laser Doppler Vibrometery

    SciTech Connect

    Hernandez, Carlos A.

    2015-09-29

    Additively manufactured parts are susceptible to non-uniform structure caused by the unique manufacturing process. This can lead to structural weakness or catastrophic failure. Using laser Doppler vibrometry and frequency response analysis, non-contact detection of anomalies in additively manufactured parts may be possible. Preliminary tests show promise for small scale detection, but more future work is necessary.

  20. Reverse engineering of complex biological body parts by squared distance enabled non-uniform rational B-spline technique and layered manufacturing.

    PubMed

    Pandithevan, Ponnusamy

    2015-02-01

    In tissue engineering, the successful modeling of scaffold for the replacement of damaged body parts depends mainly on external geometry and internal architecture in order to avoid the adverse effects such as pain and lack of ability to transfer the load to the surrounding bone. Due to flexibility in controlling the parameters, layered manufacturing processes are widely used for the fabrication of bone tissue engineering scaffold with the given computer-aided design model. This article presents a squared distance minimization approach for weight optimization of non-uniform rational B-spline curve and surface to modify the geometry that exactly fits into the defect region automatically and thus to fabricate the scaffold specific to subject and site. The study showed that though the errors associated in the B-spline curve and surface were minimized by squared distance method than point distance method and tangent distance method, the errors could be minimized further in the rational B-spline curve and surface as the optimal weight could change the shape that desired for the defect site. In order to measure the efficacy of the present approach, the results were compared with point distance method and tangent distance method in optimizing the non-rational and rational B-spline curve and surface fitting for the defect site. The optimized geometry then allowed to construct the scaffold in fused deposition modeling system as an example. The result revealed that the squared distance-based weight optimization of the rational curve and surface in making the defect specific geometry best fits into the defect region than the other methods used.

  1. Inspection of additive manufactured parts using laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Lévesque, D.; Bescond, C.; Lord, M.; Cao, X.; Wanjara, P.; Monchalin, J.-P.

    2016-02-01

    Additive manufacturing is a novel technology of high importance for global sustainability of resources. As additive manufacturing involves typically layer-by-layer fusion of the feedstock (wire or powder), an important characteristic of the fabricated metallic structural parts, such as those used in aero-engines, is the performance, which is highly related to the presence of defects, such as cracks, lack of fusion or bonding between layers, and porosity. For this purpose, laser ultrasonics is very attractive due to its non-contact nature and is especially suited for the analysis of parts of complex geometries. In addition, the technique is well adapted to online implementation and real-time measurement during the manufacturing process. The inspection can be performed from either the top deposited layer or the underside of the substrate and the defects can be visualized using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). In this work, a variety of results obtained off-line on INCONEL® 718 and Ti-6Al-4V coupons that were manufactured using laser powder, laser wire, or electron beam wire deposition are reported and most defects detected were further confirmed by X-ray micro-computed tomography.

  2. Strategic drivers of contract manufacturing: Part I, The theory.

    PubMed

    Tomlinson, Geoff; Geimer, Harald

    2002-12-01

    Medical device manufacturers and diagnostics companies have significantly increased their use of contract manufacturers to outsource production of components. This, the first of a two-part article, reviews strategic benefits and best practices in outsourcing.

  3. Complex metallic alloys as new materials for additive manufacturing.

    PubMed

    Kenzari, Samuel; Bonina, David; Marie Dubois, Jean; Fournée, Vincent

    2014-04-01

    Additive manufacturing processes allow freeform fabrication of the physical representation of a three-dimensional computer-aided design (CAD) data model. This area has been expanding rapidly over the last 20 years. It includes several techniques such as selective laser sintering and stereolithography. The range of materials used today is quite restricted while there is a real demand for manufacturing lighter functional parts or parts with improved functional properties. In this article, we summarize recent work performed in this field, introducing new composite materials containing complex metallic alloys. These are mainly Al-based quasicrystalline alloys whose properties differ from those of conventional alloys. The use of these materials allows us to produce light-weight parts consisting of either metal-matrix composites or of polymer-matrix composites with improved properties. Functional parts using these alloys are now commercialized.

  4. Complex metallic alloys as new materials for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Kenzari, Samuel; Bonina, David; Dubois, Jean Marie; Fournée, Vincent

    2014-04-01

    Additive manufacturing processes allow freeform fabrication of the physical representation of a three-dimensional computer-aided design (CAD) data model. This area has been expanding rapidly over the last 20 years. It includes several techniques such as selective laser sintering and stereolithography. The range of materials used today is quite restricted while there is a real demand for manufacturing lighter functional parts or parts with improved functional properties. In this article, we summarize recent work performed in this field, introducing new composite materials containing complex metallic alloys. These are mainly Al-based quasicrystalline alloys whose properties differ from those of conventional alloys. The use of these materials allows us to produce light-weight parts consisting of either metal-matrix composites or of polymer-matrix composites with improved properties. Functional parts using these alloys are now commercialized.

  5. Complex metallic alloys as new materials for additive manufacturing

    PubMed Central

    Kenzari, Samuel; Bonina, David; Marie Dubois, Jean; Fournée, Vincent

    2014-01-01

    Additive manufacturing processes allow freeform fabrication of the physical representation of a three-dimensional computer-aided design (CAD) data model. This area has been expanding rapidly over the last 20 years. It includes several techniques such as selective laser sintering and stereolithography. The range of materials used today is quite restricted while there is a real demand for manufacturing lighter functional parts or parts with improved functional properties. In this article, we summarize recent work performed in this field, introducing new composite materials containing complex metallic alloys. These are mainly Al-based quasicrystalline alloys whose properties differ from those of conventional alloys. The use of these materials allows us to produce light-weight parts consisting of either metal–matrix composites or of polymer–matrix composites with improved properties. Functional parts using these alloys are now commercialized. PMID:27877661

  6. An investigation of hardwood plywood markets. Part 2. Fixture manufacturers

    Treesearch

    Craig L. Forbes; Larry G. Jahn; Philip A. Araman

    2001-01-01

    This is the second part of a two-part study investigating markets for hardwood plywood. Part 1 dealt with architectural woodworkers. North American fixture manufacturers were surveyed to better understand the structure and use of wood-based panels in the industry. A questionnaire was mailed to a sample of U.S. and Canadian fixture manufacturers. The sample consisted of...

  7. Initiatives to Improve Quality of Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Nichols, Charles

    2017-01-01

    NASA is providing leadership in an international effort linking government and industry resources to speed adoption of additive manufactured (AM) parts. Participants include government agencies (NASA, USAF, NIST, FAA), industry (commercial aerospace, NDE manufacturers, AM equipment manufacturers), standards organizations and academia. NASA is also partnering with its international space exploration organizations such as ESA and JAXA. NDT is identified as a universal need for all aspects of additive manufacturing.

  8. Manufacturing and fabrication, part 3. [extraterrestrial resources

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar; Duke, Michael B.; Haskin, Larry A.

    1992-01-01

    The accessibility of material and energy off the Earth and the leverage that these nonterrestrial resources can exert on the space transportation system are important influences on the long-term goal of exploring the solar system. Research on separation of lunar materials and manufacturing of useful products from them is in its infancy. A few possible processes and products are described in this report. Specific attention is given to oxygen, metal, and silicate products.

  9. Navy Additive Manufacturing: Adding Parts, Subtracting Steps

    DTIC Science & Technology

    2015-06-01

    Chain Management processes. Included in the analysis is the implementation of 3D printing technology and how it could impact the Navy’s future...manufacturing (AM) and describes its potential impact on the Navy’s Supply Chain Management processes. Included in the analysis is the implementation of 3D...Boeing V-22 Osprey (from Boeing Company, n.d.). ...............................39  Figure 21.  Boeing’s extended global supply chain (from World

  10. NAMT framework for discrete parts manufacturing: experience report

    NASA Astrophysics Data System (ADS)

    Christopher, Neil B.

    1997-01-01

    Industry need for standards to support integration of distributed manufacturing information technology systems is driving a process for creating validated pre-standard specifications. These specifications are likely to be the basis for manufacturing information technology standards in the future. The framework for discrete parts manufacturing information technology standards in the future. The framework for discrete parts manufacturing project has implemented a distributed manufacturing software systems as a basis for validation testing and analysis of emerging manufacturing information technologies. This paper describes a testbed project for validation of pre-standard specifications for integration of distributed manufacturing information technology system. This project begins with a scenario for manufacturing operations and deploys several related specifications against this scenario. This deployment provides the opportunity for analysis and local validation of the specifications. It also provides the opportunity to explore the relationship among several specifications that could be the basis for standards in the future. This paper discusses the preliminary implementation of the specifications under analysis and projects future work involved in validation testing of industry consortia developed manufacturing information technology specifications.

  11. Cleaning Process Development for Metallic Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  12. Microstructure-Based Counterfeit Detection in Metal Part Manufacturing

    NASA Astrophysics Data System (ADS)

    Dachowicz, Adam; Chaduvula, Siva Chaitanya; Atallah, Mikhail; Panchal, Jitesh H.

    2017-08-01

    Counterfeiting in metal part manufacturing has become a major global concern. Although significant effort has been made in detecting the implementation of such counterfeits, modern approaches suffer from high expense during production, invasiveness during manufacture, and unreliability in practice if parts are damaged during use. In this paper, a practical microstructure-based counterfeit detection methodology is proposed, which draws on inherent randomness present in the microstructure as a result of the manufacturing process. An optical Physically Unclonable Function (PUF) protocol is developed which takes a micrograph as input and outputs a compact, unique string representation of the micrograph. The uniqueness of the outputs and their robustness to moderate wear and tear is demonstrated by application of the methodology to brass samples. The protocol is shown to have good discriminatory power even between samples manufactured in the same batch, and runs on the order of several seconds per part on inexpensive machines.

  13. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece.

  14. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part II. Defects.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography (SXRT) has been applied to the study of defects within three-dimensional printed titanium parts. These parts were made using the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V) as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. The samples represent a selection of complex shapes with a variety of internal morphologies. Inspection via SXRT has revealed a number of defects which may not otherwise have been seen. The location and nature of such defects combined with detailed knowledge of the process conditions can contribute to understanding the interplay between design and manufacturing strategy. This fundamental understanding may subsequently be incorporated into process modelling, prediction of properties and the development of robust methodologies for the production of defect-free parts.

  15. The role of variation, error, and complexity in manufacturing defects

    SciTech Connect

    Hinckley, C.M.; Barkan, P.

    1994-03-01

    Variation in component properties and dimensions is a widely recognized factor in product defects which can be quantified and controlled by Statistical Process Control methodologies. Our studies have shown, however, that traditional statistical methods are ineffective in characterizing and controlling defects caused by error. The distinction between error and variation becomes increasingly important as the target defect rates approach extremely low values. Motorola data substantiates our thesis that defect rates in the range of several parts per million can only be achieved when traditional methods for controlling variation are combined with methods that specifically focus on eliminating defects due to error. Complexity in the product design, manufacturing processes, or assembly increases the likelihood of defects due to both variation and error. Thus complexity is also a root cause of defects. Until now, the absence of a sound correlation between defects and complexity has obscured the importance of this relationship. We have shown that assembly complexity can be quantified using Design for Assembly (DFA) analysis. High levels of correlation have been found between our complexity measures and defect data covering tens of millions of assembly operations in two widely different industries. The availability of an easily determined measure of complexity, combined with these correlations, permits rapid estimation of the relative defect rates for alternate design concepts. This should prove to be a powerful tool since it can guide design improvement at an early stage when concepts are most readily modified.

  16. Porosity of additive manufacturing parts for process monitoring

    SciTech Connect

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-18

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  17. Porosity of additive manufacturing parts for process monitoring

    NASA Astrophysics Data System (ADS)

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-01

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  18. A study on the applications of AI in finishing of additive manufacturing parts

    NASA Astrophysics Data System (ADS)

    Fathima Patham, K.

    2017-06-01

    Artificial intelligent and computer simulation are the technological powerful tools for solving complex problems in the manufacturing industries. Additive Manufacturing is one of the powerful manufacturing techniques that provide design flexibilities to the products. The products with complex shapes are directly manufactured without the need of any machining and tooling using Additive Manufacturing. However, the main drawback of the components produced using the Additive Manufacturing processes is the quality of the surfaces. This study aims to minimize the defects caused during Additive Manufacturing with the aid of Artificial Intelligence. The developed AI system has three layers, each layer is trying to eliminate or minimize the production errors. The first layer of the AI system optimizes the digitization of the 3D CAD model of the product and hence reduces the stair case errors. The second layer of the AI system optimizes the 3D printing machine parameters in order to eliminate the warping effect. The third layer of AI system helps to choose the surface finishing technique suitable for the printed component based on the Degree of Complexity of the product and the material. The efficiency of the developed AI system was examined on the functional parts such as gears.

  19. Fabrication of Flex Joint Utilizing Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Eddleman, David; Richard, Jim

    2015-01-01

    The Selective Laser Melting (SLM) manufacturing technique has been utilized in the manufacture of a flex joint typical of those found in rocket engine and main propulsion system ducting. The SLM process allowed for the combination of parts that are typically machined separately and welded together. This resulted in roughly a 65% reduction of the total number of parts, roughly 70% reduction in the total number of welds, and an estimated 60% reduction in the number of machining operations. The majority of the new design was in three SLM pieces. These pieces, as well as a few traditionally fabricated parts, were assembled into a complete unit, which has been pressure tested. The design and planned cryogenic testing of the unit will be presented.

  20. Fatigue Behavior of FDM Parts Manufactured with Ultem 9085

    NASA Astrophysics Data System (ADS)

    Fischer, Matthias; Schöppner, Volker

    2017-03-01

    The mechanical characterization of fused deposition modeling (FDM) parts is mostly done by static tests. In many applications, parts are also dynamically loaded. Here, fatigue tests can help to identify the expected lifetime of a part. This article discusses the fatigue behavior of FDM specimens manufactured with Ultem 9085. For this, tensile bars are manufactured according to ASTM D638 in different build orientations. Tests are performed in a range of pulsating tensile stresses, and S-N curves are documented for different build orientations. For higher loads, the FDM anisotropy characterizes the lifetime of used specimens, which is similar to static tensile bars. For lower loads, including a higher number of cycles to failure, S-N curves of different build orientations converge. In further tests, tensile bars were chemically smoothed with chloroform vapor. Chemical smoothing reduces surface roughness and increases tensile strength of specimens in the upright build direction. Fatigue tests of chemically treated specimens show no significant lifetime increase.

  1. Process monitoring during manufacturing of large-scale composite parts

    NASA Astrophysics Data System (ADS)

    Heider, Dirk; Eckel, Douglas A., II; Don, Roderic C.; Fink, Bruce K.; Gillespie, John W., Jr.

    1999-01-01

    One of the inherent problems with the processing of composites is the development of internal stresses and the resulting warpage, which results in out-of-tolerance components. This investigation examines possible fiber-optic sensor methods, which can be applied to measure internal strain and thus residual stress during production. Extrinsic Fabry-Perot Interferometers (EFPI) and Bragg gratings are utilizes to monitor the strain behavior during manufacturing of large-scale composite parts. Initially, a 24 in X 18 in X 1 in thick part was manufactured using the vacuum- assisted resin transfer molding (VARTM) technique. In this part, one Bragg grating, multiple thermocouples and a resin flow sensor (SMARTweave) were integrate to measure the flow and cure behavior during production. An AGEMA thermal image camera verified the temperature history on the part surface. In addition, several EFPI's and Bragg gratings were implemented into three temperature history on the part surface. In addition, several EFPI's and Bragg gratings were implemented into three 13 ft X 32 ft X 20.3 in civilian bridge deck test specimens manufactured with the VARTM process. The Bragg gratings showed great promise to capture the changes in strain due to the residual stress during cure. The actual implementation of fiber optics into large composite parts is a challenge and the problems of sensor survivability in these parts are addressed in this study. The fiber optic measurements in combination with SMARTweave's ability to monitor flow could lead to a sensor system, which allows feedback for process control of the VARTM technique. In addition, the optical fibers will be used for health monitoring during the lifetime of the part.

  2. Computerized parts list system coordinates engineering releases, parts control, and manufacturing planning

    NASA Technical Reports Server (NTRS)

    Horton, W.; Kinsey, M.

    1967-01-01

    Computerized parts list system compiles and summarize all pertinent and available information on complex new systems. The parts list system consists of three computer subroutines - list of parts, parts numerical sequence list, and specifications list.

  3. Manufacturing complex silica aerogel target components

    SciTech Connect

    Defriend Obrey, Kimberly Ann; Day, Robert D; Espinoza, Brent F; Hatch, Doug; Patterson, Brian M; Feng, Shihai

    2008-01-01

    Aerogel is a material used in numerous components in High Energy Density Physics targets. In the past these components were molded into the proper shapes. Artifacts left in the parts from the molding process, such as contour irregularities from shrinkage and density gradients caused by the skin, have caused LANL to pursue machining as a way to make the components.

  4. The complexity and cost of vaccine manufacturing - An overview.

    PubMed

    Plotkin, Stanley; Robinson, James M; Cunningham, Gerard; Iqbal, Robyn; Larsen, Shannon

    2017-07-24

    As companies, countries, and governments consider investments in vaccine production for routine immunization and outbreak response, understanding the complexity and cost drivers associated with vaccine production will help to inform business decisions. Leading multinational corporations have good understanding of the complex manufacturing processes, high technological and R&D barriers to entry, and the costs associated with vaccine production. However, decision makers in developing countries, donors and investors may not be aware of the factors that continue to limit the number of new manufacturers and have caused attrition and consolidation among existing manufacturers. This paper describes the processes and cost drivers in acquiring and maintaining licensure of childhood vaccines. In addition, when export is the goal, we describe the requirements to supply those vaccines at affordable prices to low-resource markets, including the process of World Health Organization (WHO) prequalification and supporting policy recommendation. By providing a generalized and consolidated view of these requirements we seek to build awareness in the global community of the benefits and costs associated with vaccine manufacturing and the challenges associated with maintaining consistent supply. We show that while vaccine manufacture may prima facie seem an economic growth opportunity, the complexity and high fixed costs of vaccine manufacturing limit potential profit. Further, for most lower and middle income countries a large majority of the equipment, personnel and consumables will need to be imported for years, further limiting benefits to the local economy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Design and manufacturing of complex optics: the dragonfly eye optic.

    SciTech Connect

    Claudet, Andre A.; Sweatt, William C.; Hodges, V. Carter; Adams, David Price; Gill, David Dennis; Vasile, Michael J.

    2006-01-01

    The ''Design and Manufacturing of Complex Optics'' LDRD sought to develop new advanced methods for the design and manufacturing of very complex optical systems. The project team developed methods for including manufacturability into optical designs and also researched extensions of manufacturing techniques to meet the challenging needs of aspherical, 3D, multi-level lenslet arrays on non-planar surfaces. In order to confirm the applicability of the developed techniques, the team chose the Dragonfly Eye optic as a testbed. This optic has arrays of aspherical micro-lenslets on both the exterior and the interior of a 4mm diameter hemispherical shell. Manufacturing of the dragonfly eye required new methods of plunge milling aspherical optics and the development of a method to create the milling tools using focused ion beam milling. The team showed the ability to create aspherical concave milling tools which will have great significance to the optical industry. A prototype dragonfly eye exterior was created during the research, and the methods of including manufacturability in the optical design process were shown to be successful as well.

  6. Parts-on-Demand: Manufacturing Technology and Technology Transfer Assessment

    DTIC Science & Technology

    1983-12-31

    applicable technolo- "gy in all the required functions, applied to all of the generic part types. For example, one can buy a computer numerically -controlled...This will mesh perfectly with the current rise in information technology: office automation, CAD, CAM, CAE, numerical control, robotics, and inte...Nippon Denso : from a suits of 40 models, batchc; *.f one to 40,000 can be made on one day’s notice. "Design for POD manufacture and POD assembly" do not

  7. Cement manufacture and the environment - Part I: Chemistry and technology

    USGS Publications Warehouse

    Van Oss, H. G.; Padovani, A.C.

    2002-01-01

    Hydraulic (chiefly portland) cement is the binding agent in concrete and mortar and thus a key component of a country's construction sector. Concrete is arguably the most abundant of all manufactured solid materials. Portland cement is made primarily from finely ground clinker, which itself is composed dominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process requires approximately 1.7 tons of raw materials perton of clinker produced and yields about 1 ton of carbon dioxide (CO2) emissions, of which calcination of limestone and the combustion of fuels each contribute about half. The overall level of CO2 output makes the cement industry one of the top two manufacturing industry sources of greenhouse gases; however, in many countries, the cement industry's contribution is a small fraction of that from fossil fuel combustion by power plants and motor vehicles. The nature of clinker and the enormous heat requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels, thus providing the opportunity to apply key concepts of industrial ecology, most notably the closing of loops through the use of by-products of other industries (industrial symbiosis). In this article, the chemistry and technology of cement manufacture are summarized. In a forthcoming companion article (part II), some of the environmental challenges and opportunities facing the cement industry are described. Because of the size and scope of the U.S. cement industry, the analysis relies primarily on data and practices from the United States.

  8. Mask manufacturing of advanced technology designs using multi-beam lithography (part 2)

    NASA Astrophysics Data System (ADS)

    Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter

    2016-09-01

    As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced optical proximity correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking sub-resolution assist features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, Part 2 of our study, we further characterize an MBMW process for 10nm and below logic node mask manufacturing including advanced pattern analysis and write time demonstration.

  9. Dimensional Stability of Complex Shapes Manufactured by the VARTM Process

    NASA Technical Reports Server (NTRS)

    Hubert, Pascal; Grimsley, Brian W.; Cano, Roberto J.; Pipes, R. Byron

    2002-01-01

    The vacuum assisted resin transfer molding (VARTM) process is a cost effective, innovative method that is being considered for manufacture of large aircraft-quality components where high mechanical properties and dimensional tolerance are essential. In the present work, carbon fiber SAERTEX fabric/SI-ZG-5A epoxy resin C-shaped laminates were manufactured by VARTM using different cure cycles followed by the same post-cure cycle. The final part thickness was uniform except at the corner were thinning was observed. The cure cycle selected is shown to significantly affect the part spring-in and a long cycle at 66 C followed by a 178 C post-cure produced a part with negligible spring-in.

  10. Cleaning and Cleanliness Measurement of Additive Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Welker, Roger W.; Mitchell, Mark A.

    2015-01-01

    The successful acquisition and utilization of piece parts and assemblies for contamination sensitive applications requires application of cleanliness acceptance criteria. Contamination can be classified using many different schemes. One common scheme is classification as organic, ionic and particulate contaminants. These may be present in and on the surface of solid components and assemblies or may be dispersed in various gaseous or liquid media. This discussion will focus on insoluble particle contamination on the surface of piece parts and assemblies. Cleanliness of parts can be controlled using two strategies, referred to as gross cleanliness and precision cleanliness. Under a gross cleanliness strategy acceptance is based on visual cleanliness. This approach introduces a number of concerns that render it unsuitable for controlling cleanliness of high technology products. Under the precision cleanliness strategy, subjective, visual assessment of cleanliness is replaced by objective measurement of cleanliness. When a precision cleanliness strategy is adopted there naturally arises the question: How clean is clean enough? The six commonly used methods for establishing objective cleanliness acceptance limits will be discussed. Special emphasis shall focus on the use of multiple extraction, a technique that has been demonstrated for additively manufactured parts.

  11. Part height control of laser metal additive manufacturing process

    NASA Astrophysics Data System (ADS)

    Pan, Yu-Herng

    Laser Metal Deposition (LMD) has been used to not only make but also repair damaged parts in a layer-by-layer fashion. Parts made in this manner may produce less waste than those made through conventional machining processes. However, a common issue of LMD involves controlling the deposition's layer thickness. Accuracy is important, and as it increases, both the time required to produce the part and the material wasted during the material removal process (e.g., milling, lathe) decrease. The deposition rate is affected by multiple parameters, such as the powder feed rate, laser input power, axis feed rate, material type, and part design, the values of each of which may change during the LMD process. Using a mathematical model to build a generic equation that predicts the deposition's layer thickness is difficult due to these complex parameters. In this thesis, we propose a simple method that utilizes a single device. This device uses a pyrometer to monitor the current build height, thereby allowing the layer thickness to be controlled during the LMD process. This method also helps the LMD system to build parts even with complex parameters and to increase material efficiency.

  12. 19 CFR Appendix B to Part 191 - Sample Formats for Applications for Specific Manufacturing Drawback Rulings

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Manufacturing Drawback Rulings B Appendix B to Part 191 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... to Part 191—Sample Formats for Applications for Specific Manufacturing Drawback Rulings Table of Contents I. General. II. Format for Application for Specific Manufacturing Drawback Ruling Under 19...

  13. 19 CFR Appendix B to Part 191 - Sample Formats for Applications for Specific Manufacturing Drawback Rulings

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Manufacturing Drawback Rulings B Appendix B to Part 191 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... to Part 191—Sample Formats for Applications for Specific Manufacturing Drawback Rulings Table of Contents I. General. II. Format for Application for Specific Manufacturing Drawback Ruling Under 19...

  14. Strengthening of 3D Printed Fused Deposition Manufactured Parts Using the Fill Compositing Technique

    PubMed Central

    Belter, Joseph T.; Dollar, Aaron M.

    2015-01-01

    In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications. PMID:25880807

  15. Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique.

    PubMed

    Belter, Joseph T; Dollar, Aaron M

    2015-01-01

    In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

  16. A new large-scale manufacturing platform for complex biopharmaceuticals.

    PubMed

    Vogel, Jens H; Nguyen, Huong; Giovannini, Roberto; Ignowski, Jolene; Garger, Steve; Salgotra, Anil; Tom, Jennifer

    2012-12-01

    Complex biopharmaceuticals, such as recombinant blood coagulation factors, are addressing critical medical needs and represent a growing multibillion-dollar market. For commercial manufacturing of such, sometimes inherently unstable, molecules it is important to minimize product residence time in non-ideal milieu in order to obtain acceptable yields and consistently high product quality. Continuous perfusion cell culture allows minimization of residence time in the bioreactor, but also brings unique challenges in product recovery, which requires innovative solutions. In order to maximize yield, process efficiency, facility and equipment utilization, we have developed, scaled-up and successfully implemented a new integrated manufacturing platform in commercial scale. This platform consists of a (semi-)continuous cell separation process based on a disposable flow path and integrated with the upstream perfusion operation, followed by membrane chromatography on large-scale adsorber capsules in rapid cycling mode. Implementation of the platform at commercial scale for a new product candidate led to a yield improvement of 40% compared to the conventional process technology, while product quality has been shown to be more consistently high. Over 1,000,000 L of cell culture harvest have been processed with 100% success rate to date, demonstrating the robustness of the new platform process in GMP manufacturing. While membrane chromatography is well established for polishing in flow-through mode, this is its first commercial-scale application for bind/elute chromatography in the biopharmaceutical industry and demonstrates its potential in particular for manufacturing of potent, low-dose biopharmaceuticals.

  17. New possibilities using additive manufacturing with materials that are difficult to process and with complex structures

    NASA Astrophysics Data System (ADS)

    Olsson, Anders; Hellsing, Maja S.; Rennie, Adrian R.

    2017-05-01

    Additive manufacturing (or 3D printing) opens the possibility of creating new designs and manufacturing objects with new materials rapidly and economically. Particularly for use with polymers and polymer composites, simple printers can make high quality products, and these can be produced easily in offices, schools and in workshops and laboratories. This technology has opened a route for many to test ideas or to make custom devices. It is possible to easily manufacture complex geometries that would be difficult or even impossible to create with traditional methods. Naturally this technology has attracted attention in many fields that include the production of medical devices and prostheses, mechanical engineering as well as basic sciences. Materials that are highly problematic to machine can be used. We illustrate process developments with an account of the production of printer parts to cope with polymer fillers that are hard and abrasive; new nozzles with ruby inserts designed for such materials are durable and can be used to print boron carbide composites. As with other materials, complex parts can be printed using boron carbide composites with fine structures, such as screw threads and labels to identify materials. General ideas about design for this new era of manufacturing customised parts are presented.

  18. Preliminary Comparison of Properties between Ni-electroplated Stainless Steel Parts Fabricated with Laser Additive Manufacturing and Conventional Machining

    NASA Astrophysics Data System (ADS)

    Mäkinen, Mika; Jauhiainen, Eeva; Matilainen, Ville-Pekka; Riihimäki, Jaakko; Ritvanen, Jussi; Piili, Heidi; Salminen, Antti

    Laser additive manufacturing (LAM) is a fabrication technology, which enables production of complex parts from metallic materials with mechanical properties comparable to those of conventionally machined parts. These LAM parts are manufactured via melting metallic powder layer by layer with laser beam. Aim of this study is to define preliminarily the possibilities of using electroplating to supreme surface properties. Electrodeposited nickel and chromium as well as electroless (autocatalytic) deposited nickel was used to enhance laser additive manufactured and machined parts properties, like corrosion resistance, friction and wearing. All test pieces in this study were manufactured with a modified research AM equipment, equal to commercial EOS M series. The laser system used for tests was IPG 200 W CW fiber laser. The material used in this study for additive manufacturing was commercial stainless steel powder grade named SS316L. This SS316L is not equal to AISI 316L grade, but commercial name of this kind of powder is widely known in additive manufacturing as SS316L. Material used for fabrication of comparison test pieces (i.e. conventionally manufactured) was AISI 316L stainless steel bar. Electroplating was done in matrix cell and electroless was done in plastic sink properties of plated parts were tested within acetic acid salt spray corrosion chamber (AASS, SFS-EN-ISO 9227 standard). Adhesion of coating, friction and wearing properties were tested with Pin-On-Rod machine. Results show that in these preliminary tests, LAM parts and machined parts have certain differences due to manufacturing route and surface conditions. These have an effect on electroplated and electroless parts features on adhesion, corrosion, wearing and friction. However, further and more detailed studies are needed to fully understand these phenomena.

  19. Design for Manufacturing and Assembly in Apparel. Part 1. Handbook

    DTIC Science & Technology

    1994-02-01

    ASSEMBLY IN APPAREL Preface iii PREFACE DESIGN FOR MANUFACTURING AND ASSEM- The step-by-step pictorially documented proce- BLY ( DFMA ) is defined as a...available production facilities has been illustrated by this handbook. Designing with manufacturing and assembly in mind ( DFMA ) requires a systems ap

  20. Manufacturing of a 3D complex hyperstable Cesic structure

    NASA Astrophysics Data System (ADS)

    Kroedel, Matthias; Courteau, Pascal; Poupinet, Anne; Sarri, Giuseppe

    2007-09-01

    Global astrometry requires extremely stable materials for instrument structures, such as optical benches. Cesic®, developed by ECM and Thales Alenia Space for mirrors and high stability structures, offers an excellent compromise in terms of structural strength, stability and very high lightweight capability, with a coefficient of thermal expansion that is virtually zero at cryogenic T°. The High-Stability Optical Bench (HSOB) GAIA study, realized by Thales Alenia Space under ESA contract, aimed to design, develop and test a full-scale representative of the HSOB bench, made entirely of Cesic®. The bench has been equipped with SAGEIS-CSO laser metrology system MOUSE1, a Michelson interferometer composed of integrated optics with nm-resolution. The HSOB bench has been submitted to a homogeneous T° step under vacuum to characterize 3-D expansion behavior of its two arms. The quite negligible interarm differential, measured with a nm-range reproducibility, demonstrates that a complete 3-D structure made of Cesic® has the same CTE homogeneity as do characterization samples, fully in line with the stringent GAIA requirements (1ppm at 120K). This demonstrates that Cesic® properties at cryogenic temperatures are fully appropriate to the manufacturing of complex highly stable optical structures. This successful study confirms ECM's and Thales Alenia Space's ability to design and manufacture monolithic lightweight highly stable optical structures, based on inner-cell triangular design made possible by the unique Cesic® manufacturing process.

  1. Manufacturing interior furniture parts: a new look at an old problem

    Treesearch

    Edwin L. Lucas; Philip A. Araman

    1975-01-01

    The yields of interior furniture parts from four manufacturing sequences were compared. In three of the sequences, gang-ripping was the first step; in the fourth, the lumber was crosscut first. Though the grade of lumber used affects the percentage yield of parts, the manufacturing sequence used does not - but it will affect the cost per part. The selection of the best...

  2. 29 CFR Appendix A to Part 510 - Manufacturing Industries Eligible for Minimum Wage Phase-In

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Manufacturing Industries Eligible for Minimum Wage Phase-In... FAIR LABOR STANDARDS ACT IN PUERTO RICO Pt. 510, App. A Appendix A to Part 510—Manufacturing Industries Eligible for Minimum Wage Phase-In This appendix contains a listing of all manufacturing industries...

  3. 29 CFR Appendix A to Part 510 - Manufacturing Industries Eligible for Minimum Wage Phase-In

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Manufacturing Industries Eligible for Minimum Wage Phase-In... FAIR LABOR STANDARDS ACT IN PUERTO RICO Pt. 510, App. A Appendix A to Part 510—Manufacturing Industries Eligible for Minimum Wage Phase-In This appendix contains a listing of all manufacturing industries...

  4. 29 CFR Appendix A to Part 510 - Manufacturing Industries Eligible for Minimum Wage Phase-In

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Manufacturing Industries Eligible for Minimum Wage Phase-In... FAIR LABOR STANDARDS ACT IN PUERTO RICO Pt. 510, App. A Appendix A to Part 510—Manufacturing Industries Eligible for Minimum Wage Phase-In This appendix contains a listing of all manufacturing industries...

  5. 29 CFR Appendix A to Part 510 - Manufacturing Industries Eligible for Minimum Wage Phase-In

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Manufacturing Industries Eligible for Minimum Wage Phase-In... FAIR LABOR STANDARDS ACT IN PUERTO RICO Pt. 510, App. A Appendix A to Part 510—Manufacturing Industries Eligible for Minimum Wage Phase-In This appendix contains a listing of all manufacturing industries...

  6. 29 CFR Appendix A to Part 510 - Manufacturing Industries Eligible for Minimum Wage Phase-In

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Manufacturing Industries Eligible for Minimum Wage Phase-In... FAIR LABOR STANDARDS ACT IN PUERTO RICO Pt. 510, App. A Appendix A to Part 510—Manufacturing Industries Eligible for Minimum Wage Phase-In This appendix contains a listing of all manufacturing industries...

  7. 19 CFR Appendix A to Part 191 - General Manufacturing Drawback Rulings

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false General Manufacturing Drawback Rulings A Appendix...; DEPARTMENT OF THE TREASURY (CONTINUED) DRAWBACK Pt. 191, App. A Appendix A to Part 191—General Manufacturing Drawback Rulings Table of Contents I. General Instructions II. General Manufacturing Drawback Ruling...

  8. Reduction of Surface Roughness by Means of Laser Processing over Additive Manufacturing Metal Parts.

    PubMed

    Alfieri, Vittorio; Argenio, Paolo; Caiazzo, Fabrizia; Sergi, Vincenzo

    2016-12-31

    Optimization of processing parameters and exposure strategies is usually performed in additive manufacturing to set up the process; nevertheless, standards for roughness may not be evenly matched on a single complex part, since surface features depend on the building direction of the part. This paper aims to evaluate post processing treating via laser surface modification by means of scanning optics and beam wobbling to process metal parts resulting from selective laser melting of stainless steel in order to improve surface topography. The results are discussed in terms of roughness, geometry of the fusion zone in the cross-section, microstructural modification, and microhardness so as to assess the effects of laser post processing. The benefits of beam wobbling over linear scanning processing are shown, as heat effects in the base metal are proven to be lower.

  9. Reduction of Surface Roughness by Means of Laser Processing over Additive Manufacturing Metal Parts

    PubMed Central

    Alfieri, Vittorio; Argenio, Paolo; Caiazzo, Fabrizia; Sergi, Vincenzo

    2016-01-01

    Optimization of processing parameters and exposure strategies is usually performed in additive manufacturing to set up the process; nevertheless, standards for roughness may not be evenly matched on a single complex part, since surface features depend on the building direction of the part. This paper aims to evaluate post processing treating via laser surface modification by means of scanning optics and beam wobbling to process metal parts resulting from selective laser melting of stainless steel in order to improve surface topography. The results are discussed in terms of roughness, geometry of the fusion zone in the cross-section, microstructural modification, and microhardness so as to assess the effects of laser post processing. The benefits of beam wobbling over linear scanning processing are shown, as heat effects in the base metal are proven to be lower. PMID:28772380

  10. Evaluation of Additive Manufacturing for Composite Part Molds

    SciTech Connect

    Duty, Chad E.; Springfield, Robert M.

    2015-02-01

    The ORNL Manufacturing Demonstration Facility (MDF) collaborated with Tru-Design to test the quality and durability of molds used for making fiber reinforced composites using additive manufacturing. The partners developed surface treatment techniques including epoxy coatings and machining to improve the quality of the surface finish. Test samples made using the printed and surface finished molds demonstrated life spans suitable for one-of-a-kind and low-volume applications, meeting the project objective.

  11. 75 FR 12148 - Airworthiness Directives; Ontic Engineering and Manufacturing, Inc. Propeller Governors, Part...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Ontic Engineering... Ontic Engineering and Manufacturing, Inc. propeller governors, part numbers (P/Ns) C210776, T210761... Federal holidays. Fax: (202) 493-2251. Contact Ontic Engineering and Manufacturing, Inc., 20400 Plummer...

  12. Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review

    NASA Astrophysics Data System (ADS)

    Song, Bo; Zhao, Xiao; Li, Shuai; Han, Changjun; Wei, Qingsong; Wen, Shifeng; Liu, Jie; Shi, Yusheng

    2015-06-01

    Selective laser melting (SLM), as one of the additive manufacturing technologies, is widely investigated to fabricate metal parts. In SLM, parts are manufactured directly from powders in a layer-by-layer fashion; SLM also provides several advantages, such as production of complex parts with high three-dimensional accuracy, compared with other additive manufacturing technologies. Therefore, SLM can be applied in aeronautics, astronautics, medicine, and die and mould industry. However, this technique differs from traditional methods, such as casting and forging; for instance, the former greatly differs in terms of microstructure and properties of products. This paper summarizes relevant studies on metal material fabrication through SLM. Based on a work completed in Huazhong Univ. Sci Tech., Rapid Manuf. Center (HUST-RMC) and compared with characteristics described in other reported studies, microstructure, properties, dimensional accuracy, and application of SLM are presented.

  13. Continuous filament composite parts and articles of manufacture thereof

    DOEpatents

    Weisberg, Andrew H.

    2016-06-28

    An article of manufacture according to one embodiment includes a plurality of plies in a stacked configuration, where each ply includes a plurality of tape winds having edges. A distance between the edges of adjacent tape winds in the same ply is about constant along a length of the wind. Each tape wind comprises elongated fibers and a matrix, axes of the fibers being oriented about parallel to a longitudinal axis of the tape wind. Additional systems, methods and articles of manufacture are also presented.

  14. Automated fiber placement composite manufacturing: The mission at MSFC's Productivity Enhancement Complex

    NASA Technical Reports Server (NTRS)

    Vickers, John H.; Pelham, Larry I.

    1993-01-01

    Automated fiber placement is a manufacturing process used for producing complex composite structures. It is a notable leap to the state-of-the-art in technology for automated composite manufacturing. The fiber placement capability was established at the Marshall Space Flight Center's (MSFC) Productivity Enhancement Complex in 1992 in collaboration with Thiokol Corporation to provide materials and processes research and development, and to fabricate components for many of the Center's Programs. The Fiber Placement System (FPX) was developed as a distinct solution to problems inherent to other automated composite manufacturing systems. This equipment provides unique capabilities to build composite parts in complex 3-D shapes with concave and other asymmetrical configurations. Components with complex geometries and localized reinforcements usually require labor intensive efforts resulting in expensive, less reproducible components; the fiber placement system has the features necessary to overcome these conditions. The mechanical systems of the equipment have the motion characteristics of a filament winder and the fiber lay-up attributes of a tape laying machine, with the additional capabilities of differential tow payout speeds, compaction and cut-restart to selectively place the correct number of fibers where the design dictates. This capability will produce a repeatable process resulting in lower cost and improved quality and reliability.

  15. Assessing processes in uncertain, complex physical phenomena and manufacturing

    SciTech Connect

    Booker, J. M.; Kerscher, W. J. III; Smith, R. E.

    2002-01-01

    PREDICT (Performance and Reliability Evaluation with Diverse Information Combination and Tracking) is a set of structured quantitative approaches for the evaluation of system performance based on multiple information sources. The methodology integrates diverse types and sources of information, and their associated uncertainties, to develop full distributions for performance metrics, such as reliability. The successful application of PREDICT has involved system performance assessment in automotive product development, aging nuclear weapons, and fatigued turbine jet engines. In each of these applications, complex physical, mechanical and materials processes affect performance, safety and reliability assessments. Processes also include the physical actions taken during manufacturing, quality control, inspections, assembly, etc. and the steps involved in product design, development and certification. In this paper, we will examine the various types of processes involved in the decision making leading to production in an automotive system reliability example. Analysis of these processes includes not only understanding their impact on performance and reliability, but also the uncertainties associated with them. The automotive example demonstrates some of the tools used in tackling the complex problem of understanding processes. While some tools and methods exist for understanding processes (man made and natural) and the uncertainties associated with them, many of the complex issues discussed are open for continued research efforts.

  16. Accurate manufacturing and production of optoelectronic parts and modules

    NASA Astrophysics Data System (ADS)

    Hannula, Tapio; Karioja, Pentti; Keraenen, Kimmo; Kopola, Harri K.; Malinen, Jouko; Ollila, Jyrki

    1998-12-01

    The trends in optoelectronic products are towards higher integration level of optics, electronics and mechanics. It means smaller dimensions and tighter packaging density. The precisions in component manufacturing and accuracies in module assemblings typically are in 10 to 50 micrometer range. Due to demands of the production in series of tens of thousands it means new type of know-how in production and assembling technologies.

  17. Thermal Spray Based Rapid Manufacturing, Part Refurbishing and Reengineering

    DTIC Science & Technology

    2004-11-30

    comparison algorithm is developed . Fig. 6. Part databse Fig. 7. Part matching Broken Part Data Acquisition (GeoMagic) ----Yes _------ Is It...ground with a diamond wheel. The microstructure and chemical composition is shown in Fig. 14. The average hardness of the deposit was 1100 vickers. Fig

  18. Laser cladding: repairing and manufacturing metal parts and tools

    NASA Astrophysics Data System (ADS)

    Sexton, Leo

    2003-03-01

    Laser cladding is presently used to repair high volume aerospace, automotive, marine, rail or general engineering components where excessive wear has occurred. It can also be used if a one-off high value component is either required or has been accidentally over-machined. The ultimate application of laser cladding is to build components up from nothing, using a laser cladding system and a 3D CAD drawing of the component. It is thus emerging that laser cladding can be classified as a special case of Rapid Prototyping (RP). Up to this point in time RP was seen, and is still seen, as in intermediately step between the design stage of a component and a finished working product. This can now be extended so that laser cladding makes RP a one-stop shop and the finished component is made from tool-steel or some alloy-base material. The marriage of laser cladding with RP is an interesting one and offers an alternative to traditional tool builders, re-manufacturers and injection mould design/repair industries. The aim of this paper is to discuss the emergence of this new technology, along with the transference of the process out of the laboratory and into the industrial workplace and show it is finding its rightful place in the manufacturing/repair sector. It will be shown that it can be used as a cost cutting, strategic material saver and consequently a green technology.

  19. Comprehensive database of Manufactured Gas Plant tars. Part A. Database.

    PubMed

    Gallacher, Christopher; Thomas, Russell; Lord, Richard; Kalin, Robert M; Taylor, Chris

    2017-08-15

    Coal tars are a mixture of organic and inorganic compounds that were by-products from the manufactured gas and coke making industries. Different manufacturing processes have resulted in the production of distinctly different tar compositions. This study presents a comprehensive database of compounds produced using two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GCxGC/TOFMS), analysing 16 tar samples produced by five distinct production processes. Samples of coal tar were extracted using accelerated solvent extraction (ASE) and derivatised post-extraction using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS). The derivatised samples were analysed using two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GCxGC/TOFMS). A total of 16 tar samples originating from five different production processes: Low Temperature Horizontal Retorts, Horizontal Retorts, Vertical Retorts, Carbureted Water Gas and Coke Ovens, were analysed. A total of 2369 unique compounds were detected with 948 aromatic compounds, 196 aliphatic compounds, 380 sulfur-containing compounds, 209 oxygen-containing compounds, 262 nitrogen-containing compounds and 15 mixed heterocycles. Derivatisation allowed the detection of 359 unique compounds, the majority in the form of hydroxylated polycyclic aromatic hydrocarbons, many of which would not have been detected without derivatisation. Of the 2369 unique compounds detected, 173 were found to be present within all samples. A unique comprehensive database of compounds detected within 16 tar samples from five different production processes was produced. The 173 compounds identified within every sample may be of particular importance from a regulatory standpoint. This initial study indicates that different production processes produce tars with different chemical signatures and it can be further expanded upon by in-depth analysis of the different compound

  20. Experimental comparison of photogrammetry for additive manufactured parts with and without laser speckle projection

    NASA Astrophysics Data System (ADS)

    Sims-Waterhouse, D.; Bointon, P.; Piano, S.; Leach, R. K.

    2017-06-01

    In this paper we show that, by using a photogrammetry system with and without laser speckle, a large range of additive manufacturing (AM) parts with different geometries, materials and post-processing textures can be measured to high accuracy. AM test artefacts have been produced in three materials: polymer powder bed fusion (nylon-12), metal powder bed fusion (Ti-6Al-4V) and polymer material extrusion (ABS plastic). Each test artefact was then measured with the photogrammetry system in both normal and laser speckle projection modes and the resulting point clouds compared with the artefact CAD model. The results show that laser speckle projection can result in a reduction of the point cloud standard deviation from the CAD data of up to 101 μm. A complex relationship with surface texture, artefact geometry and the laser speckle projection is also observed and discussed.

  1. Rough-Part Sizes Needed from Lumber for Manufacturing Furniture and Kitchen Cabinets

    Treesearch

    Philip A. Araman

    1982-01-01

    This report summarizes the results from a recent survey of the rough-part sizes needed from lumber for manufacturing furniture and kitchen cabinets. Twenty furniture and twelve cabinet companies participated in the survey. Lumber thicknesses needed and rough-part qualities desired are presented along with distributions describing the required rough-part dimensions....

  2. Cleaning and Cleanliness Measurement of Additive Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Mitchell, Mark A.; Raley, Randy

    2016-01-01

    The successful acquisition and utilization of piece parts and assemblies for contamination sensitive applications requires application of cleanliness acceptance criteria. Contamination can be classified using many different schemes. One common scheme is classification as organic, ionic and particulate contaminants. These may be present in and on the surface of solid components and assemblies or may be dispersed in various gaseous or liquid media. This discussion will focus on insoluble particle contamination on the surfaces of piece parts and assemblies. Cleanliness of parts can be controlled using two strategies, referred to as gross cleanliness and precision cleanliness. Under a gross cleanliness strategy acceptance is based on visual cleanliness. This approach introduces a number of concerns that render it unsuitable for controlling cleanliness of high technology products. Under the precision cleanliness strategy, subjective, visual assessment of cleanliness is replaced by objective measurement of cleanliness. When a precision cleanliness strategy is adopted there naturally arises the question: How clean is clean enough? The methods for establishing objective cleanliness acceptance limits will be discussed.

  3. Manufacture of parts from a titanium alloy under superplasticity conditions

    NASA Astrophysics Data System (ADS)

    Vargasov, N. R.; Radkevich, M. M.

    2016-12-01

    A pseudo-α PT3V titanium alloy with a grain size of about 10 μm is shown to demonstrate all evidence of superplasticity in the temperature range 880-920°C during tensile deformation at a strain rate of 10-3-10-2 s-1: the relative elongation is higher than 300% and the strain-hardening exponent is higher than 0.4. It is concluded that the use of isothermal stamping of bottom-type parts from the titanium alloy in the superplastic state is profitable.

  4. Physical Simulation of Investment Casting of Complex Shape Parts

    NASA Astrophysics Data System (ADS)

    Rahimian, Mehdi; Milenkovic, Srdjan; Maestro, Laura; De Azua, Aitor Eguidazu Ruiz; Sabirov, Ilchat

    2015-05-01

    Development of investment casting process has been a challenge for manufacturers of complex shape parts. Numerous experimental casting trials are typically carried out to determine the optimum casting parameters for fabrication of high-quality products. In this work, it is demonstrated that physical simulation of investment casting can successfully predict microstructure and hardness in as-cast complex shape parts. The physical simulation tool consists of a thermal model and melting/solidification experiments in thermo-mechanical simulator. The thermal model is employed to predict local cooling rate during solidification at each point of a casting. Melting/solidification experiments are carried out under controlled cooling rates estimated by the thermal model. Microstructural and mechanical characterization of the solidified specimens is performed; the obtained results predict the local microstructure and mechanical properties of the casting. This concept is applied to investment casting of complex shape nozzle guide vanes from Mar-M247 Ni-based superalloy. Experimental casting trials are performed and the outcomes of physical simulation tool are validated against experimental results. It is shown that phase composition, secondary dendrite arm spacing, grain size, γ/ γ' eutectic size and volume fraction, size and shape of carbide particles, and local microhardness can be predicted at each point of the casting via physical simulation.

  5. Development of Spray on Bag for manufacturing of large composites parts: Diffusivity analysis

    NASA Astrophysics Data System (ADS)

    Dempah, Maxime Joseph

    Bagging materials are utilized in many composites manufacturing processes. The selection is mainly driven by cost, temperature requirements, chemical compatibility and tear properties of the bag. The air barrier properties of the bag are assumed to be adequate or in many cases are not considered at all. However, the gas barrier property of a bag is the most critical parameter, as it can negatively affect the quality of the final laminate. The barrier property is a function of the bag material, uniformity, thickness and temperature. Improved barrier properties are needed for large parts, high pressure consolidated components and structures where air stays entrapped on the part surface. The air resistance property of the film is defined as permeability and is investigated in this thesis. A model was developed to evaluate the gas transport through the film and an experimental cell was implemented to characterize various commercial films. Understanding and characterizing the transport phenomena through the film allows optimization of the bagging material for various manufacturing processes. Spray-on-Bag is a scalable alternative bagging method compared to standard films. The approach allows in-situ fabrication of the bag on large and complex geometry structures where optimization of the bag properties can be varied on a local level. An experimental setup was developed and implemented using a six axis robot and an automated spraying system. Experiments were performed on a flat surface and specimens were characterized and compared to conventional films. Air barrier properties were within range of standard film approaches showing the potential to fabricate net shape bagging structures in an automated process.

  6. 40 CFR 63.5787 - What if I also manufacture fiberglass boats or boat parts?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... boats or boat parts? 63.5787 Section 63.5787 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Composites Production What This Subpart Covers § 63.5787 What if I also manufacture fiberglass boats or boat parts? (a) If your source meets the applicability criteria in § 63.5785, and is not subject to the Boat...

  7. 40 CFR 63.5787 - What if I also manufacture fiberglass boats or boat parts?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... boats or boat parts? 63.5787 Section 63.5787 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Composites Production What This Subpart Covers § 63.5787 What if I also manufacture fiberglass boats or boat parts? (a) If your source meets the applicability criteria in § 63.5785, and is not subject to the Boat...

  8. 40 CFR 63.5787 - What if I also manufacture fiberglass boats or boat parts?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... boats or boat parts? 63.5787 Section 63.5787 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Production What This Subpart Covers § 63.5787 What if I also manufacture fiberglass boats or boat parts? (a) If your source meets the applicability criteria in § 63.5785, and is not subject to the Boat...

  9. 40 CFR 63.5787 - What if I also manufacture fiberglass boats or boat parts?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... boats or boat parts? 63.5787 Section 63.5787 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Composites Production What This Subpart Covers § 63.5787 What if I also manufacture fiberglass boats or boat parts? (a) If your source meets the applicability criteria in § 63.5785, and is not subject to the Boat...

  10. 40 CFR 63.5787 - What if I also manufacture fiberglass boats or boat parts?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... boats or boat parts? 63.5787 Section 63.5787 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Production What This Subpart Covers § 63.5787 What if I also manufacture fiberglass boats or boat parts? (a) If your source meets the applicability criteria in § 63.5785, and is not subject to the Boat...

  11. Upgrading the steam and cooling systems at a machine tool manufacturing complex

    SciTech Connect

    Davies, G.R.; Drye, J.W.

    1997-03-01

    Cincinnati Milacron, Inc., one of the world`s largest machine tool manufacturers, decided to upgrade the steam and cooling systems that serve Milacron`s multibuilding 1.5 million square foot (139,350 m{sup 2}) headquarters complex in Cincinnati, Ohio. The upgrades were begun in 1993 and were operational by March 1995. Program objectives were to: (1) Provide mechanical cooling of manufacturing areas for better temperature control to gain closer tolerances on machined parts. This was to support a corporate objective to obtain ISO 9000 Certification which has been achieved. (2) Phase-out use of ozone-depleting chlorofluorocarbon (CFC) refrigerants in existing electric chillers and packaged air-conditioning (DX) units. (3) Minimize waste oil and wood leaving the complex to reduce disposal costs and environmental liabilities. (4) Reduce operating and maintenance costs to enhance industrial competitiveness. With co-funding help from the local utility company, Cinergy Corporation, the authors assisted Milacron in analyzing the feasibility of various mechanical cooling concepts such as single vs. two-stage steam absorption vs. electric chillers. This analysis provided the data needed to select the concepts which best met the program objectives.

  12. Logic For Qualification And Industrialisation Of Additive Layer Manufacturing Parts For Spatial Application

    NASA Astrophysics Data System (ADS)

    Brindeau, Aymeric; Lopes, Jean-Louis; Brivot, Frederic; Bourneaud, Florent; Desagulier, Christian

    2012-07-01

    ASTRIUM Space Transportation has been manufacturing composite equipments for satellite for 25 years. For this business, the development of Additive Layer Manufacturing (ALM) processes has been identified as a real opportunity to improve design and performances. For satellite equipments, ASTRIUM ST has chosen to investigate in the Electron Beam Melting process (patented EBM® process from Arcam AB company) for the manufacturing of Titanium parts, in collaboration with MECACHROME who has developed strong skills in this ALM process. This first development step has been achieved by introducing a titanium part realised by EBM on an equipment of Atlantic Bird 7 satellite launched in September 2011. The new step consists in the formal industrialisation of the EBM process for the procurement of titanium parts for satellite equipments. The present paper describes the logic retained for this industrialisation. It includes the technical requirements but also the verifications and inspections which have to be performed to guarantee that technical requirements are met.

  13. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing, Part II: Additive Manufacturing and Characterization of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Grady, Joseph E.; Arnold, Steven M.; Draper, Robert D.; Shin, Eugene; Patterson, Clark; Santelle, Tom; Lao, Chao; Rhein, Morgan; Mehl, Jeremy

    2015-01-01

    This publication is the second part of the three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides-Ultem 9085 and experimental Ultem 1000 mixed with 10% chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25 to 31%. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties. A preliminary modeling was also initiated to predict the mechanical properties of FDM-printed Ultem 9085 coupons in relation to varied raster angles and void contents, using the GRC-developed MAC/GMC program.

  14. Complex Modelling Scheme Of An Additive Manufacturing Centre

    NASA Astrophysics Data System (ADS)

    Popescu, Liliana Georgeta

    2015-09-01

    This paper presents a modelling scheme sustaining the development of an additive manufacturing research centre model and its processes. This modelling is performed using IDEF0, the resulting model process representing the basic processes required in developing such a centre in any university. While the activities presented in this study are those recommended in general, changes may occur in specific existing situations in a research centre.

  15. In Situ Manufacturing is a Necessary Part of Any Planetary Architecture

    NASA Technical Reports Server (NTRS)

    Edmunson, Jennifer E.; McLemore, Carole A.

    2012-01-01

    The key to any sustainable presence in space is the ability to manufacture necessary tools, parts, structures, spares, etc. in situ and on demand. Cost, volume, and up-mass constraints prohibit launching everything needed for long-duration or long-distance missions from Earth, including spare parts and replacement systems. There are many benefits to building items as-needed in situ using computer aided drafting (CAD) models and additive manufacturing technology: (1) Cost, up-mass, and volume savings for launch due to the ability to manufacture specific parts when needed. (2) CAD models can be generated on Earth and transmitted to the station or spacecraft, or they can be designed in situ for any task. Thus, multiple people in many locations can work on a single problem. (3) Items can be produced that will enhance the safety of crew and vehicles (e.g., latches or guards). (4) Items can be produced on-demand in a small amount of time (i.e., hours or days) compared to traditional manufacturing methods and, therefore, would not require the lengthy amount of time needed to machine the part from a solid block of material nor the wait time required if the part had to be launched from Earth. (5) Used and obsolete parts can be recycled into powder or wire feedstock for use in later manufacturing. (6) Ultimately, the ability to produce items as-needed will reduce mission risk, as one will have everything they need to fix a broken system or fashion a new part making it available on a more timely basis.

  16. Improving Energy Efficiency in Pharmaceutical ManufacturingOperations -- Part I: Motors, Drives and Compressed Air Systems

    SciTech Connect

    Galitsky, Christina; Chang, Sheng-chien; Worrell, Ernst; Masanet,Eric

    2006-04-01

    In Part I of this two-part series, we focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Pharmaceutical manufacturing plants in the U.S. spend nearly $1 billion each year for the fuel and electricity they need to keep their facilities running (Figure 1, below). That total that can increase dramatically when fuel supplies tighten and oil prices rise, as they did last year. Improving energy efficiency should be a strategic goal for any plant manager or manufacturing professional working in the drug industry today. Not only can energy efficiency reduce overall manufacturing costs, it usually reduces environmental emissions, establishing a strong foundation for a corporate greenhouse-gas-management program. For most pharmaceutical manufacturing plants, Heating, Ventilation and Air Conditioning (HVAC) is typically the largest consumer of energy, as shown in Table 1 below. This two-part series will examine energy use within pharmaceutical facilities, summarize best practices and examine potential savings and return on investment. In this first article, we will focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Part 2, to be published in May, will focus on overall HVAC systems, building management and boilers.

  17. Parts on Demand: Evaluation of Approaches to Achieve Flexible Manufacturing Systems for Navy Parts on Demand. Volume 2. Appendices

    DTIC Science & Technology

    1984-02-01

    manufacturing technology in order to improve life cycle cost, readiness and mobilization effectiveness. Discussion: Based on recent experience at the...systems, to make the most use of front end logistics investment and procuring parts production data along with their logistics data. Enhancing mobile ...POD Program as a whole - certain por- tions, however, such as enhancements to the Mobile Logistic Force (MLF) and other GOGO facilities have a more

  18. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components

    NASA Astrophysics Data System (ADS)

    Thivillon, L.; Bertrand, Ph.; Laget, B.; Smurov, I.

    2009-03-01

    Direct metal deposition (DMD) is an automated 3D deposition process arising from laser cladding technology with co-axial powder injection to refine or refurbish parts. Recently DMD has been extended to manufacture large-size near-net-shape components. When applied for manufacturing new parts (or their refinement), DMD can provide tailored thermal properties, high corrosion resistance, tailored tribology, multifunctional performance and cost savings due to smart material combinations. In repair (refurbishment) operations, DMD can be applied for parts with a wide variety of geometries and sizes. In contrast to the current tool repair techniques such as tungsten inert gas (TIG), metal inert gas (MIG) and plasma welding, laser cladding technology by DMD offers a well-controlled heat-treated zone due to the high energy density of the laser beam. In addition, this technology may be used for preventative maintenance and design changes/up-grading. One of the advantages of DMD is the possibility to build functionally graded coatings (from 1 mm thickness and higher) and 3D multi-material objects (for example, 100 mm-sized monolithic rectangular) in a single-step manufacturing cycle by using up to 4-channel powder feeder. Approved materials are: Fe (including stainless steel), Ni and Co alloys, (Cu,Ni 10%), WC compounds, TiC compounds. The developed coatings/parts are characterized by low porosity (<1%), fine microstructure, and their microhardness is close to the benchmark value of wrought alloys after thermal treatment (Co-based alloy Stellite, Inox 316L, stainless steel 17-4PH). The intended applications concern cooling elements with complex geometry, friction joints under high temperature and load, light-weight mechanical support structures, hermetic joints, tubes with complex geometry, and tailored inside and outside surface properties, etc.

  19. APPROACHES TO GEOMETRIC DATA ANALYSIS ON BIG AREA ADDITIVELY MANUFACTURED (BAAM) PARTS

    SciTech Connect

    Dreifus, Gregory D; Ally, Nadya R; Post, Brian K; Jin, Yuan

    2016-01-01

    The promise of additive manufacturing is that a user can design and print complex geometries that are very difficult, if not impossible, to machine. The capabilities of 3D printing are restricted by a number of factors, including properties of the build material, time constraints, and geometric design restrictions. In this paper, a thorough accounting and study of the geometric restrictions that exist in the current iteration of additive manufacturing (AM) fused deposition modeling (FDM) technologies are discussed. Offline and online methodologies for collecting data sets for qualitative analysis of large scale AM, in particular Oak Ridge National Laboratory s (ORNL) big area additive manufacturing (BAAM) system, are summarized. In doing so, a survey of tools for designers and software developers is provided. In particular, strategies in which geometric data can be used as training sets for smarter AM technologies in the future are explained as well.

  20. Mask manufacturing of advanced technology designs using multi-beam lithography (Part 1)

    NASA Astrophysics Data System (ADS)

    Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter

    2016-10-01

    As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced Optical Proximity Correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking Sub-Resolution Assist Features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, we study one such process, characterizing mask manufacturing capability of 10nm and below structures with particular focus on minimum resolution and pattern fidelity.

  1. Simulation and analysis of complex human tasks for manufacturing

    NASA Astrophysics Data System (ADS)

    Badler, Norman I.; Becket, Welton M.; Webber, Bonnie L.

    1995-11-01

    We discuss how the combination of a realistic human figure with a high-level behavioral control interface allow the construction of detailed simulations of humans performing manual tasks from which inferences about human performance requirements can be made. The Jack human modeling environment facilitates the real-time simulation of humans performing sequences of tasks such as walking, lifting, reaching, and grasping in a complex simulation environment. Analysis capabilities include strength, reachability, and visibility; moreover results from these tests can affect an unfolding simulation.

  2. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  3. Part Count: Monolithic Part Effects On Manufacturing Labor Cost, An Aircraft Applied Model

    DTIC Science & Technology

    2010-03-01

    ACCA ), provides substantial support for the impact of part size on life cycle cost for payload aircraft. This research evaluates select methods used...1: Boeing 787 External Skin Materials (Boeing, 2010) ..........................................9 Figure 2: ACCA Task Sequence (Neumeier et al, 2009...Category (Butler et al, 2002) 12 The Advanced Composite Cargo Aircraft ( ACCA ) program is the culminating effort of CAI. The ACCA Production Study

  4. Feature based Weld-Deposition for Additive Manufacturing of Complex Shapes

    NASA Astrophysics Data System (ADS)

    Panchagnula, Jayaprakash Sharma; Simhambhatla, Suryakumar

    2016-08-01

    Fabricating functional metal parts using Additive Manufacturing (AM) is a leading trend. However, realizing overhanging features has been a challenge due to the lack of support mechanism for metals. Powder-bed fusion techniques like, Selective Laser Sintering (SLS) employ easily-breakable-scaffolds made of the same material to realize the overhangs. However, the same approach is not extendible to deposition processes like laser or arc based direct energy deposition processes. Although it is possible to realize small overhangs by exploiting the inherent overhanging capability of the process or by blinding some small features like holes, the same cannot be extended for more complex geometries. The current work presents a novel approach for realizing complex overhanging features without the need of support structures. This is possible by using higher order kinematics and suitably aligning the overhang with the deposition direction. Feature based non-uniform slicing and non-uniform area-filling are some vital concepts required in realizing the same and are briefly discussed here. This method can be used to fabricate and/or repair fully dense and functional components for various engineering applications. Although this approach has been implemented for weld-deposition based system, the same can be extended to any other direct energy deposition processes also.

  5. Powder Injection Molding (PIM) for Low Cost Manufacturing of Intricate Parts to Net-Shape

    DTIC Science & Technology

    2006-05-01

    Molding (PIM) for Low Cost Manufacturing of Intricate Parts to Net-Shape 7 - 6 RTO-MP-AVT-139 high temperature materials find applications in...offers significant cost savings, increased design and materials flexibility, increased possibility of miniaturization, high mechanical properties, good...surface finish and high speed production. The activities and expertise in powder metallurgy as well as in process numerical modeling related to

  6. New policy to manage tools in flexible manufacturing systems using network part programs

    NASA Astrophysics Data System (ADS)

    Matta, Andrea; Tolio, Tullio; Grieco, Antonio; Nucci, Francesco

    2000-10-01

    The high investment related to the acquisition of Flexible Manufacturing Systems forces firms to a better utilization of the machines. Different actions can be taken in order to avoid idle times of the machines: reduction of the unproductive times (time dedicated to rapid movements, tool exchange, pallet exchange, etc.), improvement of machines and, not last, a better management of the resources. The paper proposes a new policy for the management of tool operations in parallel machine FMS to minimize the idle times due to the lack of tools. The proposed policy uses new opportunities in manufacturing technology related with the use of network part programs in NC machines. It is already known in literature the potentiality of network part programs, more flexible than traditional sequential part programs that execute simply the rigid list of operations. Network part programs allow the different alternative ways to process each part. The way in which network part programs are executed by machines depends on the state of the tools and availability of the tools. The proposed method has been compared with other existing ones based on a real test case, a parallel machine FMS with two machines and a tool carrier.

  7. Manufacturing near dense metal parts via indirect selective laser sintering combined with isostatic pressing

    NASA Astrophysics Data System (ADS)

    Liu, J. H.; Shi, Y. S.; Lu, Z. L.; Huang, S. H.

    2007-11-01

    To fabricate metal parts via indirect selective laser sintering (SLS), isostatic pressing technology, including hot isostatic pressing (HIP) and cold isostatic pressing (CIP), are exploited to reform SLS green parts and make them near dense. The processes of SLS/HIP and SLS/CIP/HIP technologies are investigated respectively and the densification of AISI304 stainless steel specimens is mainly discussed. It is indicated that green parts made by indirect SLS can be pressed into near dense parts with the relative densities of 67.3% and more than 80% in SLS/HIP and SLS/CIP/HIP routes, respectively, and their densities rise if much higher CIP pressure is employed. Compared with SLS/HIP, SLS/CIP/HIP technology is regarded as a better method to manufactured dense parts, and it enlarges the application domain of indirect SLS simultaneously.

  8. Study on the Quality and Performance of CoCrMo Alloy Parts Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Guoqing, Zhang; Yongqiang, Yang; Hui, Lin; Changhui, Song; Zimian, Zhang

    2017-05-01

    To obtain medical implants with better performance, it is necessary to conduct studies on the quality and other performances of the selective laser melting (SLM) manufacturing parts. Interior defects in CoCrMo parts manufactured by SLM were detected using x-ray radiographic inspection, and the manufactured parts compared with three-dimensional models to assess manufacturing quality. Impact tests were employed to establish the mechanical properties of the manufactured parts. With the aim of studying the mechanism of fracture of the parts, we utilized a metalloscope and SEM to observe the surface and fractal theory was used to analyze the appearance of fractures. The results show that part defects manifested in an increase in transmittance caused by the non-uniform distribution of density, resulting in variation in the residual stresses of the parts. The density of the parts was more uniform following heat treatment. Internal residual stress of the manufactured parts enhanced their impact toughness. There was a ductile-brittle transition temperature between the two annealing temperatures. We determined that the fracture mechanism was brittle fracture. Fractures exhibited significant fractal behavior. The impact energy and fractal dimension were positively correlated, which provided good support for using selective laser melting manufacturing of CoCrMo alloy in medical implants.

  9. Human factoring the procedures element in a complex manufacturing system

    SciTech Connect

    Caccamise, D.J.; Mecherikoff, M.

    1993-06-01

    As a result of Human Factors evaluations of procedures associated with incidents at Rocky Flats Plant (RFP) it was determined that the existing procedure format created significant opportunities for confusion in their attempt to convey information about a work process. For instance, there was no mechanism to clearly identify the participants and their roles during the instructions portion of the procedure. In addition, procedure authors frequently used complex logic to convey a series of contingent actions within steps. It was also difficult to discern the actual procedure steps from other types of information in the procedure. These and other inadequacies prompted the Human Factors Engineering (HFE) department to propose solutions to these problems that followed well-researched principles of cognitive psychology, dealing with how humans process information. Format and style contribute to procedure usability, and therefore to safety and efficiency in operations governed by the procedures. Since it was difficult to tie specific performance failures to specific format and style characteristics and thereby dearly define costs and benefits, it was difficult on that basis to sell the idea that changes in procedure format and style were really necessary to improve safety and efficiency. In addition, we found that the socio-political systems governing this process, particularly at the subprocess interface level, were not functioning efficiently. Both the technological aspects of the process and the socio-political aspects were contributing to waste and considerable re-work. Fixing the customer feedback loop to the process owners not only minimized re-work and waste, but also provided the data to persuade subprocess owners to make the necessary changes that heretofore were being met with great resistance.

  10. Manufacturing Error Effects on Mechanical Properties and Dynamic Characteristics of Rotor Parts under High Acceleration

    NASA Astrophysics Data System (ADS)

    Jia, Mei-Hui; Wang, Cheng-Lin; Ren, Bin

    2017-07-01

    Stress, strain and vibration characteristics of rotor parts should be changed significantly under high acceleration, manufacturing error is one of the most important reason. However, current research on this problem has not been carried out. A rotor with an acceleration of 150,000 g is considered as the objective, the effects of manufacturing errors on rotor mechanical properties and dynamic characteristics are executed by the selection of the key affecting factors. Through the force balance equation of the rotor infinitesimal unit establishment, a theoretical model of stress calculation based on slice method is proposed and established, a formula for the rotor stress at any point derives. A finite element model (FEM) of rotor with holes is established with manufacturing errors. The changes of the stresses and strains of a rotor in parallelism and symmetry errors are analyzed, which verify the validity of the theoretical model. The pre-stressing modal analysis is performed based on the aforementioned static analysis. The key dynamic characteristics are analyzed. The results demonstrated that, as the parallelism and symmetry errors increase, the equivalent stresses and strains of the rotor slowly increase linearly, the highest growth rate does not exceed 4%, the maximum change rate of natural frequency is 0.1%. The rotor vibration mode is not significantly affected. The FEM construction method of the rotor with manufacturing errors can be utilized for the quantitative research on rotor characteristics, which will assist in the active control of rotor component reliability under high acceleration.

  11. Computational complexity of the landscape: Part I

    SciTech Connect

    Denef, Frederik . E-mail: frederik.denef@fys.kuleuven.be; Douglas, Michael R. . E-mail: mrd@physics.rutgers.edu

    2007-05-15

    We study the computational complexity of the physical problem of finding vacua of string theory which agree with data, such as the cosmological constant, and show that such problems are typically NP hard. In particular, we prove that in the Bousso-Polchinski model, the problem is NP complete. We discuss the issues this raises and the possibility that, even if we were to find compelling evidence that some vacuum of string theory describes our universe, we might never be able to find that vacuum explicitly. In a companion paper, we apply this point of view to the question of how early cosmology might select a vacuum.

  12. Analysis of thermal stresses in shape deposition manufacturing of metal parts

    NASA Astrophysics Data System (ADS)

    Nickel, Alexander H.

    1999-11-01

    Shape Deposition Manufacturing (SDM) is a Layered Manufacturing process where objects are constructed by sequential deposition and machining of material layers. When the deposition process involves temperature gradients, thermal stresses develop. These stresses cause distortions and can lead to part failure due to cracking. This research investigated thermal stresses in SDM using a combination of analytical modeling, finite element modeling, and experiments. Initially an analytical model was developed to predict the overall part warpage. Then both finite element modeling and experiments were used to investigate how the deposition pattern influences the substrate warpage and to investigate the inter-layer surface defect known as the Christmas Tree Step. This research began by first developing an analytical model to predict substrate warpage. Both elastic and elastic-perfectly plastic models were investigated. This model was used to examine how the deposit thickness and the number of layers used to produce the deposit affects the warpage of the part. In SDM the pattern used to deposit a layer has a significant effect on the substrate warpage. This effect was investigated using both finite element modeling and experiments. From the finite element observations the optimal deposition pattern for both the beam and plate substrates was determined. To check the validity of the finite element results, the calculated values for deflection were compared to experimentally determined values. The local defect known as the Christmas Tree Step was also investigated. This step is found at the layer interface and results in poor surface quality and part inaccuracy. The step was investigated using both a finite element model and experiments. The investigation showed that the surface defect develops when material is deposited on top of previously machined layers. The step is a local edge effect and does not significantly depend on the deposition pattern. This research deepened the

  13. Data-driven inline optimization of the manufacturing process of car body parts

    NASA Astrophysics Data System (ADS)

    Purr, S.; Wendt, A.; Meinhardt, J.; Moelzl, K.; Werner, A.; Hagenah, H.; Merklein, M.

    2016-11-01

    The manufacturing process of car body parts needs to be adaptable during production because of fluctuating variables; finding the most suitable settings is often expensive. The cause-effect relation between variables and process results is currently unknown; thus, any measure taken to adjust the process is necessarily subjective and dependent on operator experience. To investigate the correlations involved, a data mining system that can detect influences and determine the quality of resulting parts is integrated into the series process. The collected data is used to analyze causes, predict defects, and optimize the overall process. In this paper, a data-driven method is proposed for the inline optimization of the manufacturing process of car body parts. The calculation of suitable settings to produce good parts is based on measurements of influencing variables, such as the characteristics of blanks. First, the available data are presented, and in the event of quality issues, current procedures are investigated. Thereafter, data mining techniques are applied to identify models that link occurring fluctuations and appropriate measures to adapt the process so that it addresses such fluctuations. Consequently, a method is derived for providing objective information on appropriate process parameters.

  14. Are Agile and Lean Manufacturing Systems Employing Sustainability, Complexity and Organizational Learning?

    ERIC Educational Resources Information Center

    Flumerfelt, Shannon; Siriban-Manalang, Anna Bella; Kahlen, Franz-Josef

    2012-01-01

    Purpose: This paper aims to peruse theories and practices of agile and lean manufacturing systems to determine whether they employ sustainability, complexity and organizational learning. Design/methodology/approach: The critical review of the comparative operational similarities and difference of the two systems was conducted while the new views…

  15. Are Agile and Lean Manufacturing Systems Employing Sustainability, Complexity and Organizational Learning?

    ERIC Educational Resources Information Center

    Flumerfelt, Shannon; Siriban-Manalang, Anna Bella; Kahlen, Franz-Josef

    2012-01-01

    Purpose: This paper aims to peruse theories and practices of agile and lean manufacturing systems to determine whether they employ sustainability, complexity and organizational learning. Design/methodology/approach: The critical review of the comparative operational similarities and difference of the two systems was conducted while the new views…

  16. An artificial vision solution for reusing discarded parts resulted after a manufacturing process

    NASA Astrophysics Data System (ADS)

    Cohal, V.; Cohal, A.

    2016-08-01

    The profit of a factory can be improved by reusing the discarded components produced. This paper is based on the case of a manufacturing process where rectangular metallic sheets of different sizes are produced. Using an artificial vision system, the shapes and the sizes of the produced parts can be determined. Those sheets which do not respect the requirements imposed are labeled as discarded. Instead of throwing these parts, a decision algorithm can analyze if another metallic sheet with smaller dimensions can be obtained from these. Two methods of decision are presented in this paper, considering the restriction that the sides of the new sheet has to be parallel with the axis of the coordinate system. The coordinates of each new part obtained from a discarded sheet are computed in order to be delivered to a milling machine. Details about implementing these algorithms (image processing and decision respectively) in the MATLAB environment using Image Processing Toolbox are given.

  17. Materials Testing and Cost Modeling for Composite Parts Through Additive Manufacturing

    DTIC Science & Technology

    2016-04-30

    qÜáêíÉÉåíÜ=^ååì~ä= ^Åèìáëáíáçå=oÉëÉ~êÅÜ= póãéçëáìã= qÜìêëÇ~ó=pÉëëáçåë= sçäìãÉ=ff= = Materials Testing and Cost Modeling for Composite Parts Through Additive...Research Associate, NPS Jonathan Mun, Research Professor, NPS Materials Testing and Cost Modeling for Composite Parts Through Additive...Materials Testing and Cost Modeling for Composite Parts Through Additive Manufacturing Eric S. Holm—recently graduated from the Air Force Institute of

  18. Fuzzy Set Theory Applied to Measurement Data for Exposure Control in Beryllium Part Manufacturing.

    SciTech Connect

    Parkinson, W. J. ,; Abeln, S. P.; Creek, K. L.; Mortensen, F. N.; Wantuck, P. J.; Ross, Timothy J.; Jamshidi, Mohammad

    2002-01-01

    Fuzzy set theory has been applied to some exposure control problems encountered in the machining and the manufacturing of beryllium parts at Los Alamos National Laboratory. A portion of that work is presented here. The major driving force for using fuzzy techniques in this case rather than classical statistical process control is that beryllium exposure is very task dependent and this manufacturing plant is quite atypical. It is feared that standard techniques produce too many false alarms. Our beryllium plant produces parts on a daily basis, but every day is different. Some days many parts are produced and some days only a few. Some times the parts are large and sometimes the parts are small. Some machining cuts are rough and some are fine. These factors and others make it hard to define a typical day. The problem of concern, for this study, is the worker beryllium exposure. Even though the plant is new and very modern and the exposure levels are expected to be well below the required levels, the Department of Energy (DOE), who is our major customer, has demanded that the levels for this plant be well below required levels. The control charts used to monitor this process are expected to answer two questions: (1) Is the process out of Control? Do we need to instigate special controls such as requiring workers to use respirators? (2) Are new, previously untested, controls making a difference? The standard Schewart type control charts, based on consistent plant operating conditions do not adequately answer this question. The approach described here is based upon a fuzzy modification to the Schewart Xbar-R chart. This approach is expected to yield better results than work based upon the classical probabilistic control chart.

  19. A Management Case Study: The Implementation of the Rapid Acquisition of Manufactured Parts (RAMP) Program

    DTIC Science & Technology

    1993-06-01

    issues of the case including strategic planning, customer needs , organizational policy, bid procedures and the communication process. RAW Program, Computer Integrated Manufacturing (CIM), Flexible Manufacturing Systems(FMS).

  20. Process combinations for the manufacturing of metal-plastic hybrid parts

    NASA Astrophysics Data System (ADS)

    Drossel, W.-G.; Lies, C.; Albert, A.; Haase, R.; Müller, R.; Scholz, P.

    2016-03-01

    The usage of innovative lightweight materials and processing technologies gains importance in manifold industrial scopes. Especially for moving parts and mobility products the weight is decisively. The aerospace and automotive industries use light and high-strength materials to reduce weight and energy consumption and thereby improve the performance of their products. Composites with reinforced plastics are of particular importance. They offer a low density in combination with high specific stiffness and strength. A pure material substitution through reinforced plastics is still not economical. The approach of using hybrid metal-plastic structures with the principle of “using the right material at the right place” is a promising solution for the economical realization of lightweight structures with a high achievement potential. The article shows four innovative manufacturing possibilities for the realization of metal-plastic-hybrid parts.

  1. Waste minimization assessment for a manufacturer of iron castings and fabricated sheet metal parts

    SciTech Connect

    Fleischman, M.; Harris, J.J.; Handmaker, A.; Looby, G.P.

    1995-08-01

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. That document has been superseded by the Facility Pollution Prevention Guide. The WMAC team at the University of Louisville performed an assessment at a plant that manufactures iron castings and fabricated sheet metal parts. Foundry operations include mixing and mold formation, core making, metal pouring, shakeout, finishing, and painting. Cutting, shaping, and welding are the principal metal fabrication operations. The team`s report, detailing findings and recommendations indicated that paint-related wastes are generated in large quantities, and that significant waste reduction and cost savings could be realized by installing a dry powder coating system or by replacing conventional air spray paint guns with high-volume low-pressure spray guns. This research brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  2. Integrated Computer-Aided Manufacturing (ICAM) Architecture. Part 3. Volume 7. MFG01 Glossary.

    DTIC Science & Technology

    1983-09-01

    lat oe C % 000 Sj C4 le ’ 4, 4,4 2:4 tj t*K l- X: 44 0’~ k IW- C4 % 40 Go r 00 c ~ IL P v C c -. . v IL zl - 4 1 S . v I .I a w I 1 v c u > c- -FT U 4...CC c .C C aI o , 0 A Z . 6--c 0 cCrV 46 a .0 b. 1 c 1 . Ga, v 0 M 0 44 c c c f-V - 4 0 aLS C C - . l-l - 2 - 0 S- C (~ b , J O’~ 0 .4. hSV b... ~ b...RD-R144 426 INTEGRATED COMPUTER-AIDED MANUFACTURING (ICAM)_ 1 /3 ARCHITECTURE PART 3 VOLUME.. (U) SOFTECH INC WALTHAM MRR HEINE ET RL. SEP 83 RFWRL-TR

  3. Practical aspects of modern interferometry for optical manufacturing quality control, Part 3

    NASA Astrophysics Data System (ADS)

    Smythe, Robert A.

    2012-09-01

    Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space-based satellite imaging, and DVD and Blu-Ray disks are all enabled by phase-shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful toward the practical use of interferometers. An understanding of the parameters that drive the system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.

  4. Practical aspects of modern interferometry for optical manufacturing quality control: Part 2

    NASA Astrophysics Data System (ADS)

    Smythe, Robert

    2012-07-01

    Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space based satellite imaging and DVD and Blu-Ray disks are all enabled by phase shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful towards the practical use of interferometers. An understanding of the parameters that drive system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.

  5. Genetic algorithm for design and manufacture optimization based on numerical simulations applied to aeronautic composite parts

    SciTech Connect

    Mouton, S.; Ledoux, Y.; Teissandier, D.; Sebastian, P.

    2010-06-15

    A key challenge for the future is to reduce drastically the human impact on the environment. In the aeronautic field, this challenge aims at optimizing the design of the aircraft to decrease the global mass. This reduction leads to the optimization of every part constitutive of the plane. This operation is even more delicate when the used material is composite material. In this case, it is necessary to find a compromise between the strength, the mass and the manufacturing cost of the component. Due to these different kinds of design constraints it is necessary to assist engineer with decision support system to determine feasible solutions. In this paper, an approach is proposed based on the coupling of the different key characteristics of the design process and on the consideration of the failure risk of the component. The originality of this work is that the manufacturing deviations due to the RTM process are integrated in the simulation of the assembly process. Two kinds of deviations are identified: volume impregnation (injection phase of RTM process) and geometrical deviations (curing and cooling phases). The quantification of these deviations and the related failure risk calculation is based on finite element simulations (Pam RTM registered and Samcef registered softwares). The use of genetic algorithm allows to estimate the impact of the design choices and their consequences on the failure risk of the component. The main focus of the paper is the optimization of tool design. In the framework of decision support systems, the failure risk calculation is used for making the comparison of possible industrialization alternatives. It is proposed to apply this method on a particular part of the airplane structure: a spar unit made of carbon fiber/epoxy composite.

  6. Genetic algorithm for design and manufacture optimization based on numerical simulations applied to aeronautic composite parts

    NASA Astrophysics Data System (ADS)

    Mouton, S.; Ledoux, Y.; Teissandier, D.; Sébastian, P.

    2010-06-01

    A key challenge for the future is to reduce drastically the human impact on the environment. In the aeronautic field, this challenge aims at optimizing the design of the aircraft to decrease the global mass. This reduction leads to the optimization of every part constitutive of the plane. This operation is even more delicate when the used material is composite material. In this case, it is necessary to find a compromise between the strength, the mass and the manufacturing cost of the component. Due to these different kinds of design constraints it is necessary to assist engineer with decision support system to determine feasible solutions. In this paper, an approach is proposed based on the coupling of the different key characteristics of the design process and on the consideration of the failure risk of the component. The originality of this work is that the manufacturing deviations due to the RTM process are integrated in the simulation of the assembly process. Two kinds of deviations are identified: volume impregnation (injection phase of RTM process) and geometrical deviations (curing and cooling phases). The quantification of these deviations and the related failure risk calculation is based on finite element simulations (Pam RTM® and Samcef® softwares). The use of genetic algorithm allows to estimate the impact of the design choices and their consequences on the failure risk of the component. The main focus of the paper is the optimization of tool design. In the framework of decision support systems, the failure risk calculation is used for making the comparison of possible industrialization alternatives. It is proposed to apply this method on a particular part of the airplane structure: a spar unit made of carbon fiber/epoxy composite.

  7. DLP-based light engines for additive manufacturing of ceramic parts

    NASA Astrophysics Data System (ADS)

    Hatzenbichler, M.; Geppert, M.; Gruber, S.; Ipp, E.; Almedal, R.; Stampfl, J.

    2012-03-01

    In the framework of the European research project PHOCAM (http://www.phocam.eu) the involved partners are developing systems and materials for lithography-based additive manufacturing technologies (AMT) which are used for shaping advanced ceramic materials. In this approach a ceramic-filled photosensitive resin is selectively exposed layer by layer. By stacking up the individual layers with a typical layer thickness between 25 and 50μm, a three-dimensional part is built up. After structuring, a solid part consisting of a ceramic filled polymer is obtained. The polymer is afterwards burnt off and in a last step the part is sintered to obtain a fully dense ceramic part. The developed systems are based on selective exposure with DLP projection (Digital Light Processing). A key element of the developed systems is a light engine which uses digital mirror devices (DMD) in combination light emitting diodes (460nm) as light source. In the current setup DMDs with 1920x1080 pixels are used. The use of LEDs in combination with a customized optical projection system ensures a spatial and temporal homogeneity of the intensity at the build platform which is significantly better than with traditionally used light engines. The system has a resolution of 40μm and a build size of 79x43x100mm. It could be shown that this system can fabricate dense ceramic parts with excellent strength. In the case of alumina densities up to 99.6% of the theoretical density were achieved, yielding a biaxial strength of 510MPa. Besides technical ceramics like alumina it is also possible to structure bioceramics, e.g. tricalcium phosphate.

  8. Replicative manufacturing of complex lighting optics by non-isothermal glass molding

    NASA Astrophysics Data System (ADS)

    Kreilkamp, Holger; Vu, Anh Tuan; Dambon, Olaf; Klocke, Fritz

    2016-09-01

    The advantages of LED lighting, especially its energy efficiency and the long service life have led to a wide distribution of LED technology in the world. However, in order to make fully use of the great potential that LED lighting offers, complex optics are required to distribute the emitted light from the LED efficiently. Nowadays, many applications use polymer optics which can be manufactured at low costs. However, due to ever increasing luminous power, polymer optics reach their technological limits. Due to its outstanding properties, especially its temperature resistance, resistance against UV radiation and its long term stability, glass is the alternative material of choice for the use in LED optics. This research is introducing a new replicative glass manufacturing approach, namely non-isothermal glass molding (NGM) which is able to manufacture complex lighting optics in high volumes at competitive prices. The integration of FEM simulation at the early stage of the process development is presented and helps to guarantee a fast development cycle. A coupled thermo-mechanical model is used to define the geometry of the glass preform as well as to define the mold surface geometry. Furthermore, simulation is used to predict main process outcomes, especially in terms of resulting form accuracy of the molded optics. Experiments conducted on a commercially available molding machine are presented to validate the developed simulation model. Finally, the influence of distinct parameters on important process outcomes like form accuracy, surface roughness, birefringence, etc. is discussed.

  9. Integrated Computer-Aided Manufacturing (ICAM) Architecture. Part 3. Volume 5. Composite Function Model of ’Manufacture Product’ (MFG0)

    DTIC Science & Technology

    1983-09-01

    Government drawinqs, specifications, or otner data are ’,i r -3q’i ouroose other ,than in connection with a definitely related e orocurement operation...and is approved for publication. RICHARD R . PRESTON, Captain, USAF Approval Date Project Manager Computer Integrated Manufacturing Branch...Manager for ICAM ARCHITECTURE PART III was Capt Steve R . LeClair for the basic contract and Capt Richard R . Preston for the option phase. Ms Bette R

  10. 10 CFR 2.501 - Notice of hearing on application under subpart F of 10 CFR part 52 for a license to manufacture...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... part 52 for a license to manufacture nuclear power reactors. 2.501 Section 2.501 Energy NUCLEAR... for the Issuance of Licenses To Manufacture Nuclear Power Reactors To Be Operated at Sites Not... application under subpart F of 10 CFR part 52 for a license to manufacture nuclear power reactors. (a) In the...

  11. 10 CFR 2.501 - Notice of hearing on application under subpart F of 10 CFR part 52 for a license to manufacture...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... part 52 for a license to manufacture nuclear power reactors. 2.501 Section 2.501 Energy NUCLEAR... for the Issuance of Licenses To Manufacture Nuclear Power Reactors To Be Operated at Sites Not... application under subpart F of 10 CFR part 52 for a license to manufacture nuclear power reactors. (a) In the...

  12. Surface Roughness Measurement of Parts Manufactured by FDM Process using Light Sectioning Vision System

    NASA Astrophysics Data System (ADS)

    Kelkar, A. S.; Kumbhar, N. N.; Mulay, A. V.

    2016-08-01

    Fused Deposition Modeling (FDM) is a process of developing prototypes by depositing layers of material according to predetermined cross sectional geometry. Quality of the produced part is highly dependent on surface finish. This work describes a methodology to calculate the surface roughness of part manufactured using FDM process. The surface roughness values are measured using conventional stylus instrument and light sectioning vision system. In conventional stylus instrument method, diamond tipped stylus destroys the surface topography. Light sectioning method is non-contact method hence it overcomes this problem. In light sectioning method microscope and light source are arranged in such a manner, as both are inclined at an angle of 45° to the normal plane. The light section is projected on surface of profile at an incident angle of 45°. The reflected light can be observed using microscope. The camera is connected with microscope to capture the micrograph. These images are analyzed and processed using various image processing techniques. Experimental results are validated by comparing final results with conventional system.

  13. Complex Network Analysis for Characterizing Global Value Chains in Equipment Manufacturing.

    PubMed

    Xiao, Hao; Sun, Tianyang; Meng, Bo; Cheng, Lihong

    2017-01-01

    The rise of global value chains (GVCs) characterized by the so-called "outsourcing", "fragmentation production", and "trade in tasks" has been considered one of the most important phenomena for the 21st century trade. GVCs also can play a decisive role in trade policy making. However, due to the increasing complexity and sophistication of international production networks, especially in the equipment manufacturing industry, conventional trade statistics and the corresponding trade indicators may give us a distorted picture of trade. This paper applies various network analysis tools to the new GVC accounting system proposed by Koopman et al. (2014) and Wang et al. (2013) in which gross exports can be decomposed into value-added terms through various routes along GVCs. This helps to divide the equipment manufacturing-related GVCs into some sub-networks with clear visualization. The empirical results of this paper significantly improve our understanding of the topology of equipment manufacturing-related GVCs as well as the interdependency of countries in these GVCs that is generally invisible from the traditional trade statistics.

  14. Complex Network Analysis for Characterizing Global Value Chains in Equipment Manufacturing

    PubMed Central

    Meng, Bo; Cheng, Lihong

    2017-01-01

    The rise of global value chains (GVCs) characterized by the so-called “outsourcing”, “fragmentation production”, and “trade in tasks” has been considered one of the most important phenomena for the 21st century trade. GVCs also can play a decisive role in trade policy making. However, due to the increasing complexity and sophistication of international production networks, especially in the equipment manufacturing industry, conventional trade statistics and the corresponding trade indicators may give us a distorted picture of trade. This paper applies various network analysis tools to the new GVC accounting system proposed by Koopman et al. (2014) and Wang et al. (2013) in which gross exports can be decomposed into value-added terms through various routes along GVCs. This helps to divide the equipment manufacturing-related GVCs into some sub-networks with clear visualization. The empirical results of this paper significantly improve our understanding of the topology of equipment manufacturing-related GVCs as well as the interdependency of countries in these GVCs that is generally invisible from the traditional trade statistics. PMID:28081201

  15. Influence of Powder Characteristics in Laser Direct Metal Deposition of SS316L for Metallic Parts Manufacturing

    NASA Astrophysics Data System (ADS)

    Boisselier, Didier; Sankaré, Simon

    Laser direct metal deposition (LDMD) is a rapid manufacturing technique, dedicated to new part construction or worn part repairing. The process depends on a various range of parameters and the powder characteristics are one of the main crucial parameters. The powder (size,…) has then a direct impact on an optimized process behavior and the mechanical properties of the manufactured component. This paper focuses on powder investigation, for a better understanding of its influence. The work was performed with different batches of stainless steel AISI316 that have been analyzed and characterized before processing. This paper discusses the results derived from the manufactured samples, highlights the influence of the main powders characteristics and demonstrates the flexibility of the process when the powders meet the specifications.

  16. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays.

    PubMed

    Murr, L E; Gaytan, S M; Medina, F; Lopez, H; Martinez, E; Machado, B I; Hernandez, D H; Martinez, L; Lopez, M I; Wicker, R B; Bracke, J

    2010-04-28

    In this paper, we examine prospects for the manufacture of patient-specific biomedical implants replacing hard tissues (bone), particularly knee and hip stems and large bone (femoral) intramedullary rods, using additive manufacturing (AM) by electron beam melting (EBM). Of particular interest is the fabrication of complex functional (biocompatible) mesh arrays. Mesh elements or unit cells can be divided into different regions in order to use different cell designs in different areas of the component to produce various or continually varying (functionally graded) mesh densities. Numerous design elements have been used to fabricate prototypes by AM using EBM of Ti-6Al-4V powders, where the densities have been compared with the elastic (Young) moduli determined by resonant frequency and damping analysis. Density optimization at the bone-implant interface can allow for bone ingrowth and cementless implant components. Computerized tomography (CT) scans of metal (aluminium alloy) foam have also allowed for the building of Ti-6Al-4V foams by embedding the digital-layered scans in computer-aided design or software models for EBM. Variations in mesh complexity and especially strut (or truss) dimensions alter the cooling and solidification rate, which alters the alpha-phase (hexagonal close-packed) microstructure by creating mixtures of alpha/alpha' (martensite) observed by optical and electron metallography. Microindentation hardness measurements are characteristic of these microstructures and microstructure mixtures (alpha/alpha') and sizes.

  17. Remediation of manufactured gas plant soils contaminated with free and complex cyanide

    SciTech Connect

    Maka, A.; Aronstein, B.N.; Srivastava, V.J.; Theis, T.L.; Young, T.C.

    1992-12-31

    Cyanide is one of the main contaminants present in soil from manufactured gas plants (MGP) . Several treatment methods including thermal treatment, chemical treatment, ultraviolet irradiation, and biological treatment were evaluated for their ability to degrade the cyanide present in these soils. In the thermal treatment, raising the temperature of the purified waste to 2000--3000C resulted in complete removal of complex cyanide from the soil; however, the cyanide emitted was in a the toxic gaseous HCN form. Chemical treatment, using the oxidant Fenton`s reagent in a 10% soil slurry, resulted in the destruction of 80% of the free cyanide but little, if any, complex cyanide. Ultraviolet irradiation of the basic leachate from MGP wastes in the presence of the chelating agent EDTA yielded 90% degradation of the complex cyanide. For biological treatment, using an aerobic mixed culture, almost 60% of the free cyanide disappeared from the system with minimal degradation of the complex cyanide. Each treatment has its limitations. Thus, a combined physical-chemical-biological treatment in which the complex cyanide is degraded to free cyanide by photodegradation under alkaline conditions, the free cyanide then chemically (by Fenton`s reagent) or biologically converted to NH{sub 3} and CO{sub 2}, is proposed for the removal of cyanide from MGP sites.

  18. Evolutionary-based Design and Control of Geometry Aims for AMD-manufacturing of Ti-6Al-4V Parts

    NASA Astrophysics Data System (ADS)

    Möller, Mauritz; Baramsky, Nicolaj; Ewald, Ake; Emmelmann, Claus; Schlattmann, Josef

    Additive Metal Deposition (AMD) is an additive manufacturing process building parts based on a nozzle-fed powder by laser assisted solidification. The AMD technology offers unique advantages for the production of near net-shape parts. In contrast to the powder bed-based technologies it provides a high productivity grade. Today AMD lacks reproducible process strategies manufacturing large parts in narrow tolerances. The building height of a single layer and the geometrical shape of a whole part alter progressively with increasing part dimensions - consecutively leading to a higher effort in the manufacturing-process development for such parts. To reduce this effort, in this paper first an iterative identification of optimal process parameters is performed by following an evolutionary algorithm under varied BC. Based on the geometry-related parameter sets, tolerances are defined. The process strategies and tolerances are validated for a prototype application considering the defined quality aims. Finally the results are discussed and summarized in an a-priori process design guideline for AMD Ti6Al4V-parts.

  19. Greening up Auto Part Manufacturing: A Collaboration between Academia and Industry

    ERIC Educational Resources Information Center

    Kneas, Kristi A.; Armstrong, Drew L.; Brank, Alice R.; Johnson, Amanda L.; Kissinger, Chelsea A.; Mabe, Adam R.; Sezer, Ozge; Fontinell, Mike

    2009-01-01

    Historically, manufacture of automotive electronic components and screen-printing of automotive instrument clusters at DENSO Manufacturing Tennessee, Inc. required washing of equipment such as screens, stencils, and jigs with sizable quantities of volatile organic compounds and hazardous air pollutants. Collaborative efforts between the Maryville…

  20. Greening up Auto Part Manufacturing: A Collaboration between Academia and Industry

    ERIC Educational Resources Information Center

    Kneas, Kristi A.; Armstrong, Drew L.; Brank, Alice R.; Johnson, Amanda L.; Kissinger, Chelsea A.; Mabe, Adam R.; Sezer, Ozge; Fontinell, Mike

    2009-01-01

    Historically, manufacture of automotive electronic components and screen-printing of automotive instrument clusters at DENSO Manufacturing Tennessee, Inc. required washing of equipment such as screens, stencils, and jigs with sizable quantities of volatile organic compounds and hazardous air pollutants. Collaborative efforts between the Maryville…

  1. Part A - Advanced turbine systems. Part B - Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.

    1996-06-01

    The DOE Offices of Fossil Energy and Energy Efficiency and Renewable Energy have initiated a program to develop advanced turbine systems for power generation. The objective of the Advanced Turbine Systems (ATS) Program is to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for utility and industrial applications. One of the supporting elements of the ATS Program is the Materials/Manufacturing Technologies Task. The objective of this element is to address the critical materials and manufacturing issues for both industrial and utility gas turbines.

  2. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance

    SciTech Connect

    Scholand, Michael; Dillon, Heather E.

    2012-05-01

    Part 2 of the project (this report) uses the conclusions from Part 1 as a point of departure to focus on two objectives: producing a more detailed and conservative assessment of the manufacturing process and providing a comparative LCA with other lighting products based on the improved manufacturing analysis and taking into consideration a wider range of environmental impacts. In this study, we first analyzed the manufacturing process for a white-light LED (based on a sapphire-substrate, blue-light, gallium-nitride LED pumping a yellow phosphor), to understand the impacts of the manufacturing process. We then conducted a comparative LCA, looking at the impacts associated with the Philips Master LEDbulb and comparing those to a CFL and an incandescent lamp. The comparison took into account the Philips Master LEDbulb as it is now in 2012 and then projected forward what it might be in 2017, accounting for some of the anticipated improvements in LED manufacturing, performance and driver electronics.

  3. 49 CFR Appendix C to Part 180 - Eddy Current Examination With Visual Inspection for DOT 3AL Cylinders Manufactured of Aluminum...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for DOT 3AL Cylinders Manufactured of Aluminum Alloy 6351-T6 C Appendix C to Part 180 Transportation... Cylinders Manufactured of Aluminum Alloy 6351-T6 1. Examination Procedure. Each facility performing eddy... ring and probe for each DOT-3AL cylinder manufactured of aluminum alloy 6351-T6 to be inspected must be...

  4. 49 CFR Appendix C to Part 180 - Eddy Current Examination With Visual Inspection for DOT 3AL Cylinders Manufactured of Aluminum...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for DOT 3AL Cylinders Manufactured of Aluminum Alloy 6351-T6 C Appendix C to Part 180 Transportation... Cylinders Manufactured of Aluminum Alloy 6351-T6 1. Examination Procedure. Each facility performing eddy... ring and probe for each DOT-3AL cylinder manufactured of aluminum alloy 6351-T6 to be inspected must be...

  5. 49 CFR Appendix C to Part 180 - Eddy Current Examination With Visual Inspection for DOT 3AL Cylinders Manufactured of Aluminum...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for DOT 3AL Cylinders Manufactured of Aluminum Alloy 6351-T6 C Appendix C to Part 180 Transportation... Cylinders Manufactured of Aluminum Alloy 6351-T6 1. Examination Procedure. Each facility performing eddy... ring and probe for each DOT-3AL cylinder manufactured of aluminum alloy 6351-T6 to be inspected must be...

  6. 49 CFR Appendix C to Part 180 - Eddy Current Examination With Visual Inspection for DOT 3AL Cylinders Manufactured of Aluminum...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for DOT 3AL Cylinders Manufactured of Aluminum Alloy 6351-T6 C Appendix C to Part 180 Transportation... Cylinders Manufactured of Aluminum Alloy 6351-T6 1. Examination Procedure. Each facility performing eddy... ring and probe for each DOT-3AL cylinder manufactured of aluminum alloy 6351-T6 to be inspected must be...

  7. 49 CFR Appendix C to Part 180 - Eddy Current Examination With Visual Inspection for DOT 3AL Cylinders Manufactured of Aluminum...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for DOT 3AL Cylinders Manufactured of Aluminum Alloy 6351-T6 C Appendix C to Part 180 Transportation... Cylinders Manufactured of Aluminum Alloy 6351-T6 1. Examination Procedure. Each facility performing eddy... ring and probe for each DOT-3AL cylinder manufactured of aluminum alloy 6351-T6 to be inspected must be...

  8. 10 CFR 2.501 - Notice of hearing on application under subpart F of 10 CFR part 52 for a license to manufacture...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... part 52 for a license to manufacture nuclear power reactors. 2.501 Section 2.501 Energy NUCLEAR... Procedures Applicable to Proceedings for the Issuance of Licenses To Manufacture Nuclear Power Reactors To Be... license to manufacture nuclear power reactors of the type described in § 50.22 of this chapter to be...

  9. 10 CFR 2.501 - Notice of hearing on application under subpart F of 10 CFR part 52 for a license to manufacture...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... part 52 for a license to manufacture nuclear power reactors. 2.501 Section 2.501 Energy NUCLEAR... Procedures Applicable to Proceedings for the Issuance of Licenses To Manufacture Nuclear Power Reactors To Be... license to manufacture nuclear power reactors of the type described in § 50.22 of this chapter to be...

  10. 10 CFR 2.501 - Notice of hearing on application under subpart F of 10 CFR part 52 for a license to manufacture...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... part 52 for a license to manufacture nuclear power reactors. 2.501 Section 2.501 Energy NUCLEAR... Procedures Applicable to Proceedings for the Issuance of Licenses To Manufacture Nuclear Power Reactors To Be... license to manufacture nuclear power reactors of the type described in § 50.22 of this chapter to be...

  11. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    The Third Combined Manufacturers' and Technologists' Conference was held in Hampton, Va., on October 16-18, 1990. The purpose of the meeting was to transfer significant on-going results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  12. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) was held in Williamsburg, Virginia, on October 18 to 20, 1988. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  13. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing of Ceramic Composites. Part III; Additive Manufacturing and Characterization of Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Grady, Joseph E.; Singh, Mrityunjay; Ramsey, Jack; Patterson, Clark; Santelle, Tom

    2015-01-01

    This publication is the third part of a three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce ceramic matrix composite materials and aircraft engine components by the binder jet process. Different SiC powders with median sizes ranging from 9.3 to 53.0 microns were investigated solely and in powder blends in order to maximize powder packing. Various infiltration approaches were investigated to include polycarbosilane (SMP-10), phenolic, and liquid silicon. Single infiltrations of SMP-10 and phenolic only slightly filled in the interior. When the SMP-10 was loaded with sub-micron sized SiC powders, the infiltrant gave a much better result of filling in the interior. Silicon carbide fibers were added to the powder bed to make ceramic matrix composite materials. Microscopy showed that the fibers were well distributed with no preferred orientation on the horizontal plane and fibers in the vertical plane were at angles as much as 45deg. Secondary infiltration steps were necessary to further densify the material. Two to three extra infiltration steps of SMP-10 increased the density by 0.20 to 0.55 g/cc. However, the highest densities achieved were 2.10 to 2.15 g/cc. Mechanical tests consisting of 4 point bend tests were conducted. Samples from the two CMC panels had higher strengths and strains to failure than the samples from the two nonfiber reinforced panels. The highest strengths were from Set N with 65 vol% fiber loading which had an average strength of 66 MPa. Analysis of the fracture surfaces did not reveal pullout of the reinforcing fibers. Blunt fiber failure suggested that there was not composite behavior. The binder jet additive manufacturing method was used to also demonstrate the fabrication of turbine engine vane components of two different designs and sizes. The

  14. Methodology for designing and manufacturing complex biologically inspired soft robotic fluidic actuators: prosthetic hand case study.

    PubMed

    Thompson-Bean, E; Das, R; McDaid, A

    2016-10-31

    We present a novel methodology for the design and manufacture of complex biologically inspired soft robotic fluidic actuators. The methodology is applied to the design and manufacture of a prosthetic for the hand. Real human hands are scanned to produce a 3D model of a finger, and pneumatic networks are implemented within it to produce a biomimetic bending motion. The finger is then partitioned into material sections, and a genetic algorithm based optimization, using finite element analysis, is employed to discover the optimal material for each section. This is based on two biomimetic performance criteria. Two sets of optimizations using two material sets are performed. Promising optimized material arrangements are fabricated using two techniques to validate the optimization routine, and the fabricated and simulated results are compared. We find that the optimization is successful in producing biomimetic soft robotic fingers and that fabrication of the fingers is possible. Limitations and paths for development are discussed. This methodology can be applied for other fluidic soft robotic devices.

  15. Geometric Limitation and Tensile Properties of Wire and Arc Additive Manufacturing 5A06 Aluminum Alloy Parts

    NASA Astrophysics Data System (ADS)

    Geng, Haibin; Li, Jinglong; Xiong, Jiangtao; Lin, Xin; Zhang, Fusheng

    2017-02-01

    Wire and arc additive manufacture (WAAM), as an emerging and promising technology of metal additive manufacturing, it lacks of experimental works to clarify the feature of geometrical configuration, microstructure and tensile properties, which can be used for further evaluating whether the as-deposited part can be used directly, and providing design reference for structure optimization. Taking 5A06 aluminum alloy additive manufacturing for example, in this paper, the geometric limitation and tensile property criteria are characterized using experimental method. The minimum angle and curvature radius that can be made by WAAM are 20° and 10 mm when the layer width is 7.2 mm. It shows isotropy when loading in build direction and perpendicular one. When loading in the direction of parallel and perpendicular to texture orientation, the tensile properties are anisotropic. The difference between them is 22 MPa.

  16. Invited Review Article: Review of post-process optical form metrology for industrial-grade metal additive manufactured parts.

    PubMed

    Stavroulakis, P I; Leach, R K

    2016-04-01

    The scope of this review is to investigate the main post-process optical form measurement technologies available in industry today and to determine whether they are applicable to industrial-grade metal additive manufactured parts. An in-depth review of the operation of optical three-dimensional form measurement technologies applicable to metal additive manufacturing is presented, with a focus on their fundamental limitations. Looking into the future, some alternative candidate measurement technologies potentially applicable to metal additive manufacturing will be discussed, which either provide higher accuracy than currently available techniques but lack measurement volume, or inversely, which operate in the appropriate measurement volume but are not currently accurate enough to be used for industrial measurement.

  17. Invited Review Article: Review of post-process optical form metrology for industrial-grade metal additive manufactured parts

    NASA Astrophysics Data System (ADS)

    Stavroulakis, P. I.; Leach, R. K.

    2016-04-01

    The scope of this review is to investigate the main post-process optical form measurement technologies available in industry today and to determine whether they are applicable to industrial-grade metal additive manufactured parts. An in-depth review of the operation of optical three-dimensional form measurement technologies applicable to metal additive manufacturing is presented, with a focus on their fundamental limitations. Looking into the future, some alternative candidate measurement technologies potentially applicable to metal additive manufacturing will be discussed, which either provide higher accuracy than currently available techniques but lack measurement volume, or inversely, which operate in the appropriate measurement volume but are not currently accurate enough to be used for industrial measurement.

  18. An Assessment of Nondestructive Evaluation Capability for Complex Additive Manufacturing Aerospace Components

    NASA Technical Reports Server (NTRS)

    Walker, James; Beshears, Ron; Lambert, Dennis; Tilson, William

    2016-01-01

    The primary focus of this work is to investigate some of the fundamental relationships between processing, mechanical testing, materials characterization, and NDE for additively manufactured (AM) components using the powder bed fusion direct melt laser sintered process. The goal is to understand the criticality of defects unique to the AM process and then how conventional nondestructive evaluation methods as well as some of the more non-traditional methods such as computed tomography, are effected by the AM material. Specific defects including cracking, porosity and partially/unfused powder will be addressed. Besides line-of-site NDE, as appropriate these inspection capabilities will be put into the context of complex AM geometries where hidden features obscure, or inhibit traditional NDE methods.

  19. Vertical movement of iron-cyanide complexes in soils of a former Manufactured Gas Plant site

    NASA Astrophysics Data System (ADS)

    Sut, Magdalena; Repmann, Frank; Raab, Thomas

    2015-04-01

    In Germany, soil and groundwater at more than a thousand sites are contaminated with iron-cyanide complexes. These contaminations originate from the gas purification process that was conducted in Manufactured Gas Plants (MGP). The phenomenon of iron-cyanide complexes mobility in soil, according to the literature, is mainly governed by the dissolution and precipitation of ferric ferrocyanide, which is only slightly soluble (< 1 mg L-1) under acidic conditions. This study suggests vertical transport of a colloidal ferric ferrocyanide, in the excess of iron and circum-neutral pH conditions, as an alternative process that influences the retardation of the pollutant movement through the soil profile. Preliminary in situ investigations of the two boreholes implied transport of ferric ferricyanide from the initial deposition in the wastes layer towards the sandy loam material (secondary accumulation), which possibly retarded the mobility of cyanide (CN). The acidic character of the wastes and the accumulation of the blue patches suggested the potential filter function of a sandy loam material due to colloidal transport of the ferric ferricyanide. Series of batch and column experiments, using sandy loam soil, revealed reduction of CN concentration due to mechanical filtration of precipitated solid iron-cyanide complexes and due to the formation of potassium manganese iron-cyanide (K2Mn[Fe(CN)6]).

  20. Influence of Plastic Deformation on Martensitic Transformation During Hot Stamping of Complex Structure Auto Parts

    NASA Astrophysics Data System (ADS)

    Shen, Yuhan; Song, Yanli; Hua, Lin; Lu, Jue

    2017-04-01

    The ultra-high strength steel auto parts manufactured by hot stamping are widely applied for weight reduction and safety improvement. During the hot stamping process, hot forming and quenching are performed in one step wherein plastic deformation and phase transformation simultaneously take place and affect each other. Thereinto, the influence of deformation on martensitic transformation is of great importance. In the present paper, the influence of plastic deformation on martensitic transformation during hot stamping of complex structure auto parts was investigated. For this purpose, a B-pillar reinforced panel in B1500HS steel was manufactured by hot stamping, and the process was simulated by finite element software based on a thermo-mechanical-metallurgical coupled model. Considering various deformation degrees, the microstructures and mechanical properties at four typical locations of the hot stamped B-pillar reinforced panel were detected. The results show that the martensitic content and the microhardness increase with the increase in the deformation amount. There are two reasons causing this phenomenon: (1) the increase in mechanical driving force and (2) the increased probability of the martensitic nucleation at crystal defects. The x-ray diffraction analysis indicates the carbon enrichment in retained austenite which results from the carbon diffusion during the low-carbon martensite formation. Furthermore, the carbon content decreases with the increase in the deformation amount, because the deformation of austenite suppresses the carbon diffusion.

  1. Influence of Plastic Deformation on Martensitic Transformation During Hot Stamping of Complex Structure Auto Parts

    NASA Astrophysics Data System (ADS)

    Shen, Yuhan; Song, Yanli; Hua, Lin; Lu, Jue

    2017-02-01

    The ultra-high strength steel auto parts manufactured by hot stamping are widely applied for weight reduction and safety improvement. During the hot stamping process, hot forming and quenching are performed in one step wherein plastic deformation and phase transformation simultaneously take place and affect each other. Thereinto, the influence of deformation on martensitic transformation is of great importance. In the present paper, the influence of plastic deformation on martensitic transformation during hot stamping of complex structure auto parts was investigated. For this purpose, a B-pillar reinforced panel in B1500HS steel was manufactured by hot stamping, and the process was simulated by finite element software based on a thermo-mechanical-metallurgical coupled model. Considering various deformation degrees, the microstructures and mechanical properties at four typical locations of the hot stamped B-pillar reinforced panel were detected. The results show that the martensitic content and the microhardness increase with the increase in the deformation amount. There are two reasons causing this phenomenon: (1) the increase in mechanical driving force and (2) the increased probability of the martensitic nucleation at crystal defects. The x-ray diffraction analysis indicates the carbon enrichment in retained austenite which results from the carbon diffusion during the low-carbon martensite formation. Furthermore, the carbon content decreases with the increase in the deformation amount, because the deformation of austenite suppresses the carbon diffusion.

  2. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on October 18 to 20, 1988. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Herbrt Schlickenmaier of the FAA. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  3. Airborne Wind Shear Detection and Warning Systems. Fourth Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The Fourth Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley Research Center (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on April 14-16, 1992. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Bob Passman of the FAA. The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA Joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document has been compiled to record the essence of the technology updates and discussions which follow each.

  4. Airborne Wind Shear Detection and Warning Systems: Fourth Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document was compiled to record the essence of the technology updates and discussions which follow each.

  5. Integrated Design for Manufacturing of Braided Preforms for Advanced Composites Part I: 2D Braiding

    NASA Astrophysics Data System (ADS)

    Gao, Yan Tao; Ko, Frank K.; Hu, Hong

    2013-12-01

    This paper presents a 2D braiding design system for advanced textile structural composites was based on dynamic models. A software package to assist in the design of braided preform manufacturing has been developed. The package allows design parameters (machine speeds, fiber volume fraction, tightness factor, etc.) to be easily obtained and the relationships between said parameters to be demonstrated graphically. The fabirc geometry model (FGM) method was adopted to evaluate the mechanical properties of the composites. Experimental evidence demonstrates the success of the use of dynamic models in the design software for the manufacture of braided fabric preforms.

  6. Manufacturing metrology for c-Si photovoltaic module reliability and durability, Part I: Feedstock, crystallization and wafering

    SciTech Connect

    Seigneur, Hubert; Mohajeri, Nahid; Brooker, R. Paul; Davis, Kristopher O.; Schneller, Eric J.; Dhere, Neelkanth G.; Rodgers, Marianne P.; Wohlgemuth, John; Shiradkar, Narendra S.; Scardera, Giuseppe; Rudack, Andrew C.; Schoenfeld, Winston V.

    2016-06-01

    This article is the first in a three-part series of manufacturing metrology for c-Si photovoltaic (PV) module reliability and durability. Here in Part 1 we focus on the three primary process steps for making silicon substrates for PV cells: (1) feedstock production; (2) ingot and brick production; and (3) wafer production. Each of these steps can affect the final reliability/durability of PV modules in the field with manufacturing metrology potentially playing a significant role. This article provides a comprehensive overview of historical and current processes in each of these three steps, followed by a discussion of associated reliability challenges and metrology strategies that can be employed for increased reliability and durability in resultant modules. Gaps in the current state of understanding in connective metrology data during processing to reliability/durability in the field are then identified along with suggested improvements that should be considered by the PV community.

  7. The Effectiveness of Hot Isostatic Pressing for Closing Porosity in Titanium Parts Manufactured by Selective Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Tammas-Williams, Samuel; Withers, Philip J.; Todd, Iain; Prangnell, Philip B.

    2016-05-01

    Ti-6Al-4V parts, produced by selective electron beam melting additive manufacturing, have been studied by X-ray computed tomography (XCT) to track pore closure during a standard hot isostatic pressing (HIPing) cycle. Comparison of repeated XCT scans before and after HIPing, on worst-case samples with different geometries, confirmed that all internal porosity was shrunk to below the resolution limit of the equipment used (~5 µm) following the HIPing cycle, apart from defects with surface connected ligaments.

  8. Integrated Computer-Aided Manufacturing (ICAM) Architecture. Part 3. Volume 1. Architecture. Accomplishments.

    DTIC Science & Technology

    1983-09-01

    recording, and communicating the inherent requirements and realities of the aerosoace manufacturing environment. They are equally effective and valuable in...will be broadly applicable across the whole aerosoace industry. In order to do this, it is necessary to have some understanding of "generic design and

  9. 19 CFR Appendix to Part 102 - Textile and Apparel Manufacturer Identification

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... “Rawles—Aden Corp.” would both yield “RAWCOR.” Some names include numbers. For example, “20th Century Fox..., as are leading spaces in front of any name or address. 7. Examples of manufacturer names and...

  10. 75 FR 37990 - Airworthiness Directives; Ontic Engineering and Manufacturing, Inc. Propeller Governors, Part...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ...-09-AD; Amendment 39-16341; AD 2010-13-10] RIN 2120-AA64 Airworthiness Directives; Ontic Engineering... new airworthiness directive (AD) for certain serial numbers (S/Ns) of Ontic Engineering and... Engineering and Manufacturing, Inc., 20400 Plummer Sreet, Chatsworth, CA 91311, e-mail: Bill.nolan@ontic.com...

  11. High performance poly(etherketoneketone) (PEKK) composite parts fabricated using Big Area Additive Manufacturing (BAAM) processes

    SciTech Connect

    Kunc, Vlastimil; Kishore, Vidya; Chen, Xun; Ajinjeru, Christine; Duty, Chad; Hassen, Ahmed A

    2016-09-01

    ORNL collaborated with Arkema Inc. to investigate poly(etherketoneketone) (PEKK) and its composites as potential feedstock material for Big Area Additive Manufacturing (BAAM) system. In this work thermal and rheological properties were investigated and characterized in order to identify suitable processing conditions and material flow behavior for BAAM process.

  12. Whole effluent assessment of industrial wastewater for determination of bat compliance: Part 1: Paper manufacturing industry.

    PubMed

    Gartiser, Stefan; Hafner, Christoph; Hercher, Christoph; Kronenberger-Schäfer, Kerstin; Paschke, Albrecht

    2010-05-01

    elimination 85% in 7 days). Thus, the algae toxicity of the respective paper mill cannot be explained with the TMP partial stream; presumably other raw materials such as biocides might be the source of algae toxicity. Comparative data from wastewater surveillance of authorities confirmed the range of ecotoxicity observed in the study. Wastewater from paper mills generally has no or a moderate ecotoxicity (median LID 1 and 2) while the maximum LID values, especially for the algae and daphnia tests, are considerably elevated (LIDA up to 128, LIDD up to 48). Wastewater from paper mills generally is low to moderately ecotoxic to aquatic organisms in acute toxicity tests. Some samples show effects in the chronic algae growth inhibition test which cannot be explained exclusively with colouration of the samples. The origin of elevated algae ecotoxicity could not be determined. In the algae test, often flat dose-response relationships and growth promotion at higher dilution factors have been observed, indicating that several effects are overlapping. At least one bioassay should be included in routine wastewater control of paper mills because the paper manufacturing industry is among the most water consuming. Although the algae test was the most sensitive test, it might not be the most appropriate test because of the complex relationship of colouration and inhibition and the smooth dose-effect relationship or even promotion of algae growth often observed. The Lemna test would be a suitable method which also detects inhibitors of photosynthesis and is not disturbed by wastewater colouration.

  13. Design and development of a layer-based additive manufacturing process for the realization of metal parts of designed mesostructure

    NASA Astrophysics Data System (ADS)

    Williams, Christopher Bryant

    Low-density cellular materials, metallic bodies with gaseous voids, are a unique class of materials that are characterized by their high strength, low mass, good energy absorption characteristics, and good thermal and acoustic insulation properties. In an effort to take advantage of this entire suite of positive mechanical traits, designers are tailoring the cellular mesostructure for multiple design objectives. Unfortunately, existing cellular material manufacturing technologies limit the design space as they are limited to certain part mesostructure, material type, and macrostructure. The opportunity that exists to improve the design of existing products, and the ability to reap the benefits of cellular materials in new applications is the driving force behind this research. As such, the primary research goal of this work is to design, embody, and analyze a manufacturing process that provides a designer the ability to specify the material type, material composition, void morphology, and mesostructure topology for any conceivable part geometry. The accomplishment of this goal is achieved in three phases of research: (1) Design---Following a systematic design process and a rigorous selection exercise, a layer-based additive manufacturing process is designed that is capable of meeting the unique requirements of fabricating cellular material geometry. Specifically, metal parts of designed mesostructure are fabricated via three-dimensional printing of metal oxide ceramic powder followed by post-processing in a reducing atmosphere. (2) Embodiment ---The primary research hypothesis is verified through the use of the designed manufacturing process chain to successfully realize metal parts of designed mesostructure. (3) Modeling & Evaluation ---The designed manufacturing process is modeled in this final research phase so as to increase understanding of experimental results and to establish a foundation for future analytical modeling research. In addition to an analysis of

  14. Airborne Windshear Detection and Warning Systems. Fifth and Final Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E. (Compiler)

    1994-01-01

    The Fifth (and Final) Combined Manufacturers' and Technologists' Airborne Windshear Review Meeting was hosted jointly by the NASA Langley Research Center (LaRC) and the Federal Aviation Administration (FAA) in Hampton, Virginia, on September 28-30, 1993. The purpose of the meeting was to report on the highly successful windshear experiments conducted by government, academic institutions, and industry; to transfer the results to regulators, manufacturers, and users; and to set initiatives for future aeronautics technology research. The formal sessions covered recent developments in windshear flight testing; windshear modeling, flight management, and ground-based systems; airborne windshear detection systems; certification and regulatory issues; development and applications of sensors for wake vortex detection; and synthetic and enhanced vision systems.

  15. Airborne Windshear Detection and Warning Systems. Fifth and Final Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E. (Compiler)

    1994-01-01

    The Fifth Combined Manufacturers' and Technologists' Airborne Windshear Review Meeting was hosted by the NASA Langley Research Center and the Federal Aviation Administration in Hampton, Virginia, on September 28-30, 1993. The purpose was to report on the highly successful windshear experiments conducted by government, academic institutions, and industry; to transfer the results to regulators, manufacturers, and users; and to set initiatives for future aeronautics technology research. The formal sessions covered recent developments in windshear flight testing, windshear modeling, flight management, and ground-based systems, airborne windshear detection systems, certification and regulatory issues, and development and applications of sensors for wake vortices and for synthetic and enhanced vision systems. This report was compiled to record and make available the technology updates and materials from the conference.

  16. Design for Manufacturing and Assembly in Apparel. Part 2. Printing, Publishing, and Distribution

    DTIC Science & Technology

    1994-02-01

    PRIVTIUG* PWLIUKlE, ANDDISIUIWT!l I I Design for Manufacturing and Assembly ( DFMA ) as a concept is defined as the methodology used by product designers which...will be made, has received a fair measure of success in the hard goods industries. DFMA , however, has not received any great measure of attention or...requesting parties. It was the objective of Phase II to complete the process of dissemination of DFMA concepts to the apparel industry by distributing

  17. Integrated Computer-Aided Manufacturing (ICAM) Architecture. Part 3. Volume 8. Technology Transfer.

    DTIC Science & Technology

    1983-09-01

    VALIDATIOA IS EXPERT REVIEW4, MULTIPLE MODELS ALLOW FOR SIMPLIFICATION1 ’OF THE CONCEP-TS IND SY𔃻TAX FOR EA CH REVIEW AND THEREBY ENHANCE COMMUNICATON . 0...THE FACTORY OF THE FUTURE CAN BE DEFINED. "THE VOUGHT CORPORATION HAS BEEN AWARDED A "TO-BE" ARCHITECTURE CONTRACT FOR A "CONCEPTUAL DESIGN FOR...COMPUTER INTEGRATED MANUFACTURING (CIM)" FOR THE AEROSPACE FACTORY OF THE FUTURE. (AS A POINT OF INTEREST, THE VOUGHT CORPORATION HAS INDEPENDENTLY DECIDED

  18. Waste-minimization audit report: case studies of corrosive and heavy-metal waste minimization at a specialty steel-manufacturing complex

    SciTech Connect

    Not Available

    1987-08-01

    The U.S. Environmental Protection Agency (EPA) is expanding its efforts to promote waste-minimization activity in the private sector by providing technical assistance to generators of hazardous waste. As part of the effort, the EPA Office of Research and Development/Hazardous Waste Engineering Research Laboratory (ORD/HWERL), Cincinnati, Ohio, is promoting the development of a generalized or model waste-minimization audit (WMA) procedure and testing this procedure in actual production facilities agreeing to cooperate with the audit teams selected for this task. In the report, results are presented of WMAs conducted at generators of corrosive heavy metals wastes. A specialty steel manufacturing complex employing electric arc furnaces (EAFs) for the manufacture of stainless and electrical steels, hot and cold rolling facilities for fabrication of the various steel grades into strip, and annealing and pickling facilities for finishing the strip, agreed to provide host facilities for the WMA effort reported herein.

  19. 1. TEST AREA 1115, SOUTH PART OF SUPPORT COMPLEX, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. TEST AREA 1-115, SOUTH PART OF SUPPORT COMPLEX, LOOKING TO EAST FROM ABOVE BUILDING 8655, THE FUEL STORAGE TANK FARM, IN FOREGROUND SHADOW. AT THE RIGHT IS BUILDING 8660, ELECTRICAL SUBSTATION; TO ITS LEFT IS BUILDING 8663, THE HELIUM COMPRESSION PLANT. THE LIGHT TONED STRUCTURE IN THE MIDDLE DISTANCE, CENTER, IS THE MACHINE SHOP FOR TEST STAND 1-3. IN THE FAR DISTANCE IS TEST STAND 1-A, WITH THE WHITE SPHERICAL TANKS, AND TEST STAND 2-A TO ITS RIGHT. ALONG THE HORIZON FROM FAR LEFT ARE TEST STAND 1-D, TEST STAND 1-C, WATER TANKS ABOVE TEST AREA 1-125, AND TEST STAND 1-B IN TEST AREA 1-120. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  20. Complex foamed aluminum parts as permanent cores in aluminum castings

    SciTech Connect

    Simancik, F.; Schoerghuber, F.

    1998-12-31

    The feasibility of complex shaped aluminum foam parts as permanent cores in aluminum castings has been investigated. The foamed samples were prepared by injection of the foam into sand molds. It turned out that sound castings can be produced if the foam core is properly preheated and/or surface treated before casting. The effect of the foam core on the performance of the casting was evaluated by in compression testing and by measuring structural damping. The gain in the related properties turned out to be much higher than the weight increase of the casting due to the presence of the core. The weight increase may be partially offset through a reduction of the wall-thickness of the shell.

  1. Microstructural Development and Technical Challenges in Laser Additive Manufacturing: Case Study with a 316L Industrial Part

    NASA Astrophysics Data System (ADS)

    Marya, Manuel; Singh, Virendra; Marya, Surendar; Hascoet, Jean Yves

    2015-08-01

    Additive manufacturing (AM) brings disruptive changes to the ways parts, and products are designed, fabricated, tested, qualified, inspected, marketed, and sold. These changes introduce novel technical challenges and concerns arising from the maturity and diversity of today's AM processes, feedstock materials, and process parameter interactions. AM bears a resemblance with laser and electron beam welding in the so-called conduction mode, which involves a multitude of dynamic physical events between the projected feedstock and a moving heat source that eventually influence AM part properties. For this paper, an air vent was selected for its thin-walled, hollow, and variable cross section, and limited size. The studied air vents, randomly selected from a qualification batch, were fabricated out of 316L stainless steel using a 4 kW fiber laser powder-fed AM system, referred to as construction laser additive direct (CLAD). These were systematically characterized by microhardness indentation, visual examination, optical and scanning electron microscopy, and electron-back-scattering diffraction in order to determine AM part suitability for service and also broadly discuss metallurgical phenomena. The paper then briefly expands the discussion to include additional engineering alloys and further analyze relationships between AM process parameters and AM part properties, consistently utilizing past experience with the same powder-fed CLAD 3D printer, the well-established science and technology of welding and joining, and recent publications on additive manufacturing.

  2. Complexation of buffer constituents with neutral complexation agents: part I. Impact on common buffer properties.

    PubMed

    Riesová, Martina; Svobodová, Jana; Tošner, Zdeněk; Beneš, Martin; Tesařová, Eva; Gaš, Bohuslav

    2013-09-17

    The complexation of buffer constituents with the complexation agent present in the solution can very significantly influence the buffer properties, such as pH, ionic strength, or conductivity. These parameters are often crucial for selection of the separation conditions in capillary electrophoresis or high-pressure liquid chromatography (HPLC) and can significantly affect results of separation, particularly for capillary electrophoresis as shown in Part II of this paper series (Beneš, M.; Riesová, M.; Svobodová, J.; Tesařová, E.; Dubský, P.; Gaš, B. Anal. Chem. 2013, DOI: 10.1021/ac401381d). In this paper, the impact of complexation of buffer constituents with a neutral complexation agent is demonstrated theoretically as well as experimentally for the model buffer system composed of benzoic acid/LiOH or common buffers (e.g., CHES/LiOH, TAPS/LiOH, Tricine/LiOH, MOPS/LiOH, MES/LiOH, and acetic acid/LiOH). Cyclodextrins as common chiral selectors were used as model complexation agents. We were not only able to demonstrate substantial changes of pH but also to predict the general complexation characteristics of selected compounds. Because of the zwitterion character of the common buffer constituents, their charged forms complex stronger with cyclodextrins than the neutral ones do. This was fully proven by NMR measurements. Additionally complexation constants of both forms of selected compounds were determined by NMR and affinity capillary electrophoresis with a very good agreement of obtained values. These data were advantageously used for the theoretical descriptions of variations in pH, depending on the composition and concentration of the buffer. Theoretical predictions were shown to be a useful tool for deriving some general rules and laws for complexing systems.

  3. Cutting orientations for non-complex parts in 4th axis machining

    NASA Astrophysics Data System (ADS)

    Osman Zahid, M. N.; Case, K.; Watts, D. M.

    2016-02-01

    The application of Computer Numerically Controlled (CNC) machining for Rapid Manufacturing processes (CNC-RM) exploits the innate potential of 4th axis machining. The use of an indexer allows the workpiece to be rotated to various orientations which directly increased the region accessible to the cutting tool. However, in order to avoid thin webs and preserve tool life, cutting must be executed with a minimum of three orientations even for geometrically simple parts. Recent findings have suggested the separation of cutting orientations into roughing and finishing operations. Thus, the selection of orientations in finishing processes becomes more flexible and independent. This study was conducted to identify the effects of using a minimum of two cutting orientations in finishing operations for CNC-RM applications. This method is only applicable for non-complex parts where all the features can be machined from two directions. The results of the study illustrate the positive effects of minimizing the number of orientations. Despite improvement in machining operations, the complexity in defining the cutting orientations was also reduced.

  4. Methods for tape fabrication of continuous filament composite parts and articles of manufacture thereof

    DOEpatents

    Weisberg, Andrew H

    2013-10-01

    A method for forming a composite structure according to one embodiment includes forming a first ply; and forming a second ply above the first ply. Forming each ply comprises: applying a bonding material to a tape, the tape comprising a fiber and a matrix, wherein the bonding material has a curing time of less than about 1 second; and adding the tape to a substrate for forming adjacent tape winds having about a constant distance therebetween. Additional systems, methods and articles of manufacture are also presented.

  5. Practical aspects of modern interferometry for optical manufacturing quality control: Part 1

    NASA Astrophysics Data System (ADS)

    Smythe, Robert

    2012-03-01

    Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space based satellite imaging and DVD and Blu-Ray disks are all enabled by phase shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful towards the practical use of interferometers. An understanding of the parameters that drive system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper reviews some of the key issues to minimize error sources in that data and provide a valid measurement.

  6. Additive Manufacturing: Which DLA-Managed Legacy Parts are Potential AM Candidates

    DTIC Science & Technology

    2016-07-01

    example, the phrases Steel Alloy 1020, Steel Comp 1020, and 1020 Steel all mean Low Carbon Steel Alloy 1020. So, if any of these phrases reside in...one or more of the data sources for a specific part, we would identify the part material as Low Carbon Steel Alloy 1020. On the other hand, inferred...identified that a specific part is subject to Federal Specification QQ- A-601, we would infer or identify that the part is an aluminum sand casting since

  7. Application of twin screw extrusion in the manufacture of cocrystals, part I: four case studies.

    PubMed

    Daurio, Dominick; Medina, Cesar; Saw, Robert; Nagapudi, Karthik; Alvarez-Núñez, Fernando

    2011-08-31

    The application of twin screw extrusion (TSE) as a scalable and green process for the manufacture of cocrystals was investigated. Four model cocrystal forming systems, Caffeine-Oxalic acid, Nicotinamide-trans cinnamic acid, Carbamazepine-Saccharin, and Theophylline-Citric acid, were selected for the study. The parameters of the extrusion process that influenced cocrystal formation were examined. TSE was found to be an effective method to make cocrystals for all four systems studied. It was demonstrated that temperature and extent of mixing in the extruder were the primary process parameters that influenced extent of conversion to the cocrystal in neat TSE experiments. In addition to neat extrusion, liquid-assisted TSE was also demonstrated for the first time as a viable process for making cocrystals. Notably, the use of catalytic amount of benign solvents led to a lowering of processing temperatures required to form the cocrystal in the extruder. TSE should be considered as an efficient, scalable, and environmentally friendly process for the manufacture of cocrystals with little to no solvent requirements.

  8. Application of Twin Screw Extrusion in the Manufacture of Cocrystals, Part I: Four Case Studies

    PubMed Central

    Daurio, Dominick; Medina, Cesar; Saw, Robert; Nagapudi, Karthik; Alvarez-Núñez, Fernando

    2011-01-01

    The application of twin screw extrusion (TSE) as a scalable and green process for the manufacture of cocrystals was investigated. Four model cocrystal forming systems, Caffeine-Oxalic acid, Nicotinamide-trans cinnamic acid, Carbamazepine-Saccharin, and Theophylline-Citric acid, were selected for the study. The parameters of the extrusion process that influenced cocrystal formation were examined. TSE was found to be an effective method to make cocrystals for all four systems studied. It was demonstrated that temperature and extent of mixing in the extruder were the primary process parameters that influenced extent of conversion to the cocrystal in neat TSE experiments. In addition to neat extrusion, liquid-assisted TSE was also demonstrated for the first time as a viable process for making cocrystals. Notably, the use of catalytic amount of benign solvents led to a lowering of processing temperatures required to form the cocrystal in the extruder. TSE should be considered as an efficient, scalable, and environmentally friendly process for the manufacture of cocrystals with little to no solvent requirements. PMID:24310598

  9. The Potential of the Cold Spray Process for the Repair and Manufacture of Aluminium Alloy Parts

    NASA Astrophysics Data System (ADS)

    Harvey, David; Marrocco, Tiziana

    Being capable of producing deposits up to several centimetres thick, the cold spray process is emerging as an attractive technology for the manufacture and repair of high value aluminium and magnesium components. During the cold spray process fine aluminium or aluminium alloy powders are propelled at high velocities in the solid state at the target substrate. Due to the high velocity particle impacts, strong bonds are formed between the coating and the substrate and between particles within the deposited layer. Metallographic sections of cold sprayed coatings reveal microstructures characterised by very low porosity. With the objective of improving the abrasive wear and erosion resistance of cold sprayed coatings, ceramic reinforcements such as SiC, B4C and Al2O3 have been introduced in the feedstock to produce composite coatings, and these composite materials have been deposited with thicknesses in excess of 25mm. Several applications employing commercially available equipment have achieved industrialisation.

  10. Layered YSZ/SCSZ/YSZ Electrolytes for Intermediate Temperature SOFC Part I: Design and Manufacturing

    SciTech Connect

    Orlovskaya, Nina; Klimov, Mikhail; Huang, Xinyu; Cullen, David A; Graule, Thomas; Kuebler, Jakob

    2012-01-01

    (Sc2O3)0.1(CeO2)0.01(ZrO2)0.89 (SCSZ) ceramic electrolyte has superior ionic conductivity in the intermediate temperature range (700 800 C), but it does not exhibit good phase and chemical stability in comparison with 8 mol% Y2O3 ZrO2 (YSZ). To maintain high ionic conductivity and improve the stability in the whole electrolyte, layered structures with YSZ outer layers and SCSZ inner layers were designed. Because of a mismatch of coefficients of thermal expansion and Young's moduli of SCSZ and YSZ phases, upon cooling of the electrolytes after sintering, thermal residual stresses will arise, leading to a possible strengthening of the layered composite and, therefore, an increase in the reliability of the electrolyte. Laminated electrolytes with three, four, and six layers design were manufactured using tape-casting, lamination, and sintering techniques. After sintering, while the thickness of YSZ outer layers remained constant at 30 m, the thickness of the SCSZ inner layer varied from 30 m for a Y SC Y three-layered electrolyte, 60 m for a Y 2SC Y four-layered electrolyte, and 120 m for a Y 4SC Y six-layered electrolyte. The microstructure, crystal structure, impurities present, and the density of the sintered electrolytes were characterized by scanning and transmission electron microscopy, X-ray and neutron diffraction, secondary ion mass spectroscopy, and water immersion techniques.

  11. Manufacturing technologies

    SciTech Connect

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  12. Comprehensive database of Manufactured Gas Plant tars. Part B. Aliphatic and aromatic compounds.

    PubMed

    Gallacher, Christopher; Thomas, Russell; Lord, Richard; Kalin, Robert M; Taylor, Chris

    2017-08-15

    Coal tars are a mixture of organic and inorganic compounds that were produced as a by-product from the manufactured gas and coke making industries. The composition of the tar produced varies depending on many factors; these include the temperature of production and the type of retort used. As different production processes produce different tars, a comprehensive database of the compounds present within coal tars from different production processes is a valuable resource. Such a database would help to understand how their chemical properties differ and what hazards the compounds present within these tars might pose. This study focuses on the aliphatic and aromatic compounds present in a database of 16 different tars from five different production processes. Samples of coal tar were extracted using accelerated solvent extraction (ASE) and derivatised post-extraction using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS). The derivatised samples were analysed using two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GCxGC/TOFMS). A total of 198 individual aliphatic and 951 individual aromatic compounds were detected within 16 tar samples produced by five different production processes. The polycyclic aromatic hydrocarbon (PAH) content of coal tars varies greatly depending on the production process used to obtain the tars and this is clearly demonstrated within the results. The aliphatic composition of the tars provided an important piece of analytical information that would have otherwise been missed with the detection of petrogenic compounds such as alkyl cyclohexanes. The aromatic compositions of the tar samples varied greatly between the different production processes investigated and useful analytical information was obtained about the individual production process groups. Alkyl cyclohexanes were detected in all samples from sites known to operate Carbureted Water Gas plants and not detected in

  13. Comprehensive database of Manufactured Gas Plant tars. Part C. Heterocyclic and hydroxylated polycyclic aromatic hydrocarbons.

    PubMed

    Gallacher, Christopher; Thomas, Russell; Lord, Richard; Kalin, Robert M; Taylor, Chris

    2017-08-15

    Coal tars are a mixture of organic and inorganic compounds that were by-products from the manufactured gas and coke making industries. The tar compositions varied depending on many factors such as the temperature of production and the type of retort used. For this reason a comprehensive database of the compounds found in different tar types is of value to understand both how their compositions differ and what potential chemical hazards are present. This study focuses on the heterocyclic and hydroxylated compounds present in a database produced from 16 different tars from five different production processes. Samples of coal tar were extracted using accelerated solvent extraction (ASE) and derivatized post-extraction using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS). The derivatized samples were analysed using two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GCxGC/TOFMS). A total of 865 heterocyclic compounds and 359 hydroxylated polycyclic aromatic hydrocarbons (PAHs) were detected in 16 tar samples produced by five different processes. The contents of both heterocyclic and hydroxylated PAHs varied greatly with the production process used, with the heterocyclic compounds giving information about the feedstock used. Of the 359 hydroxylated PAHs detected the majority would not have been be detected without the use of derivatization. Coal tars produced using different production processes and feedstocks yielded tars with significantly different heterocyclic and hydroxylated contents. The concentrations of the individual heterocyclic compounds varied greatly even within the different production processes and provided information about the feedstock used to produce the tars. The hydroxylated PAH content of the samples provided important analytical information that would otherwise not have been obtained without the use of derivatization and GCxGC/TOFMS. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Validation of Finite Element Model used to Analyze Sheet Metal Punching Process in Automotive Part Manufacturing

    NASA Astrophysics Data System (ADS)

    Chantarapanich, N.; Siripanya, A.; Sucharitpwatskul, S.; Wanchat, S.

    2017-05-01

    Punching process is an operation that a scrap is separated from a metal sheet by a punch. Improper setting of punching conditions may lead to excessive of material deformation around edge region (burr), which may weakening the strength of produced part. Analysis of punching mechanics would be beneficial reducing defective part. One of effective analysing tool for this application is Finite Element (FE) method. The aim of this study is to develop reliable FE model for analysis of punching process. The FE model was developed based on 2D. FE result was validated with experimental testing result by comparing burr height. It was found that FE result is -1.79% difference compared to experimental result. Good agreement between FE and experimental result was obtained.

  15. Electron Backscatter Diffraction Analysis of Inconel 718 Parts Fabricated by Selective Laser Melting Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqing; Chou, Kevin

    2017-02-01

    In this study, the crystallographic texture of an Inconel 718 part fabricated by selective laser melting was investigated. The front surface (X-Z plane) microstructure is characterized by the columnar grains growing along the build direction, and the width of columnar grains is in the range of about 75-150 µm, with the bottom layers having narrower grains as a result of a higher cooling rate. In addition to equiaxed grains, the top surface (X-Y plane) has a feature of patch patterns resulting from the laser scanning strategy. Based on the electron backscatter diffraction results, there appears only weak crystallographic texture in both the X-Z plane and the X-Y plane of the part. From the grain boundary map, the microstructures are composed of high-angle boundaries with a larger fraction of subgrain boundaries.

  16. Electron Backscatter Diffraction Analysis of Inconel 718 Parts Fabricated by Selective Laser Melting Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqing; Chou, Kevin

    2016-11-01

    In this study, the crystallographic texture of an Inconel 718 part fabricated by selective laser melting was investigated. The front surface (X-Z plane) microstructure is characterized by the columnar grains growing along the build direction, and the width of columnar grains is in the range of about 75-150 µm, with the bottom layers having narrower grains as a result of a higher cooling rate. In addition to equiaxed grains, the top surface (X-Y plane) has a feature of patch patterns resulting from the laser scanning strategy. Based on the electron backscatter diffraction results, there appears only weak crystallographic texture in both the X-Z plane and the X-Y plane of the part. From the grain boundary map, the microstructures are composed of high-angle boundaries with a larger fraction of subgrain boundaries.

  17. Ontic Engineering and Manufacturing Overcharged the Defense Logistics Agency for Sole Source Spare Parts (REDACTED)

    DTIC Science & Technology

    2014-09-15

    million or more a year must use a structured approach for determining profit or fee objectives when cost analysis is required. Furthermore, DFARS...Subpart 215.404-4, "Profit,’’ states that DoD’s structured approach for profit analysis is the weighted-guideline method, which calculates profit...Actual Cost of F119 Engine Spare Parts Purchased from Pratt and Whitney," February 10, 2014 Report No. DODIG-2014-020, "U.S. Army Contracting Command

  18. Diffusion bonding and its application to manufacturing. [for joining of metal parts

    NASA Technical Reports Server (NTRS)

    Spurgeon, W. M.

    1972-01-01

    In its simplest form diffusion bonding is accomplished by placing clean metal surfaces together under a sufficient load and heating. The natural interatomic attractive force between atoms transforms the interface into a natural grain boundary. Therefore, in principle, the properties of the bond area are identical to those of the parent metal. Other advantages of diffusion bonding over conventional methods of bonding include freedom from residual stresses, excessive deformation, foreign metals, or changed crystal structures. Stainless steels, nickel-base superalloys, and aluminum alloys have all been successfully joined. Complex hardware, including integrated flueric devices, jet engine servovalves, and porous woven structures have been fabricated. The processing involved is discussed, along with such theoretical considerations as the role of metal surfaces, the formation of metal contact junctions, and the mechanisms of material transport in diffusion bonding.

  19. An Efficient Multi-Scale Simulation Architecture for the Prediction of Performance Metrics of Parts Fabricated Using Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Pal, Deepankar; Patil, Nachiket; Zeng, Kai; Teng, Chong; Stucker, Brent

    2015-09-01

    In this study, an overview of the computational tools developed in the area of metal-based additively manufactured (AM) to simulate the performance metrics along with their experimental validations will be presented. The performance metrics of the AM fabricated parts such as the inter- and intra-layer strengths could be characterized in terms of the melt pool dimensions, solidification times, cooling rates, granular microstructure, and phase morphologies along with defect distributions which are a function of the energy source, scan pattern(s), and the material(s). The four major areas of AM simulation included in this study are thermo-mechanical constitutive relationships during fabrication and in- service, the use of Euler angles for gaging static and dynamic strengths, the use of algorithms involving intelligent use of matrix algebra and homogenization extracting the spatiotemporal nature of these processes, a fast GPU architecture, and specific challenges targeted toward attaining a faster than real-time simulation efficiency and accuracy.

  20. Mortality of workers in an automobile engine and parts manufacturing complex.

    PubMed Central

    Vena, J E; Sultz, H A; Fiedler, R C; Barnes, R E

    1985-01-01

    A proportionate mortality ratio (PMR) study was conducted using data on workers from three local unions representing an integrated automobile factory composed of forge, foundry, and engine (machine and assembly) plants. Ninety four percent of the death certificates were obtained for all active and non-active workers who died during the period 1 January 1970 to 31 December 1979 and were vested in union and company benefit programmes. Observed numbers of deaths were compared with expected numbers based on two standards, the proportionate mortality among men in the United States 1970-9 and among men in Erie County 1975. There was close agreement between the number of observed and expected deaths by either standard of comparison among white auto workers in the forge and foundry plants. Valid analyses of cause specific mortality among non-whites could be conducted for the foundry plant only. Although there was raised PMR for deaths due to diseases of the circulatory system using the Erie County standard, none of the other cause specific PMRs was significant. Although based on small numbers, the risk of cancer of the lung was significantly high in non-whites under age 50 in the foundry (PMR = 2.6; p less than 0.05). The cause specific PMRs for whites in the engine plant were statistically significant for malignant neoplasms (1.2) and all external causes (0.62) based on the US white male standard. Analysis of cancer specific mortality among white men in the machining/assembly plant showed significant excesses for cancer of the digestive system (PMR=1.5), particularly of the liver (PMR=2.6) and pancreas (PMR=1.9); cancers of the respiratory system (PMR=1.4 using the Erie County standard); and cancer of the urinary bladder (PMR=2.3). Workers employed for more than 20 years showed statistically increased mortality ratios for cancers of the digestive system (1.9), particularly cancer of the pancreas (2.3) and cancer of the rectum (2.8). Individuals whose employment began during or before 1950 exhibited increased PMRs for cancers of the digestive organs (1.8), particularly of the pancreas (2.5) and of the bladder (3.4). Workers whose employment began after 1950, on the other hand, exhibited raised PMRs for cancers of the respiratory system (1.5) and of the kidney (3.2). Since the foundry and forge plants did not start production until 1955, mortality associated with those work settings may be greater in the future. PMID:3970876

  1. The Importance of Carbon Fiber to Polymer Additive Manufacturing

    SciTech Connect

    Love, Lonnie J; Kunc, Vlastimil; Rios, Orlando; Duty, Chad E; Post, Brian K; Blue, Craig A

    2014-01-01

    Additive manufacturing holds tremendous promise in terms of revolutionizing manufacturing. However, fundamental hurdles limit mass adoption of the technology. First, production rates are extremely low. Second, the physical size of parts is generally small, less than a cubic foot. Third, while there is much excitement about metal additive manufacturing, the major growth area is in polymer additive manufacturing systems. Unfortunately, the mechanical properties of the polymer parts are poor, limiting the potential for direct part replacement. To address this issue, we describe three benefits of blending carbon fiber with polymer additive manufacturing. First, development of carbon fiber reinforced polymers for additive manufacturing achieves specific strengths approaching aerospace quality aluminum. Second, carbon fiber radically changes the behavior of the material during deposition, enabling large scale, out-of-the-oven, high deposition rate manufacturing. Finally, carbon fiber technology and additive manufacturing complement each other. Merging the two manufacturing processes enables the construction of complex components that would not be possible otherwise.

  2. Analysis of Garment Production Methods. Part 2: Comparison of Cost and Production between a Traditional Bundle System and Modular Manufacturing

    DTIC Science & Technology

    1992-02-01

    also saw this project as an opportunity for our manufacturing management students to see first hand how companies respond to changes in their economic...Modular Manufacturing . We wanted to see if it was just a fad or a new business strategy that could be added to a manufacturer’s arsenal in the master...Fashion Industries 227 West 27 Street 000301 New York, NY 10001 Defense Logistics Agency DLA Manufacturing Engineering Branch Cameron Station (DLA

  3. Complex Moving Parts: Assessment Systems and Electronic Portfolios

    ERIC Educational Resources Information Center

    Larkin, Martha J.; Robertson, Royce L.

    2013-01-01

    The largest college within an online university of over 50,000 students invested significant resources in translating a complex assessment system focused on continuous improvement and national accreditation into an effective and efficient electronic portfolio (ePortfolio). The team building the system needed a model to address problems met…

  4. Laser Consolidation - A Novel One-Step Manufacturing Process for Making Net-Shape Functional Components

    DTIC Science & Technology

    2006-05-01

    addition , this computer-aided manufacturing process provides an excellent opportunity for manufacturing complex parts that are difficult to make by...consolidation process, more unique features can be added to the components to provide additional functionality, reduce manufacturing time and cost...Functional Prototypes IN-625 alloy 316L S.S Stellite 6 alloy LC IN-738 Applications - Manufacturing Complex Net-Shape Parts LC IN-625LC IN-625 Applications

  5. Convective instabilities in complex systems with partly free surface

    NASA Astrophysics Data System (ADS)

    Schwabe, Dietrich

    2007-04-01

    Experiments and observations and some selected theoretical studies of thermocapillary instabilities are reviewed and presented together with new unpublished work. We start with simple idealized model systems of pure thermocapillarity and add to them more complex features like gravity forces, temperature gradients inclined to the free surface, static and dynamic surface deformations, solutocapillary effects and reacting or moving crystal boundaries (like during unidirectional solidification). Many effects and instabilities are demonstrated in video clips which can be downloaded from http://meyweb.physik.uni-giessen.de/1_Forschung/crystalgrowth/video/homepage.html. We try to point out the relationship of thermocapillary instabilities in the more complex systems with those in theoretical studies where the names of these instabilities have been coined.

  6. On-line application of near-infrared spectroscopy for monitoring water levels in parts per million in a manufacturing-scale distillation process.

    PubMed

    Lambertus, Gordon; Shi, Zhenqi; Forbes, Robert; Kramer, Timothy T; Doherty, Steven; Hermiller, James; Scully, Norma; Wong, Sze Wing; LaPack, Mark

    2014-01-01

    An on-line analytical method based on transmission near-infrared spectroscopy (NIRS) for the quantitative determination of water concentrations (in parts per million) was developed and applied to the manufacture of a pharmaceutical intermediate. Calibration models for water analysis, built at the development site and applied at the manufacturing site, were successfully demonstrated during six manufacturing runs at a 250-gallon scale. The water measurements will be used as a forward-processing control point following distillation of a toluene product solution prior to use in a Grignard reaction. The most significant impact of using this NIRS-based process analytical technology (PAT) to replace off-line measurements is the significant reduction in the risk of operator exposure through the elimination of sampling of a severely lachrymatory and mutagenic compound. The work described in this report illustrates the development effort from proof-of-concept phase to manufacturing implementation.

  7. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  8. Challenges in Additive Manufacturing of Space Parts: Powder Feedstock Cross-Contamination and Its Impact on End Products

    PubMed Central

    Brandão, Ana D.; Gerard, Romain; Gumpinger, Johannes; Beretta, Stefano; Makaya, Advenit; Pambaguian, Laurent; Ghidini, Tommaso

    2017-01-01

    This work studies the tensile properties of Ti-6Al-4V samples produced by laser powder bed based Additive Manufacturing (AM), for different build orientations. The results showed high scattering of the yield and tensile strength and low fracture elongation. The subsequent fractographic investigation revealed the presence of tungsten particles on the fracture surface. Hence, its detection and impact on tensile properties of AM Ti-6Al-4V were investigated. X-ray Computed Tomography (X-ray CT) scanning indicated that these inclusions were evenly distributed throughout the samples, however the inclusions area was shown to be larger in the load-bearing plane for the vertical specimens. A microstructural study proved that the mostly spherical tungsten particles were embedded in the fully martensitic Ti-6Al-4V AM material. The particle size distribution, the flowability and the morphology of the powder feedstock were investigated and appeared to be in line with observations from other studies. X-ray CT scanning of the powder however made the high density particles visible, where various techniques, commonly used in the certification of powder feedstock, failed to detect the contaminant. As the detection of cross contamination in the powder feedstock proves to be challenging, the use of only one type of powder per AM equipment is recommended for critical applications such as Space parts. PMID:28772882

  9. Challenges in Additive Manufacturing of Space Parts: Powder Feedstock Cross-Contamination and Its Impact on End Products.

    PubMed

    Brandão, Ana D; Gerard, Romain; Gumpinger, Johannes; Beretta, Stefano; Makaya, Advenit; Pambaguian, Laurent; Ghidini, Tommaso

    2017-05-12

    This work studies the tensile properties of Ti-6Al-4V samples produced by laser powder bed based Additive Manufacturing (AM), for different build orientations. The results showed high scattering of the yield and tensile strength and low fracture elongation. The subsequent fractographic investigation revealed the presence of tungsten particles on the fracture surface. Hence, its detection and impact on tensile properties of AM Ti-6Al-4V were investigated. X-ray Computed Tomography (X-ray CT) scanning indicated that these inclusions were evenly distributed throughout the samples, however the inclusions area was shown to be larger in the load-bearing plane for the vertical specimens. A microstructural study proved that the mostly spherical tungsten particles were embedded in the fully martensitic Ti-6Al-4V AM material. The particle size distribution, the flowability and the morphology of the powder feedstock were investigated and appeared to be in line with observations from other studies. X-ray CT scanning of the powder however made the high density particles visible, where various techniques, commonly used in the certification of powder feedstock, failed to detect the contaminant. As the detection of cross contamination in the powder feedstock proves to be challenging, the use of only one type of powder per AM equipment is recommended for critical applications such as Space parts.

  10. Toward Failure Modeling In Complex Dynamic Systems: Impact of Design and Manufacturing Variations

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; McAdams, Daniel A.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    When designing vehicle vibration monitoring systems for aerospace devices, it is common to use well-established models of vibration features to determine whether failures or defects exist. Most of the algorithms used for failure detection rely on these models to detect significant changes during a flight environment. In actual practice, however, most vehicle vibration monitoring systems are corrupted by high rates of false alarms and missed detections. Research conducted at the NASA Ames Research Center has determined that a major reason for the high rates of false alarms and missed detections is the numerous sources of statistical variations that are not taken into account in the. modeling assumptions. In this paper, we address one such source of variations, namely, those caused during the design and manufacturing of rotating machinery components that make up aerospace systems. We present a novel way of modeling the vibration response by including design variations via probabilistic methods. The results demonstrate initial feasibility of the method, showing great promise in developing a general methodology for designing more accurate aerospace vehicle vibration monitoring systems.

  11. Research and Development: A Complex Relationship Part I [and] Part II.

    ERIC Educational Resources Information Center

    Pollard, John Douglas Edward

    Part 1 of this document describes the background, format, and early groundwork that went into the development of a test sponsored entirely by private enterprise. The discipline imposed by a financial bottom line imposes special pressures but also offers new opportunities. This private enterprise model is a multi-constructional process where…

  12. Additive manufacturing of complex-shaped graded TiC/steel composites

    DOE PAGES

    Levy, Asaf; Miriyev, Aslan; Elliott, Amy; ...

    2017-01-12

    Complex-shaped TiCx ceramic preforms with a gradient of carbon content in the titanium carbide phase (x changes from 0.7 to 0.98) were fabricated for the first time by Binder jet 3D printing technology. The complex-shaped preforms were infiltrated with molten carbon steel (0.7 wt.%C). Thermodynamic considerations showed that carbon could be transferred from titanium carbide to steel and vice versa according to the initial concentration of carbon (activity) in both phases. After infiltration, solidification and slow cooling, a microstructural gradient was obtained throughout the steel matrix from ferrite, in the region where the steel was in contact with titanium carbidemore » of low carbon content (x=0.7), to pearlite, in the region where the steel underwent interactions with stoichiometric titanium carbide (x=0.98). After annealing at 900°C and quenching in oil, a structural gradient in the steel matrix from ferrite to martensite was obtained, resulting in a hardness gradient of 700-1600 HV. The suggested processing approach allows for fabrication of complex-shaped graded composites with the desired property gradient suitable for a wide range of practical applications.« less

  13. Wire-based laser metal deposition for additive manufacturing of TiAl6V4: basic investigations of microstructure and mechanical properties from build up parts

    NASA Astrophysics Data System (ADS)

    Klocke, Fritz; Arntz, Kristian; Klingbeil, Nils; Schulz, Martin

    2017-02-01

    The wire-based laser metal deposition (LMD-W) is a new technology which enables to produce complex parts made of titanium for the aerospace and automotive industry. For establishing the LMD-W as a new production process it has to be proven that the properties are comparable or superior to conventional produced parts. The mechanical properties were investigated by analysis of microstructure and tensile test. Therefore, specimens were generated using a 4.5 kW diode laser cladding system integrated in a 5-Axis-machining center. The structural mechanical properties are mainly influence by crystal structure and thereby the thermal history of the work piece. Especially the high affinity to oxide, distortion and dual phase microstructure make titanium grade 5 (TiAl6V4) one of the most challenging material for additive manufacturing. By using a proper local multi-nozzle shielding gas concept the negative influence of oxide in the process could be eliminated. The distortion being marginal at a single bead, accumulated to a macroscopic effect on the work piece. The third critical point for additive processing of titanium, the bimodal microstructure, could not be cleared by the laser process alone. All metallurgical probes showed α-martensitic-structure. Therefore, a thermal treatment became a necessary production step in the additive production chain. After the thermal treatment the microstructure as well as the distortion was analyzed and compared with the status before. Although not all technical issues could be solved, the investigation show that LMD-W of titanium grade 5 is a promising alternative to other additive techniques as electronic beam melting or plasma deposition welding.

  14. A comparative study of multi-sensor data fusion methods for highly accurate assessment of manufactured parts

    NASA Astrophysics Data System (ADS)

    Hannachi, Ammar; Kohler, Sophie; Lallement, Alex; Hirsch, Ernest

    2015-04-01

    3D modeling of scene contents takes an increasing importance for many computer vision based applications. In particular, industrial applications of computer vision require efficient tools for the computation of this 3D information. Routinely, stereo-vision is a powerful technique to obtain the 3D outline of imaged objects from the corresponding 2D images. As a consequence, this approach provides only a poor and partial description of the scene contents. On another hand, for structured light based reconstruction techniques, 3D surfaces of imaged objects can often be computed with high accuracy. However, the resulting active range data in this case lacks to provide data enabling to characterize the object edges. Thus, in order to benefit from the positive points of various acquisition techniques, we introduce in this paper promising approaches, enabling to compute complete 3D reconstruction based on the cooperation of two complementary acquisition and processing techniques, in our case stereoscopic and structured light based methods, providing two 3D data sets describing respectively the outlines and surfaces of the imaged objects. We present, accordingly, the principles of three fusion techniques and their comparison based on evaluation criterions related to the nature of the workpiece and also the type of the tackled application. The proposed fusion methods are relying on geometric characteristics of the workpiece, which favour the quality of the registration. Further, the results obtained demonstrate that the developed approaches are well adapted for 3D modeling of manufactured parts including free-form surfaces and, consequently quality control applications using these 3D reconstructions.

  15. Hot-melt extrusion as a continuous manufacturing process to form ternary cyclodextrin inclusion complexes.

    PubMed

    Thiry, Justine; Krier, Fabrice; Ratwatte, Shenelka; Thomassin, Jean-Michel; Jerome, Christine; Evrard, Brigitte

    2017-01-01

    The aim of this study was to evaluate hot-melt extrusion (HME) as a continuous process to form cyclodextrin (CD) inclusion complexes in order to increase the solubility and dissolution rate of itraconazole (ITZ), a class II model drug molecule of the Biopharmaceutics Classification System. Different CD derivatives were tested in a 1:1 (CD:ITZ) molar ratio to obtain CD ternary inclusion complexes in the presence of a polymer, namely Soluplus(®) (SOL). The CD used in this series of experiments were β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD) with degrees of substitution of 0.63 and 0.87, randomly methylated β-cyclodextrin (Rameb(®)), sulfobutylether-β-cyclodextrin (Captisol(®)) and methyl-β-cyclodextrin (Crysmeb(®)). Rheology testing and mini extrusion using a conical twin screw mini extruder were performed to test the processability of the different CD mixtures since CD are not thermoplastic. This allowed Captisol(®) and Crysmeb(®) to be discarded from the study due to their high impact on the viscosity of the SOL/ITZ mixture. The remaining CD were processed by HME in an 18mm twin screw extruder. Saturation concentration measurements confirmed the enhancement of solubility of ITZ for the four CD formulations. Biphasic dissolution tests indicated that all four formulations had faster release profiles compared to the SOL/ITZ solid dispersion. Formulations of HPβCD 0.63 and Rameb(®) even reached 95% of ITZ released in both phases after 1h. The formulations were characterized using thermal differential scanning calorimetry and attenuated total reflectance infra-red analysis. These analyses confirmed that the increased release profile was due to the formation of ternary inclusion complexes.

  16. Bismuth Infusion of ABS Enables Additive Manufacturing of Complex Radiological Phantoms and Shielding Equipment.

    PubMed

    Ceh, Justin; Youd, Tom; Mastrovich, Zach; Peterson, Cody; Khan, Sarah; Sasser, Todd A; Sander, Ian M; Doney, Justin; Turner, Clark; Leevy, W Matthew

    2017-02-24

    Radiopacity is a critical property of materials that are used for a range of radiological applications, including the development of phantom devices that emulate the radiodensity of native tissues and the production of protective equipment for personnel handling radioactive materials. Three-dimensional (3D) printing is a fabrication platform that is well suited to creating complex anatomical replicas or custom labware to accomplish these radiological purposes. We created and tested multiple ABS (Acrylonitrile butadiene styrene) filaments infused with varied concentrations of bismuth (1.2-2.7 g/cm³), a radiopaque metal that is compatible with plastic infusion, to address the poor gamma radiation attenuation of many mainstream 3D printing materials. X-ray computed tomography (CT) experiments of these filaments indicated that a density of 1.2 g/cm³ of bismuth-infused ABS emulates bone radiopacity during X-ray CT imaging on preclinical and clinical scanners. ABS-bismuth filaments along with ABS were 3D printed to create an embedded human nasocranial anatomical phantom that mimicked radiological properties of native bone and soft tissue. Increasing the bismuth content in the filaments to 2.7 g/cm³ created a stable material that could attenuate 50% of (99m)Technetium gamma emission when printed with a 2.0 mm wall thickness. A shielded test tube rack was printed to attenuate source radiation as a protective measure for lab personnel. We demonstrated the utility of novel filaments to serve multiple radiological purposes, including the creation of anthropomorphic phantoms and safety labware, by tuning the level of radiation attenuation through material customization.

  17. Bismuth Infusion of ABS Enables Additive Manufacturing of Complex Radiological Phantoms and Shielding Equipment

    PubMed Central

    Ceh, Justin; Youd, Tom; Mastrovich, Zach; Peterson, Cody; Khan, Sarah; Sasser, Todd A.; Sander, Ian M.; Doney, Justin; Turner, Clark; Leevy, W. Matthew

    2017-01-01

    Radiopacity is a critical property of materials that are used for a range of radiological applications, including the development of phantom devices that emulate the radiodensity of native tissues and the production of protective equipment for personnel handling radioactive materials. Three-dimensional (3D) printing is a fabrication platform that is well suited to creating complex anatomical replicas or custom labware to accomplish these radiological purposes. We created and tested multiple ABS (Acrylonitrile butadiene styrene) filaments infused with varied concentrations of bismuth (1.2–2.7 g/cm3), a radiopaque metal that is compatible with plastic infusion, to address the poor gamma radiation attenuation of many mainstream 3D printing materials. X-ray computed tomography (CT) experiments of these filaments indicated that a density of 1.2 g/cm3 of bismuth-infused ABS emulates bone radiopacity during X-ray CT imaging on preclinical and clinical scanners. ABS-bismuth filaments along with ABS were 3D printed to create an embedded human nasocranial anatomical phantom that mimicked radiological properties of native bone and soft tissue. Increasing the bismuth content in the filaments to 2.7 g/cm3 created a stable material that could attenuate 50% of 99mTechnetium gamma emission when printed with a 2.0 mm wall thickness. A shielded test tube rack was printed to attenuate source radiation as a protective measure for lab personnel. We demonstrated the utility of novel filaments to serve multiple radiological purposes, including the creation of anthropomorphic phantoms and safety labware, by tuning the level of radiation attenuation through material customization. PMID:28245589

  18. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles

    SciTech Connect

    Love, Lonnie J.

    2015-08-01

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generated considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.

  19. Radiation decontamination of pharmaceutical raw materials as an integral part of the good pharmaceutical manufacturing practice (GPMP)

    NASA Astrophysics Data System (ADS)

    Ražem, D.; Katušin-Ražem, B.; Starčević, M.; Galeković, B.

    The microbiological quality of many raw materials used in the manufacture of pharmaceutical and adjuvants often fails to meet the standards set by the pharmaceutical industry. Raw materials of biological provenience are particularly susceptible to contamination. This work describes the present situation regarding the microbial load of corn starch. Given the accepted microbiological criteria, irradiation treatment is proposed as integral to Good Pharmaceutical Manufacturing Practice (GPMP). The use of total viable count as a guide for specifying microbial limits for non-sterile materials is supported. Criteria for the choice of dose are discussed.

  20. Additive Manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry

    NASA Astrophysics Data System (ADS)

    Gebhardt, Andreas; Schmidt, Frank-Michael; Hötter, Jan-Steffen; Sokalla, Wolfgang; Sokalla, Patrick

    Additive Manufacturing of metal parts by Selective Laser Melting has become a powerful tool for the direct manufacturing of complex parts mainly for the aerospace and medical industry. With the introduction of its desktop machine, Realizer targeted the dental market. The contribution describes the special features of the machine, discusses details of the process and shows manufacturing results focused on metal dental devices.

  1. Instructional Materials in Manufacturing for Junior High School Industrial Arts. Final Report and Parts I-IV.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus.

    This Title XI Institute was designed and conducted to introduce the participants to inquiry and invention taking place in industrial arts curriculum across the United States. The institute participated in the inquiry stage through advanced study of manufacturing technology and industrial arts curriculum, and in the invention stage through the…

  2. Instructional Materials in Manufacturing for Junior High School Industrial Arts. Final Report and Parts I-IV.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus.

    This Title XI Institute was designed and conducted to introduce the participants to inquiry and invention taking place in industrial arts curriculum across the United States. The institute participated in the inquiry stage through advanced study of manufacturing technology and industrial arts curriculum, and in the invention stage through the…

  3. Plant Utility Improvements Increase Profits and Productivity at a Clothing Manufacturing Complex (MJ Soffee's Wastewater Heat Recovery System)

    SciTech Connect

    2000-11-01

    In response to increased marketplace competition and the need for expanded production capacity, MJ Soffee's manufacturing facility in Fayetteville, North Carolina implemented several energy improvement projects,

  4. National Institutes of Health-Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities.

    PubMed

    Ricordi, Camillo; Goldstein, Julia S; Balamurugan, A N; Szot, Gregory L; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W; Barbaro, Barbara; Bridges, Nancy D; Cano, Jose; Clarke, William R; Eggerman, Thomas L; Hunsicker, Lawrence G; Kaufman, Dixon B; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S; Lei, Ji; Wang, Ling-Jia; Wilhelm, Joshua J; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J; Posselt, Andrew M; Stock, Peter G; Shapiro, A M James

    2016-11-01

    Eight manufacturing facilities participating in the National Institutes of Health-sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. © 2016 by the American Diabetes Association.

  5. Respiratory morbidity due to ammonia exposure among the employees of a urea manufacturing industry located in western part of India

    PubMed Central

    Zala, Naman; Kavishvar, Abhay

    2012-01-01

    Ammonia is produced in the fertilizer industry. The amount of ammonia inhaled by employees of a urea manufacturing industry is very high. It would be interesting to study whether such an amount has any impact on the employees working there for many years. This study explores the magnitude of respiratory morbidity among employees of a urea manufacturing industry and to establish its association with exposure to ammonia. Data was collected related to significant respiratory illnesses of all the employees over a period of 10 years using computer-based medical record system of the industry′s hospital. The results obtained from the data analysis showed that there is no cause and effect relationship between exposure to ammonia and respiratory morbidity. Thus it was advised to the medical authority at industry to go for mass treatment with anthelmintics and that all the employees should be screened for specific allergens and this information should be used while managing respiratory morbidity. PMID:23776325

  6. Respiratory morbidity due to ammonia exposure among the employees of a urea manufacturing industry located in western part of India.

    PubMed

    Zala, Naman; Kavishvar, Abhay

    2012-09-01

    Ammonia is produced in the fertilizer industry. The amount of ammonia inhaled by employees of a urea manufacturing industry is very high. It would be interesting to study whether such an amount has any impact on the employees working there for many years. This study explores the magnitude of respiratory morbidity among employees of a urea manufacturing industry and to establish its association with exposure to ammonia. Data was collected related to significant respiratory illnesses of all the employees over a period of 10 years using computer-based medical record system of the industry's hospital. The results obtained from the data analysis showed that there is no cause and effect relationship between exposure to ammonia and respiratory morbidity. Thus it was advised to the medical authority at industry to go for mass treatment with anthelmintics and that all the employees should be screened for specific allergens and this information should be used while managing respiratory morbidity.

  7. Long-term health experience of jet engine manufacturing workers: VIII. glioblastoma incidence in relation to workplace experiences with parts and processes.

    PubMed

    Marsh, Gary M; Youk, Ada O; Buchanich, Jeanine M; Downing, Sarah; Kennedy, Kathleen J; Esmen, Nurtan A; Hancock, Roger P; Lacey, Steven E; Pierce, Jennifer S; Fleissner, Mary Lou

    2013-06-01

    To determine whether glioblastoma (GB) incidence rates among jet engine manufacturing workers were associated with workplace experiences with specific parts produced and processes performed. Subjects were 210,784 workers employed between 1952 and 2001. We conducted nested case-control and cohort incidence studies with focus on 277 GB cases. We estimated time experienced with 16 part families, 4 process categories, and 32 concurrent part-process combinations with 20 or more GB cases. In both the cohort and case-control studies, none of the part families, process categories, or both considered was associated with increased GB risk. If not due to chance alone, the not statistically significantly elevated GB rates in the North Haven plant may reflect external occupational factors or nonoccupational factors unmeasured in the current evaluation.

  8. Japan's technology and manufacturing infrastructure

    NASA Technical Reports Server (NTRS)

    Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.

    1995-01-01

    The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.

  9. Japan's technology and manufacturing infrastructure

    NASA Technical Reports Server (NTRS)

    Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.

    1995-01-01

    The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.

  10. Layered Manufacturing: Challenges and Opportunities

    DTIC Science & Technology

    2003-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014215 TITLE: Layered Manufacturing : Challenges and Opportunities ...Research Society LL1.4 Layered Manufacturing : Challenges and Opportunities Khershed P. Cooper Materials Science and Technology Division, Naval Research...Laboratory Washington, DC 20375-5343, U.S.A. ABSTRACT Layered Manufacturing (LM) refers to computer-aided manufacturing processes in which parts are made

  11. Designing using manufacturing features

    NASA Astrophysics Data System (ADS)

    Szecsi, T.; Hoque, A. S. M.

    2012-04-01

    This paper presents a design system that enables the composition of a part using manufacturing features. Features are selected from feature libraries. Upon insertion, the system ensures that the feature does not contradict the design-for-manufacture rules. This helps eliminating costly manufacturing problems. The system is developed as an extension to a commercial CAD/CAM system Pro/Engineer.

  12. Seasonal variation and spatial distribution of atmospheric mercury and its gas-particulate partition in the vicinity of a semiconductor manufacturing complex.

    PubMed

    Jen, Yi-Hsiu; Chen, Wei-Hsiang; Yuan, Chung-Shin; Ie, Iau-Ren; Hung, Chung-Hsuang

    2014-04-01

    This study investigated the tempospatial variation of atmospheric mercury and its gas-particulate partition in the vicinity of a semiconductor manufacturing complex, where a plenty of flat-monitor manufacturing plants using elemental mercury as a light-initiating medium to produce backlight fluorescence tubes and may fugitively emit mercury-containing air pollutants to the atmosphere. Atmospheric mercury speciation, concentration, and the partition of total gaseous mercury (TGM) and particulate mercury (Hgp) were measured at four sites surrounding the semiconductor manufacturing intensive district/complex. One-year field measurement showed that the seasonal averaged concentrations of TGM and Hgp were in the range of 3.30-6.89 and 0.06-0.14 ng/m(3), respectively, whereas the highest 24-h TGM and Hgp concentrations were 10.33 and 0.26 ng/m(3), respectively. Atmospheric mercury apportioned as 92.59-99.01 % TGM and 0.99-7.41 % Hgp. As a whole, the highest and lowest concentrations of TGM were observed in the winter and summer sampling periods, respectively, whereas the concentration of Hgp did not vary much seasonally. The highest TGM concentrations were always observed at the downwind sites, indicating that the semiconductor manufacturing complex was a hot spot of mercury emission source, which caused severe atmospheric mercury contamination over the investigation region.

  13. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell; Nettles, Mindy

    2015-01-01

    The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.

  14. Fabric Manufacturing

    NASA Technical Reports Server (NTRS)

    1986-01-01

    When rapid oscillation of blanket wearing looms at Chatham Manufacturing Company caused significant metal fatigue, the company turned to NC/STRC for a NASA data bank computer search. The search pinpointed tensile stress, and suggested a built-in residual compressive stress as a solution. "Shot peening," bombarding a part with a high velocity stream of very small shot to pound and compress the part's surface, was found to be the only practical method for creating compressive stress. The method has been successful and the company estimates its annual savings as a quarter million dollars.

  15. Retrieval of complex χ(2) parts for quantitative analysis of sum-frequency generation intensity spectra

    PubMed Central

    Hofmann, Matthias J.; Koelsch, Patrick

    2015-01-01

    Vibrational sum-frequency generation (SFG) spectroscopy has become an established technique for in situ surface analysis. While spectral recording procedures and hardware have been optimized, unique data analysis routines have yet to be established. The SFG intensity is related to probing geometries and properties of the system under investigation such as the absolute square of the second-order susceptibility χ(2)2. A conventional SFG intensity measurement does not grant access to the complex parts of χ(2) unless further assumptions have been made. It is therefore difficult, sometimes impossible, to establish a unique fitting solution for SFG intensity spectra. Recently, interferometric phase-sensitive SFG or heterodyne detection methods have been introduced to measure real and imaginary parts of χ(2) experimentally. Here, we demonstrate that iterative phase-matching between complex spectra retrieved from maximum entropy method analysis and fitting of intensity SFG spectra (iMEMfit) leads to a unique solution for the complex parts of χ(2) and enables quantitative analysis of SFG intensity spectra. A comparison between complex parts retrieved by iMEMfit applied to intensity spectra and phase sensitive experimental data shows excellent agreement between the two methods. PMID:26450297

  16. Breaking Barriers in Polymer Additive Manufacturing

    SciTech Connect

    Love, Lonnie J; Duty, Chad E; Post, Brian K; Lind, Randall F; Lloyd, Peter D; Kunc, Vlastimil; Peter, William H; Blue, Craig A

    2015-01-01

    Additive Manufacturing (AM) enables the creation of complex structures directly from a computer-aided design (CAD). There are limitations that prevent the technology from realizing its full potential. AM has been criticized for being slow and expensive with limited build size. Oak Ridge National Laboratory (ORNL) has developed a large scale AM system that improves upon each of these areas by more than an order of magnitude. The Big Area Additive Manufacturing (BAAM) system directly converts low cost pellets into a large, three-dimensional part at a rate exceeding 25 kg/h. By breaking these traditional barriers, it is possible for polymer AM to penetrate new manufacturing markets.

  17. Applying Best Practices to Military Commercial-Derivative Aircraft Engine Sustainment: Assessment of Using Parts Manufacturer Approval (PMA) Parts and Designated Engineering Representative (DER) Repairs

    DTIC Science & Technology

    2016-01-01

    representative (DER) repairs to decrease the cost of their aircraft engine maintenance. These parts and repairs are provided by third-party companies and...decrease the cost of their aircraft engine maintenance. These parts and repairs are provided by third-party companies and are certified by the Federal...CLS contract, the Air Force awarded a new contract to a non-OEM company . That contract, in effect when this research was conducted in late 2013

  18. Manufacturing technologies for photovoltaics and possible means of their development in Russia (Review). Part 1: General approach to the development of photoelectric converters and basic silicon technologies

    NASA Astrophysics Data System (ADS)

    Tarasenko, A. B.; Popel', O. S.

    2015-11-01

    The state and key tendencies of the development of basic technologies for manufacture of photoelectric converters (PECs) in the world are considered, and their advantages and disadvantages are discussed. The first part of the review gives short information on the development of photovoltaics in the world and planes of the development of solar power plants in Russia. Total power of photoelectric plants operating in various countries in 2015 exceeded 150 GW and increased in the last ten years with a rate of approximately 50% per year. Russia made important state decisions on the support of the development of renewable power engineering and developed mechanisms, which were attractive for business, on the stimulation of building of the network of solar power plants with a total power to 1.5 GW in the country to 2020. At the same time, the rigid demands are made with respect to the localization of the production of components of these plants that opens new abilities for the development of the domestic production of photovoltaics manufacture. Data on the efficiency of PECs of various types that are attained in the leading laboratories of the world are given. Particular emphasis has been placed on the consideration of basic silicon technologies of PEC manufacture, which had the widest commercial application. The basic methods for production of polycrystalline silicon and making single-crystal and multicrystal silicon are described. Fundamentals of making techniques for plates, PECs, and photoelectric modules based on single-crystal and polycrystalline silicon are considered. The second part will be devoted to modifications of manufacturing techniques for photoelectric converters, enhancement methods for contact structures, and recommendations of authors with respect to the choice of prospective technologies for the expansion of PEC production in Russia. It will involve formulations and substantiations of the most promising lines of the development of photoelectric

  19. Reduction of the Residual Porosity in Parts Manufactured by Selective Laser Melting Using Skywriting and High Focus Offset Strategies

    NASA Astrophysics Data System (ADS)

    Mancisidor, A. M.; Garciandia, F.; Sebastian, M. San; Álvarez, P.; Díaz, J.; Unanue, I.

    Residual porosity is observed in Inconel 718 samples manufactured by SLM within the optimum process window regardless the process parameters whose origin has been directly related to the starting and finishing of the laser scanning tracks. This porosity is concentrated preferentially in overlaps of fields (stripes and chessboard strategies) and borders. Location of pores has been demonstrated on long stripes, where laser stops only at borders, not in the hatch. It has been concluded that porosity is due to a high interaction time of the laser with powder which increases the energy in those points. Two different strategies have been validated to reduce this effect and thus diminish porosity. These strategies are the skywriting function, where the laser is switched off during the accelerating and decelerating portions and to increase the focus offset. The defocusing strategy is not as effective as the skywriting reducing the residual porosity.

  20. Analysis Of Hydro Formed Complex Shape Parts Using A Ductile Fracture Criterion

    NASA Astrophysics Data System (ADS)

    Palumbo, G.; Pinto, S.; Sorgente, D.; Tricarico, L.

    2004-06-01

    Nowadays the Hydro Forming techniques have been largely accepted by industries for the production of components characterized by complex shape, good surface quality, near net shape and low volume batch. In particular the Sheet Hydro Forming (SHF) process offers the possibility of no restrictions in the final shape of the part. This is the reason why a deeper investigation on the chance of using the SHF process for the production of complex shaped parts could be of great interest. In this work, the authors have considered as case of study a compound part which is made of a cylindrical region (the base) connected to a square part (the protrusion). Experimental and numerical activities have been performed. In particular, a commercial Finite Element (FE) code has been chosen to simulate the SHF process; a stress-strain based damage variable according to the Oh's criterion (derived from the Cockroft and Latham one) has been also used to evaluate the process limits. The Critical Damage Value (CDV) of the steel adopted for the analysis (AISI 304) has been set using experimental test results. The critical regions and the blank thinning have been analyzed for different geometrical configurations of the compound die cavity. Thus, a complexity shape factor has been defined.

  1. Programming and machining of complex parts based on CATIA solid modeling

    NASA Astrophysics Data System (ADS)

    Zhu, Xiurong

    2017-09-01

    The complex parts of the use of CATIA solid modeling programming and simulation processing design, elaborated in the field of CNC machining, programming and the importance of processing technology. In parts of the design process, first make a deep analysis on the principle, and then the size of the design, the size of each chain, connected to each other. After the use of backstepping and a variety of methods to calculate the final size of the parts. In the selection of parts materials, careful study, repeated testing, the final choice of 6061 aluminum alloy. According to the actual situation of the processing site, it is necessary to make a comprehensive consideration of various factors in the machining process. The simulation process should be based on the actual processing, not only pay attention to shape. It can be used as reference for machining.

  2. Selective laser melting additive manufactured Inconel 718 superalloy parts: High-temperature oxidation property and its mechanisms

    NASA Astrophysics Data System (ADS)

    Jia, Qingbo; Gu, Dongdong

    2014-10-01

    This work presented a comprehensive study of high-temperature oxidation behaviors and mechanisms of Selective laser melting (SLM) processed Inconel 718 superalloy parts using different methods including isothermal oxidation testing, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. The experimental results revealed that the oxidation process of the tested parts processed at a lower volumetric laser energy density experienced the severe spallation. On reasonably increasing the applied volumetric laser energy density, the oxidation kinetics of the as-produced parts obeyed a parabolic law, exhibiting the significantly improved oxidation resistance performance. The constitutional phases within the oxidation film were identified and the corresponding formation mechanisms were elucidated in detail according to the thermodynamic principles. The cross-sectional morphologies of oxidized Inconel 718 parts indicated that the oxidation microstructure mainly consisted of an external oxidation layer and an internal oxidation zone. The oxidation process was controlled by the outward diffusion of oxide forming elements and inward penetration of oxygen, by which the interaction mechanisms between the microstructures and internal oxidation zones were clarified. On the basis of the experimental results and theoretical analyses, the physical oxidation mechanisms were accordingly established to illustrate the oxidation behaviors of SLM-processed Inconel 718 parts at elevated operative temperatures.

  3. Systems and complexity thinking in general practice. Part 2: application in primary care research.

    PubMed

    Sturmberg, Joachim P

    2007-04-01

    Systems organise themselves upward toward larger wholes, and downward toward ever smaller parts. The upward view describes holism or emergence (complexity science view), the downward view reductionism or analysis (Newtonian science view). Both views provide valid and valuable information, one being contextual, the other specific. A systems and complexity view allows a simultaneous understanding of a phenomenon from different perspectives, providing the opportunity to identify potentially different outcomes from a single action. The findings from studies on prescribing antibiotics and continuity of care will demonstrate and draw attention to the potential of this approach for primary care research.

  4. Low temperature spectroscopy of proteins. Part II: Experiments with single protein complexes

    NASA Astrophysics Data System (ADS)

    Berlin, Yuri; Burin, Alexander; Friedrich, Josef; Köhler, Jürgen

    2007-03-01

    In this part of the review we describe aspects of the physics of proteins at low temperature as they are reflected in the spectra of individual pigment-protein complexes. The focus of this review is on the spectral diffusion of chromophores that are naturally embedded in light-harvesting complexes from purple bacteria. From the spectral diffusion behaviour we can deduce details about the organisation of the energy landscape of the protein and discuss the implications for the motions of the protein in conformational phase space.

  5. Technology improvement of chromium on steel parts electrodeposition using complex command and control systems

    NASA Astrophysics Data System (ADS)

    Stănescu, A.; Alecusan, A. M.; Dimitescu, A.

    2016-08-01

    The paper aims to provide improved technological process of electrochemical deposition of chromium on steel for decorative parts for corrosion protection but also to improve mechanical properties. The proposed idea is perfectly suited to be grafted onto existing electrodeposition installations, but it can be applied successfully in the development of new such plants. Complex command and control systems are designed to operate in high aggressive environmental conditions specific to these types of installations. The theoretical part completes the experimental results obtained on a laboratory facility.

  6. Numerical Prediction of Elastic Springback in An Automotive Complex Structural Part

    SciTech Connect

    Fratini, Livan; Ingarao, Giuseppe; Micari, Fabrizio

    2007-04-07

    The occurrence of elastic springback phenomena in sheet metal processing operations determines a relevant issue in the automotive industry. The routing and production of 3D complex parts for automotive applications is characterized by springback phenomena affecting the final geometry of the components both after the stamping operations and the trimming ones. In the present paper the full routing of a automotive structural part is considered and the springback phenomena occurring after forming and trimming are investigated through FE analyses utilizing an explicit implicit approach. In particular a sensitivity analysis on process parameter influencing springback occurrence is developed: blank holder force, draw bead penetration and blank shape.

  7. Numerical modeling of conjugate heat transfer on complex geometries with diagonal Cartesian method. Part 2: Applications

    SciTech Connect

    Carlson, K.D.; Lin, W.L.; Chen, C.J. |

    1999-05-01

    Part 1 of this study discusses the diagonal Cartesian method for temperature analysis. The application of this method to the analysis of flow and conjugate heat transfer in a compact heat exchanger is given in Part 2. In addition to a regular (i.e., Cartesian-oriented) fin arrangement, two complex fin arrangements are modeled using the diagonal Cartesian method. The pressure drop and heat transfer characteristics of the different configurations are compared. It is found that enhanced heat transfer and reduced pressure drop can be obtained with the modified fin arrangements for this compact heat exchanger.

  8. Manufacture and mechanical characterisation of high voltage insulation for superconducting busbars - (Part 1) Materials selection and development

    NASA Astrophysics Data System (ADS)

    Clayton, N.; Crouchen, M.; Devred, A.; Evans, D.; Gung, C.-Y.; Lathwell, I.

    2017-04-01

    It is planned that the high voltage electrical insulation on the ITER feeder busbars will consist of interleaved layers of epoxy resin pre-impregnated glass tapes ('pre-preg') and polyimide. In addition to its electrical insulation function, the busbar insulation must have adequate mechanical properties to sustain the loads imposed on it during ITER magnet operation. This paper reports an investigation into suitable materials to manufacture the high voltage insulation for the ITER superconducting busbars and pipework. An R&D programme was undertaken in order to identify suitable pre-preg and polyimide materials from a range of suppliers. Pre-preg materials were obtained from 3 suppliers and used with Kapton HN, to make mouldings using the desired insulation architecture. Two main processing routes for pre-pregs have been investigated, namely vacuum bag processing (out of autoclave processing) and processing using a material with a high coefficient of thermal expansion (silicone rubber), to apply the compaction pressure on the insulation. Insulation should have adequate mechanical properties to cope with the stresses induced by the operating environment and a low void content necessary in a high voltage application. The quality of the mouldings was assessed by mechanical testing at 77 K and by the measurement of the void content.

  9. Quality by design approach of a pharmaceutical gel manufacturing process, part 1: determination of the design space.

    PubMed

    Rosas, Juan G; Blanco, Marcel; González, Josep M; Alcalá, Manel

    2011-10-01

    This work was conducted in the framework of a quality by design project involving the production of a pharmaceutical gel. Preliminary work included the identification of the quality target product profiles (QTPPs) from historical values for previously manufactured batches, as well as the critical quality attributes for the process (viscosity and pH), which were used to construct a D-optimal experimental design. The experimental design comprised 13 gel batches, three of which were replicates at the domain center intended to assess the reproducibility of the target process. The viscosity and pH models established exhibited very high linearity and negligible lack of fit (LOF). Thus, R(2) was 0.996 for viscosity and 0.975 for pH, and LOF was 0.53 for the former parameter and 0.84 for the latter. The process proved reproducible at the domain center. Water content and temperature were the most influential factors for viscosity, and water content and acid neutralized fraction were the most influential factors for pH. A desirability function was used to find the best compromise to optimize the QTPPs. The body of information was used to identify and define the design space for the process. A model capable of combining the two response variables into a single one was constructed to facilitate monitoring of the process.

  10. Geochemistry of Mesozoic carbonatite complexes in the southwestern part of Greenland

    NASA Astrophysics Data System (ADS)

    Park, B.; Lee, J.; Lee, M.

    2013-12-01

    This is the results of geochemical analysis of carbonatite taken at the kimberlite and carbonatite complexes in Tikilusaag and Qaqarssuk located in the southwestern part of Greenland. These complexes have high grade of rare earth elements (REE), gold, olivine and diamond ore deposits. These kimberlite, lamprophyre and carbonatite are originated from complex carbonatitic and silicate magma. This kind of ultramafic alkaline complex is not common compared to other igneous bodies in the crust. Tikilusaag carbonatite complex in contains REE in calcite carbonatite. Carbonatite minerals are strontianite (SrCO3) and ancylite (SrCe(CO3)2(OH)H2O). Strontianite contains Ce and ancylite contains considerable amounts of La, Ce, Nd, respectively. Two minerals are the major components which have LREE in the complexes. Tikilussaaq carbonatite complex contain apatite which has maximum 200 micro meter in size and mostly euhedral. Most apatite crystals show compositional zoning under CL attached to SEM (JEOL, JSM-6610). This zoning reflects physiochemical condition of magma at the time of crystallization and the compositional difference of Ca, P, and F with the consideration of chemical composition of apatite. The apatite contain F instead of Cl, namely fluorine apatite. Compositional zoning reflect the difference of Ca and P according to CL image. Qaqarssuk carbonatite complex is consisted of several minerals containing Ba composition. Ba in calcite which is the major mineral of Ba carbonatite (Barytocalcite, CaBa(CO3)2) coexists with barite and Ba-Sr carbonatite. Fenitization near the complex is common process. Basic rocks formed during carbonatitization contain hornblendite predominantly, and high grade of fenitization produced albite-bearing granitic rocks in the area.

  11. Advanced Manufacturing

    DTIC Science & Technology

    2002-01-01

    manufacturing will enable the mass customization of products and create new market opportunities in the commercial sector. Flexible manufacturing ...the mass customization of products and create new market opportunities in the commercial sector. One of the most promising flexible manufacturing ... manufacturing , increase efficiency and productivity. Research in leading edge technologies continues to promise exciting new manufacturing methods

  12. Three-Dimensional Bioprinting: Toward the Era of Manufacturing Human Organs as Spare Parts for Healthcare and Medicine().

    PubMed

    Mir, Tanveer Ahmad; Nakamura, Makoto

    2017-06-01

    Three-dimensional (3D) printing technology has been used in industrial worlds for decades. Three-dimensional bioprinting has recently received an increasing attention across the globe among researchers, academicians, students, and even the ordinary people. This emerging technique has a great potential to engineer highly organized functional bioconstructs with complex geometries and tailored components for engineering bioartificial tissues/organs for widespread applications, including transplantation, therapeutic investigation, drug development, bioassay, and disease modeling. Although many specialized 3D printers have been developed and applied to print various types of 3D tissue constructs, bioprinting technologies still have several technical challenges, including high resolution distribution of cells, controlled deposition of bioinks, suitable bioink materials, maturation of cells, and effective vascularization and innervation within engineered complex structures. In this brief review, we discuss about bioprinting approach, current limitations, and possibility of future advancements for producing engineered bioconstructs and bioartificial organs with desired functionalities.

  13. Predicting the impact of quenching on mechanical properties of complex-shaped aluminum alloy parts

    SciTech Connect

    Hall, D.D.; Mudawar, I.

    1995-05-01

    The mechanical properties of age-hardenable aluminum alloy extrusions are critically dependent on the rate at which the part is cooled (quenched) after the forming operation. The present study continues the development of an intelligent spray quenching system, which selects the optimal nozzle configuration based on part geometry and composition such that the magnitude and uniformity of hardness (or yield strength) is maximized while residual stresses are minimized. The quenching of a complex-shaped part with multiple, overlapping sprays was successfully modeled using spray heat transfer correlations as boundary conditions within a finite element program. The hardness distribution of the heat-treated part was accurately predicted using the quench factor technique; that is, the metallurgical transformations that occur within the part were linked to the cooling history predicted by the finite element program. This study represents the first successful attempt at systematically predicting the mechanical properties of a quenched metallic part from knowledge of only the spray boundary conditions. 26 refs., 8 figs., 1 tab.

  14. Density of Additively-Manufactured, 316L SS Parts Using Laser Powder-Bed Fusion at Powers Up to 400W

    SciTech Connect

    Kamath, Chandrika; El-dasher, Bassem; Gallegos, Gilbert F.; King, Wayne E.; Sisto, Aaron

    2013-12-19

    Selective laser melting is a powder-based, additive-manufacturing process where a threedimensional part is produced, layer by layer, by using a high-energy laser beam to fuse the metallic powder particles. A particular challenge in this process is the selection of appropriate process parameters that result in parts with desired properties. In this study, we describe an approach to selecting parameters for high density (>99%) parts using 316L stainless steel. Though there has been significant success in achieving near-full density for 316L parts, this work has been limited to laser powers <225W. We discuss how we can exploit prior knowledge, design of computational experiments using a simple model of laser melting, and single-track experiments to determine the process parameters for use at laser powers up to 400W. Our results show that, at higher power values, there is a large range of scan speeds over which the relative density remains >99%, with the density reducing rapidly at high speeds due to insufficient melting, and less rapidly at low speeds due to the effect of voids created as the process enters keyhole mode.

  15. Solving a mathematical model integrating unequal-area facilities layout and part scheduling in a cellular manufacturing system by a genetic algorithm.

    PubMed

    Ebrahimi, Ahmad; Kia, Reza; Komijan, Alireza Rashidi

    2016-01-01

    In this article, a novel integrated mixed-integer nonlinear programming model is presented for designing a cellular manufacturing system (CMS) considering machine layout and part scheduling problems simultaneously as interrelated decisions. The integrated CMS model is formulated to incorporate several design features including part due date, material handling time, operation sequence, processing time, an intra-cell layout of unequal-area facilities, and part scheduling. The objective function is to minimize makespan, tardiness penalties, and material handling costs of inter-cell and intra-cell movements. Two numerical examples are solved by the Lingo software to illustrate the results obtained by the incorporated features. In order to assess the effects and importance of integration of machine layout and part scheduling in designing a CMS, two approaches, sequentially and concurrent are investigated and the improvement resulted from a concurrent approach is revealed. Also, due to the NP-hardness of the integrated model, an efficient genetic algorithm is designed. As a consequence, computational results of this study indicate that the best solutions found by GA are better than the solutions found by B&B in much less time for both sequential and concurrent approaches. Moreover, the comparisons between the objective function values (OFVs) obtained by sequential and concurrent approaches demonstrate that the OFV improvement is averagely around 17 % by GA and 14 % by B&B.

  16. Challenges and Recent Developments in Hearing Aids: Part II. Feedback and Occlusion Effect Reduction Strategies, Laser Shell Manufacturing Processes, and Other Signal Processing Technologies

    PubMed Central

    Chung, King

    2004-01-01

    This is the second part of a review on the challenges and recent developments in hearing aids. Feedback and the occlusion effect pose great challenges in hearing aid design and usage. Yet, conventional solutions to feedback and the occlusion effect often create a dilemma: the solution to one often leads to the other. This review discusses the advanced signal processing strategies to reduce feedback and some new approaches to reduce the occlusion effect. Specifically, the causes of three types of feedback (acoustic, mechanical, and electromagnetic) are discussed. The strategies currently used to reduce acoustic feedback (i.e., adaptive feedback reduction algorithms using adaptive gain reduction, notch filtering, and phase cancellation strategies) and the design of new receivers that are built to reduce mechanical and electromagnetic feedback are explained. In addition, various new strategies (i.e., redesigned sound delivery devices and receiver-in-the-ear-canal hearing aid configuration) to reduce the occlusion effect are reviewed. Many manufacturers have recently adopted laser shell-manufacturing technologies to overcome problems associated with manufacturing custom hearing aid shells. The mechanisms of selected laser sintering and stereo lithographic apparatus and the properties of custom shells produced by these two processes are reviewed. Further, various new developments in hearing aid transducers, telecoils, channel-free amplification, open-platform programming options, rechargeable hearing aids, ear-level frequency modulated (FM) receivers, wireless Bluetooth FM systems, and wireless programming options are briefly explained and discussed. Finally, the applications of advanced hearing aid technologies to enhance other devices such as cochlear implants, hearing protectors, and cellular phones are discussed. PMID:15735871

  17. Challenges and recent developments in hearing aids. Part II. Feedback and occlusion effect reduction strategies, laser shell manufacturing processes, and other signal processing technologies.

    PubMed

    Chung, King

    2004-01-01

    This is the second part of a review on the challenges and recent developments in hearing aids. Feedback and the occlusion effect pose great challenges in hearing aid design and usage. Yet, conventional solutions to feedback and the occlusion effect often create a dilemma: the solution to one often leads to the other. This review discusses the advanced signal processing strategies to reduce feedback and some new approaches to reduce the occlusion effect. Specifically, the causes of three types of feedback (acoustic, mechanical, and electromagnetic) are discussed. The strategies currently used to reduce acoustic feedback (i.e., adaptive feedback reduction algorithms using adaptive gain reduction, notch filtering, and phase cancellation strategies) and the design of new receivers that are built to reduce mechanical and electromagnetic feedback are explained. In addition, various new strategies (i.e., redesigned sound delivery devices and receiver-in-the-ear-canal hearing aid configuration) to reduce the occlusion effect are reviewed. Many manufacturers have recently adopted laser shell-manufacturing technologies to overcome problems associated with manufacturing custom hearing aid shells. The mechanisms of selected laser sintering and stereo lithographic apparatus and the properties of custom shells produced by these two processes are reviewed. Further, various new developments in hearing aid transducers, telecoils, channel-free amplification, open-platform programming options, rechargeable hearing aids, ear-level frequency modulated (FM) receivers, wireless Bluetooth FM systems, and wireless programming options are briefly explained and discussed. Finally, the applications of advanced hearing aid technologies to enhance other devices such as cochlear implants, hearing protectors, and cellular phones are discussed.

  18. Advancements in asphere manufacturing

    NASA Astrophysics Data System (ADS)

    Fess, Edward; DeFisher, Scott

    2013-09-01

    Aspheric optics can pose as a challenge to the manufacturing community due to the surface shape and level of quality required. The aspheric surface may have inflection points that limit the usable tool size during manufacturing, or there may be a stringent tolerance on the slope for mid-spatial frequencies that may be problematic for sub-aperture finishing techniques to achieve. As aspheres become more commonplace in the optics community, requests for more complex aspheres have risen. OptiPro Systems has been developing technologies to create a robust aspheric manufacturing process. Contour deterministic microgrinding is performed on a Pro80 or eSX platform. These platforms utilize software and the latest advancements in machine motion to accurately contour the aspheric shape. Then the optics are finished using UltraForm Finishing (UFF), which is a sub-aperture polishing process. This process has the capability to adjust the diameter and compliance of the polishing lap to allow for finishing over a wide range of shapes and conditions. Finally, the aspheric surfaces are qualified using an OptiTrace contact profilometer, or an UltraSurf non-contact 3D surface scanner. The OptiTrace uses a stylus to scan across the surface of the part, and the UltraSurf utilizes several different optical pens to scan the surface and generate a topographical map of the surface under test. This presentation will focus on the challenges for asphere manufacturing, how OptiPro has implemented its technologies to combat these challenges, and provide surface data for analysis.

  19. Arabidopsis chloroplast lipid transport protein TGD2 disrupts membranes and is part of a large complex.

    PubMed

    Roston, Rebecca; Gao, Jinpeng; Xu, Changcheng; Benning, Christoph

    2011-06-01

    In most plants the assembly of the photosynthetic thylakoid membrane requires lipid precursors synthesized at the endoplasmic reticulum (ER). Thus, the transport of lipids from the ER to the chloroplast is essential for biogenesis of the thylakoids. TGD2 is one of four proteins in Arabidopsis required for lipid import into the chloroplast, and was found to bind phosphatidic acid in vitro. However, the significance of phosphatidic acid binding for the function of TGD2 in vivo and TGD2 interaction with membranes remained unclear. Developing three functional assays probing how TGD2 affects lipid bilayers in vitro, we show that it perturbs membranes to the point of fusion, causes liposome leakage and redistributes lipids in the bilayer. By identifying and characterizing five new mutant alleles, we demonstrate that these functions are impaired in specific mutants with lipid phenotypes in vivo. At the structural level, we show that TGD2 is part of a protein complex larger than 500 kDa, the formation of which is disrupted in two mutant alleles, indicative of the biological relevance of this TGD2-containing complex. Based on the data presented, we propose that TGD2, as part of a larger complex, forms a lipid transport conduit between the inner and outer chloroplast envelope membranes, with its N terminus anchored in the inner membrane and its C terminus binding phosphatidic acid in the outer membrane.

  20. Circularly-symmetric complex normal ratio distribution for scalar transmissibility functions. Part I: Fundamentals

    NASA Astrophysics Data System (ADS)

    Yan, Wang-Ji; Ren, Wei-Xin

    2016-12-01

    Recent advances in signal processing and structural dynamics have spurred the adoption of transmissibility functions in academia and industry alike. Due to the inherent randomness of measurement and variability of environmental conditions, uncertainty impacts its applications. This study is focused on statistical inference for raw scalar transmissibility functions modeled as complex ratio random variables. The goal is achieved through companion papers. This paper (Part I) is dedicated to dealing with a formal mathematical proof. New theorems on multivariate circularly-symmetric complex normal ratio distribution are proved on the basis of principle of probabilistic transformation of continuous random vectors. The closed-form distributional formulas for multivariate ratios of correlated circularly-symmetric complex normal random variables are analytically derived. Afterwards, several properties are deduced as corollaries and lemmas to the new theorems. Monte Carlo simulation (MCS) is utilized to verify the accuracy of some representative cases. This work lays the mathematical groundwork to find probabilistic models for raw scalar transmissibility functions, which are to be expounded in detail in Part II of this study.

  1. Phylogenetic analysis indicates that Culicoides dewulfi should not be considered part of the Culicoides obsoletus complex.

    PubMed

    Schwenkenbecher, J M; Mordue, A J; Piertney, S B

    2009-08-01

    Analysis of DNA sequence data has proven invaluable for defining the relationships among taxa, as well as resolving their evolutionary histories. Here, we analyzed DNA sequence variation of one mitochondrial gene (COI) and two nuclear regions (ITSI and II) to clarify the phylogenetic position of Culicoides dewulfi, a midge species widely spread in Europe and a suspected vector for bluetongue virus. Various authors have described C. dewulfi either as part of the Culicoides obsoletus sensu lato complex or as a separate taxonomic group. A maximum likelihood phylogeny, based upon an optimal model of sequence evolution, placed C. dewulfi outwith the C. obsoletus s.l. complex. Shimodaira-Hasegawa test highlighted that this topology was significantly more likely than any topology that placed C. dewulfi anywhere else in the phylogeny. As such, C. dewulfi should not be considered part of the C. obsoletus s.l. complex and instead be treated as a separate group, phylogenetically close to the classical Old World vector C. imicola.

  2. Methodology for the analysis of the impact of the forging parameters on metallurgy and mechanical properties in case of solid electromagnetic manufactured parts

    NASA Astrophysics Data System (ADS)

    Borsenberger, Marc; Baudouin, Cyrille; Benabou, Abdelkader; Bigot, Régis; Faverolle, Pierre; Mipo, Jean-Claude

    2016-10-01

    For electromagnetic applications the microstructure and the final mechanical state are key parameters. These can be obtained by a judicious choice of the material, a particular design like laminated steels but also through the determination and the mastering of the fabrication process. This present paper contains a brief introduction to electromagnetics and the qualification of a "good" electromagnetic quality. Then the article highlights, based on literature, first the influence of the process parameters on microstructure, mechanical state and secondly the impact these properties themselves on magnetic properties. Eventually, a methodology is proposed in order to predict the functional behavior of a part in its final system, taking into account its manufacturing process. The academic study case presented here can illustrate such a methodology. This kind of methodology includes in particular experimental tests, physical analysis and numerical modeling.

  3. Safety and quality of food contact materials. Part 1: evaluation of analytical strategies to introduce migration testing into good manufacturing practice.

    PubMed

    Feigenbaum, A; Scholler, D; Bouquant, J; Brigot, G; Ferrier, D; Franzl, R; Lillemarktt, L; Riquet, A M; Petersen, J H; van Lierop, B; Yagoubi, N

    2002-02-01

    The results of a research project (EU AIR Research Programme CT94-1025) aimed to introduce control of migration into good manufacturing practice and into enforcement work are reported. Representative polymer classes were defined on the basis of chemical structure, technological function, migration behaviour and market share. These classes were characterized by analytical methods. Analytical techniques were investigated for identification of potential migrants. High-temperature gas chromatography was shown to be a powerful method and 1H-magnetic resonance provided a convenient fingerprint of plastic materials. Volatile compounds were characterized by headspace techniques, where it was shown to be essential to differentiate volatile compounds desorbed from those generated during the thermal desorption itself. For metal trace analysis, microwave mineralization followed by atomic absorption was employed. These different techniques were introduced into a systematic testing scheme that is envisaged as being suitable both for industrial control and for enforcement laboratories. Guidelines will be proposed in the second part of this paper.

  4. Sustainability Characterization for Additive Manufacturing

    PubMed Central

    Mani, Mahesh; Lyons, Kevin W; Gupta, SK

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts. PMID:26601038

  5. Agile manufacturing prototyping system (AMPS)

    SciTech Connect

    Garcia, P.

    1998-05-09

    The Agile Manufacturing Prototyping System (AMPS) is being integrated at Sandia National Laboratories. AMPS consists of state of the industry flexible manufacturing hardware and software enhanced with Sandia advancements in sensor and model based control; automated programming, assembly and task planning; flexible fixturing; and automated reconfiguration technology. AMPS is focused on the agile production of complex electromechanical parts. It currently includes 7 robots (4 Adept One, 2 Adept 505, 1 Staubli RX90), conveyance equipment, and a collection of process equipment to form a flexible production line capable of assembling a wide range of electromechanical products. This system became operational in September 1995. Additional smart manufacturing processes will be integrated in the future. An automated spray cleaning workcell capable of handling alcohol and similar solvents was added in 1996 as well as parts cleaning and encapsulation equipment, automated deburring, and automated vision inspection stations. Plans for 1997 and out years include adding manufacturing processes for the rapid prototyping of electronic components such as soldering, paste dispensing and pick-and-place hardware.

  6. Sustainability Characterization for Additive Manufacturing.

    PubMed

    Mani, Mahesh; Lyons, Kevin W; Gupta, S K

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts.

  7. Vatless manufacturing of low-moisture part-skim mozzarella cheese from highly concentrated skim milk microfiltration retentates.

    PubMed

    Ardisson-Korat, A V; Rizvi, S S H

    2004-11-01

    Low-moisture, part-skim (LMPS) Mozzarella cheeses were made from concentration factor (CF) 6, 7, 8, and 9, pH 6.0 skim milk microfiltration (MF) retentates using a vatless cheese-making process. The compositional and proteolytic effects of cheese made from 4 CF retentates were evaluated as well as their functional properties (meltability and stretchability). Pasteurized skim milk was microfiltered using a 0.1-microm ceramic membrane at 50 degrees C to a retentate CF of 6, 7, 8, and 9. An appropriate amount of cream was added to achieve a constant casein:fat ratio in the 4 cheesemilks. The ratio of rennet to casein was also kept constant in the 4 cheesemilks. The compositional characteristics of the cheeses made from MF retentates did not vary with retentate CF and were within the legal range for LMPS Mozzarella cheese. The observed reduction in whey drained was greater than 90% in the cheese making from the 4 CF retentates studied. The development of proteolytic and functional characteristics was slower in the MF cheeses than in the commercial samples that were used for comparison due to the absence of starter culture, the lower level of rennet used, and the inhibition of cheese proteolysis due to the inhibitory effect of residual whey proteins retained in the MF retentates, particularly high molecular weight fractions.

  8. Applications of Metal Additive Manufacturing in Veterinary Orthopedic Surgery

    NASA Astrophysics Data System (ADS)

    Harrysson, Ola L. A.; Marcellin-Little, Denis J.; Horn, Timothy J.

    2015-03-01

    Veterinary medicine has undergone a rapid increase in specialization over the last three decades. Veterinarians now routinely perform joint replacement, neurosurgery, limb-sparing surgery, interventional radiology, radiation therapy, and other complex medical procedures. Many procedures involve advanced imaging and surgical planning. Evidence-based medicine has also become part of the modus operandi of veterinary clinicians. Modeling and additive manufacturing can provide individualized or customized therapeutic solutions to support the management of companion animals with complex medical problems. The use of metal additive manufacturing is increasing in veterinary orthopedic surgery. This review describes and discusses current and potential applications of metal additive manufacturing in veterinary orthopedic surgery.

  9. Manufacturing Success

    ERIC Educational Resources Information Center

    Reese, Susan

    2007-01-01

    According to the National Association of Manufacturers (NAM), "manufacturing is the engine that drives American prosperity". When NAM and its research and education arm, The Manufacturing Institute, released the handbook, "The Facts About Modern Manufacturing," in October 2006, NAM President John Engler noted, that…

  10. Manufacturing Success

    ERIC Educational Resources Information Center

    Reese, Susan

    2007-01-01

    According to the National Association of Manufacturers (NAM), "manufacturing is the engine that drives American prosperity". When NAM and its research and education arm, The Manufacturing Institute, released the handbook, "The Facts About Modern Manufacturing," in October 2006, NAM President John Engler noted, that…

  11. Method of producing complex aluminum alloy parts of high temper, and products thereof

    NASA Technical Reports Server (NTRS)

    Wilson, I. J. (Inventor)

    1978-01-01

    Fully annealed aluminum sheet is first stretch formed to the complex, doubly compound shape of a previously prepared forming die, e.g., an ejection seat blowout panel of a shuttlecraft. The part is then marked with a series of grid lines for monitoring later elongation. Thereafter it is solution heat treated and refrigerated to retard hardening. While still soft, it is stretched a second time on the same die to induce a modicum of work hardening, after which it is aged to the desired stress corrosion resistant temper, preferably the T8 level, to provide the desired hardness and stress corrosion resistance.

  12. 40 CFR 60.4247 - What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... provisions apply to me if I am a manufacturer of stationary SI internal combustion engines or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Mobile Source Provisions... SI internal combustion engines or a manufacturer of equipment containing such engines?...

  13. 40 CFR 60.4247 - What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... provisions apply to me if I am a manufacturer of stationary SI internal combustion engines or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Mobile Source Provisions... SI internal combustion engines or a manufacturer of equipment containing such engines?...

  14. 40 CFR 60.4247 - What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... provisions apply to me if I am a manufacturer of stationary SI internal combustion engines or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Mobile Source Provisions... SI internal combustion engines or a manufacturer of equipment containing such engines?...

  15. 40 CFR 60.4247 - What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... provisions apply to me if I am a manufacturer of stationary SI internal combustion engines or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Mobile Source Provisions... SI internal combustion engines or a manufacturer of equipment containing such engines?...

  16. 40 CFR 60.4247 - What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provisions apply to me if I am a manufacturer of stationary SI internal combustion engines or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Mobile Source Provisions... SI internal combustion engines or a manufacturer of equipment containing such engines?...

  17. The Clean Energy Manufacturing Initiative: Dissolving Silos

    SciTech Connect

    Danielson, David; Orr, Lynn; Sarkar, Reuben; Zayas, Jose; Johnson, Mark

    2016-06-15

    DOE’s work is closely tied to manufacturing because manufacturing is an important part of technology innovation and commercialization. Find out how DOE – through the Clean Energy Manufacturing Initiative – is helping America lead the clean energy revolution.

  18. The Salience of Complex Words and Their Parts: Which Comes First?

    PubMed

    Giraudo, Hélène; Dal Maso, Serena

    2016-01-01

    This paper deals with the impact of the salience of complex words and their constituent parts on lexical access. While almost 40 years of psycholinguistic studies have focused on the relevance of morphological structure for word recognition, little attention has been devoted to the relationship between the word as a whole unit and its constituent morphemes. Depending on the theoretical approach adopted, complex words have been seen either in the light of their paradigmatic environment (i.e., from a paradigmatic view), or in terms of their internal structure (i.e., from a syntagmatic view). These two competing views have strongly determined the choice of experimental factors manipulated in studies on morphological processing (mainly different lexical frequencies, word/non-word structure, and morphological family size). Moreover, work on various kinds of more or less segmentable items (from genuinely morphologically complex words like hunter to words exhibiting only a surface morphological structure like corner and irregular forms like thieves) has given rise to two competing hypotheses on the cognitive role of morphology. The first hypothesis claims that morphology organizes whole words into morphological families and series, while the second sets morphology at a pre-lexical level, with morphemes standing as access units to the mental lexicon. The present paper examines more deeply the notion of morphological salience and its implications for theories and models of morphological processing.

  19. On the source inversion of fugitive surface layer releases. Part II. Complex sources

    NASA Astrophysics Data System (ADS)

    Sanfélix, V.; Escrig, A.; López-Lilao, A.; Celades, I.; Monfort, E.

    2017-06-01

    The experimental measurement of fugitive emissions of particulate matter entails inherent complexity because they are usually discontinuous, of short duration, may be mobile, and are affected by weather conditions. Owing to this complexity, instead of experimental measurements, emission factors are used to inventory such emissions. Unfortunately, emission factor datasets are still very limited at present and are insufficient to identify problematic operations and appropriately select control measures. To extend these datasets, a source inversion methodology (described in Part I of this work) was applied to field campaigns in which operation-specific fugitive particulate matter emission factors were determined for several complex fugitive sources, some of which were mobile. Mobile sources were treated as a superposition of instantaneous sources. The experimental campaigns were conducted at ports (bulk solids terminals), aggregate quarries, and cement factories, encompassing powder handling operations and vehicle circulation on paved and unpaved roads. Emission factors were derived for the operations and materials involved in these scenarios and compared with those available in the emission factor compilations. Significant differences were observed between the emission factors obtained in the studied handling operations. These differences call into question the use of generic emission factors and highlight the need for more detailed studies in this field.

  20. The Salience of Complex Words and Their Parts: Which Comes First?

    PubMed Central

    Giraudo, Hélène; Dal Maso, Serena

    2016-01-01

    This paper deals with the impact of the salience of complex words and their constituent parts on lexical access. While almost 40 years of psycholinguistic studies have focused on the relevance of morphological structure for word recognition, little attention has been devoted to the relationship between the word as a whole unit and its constituent morphemes. Depending on the theoretical approach adopted, complex words have been seen either in the light of their paradigmatic environment (i.e., from a paradigmatic view), or in terms of their internal structure (i.e., from a syntagmatic view). These two competing views have strongly determined the choice of experimental factors manipulated in studies on morphological processing (mainly different lexical frequencies, word/non-word structure, and morphological family size). Moreover, work on various kinds of more or less segmentable items (from genuinely morphologically complex words like hunter to words exhibiting only a surface morphological structure like corner and irregular forms like thieves) has given rise to two competing hypotheses on the cognitive role of morphology. The first hypothesis claims that morphology organizes whole words into morphological families and series, while the second sets morphology at a pre-lexical level, with morphemes standing as access units to the mental lexicon. The present paper examines more deeply the notion of morphological salience and its implications for theories and models of morphological processing. PMID:27917133

  1. Mental rotation of letters, body parts and complex scenes: separate or common mechanisms?

    PubMed

    Dalecki, Marc; Hoffmann, Uwe; Bock, Otmar

    2012-10-01

    This study compares mental rotation with three stimuli: letters, body parts and complex scenes. Twenty-four subjects saw letters and judged whether they were mirror-reversed or not (task LETTER), saw pictures of a hand and indicated whether it was a right or a left one (task HAND), and saw drawings of a person at a table on which a weapon and a rose laid and decided whether the weapon was to the person's right or left (task SCENE). Stimuli were presented in canonical orientation or rotated by up to 180°. Our analyses focused on intra-subject correlations between reaction times of the different tasks. We found that reaction times for stimuli in canonical orientation co-varied in HAND and LETTER, the increase of reaction times with increasing object rotation co-varied in HAND and SCENE, and reaction times for 180° rotations co-varied between all tasks. We suggest that basic processes like visual perception and decision-making are distinct for scenes versus letters and body parts, that the mechanism for mental rotation of letters is distinct from that for mental self- and body part rotation, and suggest an extra mechanism for 180° rotations that shared among all tasks. These findings confirm and expand hypotheses about mental rotation that were based on comparisons of between-subject means. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Compartmental models for apical efflux by P-glycoprotein. Part 1. Evaluation of model complexity

    PubMed Central

    Nagar, Swati; Tucker, Jalia; Weiskircher, Erica A.; Bhoopathy, Siddhartha; Hidalgo, Ismael J.; Korzekwa, Ken

    2013-01-01

    Purpose With the goal of quantifying P-gp transport kinetics, Part 1 of these manuscripts evaluates different compartmental models and Part 2 applies these models to kinetic data. Methods Models were developed to simulate the effect of apical efflux transporters on intracellular concentrations of six drugs. The effect of experimental variability on model predictions was evaluated. Several models were evaluated, and characteristics including membrane configuration, lipid content, and apical surface area (asa) were varied. Results Passive permeabilities from MDCK-MDR1 cells in the presence of cyclosporine gave lower model errors than from MDCK control cells. Consistent with the results in Part 2, model configuration had little impact on calculated model errors. The 5-compartment model was the simplest model that reproduced experimental lag times. Lipid content and asa had minimal effect on model errors, predicted lag times, and intracellular concentrations. Including endogenous basolateral uptake activity can decrease model errors. Models with and without explicit membrane barriers differed markedly in their predicted intracellular concentrations for basolateral drug exposure. Single point data resulted in clearances similar to time course data. Conclusions Compartmental models are useful to evaluate the impact of efflux transporters on intracellular concentrations. Whereas a 3-compartment model may be sufficient to predict the impact of transporters that efflux drugs from the cell, a 5-compartment model with explicit membranes may be required to predict intracellular concentrations when efflux occurs from the membrane. More complex models including additional compartments may be unnecessary. PMID:24019023

  3. Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Mcbride, Bonnie J.

    1994-01-01

    This report presents the latest in a number of versions of chemical equilibrium and applications programs developed at the NASA Lewis Research Center over more than 40 years. These programs have changed over the years to include additional features and improved calculation techniques and to take advantage of constantly improving computer capabilities. The minimization-of-free-energy approach to chemical equilibrium calculations has been used in all versions of the program since 1967. The two principal purposes of this report are presented in two parts. The first purpose, which is accomplished here in part 1, is to present in detail a number of topics of general interest in complex equilibrium calculations. These topics include mathematical analyses and techniques for obtaining chemical equilibrium; formulas for obtaining thermodynamic and transport mixture properties and thermodynamic derivatives; criteria for inclusion of condensed phases; calculations at a triple point; inclusion of ionized species; and various applications, such as constant-pressure or constant-volume combustion, rocket performance based on either a finite- or infinite-chamber-area model, shock wave calculations, and Chapman-Jouguet detonations. The second purpose of this report, to facilitate the use of the computer code, is accomplished in part 2, entitled 'Users Manual and Program Description'. Various aspects of the computer code are discussed, and a number of examples are given to illustrate its versatility.

  4. Misho mafic complex - A part of paleotethyan oceanic crust or a magmatism in continental rift?

    NASA Astrophysics Data System (ADS)

    Azimzadeh, Zohreh; Jahangiri, Ahmad; Saccani, Emilio; Dilek, Yildirim

    2013-04-01

    Misho Mafic Complex (NW Iran) represents a significant component of the West Cimmerian domain in Paleo-Tethys. The Misho Mafic Complex (MMC) consists of gabbro (mainly) and norıte,olivine gabbro, anorthosite and diorite with the east- west sereight. MMC has ıntrussıved ın Kahar sedımrtery Infta- Cambrıan rocks, crosscut by abundant basaltic dykes and the overlying basaltic sheeted dyke complex. Kahar sedimentary rocks are representing the northern margin of Gondwana. Misho mafic complex are covered by Permian sedimentary rocks. The gabbros and basaltic dykes have MORB affinities. MMC formed as a product of interactions between a depleted MORB-type asthenosphere and plume-type material. Mafic rocks represent an early Carboniferous magmatic event developed during the continental break-up of the northern edge of Gondwanaland that led to the opening of Paleotethys. Alternatively, these magmas may have been emplaced into the continental crust at the continental margin soon after the oceanic crust was formed (that is the oceanic crust was still narrow). There is no data for discriminating between these two hypotheses. In first hypothesis MMC is a part of ophiolites related to paleotethyan oceanic crust and the rocks that were above this crustal level should have necessarily been eroded. In another hypothesis Misho complex represents an aborted rift in a triple junction. Above a mantle plume, the continental crust breaks along three directions at 120 degrees. But, soon after, the extension proceeds along two of these three direction. Between them is formed the oceanic crust. The continental extension along the third direction is aborted. Here no oceanic crust if formed and there is only rifted, thinned continental crust. But, also in the aborted branch MORB magmatism can occur for short time. In this hypothesis, the Misho complex was never associated with oceanic crust, but was anyway associated with the opening of the Paleotethys. This magmatism was originally

  5. Selective Laser Melting of Hot Gas Turbine Components: Materials, Design and Manufacturing Aspects

    NASA Astrophysics Data System (ADS)

    Goutianos, Stergios

    2017-07-01

    Selective Laser Melting (SLM) allows the design and manufacturing of novel parts and structures with improved performance e.g. by incorporating complex and more efficient cooling schemes in hot gas turbine parts. In contrast to conventional manufacturing of removing material, with SLM parts are built additively to nearly net shape. This allows the fabrication of arbitrary complex geometries that cannot be made by conventional manufacturing techniques. However, despite the powerful capabilities of SLM, a number of issues (e.g. part orientation, support structures, internal stresses), have to be considered in order to manufacture cost-effective and high quality parts at an industrial scale. These issues are discussed in the present work from an engineering point of view with the aim to provide simple quidelines to produce high quality SLM parts.

  6. Magmatic complexes of the Urals as suspect parts of Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Puchkov, Victor

    2016-10-01

    Petrogenetic, geochemical studies and isotope age determinations of flood basalts, dolerites, trachybasalts, picrite-basalts, rapakivi granites, layered mafic-ultramafic intrusions and also alkaline and carbonatite magmatic complexes of the Urals permit to put forward a preliminary list of objects - “candidates” at being attributed to Large Igneous Provinces (LIPs) - manifestations of superplume activity. Their petro-geochemical properties distinguish them from spreading and subduction types, and are closer to epicontinental rift zones. They are characterized by wide areas of development and very short periods of activity. In the Southern Urals near the base of the Lower Riphean (Uppermost Paleoproterozoic and Lower Mesoproterozoic) there are volcanic deposits of the Navysh Subformation, represented by trachybasalts. The age of the unit was determined as 1752 ± llMa. Volcanic rocks of the age level of 1750-1780 Ma are developed not only in some other places of Baltica, but also in the Northern Africa, Siberia, Laurentia (parts of Nuna supercontinent). Therefore, they may belong to a LIP. Higher up the section of the Riphean, at the base of the Middle Riphean (Mid-Mesoproterozoic), rhyolites of the basalt-rhyolite Mashak Formation were dated as 1380-1385 Ma. The same ages have also rapakivi granites, layered gabbro, carbonatites and dolerite dykes developed in the Southern Urals and encountered in boreholes of the East European platform; magmatic rocks of the same age are traced to Laurentia and Siberian cratons and date the beginning of Nuna supercontinent break-up. Less confidently we may speak of the younger Neoproterozoic magmatic complexes of the Southern Urals as LIPs, dated as ca. 720 Ma and 680 Ma (Arshinian and Kiryabinka complexes); they need a further study. The next in the succession of magmatic episodes, represented by subalkaline volcanics, is connected with a rift process that started at ca. 490 Ma, that led to oceanic spreading and formation of

  7. Polymetamorphic complexes in the eastern parts of the Balkan Peninsula: 600 Ma of geodynamic evolution

    NASA Astrophysics Data System (ADS)

    Zagorchev, I.

    2007-12-01

    Polymetamorphic amphibolite-facies complexes are exposed in the eastern and central parts of the Balkan Peninsula in different Alpine tectonic zones and under different Cadomian to Alpine collisional and exhumation histories and regimes. All complexes consist mostly of biotite and two-mica gneisses and schists, and amphibolites. Strong Cadomian overprint led to intimate mixing (tectonometamorphic amalgamation) of crustal and mantle (and/or oceanic crust)-derived (serpentinized ultramafics, eclogites) products. The pre-Cadomian complex in Central Sredna-gora Mountains evolved through Cadomian collision with c. 617 Ma granites, Hercynian 340 to 250 Ma granitoids, Late Permian exhumation, and Triassic-Jurassic sedimentation followed by Mid-Cretaceous exhumation. P-T conditions never reached amphibolite facies in post-Cadomian times except for some shear zones. The pre-Cadomian amphibolite-facies complex in Sakar Mt. was intruded by c. 500 Ma old granites, deeply eroded in late Permian time, and covered with depositional contact by Triassic terrestrial and marine sediments. Both basement and Triassic cover suffered folding and amphibolite-facies metamorphism (c. 150 Ma BP) followed by exhumation. Included in the Srednogorie Late Cretaceous volcanic arc as crystalline cores, these complexes have been affected by latest Cretaceous exhumation. Amphibolite-facies polymetamorphic cores (Ograzhdenian complex) within the Serbo-Macedonian massif and other units in SW Bulgaria and the adjacent countries were subjected to intense Cadomian (560 - 520 Ma BP) synmetamorphic collision and granite activity. Some units suffered Cadomian collision under greenschist-facies with a Neoproterozoic to Cambrian diabase-phyllitoid complex or have been exhumed and directly covered by Cambrian (followed by Cambrian limestones) or Tremadocian marine sandstones. After Palaeozoic exhumation, their structure was sealed by Permian, Triassic and Jurassic terrestrial and marine sediments, and after

  8. The Bemisia tabaci species complex: additions from different parts of the world.

    PubMed

    Firdaus, Syarifin; Vosman, Ben; Hidayati, Nurul; Jaya Supena, Ence Darmo; Visser, Richard G F; van Heusden, Adriaan Willem

    2013-12-01

    Bemisia tabaci is one of the most threatening pests in many crops. We sequenced part of the mitochondrial cytochrome oxidase I gene from fifty whitefly populations collected in Indonesia, Thailand, India and China. Nineteen unique sequences (haplotypes) of the cytochrome oxidase I were identified in these populations. They were combined with sequences available in databases, resulting in a total of 407 haplotypes and analyzed together with nine outgroup accessions. A phylogenetic tree was calculated using the maximum likelihood method. The tree showed that all groups that were found in previous studies were also present in our study. Additionally, seven new groups were identified based on the new haplotypes. Most B. tabaci haplotypes grouped based on their geographical origin. Two groups were found to have a worldwide distribution. Our results indicate that our knowledge on the species complex around B. tabaci is still far from complete.

  9. The femininization of the female oedipal complex, Part II: Aggression reconsidered.

    PubMed

    Holtzman, Deanna; Kulish, Nancy

    2003-01-01

    This paper examines and explores the manifestations of aggressive impulses in the so-called female oedipal complex. The authors describe how competitive aggression on the part of young girls, seemingly missing in children's stories and myths, is unconsciously inhibited, disguised, or externalized. They report similar phenomena in women patients involved in triangular conflicts, and present a selected review of the literature on the inhibition of aggression within the female triangular situation. Stressing dynamic patterns in the object relationships in the female triangular situation, the authors offer a psychological explanation for this inhibition. They present clinical material to demonstrate how overt murderous and competitive aggression toward the mother appears after considerable analytic work. They conclude that girls and women frequently relinquish a sense of agency over both aggression and sexuality in dealing with triangular conflicts, to preserve a safe relationship with their mothers.

  10. Transition metal complexes of neocryptolepine analogues. Part I: Synthesis, spectroscopic characterization, and invitro anticancer activity of copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Emam, Sanaa Moustafa; El Sayed, Ibrahim El Tantawy; Nassar, Nagla

    2015-03-01

    New generation of copper(II) complexes with aminoalkylaminoneocryptolepine as bidentate ligands has been synthesized and it is characterized by elemental analyses, magnetic moment, spectra (IR, UV-Vis, 1H NMR and ESR) and thermal studies. The IR data suggest the coordination modes for ligands which behave as a bidentate with copper(II) ion. Based on the elemental analysis, magnetic studies, electronic and ESR data, binuclear square planar geometry was proposed for complexes 7a, 7b, square pyramidal for 9a, 9b and octahedral for 8a, 8b, 10a, 10b. The molar conductance in DMF solution indicates that all complexes are electrolyte except 7a and 7b. The ESR spectra of solid copper(II) complexes in powder form showed an axial symmetry with 2B1g as a ground state and hyperfine structure. The thermal stability and degradation of the ligands and their metal complexes were studied employing DTA and TG methods. The metal-free ligands and their copper(II) complexes were tested for their in vitro anticancer activity against human colon carcinoma (HT-29). The results showed that the synthesized copper(II) complexes exhibited higher anticancer activity than their free ligands. Of all the studied copper(II) complexes, the bromo-substituted complex 9b exhibited high anticancer activity at low micromolar inhibitory concentrations (IC50 = 0.58 μM), compared to the other complexes and the free ligands.

  11. Transition metal complexes of neocryptolepine analogues. Part I: synthesis, spectroscopic characterization, and invitro anticancer activity of copper(II) complexes.

    PubMed

    Emam, Sanaa Moustafa; El Sayed, Ibrahim El Tantawy; Nassar, Nagla

    2015-03-05

    New generation of copper(II) complexes with aminoalkylaminoneocryptolepine as bidentate ligands has been synthesized and it is characterized by elemental analyses, magnetic moment, spectra (IR, UV-Vis, (1)H NMR and ESR) and thermal studies. The IR data suggest the coordination modes for ligands which behave as a bidentate with copper(II) ion. Based on the elemental analysis, magnetic studies, electronic and ESR data, binuclear square planar geometry was proposed for complexes 7a, 7b, square pyramidal for 9a, 9b and octahedral for 8a, 8b, 10a, 10b. The molar conductance in DMF solution indicates that all complexes are electrolyte except 7a and 7b. The ESR spectra of solid copper(II) complexes in powder form showed an axial symmetry with (2)B1g as a ground state and hyperfine structure. The thermal stability and degradation of the ligands and their metal complexes were studied employing DTA and TG methods. The metal-free ligands and their copper(II) complexes were tested for their in vitro anticancer activity against human colon carcinoma (HT-29). The results showed that the synthesized copper(II) complexes exhibited higher anticancer activity than their free ligands. Of all the studied copper(II) complexes, the bromo-substituted complex 9b exhibited high anticancer activity at low micromolar inhibitory concentrations (IC50=0.58μM), compared to the other complexes and the free ligands.

  12. Modeling of additive manufacturing processes for metals: Challenges and opportunities

    DOE PAGES

    Francois, Marianne M.; Sun, Amy; King, Wayne E.; ...

    2017-01-09

    Here, with the technology being developed to manufacture metallic parts using increasingly advanced additive manufacturing processes, a new era has opened up for designing novel structural materials, from designing shapes and complex geometries to controlling the microstructure (alloy composition and morphology). The material properties used within specific structural components are also designable in order to meet specific performance requirements that are not imaginable with traditional metal forming and machining (subtractive) techniques.

  13. Out of bounds additive manufacturing

    DOE PAGES

    Holshouser, Chris; Newell, Clint; Palas, Sid; ...

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  14. Manufacturing technologies

    NASA Astrophysics Data System (ADS)

    The Manufacturing Technologies Center is at the core of Sandia National Laboratories' advanced manufacturing effort which spans the entire product realization process. The center's capabilities in product and process development are summarized in the following disciplines: (1) mechanical - rapid prototyping, manufacturing engineering, machining and computer-aided manufacturing, measurement and calibration, and mechanical and electronic manufacturing liaison; (2) electronics - advanced packaging for microelectronics, printed circuits, and electronic fabrication; and (3) materials - ceramics, glass, thin films, vacuum technology, brazing, polymers, adhesives, composite materials, and process analysis.

  15. Elimination capacity of a TSE-model agent in the manufacturing process of Alphanate/Fanhdi, a human factor VIII/VWF complex concentrate.

    PubMed

    Diez, J M; Caballero, S; Belda, F J; Otegui, M; Gajardo, R; Jorquera, J I

    2009-11-01

    The variant Creutzfeldt-Jakob disease (vCJD) is a transmissible spongiform encephalopathy (TSE), mainly present in the UK and is associated with the ingestion of bovine products affected with bovine spongiform encephalopathy. Manufacturers of biological products must investigate the ability of their production processes to remove TSE agents. We studied the purification steps in the manufacturing process of two FVIII/VWF concentrates (Alphanate) and Fanhdi in their ability to eliminate an experimental TSE-model agent. Hamster scrapie strain 263K brain-derived materials were spiked into samples of the solutions taken before various stages during its production: 3.5% polyethylene glycol (PEG) precipitation, heparin affinity chromatography and saline precipitation/final filtrations. PEG precipitation and affinity chromatography were studied both as isolated and combined steps. TSE agent removal was determined using a laboratory scale model representative of the industrial manufacturing process. The prion protein (PrP(Sc)) was measured with Western blot and TSE infectivity was measured with bioassay. Western blot results were in agreement with those obtained by bioassay, showing a significant removal capacity in the production process: 3.21-3.43 log(10) for the PEG precipitation; about 3.45 log(10) for the affinity chromatography; and around 2.0 log(10) for the saline precipitation plus final filtrations. PEG precipitation and heparin affinity chromatography were demonstrated to be two complementary TSE-model agent removal mechanisms with total removal being the sum of the two. An overall reduction factor of around 8 log(10) can be deduced. The tests from the production process of FVIII/VWF complex concentrates have demonstrated their potential for eliminating TSE agents.

  16. Effect of Voice-Part Training and Music Complexity on Focus of Attention to Melody or Harmony

    ERIC Educational Resources Information Center

    Williams, Lindsey R.

    2009-01-01

    The purpose of this study was to investigate the possible effects of choral voice-part training/experience and music complexity on focus of attention to melody or harmony. Participants (N = 150) were members of auditioned university choral ensembles divided by voice-part (sopranos, n = 44; altos, n = 33; tenors, n = 35; basses, n = 38). The music…

  17. Effect of Voice-Part Training and Music Complexity on Focus of Attention to Melody or Harmony

    ERIC Educational Resources Information Center

    Williams, Lindsey R.

    2009-01-01

    The purpose of this study was to investigate the possible effects of choral voice-part training/experience and music complexity on focus of attention to melody or harmony. Participants (N = 150) were members of auditioned university choral ensembles divided by voice-part (sopranos, n = 44; altos, n = 33; tenors, n = 35; basses, n = 38). The music…

  18. Metal Additive Manufacturing: A Review

    NASA Astrophysics Data System (ADS)

    Frazier, William E.

    2014-06-01

    This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

  19. Energy 101: Clean Energy Manufacturing

    ScienceCinema

    None

    2016-07-12

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  20. Energy 101: Clean Energy Manufacturing

    SciTech Connect

    2015-07-09

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  1. Synthesis and antibacterial activity of cephradine metal complexes : part II complexes with cobalt, copper, zinc and cadmium.

    PubMed

    Sultana, Najma; Arayne, M Saeed; Afzal, M

    2005-01-01

    Cephradine, the first generation cephalosporin, is active against a wide range of Gram-positive and Gram-negative bacteria including penicillinase-producing Staphylococci. Since the presence of complexing ligand may affect the bioavailability of a metal in the blood or tissues, therefore, in order to study the probable interaction of cephradine with essential and trace elements present in human body, cephradine has been reacted with cobalt, copper, zinc and cadmium metal halides in L:M ratio of 2:1 in methanol and the products recrystallized from suitable solvents to pure crystals of consistent melting points. Infrared and ultraviolet studies of these complexes were carried out and compared with ligand. Magnetic susceptibility studies of these complexes were also carried out showing their paramagnetic behavior. From the infra red studies and elemental analysis of the complexes, it has been shown that the drug molecule serves as a bidentate ligand coordinating through both its carboxylate at C-3 and beta-lactam nitrogen and the metal having a square planar or octahedral geometry. To evaluate the changes in microbiological activity of cephradine after complexation, antibacterial studies were carried out by observing the changes in MIC (minimum inhibitory concentration) of the complexes and compared with the parent drug by measuring the zone of inhibition of complexes and compared with the parent cephalosporin against both Gram-positive and Gram-negative organisms. For MIC observation, serial dilution method was employed and zone series were determined by disk diffusion method. Our investigations reveal that formation of complexes results in decrease in antibacterial activity of cephradine and MIC values are increased.

  2. Cable manufacture

    NASA Technical Reports Server (NTRS)

    Gamble, P.

    1972-01-01

    A survey is presented of flat electrical cable manufacturing, with particular reference to patented processes. The economics of manufacture based on an analysis of material and operating costs is considered for the various methods. Attention is given to the competitive advantages of the several processes and their resulting products. The historical area of flat cable manufacture is presented to give a frame of reference for the survey.

  3. POD evaluation using simulation: A phased array UT case on a complex geometry part

    NASA Astrophysics Data System (ADS)

    Dominguez, Nicolas; Reverdy, Frederic; Jenson, Frederic

    2014-02-01

    The use of Probability of Detection (POD) for NDT performances demonstration is a key link in products lifecycle management. The POD approach is to apply the given NDT procedure on a series of known flaws to estimate the probability to detect with respect to the flaw size. A POD is relevant if and only if NDT operations are carried out within the range of variability authorized by the procedure. Such experimental campaigns require collection of large enough datasets to cover the range of variability with sufficient occurrences to build a reliable POD statistics, leading to expensive costs to get POD curves. In the last decade research activities have been led in the USA with the MAPOD group and later in Europe with the SISTAE and PICASSO projects based on the idea to use models and simulation tools to feed POD estimations. This paper proposes an example of application of POD using simulation on the inspection procedure of a complex -full 3D- geometry part using phased arrays ultrasonic testing. It illustrates the methodology and the associated tools developed in the CIVA software. The paper finally provides elements of further progress in the domain.

  4. Airborne and ground reconnaissance of part of the syenite complex near Wausau, Marathon county, Wisconsin

    USGS Publications Warehouse

    Vickers, R.C.

    1955-01-01

    Airborne and ground reconnaissance for radioactive minerals in part of the syenite complex near Wausau, Marathon county, Wis., found 12 radioactive mineral localities. The rocks in the area are of Precambrian age and consist of syenite and nepheline syenite, which have intruded older granite, greenstone, quartzite, and argillite. There are very few outcrops, and much of the bedrock is deeply weathered and covered by residual soil. Thorium-bearing zircon pegatite float was found within the area of syenite and nepheline syenite at four localities. Reddish-brown euhedral to subeuhedral crystals of well-zoned zircon (variety cyrtolite) comprise more than 40 percent of some of the specimens. The radioactive mineral at four localities outside the area of syneites was identified as thorogummite, which occurred in nodular masses in residual soil. Alinement of the thorogummite float and associated radioactivity suggests that the thorogummite has resulted from weathering of narrow veins or pegmatites containing thorium-bearing minerals. Unidentified thorium-bearing minerals were found at three localities, and a specimen of allanite weighing about 2 pounds was found at one locality. Shallow trenches at two of the largest radioactivity anomalies showed that the radioactive material extended down into weathered bedrock. The occurrences might warrant additional physical exploration should there be sufficient demand for thorium. Further reconnaissance in the area would probably result in the discovery of additional occurrences.

  5. Localized slip controlled by dehydration embrittlement of partly serpentinized dunites, Leka Ophiolite Complex, Norway

    NASA Astrophysics Data System (ADS)

    Dunkel, Kristina G.; Austrheim, Håkon; Renard, François; Cordonnier, Benoit; Jamtveit, Bjørn

    2017-04-01

    Dehydration of partly or completely serpentinized ultramafic rocks can increase the pore fluid pressure and induce brittle failure, a process referred to as dehydration embrittlement. However the extents of strain localization and unstable frictional sliding during deserpentinization are still under debate. In the layered ultramafic sections of the Leka Ophiolite Complex in the Central Norwegian Caledonides, prograde metamorphism of serpentinite veins led to local fluid production and to the growth of Mg-rich and coarse-grained olivine with abundant magnetite inclusions and δ18O values 1.0- 1.5 ‰ below the host rock. Embrittlement associated with the dehydration caused faulting along highly localized (<10 μm-wide) slip planes near the centers of the original serpentinite veins and pulverization of wall rock olivine. These features along with an earthquake-like size distribution of fault offsets suggest unstable frictional sliding rather than slower creep. Structural heterogeneities in the form of serpentinite veins clearly have first-order controls on strain localization and frictional sliding during dehydration. As most of the oceanic lithosphere is incompletely serpentinized, heterogeneities represented by a non-uniform distribution of serpentinite are common and may increase the likelihood that dehydration embrittlement triggers earthquakes.

  6. Simulation of dispersion in moderately complex terrain—Part B. The higher order closure dispersion model

    NASA Astrophysics Data System (ADS)

    Enger, Leif

    A three-dimensional higher-order closure dispersion model is presented. The model is used to simulate dispersion from point sources in complex terrain. The model uses mean and turbulence quantities simulated with the fluid dynamic model presented in Part A to simulate dispersion in a polar coordinate system with its origin in the point source. Different turbulent length scales are used for the vertical and horizontal fluxes. Simulation results are compared with data from tracer experiments performed in southern Sweden, the Vänersborg-Trollhättan region. The tracer experiments were performed during convective atmospheric conditions as well as during very stable conditions. The geographical area has terrain features that exert forcing on the meso-γ-scale. Within the area there is a relatively flat agricultural area, forested hills, a river valley and an extended lake area. The terrain height relief is typically 80 m. The simulations with the dispersion model performed in the Vänersborg-Trollhättan region show good agreement with measured data in the region for convective atmospheric conditions as well as for very stable conditions.

  7. Complex Parts, Complex Data: Why You Need to Understand What Radiation Single Event Testing Data Does and Doesn't Show and the Implications Thereof

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Berg, Melanie D.

    2015-01-01

    Electronic parts (integrated circuits) have grown in complexity such that determining all failure modes and risks from single particle event testing is impossible. In this presentation, the authors will present why this is so and provide some realism on what this means. Its all about understanding actual risks and not making assumptions.

  8. Geology of the Northern Part of the Harcuvar Complex, West-Central Arizona

    USGS Publications Warehouse

    Bryant, Bruce; Wooden, J.L.

    2008-01-01

    In west-central Arizona near the northeast margin of the Basin and Range Province, the Rawhide detachment fault separates Tertiary and older rocks lacking significant effects of Tertiary metamorphism from Precambrian, Paleozoic, and Mesozoic rocks in the Harcuvar metamorphic core complex below. Much of the northern part of the Harcuvar complex in the Buckskin and eastern Harcuvar Mountains is layered granitic gneiss, biotite gneiss, amphibolite, and minor pelitic schist that was probably deformed and metamorphosed in Early Proterozoic time. In the eastern Buckskin Mountains, Early and Middle Proterozoic plutons having U-Pb zircon ages of 1,683?6.4 mega-annum (Ma) and 1,388?2.3 Ma, respectively, intruded the layered gneiss. Small plutons of alkaline gabbro and diorite intruded in Late Jurassic time. A sample of mylonitized diorite from this unit has a U-Pb zircon age of 149?2.8 Ma. In the Early Cretaceous, amphibolite facies regional metamorphism was accompanied by partial melting and formation of migmatite. Zircon from a granitic layer in migmatitic gneiss in the eastern Harcuvar Mountains has a U-Pb age of 110?3.7 Ma. In the Late Cretaceous, sills and plutons of the granite of Tank Pass were emplaced in both the Buckskin and eastern Harcuvar Mountains. In the Buckskin Mountains those intrusions are locally numerous enough to form an injection migmatite. A pluton of this granite crops out over almost half the area of the eastern Harcuvar Mountains. Paleozoic and Mesozoic sedimentary rocks were caught as slices along south-vergent Cretaceous thrusts related to the Maria fold and thrust belt and were metamorphosed beneath a thick sheet of Proterozoic crustal rocks. Inception of volcanism and basin formation in upper-plate rocks indicates that regional extension started at about 26 Ma, in late Oligocene. The Swansea Plutonic Suite, composed of rocks ranging from gabbro to granite, intruded the lower-plate rocks in the Miocene and Oligocene(?). Granite and a gabbro

  9. Efficacy of viral clearance methods used in the manufacture of activated prothrombin complex concentrates: focus on AUTOPLEX T.

    PubMed

    Horwith, G; Revie, D R

    1999-09-01

    Various methods are described for the elimination of infectious viruses from activated prothrombin complex concentrates (aPCCs) and for the analysis of the final products (AUTOPLEX T and FEIBA VH). Viruses of concern in human plasma-derived products are enveloped (hepatitis B and C, cytomegalovirus, Epstein-Barr virus, and human immunodeficiency virus [HIV]) and nonenveloped (hepatitis A and parvovirus B19). Donated blood used for AUTOPLEX T is screened for antihepatitis C, HBsAg, anti-HIV types 1 and 2, and p24 antigen. Plasma pools utilized for raw materials are also tested by PCR for HIV and hepatitis C virus. Partial virus inactivation and partitioning are achieved by purification of the aPCC. Further reduction of virus infectivity is accomplished by lyophilization and dry-heat treatment. Each step undergoes virus elimination validation studies in which a relevant sample is 'spiked' with the appropriate virus or model virus. The total reduction in virus from raw material to final product can then be calculated. For AUTOPLEX T the cumulative log10 reduction factors for several viruses vary from 4.2 to 14.3. This ensures an exceptionally high margin of safety. Definitive evidence for product safety was obtained by clinical observation of treated patients. The viral inactivation process of AUTOPLEX T involves a four-tier viral safety program, including Cohn alcohol fractionation and dry-heat treatment, in place of the two-stage vapour-heating process for FEIBA.

  10. Manufacturing Technology.

    ERIC Educational Resources Information Center

    Barnes, James L.

    This curriculum guide is designed to assist junior high school industrial arts teachers in planning new courses and revising existing courses in manufacturing technology. Addressed in the individual units of the guide are the following topics: introduction to manufacturing, materials processing, personnel management, production management,…

  11. Characterization of Novel Gel Casting System to Make Complex Shaped Aluminum Oxide (Al2O3) Parts

    DTIC Science & Technology

    2016-03-01

    ARL-TR-7620 ● MAR 2016 US Army Research Laboratory Characterization of Novel Gel-Casting System to Make Complex-Shaped Aluminum...Army Research Laboratory Characterization of Novel Gel-Casting System to Make Complex-Shaped Aluminum Oxide (Al2O3) Parts by Carli A Moorehead...NAME(S) AND ADDRESS(ES) US Army Research Laboratory ATTN: RDRL-WMM-E Aberdeen Proving Ground, MD 21005-5069 8. PERFORMING ORGANIZATION REPORT

  12. Advanced Manufacturing Methods for Systems of Microsystem Nanospacecraft- Status of the Project

    NASA Astrophysics Data System (ADS)

    Plesseria, J. Y.; Corbelli, A.; Masse, C.; Rigo, O.; Pambaguian, L.; Bonvoisin, B.

    2014-06-01

    In the frame of an ESA TRP project, CSL, SIRRIS, ALMASpace and TAS-F associated to evaluate advanced manufacturing methods for application to space hardware.The state of the art of the new manufacturing methods, including additive manufacturing but also advanced bonding, joining and shaping techniques has been reviewed. Then three types of case studies have been developed successively. The first type was a re- manufacture of an existing piece of hardware using advanced techniques to evaluate if there is some potential improvement to be achieved (cost, production time, complexity reduction). The second level was to design and manufacture a part based on the application requirements. The last level was to design and manufacture a part taking into account the subsystem to which it belongs. All case studies have been tested in terms of achieved performances and resistance to the mechanical and thermal environment.

  13. Microgravity Manufacturing Via Fused Deposition

    NASA Technical Reports Server (NTRS)

    Cooper, K. G.; Griffin, M. R.

    2003-01-01

    Manufacturing polymer hardware during space flight is currently outside the state of the art. A process called fused deposition modeling (FDM) can make this approach a reality by producing net-shaped components of polymer materials directly from a CAE model. FDM is a rapid prototyping process developed by Stratasys, Inc.. which deposits a fine line of semi-molten polymer onto a substrate while moving via computer control to form the cross-sectional shape of the part it is building. The build platen is then lowered and the process is repeated, building a component directly layer by layer. This method enables direct net-shaped production of polymer components directly from a computer file. The layered manufacturing process allows for the manufacture of complex shapes and internal cavities otherwise impossible to machine. This task demonstrated the benefits of the FDM technique to quickly and inexpensively produce replacement components or repair broken hardware in a Space Shuttle or Space Station environment. The intent of the task was to develop and fabricate an FDM system that was lightweight, compact, and required minimum power consumption to fabricate ABS plastic hardware in microgravity. The final product of the shortened task turned out to be a ground-based breadboard device, demonstrating miniaturization capability of the system.

  14. Additive Manufacturing for Affordable Rocket Engines

    NASA Technical Reports Server (NTRS)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  15. Manufacturing technology

    SciTech Connect

    Blaedel, K.L.

    1997-02-01

    The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

  16. Systems and complexity thinking in general practice: part 1 - clinical application.

    PubMed

    Sturmberg, Joachim P

    2007-03-01

    Many problems encountered in general practice cannot be sufficiently explained within the Newtonian reductionist paradigm. Systems and complexity thinking - already widely adopted in most nonmedical disciplines - describes and explores the contextual nature of questions posed in medicine, and in general practice in particular. This article briefly describes the framework underpinning systems and complexity sciences. A case study illustrates how systems and complexity thinking can help to better understand the contextual nature of patient presentations, and how different approaches will lead to different outcomes.

  17. Establish the CNC machining strategy in relation with geometric complexity of the parts made from aluminum alloy extruded profile

    NASA Astrophysics Data System (ADS)

    Moldovan, Ş. A.; Cosma, M.; Năsui, V.

    2017-05-01

    In this paper we present a technological problem encountered in the machining accuracy of the parts for aerospace made of aluminum alloy extruded profile with length up to 10 meters. Those parts have very tight tolerances and on milling process appear several factors that influence the repeatability of machining processes. Several factors must be considered when developing the machining process for a specific part, including: establishing the machining strategy in relation with piece geometric complexity, analysis of machined parts through coordinate measuring machine and statistical analysis, to determinate the proper machining strategy for obtaining parts in tolerance. Through several tests and recording all dimensions changes during the milling process, will be modified the machining strategy. By analysing the machining strategy at different lengths of extrusions and records of dimensions fluctuations along the processing chain has been created a proper machine strategy which will obtain a repeatability of the machining process.

  18. Exploring Innovation Processes from a Complexity Perspective. Part II. Experiences from the Subsea Increased Oil Recovery Case

    ERIC Educational Resources Information Center

    Aasen, Tone Merethe Berg; Johannessen, Stig

    2007-01-01

    In this second part of the papers, exploring innovation processes from a complexity perspective, we present an empirical example to strengthen further the relevance of the approach. The example draws on a longitudinal research initiative conducted in cooperation with the Norwegian petroleum company Statoil ASA. We conducted our research into the…

  19. Electronic load as part of the test complex of the power processing unit of electric and plasma propulsion

    NASA Astrophysics Data System (ADS)

    Chubov, S. V.; Soldatov, A. I.

    2017-02-01

    This article provides the advantages and technical solutions for the use of electronic loads as part of a testing complex of power and management systems of electric and plasma propulsion of three types. The paper shows the parameters that were applied to select the electronic loads and describes their functionality.

  20. Exploring Innovation Processes from a Complexity Perspective. Part II. Experiences from the Subsea Increased Oil Recovery Case

    ERIC Educational Resources Information Center

    Aasen, Tone Merethe Berg; Johannessen, Stig

    2007-01-01

    In this second part of the papers, exploring innovation processes from a complexity perspective, we present an empirical example to strengthen further the relevance of the approach. The example draws on a longitudinal research initiative conducted in cooperation with the Norwegian petroleum company Statoil ASA. We conducted our research into the…

  1. Smart Manufacturing.

    PubMed

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  2. Moving alcohol prevention research forward-Part I: introducing a complex systems paradigm.

    PubMed

    Apostolopoulos, Yorghos; Lemke, Michael K; Barry, Adam E; Lich, Kristen Hassmiller

    2017-07-22

    The drinking environment is a complex system consisting of a number of heterogeneous, evolving and interacting components, which exhibit circular causality and emergent properties. These characteristics reduce the efficacy of commonly used research approaches, which typically do not account for the underlying dynamic complexity of alcohol consumption and the interdependent nature of diverse factors influencing misuse over time. We use alcohol misuse among college students in the United States as an example for framing our argument for a complex systems paradigm. A complex systems paradigm, grounded in socio-ecological and complex systems theories and computational modeling and simulation, is introduced. Theoretical, conceptual, methodological and analytical underpinnings of this paradigm are described in the context of college drinking prevention research. The proposed complex systems paradigm can transcend limitations of traditional approaches, thereby fostering new directions in alcohol prevention research. By conceptualizing student alcohol misuse as a complex adaptive system, computational modeling and simulation methodologies and analytical techniques can be used. Moreover, use of participatory model-building approaches to generate simulation models can further increase stakeholder buy-in, understanding and policymaking. A complex systems paradigm for research into alcohol misuse can provide a holistic understanding of the underlying drinking environment and its long-term trajectory, which can elucidate high-leverage preventive interventions. © 2017 Society for the Study of Addiction.

  3. [Methods for the protection against counterfeit medications. Part 2. The assessment of interlot dispersion of the metoprolol succinate tablets fabricated by different manufacturers].

    PubMed

    Iakushev, V A; Morozova, M A; Elizarova, T E; Fitilev, S B; Pletneva, T V

    2012-01-01

    This paper reports the results of analysis of the metoprolol succinate tablets fabricated by two different manufacturers, Akrikhin (Russia) and AstraZeneka (Sweden) by near-IR spectroscopy in the combination with the chemometric processing of the data obtained (discriminative analysis). It is concluded that this method is applicable for the assessment of interlot dispersion of the metoprolol succinate tablets.

  4. The use of Tecnomatix software to simulate the manufacturing flows in an industrial enterprise producing hydrostatic components

    NASA Astrophysics Data System (ADS)

    Petrila, S.; Brabie, G.; Chirita, B.

    2016-08-01

    The analysis performed on manufacturing flows within industrial enterprises producing hydrostatic components twos made on a number of factors that influence smooth running of production such: distance between pieces, waiting time from one surgery to another; time achievement of setups on CNC machines; tool changing in case of a large number of operators and manufacturing complexity of large files [2]. To optimize the manufacturing flow it was used the software Tecnomatix. This software represents a complete portfolio of manufacturing solutions digital manufactured by Siemens. It provides innovation by linking all production methods of a product from process design, process simulation, validation and ending the manufacturing process. Among its many capabilities to create a wide range of simulations, the program offers various demonstrations regarding the behavior manufacturing cycles. This program allows the simulation and optimization of production systems and processes in several areas such as: car suppliers, production of industrial equipment; electronics manufacturing, design and production of aerospace and defense parts.

  5. Part I. Cobalt thiolate complexes modeling the active site of cobalt nitrile hydratase. Part II. Formation of inorganic nanoparticles on protein scaffolding in Escherichia coli glutamine synthetase

    NASA Astrophysics Data System (ADS)

    Kung, Irene Yuk Man

    Part I. A series of novel cobalt dithiolate complexes with mixed imine/amine ligand systems is presented here as electronic and structural models for the active site in the bacterial enzyme class, nitrile hydratase (NHase). Pentadentate cobalt(II) complexes with S2N 3 ligand environments are first studied as precursors to the more relevant cobalt(III) complexes. Adjustment of the backbone length by removal of a methylene group increases the reactivity of the system; whereas reduction of the two backbone imine bonds to allow free rotation about those bonds may decrease reactivity. Reactivity change due to the replacement of the backbone amine proton with a more sterically challenging methyl group is not yet clear. Upon oxidation, the monocationic pentadentate cobalt(III) complex, 1b, shows promising reactivity similar to that of NHase. The metal's open coordination site allows reversible binding of the endogenous, monoanionic ligands, N 3- and NCS-. Oxygenation of the thiolate sulfur atoms by exposure to O2 and H2O 2 produces sulfenate and sulfinate ligands in complex 8, which resembles the crystal structure of "deactivated" Fe NHase. However, its lack of reactivity argues against the oxygenated enzyme structure as the active form. Six-coordinate cobalt(III) complexes with S2N4 amine/amine ligand systems are also presented as analogues of previously reported iron(III) compounds, which mimic the spectroscopic properties of Fe NHase. The cobalt complexes do not seem to similarly model Co NHase. However, the S = 0 cobalt(III) center can be spectroscopically silent and difficult to detect, making comparison with synthetic models using common techniques hard. Part II. Dodecameric Escherichia coli glutamine synthetase mutant, E165C, stacks along its six-fold axis to produce tubular nanostructures in the presence of some divalent metal ions, as does the wild type enzyme. The centrally located, engineered Cys-165 residues appear to bind to various species and may serve as

  6. Complex-shaped hardened parts fatigue limit prediction according to the witness sample study results

    NASA Astrophysics Data System (ADS)

    Surgutanova, Yu N.; Mikushev, N. N.; Surgutanov, N. A.; Kiselev, P. E.; Shlyapnikov, P. A.; Meshcheryakova, A. A.

    2016-11-01

    The aim of this study is to investigate the possibility of assessment of the effect of preparatory surface plastic deformation by hydraulic shot blasting on the fatigue strength of cylindrical parts of different diameters (10-40 mm) of D16T alloy with circular notches of semicircular section, based on measurements of residual stress (initial deformations) of a witness sample. The residual stresses of smooth parts were used to calculate the residual stresses of parts with stress raisers. These were used to predict the increment of these parts fatigue limit caused by hardening hydraulic shot blasting. It was found that the highest compressive residual stresses in the smooth parts obtained through calculations differ from the observed values not more than by 7%, and in notched parts by 8%. Using the criterion of mean integral residual stresses, we calculate the increments of the fatigue limit of parts due to superficial hardening. The discrepancy between the experimental and calculated increment values of the fatigue limit of hardened parts with raisers does not exceed 17%.

  7. Femtosecond fiber laser additive manufacturing of tungsten

    NASA Astrophysics Data System (ADS)

    Bai, Shuang; Liu, Jian; Yang, Pei; Zhai, Meiyu; Huang, Huan; Yang, Lih-Mei

    2016-04-01

    Additive manufacturing (AM) is promising to produce complex shaped components, including metals and alloys, to meet requirements from different industries such as aerospace, defense and biomedicines. Current laser AM uses CW lasers and very few publications have been reported for using pulsed lasers (esp. ultrafast lasers). In this paper, additive manufacturing of Tungsten materials is investigated by using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. Fully dense Tungsten part with refined grain and increased hardness was obtained and compared with parts made with different pulse widths and CW laser. The results are evidenced that the fs laser based AM provides more dimensions to modify mechanical properties with controlled heating, rapid melting and cooling rates compared with a CW or long pulsed laser. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.

  8. Additive manufacturing: technology, applications and research needs

    NASA Astrophysics Data System (ADS)

    Guo, Nannan; Leu, Ming C.

    2013-09-01

    Additive manufacturing (AM) technology has been researched and developed for more than 20 years. Rather than removing materials, AM processes make three-dimensional parts directly from CAD models by adding materials layer by layer, offering the beneficial ability to build parts with geometric and material complexities that could not be produced by subtractive manufacturing processes. Through intensive research over the past two decades, significant progress has been made in the development and commercialization of new and innovative AM processes, as well as numerous practical applications in aerospace, automotive, biomedical, energy and other fields. This paper reviews the main processes, materials and applications of the current AM technology and presents future research needs for this technology.

  9. Copper(i) complexes with phosphine derived from sparfloxacin. Part I - structures, spectroscopic properties and cytotoxicity.

    PubMed

    Komarnicka, Urszula K; Starosta, Radosław; Kyzioł, Agnieszka; Jeżowska-Bojczuk, Małgorzata

    2015-07-28

    In this paper we present new copper(i) iodide or copper(i) thiocyanate complexes with hydroxymethyldiphenylphosphine (PPh2(CH2OH)) or phosphine derivatives of sparfloxacin, a 3(rd) generation fluoroquinolone antibiotic agent (PPh2(CH2-Sf)) and 2,9-dimethyl-1,10-phenanthroline (dmp) or 2,2'-biquinoline (bq) auxiliary ligands. The synthesised complexes were fully characterised by NMR and UV-Vis spectroscopy as well as by mass spectrometry. Selected structures were additionally analysed using X-ray and DFT methods. All complexes proved to be stable in solution in the presence of water and atmospheric oxygen for several days. The cytotoxic activity of the complexes was tested against two cancer cell lines (CT26 - mouse colon carcinoma and A549 - human lung adenocarcinoma). Applying two different incubation times, the studies enabled a preliminary estimation of the dependence of the selectivity and the mechanism of action on the type of diimine and phosphine ligands. The results obtained showed that complexes with PPh2(CH2-Sf) are significantly more active than those with PPh2(CH2OH). On the other hand, the relative impact of diimine on cytotoxicity is less pronounced. However, the dmp complexes are characterised by strong inhibitory properties, while the bq ones are rather not. This confirms the interesting and promising biological properties of the investigated group of copper(i) complexes, which undoubtedly are worthy of further biological studies.

  10. Hanford facility dangerous waste Part A, Form 3 and Part B permit application documentation, Central Waste Complex (WA7890008967)(TSD: TS-2-4)

    SciTech Connect

    Saueressig, D.G.

    1998-05-20

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating, treatment, storage, and/or disposal units, such as the Central Waste Complex (this document, DOE/RL-91-17). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the Central Waste Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the Central Waste Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this Central Waste Complex permit application documentation is current as of May 1998.

  11. Carbonic Anhydrase Inhibitors Part 721 Synthesis and Antiglaucoma Properties of Metal Complexes of p-Fluorobenzolamide

    PubMed Central

    Scozzafava, Andrea; Menabuoni, Luca; Mincione, Francesco; Briganti, Fabrizio; Mincione, Giovanna

    1999-01-01

    Metal complexes of a heterocyclic sulfonamides possessing very strong carbonic anhydrase (CA) inhibitory properties, i.e., 5-(p-fluorobenzenesulfonylamido)-1,3,4-thiadiazole-2-sulfonamide (p-fluorobenzolamide) were prepared. The new complexes contained metal ions such as Zn(II), Cu(II), Co(II), Ni(II), Cd(II) and Mn(II). The new compounds were characterized by standard physico-chemical procedures, and assayed as inhibitors of three CA isozymes, CA I, II and IV. Very good inhibition has been evidenced both for the parent sulfonamides as well as for the prepared complexes, against all three investigated isozymes. Some of these new complexes as well as the parent sulfonamide, strongly lowered intraocular pressure (IOP) in normotensive rabbits when administered as a 2% solution into the eye. PMID:18475883

  12. Manufacturing technologies for photovoltaics and possible means of their development in Russia (Review): Part 2. Modification of production technologies for photoelectric converters, development of contact structures, and choice of promising technologies for expansion of FEC production in Russia

    NASA Astrophysics Data System (ADS)

    Tarasenko, A. B.; Popel', O. S.

    2015-12-01

    As the development of the first part of the review of modern industrial technologies for manufacture of photoelectric converters (PECs) of solar power, the present paper considers modifications of technologies for manufacture of PECs, including various thin-film techniques. Main tendencies in the advancement of contact structures of PECs are described. Formulation and substantiation are made for promising, in the authors' opinion, lines of the development of industry of PECs in Russia based on the upcoming implementation of 1.5 GW network photovoltaic power plants to 2020, which are developed with the national support under conditions of the fulfillment of rigid requirements to manufacture localization. As the most prospective technology for development of the competitive manufacture of photoelectric converters subject to the Russian scientific and engineering groundwork, the authors recommend the technology based on single-crystal silicon of the n type with the passivation of the frontal and rear sides and symmetrical contacts ( n-PASHa), which provides the possibility to produce double-faced solar modules also.

  13. Mechanical analysis of lightweight constructions manufactured with fused deposition modeling

    NASA Astrophysics Data System (ADS)

    Bagsik, A.; Josupeit, S.; Schoeppner, V.; Klemp, E.

    2014-05-01

    Additive production techniques have the advantage of manufacturing parts without needing a forming tool. One of the most used additive manufacturing processes is "Fused Deposition Modeling" (FDM) which allows the production of prototypes and end-use parts. Due to the manufacture layer by layer, also complex part geometries can be created in one working step. Furthermore, lightweight parts with specific inner core structures can be manufactured in order to achieve good weightrelated strength properties. In this paper the mechanical behavior of lightweight parts manufactured with the 3D production system Fortus 400mc from Stratasys and the material Polyetherimide (PEI) with the trade name Ultem*9085 is analyzed. The test specimens were built up with different inner structures and building directions. Therefore, test specimens with known lightweight core geometries (e.g. corrugated and honeycomb cores) were designed. A four-point bending test was conducted to analyze the strength properties as well as the weight-related strength properties. Additionally the influence of the structure width, the structure wall thickness and the top layer thickness was analyzed using a honeycomb structure.

  14. Investigation of β-cyclodextrin-norfloxacin inclusion complexes. Part 2. Inclusion mode and stability studies.

    PubMed

    Mendes, Cassiana; Buttchevitz, Aline; Barison, Andersson; Ocampos, Fernanda Maria Marins; Bernardi, Larissa Sakis; Oliveira, Paulo Renato; Silva, Marcos Antônio Segatto

    2015-01-01

    Norfloxacin (NFX) is a broad spectrum antibiotic with low solubility and permeability, which is unstable on exposure to light and humidity. In this study, the mode of NFX inclusion into β-cyclodextrin complexes was evaluated and a complete physical, chemical and microbiological stability study of the inclusion complexes was carried out. Potentiometric titrations were performed to evaluate changes in the pKa of the NFX molecule due to the formation of an inclusion complex and NMR analysis demonstrated that the NFX molecule is included in the β-cyclodextrin cavity. Inclusion complexes obtained by kneading followed by freeze-drying showed improved NFX stability compared with the isolated drug or the physical mixture. This method was effective in terms of protecting the drug from photodegradation and also avoiding hydrolysis. Differences between NFX and the complexes could be evidenced by thermal analysis, infrared spectroscopy and x-ray powder diffraction as well as by determining the solubility and drug content. The antimicrobial potency was also preserved on applying the promising method of kneading. The satisfactory stability indicates that the NFX/β-cyclodextrin complexes could be useful as an alternative to the existing NFX drug formulation.

  15. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2016-03-17

    KEN COOPER, TEAM LEAD OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH NICKEL ALLOY 718 PARTS FABRICATED USING THE M1 SELECTIVE LASER MELTING SYSTEM. THE M1 MACHINE IS DEDICATED TO BUILDING QUALIFICATION SAMPLES AND HARDWARE DEMONSTRATORS FOR THE RS25 ENGINE PROJECT.

  16. Subpallial origin of part of the calbindin-positive neurons of the claustral complex and piriform cortex.

    PubMed

    Legaz, Isabel; García-López, Margarita; Medina, Loreta

    2005-09-15

    The aim of the present study was to investigate whether part of the calbindin-positive neurons of the claustral complex and piriform cortex originate in the subpallium. To that end, we prepared organotypic cultures of embryonic telencephalic slices, and applied the cell tracker CMTMR to the ventricular/subventricular zone of the lateral or medial ganglionic eminence. Following 48 h of incubation, we observed a number of CMTMR-labeled cells (showing red fluorescence) of subpallial origin in the claustral complex and piriform cortex. To know whether some of these cells of subpallial origin were calbindin-positive, we performed immunofluorescence for calbindin using an Alexa 488-conjugated secondary antiserum (green fluorescence). Our results showed that some of the CMTMR-labeled cells of subpallial origin in the claustral complex and piriform cortex are calbindin-positive (and possibly GABAergic). The subpallial origin of part of these cells was confirmed by observation of double labeled neurons in the claustral complex that expressed both Lhx6 mRNA (a marker of cells derived from the medial ganglionic eminence) and calbindin. Future studies will be required to analyze the existence of a subpopulation of non-GABAergic calbindin cells in the claustral complex and piriform cortex, and to know their origin.

  17. Exploring Manufacturing Occupations. Instructor's Guide. The Manufacturing Cluster.

    ERIC Educational Resources Information Center

    Fairleigh Dickinson Univ., Rutherford, NJ.

    The major focus of this guide and its accompanying student manual (CE 010 397) is to help the student understand the manufacturing enterprise. (The guide and student manual are part of a manufacturing cluster series which addresses itself to career awareness, orientation, exploration, and preparation.) Seven sections are included. An overview of…

  18. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science.

    PubMed

    Lenas, Petros; Moos, Malcolm; Luyten, Frank P

    2009-12-01

    The field of tissue engineering is moving toward a new concept of "in vitro biomimetics of in vivo tissue development." In Part I of this series, we proposed a theoretical framework integrating the concepts of developmental biology with those of process design to provide the rules for the design of biomimetic processes. We named this methodology "developmental engineering" to emphasize that it is not the tissue but the process of in vitro tissue development that has to be engineered. To formulate the process design rules in a rigorous way that will allow a computational design, we should refer to mathematical methods to model the biological process taking place in vitro. Tissue functions cannot be attributed to individual molecules but rather to complex interactions between the numerous components of a cell and interactions between cells in a tissue that form a network. For tissue engineering to advance to the level of a technologically driven discipline amenable to well-established principles of process engineering, a scientifically rigorous formulation is needed of the general design rules so that the behavior of networks of genes, proteins, or cells that govern the unfolding of developmental processes could be related to the design parameters. Now that sufficient experimental data exist to construct plausible mathematical models of many biological control circuits, explicit hypotheses can be evaluated using computational approaches to facilitate process design. Recent progress in systems biology has shown that the empirical concepts of developmental biology that we used in Part I to extract the rules of biomimetic process design can be expressed in rigorous mathematical terms. This allows the accurate characterization of manufacturing processes in tissue engineering as well as the properties of the artificial tissues themselves. In addition, network science has recently shown that the behavior of biological networks strongly depends on their topology and has

  19. Relationship between industrial discharges and contamination of raw water resources by perfluorinated compounds: part II: Case study of a fluorotelomer polymer manufacturing plant.

    PubMed

    Dauchy, Xavier; Boiteux, Virginie; Rosin, Christophe; Munoz, Jean-François

    2012-09-01

    In this study, the concentrations of 10 perfluorinated compounds (PFCs) were measured in effluents of a fluorotelomer polymer manufacturing plant and its wastewater treatment plant. A 50-fold increase between the two effluents mass flows was observed. The water quality of two drinking water treatment plants located downstream at 15 and 25 km from the manufacturing plant was examined. An increase of the sum of PFCs was observed between the river (30 ng/L) and an alluvial well (70 ng/L), and between the raw water (9 ng/L) and the outlet of a biological treatment (97 ng/L). These results indicate a possible degradation of fluorotelomers, occurring during wastewater treatment, sediment infiltration in the alluvial aquifer, and drinking water treatment.

  20. Manufacturing information system

    NASA Astrophysics Data System (ADS)

    Allen, D. K.; Smith, P. R.; Smart, M. J.

    1983-12-01

    The size and cost of manufacturing equipment has made it extremely difficult to perform realistic modeling and simulation of the manufacturing process in university research laboratories. Likewise the size and cost factors, coupled with many uncontrolled variables of the production situation has even made it difficult to perform adequate manufacturing research in the industrial setting. Only the largest companies can afford manufacturing research laboratories; research results are often held proprietary and seldom find their way into the university classroom to aid in education and training of new manufacturing engineers. It is the purpose for this research to continue the development of miniature prototype equipment suitable for use in an integrated CAD/CAM Laboratory. The equipment being developed is capable of actually performing production operations (e.g. drilling, milling, turning, punching, etc.) on metallic and non-metallic workpieces. The integrated CAD/CAM Mini-Lab is integrating high resolution, computer graphics, parametric design, parametric N/C parts programmings, CNC machine control, automated storage and retrieval, with robotics materials handling. The availability of miniature CAD/CAM laboratory equipment will provide the basis for intensive laboratory research on manufacturing information systems.

  1. Manufacturing requirements

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Obara, Clifford J.; Martin, Glen L.; Domack, Christopher S.

    1986-01-01

    In recent years, natural laminar flow (NLF) has been proven to be achievable on modern smooth airframe surfaces over a range of cruise flight conditions representative of most current business and commuter aircraft. Published waviness and boundary layer transition measurements on several modern metal and composite airframes have demonstrated the fact that achievable surface waviness is readily compatible with laminar flow requirements. Currently, the principal challenge to the manufacture of NLF-compatible surfaces is two-dimensional roughness in the form of steps and gaps at structural joints. Results of recent NASA investigations on manufacturing tolerances for NLF surfaces, including results of a flight experiment are given. Based on recent research, recommendations are given for conservative manufacturing tolerances for waviness and shaped steps.

  2. Carbonic Anhydrase Inhibitors. Part 541: Metal Complexes of Heterocyclic Sulfonamides: A New Class of Antiglaucoma Agents

    PubMed Central

    Scozzafava, Andrea; Jitianu, Andrei

    1997-01-01

    Metal complexes of heterocyclic sulfonamides possessing carbonic anhydrase (CA) inhibitory properties were recently shown to be useful as intraocular pressure (IOP) lowering agents in experimental animals, and might be developed as a novel class of antiglaucoma drugs. Here we report the synthesis of a heterocyclic sulfonamide CA inhibitor and of the metal complexes containing main group metal ions, such as Be(II), Mg(II), Al(III), Zn(II), Cd(II) and Hg(II) and the new sulfonamide as well as 5-amino-1,3,4-thiadiazole-2-sulfonamide as ligands. The new complexes were characterized by standard physico-chemical procedures, and assayed as inhibitors of three CA isozymes, CA I, II and IV. Some of them (but not the parent sulfonamides) strongly lowered IOP in rabbits when administered as a 2% solution into the eye. PMID:18475811

  3. An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures

    NASA Astrophysics Data System (ADS)

    Liu, Shutian; Li, Quhao; Chen, Wenjiong; Tong, Liyong; Cheng, Gengdong

    2015-06-01

    Additive manufacturing (AM) technologies, such as selective laser sintering (SLS) and fused deposition modeling (FDM), have become the powerful tools for direct manufacturing of complex parts. This breakthrough in manufacturing technology makes the fabrication of new geometrical features and multiple materials possible. Past researches on designs and design methods often focused on how to obtain desired functional performance of the structures or parts, specific manufacturing capabilities as well as manufacturing constraints of AM were neglected. However, the inherent constraints in AM processes should be taken into account in design process. In this paper, the enclosed voids, one type of manufacturing constraints of AM, are investigated. In mathematics, enclosed voids restriction expressed as the solid structure is simplyconnected. We propose an equivalent description of simply-connected constraint for avoiding enclosed voids in structures, named as virtual temperature method (VTM). In this method, suppose that the voids in structure are filled with a virtual heating material with high heat conductivity and solid areas are filled with another virtual material with low heat conductivity. Once the enclosed voids exist in structure, the maximum temperature value of structure will be very high. Based upon this method, the simplyconnected constraint is equivalent to maximum temperature constraint. And this method can be easily used to formulate the simply-connected constraint in topology optimization. The effectiveness of this description method is illustrated by several examples. Based upon topology optimization, an example of 3D cantilever beam is used to illustrate the trade-off between manufacturability and functionality. Moreover, the three optimized structures are fabricated by FDM technology to indicate further the necessity of considering the simply-connected constraint in design phase for AM.

  4. Goal Neglect and Spearman's "g": Competing Parts of a Complex Task

    ERIC Educational Resources Information Center

    Duncan, John; Parr, Alice; Woolgar, Alexandra; Thompson, Russell; Bright, Peter; Cox, Sally; Bishop, Sonia; Nimmo-Smith, Ian

    2008-01-01

    In goal neglect, a person ignores some task requirement though being able to describe it. Goal neglect is closely related to general intelligence or C. Spearman's (1904) "g" (J. Duncan, H. Emslie, P. Williams, R. Johnson, & C. Freer, 1996). The authors tested the role of task complexity in neglect and the hypothesis that different task components…

  5. Goal Neglect and Spearman's "g": Competing Parts of a Complex Task

    ERIC Educational Resources Information Center

    Duncan, John; Parr, Alice; Woolgar, Alexandra; Thompson, Russell; Bright, Peter; Cox, Sally; Bishop, Sonia; Nimmo-Smith, Ian

    2008-01-01

    In goal neglect, a person ignores some task requirement though being able to describe it. Goal neglect is closely related to general intelligence or C. Spearman's (1904) "g" (J. Duncan, H. Emslie, P. Williams, R. Johnson, & C. Freer, 1996). The authors tested the role of task complexity in neglect and the hypothesis that different task components…

  6. A Bootstrap Approach to Martian Manufacturing

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.

    2004-01-01

    In-Situ Resource Utilization (ISRU) is an essential element of any affordable strategy for a sustained human presence on Mars. Ideally, Martian habitats would be extremely massive to allow plenty of room to comfortably live and work, as well as to protect the occupants from the environment. Moreover, transportation and power generation systems would also require significant mass if affordable. For our approach to ISRU, we use the industrialization of the U.S. as a metaphor. The 19th century started with small blacksmith shops and ended with massive steel mills primarily accomplished by blacksmiths increasing their production capacity and product size to create larger shops, which produced small mills, which produced the large steel mills that industrialized the country. Most of the mass of a steel mill is comprised of steel in simple shapes, which are produced and repaired with few pieces of equipment also mostly made of steel in basic shapes. Due to this simplicity, we expect that the 19th century manufacturing growth can be repeated on Mars in the 21st century using robots as the primary labor force. We suggest a "bootstrap" approach to manufacturing on Mars that uses a "seed" manufacturing system that uses regolith to create major structural components and spare parts. The regolith would be melted, foamed, and sintered as needed to fabricate parts using casting and solid freeform fabrication techniques. Complex components, such as electronics, would be brought from Earth and integrated as needed. These parts would be assembled to create additional manufacturing systems, which can be both more capable and higher capacity. These subsequent manufacturing systems could refine vast amounts of raw materials to create large components, as well as assemble equipment, habitats, pressure vessels, cranes, pipelines, railways, trains, power generation stations, and other facilities needed to economically maintain a sustained human presence on Mars.

  7. ICAM (Integrated Computer Aided Manufacturing) Conceptual Design for Computer-Integrated Manufacturing. Volume 2, Part 1. Task B. Establishment of the Factory of the Future Conceptual Framework Scoping Document (SD).

    DTIC Science & Technology

    This document, Volume II, Part I, of the Final Technical Report contains the Factory of the Future Conceptual Framework Scoping Document. This...configuration management) in the 1995 timeframe. (2) An overall conceptual framework of the FOF for the 1995 timeframe, to include multi-purpose

  8. Wireless technology for integrated manufacturing

    SciTech Connect

    Manges, W.W.; Allgood, G.O.; Shourbaji, A.A.

    1996-08-01

    This paper describes the ground breaking work in Oak Ridge facilities that now leads us to the brink of the wireless revolution in manufacturing. The focus is on solving tough technological problems necessary for success and addressing the critical issues of throughput, security, reliability, and robustness in applying wireless technology to manufacturing processes. Innovative solutions to these problems are highlighted through detailed designs and testbed implementations that demonstrate key concepts. The DOE-Oak Ridge complex represented by the Oak Ridge Centers for Manufacturing Technologies (ORCMT) continues to develop these technologies and will continue to focus on solving tough manufacturing problems.

  9. ATS materials/manufacturing

    SciTech Connect

    Karnitz, M.A.; Wright, I.G.; Ferber, M.K.

    1997-11-01

    The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

  10. Good-Enough Understanding: Theorising about the Learning of Complex Ideas (Part 2)

    ERIC Educational Resources Information Center

    Zack, Vicki; Reid, David A.

    2004-01-01

    In part 1 of this article Zack and Reid offered two examples of students operating with good-enough understandings in mathematics, and related their understandings to features of good-enough understanding identified by Mackey (I997) in the context of reading. Mackey contends that the ability to read further, on the basis of a very imperfect…

  11. Good-Enough Understanding: Theorising about the Learning of Complex Ideas (Part 2)

    ERIC Educational Resources Information Center

    Zack, Vicki; Reid, David A.

    2004-01-01

    In part 1 of this article Zack and Reid offered two examples of students operating with good-enough understandings in mathematics, and related their understandings to features of good-enough understanding identified by Mackey (I997) in the context of reading. Mackey contends that the ability to read further, on the basis of a very imperfect…

  12. Computational Process Modeling for Additive Manufacturing (OSU)

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2015-01-01

    Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.

  13. Verification of correctness of using real part of complex root as Rayleigh-wave phase velocity with synthetic data

    NASA Astrophysics Data System (ADS)

    Pan, Yudi; Xia, Jianghai; Zeng, Chong

    2013-01-01

    High-frequency (≥ 2 Hz) Rayleigh-wave phase velocities have been utilized to determine shear-wave velocities in near-surface geophysics since the early 1980s. One of the key steps is to calculate theoretical dispersion curves of an earth model. When the earth model contains a low-velocity half-space, however, some roots of the dispersion equation turn out to be complex numbers, which makes phase velocities disappear at some frequencies. When encountering this situation, the common practice is to append an additional high velocity layer as the half-space to the model to make the roots real or use the real parts of complex roots as Rayleigh-wave phase velocities. The correctness of the first method has been verified. The correctness of the second method, however, remains to be unproved. We use synthetic data generated by numerical modeling of the wave equation to verify the correctness of the second method. In this paper, we firstly discuss the reasons that only complex numbers of the dispersion equation exist at some frequencies when an earth model contains a low velocity half-space. Then we discuss how the nearest offset affects a synthetic model and recommend an optimal nearest offset in generating synthetic data that are close to real-world situations. Several synthetic models are used to verify correctness of using real parts of complex roots as Rayleigh-wave phase velocities when an earth model contains a low velocity layer as the half-space.

  14. Numerical modeling of conjugate heat transfer on complex geometries with diagonal Cartesian method. Part 1: Methods

    SciTech Connect

    Lin, W.L.; Carlson, K.D.; Chen, C.J. |

    1999-05-01

    In this study, a diagonal Cartesian method for thermal analysis is developed for simulation of conjugate heat transfer over complex boundaries. This method uses diagonal line segments in addition to Cartesian coordinates. The velocity fields are also modeled using the diagonal Cartesian method. The transport equations are discretized with the finite analytic (FA) method. The current work is validated by simulating a rotated lid-driven cavity flow with conjugate heat transfer, and accurate results are obtained.

  15. Perspiration Poisoning of Protective Clothing Materials. Part II. Mathematical Model for a Complex Adsorption Bed

    DTIC Science & Technology

    1974-06-01

    long-time objective of the grant that funded this research is to remedy this "poisoning" problem; therefore, the modeling work considersthe different...chni-al ewt MATERIALS. "THEMATICAL MODEL FORE"ORMING RPoRT E A COMPLEX ADSORF 1ION .ED-.--L 7- --AU .LO - -/- 8. CONTRACT QR GRATNUMBER(.) J...AREA & WORK 14qITUMBERS Department of Chemical Engineering North Carolina State University % 62105A Raleigh, North Carolina 27607 - TI62105AH8 102107 I

  16. Spectral transformation in the SOFI complex for processing photographic images on the ES computer, part 1

    NASA Technical Reports Server (NTRS)

    Debabov, A. S.; Usikov, D. A.

    1979-01-01

    A description is given of three programs catalogued in the form of object modules in the library of a system for processing photographic images computer. PFT is the subprogram of the multi-dimensional BPF of real-valued information, in the operative computer memory. INRECO is a subprogram-interface between the real and complex formats for representing two-dimensional spectra and images. FFT2 is a subprogram for calculating the correlation functions of the image using the previous subprograms.

  17. Investigation of β-cyclodextrin-norfloxacin inclusion complexes. Part 1. Preparation, physicochemical and microbiological characterization.

    PubMed

    Mendes, Cassiana; Wiemes, Bárbara Paula; Buttchevitz, Aline; Christ, Ana Paula; Ribas, Karla Giacomelli; Adams, Andréa Inês Horn; Silva, Marcos Antônio Segatto; Oliveira, Paulo Renato

    2015-01-01

    Drugs classified as class IV by the Biopharmaceutical Classification System present significant problems in relation to effective oral administration. In the case of antibiotics, the subsequently high doses required can enhance the emergence of microorganism resistance and lead to a low rate of patient treatment adherence. In an attempt to improve physicochemical properties and microbiological activity of norfloxacin, the aim of this study was to investigate different methods (coevaporation, kneading followed by freeze-drying or spray-drying) to obtain complexes of norfloxacin and different cyclodextrins. Guest-host interactions were investigated through a complete physical-chemical characterization and the dissolution profile and microbiological activity were determined. The formation of a complex of norfloxacin and β-cyclodextrin (1:1), obtained by kneading followed by freeze drying, led to increased drug solubility, which could maximize the oral drug absorption. Moreover, the microbiological activity was enhanced by around 23.3%, demonstrating that the complex formed could represent an efficient drug delivery system.

  18. Monitoring system for the quality assessment in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Carl, Volker

    2015-03-01

    Additive Manufacturing (AM) refers to a process by which a set of digital data -representing a certain complex 3dim design - is used to grow the respective 3dim real structure equal to the corresponding design. For the powder-based EOS manufacturing process a variety of plastic and metal materials can be used. Thereby, AM is in many aspects a very powerful tool as it can help to overcome particular limitations in conventional manufacturing. AM enables more freedom of design, complex, hollow and/or lightweight structures as well as product individualisation and functional integration. As such it is a promising approach with respect to the future design and manufacturing of complex 3dim structures. On the other hand, it certainly calls for new methods and standards in view of quality assessment. In particular, when utilizing AM for the design of complex parts used in aviation and aerospace technologies, appropriate monitoring systems are mandatory. In this respect, recently, sustainable progress has been accomplished by joining the common efforts and concerns of a manufacturer Additive Manufacturing systems and respective materials (EOS), along with those of an operator of such systems (MTU Aero Engines) and experienced application engineers (Carl Metrology), using decent know how in the field of optical and infrared methods regarding non-destructive-examination (NDE). The newly developed technology is best described by a high-resolution layer by layer inspection technique, which allows for a 3D tomography-analysis of the complex part at any time during the manufacturing process. Thereby, inspection costs are kept rather low by using smart image-processing methods as well as CMOS sensors instead of infrared detectors. Moreover, results from conventional physical metallurgy may easily be correlated with the predictive results of the monitoring system which not only allows for improvements of the AM monitoring system, but finally leads to an optimisation of the quality

  19. Monitoring system for the quality assessment in additive manufacturing

    SciTech Connect

    Carl, Volker

    2015-03-31

    Additive Manufacturing (AM) refers to a process by which a set of digital data -representing a certain complex 3dim design - is used to grow the respective 3dim real structure equal to the corresponding design. For the powder-based EOS manufacturing process a variety of plastic and metal materials can be used. Thereby, AM is in many aspects a very powerful tool as it can help to overcome particular limitations in conventional manufacturing. AM enables more freedom of design, complex, hollow and/or lightweight structures as well as product individualisation and functional integration. As such it is a promising approach with respect to the future design and manufacturing of complex 3dim structures. On the other hand, it certainly calls for new methods and standards in view of quality assessment. In particular, when utilizing AM for the design of complex parts used in aviation and aerospace technologies, appropriate monitoring systems are mandatory. In this respect, recently, sustainable progress has been accomplished by joining the common efforts and concerns of a manufacturer Additive Manufacturing systems and respective materials (EOS), along with those of an operator of such systems (MTU Aero Engines) and experienced application engineers (Carl Metrology), using decent know how in the field of optical and infrared methods regarding non-destructive-examination (NDE). The newly developed technology is best described by a high-resolution layer by layer inspection technique, which allows for a 3D tomography-analysis of the complex part at any time during the manufacturing process. Thereby, inspection costs are kept rather low by using smart image-processing methods as well as CMOS sensors instead of infrared detectors. Moreover, results from conventional physical metallurgy may easily be correlated with the predictive results of the monitoring system which not only allows for improvements of the AM monitoring system, but finally leads to an optimisation of the quality

  20. Environmentally sound manufacturing

    NASA Technical Reports Server (NTRS)

    Caddy, Larry A.; Bowman, Ross; Richards, Rex A.

    1994-01-01

    The NASA/Thiokol/industry team has developed and started implementation of an environmentally sound manufacturing plan for the continued production of solid rocket motors. They have worked with other industry representatives and the U.S. Environmental Protection Agency to prepare a comprehensive plan to eliminate all ozone depleting chemicals from manufacturing processes and to reduce the use of other hazardous materials used to produce the space shuttle reusable solid rocket motors. The team used a classical approach for problem solving combined with a creative synthesis of new approaches to attack this problem. As our ability to gather data on the state of the Earth's environmental health increases, environmentally sound manufacturing must become an integral part of the business decision making process.

  1. Environmentally sound manufacturing

    NASA Astrophysics Data System (ADS)

    Caddy, Larry A.; Bowman, Ross; Richards, Rex A.

    The NASA/Thiokol/industry team has developed and started implementation of an environmentally sound manufacturing plan for the continued production of solid rocket motors. They have worked with other industry representatives and the U.S. Environmental Protection Agency to prepare a comprehensive plan to eliminate all ozone depleting chemicals from manufacturing processes and to reduce the use of other hazardous materials used to produce the space shuttle reusable solid rocket motors. The team used a classical approach for problem solving combined with a creative synthesis of new approaches to attack this problem. As our ability to gather data on the state of the Earth's environmental health increases, environmentally sound manufacturing must become an integral part of the business decision making process.

  2. Additive manufacturing of optical components

    NASA Astrophysics Data System (ADS)

    Heinrich, Andreas; Rank, Manuel; Maillard, Philippe; Suckow, Anne; Bauckhage, Yannick; Rößler, Patrick; Lang, Johannes; Shariff, Fatin; Pekrul, Sven

    2016-08-01

    The development of additive manufacturing methods has enlarged rapidly in recent years. Thereby, the work mainly focuses on the realization of mechanical components, but the additive manufacturing technology offers a high potential in the field of optics as well. Owing to new design possibilities, completely new solutions are possible. This article briefly reviews and compares the most important additive manufacturing methods for polymer optics. Additionally, it points out the characteristics of additive manufactured polymer optics. Thereby, surface quality is of crucial importance. In order to improve it, appropriate post-processing steps are necessary (e.g. robot polishing or coating), which will be discussed. An essential part of this paper deals with various additive manufactured optical components and their use, especially in optical systems for shape metrology (e.g. borehole sensor, tilt sensor, freeform surface sensor, fisheye lens). The examples should demonstrate the potentials and limitations of optical components produced by additive manufacturing.

  3. Immediate single-stage reconstruction of complex frontofaciobasal injuries: part I.

    PubMed

    Awadalla, Akram Mohamed; Ezzeddine, Hichem; Fawzy, Naglaaa; Saeed, Mohammad Al; Ahmad, Mohammad R

    2015-03-01

    Objective To determine if immediate (within 6 hours of adequate resuscitation) single-stage repair of complex craniofacial injuries could be accomplished with acceptable morbidity and mortality taking into consideration the cosmetic appearance of the patient. Patients and Methods A total of 26 patients (19 men, 7 women) ranging in age from 8 to 58 years with Glasgow Coma Scale scores of 5 to 15 all had a combined single-stage repair of their complex craniofacial injuries within 6 hours of their admission. After initial assessment and adequate resuscitation, they were evaluated with three-dimensional computed tomography of the face and head. Coronal skin flap was used for maximum exposure for frontal sinus exenteration as well as dural repair, cortical debridement, calvarial reconstruction, and titanium mesh placement. Results Neurosurgical outcome at both the early and late evaluations was judged as good in 22 of 26 patients (85%), moderate in 3 of 26 (11%), and poor in 1 of the 26 (3.8%). Cosmetic surgical outcome at the early evaluation showed 17 of 26 (65%) to be excellent, 4 of 26 (15.5%) to be good, 4 patients (15.5%) to be fair, and 1 patient (3.8%) to be poor. At the late reevaluation, the fair had improved to good with an additional reconstructive procedure, and the poor had improved to fair with another surgery. There was no calvarial osteomyelitis, graft resorption, or intracranial abscess. Complications included three patients (11%): one (3.8%) had tension pneumocephaly and meningitis, one (3.8%) had delayed cerebrospinal fluid leak with recurrent attacks of meningitis, and one had a maxillary sinus infection (3.8%) secondary to front maxillary fistula. Conclusion The immediate single-stage repair of complex craniofacial injuries can be performed with acceptable results, a decreased need for reoperation, and improved cosmetic and functional outcomes.

  4. Immediate Single-Stage Reconstruction of Complex Frontofaciobasal Injuries: Part I

    PubMed Central

    Awadalla, Akram Mohamed; Ezzeddine, Hichem; Fawzy, Naglaaa; Saeed, Mohammad Al; Ahmad, Mohammad R.

    2014-01-01

    Objective To determine if immediate (within 6 hours of adequate resuscitation) single-stage repair of complex craniofacial injuries could be accomplished with acceptable morbidity and mortality taking into consideration the cosmetic appearance of the patient. Patients and Methods A total of 26 patients (19 men, 7 women) ranging in age from 8 to 58 years with Glasgow Coma Scale scores of 5 to 15 all had a combined single-stage repair of their complex craniofacial injuries within 6 hours of their admission. After initial assessment and adequate resuscitation, they were evaluated with three-dimensional computed tomography of the face and head. Coronal skin flap was used for maximum exposure for frontal sinus exenteration as well as dural repair, cortical debridement, calvarial reconstruction, and titanium mesh placement. Results Neurosurgical outcome at both the early and late evaluations was judged as good in 22 of 26 patients (85%), moderate in 3 of 26 (11%), and poor in 1 of the 26 (3.8%). Cosmetic surgical outcome at the early evaluation showed 17 of 26 (65%) to be excellent, 4 of 26 (15.5%) to be good, 4 patients (15.5%) to be fair, and 1 patient (3.8%) to be poor. At the late reevaluation, the fair had improved to good with an additional reconstructive procedure, and the poor had improved to fair with another surgery. There was no calvarial osteomyelitis, graft resorption, or intracranial abscess. Complications included three patients (11%): one (3.8%) had tension pneumocephaly and meningitis, one (3.8%) had delayed cerebrospinal fluid leak with recurrent attacks of meningitis, and one had a maxillary sinus infection (3.8%) secondary to front maxillary fistula. Conclusion The immediate single-stage repair of complex craniofacial injuries can be performed with acceptable results, a decreased need for reoperation, and improved cosmetic and functional outcomes. PMID:25844296

  5. Studying the Laws of the Thermoviscoplastic Deformation of a Solid Under Nonisothermal Complex Loading. Part 2

    NASA Astrophysics Data System (ADS)

    Shevchenko, Yu. N.; Terekhov, R. G.

    2001-06-01

    The studies made at the thermoplasticity department of the S. P. Timoshenko Institute of Mechanics are analyzed. These studies involve experimental validations of the kinematic equation of creep damage and the constitutive equations describing simple thermoviscoelastoplastic loading, with history, of isotropic and transversally isotropic bodies, for elastoviscoplastic deformation of bodies along slightly curved paths, for complex loading along arbitrary paths lying either in a plane arbitrarily oriented in the five-dimensional space of stresses or in one coordinate plane, and for elastoplastic deformation of a body's elements along paths of moderate curvature and small torsion

  6. A novel high-efficiency methodology for metal additive manufacturing

    NASA Astrophysics Data System (ADS)

    Du, Jun; Wei, Zhengying; Wang, Xin; Fang, Xuewei; Zhao, Guangxi

    2016-11-01

    Metal additive manufacturing (AM) offers unrivalled design freedom with the ability to manufacture complex parts. However, the high capital costs and slow throughput printing have severely restricted its application. In this paper, a new metal AM process, referred to as the "metal fused-coating additive manufacturing (MFCAM)", was developed for highly efficient metal parts production. This new process is the combination of metal fused-coating process and laser surface melting process. A two-dimensional numerical model was established to provide an insight into the primary thermo-physical phenomena occurring in the MFCAM process. Experiments of single-track formation were conducted using MFCAM to validate the feasibility of the proposed process. The good agreement between experimental and simulated results demonstrated the reasonableness of the established models.

  7. Myoclonus dystonia and muscular dystrophy: ɛ‐sarcoglycan is part of the dystrophin‐associated protein complex in brain

    PubMed Central

    Waite, Adrian J.; Carlisle, Francesca A.; Chan, Yiumo Michael

    2016-01-01

    ABSTRACT Background Myoclonus‐dystonia is a neurogenic movement disorder caused by mutations in the gene encoding ɛ‐sarcoglycan. By contrast, mutations in the α‐, β‐, γ‐, and δ‐sarcoglycan genes cause limb girdle muscular dystrophies. The sarcoglycans are part of the dystrophin‐associated protein complex in muscle that is disrupted in several types of muscular dystrophy. Intriguingly, patients with myoclonus‐dystonia have no muscle pathology; conversely, limb‐girdle muscular dystrophy patients have not been reported to have dystonia‐associated features. To gain further insight into the molecular mechanisms underlying these differences, we searched for evidence of a sarcoglycan complex in the brain. Methods Immunoaffinity chromatography and mass spectrometry were used to purify ubiquitous and brain‐specific ɛ‐sarcoglycan directly from tissue. Cell models were used to determine the effect of mutations on the trafficking and assembly of the brain sarcoglycan complex. Results Ubiquitous and brain‐specific ɛ‐sarcoglycan isoforms copurify with β‐, δ‐, and ζ‐sarcoglycan, β‐dystroglycan, and dystrophin Dp71 from brain. Incorporation of a muscular dystrophy‐associated β‐sarcoglycan mutant into the brain sarcoglycan complex impairs the formation of the βδ‐sarcoglycan core but fails to abrogate the association and membrane trafficking of ɛ‐ and ζ‐sarcoglycan. Conclusions ɛ‐Sarcoglycan is part of the dystrophin‐associated protein complex in brain. Partial preservation of ɛ‐ and ζ‐sarcoglycan in brain may explain the absence of myoclonus dystonia‐like features in muscular dystrophy patients. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. PMID:27535350

  8. LINC complexes promote homologous recombination in part through inhibition of nonhomologous end joining.

    PubMed

    Lawrence, Katherine S; Tapley, Erin C; Cruz, Victor E; Li, Qianyan; Aung, Kayla; Hart, Kevin C; Schwartz, Thomas U; Starr, Daniel A; Engebrecht, JoAnne

    2016-12-19

    The Caenorhabditis elegans SUN domain protein, UNC-84, functions in nuclear migration and anchorage in the soma. We discovered a novel role for UNC-84 in DNA damage repair and meiotic recombination. Loss of UNC-84 leads to defects in the loading and disassembly of the recombinase RAD-51. Similar to mutations in Fanconi anemia (FA) genes, unc-84 mutants and human cells depleted of Sun-1 are sensitive to DNA cross-linking agents, and sensitivity is rescued by the inactivation of nonhomologous end joining (NHEJ). UNC-84 also recruits FA nuclease FAN-1 to the nucleoplasm, suggesting that UNC-84 both alters the extent of repair by NHEJ and promotes the processing of cross-links by FAN-1. UNC-84 interacts with the KASH protein ZYG-12 for DNA damage repair. Furthermore, the microtubule network and interaction with the nucleoskeleton are important for repair, suggesting that a functional linker of nucleoskeleton and cytoskeleton (LINC) complex is required. We propose that LINC complexes serve a conserved role in DNA repair through both the inhibition of NHEJ and the promotion of homologous recombination at sites of chromosomal breaks. © 2016 Lawrence et al.

  9. Overtone mobility spectrometry: part 4. OMS-OMS analyses of complex mixtures.

    PubMed

    Kurulugama, Ruwan T; Nachtigall, Fabiane M; Valentine, Stephen J; Clemmer, David E

    2011-11-01

    A new, two-dimensional overtone mobility spectrometry (OMS-OMS) instrument is described for the analysis of complex peptide mixtures. OMS separations are based on the differences in mobilities of ions in the gas phase. The method utilizes multiple drift regions with modulated drift fields such that only ions with appropriate mobilities are transmitted to the detector. Here we describe a hybrid OMS-OMS combination that utilizes two independently operated OMS regions that are separated by an ion activation region. Mobility-selected ions from the first OMS region are exposed to energizing collisions and may undergo structural transitions before entering the second OMS region. This method generates additional peak capacity and allows for higher selectivity compared with the one-dimensional OMS method. We demonstrate the approach using a three-protein tryptic digest spiked with the peptide Substance P. The [M + 3H](3+) ion from Substance P can be completely isolated from other components in this complex mixture prior to introduction into the mass spectrometer.

  10. Overtone Mobility Spectrometry: Part 4. OMS-OMS Analyses of Complex Mixtures

    PubMed Central

    Kurulugama, Ruwan T.; Nachtigall, Fabiane M.; Valentine, Stephen J.; Clemmer, David E.

    2013-01-01

    A new, two-dimensional overtone mobility spectrometry (OMS-OMS) instrument is described for the analysis of complex peptide mixtures. OMS separations are based on the differences in mobilities of ions in the gas phase. The method utilizes multiple drift regions with modulated drift fields such that only ions with appropriate mobilities are transmitted to the detector. Here we describe a hybrid OMS-OMS combination that utilizes two independently operated OMS regions that are separated by an ion activation region. Mobility-selected ions from the first OMS region are exposed to energizing collisions and may undergo structural transitions before entering the second OMS region. This method generates additional peak capacity and allows for higher selectivity compared with the one-dimensional OMS method. We demonstrate the approach using a three-protein tryptic digest spiked with the peptide Substance P. The [M+3H]3+ ion from Substance P can be completely isolated from other components in this complex mixture prior to introduction into the mass spectrometer. PMID:21952760

  11. Overtone Mobility Spectrometry: Part 4. OMS-OMS Analyses of Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Kurulugama, Ruwan T.; Nachtigall, Fabiane M.; Valentine, Stephen J.; Clemmer, David E.

    2011-11-01

    A new, two-dimensional overtone mobility spectrometry (OMS-OMS) instrument is described for the analysis of complex peptide mixtures. OMS separations are based on the differences in mobilities of ions in the gas phase. The method utilizes multiple drift regions with modulated drift fields such that only ions with appropriate mobilities are transmitted to the detector. Here we describe a hybrid OMS-OMS combination that utilizes two independently operated OMS regions that are separated by an ion activation region. Mobility-selected ions from the first OMS region are exposed to energizing collisions and may undergo structural transitions before entering the second OMS region. This method generates additional peak capacity and allows for higher selectivity compared with the one-dimensional OMS method. We demonstrate the approach using a three-protein tryptic digest spiked with the peptide Substance P. The [M + 3H]3+ ion from Substance P can be completely isolated from other components in this complex mixture prior to introduction into the mass spectrometer.

  12. Using Innovative Technologies for Manufacturing and Evaluating Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Betts, Erin M.; Hardin, Andy

    2011-01-01

    Many of the manufacturing and evaluation techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing and evaluating hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) and white light scanning are being adopted and evaluated for their use on J-2X, with hopes of employing both technologies on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powdered metal manufacturing process in order to produce complex part geometries. The white light technique is a non-invasive method that can be used to inspect for geometric feature alignment. Both the DMLS manufacturing method and the white light scanning technique have proven to be viable options for manufacturing and evaluating rocket engine hardware, and further development and use of these techniques is recommended.

  13. Manufacturing scale-up of composite fuselage crown panels

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Gessel, M.; Grant, Carroll G.; Brown, T.

    1993-01-01

    The goal of the Boeing effort under the NASA ACT program is to reduce manufacturing costs of composite fuselage structure. Materials, fabrication of complex subcomponents and assembly issues are expected to drive the costs of composite fuselage structure. Several manufacturing concepts for the crown section of the fuselage were evaluated through the efforts of a Design Build Team (DBT). A skin-stringer-frame intricate bond design that required no fasteners for the panel assembly was selected for further manufacturing demonstrations. The manufacturing processes selected for the intricate bond design include Advanced Tow Placement (ATP) for multiple skin fabrication, resin transfer molding (RTM) of fuselage frames, innovative cure tooling, and utilization of low-cost material forms. Optimization of these processes for final design/manufacturing configuration was evaluated through the fabrication of several intricate bond panels. Panels up to 7 ft. by 10 ft. in size were fabricated to simulate half scale production parts. The qualitative and quantitative results of these manufacturing demonstrations were used to assess manufacturing risks and technology readiness for production.

  14. Apparel Manufacture

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Marshall Space Flight Center teamed with the University of Alabama in Huntsville (UAH) in 1989 on a program involving development of advanced simulation software. Concurrently, the State of Alabama chartered UAH to conduct a technology advancement program in support of the state's apparel manufacturers. In 1992, under contract to Marshall, UAH developed an apparel-specific software package that allows manufacturers to design and analyze modules without making an actual investment -- it functions on ordinary PC equipment. By 1995, Marshall had responded to requests for the package from more than 400 companies in 36 states; some of which reported savings up to $2 million. The National Garment Company of Missouri, for example, uses the system to design and balance a modular line before committing to expensive hardware; for setting up sewing lines; and for determining the composition of a new team.

  15. PROGRAM-ORIENTED INFORMATION--A MANAGEMENT SYSTEMS COMPLEX FOR STATE EDUCATION AGENCIES. PART II, MANUAL OF ACCOUNTING AND RELATED FINANCIAL PROCEDURES.

    ERIC Educational Resources Information Center

    FRIEDMAN, BURTON DEAN; AND OTHERS

    THIS DOCUMENT IS THE SECOND PART OF A REPORT, PROGRAM-ORIENTED INFORMATION--A MANAGEMENT SYSTEMS COMPLEX FOR STATE EDUCATION AGENCIES. PART 1, EA 001 170, SUBTITLED "ANALYSIS AND PROPOSALS," CONTAINS AN OUTLINE OF THE NEED FOR A MANAGEMENT SYSTEMS COMPLEX WITHIN EACH STATE EDUCATION AGENCY. THIS DOCUMENT IS A MANUAL PRESENTING THE…

  16. Optimizing Clinical Operations as part of a Global Emergency Medicine Initiative in Kumasi, Ghana: Application of Lean Manufacturing Principals to Low Resource Health Systems

    PubMed Central

    Carter, Patrick M.; Desmond, Jeffery S.; Akanbobnaab, Christopher; Oteng, Rockefeller A.; Rominski, Sarah; Barsan, William G.; Cunningham, Rebecca

    2012-01-01

    Background Although many global health programs focus on providing clinical care or medical education, improving clinical operations can have a significant effect on patient care delivery, especially in developing health systems without high-level operations management. Lean manufacturing techniques have been effective in decreasing emergency department (ED) length of stay, patient waiting times, numbers of patients leaving without being seen, and door-to-balloon times for ST-elevation myocardial infarction in developed health systems; but use of Lean in low to middle income countries with developing emergency medicine systems has not been well characterized. Objectives To describe the application of Lean manufacturing techniques to improve clinical operations at Komfo Anokye Teaching Hospital in Ghana and to identify key lessons learned to aid future global EM initiatives. Methods A three-week Lean improvement program focused on the hospital admissions process at Komfo Anokye Teaching Hospital was completed by a 14-person team in six stages: problem definition, scope of project planning, value stream mapping, root cause analysis, future state planning, and implementation planning. Results The authors identified eight lessons learned during our use of Lean to optimize the operations of an ED in a global health setting: 1) the Lean process aided in building a partnership with Ghanaian colleagues; 2) obtaining and maintaining senior institutional support is necessary and challenging; 3) addressing power differences among the team to obtain feedback from all team members is critical to successful Lean analysis; 4) choosing a manageable initial project is critical to influence long-term Lean use in a new environment; 5) data intensive Lean tools can be adapted and are effective in a less resourced health system; 6) several Lean tools focused on team problem solving techniques worked well in a low resource system without modification; 7) using Lean highlighted that

  17. Optimizing clinical operations as part of a global emergency medicine initiative in Kumasi, Ghana: application of Lean manufacturing principals to low-resource health systems.

    PubMed

    Carter, Patrick M; Desmond, Jeffery S; Akanbobnaab, Christopher; Oteng, Rockefeller A; Rominski, Sarah D; Barsan, William G; Cunningham, Rebecca M

    2012-03-01

    Although many global health programs focus on providing clinical care or medical education, improving clinical operations can have a significant effect on patient care delivery, especially in developing health systems without high-level operations management. Lean manufacturing techniques have been effective in decreasing emergency department (ED) length of stay, patient waiting times, numbers of patients leaving without being seen, and door-to-balloon times for ST-elevation myocardial infarction in developed health systems, but use of Lean in low to middle income countries with developing emergency medicine (EM) systems has not been well characterized. To describe the application of Lean manufacturing techniques to improve clinical operations at Komfo Anokye Teaching Hospital (KATH) in Ghana and to identify key lessons learned to aid future global EM initiatives. A 3-week Lean improvement program focused on the hospital admissions process at KATH was completed by a 14-person team in six stages: problem definition, scope of project planning, value stream mapping, root cause analysis, future state planning, and implementation planning. The authors identified eight lessons learned during our use of Lean to optimize the operations of an ED in a global health setting: 1) the Lean process aided in building a partnership with Ghanaian colleagues; 2) obtaining and maintaining senior institutional support is necessary and challenging; 3) addressing power differences among the team to obtain feedback from all team members is critical to successful Lean analysis; 4) choosing a manageable initial project is critical to influence long-term Lean use in a new environment; 5) data intensive Lean tools can be adapted and are effective in a less resourced health system; 6) several Lean tools focused on team problem-solving techniques worked well in a low-resource system without modification; 7) using Lean highlighted that important changes do not require an influx of resources; and

  18. Manufacturing technology

    SciTech Connect

    Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

  19. Interlace properties for the real and imaginary parts of the wave functions of complex-valued potentials with real spectrum

    NASA Astrophysics Data System (ADS)

    Jaimes-Nájera, Alfonso; Rosas-Ortiz, Oscar

    2017-01-01

    Some general properties of the wave functions of complex-valued potentials with real spectrum are studied. The main results are presented in a series of lemmas, corollaries and theorems that are satisfied by the zeros of the real and imaginary parts of the wave functions on the real line. In particular, it is shown that such zeros interlace so that the corresponding probability densities ρ(x) are never null. We find that the profile of the imaginary part VI(x) of a given complex-valued potential determines the number and distribution of the maxima and minima of the related probability densities. Our conjecture is that VI(x) must be continuous in R, and that its integral over all the real line must be equal to zero in order to get control on the distribution of the maxima and minima of ρ(x) . The applicability of these results is shown by solving the eigenvalue equation of different complex potentials, these last being either PT-symmetric or not invariant under the PT-transformation.

  20. A glycine-cleavage complex as part of the folate one-carbon metabolism of Plasmodium falciparum

    PubMed Central

    Salcedo, Enrique; Sims, Paul F.G.; Hyde, John E.

    2009-01-01

    The glycine-cleavage complex (GCV) and serine hydroxymethyltransferase represent the two systems of one-carbon transfer that are employed in the biosynthesis of active folate cofactors in eukaryotes. Although the understanding of this area of metabolism in Plasmodium falciparum is still at an early stage, we discuss evidence that genes and transcription products of the GCV are present and expressed in this parasite. The potential role of the GCV and its relevance to the life cycle and pathogenesis of the malaria erythrocytic stages are also considered. According to its expression profile, the GCV seems to be particularly active in gametocytes. The GCV enzyme dihydrolipoamide dehydrogenase has two isoforms encoded by two different genes. It has been demonstrated recently that both genes are functional, with one of them identified as being part of a pyruvate dehydrogenase complex that is present exclusively in the apicoplast of Plasmodium species. The other isoform probably forms part of the Plasmodium GCV. The GCV is the first enzyme complex involved in folate metabolism in this parasite that can be assumed, with a good degree of certainty, to be located in the mitochondria. PMID:16039160

  1. Green Manufacturing

    SciTech Connect

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  2. Relationship between industrial discharges and contamination of raw water resources by perfluorinated compounds. Part I: Case study of a fluoropolymer manufacturing plant.

    PubMed

    Dauchy, Xavier; Boiteux, Virginie; Rosin, Christophe; Munoz, Jean-François

    2012-09-01

    Perfluorinated compounds (PFCs) have been recognized as global environmental pollutants. They are used in various applications and high levels have been found in water bodies located near highly industrialized sites. In the present study, 10 PFCs were quantitatively determined in water samples collected in the vicinity of a fluoropolymer manufacturing plant and in drinking water resources located downstream. The release of PFHxA and PFNA to the receiving river was estimated at 10 and 4.5 tons/year, respectively. PFHxA (0.058-0.156 μg/L), PFNA (0.013-0.035 μg/L) and PFOA (0.007-0.025 μg/L) were predominant and prevalent in all the studied drinking water resources, confirming with the composition profile the impact of the industrial park release.

  3. [Smoking and digestive tract: a complex relationship. Part 2: Intestinal microblota and cigarette smoking].

    PubMed

    Begon, Jacques; Juillerat, Pascal; Cornuz, Jacques; Clair, Carole

    2015-06-10

    The digestive tract is colonized from birth by a bacterial population called the microbiota which influences the development of the immune system. Modifications in its composition are associated with problems such as obesity or inflammatory bowel diseases. Antibiotics are known to influence the intestinal microbiota but other environmental factors such as cigarette smoking also seem to have an impact on its composition. This influence might partly explain weight gain which is observed after smoking cessation. Indeed there is a modification of the gut microbiota which becomes similar to that of obese people with a microbiotical profile which is more efficient to extract calories from ingested food. These new findings open new fields of diagnostic and therapeutic approaches through the regulation of the microbiota.

  4. Solid-State Additive Manufacturing for Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Norfolk, Mark; Johnson, Hilary

    2015-03-01

    Energy densities in devices are increasing across many industries including power generation, high power electronics, manufacturing, and automotive. Increasingly, there is a need for very high efficiency thermal management devices that can pull heat out of a small area at higher and higher rates. Metal additive manufacturing (AM) technologies have the promise of creating parts with complex internal geometries required for integral thermal management. However, this goal has not been met due to constraints in fusion-based metal 3D printers. This work presents a new strategy for metal AM of heat exchangers using an ultrasonic sheet lamination approach.

  5. Computed tomography characterisation of additive manufacturing materials.

    PubMed

    Bibb, Richard; Thompson, Darren; Winder, John

    2011-06-01

    Additive manufacturing, covering processes frequently referred to as rapid prototyping and rapid manufacturing, provides new opportunities in the manufacture of highly complex and custom-fitting medical devices and products. Whilst many medical applications of AM have been explored and physical properties of the resulting parts have been studied, the characterisation of AM materials in computed tomography has not been explored. The aim of this study was to determine the CT number of commonly used AM materials. There are many potential applications of the information resulting from this study in the design and manufacture of wearable medical devices, implants, prostheses and medical imaging test phantoms. A selection of 19 AM material samples were CT scanned and the resultant images analysed to ascertain the materials' CT number and appearance in the images. It was found that some AM materials have CT numbers very similar to human tissues, FDM, SLA and SLS produce samples that appear uniform on CT images and that 3D printed materials show a variation in internal structure.

  6. 76 FR 74749 - Critical Parts for Airplane Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... propeller critical parts by the manufacturer, and establish engineering, manufacture, and maintenance.... Consequently, there are no requirements for design, manufacture, maintenance, or management of propeller... provide information concerning propeller critical part design, manufacture, or maintenance. Background On...

  7. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part III: Cyanotic Heart Diseases and Complex Congenital Anomalies

    PubMed Central

    Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-01-01

    From the stand point of radiographic analysis most of the complex cyanotic congenital heart diseases (CHD), can be divided into those associated with decreased or increased pulmonary vascularity. Combination of a specific cardiac configuration and status of lung vasculature in a clinical context allows plain film diagnosis to be predicted in some CHD. Correlation of the position of the cardiac apex in relation to the visceral situs is an important information that can be obtained from the plain film. This information helps in gathering information about the atrio-ventricular, ventricular arterial concordance or discordance. Categorization of the cyanotic heart disease based on vascularity is presented below. Thorough understanding of cardiac anatomy by different imaging methods is essential in understanding and interpreting complex cardiac disease. Basic anatomical details and background for interpretation are provided in the previous parts of this presentation. PMID:27630924

  8. Complex image method for RF antenna-plasma inductive coupling calculation in planar geometry. Part I: basic concepts

    NASA Astrophysics Data System (ADS)

    Howling, A. A.; Guittienne, Ph; Jacquier, R.; Furno, I.

    2015-12-01

    The coupling between an inductive source and the plasma determines the power transfer efficiency and the reflected impedance in the primary circuit. Usually, the plasma coupling is analysed by means of a transformer equivalent circuit, where the plasma inductance and resistance are estimated using a global plasma model. This paper shows that, for planar RF antennas, the mutual inductance between the plasma and the primary circuit can be calculated using partial inductances and the complex image method, where the plasma coupling is determined in terms of the plasma skin depth and the distance to the plasma. To introduce the basic concepts, the mutual inductance is calculated here for a linear conductor parallel to the plasma surface. In the accompanying paper part II Guittienne et al (2015 Plasma Sources Sci. Technol. 24 065015), impedance measurements on a RF resonant planar plasma source are modeled using an impedance matrix where the plasma-antenna mutual impedances are calculated using the complex image method presented here.

  9. Design for manufacturing: application of collaborative multidisciplinary decision-making methodology

    NASA Astrophysics Data System (ADS)

    Xiao, A.; Seepersad, C. C.; Allen, J. K.; Rosen, D. W.; Mistree, F.

    2007-06-01

    Design for manufacturing is often difficult for mechanical parts, since significant manufacturing knowledge is required to adjust part designs for manufacturability. The traditional trial-and-error approach usually leads to expensive iterations and compromises the quality of the final design. The authors believe the appropriate way to handle product design for manufacturing problems is not to formulate a large design problem that exhaustively incorporates design and manufacturing issues, but to separate the design and manufacturing activities and provide support for collaboration between engineering teams. In this article, the Collaborative Multidisciplinary Decision-making Methodology is used to solve a product design and manufacturing problem. First, the compromise Decision Support Problem is used as a mathematical model of each engineering teams' design decisions and as a medium for information exchange. Second, game-theoretic principles are employed to resolve couplings or interactions between the teams' decisions. Third, design-capability indices are used to maintain design freedom at the early stages of product realization in order to accommodate unexpected downstream design changes. A plastic robot-arm design and manufacturing scenario is presented to demonstrate the application of this methodology and its effectiveness for solving a complex design for manufacturing problem in a streamlined manner, with minimal expensive iterations.

  10. Complex Home Care: Part I-Utilization and Costs to Families for Health Care Services Each Year

    PubMed Central

    Ross, Vicki M.; Yadrich, Donna Macan; Williams, Arthur R.; Howard, Lyn; Smith, Carol E.

    2011-01-01

    The goal of this study was to determine the annual average utilization and non-reimbursed costs of health services needed by 80 families managing lifelong complex home care. Results indicate that per patient per year there was an average of 36 appointments with a variety of health service professionals that resulted in non-reimbursed annual costs of $4,716. These costs were greater for those that were hospitalized. In follow-up articles, data collected on annual insurance premium payments and additional out-of-pocket health care costs incurred by these families are summarized (Part II) and a structural equation model of these families financial, social and emotional costs in relation to patients’ clinical outcomes and family caregivers’ quality of life is presented (Part III). PMID:21625407

  11. Possibilities of the Technology of Additive Production for Making Complex-Shape Parts and Depositing Functional Coatings from Metallic Powders

    NASA Astrophysics Data System (ADS)

    Grigor'ev, S. N.; Tarasova, T. V.

    2016-01-01

    The aspects of terminology, definitions and classification in the technology of additive production are considered. The principal possibility of fabrication of complex-shape parts from a refractory cobalt alloy by the method of selective laser melting and deposition of hard and wear-resistant coatings from Ti and SiC powders by coaxial laser surfacing is shown. The technological possibility of microlaser surfacing with lateral resolution about 100 μm in the production of parts from aluminum alloys is considered. The mechanisms of formation of structure in the studied alloys typical for selective laser melting, laser surfacing and microlaser surfacing are determined. The physical and mechanical properties of the alloys are investigated.

  12. Evolution of the cephalopod head complex by assembly of multiple molluscan body parts: Evidence from Nautilus embryonic development.

    PubMed

    Shigeno, Shuichi; Sasaki, Takenori; Moritaki, Takeya; Kasugai, Takashi; Vecchione, Michael; Agata, Kiyokazu

    2008-01-01

    Cephalopod head parts are among the most complex occurring in all invertebrates. Hypotheses for the evolutionary process require a drastic body-plan transition in relation to the life-style changes from benthos to active nekton. Determining these transitions, however, has been elusive because of scarcity of fossil records of soft tissues and lack of some of the early developmental stages of the basal species. Here we report the first embryological evidence in the nautiloid cephalopod Nautilus pompilius for the morphological development of the head complex by a unique assembly of multiple archetypical molluscan body parts. Using a specialized aquarium system, we successfully obtained a series of developmental stages that enabled us to test previous controversial scenarios. Our results demonstrate that the embryonic organs exhibit body plans that are primarily bilateral and antero-posteriorly elongated at stereotyped positions. The distinct cephalic compartment, foot, brain cords, mantle, and shell resemble the body plans of monoplacophorans and basal gastropods. The numerous digital tentacles of Nautilus develop from simple serial and spatially-patterned bud-like anlagen along the anterior-posterior axis, indicating that origins of digital tentacles or arms of all other cephalopods develop not from the head but from the foot. In middle and late embryos, the primary body plans largely change to those of juveniles or adults, and finally form a "head" complex assembled by anlagen of the foot, cephalic hood, collar, hyponome (funnel), and the foot-derived epidermal covers. We suggest that extensions of the collar-funnel compartment and free epidermal folds derived from multiple topological foot regions may play an important role in forming the head complex, which is thought to be an important feature during the body plan transition.

  13. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2016-12-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  14. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2017-04-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  15. Geologic characteristics and movement of the Meadow Creek landslide, part of the Coal Hill landslide complex, western Kane County, Utah

    USGS Publications Warehouse

    Ashland, Francis X.; McDonald, Greg N.; Carney, Stephanie M.; Tabet, David E.; Johnson, Cari L.

    2010-01-01

    The Meadow Creek landslide, part of the Coal Hill landslide complex in western Kane County, Utah, is about 1.7 miles (2.7 km) wide and 1.3 miles (2.1 km) long and contains six smaller historical slides. The upper part of the Meadow Creek landslide is gently sloping and consists of displaced and back-rotated blocks of Cretaceous Dakota and Cedar Mountain Formations that form northeast- to locally east-trending ridges that are separated by sediment-filled half-grabens. The lower part of the landslide is gently to moderately sloping, locally incised, and consists of heterogeneous debris that overrides the Jurassic Carmel Formation near Meadow Creek. Monitoring using a survey-grade Global Positioning System (GPS) instrument detected movement of the southern part of the Meadow Creek landslide between October 2005 and October 2008, including movement of two of the historical slides-landslides 1 and 2. The most movement during the measurement period occurred within the limits of persistently moving landslide 1 and ranged from about 24 to 64 inches (61-163 cm). Movement of the abutting southern part of the Meadow Creek landslide ranged from approximately 6 to 10 inches (15-25 cm). State Route 9 crosses over approximately a mile (1.6 km) of the southern part of the Meadow Creek landslide, including landslide 1. The highway and its predecessor (State Route 15) have been periodically displaced and damaged by persistent movement of landslide 1. Most of the landslide characteristics, particularly its size, probable depth, and the inferred weak strength and low permeability of clay-rich gouge derived from the Dakota and Cedar Mountain Formations, are adverse to and pose significant challenges to landslide stabilization. Secondary hazards include piping-induced sinkholes along scarps and ground cracks, and debris flows and rock falls from the main-scarp escarpment.

  16. The Clean Energy Manufacturing Initiative: Dissolving Silos

    ScienceCinema

    Danielson, David; Orr, Lynn; Sarkar, Reuben; Zayas, Jose; Johnson, Mark

    2016-07-12

    DOE’s work is closely tied to manufacturing because manufacturing is an important part of technology innovation and commercialization. Find out how DOE – through the Clean Energy Manufacturing Initiative – is helping America lead the clean energy revolution.

  17. 40 CFR 1037.650 - Tire manufacturers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Tire manufacturers. 1037.650 Section... CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Special Compliance Provisions § 1037.650 Tire manufacturers. This section describes how the requirements of this part apply with respect to tire manufacturers...

  18. 40 CFR 1037.650 - Tire manufacturers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Tire manufacturers. 1037.650 Section... CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Special Compliance Provisions § 1037.650 Tire manufacturers. This section describes how the requirements of this part apply with respect to tire manufacturers...

  19. 40 CFR 1037.650 - Tire manufacturers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Tire manufacturers. 1037.650 Section... CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Special Compliance Provisions § 1037.650 Tire manufacturers. This section describes how the requirements of this part apply with respect to tire manufacturers...

  20. Technology for Manufacturing Efficiency

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Ground Processing Scheduling System (GPSS) was developed by Ames Research Center, Kennedy Space Center and divisions of the Lockheed Company to maintain the scheduling for preparing a Space Shuttle Orbiter for a mission. Red Pepper Software Company, now part of PeopleSoft, Inc., commercialized the software as their ResponseAgent product line. The software enables users to monitor manufacturing variables, report issues and develop solutions to existing problems.

  1. Compatibility of manufacturing process fluids with HFC refrigerants and ester lubricants. First draft of final report of part one and quarterly report of part two, January 3, 1994--November 30, 1994

    SciTech Connect

    Cavestri, R.C.

    1994-11-01

    Included in this report is a compiled partial list of presently used processing materials in the air-conditioning and refrigeration industry and the manufacturers, intended uses, and applications of each. Also listed are the processing materials that have received final acceptance for this contracted study. An analytical methodology discussion is presented, including the final decision and the limitations of said methodology, as well as how to establish a level of confidence in observed immiscible material components in two 32 ISO VG polyolesters: (1) Mobil EAL Arctic 32; and (2) ICI Emkarate RL32H; both with HFC 134a refrigerant solutions.

  2. Manufacturing technology

    SciTech Connect

    Blaedel, K L

    1998-01-01

    The mission of the Manufacturing Technology thrust area at Lawrence Livermore National Laboratory (LLNL) has been to have an adequate base of manufacturing technology, not necessarily resident at LLNL, to conduct their future business. The specific goals were (1) to develop an understanding of fundamental fabrication processes; (2) to construct general purpose process models that have wide applicability; (3) to document their findings and models in journals; (4) to transfer technology to LLNL programs, industry, and colleagues; and (5) to develop continuing relationships with the industrial and academic communities to advance their collective understanding of fabrication processes. In support of this mission, two projects were reported here, each of which explores a way to bring higher precision to the manufacturing challenges that we face over the next few years. The first, ''A Spatial-Frequency-Domain Approach to Designing a Precision Machine Tools,'' is an overall view of how they design machine tools and instruments to make or measure workpieces that are specified in terms of the spatial frequency content of the residual errors of the workpiece surface. This represents an improvement of an ''error budget,'' a design tool that saw significant development in the early 1980's, and has been in active use since then. The second project, ''Micro-Drilling of ICF Capsules,'' is an attempt to define the current state in commercial industry for drilling small holes, particularly laser-drilling. The report concludes that 1-{micro}m diameter holes cannot currently be drilled to high aspect ratios, and then defines the engineering challenges that will have to be overcome to machine holes small enough for NIF capsules.

  3. Manufacturing technology

    NASA Astrophysics Data System (ADS)

    Leonard, J. A.; Floyd, H. L.; Goetsch, B.; Doran, L.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high-voltage varistors. A selective laser sintering process automates wax casting pattern fabrication. Numerical modeling improves the performance of a photoresist stripper (a simulation on a Cray supercomputer reveals the path of a uniform plasma). Improved mathematical models will help make the dream of low-cost ceramic composites come true.

  4. Demand Activated Manufacturing Architecture

    SciTech Connect

    Bender, T.R.; Zimmerman, J.J.

    2001-02-07

    Honeywell Federal Manufacturing & Technologies (FM&T) engineers John Zimmerman and Tom Bender directed separate projects within this CRADA. This Project Accomplishments Summary contains their reports independently. Zimmerman: In 1998 Honeywell FM&T partnered with the Demand Activated Manufacturing Architecture (DAMA) Cooperative Business Management Program to pilot the Supply Chain Integration Planning Prototype (SCIP). At the time, FM&T was developing an enterprise-wide supply chain management prototype called the Integrated Programmatic Scheduling System (IPSS) to improve the DOE's Nuclear Weapons Complex (NWC) supply chain. In the CRADA partnership, FM&T provided the IPSS technical and business infrastructure as a test bed for SCIP technology, and this would provide FM&T the opportunity to evaluate SCIP as the central schedule engine and decision support tool for IPSS. FM&T agreed to do the bulk of the work for piloting SCIP. In support of that aim, DAMA needed specific DOE Defense Programs opportunities to prove the value of its supply chain architecture and tools. In this partnership, FM&T teamed with Sandia National Labs (SNL), Division 6534, the other DAMA partner and developer of SCIP. FM&T tested SCIP in 1998 and 1999. Testing ended in 1999 when DAMA CRADA funding for FM&T ceased. Before entering the partnership, FM&T discovered that the DAMA SCIP technology had an array of applications in strategic, tactical, and operational planning and scheduling. At the time, FM&T planned to improve its supply chain performance by modernizing the NWC-wide planning and scheduling business processes and tools. The modernization took the form of a distributed client-server planning and scheduling system (IPSS) for planners and schedulers to use throughout the NWC on desktops through an off-the-shelf WEB browser. The planning and scheduling process within the NWC then, and today, is a labor-intensive paper-based method that plans and schedules more than 8,000 shipped parts

  5. The Future of Pharmaceutical Manufacturing Sciences

    PubMed Central

    2015-01-01

    The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial‐scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state‐of‐art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular‐based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot‐melt processing and printing‐based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3612–3638, 2015 PMID:26280993

  6. Circularly-symmetric complex normal ratio distribution for scalar transmissibility functions. Part II: Probabilistic model and validation

    NASA Astrophysics Data System (ADS)

    Yan, Wang-Ji; Ren, Wei-Xin

    2016-12-01

    In Part I of this study, some new theorems, corollaries and lemmas on circularly-symmetric complex normal ratio distribution have been mathematically proved. This part II paper is dedicated to providing a rigorous treatment of statistical properties of raw scalar transmissibility functions at an arbitrary frequency line. On the basis of statistics of raw FFT coefficients and circularly-symmetric complex normal ratio distribution, explicit closed-form probabilistic models are established for both multivariate and univariate scalar transmissibility functions. Also, remarks on the independence of transmissibility functions at different frequency lines and the shape of the probability density function (PDF) of univariate case are presented. The statistical structures of probabilistic models are concise, compact and easy-implemented with a low computational effort. They hold for general stationary vector processes, either Gaussian stochastic processes or non-Gaussian stochastic processes. The accuracy of proposed models is verified using numerical example as well as field test data of a high-rise building and a long-span cable-stayed bridge. This study yields new insights into the qualitative analysis of the uncertainty of scalar transmissibility functions, which paves the way for developing new statistical methodologies for modal analysis, model updating or damage detection using responses only without input information.

  7. Complexity.

    PubMed

    Gómez-Hernández, J Jaime

    2006-01-01

    It is difficult to define complexity in modeling. Complexity is often associated with uncertainty since modeling uncertainty is an intrinsically difficult task. However, modeling uncertainty does not require, necessarily, complex models, in the sense of a model requiring an unmanageable number of degrees of freedom to characterize the aquifer. The relationship between complexity, uncertainty, heterogeneity, and stochastic modeling is not simple. Aquifer models should be able to quantify the uncertainty of their predictions, which can be done using stochastic models that produce heterogeneous realizations of aquifer parameters. This is the type of complexity addressed in this article.

  8. Suspended Manufacture of Biological Structures.

    PubMed

    Moxon, Samuel R; Cooke, Megan E; Cox, Sophie C; Snow, Martyn; Jeys, Lee; Jones, Simon W; Smith, Alan M; Grover, Liam M

    2017-04-01

    A method for the production of complex cell-laden structures is reported, which allows high-levels of spatial control over mechanical and chemical properties. The potential of this method for producing complicated tissues is demonstrated by manufacturing a complex hard/soft tissue interface and demonstrating that cell phenotype can be maintained over four weeks of culture.

  9. Modular Manufacturing Simulator: Users Manual

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Modular Manufacturing Simulator (MMS) has been developed for the beginning user of computer simulations. Consequently, the MMS cannot model complex systems that require branching and convergence logic. Once a user becomes more proficient in computer simulation and wants to add more complexity, the user is encouraged to use one of the many available commercial simulation systems. The (MMS) is based on the SSE5 that was developed in the early 1990's by the University of Alabama in Huntsville (UAH). A recent survey by MSFC indicated that the simulator has been a major contributor to the economic impact of the MSFC technology transfer program. Many manufacturers have requested additional features for the SSE5. Consequently, the following features have been added to the MMS that are not available in the SSE5: runs under Windows, print option for both input parameters and output statistics, operator can be fixed at a station or assigned to a group of stations, operator movement based on time limit, part limit, or work-in-process (WIP) limit at next station. The movement options for a moveable operators are: go to station with largest WIP, rabbit chase where operator moves in circular sequence between stations, and push/pull where operator moves back and forth between stations. This user's manual contains the necessary information for installing the MMS on a PC, a description of the various MMS commands, and the solutions to a number of sample problems using the MMS. Also included in the beginning of this report is a brief discussion of technology transfer.

  10. Using Innovative Technologies for Manufacturing Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Betts, E. M.; Eddleman, D. E.; Reynolds, D. C.; Hardin, N. A.

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As the United States enters into the next space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, rapid manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on NASA s Space Launch System (SLS) upper stage engine, J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator (GG) discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using a workhorse gas generator (WHGG) test fixture at MSFC's East Test Area, the duct was subjected to extreme J-2X hot gas environments during 7 tests for a total of 537 seconds of hot-fire time. The duct underwent extensive post-test evaluation and showed no signs of degradation. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  11. Using Innovative Techniques for Manufacturing Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Betts, Erin M.; Reynolds, David C.; Eddleman, David E.; Hardin, Andy

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using the Workhorse Gas Generator (WHGG) test setup at MSFC?s East Test Area test stand 116, the duct was subject to extreme J-2X gas generator environments and endured a total of 538 seconds of hot-fire time. The duct survived the testing and was inspected after the test. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  12. Complex Correlation Kohn-T Method of Calculating Total and Elastic Cross Sections. Part 1; Electron-Hydrogen Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We report on the first part of a study of electron-hydrogen scattering, using a method which allows for the ab initio calculation of total and elastic cross sections at higher energies. In its general form the method uses complex 'radial' correlation functions, in a (Kohn) T-matrix formalism. The titled method, abbreviated Complex Correlation Kohn T (CCKT) method, is reviewed, in the context of electron-hydrogen scattering, including the derivation of the equation for the (complex) scattering function, and the extraction of the scattering information from the latter. The calculation reported here is restricted to S-waves in the elastic region, where the correlation functions can be taken, without loss of generality, to be real. Phase shifts are calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous lower bounds; they are in general agreement with those of Schwartz, but they are more accurate and outside his error bounds at a couple of energies,

  13. Rapid response manufacturing (RRM)

    SciTech Connect

    Cain, W.D.; Waddell, W.L.

    1997-02-18

    US industry is fighting to maintain its competitive edge in the global market place. Today markets fluctuate rapidly. Companies, to survive, have to be able to respond with quick-to-market, improved, high quality, cost efficient products. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies. The RRM project was established to leverage the expertise and resources of US private industries and federal agencies to develop, integrate, and deploy new technologies that meet critical needs for effective product realization. The RRM program addressed a needed change in the US Manufacturing infrastructure that will ensure US competitiveness in world market typified by mass customization. This project provided the effort needed to define, develop and establish a customizable infrastructure for rapid response product development design and manufacturing. A major project achievement was the development of a broad-based framework for automating and integrating the product and process design and manufacturing activities involved with machined parts. This was accomplished by coordinating and extending the application of feature-based product modeling, knowledge-based systems, integrated data management, and direct manufacturing technologies in a cooperative integrated computing environment. Key technological advancements include a product model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering environment, knowledge-based software aids for design and process planning, and new production technologies to make products directly from design application software.

  14. Manufacturing: workers, technology, and management

    NASA Astrophysics Data System (ADS)

    Lumia, Ronald

    1995-11-01

    Manufacturing is a challenging activity. One must coordinate many activities to achieve success. There appears to be no magic formula which ensure quality. Simple prescriptions for all of manufacturing ills have been suggested, but the theory works better than the practice. This paper explores manufacturing from the standpoint of the interactions of workers, management, and the technology they use in their jobs. These three factors form a complex system, and to optimize the system is virtually impossible without a greater level of understanding. Technology is clearly one factor which makes a company excel, but it is not the only factor. Technology cannot be looked upon as the savior of manufacturing, but as one component of a complex system.

  15. Cellular Manufacturing Internet Performance Support System

    SciTech Connect

    Bohley, M.C.; Schwartz, M.E.

    1998-03-04

    The objective of this project was to develop an Internet-based electronic performance support system (EPSS) for cellular manufacturing providing hardware/software specifications, process descriptions, estimated cost savings, manufacturing simulations, training information, and service resources for government and industry users of Cincinnati Milacron machine tools and products. AlliedSignal Federal Manufacturing and Technologies (ASFM and T) used expertise in the areas of Internet design and multimedia creation to develop a performance support system (PSS) for the Internet with assistance from CM's subject matter experts from engineering, manufacturing, and technical support. Reference information was both created and re-purposed from other existing formats, then made available on the Internet. On-line references on cellular manufacturing operations include: definitions of cells and cellular manufacturing; illustrations on how cellular manufacturing improves part throughput, resource utilization, part quality, and manufacturing flexibility; illustrations on how cellular manufacturing reduces labor and overhead costs; identification of critical factors driving decisions toward cellular manufacturing; a method for identifying process improvement areas using cellular manufacturing; a method for customizing the size of cells for a specific site; a simulation for making a part using cellular manufacturing technology; and a glossary of terms and concepts.

  16. Investigation of Selective Laser Sintering of Zirconium Diboride Parts (PREPRINT)

    DTIC Science & Technology

    2010-03-01

    2), 61-62. 14. Doreau, F., Chaput, C. and Chartier , T., 2000. Stereolithography for manufacturing ceramic parts. Advanced Engineering Materials...2 (8), 493-496. 15. Doreau, F., Chaput, C., Chartier , T. and Loiseau, M., 2002. Stereolithography of structural complex ceramic parts. Journal of

  17. Turbine Manufacture

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The machinery pictured is a set of Turbodyne steam turbines which power a sugar mill at Bell Glade, Florida. A NASA-developed computer program called NASTRAN aided development of these and other turbines manufactured by Turbodyne Corporation's Steam Turbine Division, Wellsville, New York. An acronym for NASA Structural Analysis Program, NASTRAN is a predictive tool which advises development teams how a structural design will perform under service use conditions. Turbodyne uses NASTRAN to analyze the dynamic behavior of steam turbine components, achieving substantial savings in development costs. One of the most widely used spinoffs, NASTRAN is made available to private industry through NASA's Computer Software Management Information Center (COSMIC) at the University of Georgia.

  18. Three-dimensional plotting is a versatile rapid prototyping method for the customized manufacturing of complex scaffolds and tissue engineering constructs.

    PubMed

    Luo, Yongxiang; Akkineni, Ashwini Rahul; Gelinsky, Michael

    2014-03-01

    To review recent literature on three-dimensional (3-D) plotting as a rapid prototyping method for the manufacturing of patient specific biomaterial scaffolds and tissue engineering constructs. Literature review and description of own recent work. In contrast to many other rapid prototyping technologies which can be used only for the processing of distinct materials, 3-D plotting can be utilized for all pasty biomaterials and therefore opens up many new options for the manufacturing of bi- or multiphasic scaffolds or even tissue engineering constructs, containing e. g. living cells. 3-D plotting is a rapid prototyping technology of growing importance which provides flexibility concerning choice of material and allows integration of sensitive biological components.

  19. Laser marking of component parts

    SciTech Connect

    Gress, A.V. Jr.

    1983-01-01

    Permanent identification of components and subassemblies for traceability and historical purposes is essential for assemblies subject to long term storage. Marketing requirements run the gamut from simple functional alphanumerics for terminal or wire numbers to complex component identification involving program nomenclature, part number, manufacturer's code, serial number, data code, and lot or batch number. The wide range of opaque materials marked includes both ferrous and nonferrous materials, plastics, composites, and ceramics.

  20. One Approach to the Synthesis, Design and Manufacture of Hyperboloid Gear Sets with Face Mating Gears. Part 2: Review of Practical Realization

    NASA Astrophysics Data System (ADS)

    Abadjiev, Valentin; Abadjieva, Emilia

    2016-09-01

    Hyperboloid gear drives with face mating gears are used to transform rotations between shafts with non-parallel and non-intersecting axes. A special case of these transmissions are Spiroid1 and Helicon gear drives. The classical gear drives of this type are Archimedean ones. The objective of this study are hyperboloid gear drives with face meshing, when the pinion has threads of conic convolute, Archimedean and involute types, or the pinion has threads of cylindrical convolute, Archimedean and involute types. For simplicity, all three type transmissions with face mating gears and a conic pinion are titled Spiroid and all three type trans- missions with face mating gears and a cylindrical pinion are titled Helicon. Principles of the mathematical modelling of tooth contact synthesis are discussed in Part 1: Basic theoretical and CAD experience of this study. The second part of this article is a brief overview of the innovations and inventions created in this field at the Institute of Mechanics - Bulgarian Academy of Sciences in the last three decades. This study is also dedicated on elaboration of the specialized face gear sets for implementation into bio-robot hand. It is based on the application of 3D software technology, using 3D print for the realization of the physical models of the gear drives.

  1. Perspectives on Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Bourell, David L.

    2016-07-01

    Additive manufacturing (AM) has skyrocketed in visibility commercially and in the public sector. This article describes the development of this field from early layered manufacturing approaches of photosculpture, topography, and material deposition. Certain precursors to modern AM processes are also briefly described. The growth of the field over the last 30 years is presented. Included is the standard delineation of AM technologies into seven broad categories. The economics of AM part generation is considered, and the impacts of the economics on application sectors are described. On the basis of current trends, the future outlook will include a convergence of AM fabricators, mass-produced AM fabricators, enabling of topology optimization designs, and specialization in the AM legal arena. Long-term developments with huge impact are organ printing and volume-based printing.

  2. Clean manufacturing technologies

    SciTech Connect

    Brooman, E.W.

    1996-04-01

    Compliance with environmental regulations now applies to the military industrial base just as it does to the industrial manufacturing base. In response, the Department of Defense has developed the National Defense Center for Environmental Excellence (NDCEE) program. This program focuses on a comprehensive approach to pollution prevention and other high-priority environmental issues, such as waste treatment, disposal, and remediation. Its goal is to help both the military and industry comply with regulations by implementing cost-effective, clean manufacturing technologies. Concurrent Technologies Corporation operates the NDCEE program for the DoD, and has established a demonstration factory to demonstrate, evaluate, and validate state-of-the-art and near-commercial technologies with full-scale parts. This article describes some of the developments being evaluated for processes that prevent pollution and/or minimize waste.

  3. Aircraft Manufacturing Occupations. Aviation Careers Series.

    ERIC Educational Resources Information Center

    Zaharevitz, Walter

    This booklet, one in a series on aviation careers, outlines the variety of careers available in the aircraft manufacturing industry. The first part of the booklet provides general information about careers in the aerospace industry (of which aircraft manufacturing is one part), including the numbers of various types of workers employed in those…

  4. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 2: Complex urban VOCs and model PM

    NASA Astrophysics Data System (ADS)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a), we demonstrated the existence of PM "effect modification" (NAS, 2004) for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA). That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise) as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM for "effect

  5. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 2: Complex urban VOCs and model PM

    NASA Astrophysics Data System (ADS)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-03-01

    This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a), we demonstrated the existence of PM "effect modification" (NAS, 2004) for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA). That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise) as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM for "effect

  6. Problems And Their Solutions When Thin-Walled Turned Parts Of High Precision With Quasi-Optical Surfaces Are Manufactured On A CNC Automatic Lathe Under Workshop Conditions

    NASA Astrophysics Data System (ADS)

    Jaeger, Valentin E.

    1989-04-01

    The geometrical accuracy and surface roughness of diamond-turned workpieces is influenced by several parameters: the properties of the machine tool, the cutting process and the environmental conditions. A thin-walled electrode made from an aluminium alloy (wall thickness: 1 mm, length: 169 mm, outer diameter: 126 mm) and intended for an electrostatic measuring instrument, serves as an example to show how quasi-optical surfaces with a surface roughness Rα < 10 nm and deviations from roundness of <= 5 μm can be achieved when some of these influence quantities are optimized. The cylindrical part of the electrode was turned by means of a rounded mirror-finish diamond tool, the width of the cutting edge being 2 mm, the rake angle -6° and the clearance angle 2°. Compliance with the tolerances of geometrical accuracy was particularly difficult. As age-hardened wrought aluminium alloys cannot be stress-relieved by annealing, or only insufficiently, the geometrical accuracy - in particular the roundness - of thin-walled, rotationally symmetric bodies decisively depends on the state of stress of the workpiece material, on the clamping fixture and on the balanced condition of this clamping fixture.

  7. Cloud manufacturing: a new manufacturing paradigm

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Luo, Yongliang; Tao, Fei; Li, Bo Hu; Ren, Lei; Zhang, Xuesong; Guo, Hua; Cheng, Ying; Hu, Anrui; Liu, Yongkui

    2014-03-01

    Combining with the emerged technologies such as cloud computing, the Internet of things, service-oriented technologies and high performance computing, a new manufacturing paradigm - cloud manufacturing (CMfg) - for solving the bottlenecks in the informatisation development and manufacturing applications is introduced. The concept of CMfg, including its architecture, typical characteristics and the key technologies for implementing a CMfg service platform, is discussed. Three core components for constructing a CMfg system, i.e. CMfg resources, manufacturing cloud service and manufacturing cloud are studied, and the constructing method for manufacturing cloud is investigated. Finally, a prototype of CMfg and the existing related works conducted by the authors' group on CMfg are briefly presented.

  8. Integrated flexible manufacturing program for manufacturing automation and rapid prototyping

    NASA Technical Reports Server (NTRS)

    Brooks, S. L.; Brown, C. W.; King, M. S.; Simons, W. R.; Zimmerman, J. J.

    1993-01-01

    The Kansas City Division of Allied Signal Inc., as part of the Integrated Flexible Manufacturing Program (IFMP), is developing an integrated manufacturing environment. Several systems are being developed to produce standards and automation tools for specific activities within the manufacturing environment. The Advanced Manufacturing Development System (AMDS) is concentrating on information standards (STEP) and product data transfer; the Expert Cut Planner system (XCUT) is concentrating on machining operation process planning standards and automation capabilities; the Advanced Numerical Control system (ANC) is concentrating on NC data preparation standards and NC data generation tools; the Inspection Planning and Programming Expert system (IPPEX) is concentrating on inspection process planning, coordinate measuring machine (CMM) inspection standards and CMM part program generation tools; and the Intelligent Scheduling and Planning System (ISAPS) is concentrating on planning and scheduling tools for a flexible manufacturing system environment. All of these projects are working together to address information exchange, standardization, and information sharing to support rapid prototyping in a Flexible Manufacturing System (FMS) environment.

  9. Integrated Flexible Manufacturing Program for manufacturing automation and rapid prototyping

    SciTech Connect

    Brooks, S.L.; Brown, C.W.; King, M.S.; Simmons, W.R.; Zimmerman, J.J.

    1992-12-01

    The Kansas City Division of Allied Signal Inc., as part of the Integrated Flexible Manufacturing Program (IFMP), is developing an integrated manufacturing environment. Several systems are being developed to produce standards and automation tools for specific activities within the manufacturing environment. The Advanced Manufacturing Development System (AMDS) is concentrating on information standards (STEP) and product data transfer; the Expert Cut Planner system (XCUT) is concentrating on machining operation process planning standards and automation capabilities; the Advanced Numerical Control system (ANC) is concentrating on NC data preparation standards and NC data generation tools; the Inspection Planning and Programming Expert system (IPPEX) is concentrating on inspection process planning, coordinate measuring machine (CMM) inspection standards and CMM part program generation tools; and the Intelligent Scheduling and Planning System (ISAPS) is concentrating on planning and scheduling tools for a flexible manufacturing system environment. All of these projects are working together to address information exchange, standardization, and information sharing to support rapid prototyping in a Flexible Manufacturing System (FMS) environment.

  10. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  11. 19 CFR 191.24 - Certificate of manufacture and delivery.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... manufactured or produced under a general manufacturing drawback ruling, the unique computer-generated number... manufactured or produced under a specific manufacturing drawback ruling, either the unique computer number or... it supports (unless previously filed) (see § 191.51 of this part). (d) Effect of certificate....

  12. 10 CFR 51.54 - Environmental report-manufacturing license.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Environmental report-manufacturing license. 51.54 Section... report—manufacturing license. (a) Each applicant for a manufacturing license under subpart F of part 52... Environmental Report—Manufacturing License.” The environmental report must address the costs and benefits...

  13. 10 CFR 51.54 - Environmental report-manufacturing license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Environmental report-manufacturing license. 51.54 Section... report—manufacturing license. (a) Each applicant for a manufacturing license under subpart F of part 52... Environmental Report—Manufacturing License.” The environmental report must address the costs and benefits...

  14. 10 CFR 51.54 - Environmental report-manufacturing license.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Environmental report-manufacturing license. 51.54 Section... report—manufacturing license. (a) Each applicant for a manufacturing license under subpart F of part 52... Environmental Report—Manufacturing License.” The environmental report must address the costs and benefits...

  15. 10 CFR 51.54 - Environmental report-manufacturing license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-manufacturing license. 51.54 Section... report—manufacturing license. (a) Each applicant for a manufacturing license under subpart F of part 52... Environmental Report—Manufacturing License.” The environmental report must address the costs and benefits...

  16. 10 CFR 51.54 - Environmental report-manufacturing license.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Environmental report-manufacturing license. 51.54 Section... report—manufacturing license. (a) Each applicant for a manufacturing license under subpart F of part 52... Environmental Report—Manufacturing License.” The environmental report must address the costs and benefits...

  17. Rapid manufacturing of aluminum components.

    PubMed

    Sercombe, T B; Schaffer, G B

    2003-08-29

    A manufacturing technique for the production of aluminum components is described. A resin-bonded part is formed by a rapid prototyping technique and then debound and infiltrated by a second aluminum alloy under a nitrogen atmosphere. During thermal processing, the aluminum reacts with the nitrogen and is partially transformed into a rigid aluminum nitride skeleton, which provides the structural rigidity during infiltration. The simplicity and rapidity of this process in comparison to conventional production routes, combined with the ability to fabricate complicated parts of almost any geometry and with high dimensional precision, provide an additional means to manufacture aluminum components.

  18. Design and optimization of the micro-engine turbine rotor manufacturing using the rapid prototyping technology

    NASA Astrophysics Data System (ADS)

    Vdovin, R. A.; Smelov, V. G.

    2017-02-01

    This work describes the experience in manufacturing the turbine rotor for the micro-engine. It demonstrates the design principles for the complex investment casting process combining the use of the ProCast software and the rapid prototyping techniques. At the virtual modelling stage, in addition to optimized process parameters, the casting structure was improved to obtain the defect-free section. The real production stage allowed demonstrating the performance and fitness of rapid prototyping techniques for the manufacture of geometrically-complex engine-building parts.

  19. Considerations on the construction of a Powder Bed Fusion platform for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Andersen, Sebastian Aagaard; Nielsen, Karl-Emil; Pedersen, David Bue; Nielsen, Jakob Skov

    As the demand for moulds and other tools becomes increasingly specific and complex, an additive manufacturing approach to production is making its way to the industry through laser based consolidation of metal powder particles by a method known as powder bed fusion. This paper concerns a variety of design choices facilitating the development of an experimental powder bed fusion machine tool, capable of manufacturing metal parts with strength matching that of conventional manufactured parts and a complexity surpassing that of subtractive processes. To understand the different mechanisms acting within such an experimental machine tool, a fully open and customizable rig is constructed. Emphasizing modularity in the rig, allows alternation of lasers, scanner systems, optical elements, powder deposition, layer height, temperature, atmosphere, and powder type. Through a custom-made software platform, control of the process is achieved, which extends into a graphical user interface, easing adjustment of process parameters and the job file generation.

  20. 3D geometrical inspection of complex geometry parts using a novel laser triangulation sensor and a robot.

    PubMed

    Brosed, Francisco Javier; Aguilar, Juan José; Guillomía, David; Santolaria, Jorge

    2011-01-01

    This article discusses different non contact 3D measuring strategies and presents a model for measuring complex geometry parts, manipulated through a robot arm, using a novel vision system consisting of a laser triangulation sensor and a motorized linear stage. First, the geometric model incorporating an automatic simple module for long term stability improvement will be outlined in the article. The new method used in the automatic module allows the sensor set up, including the motorized linear stage, for the scanning avoiding external measurement devices. In the measurement model the robot is just a positioning of parts with high repeatability. Its position and orientation data are not used for the measurement and therefore it is not directly "coupled" as an active component in the model. The function of the robot is to present the various surfaces of the workpiece along the measurement range of the vision system, which is responsible for the measurement. Thus, the whole system is not affected by the robot own errors following a trajectory, except those due to the lack of static repeatability. For the indirect link between the vision system and the robot, the original model developed needs only one first piece measuring as a "zero" or master piece, known by its accurate measurement using, for example, a Coordinate Measurement Machine. The strategy proposed presents a different approach to traditional laser triangulation systems on board the robot in order to improve the measurement accuracy, and several important cues for self-recalibration are explored using only a master piece. Experimental results are also presented to demonstrate the technique and the final 3D measurement accuracy.

  1. Desktop Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Snyder, Mark

    1991-01-01

    Desktop manufacturing is the use of data from a computer-assisted design system to construct actual models of an object. Emerging processes are stereolithography, laser sintering, ballistic particle manufacturing, laminated object manufacturing, and photochemical machining. (SK)

  2. Desktop Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Snyder, Mark

    1991-01-01

    Desktop manufacturing is the use of data from a computer-assisted design system to construct actual models of an object. Emerging processes are stereolithography, laser sintering, ballistic particle manufacturing, laminated object manufacturing, and photochemical machining. (SK)

  3. Forest Fires, Oil Spills, and Fractal Geometry: An Investigation in Two Parts. Part 2: Using Fractal Complexity to Analyze Mathematical Models.

    ERIC Educational Resources Information Center

    Biehl, L. Charles

    1999-01-01

    Presents an activity that utilizes the mathematical models of forest fires and oil spills that were generated (in the first part of this activity, published in the November 1998 issue) by students using probability and cellular automata. (ASK)

  4. Forest Fires, Oil Spills, and Fractal Geometry: An Investigation in Two Parts. Part 2: Using Fractal Complexity to Analyze Mathematical Models.

    ERIC Educational Resources Information Center

    Biehl, L. Charles

    1999-01-01

    Presents an activity that utilizes the mathematical models of forest fires and oil spills that were generated (in the first part of this activity, published in the November 1998 issue) by students using probability and cellular automata. (ASK)

  5. 78 FR 45052 - Critical Parts for Airplane Propellers; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 35 RIN 2120-AJ88 Critical Parts for Airplane... analysis to identify a propeller critical part. Manufacturers would identify propeller critical parts, and establish engineering, manufacturing, and maintenance processes for propeller critical parts....

  6. The mechanics of manufacturing processes

    SciTech Connect

    Wright, P.; Stori, J.; King, C.

    1996-10-01

    Economic pressures, particularly related to the quality of manufactured goods and `time-to-market` are forcing designers to think not only in terms of product design but also in terms of integrated product and process design, and finally in terms of deterministic manufacturing planning and control. As a result of these three high level needs, there is now an even greater need for comprehensive simulations that predict material behavior during a manufacturing process, the stresses and/or temperatures on associated tooling, and the final-product integrity. The phrase `manufacturing processes` of course covers a broad scope; it includes semiconductor manufacturing, injection molding of polymers, metal machining and precision lapping, wood and textile production, and the final assembly of piece-parts into a consumer product. It can be seen from this partial listing that the fields of fluid mechanics, solid mechanics, dynamics and tribology can all play a role. The introduction to the paper will contain a review of manufacturing processes and describe where simulations have been successfully applied, and where simulations are still lacking. The best of the simulations are those where the models accurately fit the physical phenomena, where accurate constitutive equations are available, and where boundary conditions are realistic. Thus, the body of the paper will focus on the results from one of these more successful simulations. It has been used to predict the deflections of tooling and the most appropriate operating conditions for the manufacturing process under study. A new method for manufacturing planning is described. In this method, closed form, somewhat simplified, analytical models are used to determine manufacturing planning parameters and then the results from these simpler models are refined by the fuller simulations. A case study in machining parameter selection for peripheral finish milling operations is developed.

  7. Gas migration pathways in a complex faulted hangingwall in the western part of the Norwegian Danish Basin

    NASA Astrophysics Data System (ADS)

    Mauritzen, Emil K.; Clausen, Ole R.; Andresen, Katrine J.

    2013-04-01

    The studied fault is positioned in the westernmost Danish part of the Norwegian Danish Basin at the southern margin of the Northern Permian Basin. The dominating fault is the so called D-1 fault, which is part of a fault trend which follows the southern pinch-out line of the Zechstein salt and detach along the top Zechstein evaporites. Just north of the D-1 fault is the only Danish commercial HC producing area outside the Mesozoic Central Graben -the Siri Canyon- located The presence of gas within the Neogene sediments at the hanging-wall of the D-1 fault was reported in the D-1 well and the D-1 fault was analyzed in detail using 2-D seismic data in the early 90-ies. Due to the open seismic grid used then it was not possible to link the presence of possible gas occurrences and the faults as well as linking the small faults associated to the hanging-wall deformation. The area was subject to renewed interest due to the HC discoveries in the Siri Valley and industrial 3-D seismic data was acquired covering the D-1 fault.The 3D seismic data has enabled a very detailed mapping of the entire D-1 fault complex as well as seismic attribute analysis (courtesy OpendTect). The D-1 fault is in map-view characterized by segments approximately 10 km long striking E-W and NE-SW respectively. In the Cretaceous and Cenozoic part is the main fault coherent whereas the antithetic and secondary synthetic faults in the hanging-wall are smaller (both with respect to offset and length). The character of the internal hanging-wall faults varies along strike of the main fault. In areas adjacent to NE-SW striking segments is the number of faults much higher and they strike both parallel to the main fault and at an angle to it; whereas the faults are longer, less numerous and dominantly parallel to the main fault in the E-W striking central parts. Gas occurrences are observed as bright-spots associated to small faults in the hanging-wall next to the NE-SW striking segments, whereas

  8. Preliminary Investigation of Keyhole Phenomena during Single Layer Fabrication in Laser Additive Manufacturing of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Matilainen, Ville-Pekka; Piili, Heidi; Salminen, Antti; Nyrhilä, Olli

    Laser additive manufacturing (LAM) is a fabrication technology that enables production of complex parts from metallic materials with mechanical properties comparable to conventionally manufactured parts. In the LAM process, parts are manufactured by melting metallic powder layer-by-layer with a laser beam. This manufacturing technology is nowadays called powder bed fusion (PBF) according to the ASTM F2792-12a standard. This strategy involves several different independent and dependent thermal cycles, all of which have an influence on the final properties of the manufactured part. The quality of PBF parts depends strongly on the characteristics of each single laser-melted track and each single layer. This study consequently concentrates on investigating the effects of process parameters such as laser power on single track and layer formation and laser-material interaction phenomena occurring during the PBF process. Experimental tests were done with two different machines: a modified research machine based on an EOS EOSINT M-series system and an EOS EOSINT M280 system. The material used was EOS stainless steel 17-4 PH. Process monitoring was done with an active illuminated high speed camera system. After microscopy analysis, it was concluded that a keyhole can form during laser additive manufacturing of stainless steel. It was noted that heat input has an important effect on the likelihood of keyhole formation. The threshold intensity value for keyhole formation of 106 W/cm2 was exceeded in all manufactured single tracks. Laser interaction time was found to have an effect on penetration depth and keyhole formation, since the penetration depth increased with increased laser interaction time. It was also concluded that active illuminated high speed camera systems are suitable for monitoring of the manufacturing process and facilitate process control.

  9. Epigenetic modification of DRG neuronal gene expression subsequent to nerve injury: Etiological contribution to complex regional pain syndromes (Part I)

    PubMed Central

    Wang, Fuzhou; Stefano, George B.; Kream, Richard M.

    2014-01-01

    DRG is of importance in relaying painful stimulation to the higher pain centers and therefore could be a crucial target for early intervention aimed at suppressing primary afferent stimulation. Complex regional pain syndrome (CRPS) is a common pain condition with an unknown etiology. Recently added new information enriches our understanding of CRPS pathophysiology. Researches on genetics, biogenic amines, neurotransmitters, and mechanisms of pain modulation, central sensitization, and autonomic functions in CRPS revealed various abnormalities indicating that multiple factors and mechanisms are involved in the pathogenesis of CRPS. Epigenetics refers to mitotically and meiotically heritable changes in gene expression that do not affect the DNA sequence. As epigenetic modifications potentially play an important role in inflammatory cytokine metabolism, neurotransmitter responsiveness, and analgesic sensitivity, they are likely key factors in the development of chronic pain. In this dyad review series, we systematically examine the nerve injury-related changes in the neurological system and their contribution to CRPS. In this part, we first reviewed and summarized the role of neural sensitization in DRG neurons in performing function in the context of pain processing. Particular emphasis is placed on the cellular and molecular changes after nerve injury as well as different models of inflammatory and neuropathic pain. These were considered as the potential molecular bases that underlie nerve injury-associated pathogenesis of CRPS. PMID:24961509

  10. Manufacturing Aids

    NASA Technical Reports Server (NTRS)

    1989-01-01

    During a research program, MMTC/Textron invented a computer-aided automatic robotic system for spraying hot plasma onto a turbine blade. The need to control the thickness of the plasma deposit led to the development of advanced optical gaging techniques to monitor and control plasma spray build-up on blade surfaces. The techniques led to computerized optical gages for inspecting aircraft, industrial turbine blades, etc. MMTC offers 10 standard commercial robotic gages. The system also generates two dimensional profiles for assessing status and specifying repairs to the electromechanical cathodes used to make the parts. It is capable of accuracies to a ten-thousandth of an inch. An expanded product line is currently marketed. The gages offer multiple improvements in quality control and significant savings.

  11. Remobilization and degradation of Muostakh Island (Laptev Sea) as part of the collapsing Arctic coastal ice complex

    NASA Astrophysics Data System (ADS)

    Sánchez-García, L.; Vonk, J.; Charkin, A.; Kosmach, D.; Dudarev, O.; Semiletov, I.; Gustafsson, Ö.

    2010-05-01

    East Siberiańs permafrost is thought to contain about 400 GtC (Giga = 109) [1] in form of the so-called Yedoma or Ice Complex, a huge stock of carbon mainly as frozen loess deposits formed during the Last Glacial Maximum (~40,000 years ago). The Pleistocene Ice Complex has not undergone much alteration by soil microorganisms since deposited, which makes it particularly sensitive to global warming effects on large-scale C dynamics. Accelerated coastal erosion of the Ice Complexes is brought on by a combination of thermal collapse, sea-level rise and enhanced wave fetch from loss of coastal sea-ice cover [2, 3]. Despite coastal erosion is estimated to deliver as much OC to the East Siberian Arctic Shelf (ESAS) as all the great Russian-Arctic rivers combined [3], the process is poorly understood, in particular with regard to the fate of the OM derived from coastal erosion. This study aims to alleviate the lack of information on the remobilization of OM from massive coastal erosion in the ESAS. The erosion evolution of a significant example of this destructive geological process (Muostakh Island, SE Laptev Sea), has been observed over the past decade and it has been estimated a retreat rate up to 20 m during the summer months (from 2001 to 2009). In summer 2006, soil samples were collected from Muostakh at 11 different locations along four 'erosion transects', spanning reliefs with ranges of approximately 25 m from the top plateau to the water boundary. On-site CO2measurements were carried out on the surface along five different transects across the island. Quantification of the organic carbon (OC), bulk 14C content and biomarker analysis (n-alkanes, n-alkanoic acids, n-alkanols, sterols) were performed to elucidate whether the old carbon forms eroded from Muostakh Island are subject to degradation. Elemental and isotopic analyses showed a vertical trend of younger (~modern) and C-enriched (OC~38%) material toward the plateau of the island, in contrast to the older

  12. Using microwave Doppler radar in automated manufacturing applications

    NASA Astrophysics Data System (ADS)

    Smith, Gregory C.

    Since the beginning of the Industrial Revolution, manufacturers worldwide have used automation to improve productivity, gain market share, and meet growing or changing consumer demand for manufactured products. To stimulate further industrial productivity, manufacturers need more advanced automation technologies: "smart" part handling systems, automated assembly machines, CNC machine tools, and industrial robots that use new sensor technologies, advanced control systems, and intelligent decision-making algorithms to "see," "hear," "feel," and "think" at the levels needed to handle complex manufacturing tasks without human intervention. The investigator's dissertation offers three methods that could help make "smart" CNC machine tools and industrial robots possible: (1) A method for detecting acoustic emission using a microwave Doppler radar detector, (2) A method for detecting tool wear on a CNC lathe using a Doppler radar detector, and (3) An online non-contact method for detecting industrial robot position errors using a microwave Doppler radar motion detector. The dissertation studies indicate that microwave Doppler radar could be quite useful in automated manufacturing applications. In particular, the methods developed may help solve two difficult problems that hinder further progress in automating manufacturing processes: (1) Automating metal-cutting operations on CNC machine tools by providing a reliable non-contact method for detecting tool wear, and (2) Fully automating robotic manufacturing tasks by providing a reliable low-cost non-contact method for detecting on-line position errors. In addition, the studies offer a general non-contact method for detecting acoustic emission that may be useful in many other manufacturing and non-manufacturing areas, as well (e.g., monitoring and nondestructively testing structures, materials, manufacturing processes, and devices). By advancing the state of the art in manufacturing automation, the studies may help

  13. Computer-integrated manufacturing system for OPTICAM

    NASA Astrophysics Data System (ADS)

    Tipps, Joe D., Jr.; Czajkowski, Walter C.

    1992-01-01

    Optical design, engineering, and manufacturing operate as independent entities. Outmoded specifications for material, geometry, tolerances, and mounting add to cost, lead time, and manufacturing complexity of both military and commercial optics. The optics industry maintains outdated stand-alone design, engineering, and manufacturing systems that do not support integration or communications. This single island of technology adds greatly to the final cost of optical systems.

  14. Simulating The Technological Movements Of The Equipment Used For Manufacturing Prosthetic Devices Using 3D Models

    NASA Astrophysics Data System (ADS)

    Chicea, Anca-Lucia

    2015-09-01

    The paper presents the process of building geometric and kinematic models of a technological equipment used in the process of manufacturing devices. First, the process of building the model for a six axes industrial robot is presented. In the second part of the paper, the process of building the model for a five-axis CNC milling machining center is also shown. Both models can be used for accurate cutting processes simulation of complex parts, such as prosthetic devices.

  15. Additive manufacturing of tools for lapping glass

    NASA Astrophysics Data System (ADS)

    Williams, Wesley B.

    2013-09-01

    Additive manufacturing technologies have the ability to directly produce parts with complex geometries without the need for secondary processes, tooling or fixtures. This ability was used to produce concave lapping tools with a VFlash 3D printer from 3D Systems. The lapping tools were first designed in Creo Parametric with a defined constant radius and radial groove pattern. The models were converted to stereolithography files which the VFlash used in building the parts, layer by layer, from a UV curable resin. The tools were rotated at 60 rpm and used with 120 grit and 220 grit silicon carbide lapping paste to lap 0.750" diameter fused silica workpieces. The samples developed a matte appearance on the lapped surface that started as a ring at the edge of the workpiece and expanded to the center. This indicated that as material was removed, the workpiece radius was beginning to match the tool radius. The workpieces were then cleaned and lapped on a second tool (with equivalent geometry) using a 3000 grit corundum aluminum oxide lapping paste, until a near specular surface was achieved. By using lapping tools that have been additively manufactured, fused silica workpieces can be lapped to approach a specified convex geometry. This approach may enable more rapid lapping of near net shape workpieces that minimize the material removal required by subsequent polishing. This research may also enable development of new lapping tool geometry and groove patterns for improved loose abrasive finishing.

  16. Microlabels For Auto Parts

    NASA Technical Reports Server (NTRS)

    Ash, John P.

    1993-01-01

    Proposed method of unique labeling and identification of automotive parts greatly simplifies recall campaigns and reduces effort and expense associated. Compressed symbols fully characterize each part by type and manufacturing history. Manufacturers notify only those owners whose cars need repairs or modifications. Similar compressed symbology developed for possible use on spacecraft.

  17. Additive Manufacturing: Ensuring Quality for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore; Stephenson, Timothy

    2014-01-01

    Reliable manufacturing requires that material properties and fabrication processes be well defined in order to insure that the manufactured parts meet specified requirements. While this issue is now relatively straightforward for traditional processes such as subtractive manufacturing and injection molding, this capability is still evolving for AM products. Hence, one of the principal challenges within AM is in qualifying and verifying source material properties and process control. This issue is particularly critical for applications in harsh environments and demanding applications, such as spacecraft.

  18. Cincinnati Big Area Additive Manufacturing (BAAM)

    SciTech Connect

    Duty, Chad E.; Love, Lonnie J.

    2015-03-04

    Oak Ridge National Laboratory (ORNL) worked with Cincinnati Incorporated (CI) to demonstrate Big Area Additive Manufacturing which increases the speed of the additive manufacturing (AM) process by over 1000X, increases the size of parts by over 10X and shows a cost reduction of over 100X. ORNL worked with CI to transition the Big Area Additive Manufacturing (BAAM) technology from a proof-of-principle (TRL 2-3) demonstration to a prototype product stage (TRL 7-8).

  19. Highly oriented carbon fiber–polymer composites via additive manufacturing

    SciTech Connect

    Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; Duty, Chad E.; Love, Lonnie J.; Naskar, Amit K.; Blue, Craig A.; Ozcan, Soydan

    2014-10-16

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructure and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.

  20. Highly oriented carbon fiber–polymer composites via additive manufacturing

    DOE PAGES

    Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; ...

    2014-10-16

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructuremore » and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.« less

  1. Technology: Manufacturing, Transportation, Construction, Communication.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.

    The technology-based student activities in this curriculum resource book are intended to be incorporated into any industrial arts/technology education program. The activities are classified according to one of four technological systems--construction, communications, manufacturing, and transportation. Within the four parts of the guide, individual…

  2. [Specific aspects of vaccine manufacturing].

    PubMed

    Speck, D

    2009-05-01

    The industrial development of vaccine manufacturing expanded during the second half of the 20th century. Vaccines are medicines which target healthy people. The active principles of vaccines arise from live organisms and can be distinguished from standard pharmaceutical compounds by their extreme complexity. The properties of vaccines depend mainly of the manufacturing process and it common to state that "the process makes the product". The manufacturing is done in confined rooms because of the pathogenic characters of the organisms involved. Raw materials are subjected to rigorous controls to guarantee the integrity of products towards non-conventional agents like prion. The vaccine industry is characterized by the length of the manufacturing cycle. The complexity of the products implies heavy quality controls, which represent 75% of the total duration of the manufacture cycle. As a key element of public health, the vaccine production can be subjected to variations and adaptations, in particular in the context of outbreaks or bioterrorism. The vaccine industry must integrate the regulatory requirements, which are more and more pressing. The spectacular development of the quality assurance and quality control departments these last 15 years testifies to this evolution.

  3. Additive Manufacturing of Functional Elements on Sheet Metal

    NASA Astrophysics Data System (ADS)

    Schaub, Adam; Ahuja, Bhrigu; Butzhammer, Lorenz; Osterziel, Johannes; Schmidt, Michael; Merklein, Marion

    Laser Beam Melting (LBM) process with its advantages of high design flexibility and free form manufacturing methodology is often applied limitedly due to its low productivity and unsuitability for mass production compared to conventional manufacturing processes. In order to overcome these limitations, a hybrid manufacturing methodology is developed combining the additive manufacturing process of laser beam melting with sheet forming processes. With an interest towards aerospace and medical industry, the material in focus is Ti-6Al-4V. Although Ti-6Al-4V is a commercially established material and its application for LBM process has been extensively investigated, the combination of LBM of Ti-6Al-4V with sheet metal still needs to be researched. Process dynamics such as high temperature gradients and thermally induced stresses lead to complex stress states at the interaction zone between the sheet and LBM structure. Within the presented paper mechanical characterization of hybrid parts will be performed by shear testing. The association of shear strength with process parameters is further investigated by analyzing the internal structure of the hybrid geometry at varying energy inputs during the LBM process. In order to compare the hybrid manufacturing methodology with conventional fabrication, the conventional methodologies subtractive machining and state of the art Laser Beam Melting is evaluated within this work. These processes will be analyzed for their mechanical characteristics and productivity by determining the build time and raw material consumption for each case. The paper is concluded by presenting the characteristics of the hybrid manufacturing methodology compared to alternative manufacturing technologies.

  4. CT-assisted agile manufacturing

    NASA Astrophysics Data System (ADS)

    Stanley, James H.; Yancey, Robert N.

    1996-11-01

    The next century will witness at least two great revolutions in the way goods are produced. First, workers will use the medium of virtual reality in all aspects of marketing, research, development, prototyping, manufacturing, sales and service. Second, market forces will drive manufacturing towards small-lot production and just-in-time delivery. Already, we can discern the merging of these megatrends into what some are calling agile manufacturing. Under this new paradigm, parts and processes will be designed and engineered within the mind of a computer, tooled and manufactured by the offspring of today's rapid prototyping equipment, and evaluated for performance and reliability by advanced nondestructive evaluation (NDE) techniques and sophisticated computational models. Computed tomography (CT) is the premier example of an NDE method suitable for future agile manufacturing activities. It is the only modality that provides convenient access to the full suite of engineering data that users will need to avail themselves of computer- aided design, computer-aided manufacturing, and computer- aided engineering capabilities, as well as newly emerging reverse engineering, rapid prototyping and solid freeform fabrication technologies. As such, CT is assured a central, utilitarian role in future industrial operations. An overview of this exciting future for industrial CT is presented.

  5. Hospitalizations With Observation Services and the Medicare Part A Complex Appeals Process at Three Academic Medical Centers.

    PubMed

    Sheehy, Ann M; Engel, Jeannine Z; Locke, Charles F S; Weissburg, Daniel J; Eldridge, Kevin; Caponi, Bartho; Deutschendorf, Amy

    2017-04-01

    Hospitalists and other providers must classify hospitalized patients as inpatient or outpatient, the latter of which includes all observation stays. These orders direct hospital billing and payment, as well as patient out-of-pocket expenses. The Centers for Medicare & Medicaid Services (CMS) audits hospital billing for Medicare beneficiaries, historically through the Recovery Audit program. A recent U.S. Government Accountability Office (GAO) report identified problems in the hospital appeals process of Recovery Audit program audits to which CMS proposed reforms. In the context of the GAO report and CMS's proposed improvements, we conducted a study to describe the time course and process of complex Medicare Part A audits and appeals reaching Level 3 of the 5-level appeals process as of May 1, 2016 at 3 academic medical centers. Of 219 appeals reaching Level 3, 135 had a decision--96 (71.1%) successful for the hospitals. Mean total time since date of service was 1663.3 days, which includes mean days between date of service and audit (560.4) and total days in appeals (891.3). Government contractors were responsible for 70.7% of total appeals time. Overall, government contractors and judges met legislative timeliness deadlines less than half the time (47.7%), with declining compliance at successive levels (discussion, 92.5%; Level 1, 85.4%; Level 2, 38.8%; Level 3, 0%). Most Level 1 and Level 2 decision letters (95.2%) cited time-based (24-hour) criteria for determining inpatient status, despite 70.3% of denied appeals meeting the 24-hour benchmark. These findings suggest that the Medicare appeals system merits process improvement beyond current proposed reforms. Journal of Hospital Medicine 2017;12:251-255. © 2017 Society of Hospital Medicine.

  6. "Why Not Stoichiometry" versus "Stoichiometry—Why Not?" Part III: Extension of GATES/GEB on Complex Dynamic Redox Systems.

    PubMed

    Michałowska-Kaczmarczyk, Anna M; Michałowski, Tadeusz; Toporek, Marcin; Asuero, Agustin G

    2015-01-01

    In the third part of a series of articles issued under a common title, some examples of complex dynamic redox systems are presented and considered from analytical and physico-chemical viewpoints; the analysis is a leitmotiv for detailed, physico-chemical considerations. All attainable physico-chemical knowledge is involved in algorithms applied for resolution of the systems, realized with use of iterative computer programs. The first redox system (System I) is related to titration of FeSO4 + H2C2O4 with KMnO4 solution in acidic (H2SO4) medium, where simultaneous determination of both analytes from a single curve of potentiometric titration is possible. The possibility of the formation of precipitates (FeC2O4 and/or MnC2O4) in this system is taken into considerations. The second system (System II) relates to the complete analytical procedure involved in the iodometric determination of Cu; four consecutive steps of this analysis are considered. As a reasonable tool for explanation of processes occurring during simulated redox titration, speciation diagrams are suggested. This explanation is based on graphical presentation of results obtained from the calculations. The calculations made for this purpose are performed in accordance with principles of the generalized approach to electrolytic systems (GATES) with generalized electron balance (GEB) or GATES/GEB and realized with use of iterative computer programs offered by MATLAB. The reactions proceeding in this system can be formulated, together with their efficiencies, at any stage of the titration. Stoichiometry is considered as the derivative concept when put in context with GATES/GEB. The article illustrates the enormous possibilities and advantages offered by GATES/GEB.

  7. RCRA Part B Permit Application for the Idaho National Engineering Laboratory - Volume 5 Radioactive Waste Management Complex

    SciTech Connect

    Pamela R. Cunningham

    1992-07-01

    This section of the Radioactive Waste Management Complex (RWMC) Part B permit application describes the waste characteristics Of the transuranic (TRU) mixed wastes at the RWMC waste management units to be permitted: the Intermediate-Level Transuranic Storage Facility (ILTSF) and the Waste Storage Facility (WSF). The ILTSF is used to store radioactive remote-handled (RH) wastes. The WSF will be used to store radioactive contact-handled (CH) wastes. The Transuranic Storage Area (TSA) was established at the RWMC to provide interim storage of TRU waste. Department of Energy (DOE) Order 5820.2A defines TRU waste as waste contaminated with alpha-emitting transuranium radionuclides with half-lives greater than 20 years in concentrations greater than 100 nanocuries per gram (nCi/g) o f waste material. The TSA serves generators both on and off the Idaho National Engineering Laboratory (INEL). The ILTSF is located at the TSA, and the WSF will be located there also. Most of the wastes managed at the TSA are mixed wastes, which are radioactive wastes regulated under the Atomic Energy Act (AEA) that also contain hazardous materials regulated under the Resource Conservation and Recovery Act (RCRA) and the Idaho Hazardous Waste Management Regulations. These wastes include TRU mixed wastes and some low-level mixed wastes. Accordingly, the TSA is subject to the permitting requirements of RCRA and the Idaho Administrative Procedures Act (IDAPA). Prior to 1982, DOE orders defined TRU wastes as having transuranium radionuclides in concentrations greater than 10 nCi/g, The low-level mixed wastes managed at the TSA are those wastes with 10 to 100 nCi/g of TRU radionuclides that prior to 1982 were considered TRU waste.

  8. Exploring Manufacturing Technology.

    ERIC Educational Resources Information Center

    Iley, John; And Others

    These teacher's materials for an eight-unit course were developed to help students develop technological literacy, career exploration, and problem-solving skills relative to the manufacturing industries. The eight units include an overview of manufacturing, manufacturing enterprises and systems, manufacturing materials and selection, manufacturing…

  9. 5. Looking east, south elevation of main manufacturing plant visible, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Looking east, south elevation of main manufacturing plant visible, part of tail race also visible. - Falls of the Neuse Manufacturing Plant, West bank of Neuse River at State Route 2000, Falls, Wake County, NC

  10. The vibrational spectra of the boron halides and their molecular complexes. Part 10. The complexes of boron trifluoride with ammonia and its methyl derivatives. An ab initio study

    NASA Astrophysics Data System (ADS)

    Gaffoor, Fatima; Ford, Thomas A.

    2008-11-01

    Ab initio calculations, at the level of second order Møller-Plesset perturbation theory, and using a triple-zeta Gaussian basis set with polarization and diffuse functions on all atoms, have been carried out on the donor-acceptor complexes of boron trifluoride with ammonia and its mono-, di- and trimethyl derivatives. The structures, interaction energies and vibrational spectra of the complexes have been determined. An eclipsed and a staggered conformer have been examined for each complex, and the preferred conformer was found to be the staggered species in each case. The computed data have been compared with those for some similar complexes containing boron trifluoride and a series of oxygen and sulphur electron donors (water, hydrogen sulphide, methanol, methanethiol, dimethyl ether and dimethyl sulphide) and the effect of successive methyl substitution in all three series has been investigated.

  11. FMS: The New Wave of Manufacturing Technology.

    ERIC Educational Resources Information Center

    Industrial Education, 1986

    1986-01-01

    Flexible manufacturing systems (FMS) are described as a marriage of all of the latest technologies--robotics, numerical control, CAD/CAM (computer-assisted design/computer-assisted manufacturing), etc.--into a cost-efficient, optimized production process yielding the greatest flexibility in making various parts. A typical curriculum to teach FMS…

  12. FMS: The New Wave of Manufacturing Technology.

    ERIC Educational Resources Information Center

    Industrial Education, 1986

    1986-01-01

    Flexible manufacturing systems (FMS) are described as a marriage of all of the latest technologies--robotics, numerical control, CAD/CAM (computer-assisted design/computer-assisted manufacturing), etc.--into a cost-efficient, optimized production process yielding the greatest flexibility in making various parts. A typical curriculum to teach FMS…

  13. Additive manufacturing: Toward holistic design

    DOE PAGES

    Jared, Bradley H.; Aguilo, Miguel A.; Beghini, Lauren L.; ...

    2017-03-18

    Here, additive manufacturing offers unprecedented opportunities to design complex structures optimized for performance envelopes inaccessible under conventional manufacturing constraints. Additive processes also promote realization of engineered materials with microstructures and properties that are impossible via traditional synthesis techniques. Enthused by these capabilities, optimization design tools have experienced a recent revival. The current capabilities of additive processes and optimization tools are summarized briefly, while an emerging opportunity is discussed to achieve a holistic design paradigm whereby computational tools are integrated with stochastic process and material awareness to enable the concurrent optimization of design topologies, material constructs and fabrication processes.

  14. DARPA DICE Manufacturing Optimization

    DTIC Science & Technology

    1994-01-01

    product and process domains. The system will support Design for Manufacturing and Assembly ( DFMA ) with a set of tools to model manufacturing processes, and...concurrently in the product and process domains. The system will support DFMA with a set of tools to model manufacturing processes, and manage tradeoffs across... DFMA Design for Manufacturing and Assembly DICE DARPA Initiative In Concurrent Engineering MO Manufacturing Optimization 5 MSD Missile Systems Division

  15. Fixtureless nonrigid part inspection using depth cameras

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2016-10-01

    In automobile industry, flexible thin shell parts are used to cover car body. Such parts could have a different shape in a free state than the design model due to dimensional variation, gravity loads and residual strains. Special inspection fixtures are generally indispensable for geometric inspection. Recently, some researchers have proposed fixtureless nonridged inspect methods using intrinsic geometry or virtual spring-mass system, based on some assumptions about deformation between Free State shape and nominal CAD shape. In this paper, we propose a new fixtureless method to inspect flexible parts with a depth camera, which is efficient and low computational complexity. Unlike traditional method, we gather two point cloud set of the manufactured part in two different states, and make correspondences between them and one of them to the CAD model. The manufacturing defects can be derived from the correspondences. Finite element method (FEM) disappears in our method. Experimental evaluation of the proposed method is presented.

  16. Polysaccharide-polynucleotide complexes. Part 32. Structural analysis of the curdlan/poly(cytidylic acid) complex with semiempirical molecular orbital calculations.

    PubMed

    Miyoshi, Kentaro; Uezu, Kazuya; Sakurai, Kazuo; Shinkai, Seiji

    2005-01-01

    Natural Curdlan adopts a right-handed 6(1) triple helix, in which the constituting glucan chains are underpinned with each other by the intermolecular hydrogen bonds. Curdlan can form a stoichiometric complex with polynucleotides [e.g., poly(cytidylic acid), poly(C)]. In this paper, we carried out the MOPAC (semiempirical molecular-orbital package) calculation to examine the molecular structure of the Curdlan/poly(C) complex. The calculation exhibited that two types of hydrogen bonds are formed between the Curdlan and the poly(C); the third nitrogen (N3) in cytosine forms a hydrogen bond with the second OH of one Curdlan chain, and the proton of N4 is interacting with the O2 of another Curdlan chain. In our model, the helix diameter of poly(C) is expanded from 11.0 to 15.3 A upon complexation. Despite such large conformational changes, the 6(1) helix structure of poly(C) was maintained even after the complexation. This fact is complementary to the experimental fact that the complexation does not change the band shape of the circular dichroism of poly(C). The chain length dependence of the reaction enthalpy indicated that the complexation becomes thermodynamically more favorable with the chain length increasing. This feature is also consistent with the experimental data.

  17. Biological evaluation of mechlorethamine-Pt(II) complex, part II: antimicrobial screening and lox study of the complex and its ligand.

    PubMed

    Radojević, Ivana D; Petrović, Zorica D; Čomić, Ljiljana R; Simijonović, Dušica; Petrović, Vladimir P; Hadjipavlou-Litina, Dimitra

    2012-09-01

    The reaction of K(2)PtCl(4) with anticancer-alkylating agent mechlorethamine hydrochloride (CH(3)NH(C(2)H(4)Cl)(2) x HCl = HN2×HCl), in the molar ratio 1 : 2, affords the complex [H2N2](2)[PtCl(4)]. In vitro antimicrobial and lipoxygenase inhibitory activities of the complex and its precursor were evaluated. Antimicrobial activity of the HN2×HCl and [H2N2](2)[PtCl(4)] complex was investigated against 29 species of microorganisms. Testing is performed by microdilution method. Minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) have been determined. The difference between antimicrobial activity of precursor and corresponding platinum(II) complex is noticed and the activity of the precursor was higher. Tested compounds demonstrated the high and significant antifungal activity and low to moderate antibacterial activity. It was shown that the gram-positive bacteria were more sensitive than the gram-negative. UV absorbance-based enzyme assays were performed with HN2×HCl and [H2N2](2)[PtCl(4)] complex, in order to evaluate their in vitro inhibitory activity of soybean lipoxygenase (LOX), also. Assay with LOX showed significantly greater inhibitory activity of the complex, than the precursor.

  18. Characterization of Metal Powders Used for Additive Manufacturing.

    PubMed

    Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A

    2014-01-01

    Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.

  19. Characterization of Metal Powders Used for Additive Manufacturing

    PubMed Central

    Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA

    2014-01-01

    Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040

  20. Joint Stability Characteristics of the Ankle Complex in Female Athletes With Histories of Lateral Ankle Sprain, Part II: Clinical Experience Using Arthrometric Measurement

    PubMed Central

    Kovaleski, John E.; Heitman, Robert J.; Gurchiek, Larry R.; Hollis, J. M.; Liu, Wei; IV, Albert W. Pearsall

    2014-01-01

    Context: This is part II of a 2-part series discussing stability characteristics of the ankle complex. In part I, we used a cadaver model to examine the effects of sectioning the lateral ankle ligaments on anterior and inversion motion and stiffness of the ankle complex. In part II, we wanted to build on and apply these findings to the clinical assessment of ankle-complex motion and stiffness in a group of athletes with a history of unilateral ankle sprain. Objective: To examine ankle-complex motion and stiffness in a group of athletes with reported history of lateral ankle sprain. Design: Cross-sectional study. Setting: University research laboratory. Patients or Other Participants: Twenty-five female college athletes (age = 19.4 ± 1.4 years, height = 170.2 ± 7.4 cm, mass = 67.3 ± 10.0 kg) with histories of unilateral ankle sprain. Intervention(s): All ankles underwent loading with an ankle arthrometer. Ankles were tested bilaterally. Main Outcome Measure(s): The dependent variables were anterior displacement, anterior end-range stiffness, inversion rotation, and inversion end-range stiffness. Results: Anterior displacement of the ankle complex did not differ between the uninjured and sprained ankles (P = .37), whereas ankle-complex rotation was greater for the sprained ankles (P = .03). The sprained ankles had less anterior and inversion end-range stiffness than the uninjured ankles (P < .01). Conclusions: Changes in ankle-complex laxity and end-range stiffness were detected in ankles with histories of sprain. These results indicate the presence of altered mechanical characteristics in the soft tissues of the sprained ankles. PMID:24568223

  1. Polyolefin catalyst manufacturing

    SciTech Connect

    Inkrott, K.E.; Scinta, J.; Smith, P.D. )

    1989-10-16

    Statistical process control (SPC) procedures are absolutely essential for making new-generation polyolefin catalysts with the consistent high quality required by modern polyolefin processes. Stringent quality assurance is critical to the production of today's high-performance catalysts. Research and development efforts during the last 20 years have led to major technological improvements in the polyolefin industry. New generation catalysts, which once were laboratory curiosities, must now be produced commercially on a regular and consistent basis to meet the increasing requirements of the plastics manufacturing industry. To illustrate the more stringent requirements for producing the new generation polyolefin catalysts, the authors compare the relatively simple, first-generation polypropylene catalyst production requirements with some of the basic requirements of manufacturing a more complex new-generation catalyst, such as Catalyst Resources Inc.'s LYNX 900. The principles which hold true for the new-generation catalysts such as LYNX 900 are shown to apply equally to the scale-up of other advanced technology polyolefin catalysts.

  2. Motorcycle Parts

    NASA Technical Reports Server (NTRS)

    1993-01-01

    An article in NASA Tech Briefs describing a vacuum bagging process for forming composite parts helped a small Oklahoma Company to improve its manufacturing process. President of Performance Extremes, Larry Ortega, and his partners make motorcycle parts from carbon/epoxy to reduce weight. Using vacuum bags, parts have a better surface and fewer voids inside. When heat used in the vacuum bag process caused deformation upon cooling, a solution found in another tech brief solved the problem. A metal plate inside the vacuum bag made for more even heat transfer. A third article described a simple procedure for repairing loose connector pins, which the company has also utilized.

  3. Rapid Response Manufacturing (RRM). Final CRADA report

    SciTech Connect

    Cain, W.D.; Waddell, W.L.

    1997-08-28

    A major accomplishment of the Rapid Response Manufacturing (RRM) project was the development of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined part products. Key components of the framework are a manufacturing model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering working environment, knowledge-based software systems for design, process planning, and manufacturing and new production technologies for making products directly from design application software.

  4. Magnet cable manufacturing

    SciTech Connect

    Royet, J.

    1990-10-01

    The cable is the heart of a superconducting accelerator magnet. Since the initial development of the Rutherford Cable more than twenty years ago, many improvements in manufacturing techniques have increased the current carrying capacity. When the Tevatron cable was specified fifteen years ago the current carrying capacity was 1800 A/mm{sup 2} at a field of 5.3T. During the intervening years it has been increased to 3000 A/mm{sup 2}. These improvements were due to refinements in the fabrication of the strands and the formation of the cable from the strands. The metallurgists were able to impart significant gains in performance by improving the homogeneity of the conductor. The engineers and technicians who designed and built the modern cabling machines made an enormous contribution by significantly reducing the degradation of wire performance that occurs when the wire was cabled. The fact that these gains were made while increasing the speed of cabling is one of the technological advances that made accelerators like the SSC possible. This article describes the cabling machines that were built to manufacture the cable for the full scale SSC prototype magnets and the low beta quadrupoles for the Fermilab Tevatron. This article also presents a compendium of the knowledge that was gained in the struggle to make high performance cable to exacting dimensional standards and at the throughput needed for the SSC. The material is an important part of the technology transfer from the Department of energy Laboratories to Industry.

  5. Spectroscopic study of the light-harvesting CP29 antenna complex of photosystem II--part I.

    PubMed

    Feng, Ximao; Pan, Xiaowei; Li, Mei; Pieper, Jörg; Chang, Wenrui; Jankowiak, Ryszard

    2013-06-06

    Recent structural data revealed that the CP29 protein of higher plant photosystem II (PSII) contains 13 chlorophylls (Chl's) per complex (Pan et al. Nat. Struct. Mol. Biol. 2011, 18, 309), i.e., five Chl's more than in the predicted CP29 homology-based structure model (Bassi et al. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 10056). This lack of consensus presents a constraint on the interpretation of CP29 optical spectra and their underlying electronic structure. To address this problem, we present new low-temperature (5 K) absorption, fluorescence, and hole-burned (HB) spectra for CP29 proteins from spinach, which are compared with the previously reported data. We focus on excitation energy transfer (EET) and the nature of the lowest-energy state(s). We argue that CP29 proteins previously studied by HB spectroscopy lacked at least one Chl a molecule (i.e., a615 or a611), which along with Chl a612 contribute to the lowest energy state in more intact CP29, and one Chl b (most likely b607). This is why the low-energy state and fluorescence maxima reported by Pieper et al. (Photochem. Photobiol.2000, 71, 574) were blue-shifted by ~1 nm, the low-energy state appeared to be highly localized on a single Chl a molecule, and the position of the low-energy state was independent of burning fluence. In contrast, the position of the nonresonant HB spectrum shifts blue with increasing fluence in intact CP29, as this state is strongly contributed to by several pigments (i.e., a611, a612, a615, and a610). Zero-phonon hole widths obtained for the Chl b band at 638.5 nm (5 K) revealed two independent Chl b → Chl a EET times, i.e., 4 ± 0.5 and 0.4 ± 0.1 ps. The latter value is a factor of 2 faster than previously observed by HB spectroscopy and very similar to the one observed by Gradinaru et al. (J. Phys. Chem. B 2000, 104, 9330) in pump-probe experiments. EET time from 650 nm Chl b → Chl a and downward EET from Chl(s) a state(s) at 665 nm occurs in 4.9 ± 0.7 ps. These findings

  6. Complexes With Biologically Active Ligands. Part 71 Synthesis and Fungitoxic Activity of Metal Complexes Containing 1,3,5-tris-(8-Hydroxyquinolino)- Trichlorocyclo-Triphosphazatriene

    PubMed Central

    Barboiu, Mihai; Guran, Cornelia; Jitaru, Ioana; Cimpoesu, Marilena

    1996-01-01

    Complexes containing 1,3,5-tris-(8-hydroxyquinolino)-trichlorocyclotriphosphazatriene, a new cyclophosphazene ligand, and Co(II), Cu(II) and Ni(II) were prepared. The new complexes, having the general formula [MLCl2], [ML2]Cl2, (M=Cu, Co, Ni); [NiLAc], [NiL2Ac]Ac and [ML3]X3 (M=Ni, Co, X=Cl, Ac) were characterised by elemental analysis, electronic-, IR spectroscopy, and electrical conductivity measurements. Some of them inhibited the growth of several fungi species (Aspergillus and Candida spp.) PMID:18472899

  7. Technological Support of Critical Parts for Railway Transport Working Properties

    NASA Astrophysics Data System (ADS)

    Gabets, A. V.; Gabets, D. A.; Markov, A. M.; Radchenko, M. V.; Leonov, S. L.

    2017-01-01

    The materials of complex research of operational properties of a new brand cast iron CHMN-35M. Optimal chemical composition was determined. The obtained results allow to conclude about possibility of its use for the manufacture of critical parts of rolling stock of railway transport, in particular of a side bearing cap

  8. Additive manufacturing. Continuous liquid interface production of 3D objects.

    PubMed

    Tumbleston, John R; Shirvanyants, David; Ermoshkin, Nikita; Janusziewicz, Rima; Johnson, Ashley R; Kelly, David; Chen, Kai; Pinschmidt, Robert; Rolland, Jason P; Ermoshkin, Alexander; Samulski, Edward T; DeSimone, Joseph M

    2015-03-20

    Additive manufacturing processes such as 3D printing use time-consuming, stepwise layer-by-layer approaches to object fabrication. We demonstrate the continuous generation of monolithic polymeric parts up to tens of centimeters in size with feature resolution below 100 micrometers. Continuous liquid interface production is achieved with an oxygen-permeable window below the ultraviolet image projection plane, which creates a "dead zone" (persistent liquid interface) where photopolymerization is inhibited between the window and the polymerizing part. We delineate critical control parameters and show that complex solid parts can be drawn out of the resin at rates of hundreds of millimeters per hour. These print speeds allow parts to be produced in minutes instead of hours.

  9. Literature Review on Dynamic Cellular Manufacturing System

    NASA Astrophysics Data System (ADS)

    Nouri Houshyar, A.; Leman, Z.; Pakzad Moghadam, H.; Ariffin, M. K. A. M.; Ismail, N.; Iranmanesh, H.

    2014-06-01

    In previous decades, manufacturers faced a lot of challenges because of globalization and high competition in markets. These problems arise from shortening product life cycle, rapid variation in demand of products, and also rapid changes in manufcaturing technologies. Nowadays most manufacturing companies expend considerable attention for improving flexibility and responsiveness in order to overcome these kinds of problems and also meet customer's needs. By considering the trend toward the shorter product life cycle, the manufacturing environment is towards manufacturing a wide variety of parts in small batches [1]. One of the major techniques which are applied for improving manufacturing competitiveness is Cellular Manufacturing System (CMS). CMS is type of manufacturing system which tries to combine flexibility of job shop and also productivity of flow shop. In addition, Dynamic cellular manufacturing system which considers different time periods for the manufacturing system becomes an important topic and attracts a lot of attention to itself. Therefore, this paper made attempt to have a brief review on this issue and focused on all published paper on this subject. Although, this topic gains a lot of attention to itself during these years, none of previous researchers focused on reviewing the literature of that which can be helpful and useful for other researchers who intend to do the research on this topic. Therefore, this paper is the first study which has focused and reviewed the literature of dynamic cellular manufacturing system.

  10. “Additive Manufacturing: Building the Pathway Towards Process and Material Qualification”

    SciTech Connect

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; Hamilton, Reginald F.; Herderick, Edward; Mishra, Rajiv S.; Sears, James

    2016-06-14

    The potential benefits of metal additive manufacturing, as compared with more traditional, subtractive-only approaches, has created excitement within design circles seeking to take advantage of the ability to build and repair complex shapes, to integrate or consolidate multiple parts and minimize joining concerns, and to locally tailor material properties to increase functionality. Tempering the excitement of designers, however, has been concerns with the material deposited by the process. It is not enough for a part to ‘look’ right from a geometric perspective. Rather, the metallurgical aspects associated with the material being deposited must ‘look’ and ‘behave’ correctly along with the aforementioned geometric accuracy. Finally, without elucidation of the connections between processing, microstructure, properties, and performance from a materials science perspective, metal additive manufacturing will not realize its potential to change the manufacturing world for property and performance-critical engineering applications.

  11. “Additive Manufacturing: Building the Pathway Towards Process and Material Qualification”

    SciTech Connect

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; Hamilton, Reginald F.; Herderick, Edward; Mishra, Rajiv S.; Sears, James

    2016-06-14

    The potential benefits of metal additive manufacturing, as compared with more traditional, subtractive-only approaches, has created excitement within design circles seeking to take advantage of the ability to build and repair complex shapes, to integrate or consolidate multiple parts and minimize joining concerns, and to locally tailor material properties to increase functionality. Tempering the excitement of designers, however, has been concerns with the material deposited by the process. It is not enough for a part to ‘look’ right from a geometric perspective. Rather, the metallurgical aspects associated with the material being deposited must ‘look’ and ‘behave’ correctly along with the aforementioned geometric accuracy. Finally, without elucidation of the connections between processing, microstructure, properties, and performance from a materials science perspective, metal additive manufacturing will not realize its potential to change the manufacturing world for property and performance-critical engineering applications.

  12. “Additive Manufacturing: Building the Pathway Towards Process and Material Qualification”

    DOE PAGES

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; ...

    2016-06-14

    The potential benefits of metal additive manufacturing, as compared with more traditional, subtractive-only approaches, has created excitement within design circles seeking to take advantage of the ability to build and repair complex shapes, to integrate or consolidate multiple parts and minimize joining concerns, and to locally tailor material properties to increase functionality. Tempering the excitement of designers, however, has been concerns with the material deposited by the process. It is not enough for a part to ‘look’ right from a geometric perspective. Rather, the metallurgical aspects associated with the material being deposited must ‘look’ and ‘behave’ correctly along with themore » aforementioned geometric accuracy. Finally, without elucidation of the connections between processing, microstructure, properties, and performance from a materials science perspective, metal additive manufacturing will not realize its potential to change the manufacturing world for property and performance-critical engineering applications.« less

  13. Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade - Part 1: Experimental Measurements. Part 1; Experimental Measurements

    NASA Technical Reports Server (NTRS)

    Bunker, Ronald S.; Wetzel, Todd G.; Rigby, David L.; Reddy, D. R. (Technical Monitor)

    2000-01-01

    A combined experimental and computational study has been performed to investigate the detailed heat transfer coefficient distributions within a complex blade trailing edge passage. The experimental measurements are made using a steady liquid crystal thermography technique applied to one major side of the passage. The geometry of the trailing edge passage is that of a two-pass serpentine circuit with a sharp 180-degree turning region at the tip. The upflow channel is split by interrupted ribs into two major subchannels, one of which is turbulated. This channel has an average aspect ratio of roughly 14:1. The spanwise extent of the channel geometry includes both area convergence from root to tip, as well as taper towards the trailing edge apex. The average section Reynolds numbers tested in this upflow channel range from 55,000 to 98,000. The tip section contains a turning vane near the extreme comer. The downflow channel has an aspect ratio of about 5:1, and also includes convergence and taper. Turbulators of varying sizes are included in this channel also. Both detailed heat transfer and pressure distribution measurements are presented. The pressure measurements are incorporated into a flow network model illustrating the major loss contributors.

  14. Operation of Prisma flexible manufacturing system

    NASA Astrophysics Data System (ADS)

    Schroeder, W.; Rudolph, K.; Mueller, E.

    1985-03-01

    The development of technology and organization in the parts manufacturing taking place in machine construction factories occurs both in job site automation and in process-referred automation. It is characterized by the comprehensive employment of microelectronics which in turn leads to new more highly automated engineering solutions in the areas of manufacturing devices, transport technology and storage technology and manufacturing control. Systems used to process about 850 prismatic individual parts differing in design, differing technologically, and having the maximum dimensions 500 mm x 800 mm x 500 mm are described.

  15. Characterizing synthetic gypsum for wallboard manufacture

    SciTech Connect

    Henkels, P.J.; Gynor, J.C.

    1996-12-31

    United States Gypsum Company (USGC) has developed specifications and guidelines covering the chemical and physical aspects of synthetic gypsum to help predict end use acceptability in wallboard manufacture. These guidelines are based in part on past experiences with natural and synthetic gypsum. Similarly, most wallboard manufacturers in North America have developed their own guidelines based in part on its unique history and particular experiences with synthetic gypsum. While there are similarities between manufacturers` guidelines, differences do exist. This paper discusses the importance of selected parameters contained in the FGD gypsum guidelines. In most cases, the parameters are equally relevant to other synthetic gypsums and the naturally occurring gypsum mineral as well.

  16. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations.

    PubMed

    Aceña, José Luis; Sorochinsky, Alexander E; Soloshonok, Vadim

    2014-09-01

    The major goal of this review is a critical discussion of the literature data on asymmetric synthesis of α-amino acids via Michael addition reactions involving Ni(II)-complexes of amino acids. The material covered is divided into two conceptually different groups dealing with applications of: (a) Ni(II)-complexes of glycine as C-nucleophiles and (b) Ni(II)-complexes of dehydroalanine as Michael acceptors. The first group is significantly larger and consequently subdivided into four chapters based on the source of stereocontrolling element. Thus, a chiral auxiliary can be used as a part of nucleophilic glycine Ni(II) complex, Michael acceptor or both, leading to the conditions of matching vs. mismatching stereochemical preferences. The particular focus of the review is made on the practical aspects of the methodology under discussion and mechanistic considerations.

  17. Utility of cyclodextrins in the formulation of genistein part 1. Preparation and physicochemical properties of genistein complexes with native cyclodextrins.

    PubMed

    Daruházi, Agnes Emma; Szente, Lajos; Balogh, Balázs; Mátyus, Péter; Béni, Szabolcs; Takács, Mária; Gergely, András; Horváth, Péter; Szoke, Eva; Lemberkovics, Eva

    2008-11-04

    Isoflavones are suitable guest molecules for inclusion complex formation with cyclodextrins (CDs). The molecular encapsulation with CDs results in a solid, molecularly dispersed form and in a significantly improved aqueous solubility of isoflavones. Genistein, a key isoflavone constituent of Ononidis spinosae radix was found to form a supramolecular, non-covalent inclusion complex with both beta-cyclodextrin (beta-CD) and gamma-cyclodextrin (gamma-CD), while it did not form a stable complex with alpha-CD. The guest genistein was found to spatially located in the less polar cavity of cyclodextrin. The isolated binary genistein/CD complexes appeared novel crystalline lattices. The in vitro dissolution of genistein entrapped into both beta- and gamma-CD, significantly surpassed that of the plain isoflavone.

  18. Resonance assignment of DVU2108 that is part of the Orange Protein complex in Desulfovibrio vulgaris Hildenborough.

    PubMed

    Neca, António J; Soares, Rui; Carepo, Marta S P; Pauleta, Sofia R

    2016-04-01

    We report the 94 % assignment of DVU2108, a protein belonging to the Orange Protein family, that in Desulfovibrio vulgaris Hildenborough forms a protein complex named the Orange Protein complex. This complex has been shown to be implicated in the cell division of this organism. DVU2108 is a conserved protein in anaerobic microorganisms and in Desulfovibrio gigas the homologous protein was isolated with a novel Mo-Cu cluster non-covalently attached to the polypeptide chain. However, the heterologously produced DVU2108 did not contain any bound metal. These assignments provide the means to characterize the interaction of DVU2108 with the proteins that form the Orange Protein complex using NMR methods.

  19. Energy Use in Manufacturing

    EIA Publications

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  20. Nickel-quinolones interaction. Part 1 - Nickel(II) complexes with the antibacterial drug sparfloxacin: structure and biological properties.

    PubMed

    Skyrianou, Kalliopi C; Efthimiadou, Eleni K; Psycharis, Vassilis; Terzis, Aris; Kessissoglou, Dimitris P; Psomas, George

    2009-12-01

    The mononuclear nickel(II) complexes with the third-generation quinolone antibacterial agent sparfloxacin in the absence or presence of nitrogen donor heterocyclic ligands (1,10-phenanthroline or 2,2'-bipyridine) have been synthesized and characterized. The experimental data suggest that sparfloxacin acts as deprotonated bidentate ligand coordinated to Ni(II) ion through the ketone and carboxylato oxygens. The crystal structure of (1,10-phenanthroline)bis(sparfloxacinato) nickel(II), 2 has been determined by X-ray crystallography. The cyclic voltammograms of the complexes recorded in dmso solution and in 1/2 dmso/buffer (containing 150 mM NaCl and 15 mM trisodium citrate at pH 7.0) solution have shown that in the presence of CT DNA they can bind to CT DNA by the intercalative binding mode. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that the complexes can bind to CT DNA and 2 exhibits the highest binding constant to CT DNA. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB for the intercalative binding site. The antimicrobial activity of the complexes has been tested on three different microorganisms and has revealed that the inhibition provided by the complexes is slightly decreased in comparison to free sparfloxacin. The complexes exhibit good binding propensity to human and bovine serum albumin proteins having relatively high binding constant values.