Science.gov

Sample records for pascoite

  1. Spectroscopic and structural characterization of pascoite

    NASA Astrophysics Data System (ADS)

    Reddy, G. Udayabhaskara; Reddy, R. Ramasubba; Reddy, S. Lakshmi; Frost, Ray L.; Endo, Tamio

    2011-09-01

    Pascoite mineral having yellow-orange colour of Colorado, USA origin has been characterized by EPR, optical and NIR spectroscopy. The colour dark red-orange to yellow-orange colour of the pascoite indicates that the mineral contain mixed valency of vanadium. The optical spectrum exhibits a number of electronic bands due to presence of VO(II) ions in the mineral. From EPR studies, the parameters of g, A are evaluated and the data confirm that the ion is in distorted octahedron. Optical absorption studies reveal that two sets of VO(II) is in distorted octahedron. The bands in NIR spectra are due to the overtones and combinations of water molecules.

  2. Raman spectroscopic study of pascoite Ca 3V 10O 28·17H 2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Palmer, Sara J.

    2011-01-01

    Raman spectroscopy has been used to study the molecular structure of the vanadate mineral pascoite. Pascoite, rauvite and huemulite are examples of simple salts involving the decavanadate anion (V 10O 28) 6-. Decavanadate consists of four distinct VO 6 units which are reflected in Raman bands occurring at higher wavenumbers. The Raman spectrum of pascoite is characterised by two intense bands at 991 and 965 cm -1. Raman bands are observed at 991, 965, 958 and 905 cm -1 and originate from four distinct VO 6 sites in the mineral structure. In the infrared spectra of pascoite, two wavenumber regions are observed between: (1) 837 and 860, and (2) between 803 and 833 cm -1. These bands are assigned to ν 3 antisymmetric stretching modes of (V 10O 28) 6- or (V 5O 14) 3- units. The spectrum is highly complex in the lower wavenumber region, and therefore the assignment of bands is difficult. Bands observed in the 404 to 458 cm -1 region are assigned to the ν 2 bending modes of (V 10O 28) 6- or (V 5O 14) 3- units. Raman bands observed in the 530-620 cm -1 region are assigned to the ν 4 bending modes of (V 10O 28) 6- or (V 5O 14) 3- units. The Raman spectra of the vanadates in the low wavenumber region are complex with multiple overlapping bands which are probably due to VO subunits and MO bonds.

  3. Raman spectroscopic study of pascoite Ca3V10O(28)·17H2O.

    PubMed

    Frost, Ray L; Palmer, Sara J

    2011-01-01

    Raman spectroscopy has been used to study the molecular structure of the vanadate mineral pascoite. Pascoite, rauvite and huemulite are examples of simple salts involving the decavanadate anion (V10O28)6-. Decavanadate consists of four distinct VO6 units which are reflected in Raman bands occurring at higher wavenumbers. The Raman spectrum of pascoite is characterised by two intense bands at 991 and 965 cm(-1). Raman bands are observed at 991, 965, 958 and 905 cm(-1) and originate from four distinct VO6 sites in the mineral structure. In the infrared spectra of pascoite, two wavenumber regions are observed between: (1) 837 and 860, and (2) between 803 and 833 cm(-1). These bands are assigned to ν3 antisymmetric stretching modes of (V10O28)6- or (V5O14)3- units. The spectrum is highly complex in the lower wavenumber region, and therefore the assignment of bands is difficult. Bands observed in the 404 to 458 cm(-1) region are assigned to the ν2 bending modes of (V10O28)6- or (V5O14)3- units. Raman bands observed in the 530-620 cm(-1) region are assigned to the ν4 bending modes of (V10O28)6- or (V5O14)3- units. The Raman spectra of the vanadates in the low wavenumber region are complex with multiple overlapping bands which are probably due to VO subunits and MO bonds.

  4. Raman and infrared spectroscopy of selected vanadates.

    PubMed

    Frost, Ray L; Erickson, Kristy L; Weier, Matt L; Carmody, Onuma

    2005-03-01

    Raman and infrared spectroscopy has been used to study the structure of selected vanadates including pascoite, huemulite, barnesite, hewettite, metahewettite, hummerite. Pascoite, rauvite and huemulite are examples of simple salts involving the decavanadates anion (V10O28)6-. Decavanadate consists of four distinct VO6 units which are reflected in Raman bands at the higher wavenumbers. The Raman spectra of these minerals are characterised by two intense bands at 991 and 965 cm(-1). Four pascoite Raman bands are observed at 991, 965, 958 and 905 cm(-1) and originate from four distinct VO6 sites. The other minerals namely barnesite, hewettite, metahewettite and hummerite have similar layered structures to the decavanadates but are based upon (V5O14)3- units. Barnesite is characterised by a single Raman band at 1010 cm(-1), whilst hummerite has Raman bands at 999 and 962 cm(-1). The absence of four distinct bands indicates the overlap of the vibrational modes from two of the VO6 sites. Metarossite is characterised by a strong band at 953 cm(-1). These bands are assigned to nu1 symmetric stretching modes of (V6O16)2- units and terminal VO3 units. In the infrared spectra of these minerals, bands are observed in the 837-860 cm(-1) and in the 803-833 cm(-1) region. In some of the Raman spectra bands are observed for pascoite, hummerite and metahewettite in similar positions. These bands are assigned to nu3 antisymmetric stretching of (V10O28)6- units or (V5O14)3- units. Because of the complexity of the spectra in the low wavenumber region assignment of bands is difficult. Bands are observed in the 404-458 cm(-1) region and are assigned to the nu2 bending modes of (V10O28)6- units or (V5O14)3- units. Raman bands are observed in the 530-620 cm(-1) region and are assigned to the nu4 bending modes of (V10O28)6- units or (V5O14)3- units. The Raman spectra of the vanadates in the low wavenumber region are complex with multiple overlapping bands which are probably due to VO

  5. Raman and infrared spectroscopy of selected vanadates

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Erickson, Kristy L.; Weier, Matt L.; Carmody, Onuma

    2005-03-01

    Raman and infrared spectroscopy has been used to study the structure of selected vanadates including pascoite, huemulite, barnesite, hewettite, metahewettite, hummerite. Pascoite, rauvite and huemulite are examples of simple salts involving the decavanadates anion (V 10O 28) 6-. Decavanadate consists of four distinct VO 6 units which are reflected in Raman bands at the higher wavenumbers. The Raman spectra of these minerals are characterised by two intense bands at 991 and 965 cm -1. Four pascoite Raman bands are observed at 991, 965, 958 and 905 cm -1 and originate from four distinct VO 6 sites. The other minerals namely barnesite, hewettite, metahewettite and hummerite have similar layered structures to the decavanadates but are based upon (V 5O 14) 3- units. Barnesite is characterised by a single Raman band at 1010 cm -1, whilst hummerite has Raman bands at 999 and 962 cm -1. The absence of four distinct bands indicates the overlap of the vibrational modes from two of the VO 6 sites. Metarossite is characterised by a strong band at 953 cm -1. These bands are assigned to ν1 symmetric stretching modes of (V 6O 16) 2- units and terminal VO 3 units. In the infrared spectra of these minerals, bands are observed in the 837-860 cm -1 and in the 803-833 cm -1 region. In some of the Raman spectra bands are observed for pascoite, hummerite and metahewettite in similar positions. These bands are assigned to ν 3 antisymmetric stretching of (V 10O 28) 6- units or (V 5O 14) 3- units. Because of the complexity of the spectra in the low wavenumber region assignment of bands is difficult. Bands are observed in the 404-458 cm -1 region and are assigned to the ν2 bending modes of (V 10O 28) 6- units or (V 5O 14) 3- units. Raman bands are observed in the 530-620 cm -1 region and are assigned to the ν4 bending modes of (V 10O 28) 6- units or (V 5O 14) 3- units. The Raman spectra of the vanadates in the low wavenumber region are complex with multiple overlapping bands which are

  6. Hydrogen bonding in selected vanadates: a Raman and infrared spectroscopy study.

    PubMed

    Frost, Ray L; Erickson, Kristy L; Weier, Matt L

    2004-08-01

    Water plays an important role in the stability of minerals containing the deca and hexavanadates ions. A selection of minerals including pascoite, huemulite, barnesite, hewettite, metahewettite, hummerite has been analysed. Infrared spectroscopy combined with Raman spectroscopy has enabled the spectra of the water HOH stretching bands to be determined. The use of the Libowitsky type function allows for the estimation of hydrogen bond distances to be determined. The strength of the hydrogen bonds can be assessed by these hydrogen bond distances. An arbitrary value of 2.74A was used to separate the hydrogen bonds into two categories such that bond distances less than this value are considered as strong hydrogen bonds whereas hydrogen bond distances greater than this value are considered relatively weaker. Importantly infrared spectroscopy enables the estimation of hydrogen bond distances using an empirical function.

  7. One-dimensional decavanadate chains in the crystal structure of Rb4[Na(H2O)6][HV10O28]·4H2O.

    PubMed

    Yakubovich, Olga V; Steele, Ian M; Yakovleva, Ekaterina V; Dimitrova, Olga V

    2015-06-01

    New decavanadate minerals, the products of the leaching or metasomatic processes, are possible in nature via Na/Rb removal/inclusion reactions. As part of our search for novel vanadate phases with varying functionalities, a new phase, tetrarubidium hexaaquasodium hydrogen decavanadate tetrahydrate, Rb4[Na(H2O)6][HV10O28]·4H2O, has been synthesized by the hydrothermal technique at 553 K. Ten shared edges of V-centred octahedra form monoprotonated decavanadate cages, which are joined together via hydrogen bonds into one-dimensional chains parallel to the [101] direction. Within these chains, H atoms are sandwiched between neighbouring polyanions. Na and Rb atoms and H2O molecules occupy interstices flanked by the anionic chains providing additional crosslinking in the structure. This compound is the second decavanadate with P2/n symmetry. Structural relationships among protonated and deprotonated decavanadates with inorganic cations, including minerals of the pascoite group, are discussed.