Sample records for pass functional imaging

  1. An orthogonal oriented quadrature hexagonal image pyramid

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J., Jr.

    1987-01-01

    An image pyramid has been developed with basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The pyramid operates on a hexagonal sample lattice. The set of seven basis functions consist of three even high-pass kernels, three odd high-pass kernels, and one low-pass kernel. The three even kernels are identified when rotated by 60 or 120 deg, and likewise for the odd. The seven basis functions occupy a point and a hexagon of six nearest neighbors on a hexagonal sample lattice. At the lowest level of the pyramid, the input lattice is the image sample lattice. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing sq rt 7 larger than the previous level, so that the number of coefficients is reduced by a factor of 7 at each level. The relationship between this image code and the processing architecture of the primate visual cortex is discussed.

  2. Hadamard multimode optical imaging transceiver

    DOEpatents

    Cooke, Bradly J; Guenther, David C; Tiee, Joe J; Kellum, Mervyn J; Olivas, Nicholas L; Weisse-Bernstein, Nina R; Judd, Stephen L; Braun, Thomas R

    2012-10-30

    Disclosed is a method and system for simultaneously acquiring and producing results for multiple image modes using a common sensor without optical filtering, scanning, or other moving parts. The system and method utilize the Walsh-Hadamard correlation detection process (e.g., functions/matrix) to provide an all-binary structure that permits seamless bridging between analog and digital domains. An embodiment may capture an incoming optical signal at an optical aperture, convert the optical signal to an electrical signal, pass the electrical signal through a Low-Noise Amplifier (LNA) to create an LNA signal, pass the LNA signal through one or more correlators where each correlator has a corresponding Walsh-Hadamard (WH) binary basis function, calculate a correlation output coefficient for each correlator as a function of the corresponding WH binary basis function in accordance with Walsh-Hadamard mathematical principles, digitize each of the correlation output coefficient by passing each correlation output coefficient through an Analog-to-Digital Converter (ADC), and performing image mode processing on the digitized correlation output coefficients as desired to produce one or more image modes. Some, but not all, potential image modes include: multi-channel access, temporal, range, three-dimensional, and synthetic aperture.

  3. Effective method for detecting regions of given colors and the features of the region surfaces

    NASA Astrophysics Data System (ADS)

    Gong, Yihong; Zhang, HongJiang

    1994-03-01

    Color can be used as a very important cue for image recognition. In industrial and commercial areas, color is widely used as a trademark or identifying feature in objects, such as packaged goods, advertising signs, etc. In image database systems, one may retrieve an image of interest by specifying prominent colors and their locations in the image (image retrieval by contents). These facts enable us to detect or identify a target object using colors. However, this task depends mainly on how effectively we can identify a color and detect regions of the given color under possibly non-uniform illumination conditions such as shade, highlight, and strong contrast. In this paper, we present an effective method to detect regions matching given colors, along with the features of the region surfaces. We adopt the HVC color coordinates in the method because of its ability of completely separating the luminant and chromatic components of colors. Three basis functions functionally serving as the low-pass, high-pass, and band-pass filters, respectively, are introduced.

  4. Table-driven image transformation engine algorithm

    NASA Astrophysics Data System (ADS)

    Shichman, Marc

    1993-04-01

    A high speed image transformation engine (ITE) was designed and a prototype built for use in a generic electronic light table and image perspective transformation application code. The ITE takes any linear transformation, breaks the transformation into two passes and resamples the image appropriately for each pass. The system performance is achieved by driving the engine with a set of look up tables computed at start up time for the calculation of pixel output contributions. Anti-aliasing is done automatically in the image resampling process. Operations such as multiplications and trigonometric functions are minimized. This algorithm can be used for texture mapping, image perspective transformation, electronic light table, and virtual reality.

  5. Assessment of right ventricular function with nonimaging first pass ventriculography and comparison of results with gamma camera studies.

    PubMed

    Zhang, Z; Liu, X J; Liu, Y Z; Lu, P; Crawley, J C; Lahiri, A

    1990-08-01

    A new technique has been developed for measuring right ventricular function by nonimaging first pass ventriculography. The right ventricular ejection fraction (RVEF) obtained by non-imaging first pass ventriculography was compared with that obtained by gamma camera first pass and equilibrium ventriculography. The data has demonstrated that the correlation of RVEFs obtained by the nonimaging nuclear cardiac probe and by gamma camera first pass ventriculography in 15 subjects was comparable (r = 0.93). There was also a good correlation between RVEFs obtained by the nonimaging nuclear probe and by equilibrium gated blood pool studies in 33 subjects (r = 0.89). RVEF was significantly reduced in 15 patients with right ventricular and/or inferior myocardial infarction compared to normal subjects (28 +/- 9% v. 45 +/- 9%). The data suggests that nonimaging probes may be used for assessing right ventricular function accurately.

  6. Partial differential equation transform — Variational formulation and Fourier analysis

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    Nonlinear partial differential equation (PDE) models are established approaches for image/signal processing, data analysis and surface construction. Most previous geometric PDEs are utilized as low-pass filters which give rise to image trend information. In an earlier work, we introduced mode decomposition evolution equations (MoDEEs), which behave like high-pass filters and are able to systematically provide intrinsic mode functions (IMFs) of signals and images. Due to their tunable time-frequency localization and perfect reconstruction, the operation of MoDEEs is called a PDE transform. By appropriate selection of PDE transform parameters, we can tune IMFs into trends, edges, textures, noise etc., which can be further utilized in the secondary processing for various purposes. This work introduces the variational formulation, performs the Fourier analysis, and conducts biomedical and biological applications of the proposed PDE transform. The variational formulation offers an algorithm to incorporate two image functions and two sets of low-pass PDE operators in the total energy functional. Two low-pass PDE operators have different signs, leading to energy disparity, while a coupling term, acting as a relative fidelity of two image functions, is introduced to reduce the disparity of two energy components. We construct variational PDE transforms by using Euler-Lagrange equation and artificial time propagation. Fourier analysis of a simplified PDE transform is presented to shed light on the filter properties of high order PDE transforms. Such an analysis also offers insight on the parameter selection of the PDE transform. The proposed PDE transform algorithm is validated by numerous benchmark tests. In one selected challenging example, we illustrate the ability of PDE transform to separate two adjacent frequencies of sin(x) and sin(1.1x). Such an ability is due to PDE transform’s controllable frequency localization obtained by adjusting the order of PDEs. The frequency selection is achieved either by diffusion coefficients or by propagation time. Finally, we explore a large number of practical applications to further demonstrate the utility of proposed PDE transform. PMID:22207904

  7. Physical correction filter for improving the optical quality of an image

    NASA Technical Reports Server (NTRS)

    Lee, S. Y. (Inventor)

    1975-01-01

    A family of physical correction filters is described. Each filter is designed to correct image content of a photographed scene of limited resolution and includes a first filter element with a pinhole through which light passes to a differential amplifier. A second filter element through which light passes through one or more openings, whose geometric configuration is a function of the cause of the resolution loss included. The light, passing through the second filter element, is also supplied to the differential amplifier whose output is used to activate an optical display or recorder to reproduce a photograph or display of the scene in the original photograph or display of the scene in the original photograph with resolution which is significantly greater than that characterizing the original photograph.

  8. Multispectral medical image fusion in Contourlet domain for computer based diagnosis of Alzheimer's disease.

    PubMed

    Bhateja, Vikrant; Moin, Aisha; Srivastava, Anuja; Bao, Le Nguyen; Lay-Ekuakille, Aimé; Le, Dac-Nhuong

    2016-07-01

    Computer based diagnosis of Alzheimer's disease can be performed by dint of the analysis of the functional and structural changes in the brain. Multispectral image fusion deliberates upon fusion of the complementary information while discarding the surplus information to achieve a solitary image which encloses both spatial and spectral details. This paper presents a Non-Sub-sampled Contourlet Transform (NSCT) based multispectral image fusion model for computer-aided diagnosis of Alzheimer's disease. The proposed fusion methodology involves color transformation of the input multispectral image. The multispectral image in YIQ color space is decomposed using NSCT followed by dimensionality reduction using modified Principal Component Analysis algorithm on the low frequency coefficients. Further, the high frequency coefficients are enhanced using non-linear enhancement function. Two different fusion rules are then applied to the low-pass and high-pass sub-bands: Phase congruency is applied to low frequency coefficients and a combination of directive contrast and normalized Shannon entropy is applied to high frequency coefficients. The superiority of the fusion response is depicted by the comparisons made with the other state-of-the-art fusion approaches (in terms of various fusion metrics).

  9. Multispectral medical image fusion in Contourlet domain for computer based diagnosis of Alzheimer’s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhateja, Vikrant, E-mail: bhateja.vikrant@gmail.com, E-mail: nhuongld@hus.edu.vn; Moin, Aisha; Srivastava, Anuja

    Computer based diagnosis of Alzheimer’s disease can be performed by dint of the analysis of the functional and structural changes in the brain. Multispectral image fusion deliberates upon fusion of the complementary information while discarding the surplus information to achieve a solitary image which encloses both spatial and spectral details. This paper presents a Non-Sub-sampled Contourlet Transform (NSCT) based multispectral image fusion model for computer-aided diagnosis of Alzheimer’s disease. The proposed fusion methodology involves color transformation of the input multispectral image. The multispectral image in YIQ color space is decomposed using NSCT followed by dimensionality reduction using modified Principal Componentmore » Analysis algorithm on the low frequency coefficients. Further, the high frequency coefficients are enhanced using non-linear enhancement function. Two different fusion rules are then applied to the low-pass and high-pass sub-bands: Phase congruency is applied to low frequency coefficients and a combination of directive contrast and normalized Shannon entropy is applied to high frequency coefficients. The superiority of the fusion response is depicted by the comparisons made with the other state-of-the-art fusion approaches (in terms of various fusion metrics).« less

  10. The influence of underwater turbulence on optical phase measurements

    NASA Astrophysics Data System (ADS)

    Redding, Brandon; Davis, Allen; Kirkendall, Clay; Dandridge, Anthony

    2016-05-01

    Emerging underwater optical imaging and sensing applications rely on phase-sensitive detection to provide added functionality and improved sensitivity. However, underwater turbulence introduces spatio-temporal variations in the refractive index of water which can degrade the performance of these systems. Although the influence of turbulence on traditional, non-interferometric imaging has been investigated, its influence on the optical phase remains poorly understood. Nonetheless, a thorough understanding of the spatio-temporal dynamics of the optical phase of light passing through underwater turbulence are crucial to the design of phase-sensitive imaging and sensing systems. To address this concern, we combined underwater imaging with high speed holography to provide a calibrated characterization of the effects of turbulence on the optical phase. By measuring the modulation transfer function of an underwater imaging system, we were able to calibrate varying levels of optical turbulence intensity using the Simple Underwater Imaging Model (SUIM). We then used high speed holography to measure the temporal dynamics of the optical phase of light passing through varying levels of turbulence. Using this method, we measured the variance in the amplitude and phase of the beam, the temporal correlation of the optical phase, and recorded the turbulence induced phase noise as a function of frequency. By bench marking the effects of varying levels of turbulence on the optical phase, this work provides a basis to evaluate the real-world potential of emerging underwater interferometric sensing modalities.

  11. PIV-DCNN: cascaded deep convolutional neural networks for particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Lee, Yong; Yang, Hua; Yin, Zhouping

    2017-12-01

    Velocity estimation (extracting the displacement vector information) from the particle image pairs is of critical importance for particle image velocimetry. This problem is mostly transformed into finding the sub-pixel peak in a correlation map. To address the original displacement extraction problem, we propose a different evaluation scheme (PIV-DCNN) with four-level regression deep convolutional neural networks. At each level, the networks are trained to predict a vector from two input image patches. The low-level network is skilled at large displacement estimation and the high- level networks are devoted to improving the accuracy. Outlier replacement and symmetric window offset operation glue the well- functioning networks in a cascaded manner. Through comparison with the standard PIV methods (one-pass cross-correlation method, three-pass window deformation), the practicability of the proposed PIV-DCNN is verified by the application to a diversity of synthetic and experimental PIV images.

  12. An empirical comparison of SPM preprocessing parameters to the analysis of fMRI data.

    PubMed

    Della-Maggiore, Valeria; Chau, Wilkin; Peres-Neto, Pedro R; McIntosh, Anthony R

    2002-09-01

    We present the results from two sets of Monte Carlo simulations aimed at evaluating the robustness of some preprocessing parameters of SPM99 for the analysis of functional magnetic resonance imaging (fMRI). Statistical robustness was estimated by implementing parametric and nonparametric simulation approaches based on the images obtained from an event-related fMRI experiment. Simulated datasets were tested for combinations of the following parameters: basis function, global scaling, low-pass filter, high-pass filter and autoregressive modeling of serial autocorrelation. Based on single-subject SPM analysis, we derived the following conclusions that may serve as a guide for initial analysis of fMRI data using SPM99: (1) The canonical hemodynamic response function is a more reliable basis function to model the fMRI time series than HRF with time derivative. (2) Global scaling should be avoided since it may significantly decrease the power depending on the experimental design. (3) The use of a high-pass filter may be beneficial for event-related designs with fixed interstimulus intervals. (4) When dealing with fMRI time series with short interstimulus intervals (<8 s), the use of first-order autoregressive model is recommended over a low-pass filter (HRF) because it reduces the risk of inferential bias while providing a relatively good power. For datasets with interstimulus intervals longer than 8 seconds, temporal smoothing is not recommended since it decreases power. While the generalizability of our results may be limited, the methods we employed can be easily implemented by other scientists to determine the best parameter combination to analyze their data.

  13. An image mosaic method based on corner

    NASA Astrophysics Data System (ADS)

    Jiang, Zetao; Nie, Heting

    2015-08-01

    In view of the shortcomings of the traditional image mosaic, this paper describes a new algorithm for image mosaic based on the Harris corner. Firstly, Harris operator combining the constructed low-pass smoothing filter based on splines function and circular window search is applied to detect the image corner, which allows us to have better localisation performance and effectively avoid the phenomenon of cluster. Secondly, the correlation feature registration is used to find registration pair, remove the false registration using random sampling consensus. Finally use the method of weighted trigonometric combined with interpolation function for image fusion. The experiments show that this method can effectively remove the splicing ghosting and improve the accuracy of image mosaic.

  14. Systematic approach to cutoff frequency selection in continuous-wave electron paramagnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Hirata, Hiroshi; Itoh, Toshiharu; Hosokawa, Kouichi; Deng, Yuanmu; Susaki, Hitoshi

    2005-08-01

    This article describes a systematic method for determining the cutoff frequency of the low-pass window function that is used for deconvolution in two-dimensional continuous-wave electron paramagnetic resonance (EPR) imaging. An evaluation function for the criterion used to select the cutoff frequency is proposed, and is the product of the effective width of the point spread function for a localized point signal and the noise amplitude of a resultant EPR image. The present method was applied to EPR imaging for a phantom, and the result of cutoff frequency selection was compared with that based on a previously reported method for the same projection data set. The evaluation function has a global minimum point that gives the appropriate cutoff frequency. Images with reasonably good resolution and noise suppression can be obtained from projections with an automatically selected cutoff frequency based on the present method.

  15. A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J., Jr.

    1989-01-01

    Retinal ganglion cells represent the visual image with a spatial code, in which each cell conveys information about a small region in the image. In contrast, cells of the primary visual cortex use a hybrid space-frequency code in which each cell conveys information about a region that is local in space, spatial frequency, and orientation. A mathematical model for this transformation is described. The hexagonal orthogonal-oriented quadrature pyramid (HOP) transform, which operates on a hexagonal input lattice, uses basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The basis functions, which are generated from seven basic types through a recursive process, form an image code of the pyramid type. The seven basis functions, six bandpass and one low-pass, occupy a point and a hexagon of six nearest neighbors on a hexagonal lattice. The six bandpass basis functions consist of three with even symmetry, and three with odd symmetry. At the lowest level, the inputs are image samples. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing square root of 7 larger than the previous level, so that the number of coefficients is reduced by a factor of seven at each level. In the biological model, the input lattice is the retinal ganglion cell array. The resulting scheme provides a compact, efficient code of the image and generates receptive fields that resemble those of the primary visual cortex.

  16. Roles of ON Cone Bipolar Cell Subtypes in Temporal Coding in the Mouse Retina

    PubMed Central

    Fyk-Kolodziej, Bozena; Cohn, Jesse

    2014-01-01

    In the visual system, diverse image processing starts with bipolar cells, which are the second-order neurons of the retina. Thirteen subtypes of bipolar cells have been identified, which are thought to encode different features of image signaling and to initiate distinct signal-processing streams. Although morphologically identified, the functional roles of each bipolar cell subtype in visual signal encoding are not fully understood. Here, we investigated how ON cone bipolar cells of the mouse retina encode diverse temporal image signaling. We recorded bipolar cell voltage changes in response to two different input functions: sinusoidal light and step light stimuli. Temporal tuning in ON cone bipolar cells was diverse and occurred in a subtype-dependent manner. Subtypes 5s and 8 exhibited low-pass filtering property in response to a sinusoidal light stimulus, and responded with sustained fashion to step-light stimulation. Conversely, subtypes 5f, 6, 7, and XBC exhibited bandpass filtering property in response to sinusoidal light stimuli, and responded transiently to step-light stimuli. In particular, subtypes 7 and XBC were high-temporal tuning cells. We recorded responses in different ways to further examine the underlying mechanisms of temporal tuning. Current injection evoked low-pass filtering, whereas light responses in voltage-clamp mode produced bandpass filtering in all ON bipolar cells. These findings suggest that cone photoreceptor inputs shape bandpass filtering in bipolar cells, whereas intrinsic properties of bipolar cells shape low-pass filtering. Together, our results demonstrate that ON bipolar cells encode diverse temporal image signaling in a subtype-dependent manner to initiate temporal visual information-processing pathways. PMID:24966376

  17. Global HRSC Image Mosaics of Mars: Dodging for High-Pass Filtering, Combined with Low-Pass-Filtered OMEGA Mosaics

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Walter, S. H. G.; van Gasselt, S.; Dumke, A.; Dunker, T.; Gross, C.; Michael, G.; Wendt, L.; Audouard, J.; Ody, A.; Poulet, F.

    2014-07-01

    We discuss our approach towards automatically mosaicking hundreds of the HRSC panchromatic or RGB images together. Our best results consist of adding a high-pass-filtered HRSC mosaic to a low-pass-filtered OMEGA global mosaic.

  18. Multi-focus image fusion based on area-based standard deviation in dual tree contourlet transform domain

    NASA Astrophysics Data System (ADS)

    Dong, Min; Dong, Chenghui; Guo, Miao; Wang, Zhe; Mu, Xiaomin

    2018-04-01

    Multiresolution-based methods, such as wavelet and Contourlet are usually used to image fusion. This work presents a new image fusion frame-work by utilizing area-based standard deviation in dual tree Contourlet trans-form domain. Firstly, the pre-registered source images are decomposed with dual tree Contourlet transform; low-pass and high-pass coefficients are obtained. Then, the low-pass bands are fused with weighted average based on area standard deviation rather than the simple "averaging" rule. While the high-pass bands are merged with the "max-absolute' fusion rule. Finally, the modified low-pass and high-pass coefficients are used to reconstruct the final fused image. The major advantage of the proposed fusion method over conventional fusion is the approximately shift invariance and multidirectional selectivity of dual tree Contourlet transform. The proposed method is compared with wavelet- , Contourletbased methods and other the state-of-the art methods on common used multi focus images. Experiments demonstrate that the proposed fusion framework is feasible and effective, and it performs better in both subjective and objective evaluation.

  19. TU-A-12A-01: Consistency of Lung Expansion and Contraction During Respiration: Implications for Quantitative Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, T; Du, K; Bayouth, J

    Purpose: Four-dimensional computed tomography (4DCT) can be used to evaluate longitudinal changes in pulmonary function. The sensitivity of such measurements to identify function change may be improved with reproducible breathing patterns. The purpose of this study was to determine if inhale was more consistent than exhale, i.e., lung expansion during inhalation compared to lung contraction during exhalation. Methods: Repeat 4DCT image data acquired within a short time interval from 8 patients. Using a tissue volume preserving deformable image registration algorithm, Jacobian ventilation maps in two scanning sessions were computed and compared on the same coordinate for reproducibility analysis. Equivalent lungmore » volumes (ELV) were used for 5 subjects and equivalent title volumes (ETV) for the 3 subjects who experienced a baseline shift between scans. In addition, gamma pass rate was calculated from a modified gamma index evaluation between two ventilation maps, using acceptance criterions of 2mm distance-to-agreement and 5% ventilation difference. The gamma pass rates were then compared using paired t-test to determine if there was a significant difference. Results: Inhalation was more reproducible than exhalation. In the 5 ELV subjects 78.5% of the lung voxels met the gamma criteria for expansion during inhalation when comparing the two scans, while significantly fewer (70.9% of the lung voxels) met the gamma criteria for contraction during exhalation (p = .027). In the 8 total subjects analyzed the average gamma pass rate for expansion during inhalation was 75.2% while for contraction during exhalation it was 70.3%; which trended towards significant (p = .064). Conclusion: This work implies inhalation is more reproducible than exhalation, when equivalent respiratory volumes are considered. The reason for this difference is unknown. Longitudinal investigation of pulmonary function change based on inhalation images appears appropriate for Jacobian-based measure of lung tissue expansion. NIH Grant: R01 CA166703.« less

  20. Cardiac CT for myocardial ischaemia detection and characterization--comparative analysis.

    PubMed

    Bucher, A M; De Cecco, C N; Schoepf, U J; Wang, R; Meinel, F G; Binukrishnan, S R; Spearman, J V; Vogl, T J; Ruzsics, B

    2014-11-01

    The assessment of patients presenting with symptoms of myocardial ischaemia remains one of the most common and challenging clinical scenarios faced by physicians. Current imaging modalities are capable of three-dimensional, functional and anatomical views of the heart and as such offer a unique contribution to understanding and managing the pathology involved. Evidence has accumulated that visual anatomical coronary evaluation does not adequately predict haemodynamic relevance and should be complemented by physiological evaluation, highlighting the importance of functional assessment. Technical advances in CT technology over the past decade have progressively moved cardiac CT imaging into the clinical workflow. In addition to anatomical evaluation, cardiac CT is capable of providing myocardial perfusion parameters. A variety of CT techniques can be used to assess the myocardial perfusion. The single energy first-pass CT and dual energy first-pass CT allow static assessment of myocardial blood pool. Dynamic cardiac CT imaging allows quantification of myocardial perfusion through time-resolved attenuation data. CT-based myocardial perfusion imaging (MPI) is showing promising diagnostic accuracy compared with the current reference modalities. The aim of this review is to present currently available myocardial perfusion techniques with a focus on CT imaging in light of recent clinical investigations. This article provides a comprehensive overview of currently available CT approaches of static and dynamic MPI and presents the results of corresponding clinical trials.

  1. Stereo Imaging Miniature Endoscope with Single Imaging Chip and Conjugated Multi-Bandpass Filters

    NASA Technical Reports Server (NTRS)

    Shahinian, Hrayr Karnig (Inventor); Bae, Youngsam (Inventor); White, Victor E. (Inventor); Shcheglov, Kirill V. (Inventor); Manohara, Harish M. (Inventor); Kowalczyk, Robert S. (Inventor)

    2018-01-01

    A dual objective endoscope for insertion into a cavity of a body for providing a stereoscopic image of a region of interest inside of the body including an imaging device at the distal end for obtaining optical images of the region of interest (ROI), and processing the optical images for forming video signals for wired and/or wireless transmission and display of 3D images on a rendering device. The imaging device includes a focal plane detector array (FPA) for obtaining the optical images of the ROI, and processing circuits behind the FPA. The processing circuits convert the optical images into the video signals. The imaging device includes right and left pupil for receiving a right and left images through a right and left conjugated multi-band pass filters. Illuminators illuminate the ROI through a multi-band pass filter having three right and three left pass bands that are matched to the right and left conjugated multi-band pass filters. A full color image is collected after three or six sequential illuminations with the red, green and blue lights.

  2. Optimization of Spiral-Based Pulse Sequences for First Pass Myocardial Perfusion Imaging

    PubMed Central

    Salerno, Michael; Sica, Christopher T.; Kramer, Christopher M.; Meyer, Craig H.

    2010-01-01

    While spiral trajectories have multiple attractive features such as their isotropic resolution, acquisition efficiency, and robustness to motion, there has been limited application of these techniques to first pass perfusion imaging because of potential off-resonance and inconsistent data artifacts. Spiral trajectories may also be less sensitive to dark-rim artifacts (DRA) that are caused, at least in part, by cardiac motion. By careful consideration of the spiral trajectory readout duration, flip angle strategy, and image reconstruction strategy, spiral artifacts can be abated to create high quality first pass myocardial perfusion images with high SNR. The goal of this paper was to design interleaved spiral pulse sequences for first-pass myocardial perfusion imaging, and to evaluate them clinically for image quality and the presence of dark-rim, blurring, and dropout artifacts. PMID:21590802

  3. Fusion method of SAR and optical images for urban object extraction

    NASA Astrophysics Data System (ADS)

    Jia, Yonghong; Blum, Rick S.; Li, Fangfang

    2007-11-01

    A new image fusion method of SAR, Panchromatic (Pan) and multispectral (MS) data is proposed. First of all, SAR texture is extracted by ratioing the despeckled SAR image to its low pass approximation, and is used to modulate high pass details extracted from the available Pan image by means of the á trous wavelet decomposition. Then, high pass details modulated with the texture is applied to obtain the fusion product by HPFM (High pass Filter-based Modulation) fusion method. A set of image data including co-registered Landsat TM, ENVISAT SAR and SPOT Pan is used for the experiment. The results demonstrate accurate spectral preservation on vegetated regions, bare soil, and also on textured areas (buildings and road network) where SAR texture information enhances the fusion product, and the proposed approach is effective for image interpret and classification.

  4. About Jupiter's Reflectance Function in JunoCam Images

    NASA Astrophysics Data System (ADS)

    Eichstaedt, G.; Orton, G. S.; Momary, T.; Hansen, C. J.; Caplinger, M.

    2017-09-01

    NASA's Juno spacecraft has successfully completed several perijove passes. JunoCam is Juno's visible light and infrared camera. It was added to the instrument complement to investigate Jupiter's polar regions, and for education and public outreach purposes. Images of Jupiter taken by JunoCam have been revealing effects that can be interpreted as caused by a haze layer. This presumed haze layer appears to be structured, and it partially obscures Jupiter's cloud top. With empirical investigation of Jupiter's reflectance function we intend to separate light contributed by haze from light reflected off Jupiter's cloud tops, enabling both layers to be investigated separately.

  5. Image Edge Extraction via Fuzzy Reasoning

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A. (Inventor); Klinko, Steve (Inventor)

    2008-01-01

    A computer-based technique for detecting edges in gray level digital images employs fuzzy reasoning to analyze whether each pixel in an image is likely on an edge. The image is analyzed on a pixel-by-pixel basis by analyzing gradient levels of pixels in a square window surrounding the pixel being analyzed. An edge path passing through the pixel having the greatest intensity gradient is used as input to a fuzzy membership function, which employs fuzzy singletons and inference rules to assigns a new gray level value to the pixel that is related to the pixel's edginess degree.

  6. Intraocular scattering compensation in retinal imaging

    PubMed Central

    Christaras, Dimitrios; Ginis, Harilaos; Pennos, Alexandros; Artal, Pablo

    2016-01-01

    Intraocular scattering affects fundus imaging in a similar way that affects vision; it causes a decrease in contrast which depends on both the intrinsic scattering of the eye but also on the dynamic range of the image. Consequently, in cases where the absolute intensity in the fundus image is important, scattering can lead to a wrong estimation. In this paper, a setup capable of acquiring fundus images and estimating objectively intraocular scattering was built, and the acquired images were then used for scattering compensation in fundus imaging. The method consists of two parts: first, reconstruct the individual’s wide-angle Point Spread Function (PSF) at a specific wavelength to be used within an enhancement algorithm on an acquired fundus image to compensate for scattering. As a proof of concept, a single pass measurement with a scatter filter was carried out first and the complete algorithm of the PSF reconstruction and the scattering compensation was applied. The advantage of the single pass test is that one can compare the reconstructed image with the original one and see the validity, thus testing the efficiency of the method. Following the test, the algorithm was applied in actual fundus images in human eyes and the effect on the contrast of the image before and after the compensation was compared. The comparison showed that depending on the wavelength, contrast can be reduced by 8.6% under certain conditions. PMID:27867710

  7. Local adaptive tone mapping for video enhancement

    NASA Astrophysics Data System (ADS)

    Lachine, Vladimir; Dai, Min (.

    2015-03-01

    As new technologies like High Dynamic Range cameras, AMOLED and high resolution displays emerge on consumer electronics market, it becomes very important to deliver the best picture quality for mobile devices. Tone Mapping (TM) is a popular technique to enhance visual quality. However, the traditional implementation of Tone Mapping procedure is limited by pixel's value to value mapping, and the performance is restricted in terms of local sharpness and colorfulness. To overcome the drawbacks of traditional TM, we propose a spatial-frequency based framework in this paper. In the proposed solution, intensity component of an input video/image signal is split on low pass filtered (LPF) and high pass filtered (HPF) bands. Tone Mapping (TM) function is applied to LPF band to improve the global contrast/brightness, and HPF band is added back afterwards to keep the local contrast. The HPF band may be adjusted by a coring function to avoid noise boosting and signal overshooting. Colorfulness of an original image may be preserved or enhanced by chroma components correction by means of saturation function. Localized content adaptation is further improved by dividing an image to a set of non-overlapped regions and modifying each region individually. The suggested framework allows users to implement a wide range of tone mapping applications with perceptional local sharpness and colorfulness preserved or enhanced. Corresponding hardware circuit may be integrated in camera, video or display pipeline with minimal hardware budget

  8. Multi-pass encoding of hyperspectral imagery with spectral quality control

    NASA Astrophysics Data System (ADS)

    Wasson, Steven; Walker, William

    2015-05-01

    Multi-pass encoding is a technique employed in the field of video compression that maximizes the quality of an encoded video sequence within the constraints of a specified bit rate. This paper presents research where multi-pass encoding is extended to the field of hyperspectral image compression. Unlike video, which is primarily intended to be viewed by a human observer, hyperspectral imagery is processed by computational algorithms that generally attempt to classify the pixel spectra within the imagery. As such, these algorithms are more sensitive to distortion in the spectral dimension of the image than they are to perceptual distortion in the spatial dimension. The compression algorithm developed for this research, which uses the Karhunen-Loeve transform for spectral decorrelation followed by a modified H.264/Advanced Video Coding (AVC) encoder, maintains a user-specified spectral quality level while maximizing the compression ratio throughout the encoding process. The compression performance may be considered near-lossless in certain scenarios. For qualitative purposes, this paper presents the performance of the compression algorithm for several Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Hyperion datasets using spectral angle as the spectral quality assessment function. Specifically, the compression performance is illustrated in the form of rate-distortion curves that plot spectral angle versus bits per pixel per band (bpppb).

  9. A Multi Directional Perfect Reconstruction Filter Bank Designed with 2-D Eigenfilter Approach: Application to Ultrasound Speckle Reduction.

    PubMed

    Nagare, Mukund B; Patil, Bhushan D; Holambe, Raghunath S

    2017-02-01

    B-Mode ultrasound images are degraded by inherent noise called Speckle, which creates a considerable impact on image quality. This noise reduces the accuracy of image analysis and interpretation. Therefore, reduction of speckle noise is an essential task which improves the accuracy of the clinical diagnostics. In this paper, a Multi-directional perfect-reconstruction (PR) filter bank is proposed based on 2-D eigenfilter approach. The proposed method used for the design of two-dimensional (2-D) two-channel linear-phase FIR perfect-reconstruction filter bank. In this method, the fan shaped, diamond shaped and checkerboard shaped filters are designed. The quadratic measure of the error function between the passband and stopband of the filter has been used an objective function. First, the low-pass analysis filter is designed and then the PR condition has been expressed as a set of linear constraints on the corresponding synthesis low-pass filter. Subsequently, the corresponding synthesis filter is designed using the eigenfilter design method with linear constraints. The newly designed 2-D filters are used in translation invariant pyramidal directional filter bank (TIPDFB) for reduction of speckle noise in ultrasound images. The proposed 2-D filters give better symmetry, regularity and frequency selectivity of the filters in comparison to existing design methods. The proposed method is validated on synthetic and real ultrasound data which ensures improvement in the quality of ultrasound images and efficiently suppresses the speckle noise compared to existing methods.

  10. Improved First Pass Spiral Myocardial Perfusion Imaging with Variable Density Trajectories

    PubMed Central

    Salerno, Michael; Sica, Christopher; Kramer, Christopher M.; Meyer, Craig H.

    2013-01-01

    Purpose To develop and evaluate variable-density (VD) spiral first-pass perfusion pulse sequences for improved efficiency and off-resonance performance and to demonstrate the utility of an apodizing density compensation function (DCF) to improve SNR and reduce dark-rim artifact caused by cardiac motion and Gibbs Ringing. Methods Three variable density spiral trajectories were designed, simulated, and evaluated in 18 normal subjects, and in 8 patients with cardiac pathology on a 1.5T scanner. Results By utilizing a density compensation function (DCF) which intentionally apodizes the k-space data, the side-lobe amplitude of the theoretical PSF is reduced by 68%, with only a 13% increase in the FWHM of the main-lobe as compared to the same data corrected with a conventional VD DCF, and has an 8% higher resolution than a uniform density spiral with the same number of interleaves and readout duration. Furthermore, this strategy results in a greater than 60% increase in measured SNR as compared to the same VD spiral data corrected with a conventional DCF (p<0.01). Perfusion defects could be clearly visualized with minimal off-resonance and dark-rim artifacts. Conclusion VD spiral pulse sequences using an apodized DCF produce high-quality first-pass perfusion images with minimal dark-rim and off-resonance artifacts, high SNR and CNR and good delineation of resting perfusion abnormalities. PMID:23280884

  11. Large Field of View, Modular, Stabilized, Adaptive-Optics-Based Scanning Laser Ophthalmoscope

    PubMed Central

    Burns, Stephen A.; Tumbar, Remy; Elsner, Ann E.; Ferguson, Daniel; Hammer, Daniel X.

    2007-01-01

    We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide field line scan Scanning Laser Ophthalmocsope (SLO), and a high resolution MEMS based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x, and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the pointspread function. The retinal image was stabilized to within 18 microns 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images. PMID:17429477

  12. An Accurate Co-registration Method for Airborne Repeat-pass InSAR

    NASA Astrophysics Data System (ADS)

    Dong, X. T.; Zhao, Y. H.; Yue, X. J.; Han, C. M.

    2017-10-01

    Interferometric Synthetic Aperture Radar (InSAR) technology plays a significant role in topographic mapping and surface deformation detection. Comparing with spaceborne repeat-pass InSAR, airborne repeat-pass InSAR solves the problems of long revisit time and low-resolution images. Due to the advantages of flexible, accurate, and fast obtaining abundant information, airborne repeat-pass InSAR is significant in deformation monitoring of shallow ground. In order to getting precise ground elevation information and interferometric coherence of deformation monitoring from master and slave images, accurate co-registration must be promised. Because of side looking, repeat observing path and long baseline, there are very different initial slant ranges and flight heights between repeat flight paths. The differences of initial slant ranges and flight height lead to the pixels, located identical coordinates on master and slave images, correspond to different size of ground resolution cells. The mismatching phenomenon performs very obvious on the long slant range parts of master image and slave image. In order to resolving the different sizes of pixels and getting accurate co-registration results, a new method is proposed based on Range-Doppler (RD) imaging model. VV-Polarization C-band airborne repeat-pass InSAR images were used in experiment. The experiment result shows that the proposed method leads to superior co-registration accuracy.

  13. Sci-Thur AM: YIS – 08: Automated Imaging Quality Assurance for Image-Guided Small Animal Irradiators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, Chris; Bazalova-Carter, Magdalena

    Purpose: To develop quality assurance (QA) standards and tolerance levels for image quality of small animal irradiators. Methods: A fully automated in-house QA software for image analysis of a commercial microCT phantom was created. Quantitative analyses of CT linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, modulation transfer function (MTF), and CT number evaluation was performed. Phantom microCT scans from seven institutions acquired with varying parameters (kVp, mA, time, voxel size, and frame rate) and five irradiator units (Xstrahl SARRP, PXI X-RAD 225Cx, PXI X-RAD SmART, GE explore CT/RT 140, and GE Explore CT 120) were analyzed. Multi-institutional datamore » sets were compared using our in-house software to establish pass/fail criteria for each QA test. Results: CT linearity (R2>0.996) was excellent at all but Institution 2. Acceptable SNR (>35) and noise levels (<55HU) were obtained at four of the seven institutions, where failing scans were acquired with less than 120mAs. Acceptable MTF (>1.5 lp/mm for MTF=0.2) was obtained at all but Institution 6 due to the largest scan voxel size (0.35mm). The geometric accuracy passed (<1.5%) at five of the seven institutions. Conclusion: Our QA software can be used to rapidly perform quantitative imaging QA for small animal irradiators, accumulate results over time, and display possible changes in imaging functionality from its original performance and/or from the recommended tolerance levels. This tool will aid researchers in maintaining high image quality, enabling precise conformal dose delivery to small animals.« less

  14. Point spread functions for earthquake source imaging: An interpretation based on seismic interferometry

    USGS Publications Warehouse

    Nakahara, Hisashi; Haney, Matt

    2015-01-01

    Recently, various methods have been proposed and applied for earthquake source imaging, and theoretical relationships among the methods have been studied. In this study, we make a follow-up theoretical study to better understand the meanings of earthquake source imaging. For imaging problems, the point spread function (PSF) is used to describe the degree of blurring and degradation in an obtained image of a target object as a response of an imaging system. In this study, we formulate PSFs for earthquake source imaging. By calculating the PSFs, we find that waveform source inversion methods remove the effect of the PSF and are free from artifacts. However, the other source imaging methods are affected by the PSF and suffer from the effect of blurring and degradation due to the restricted distribution of receivers. Consequently, careful treatment of the effect is necessary when using the source imaging methods other than waveform inversions. Moreover, the PSF for source imaging is found to have a link with seismic interferometry with the help of the source-receiver reciprocity of Green’s functions. In particular, the PSF can be related to Green’s function for cases in which receivers are distributed so as to completely surround the sources. Furthermore, the PSF acts as a low-pass filter. Given these considerations, the PSF is quite useful for understanding the physical meaning of earthquake source imaging.

  15. SU-G-BRB-16: Vulnerabilities in the Gamma Metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, B; Siebers, J

    Purpose: To explore vulnerabilities in the gamma index metric that undermine its wide use as a radiation therapy quality assurance tool. Methods: 2D test field pairs (images) are created specifically to achieve high gamma passing rates, but to also include gross errors by exploiting the distance-to-agreement and percent-passing components of the metric. The first set has no requirement of clinical practicality, but is intended to expose vulnerabilities. The second set exposes clinically realistic vulnerabilities. To circumvent limitations inherent to user-specific tuning of prediction algorithms to match measurements, digital test cases are manually constructed, thereby mimicking high-quality image prediction. Results: Withmore » a 3 mm distance-to-agreement metric, changing field size by ±6 mm results in a gamma passing rate over 99%. For a uniform field, a lattice of passing points spaced 5 mm apart results in a passing rate of 100%. Exploiting the percent-passing component, a 10×10 cm{sup 2} field can have a 95% passing rate when an 8 cm{sup 2}=2.8×2.8 cm{sup 2} highly out-of-tolerance (e.g. zero dose) square is missing from the comparison image. For clinically realistic vulnerabilities, an arc plan for which a 2D image is created can have a >95% passing rate solely due to agreement in the lateral spillage, with the failing 5% in the critical target region. A field with an integrated boost (e.g whole brain plus small metastases) could neglect the metastases entirely, yet still pass with a 95% threshold. All the failure modes described would be visually apparent on a gamma-map image. Conclusion: The %gamma<1 metric has significant vulnerabilities. High passing rates can obscure critical faults in hypothetical and delivered radiation doses. Great caution should be used with gamma as a QA metric; users should inspect the gamma-map. Visual analysis of gamma-maps may be impractical for cine acquisition.« less

  16. The Edge Detectors Suitable for Retinal OCT Image Segmentation

    PubMed Central

    Yang, Jing; Gao, Qian; Zhou, Sheng

    2017-01-01

    Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology. PMID:29065594

  17. A tool to include gamma analysis software into a quality assurance program.

    PubMed

    Agnew, Christina E; McGarry, Conor K

    2016-03-01

    To provide a tool to enable gamma analysis software algorithms to be included in a quality assurance (QA) program. Four image sets were created comprising two geometric images to independently test the distance to agreement (DTA) and dose difference (DD) elements of the gamma algorithm, a clinical step and shoot IMRT field and a clinical VMAT arc. The images were analysed using global and local gamma analysis with 2 in-house and 8 commercially available software encompassing 15 software versions. The effect of image resolution on gamma pass rates was also investigated. All but one software accurately calculated the gamma passing rate for the geometric images. Variation in global gamma passing rates of 1% at 3%/3mm and over 2% at 1%/1mm was measured between software and software versions with analysis of appropriately sampled images. This study provides a suite of test images and the gamma pass rates achieved for a selection of commercially available software. This image suite will enable validation of gamma analysis software within a QA program and provide a frame of reference by which to compare results reported in the literature from various manufacturers and software versions. Copyright © 2015. Published by Elsevier Ireland Ltd.

  18. Landsat real-time processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, E.L.

    A novel method for performing real-time acquisition and processing Landsat/EROS data covers all aspects including radiometric and geometric corrections of multispectral scanner or return-beam vidicon inputs, image enhancement, statistical analysis, feature extraction, and classification. Radiometric transformations include bias/gain adjustment, noise suppression, calibration, scan angle compensation, and illumination compensation, including topography and atmospheric effects. Correction or compensation for geometric distortion includes sensor-related distortions, such as centering, skew, size, scan nonlinearity, radial symmetry, and tangential symmetry. Also included are object image-related distortions such as aspect angle (altitude), scale distortion (altitude), terrain relief, and earth curvature. Ephemeral corrections are also applied to compensatemore » for satellite forward movement, earth rotation, altitude variations, satellite vibration, and mirror scan velocity. Image enhancement includes high-pass, low-pass, and Laplacian mask filtering and data restoration for intermittent losses. Resource classification is provided by statistical analysis including histograms, correlational analysis, matrix manipulations, and determination of spectral responses. Feature extraction includes spatial frequency analysis, which is used in parallel discriminant functions in each array processor for rapid determination. The technique uses integrated parallel array processors that decimate the tasks concurrently under supervision of a control processor. The operator-machine interface is optimized for programming ease and graphics image windowing.« less

  19. Improved first-pass spiral myocardial perfusion imaging with variable density trajectories.

    PubMed

    Salerno, Michael; Sica, Christopher; Kramer, Christopher M; Meyer, Craig H

    2013-11-01

    To develop and evaluate variable-density spiral first-pass perfusion pulse sequences for improved efficiency and off-resonance performance and to demonstrate the utility of an apodizing density compensation function (DCF) to improve signal-to-noise ratio (SNR) and reduce dark-rim artifact caused by cardiac motion and Gibbs Ringing. Three variable density spiral trajectories were designed, simulated, and evaluated in 18 normal subjects, and in eight patients with cardiac pathology on a 1.5T scanner. By using a DCF, which intentionally apodizes the k-space data, the sidelobe amplitude of the theoretical point spread function (PSF) is reduced by 68%, with only a 13% increase in the full-width at half-maximum of the main-lobe when compared with the same data corrected with a conventional variable-density DCF, and has an 8% higher resolution than a uniform density spiral with the same number of interleaves and readout duration. Furthermore, this strategy results in a greater than 60% increase in measured SNR when compared with the same variable-density spiral data corrected with a conventional DCF (P < 0.01). Perfusion defects could be clearly visualized with minimal off-resonance and dark-rim artifacts. Variable-density spiral pulse sequences using an apodized DCF produce high-quality first-pass perfusion images with minimal dark-rim and off-resonance artifacts, high SNR and contrast-to-noise ratio, and good delineation of resting perfusion abnormalities. Copyright © 2012 Wiley Periodicals, Inc.

  20. Processors for wavelet analysis and synthesis: NIFS and TI-C80 MVP

    NASA Astrophysics Data System (ADS)

    Brooks, Geoffrey W.

    1996-03-01

    Two processors are considered for image quadrature mirror filtering (QMF). The neuromorphic infrared focal-plane sensor (NIFS) is an existing prototype analog processor offering high speed spatio-temporal Gaussian filtering, which could be used for the QMF low- pass function, and difference of Gaussian filtering, which could be used for the QMF high- pass function. Although not designed specifically for wavelet analysis, the biologically- inspired system accomplishes the most computationally intensive part of QMF processing. The Texas Instruments (TI) TMS320C80 Multimedia Video Processor (MVP) is a 32-bit RISC master processor with four advanced digital signal processors (DSPs) on a single chip. Algorithm partitioning, memory management and other issues are considered for optimal performance. This paper presents these considerations with simulated results leading to processor implementation of high-speed QMF analysis and synthesis.

  1. Miniaturization and Optimization of Nanoscale Resonant Oscillators

    DTIC Science & Technology

    2013-09-07

    carried out over a range of core sizes. Using a double 4-f imaging system in conjunction with a pump filter ( Semrock RazorEdge long wavelength pass...Using a double 4-f imaging system in conjunction with a pump filter ( Semrock RazorEdge long wavelength pass), the samples are imaged onto either an

  2. Non-invasive, Multimodal Functional Imaging of the Intestine with Frozen Micellar Naphthalocyanines

    PubMed Central

    Zhang, Yumiao; Jeon, Mansik; Rich, Laurie J.; Hong, Hao; Geng, Jumin; Zhang, Yin; Shi, Sixiang; Barnhart, Todd E.; Alexandridis, Paschalis; Huizinga, Jan D.; Seshadri, Mukund; Cai, Weibo; Kim, Chulhong; Lovell, Jonathan F.

    2014-01-01

    Overview There is a need for safer and improved methods for non-invasive imaging of the gastrointestinal tract. Modalities based on X-ray radiation, magnetic resonance and ultrasound suffer from limitations with respect to safety, accessibility or lack of adequate contrast. Functional intestinal imaging of dynamic gut processes has not been practical using existing approaches. Here, we report the development of a family of nanoparticles that can withstand the harsh conditions of the stomach and intestine, avoid systemic absorption, and give rise to good optical contrast for photoacoustic imaging. The hydrophobicity of naphthalocyanine dyes was exploited to generate purified ~20 nm frozen micelles, which we call nanonaps, with tunable and large near-infrared absorption values (>1000). Unlike conventional chromophores, nanonaps exhibited non-shifting spectra at ultrahigh optical densities and, following oral administration in mice, passed safely through the gastrointestinal tract. Non-invasive, non-ionizing photoacoustic techniques were used to visualize nanonap intestinal distribution with low background and remarkable resolution with 0.5 cm depth, and enabled real-time intestinal functional imaging with ultrasound co-registration. Positron emission tomography following seamless nanonap radiolabelling allowed complementary whole body imaging. PMID:24997526

  3. Comparison of first pass bolus AIFs extracted from sequential 18F-FDG PET and DSC-MRI of mice

    NASA Astrophysics Data System (ADS)

    Evans, Eleanor; Sawiak, Stephen J.; Ward, Alexander O.; Buonincontri, Guido; Hawkes, Robert C.; Adrian Carpenter, T.

    2014-01-01

    Accurate kinetic modelling of in vivo physiological function using positron emission tomography (PET) requires determination of the tracer time-activity curve in plasma, known as the arterial input function (AIF). The AIF is usually determined by invasive blood sampling methods, which are prohibitive in murine studies due to low total blood volumes. Extracting AIFs from PET images is also challenging due to large partial volume effects (PVE). We hypothesise that in combined PET with magnetic resonance imaging (PET/MR), a co-injected bolus of MR contrast agent and PET ligand can be tracked using fast MR acquisitions. This protocol would allow extraction of a MR AIF from MR contrast agent concentration-time curves, at higher spatial and temporal resolution than an image-derived PET AIF. A conversion factor could then be applied to the MR AIF for use in PET kinetic analysis. This work has compared AIFs obtained from sequential DSC-MRI and PET with separate injections of gadolinium contrast agent and 18F-FDG respectively to ascertain the technique‧s validity. An automated voxel selection algorithm was employed to improve MR AIF reproducibility. We found that MR and PET AIFs displayed similar character in the first pass, confirmed by gamma variate fits (p<0.02). MR AIFs displayed reduced PVE compared to PET AIFs, indicating their potential use in PET/MR studies.

  4. Comparison of first pass bolus AIFs extracted from sequential 18F-FDG PET and DSC-MRI of mice.

    PubMed

    Evans, Eleanor; Sawiak, Stephen J; Ward, Alexander O; Buonincontri, Guido; Hawkes, Robert C; Carpenter, T Adrian

    2014-01-11

    Accurate kinetic modelling of in vivo physiological function using positron emission tomography (PET) requires determination of the tracer time-activity curve in plasma, known as the arterial input function (AIF). The AIF is usually determined by invasive blood sampling methods, which are prohibitive in murine studies due to low total blood volumes. Extracting AIFs from PET images is also challenging due to large partial volume effects (PVE). We hypothesise that in combined PET with magnetic resonance imaging (PET/MR), a co-injected bolus of MR contrast agent and PET ligand can be tracked using fast MR acquisitions. This protocol would allow extraction of a MR AIF from MR contrast agent concentration-time curves, at higher spatial and temporal resolution than an image-derived PET AIF. A conversion factor could then be applied to the MR AIF for use in PET kinetic analysis. This work has compared AIFs obtained from sequential DSC-MRI and PET with separate injections of gadolinium contrast agent and 18 F-FDG respectively to ascertain the technique's validity. An automated voxel selection algorithm was employed to improve MR AIF reproducibility. We found that MR and PET AIFs displayed similar character in the first pass, confirmed by gamma variate fits (p<0.02). MR AIFs displayed reduced PVE compared to PET AIFs, indicating their potential use in PET/MR studies.

  5. Rotating Modulation Imager for the Orphan Source Search Problem

    DTIC Science & Technology

    2008-01-01

    black mask. If the photon hits an open element it is transmitted and the function M(x) = 1. If the photon hits a closed mask element it is not...photon enters the top mask pair in the third slit, but passes through the second slit on the bottom mask. With a single black mask this is physically...modulation efficiency changes as a function of mask thickness for both tungsten and lead masks. The black line shows how the field of view changes with

  6. Advanced ballistic range technology

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1993-01-01

    Experimental interferograms, schlieren, and shadowgraphs are used for quantitative and qualitative flow-field studies. These images are created by passing light through a flow field, and the recorded intensity patterns are functions of the phase shift and angular deflection of the light. As part of the grant NCC2-583, techniques and software have been developed for obtaining phase shifts from finite-fringe interferograms and for constructing optical images from Computational Fluid Dynamics (CFD) solutions. During the period from 1 Nov. 1992 - 30 Jun. 1993, research efforts have been concentrated in improving these techniques.

  7. Cardiovascular Magnetic Resonance Imaging of Myocardial Infarction, Viability, and Cardiomyopathies

    PubMed Central

    West, Amy M.; Kramer, Christopher M.

    2010-01-01

    Cardiovascular magnetic resonance provides the opportunity for a truly comprehensive evaluation of patients with a history of MI, with regards to characterizing the extent of disease, impact on LV function and degree of viable myocardium. The use of contrast-enhanced CMR for first-pass perfusion and late gadolinium enhancement is a powerful technique for delineating areas of myocardial ischemia and infarction. Using a combination of T2-weighted and contrast-enhanced CMR images, information about the acuity of an infarct can be obtained. There is an extensive amount of literature using contrast-enhanced CMR to predict myocardial functional recovery with revascularization in patients with ischemic cardiomyopathies. In addition, CMR imaging in patients with cardiomyopathies can distinguish between ischemic and non-ischemic etiologies, with the ability to further characterize the underlying pathology for non-ischemic cardiomyopathies. PMID:20197150

  8. SU-F-J-219: Predicting Ventilation Change Due to Radiation Therapy: Dependency On Pre-RT Ventilation and Effort Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, T; Du, K; Bayouth, J

    Purpose: Ventilation change caused by radiation therapy (RT) can be predicted using four-dimensional computed tomography (4DCT) and image registration. This study tested the dependency of predicted post-RT ventilation on effort correction and pre-RT lung function. Methods: Pre-RT and 3 month post-RT 4DCT images were obtained for 13 patients. The 4DCT images were used to create ventilation maps using a deformable image registration based Jacobian expansion calculation. The post-RT ventilation maps were predicted in four different ways using the dose delivered, pre-RT ventilation, and effort correction. The pre-RT ventilation and effort correction were toggled to determine dependency. The four different predictedmore » ventilation maps were compared to the post-RT ventilation map calculated from image registration to establish the best prediction method. Gamma pass rates were used to compare the different maps with the criteria of 2mm distance-to-agreement and 6% ventilation difference. Paired t-tests of gamma pass rates were used to determine significant differences between the maps. Additional gamma pass rates were calculated using only voxels receiving over 20 Gy. Results: The predicted post-RT ventilation maps were in agreement with the actual post-RT maps in the following percentage of voxels averaged over all subjects: 71% with pre-RT ventilation and effort correction, 69% with no pre-RT ventilation and effort correction, 60% with pre-RT ventilation and no effort correction, and 58% with no pre-RT ventilation and no effort correction. When analyzing only voxels receiving over 20 Gy, the gamma pass rates were respectively 74%, 69%, 65%, and 55%. The prediction including both pre- RT ventilation and effort correction was the only prediction with significant improvement over using no prediction (p<0.02). Conclusion: Post-RT ventilation is best predicted using both pre-RT ventilation and effort correction. This is the only prediction that provided a significant improvement on agreement. Research support from NIH grants CA166119 and CA166703, a gift from Roger Koch, and a Pilot Grant from University of Iowa Carver College of Medicine.« less

  9. Khyber Pass, Afghanistan-Pakistan

    NASA Image and Video Library

    2010-11-08

    The ASTER instrument onboard NASA Terra spacecraft imaged the Khyber Pass, a mountain pass that links Afghanistan and Pakistan. Throughout its history it has been an important trade route between Central Asia and South Asia.

  10. Detail-enhanced multimodality medical image fusion based on gradient minimization smoothing filter and shearing filter.

    PubMed

    Liu, Xingbin; Mei, Wenbo; Du, Huiqian

    2018-02-13

    In this paper, a detail-enhanced multimodality medical image fusion algorithm is proposed by using proposed multi-scale joint decomposition framework (MJDF) and shearing filter (SF). The MJDF constructed with gradient minimization smoothing filter (GMSF) and Gaussian low-pass filter (GLF) is used to decompose source images into low-pass layers, edge layers, and detail layers at multiple scales. In order to highlight the detail information in the fused image, the edge layer and the detail layer in each scale are weighted combined into a detail-enhanced layer. As directional filter is effective in capturing salient information, so SF is applied to the detail-enhanced layer to extract geometrical features and obtain directional coefficients. Visual saliency map-based fusion rule is designed for fusing low-pass layers, and the sum of standard deviation is used as activity level measurement for directional coefficients fusion. The final fusion result is obtained by synthesizing the fused low-pass layers and directional coefficients. Experimental results show that the proposed method with shift-invariance, directional selectivity, and detail-enhanced property is efficient in preserving and enhancing detail information of multimodality medical images. Graphical abstract The detailed implementation of the proposed medical image fusion algorithm.

  11. The Infundibular Recess Passes through the Entire Pituitary Stalk.

    PubMed

    Tsutsumi, S; Hori, M; Ono, H; Tabuchi, T; Aoki, S; Yasumoto, Y

    2016-12-01

    The infundibular recess (IR), commonly illustrated as a V-shaped hollow in the sagittal view, is recognized as a small extension of the third ventricle into the pituitary stalk. The precise morphology of the human IR is unknown. The present study sought to delineate the morphology of the IR using magnetic resonance imaging. Subjects included 100 patients without acute cerebral infarcts, intracranial hemorrhage, intrasellar or suprasellar cysts, hydrocephalus, inflammatory disease, or brain tumors. Patients with symptoms of increased intracranial pressure, intracranial hypotension, or pituitary dysfunction were excluded. Thin-sliced, seamless T2-weighted sequences involving the optic chiasm, entire pituitary stalk, and pituitary gland were performed in axial and sagittal planes for each patient. The numbers of slices delineating the pituitary stalk and IR were recorded from the axial images and quantified as ratios. The pituitary stalk consistently appeared as a styloid- or cone-shaped structure with variable inclinations toward the third ventricle floor. The IR was delineated as a smoothly tapering, tubular extension of the third ventricle located in the central portion of the pituitary stalk. In 81 % of patients, the IR passed through the entire length of the pituitary stalk and reached the upper surface of the pituitary gland, which was identified in 40 % of the midsagittal images. The IR is a cerebrospinal fluid-filled canal passing through the center of the pituitary stalk and connects the third ventricle to the pituitary gland. It may function in conjunction with the pituitary gland.

  12. Reversible wavelet filter banks with side informationless spatially adaptive low-pass filters

    NASA Astrophysics Data System (ADS)

    Abhayaratne, Charith

    2011-07-01

    Wavelet transforms that have an adaptive low-pass filter are useful in applications that require the signal singularities, sharp transitions, and image edges to be left intact in the low-pass signal. In scalable image coding, the spatial resolution scalability is achieved by reconstructing the low-pass signal subband, which corresponds to the desired resolution level, and discarding other high-frequency wavelet subbands. In such applications, it is vital to have low-pass subbands that are not affected by smoothing artifacts associated with low-pass filtering. We present the mathematical framework for achieving 1-D wavelet transforms that have a spatially adaptive low-pass filter (SALP) using the prediction-first lifting scheme. The adaptivity decisions are computed using the wavelet coefficients, and no bookkeeping is required for the perfect reconstruction. Then, 2-D wavelet transforms that have a spatially adaptive low-pass filter are designed by extending the 1-D SALP framework. Because the 2-D polyphase decompositions are used in this case, the 2-D adaptivity decisions are made nonseparable as opposed to the separable 2-D realization using 1-D transforms. We present examples using the 2-D 5/3 wavelet transform and their lossless image coding and scalable decoding performances in terms of quality and resolution scalability. The proposed 2-D-SALP scheme results in better performance compared to the existing adaptive update lifting schemes.

  13. Results From the Imaging and Radiation Oncology Core Houston's Anthropomorphic Phantoms Used for Proton Therapy Clinical Trial Credentialing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Paige A., E-mail: pataylor@mdanderson.org; Kry, Stephen F.; Alvarez, Paola

    Purpose: The purpose of this study was to summarize the findings of anthropomorphic proton phantom irradiations analyzed by the Imaging and Radiation Oncology Core Houston QA Center (IROC Houston). Methods and Materials: A total of 103 phantoms were irradiated by proton therapy centers participating in clinical trials. The anthropomorphic phantoms simulated heterogeneous anatomy of a head, liver, lung, prostate, and spine. Treatment plans included those for scattered, uniform scanning, and pencil beam scanning beam delivery modalities using 5 different treatment planning systems. For every phantom irradiation, point doses and planar doses were measured using thermoluminescent dosimeters (TLD) and film, respectively. Differencesmore » between measured and planned doses were studied as a function of phantom, beam delivery modality, motion, repeat attempt, treatment planning system, and date of irradiation. Results: The phantom pass rate (overall, 79%) was high for simple phantoms and lower for phantoms that introduced higher levels of difficulty, such as motion, multiple targets, or increased heterogeneity. All treatment planning systems overestimated dose to the target, compared to TLD measurements. Errors in range calculation resulted in several failed phantoms. There was no correlation between treatment planning system and pass rate. The pass rates for each individual phantom are not improving over time, but when individual institutions received feedback about failed phantom irradiations, pass rates did improve. Conclusions: The proton phantom pass rates are not as high as desired and emphasize potential deficiencies in proton therapy planning and/or delivery. There are many areas for improvement with the proton phantom irradiations, such as treatment planning system dose agreement, range calculations, accounting for motion, and irradiation of multiple targets.« less

  14. Effects of atmospheric turbulence on the imaging performance of optical system

    NASA Astrophysics Data System (ADS)

    Al-Hamadani, Ali H.; Zainulabdeen, Faten Sh.; Karam, Ghada Sabah; Nasir, Eman Yousif; Al-Saedi, Abaas

    2018-05-01

    Turbulent effects are very complicated and still not entirely understood. Light waves from an astronomical object are distorted as they pass through the atmosphere. The refractive index fluctuations in the turbulent atmosphere induce an optical path difference (OPD) between different parts of the wavefront, distorted wavefronts produce low-quality images and degrade the image beyond the diffraction limit. In this paper the image degradation due to 2-D Gaussian atmospheric turbulence is considered in terms of the point spread function (PSF), and Strehl ratio as an image quality criteria for imaging systems with different apertures using the pupil function teqneque. A general expression for the degraded PSF in the case of circular and square apertures (with half diagonal = √{π/2 } , and 1) diffraction limited and defocused optical system is considered. Based on the derived formula, the effect of the Gaussian atmospheric turbulence on circular and square pupils has been studied with details. Numerical results show that the performance of optical systems with square aperture is more efficient at high levels of atmospheric turbulence than the other apertures.

  15. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a manner similar to that of a baseline hyperspectral- image-compression method. The mean values are encoded in the compressed bit stream and added back to the data at the appropriate decompression step. The overhead incurred by encoding the mean values only a few bits per spectral band is negligible with respect to the huge size of a typical hyperspectral data set. The other method is denoted modified decomposition. This method is so named because it involves a modified version of a commonly used multiresolution wavelet decomposition, known in the art as the 3D Mallat decomposition, in which (a) the first of multiple stages of a 3D wavelet transform is applied to the entire dataset and (b) subsequent stages are applied only to the horizontally-, vertically-, and spectrally-low-pass subband from the preceding stage. In the modified decomposition, in stages after the first, not only is the spatially-low-pass, spectrally-low-pass subband further decomposed, but also spatially-low-pass, spectrally-high-pass subbands are further decomposed spatially. Either method can be used alone to improve the quality of a reconstructed image (see figure). Alternatively, the two methods can be combined by first performing modified decomposition, then subtracting the mean values from spatial planes of spatially-low-pass subbands.

  16. Apparatus and method to achieve high-resolution microscopy with non-diffracting or refracting radiation

    DOEpatents

    Tobin, Jr., Kenneth W.; Bingham, Philip R.; Hawari, Ayman I.

    2012-11-06

    An imaging system employing a coded aperture mask having multiple pinholes is provided. The coded aperture mask is placed at a radiation source to pass the radiation through. The radiation impinges on, and passes through an object, which alters the radiation by absorption and/or scattering. Upon passing through the object, the radiation is detected at a detector plane to form an encoded image, which includes information on the absorption and/or scattering caused by the material and structural attributes of the object. The encoded image is decoded to provide a reconstructed image of the object. Because the coded aperture mask includes multiple pinholes, the radiation intensity is greater than a comparable system employing a single pinhole, thereby enabling a higher resolution. Further, the decoding of the encoded image can be performed to generate multiple images of the object at different distances from the detector plane. Methods and programs for operating the imaging system are also disclosed.

  17. High time resolved electron temperature measurements by using the multi-pass Thomson scattering system in GAMMA 10/PDX.

    PubMed

    Yoshikawa, Masayuki; Yasuhara, Ryo; Ohta, Koichi; Chikatsu, Masayuki; Shima, Yoriko; Kohagura, Junko; Sakamoto, Mizuki; Nakashima, Yousuke; Imai, Tsuyoshi; Ichimura, Makoto; Yamada, Ichihiro; Funaba, Hisamichi; Minami, Takashi

    2016-11-01

    High time resolved electron temperature measurements are useful for fluctuation study. A multi-pass Thomson scattering (MPTS) system is proposed for the improvement of both increasing the TS signal intensity and time resolution. The MPTS system in GAMMA 10/PDX has been constructed for enhancing the Thomson scattered signals for the improvement of measurement accuracy. The MPTS system has a polarization-based configuration with an image relaying system. We optimized the image relaying optics for improving the multi-pass laser confinement and obtaining the stable MPTS signals over ten passing TS signals. The integrated MPTS signals increased about five times larger than that in the single pass system. Finally, time dependent electron temperatures were obtained in MHz sampling.

  18. The myth of the normal, average human brain--the ICBM experience: (1) subject screening and eligibility.

    PubMed

    Mazziotta, John C; Woods, Roger; Iacoboni, Marco; Sicotte, Nancy; Yaden, Kami; Tran, Mary; Bean, Courtney; Kaplan, Jonas; Toga, Arthur W

    2009-02-01

    In the course of developing an atlas and reference system for the normal human brain throughout the human age span from structural and functional brain imaging data, the International Consortium for Brain Mapping (ICBM) developed a set of "normal" criteria for subject inclusion and the associated exclusion criteria. The approach was to minimize inclusion of subjects with any medical disorders that could affect brain structure or function. In the past two years, a group of 1685 potential subjects responded to solicitation advertisements at one of the consortium sites (UCLA). Subjects were screened by a detailed telephone interview and then had an in-person history and physical examination. Of those who responded to the advertisement and considered themselves to be normal, only 31.6% (532 subjects) passed the telephone screening process. Of the 348 individuals who submitted to in-person history and physical examinations, only 51.7% passed these screening procedures. Thus, only 10.7% of those individuals who responded to the original advertisement qualified for imaging. The most frequent cause for exclusion in the second phase of subject screening was high blood pressure followed by abnormal signs on neurological examination. It is concluded that the majority of individuals who consider themselves normal by self-report are found not to be so by detailed historical interviews about underlying medical conditions and by thorough medical and neurological examinations. Recommendations are made with regard to the inclusion of subjects in brain imaging studies and the criteria used to select them.

  19. Visual and somatic sensory feedback of brain activity for intuitive surgical robot manipulation.

    PubMed

    Miura, Satoshi; Matsumoto, Yuya; Kobayashi, Yo; Kawamura, Kazuya; Nakashima, Yasutaka; Fujie, Masakatsu G

    2015-01-01

    This paper presents a method to evaluate the hand-eye coordination of the master-slave surgical robot by measuring the activation of the intraparietal sulcus in users brain activity during controlling virtual manipulation. The objective is to examine the changes in activity of the intraparietal sulcus when the user's visual or somatic feedback is passed through or intercepted. The hypothesis is that the intraparietal sulcus activates significantly when both the visual and somatic sense pass feedback, but deactivates when either visual or somatic is intercepted. The brain activity of three subjects was measured by the functional near-infrared spectroscopic-topography brain imaging while they used a hand controller to move a virtual arm of a surgical simulator. The experiment was performed several times with three conditions: (i) the user controlled the virtual arm naturally under both visual and somatic feedback passed, (ii) the user moved with closed eyes under only somatic feedback passed, (iii) the user only gazed at the screen under only visual feedback passed. Brain activity showed significantly better control of the virtual arm naturally (p<;0.05) when compared with moving with closed eyes or only gazing among all participants. In conclusion, the brain can activate according to visual and somatic sensory feedback agreement.

  20. Preliminary design of the spatial filters used in the multipass amplification system of TIL

    NASA Astrophysics Data System (ADS)

    Zhu, Qihua; Zhang, Xiao Min; Jing, Feng

    1998-12-01

    The spatial filters are used in Technique Integration Line, which has a multi-pass amplifier, not only to suppress parasitic high spatial frequency modes but also to provide places for inserting a light isolator and injecting the seed beam, and to relay image while the beam passes through the amplifiers several times. To fulfill these functions, the parameters of the spatial filters are optimized by calculations and analyzes with the consideration of avoiding the plasma blow-off effect and components demanding by ghost beam focus. The 'ghost beams' are calculated by ray tracing. A software was developed to evaluate the tolerance of the spatial filters and their components, and to align the whole system on computer simultaneously.

  1. Grid-based precision aim system and method for disrupting suspect objects

    DOEpatents

    Gladwell, Thomas Scott; Garretson, Justin; Hobart, Clinton G.; Monda, Mark J.

    2014-06-10

    A system and method for disrupting at least one component of a suspect object is provided. The system has a source for passing radiation through the suspect object, a grid board positionable adjacent the suspect object (the grid board having a plurality of grid areas, the radiation from the source passing through the grid board), a screen for receiving the radiation passing through the suspect object and generating at least one image, a weapon for deploying a discharge, and a targeting unit for displaying the image of the suspect object and aiming the weapon according to a disruption point on the displayed image and deploying the discharge into the suspect object to disable the suspect object.

  2. Amplitude image processing by diffractive optics.

    PubMed

    Cagigal, Manuel P; Valle, Pedro J; Canales, V F

    2016-02-22

    In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.

  3. Plenoptic image watermarking to preserve copyright

    NASA Astrophysics Data System (ADS)

    Ansari, A.; Dorado, A.; Saavedra, G.; Martinez Corral, M.

    2017-05-01

    Common camera loses a huge amount of information obtainable from scene as it does not record the value of individual rays passing a point and it merely keeps the summation of intensities of all the rays passing a point. Plenoptic images can be exploited to provide a 3D representation of the scene and watermarking such images can be helpful to protect the ownership of these images. In this paper we propose a method for watermarking the plenoptic images to achieve this aim. The performance of the proposed method is validated by experimental results and a compromise is held between imperceptibility and robustness.

  4. Clinical accuracy of ExacTrac intracranial frameless stereotactic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerly, T.; Lancaster, C. M.; Geso, M.

    2011-09-15

    Purpose: In this paper, the authors assess the accuracy of the Brainlab ExacTrac system for frameless intracranial stereotactic treatments in clinical practice. Methods: They recorded couch angle and image fusion results (comprising lateral, longitudinal, and vertical shifts, and rotation corrections about these axes) for 109 stereotactic radiosurgery and 166 stereotactic radiotherapy patient treatments. Frameless stereotactic treatments involve iterative 6D image fusion corrections applied until the results conform to customizable pass criteria, theirs being 0.7 mm and 0.5 deg. for each axis. The planning CT slice thickness was 1.25 mm. It has been reported in the literature that the CT slices'more » thickness impacts the accuracy of localization to bony anatomy. The principle of invariance with respect to patient orientation was used to determine spatial accuracy. Results: The data for radiosurgery comprised 927 image pairs, of which 532 passed (pass ratio of 57.4%). The data for radiotherapy comprised 15983 image pairs, of which 10 050 passed (pass ratio of 62.9%). For stereotactic radiotherapy, the combined uncertainty of ExacTrac calibration, image fusion, and intrafraction motion was (95% confidence interval) 0.290-0.302 and 0.306-0.319 mm in the longitudinal and lateral axes, respectively. The combined uncertainty of image fusion and intrafraction motion in the anterior-posterior coordinates was 0.174-0.182 mm. For stereotactic radiosurgery, the equivalent ranges are 0.323-0.393, 0.337-0.409, and 0.231-0.281 mm. The overall spatial accuracy was 1.24 mm for stereotactic radiotherapy (SRT) and 1.35 mm for stereotactic radiosurgery (SRS). Conclusions: The ExacTrac intracranial frameless stereotactic system spatial accuracy is adequate for clinical practice, and with the same pass criteria, SRT is more accurate than SRS. They now use frameless stereotaxy exclusively at their center.« less

  5. Method of radiographic inspection of wooden members

    NASA Technical Reports Server (NTRS)

    Berry, Maggie L. (Inventor); Berry, Robert F., Jr. (Inventor)

    1990-01-01

    The invention is a method to be used for radiographic inspection of a wooden specimen for internal defects which includes the steps of introducing a radiopaque penetrant into any internal defects in the specimen through surface openings; passing a beam of radiation through a portion of the specimen to be inspected; and making a radiographic film image of the radiation passing through the specimen, with the radiopaque penetrant in the specimen absorbing the radiation passing through it, thereby enhancing the resulting image of the internal defects in the specimen.

  6. Multi-institutional MicroCT image comparison of image-guided small animal irradiators

    NASA Astrophysics Data System (ADS)

    Johnstone, Chris D.; Lindsay, Patricia; E Graves, Edward; Wong, Eugene; Perez, Jessica R.; Poirier, Yannick; Ben-Bouchta, Youssef; Kanesalingam, Thilakshan; Chen, Haijian; E Rubinstein, Ashley; Sheng, Ke; Bazalova-Carter, Magdalena

    2017-07-01

    To recommend imaging protocols and establish tolerance levels for microCT image quality assurance (QA) performed on conformal image-guided small animal irradiators. A fully automated QA software SAPA (small animal phantom analyzer) for image analysis of the commercial Shelley micro-CT MCTP 610 phantom was developed, in which quantitative analyses of CT number linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, spatial resolution by means of modulation transfer function (MTF), and CT contrast were performed. Phantom microCT scans from eleven institutions acquired with four image-guided small animal irradiator units (including the commercial PXi X-RAD SmART and Xstrahl SARRP systems) with varying parameters used for routine small animal imaging were analyzed. Multi-institutional data sets were compared using SAPA, based on which tolerance levels for each QA test were established and imaging protocols for QA were recommended. By analyzing microCT data from 11 institutions, we established image QA tolerance levels for all image quality tests. CT number linearity set to R 2  >  0.990 was acceptable in microCT data acquired at all but three institutions. Acceptable SNR  >  36 and noise levels  <55 HU were obtained at five of the eleven institutions, where failing scans were acquired with current-exposure time of less than 120 mAs. Acceptable spatial resolution (>1.5 lp mm-1 for MTF  =  0.2) was obtained at all but four institutions due to their large image voxel size used (>0.275 mm). Ten of the eleven institutions passed the set QA tolerance for geometric accuracy (<1.5%) and nine of the eleven institutions passed the QA tolerance for contrast (>2000 HU for 30 mgI ml-1). We recommend performing imaging QA with 70 kVp, 1.5 mA, 120 s imaging time, 0.20 mm voxel size, and a frame rate of 5 fps for the PXi X-RAD SmART. For the Xstrahl SARRP, we recommend using 60 kVp, 1.0 mA, 240 s imaging time, 0.20 mm voxel size, and 6 fps. These imaging protocols should result in high quality images that pass the set tolerance levels on all systems. Average SAPA computation time for complete QA analysis for a 0.20 mm voxel, 400 slice Shelley phantom microCT data set was less than 20 s. We present image quality assurance recommendations for image-guided small animal radiotherapy systems that can aid researchers in maintaining high image quality, allowing for spatially precise conformal dose delivery to small animals.

  7. Laser fresnel distance measuring system and method

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor); Lehner, David L. (Inventor); Smalley, Larry L. (Inventor); Smith, legal representative, Molly C. (Inventor); Sanders, Alvin J. (Inventor); Earl, Dennis Duncan (Inventor); Allison, Stephen W. (Inventor); Smith, Kelly L. (Inventor)

    2008-01-01

    A method and system for determining range to a target are provided. A beam of electromagnetic energy is transmitted through an aperture in an opaque screen such that a portion of the beam passes through the aperture to generate a region of diffraction that varies as a function of distance from the aperture. An imaging system is focused on a target plane in the region of diffraction with the generated image being compared to known diffraction patterns. Each known diffraction pattern has a unique value associated therewith that is indicative of a distance from the aperture. A match between the generated image and at least one of the known diffraction patterns is indicative of a distance between the aperture and target plane.

  8. Two antenna, two pass interferometric synthetic aperture radar

    DOEpatents

    Martinez, Ana; Doerry, Armin W.; Bickel, Douglas L.

    2005-06-28

    A multi-antenna, multi-pass IFSAR mode utilizing data driven alignment of multiple independent passes can combine the scaling accuracy of a two-antenna, one-pass IFSAR mode with the height-noise performance of a one-antenna, two-pass IFSAR mode. A two-antenna, two-pass IFSAR mode can accurately estimate the larger antenna baseline from the data itself and reduce height-noise, allowing for more accurate information about target ground position locations and heights. The two-antenna, two-pass IFSAR mode can use coarser IFSAR data to estimate the larger antenna baseline. Multi-pass IFSAR can be extended to more than two (2) passes, thereby allowing true three-dimensional radar imaging from stand-off aircraft and satellite platforms.

  9. Fast estimate of Hartley entropy in image sharpening

    NASA Astrophysics Data System (ADS)

    Krbcová, Zuzana; Kukal, Jaromír.; Svihlik, Jan; Fliegel, Karel

    2016-09-01

    Two classes of linear IIR filters: Laplacian of Gaussian (LoG) and Difference of Gaussians (DoG) are frequently used as high pass filters for contextual vision and edge detection. They are also used for image sharpening when linearly combined with the original image. Resulting sharpening filters are radially symmetric in spatial and frequency domains. Our approach is based on the radial approximation of unknown optimal filter, which is designed as a weighted sum of Gaussian filters with various radii. The novel filter is designed for MRI image enhancement where the image intensity represents anatomical structure plus additive noise. We prefer the gradient norm of Hartley entropy of whole image intensity as a measure which has to be maximized for the best sharpening. The entropy estimation procedure is as fast as FFT included in the filter but this estimate is a continuous function of enhanced image intensities. Physically motivated heuristic is used for optimum sharpening filter design by its parameter tuning. Our approach is compared with Wiener filter on MRI images.

  10. Regional Myocardial Blood Volume and Flow: First-Pass MR Imaging with Polylysine-Gd-DTPA

    PubMed Central

    Wilke, Norbert; Kroll, Keith; Merkle, Hellmut; Wang, Ying; Ishibashi, Yukata; Xu, Ya; Zhang, Jiani; Jerosch-Herold, Michael; Mühler, Andreas; Stillman, Arthur E.; Bassingthwaighte, James B.; Bache, Robert; Ugurbil, Kamil

    2010-01-01

    The authors investigated the utility of an intravascular magnetic resonance (MR) contrast agent, poly-L-lysine-gadolinium diethylenetriaminepentaacetic acid (DTPA), for differentiating acutely ischemic from normally perfused myocardium with first-pass MR imaging. Hypoperfused regions, identified with microspheres, on the first-pass images displayed significantly decreased signal intensities compared with normally perfused myocardium (P < .0007). Estimates of regional myocardial blood content, obtained by measuring the ratio of areas under the signal intensity-versus-time curves in tissue regions and the left ventricular chamber, averaged 0.12 mL/g ± 0.04 (n = 35), compared with a value of 0.11 mL/g ± 0.05 measured with radiolabeled albumin in the same tissue regions. To obtain MR estimates of regional myocardial blood flow, in situ calibration curves were used to transform first-pass intensity-time curves into content-time curves for analysis with a multiple-pathway, axially distributed model. Flow estimates, obtained by automated parameter optimization, averaged 1.2 mL/min/g ± 0.5 [n = 29), compared with 1.3 mL/min/g ± 0.3 obtained with tracer microspheres in the same tissue specimens at the same time. The results represent a combination of T1-weighted first-pass imaging, intravascular relaxation agents, and a spatially distributed perfusion model to obtain absolute regional myocardial blood flow and volume. PMID:7766986

  11. The impact of orientation filtering on face-selective neurons in monkey inferior temporal cortex.

    PubMed

    Taubert, Jessica; Goffaux, Valerie; Van Belle, Goedele; Vanduffel, Wim; Vogels, Rufin

    2016-02-16

    Faces convey complex social signals to primates. These signals are tolerant of some image transformations (e.g. changes in size) but not others (e.g. picture-plane rotation). By filtering face stimuli for orientation content, studies of human behavior and brain responses have shown that face processing is tuned to selective orientation ranges. In the present study, for the first time, we recorded the responses of face-selective neurons in monkey inferior temporal (IT) cortex to intact and scrambled faces that were filtered to selectively preserve horizontal or vertical information. Guided by functional maps, we recorded neurons in the lateral middle patch (ML), the lateral anterior patch (AL), and an additional region located outside of the functionally defined face-patches (CONTROL). We found that neurons in ML preferred horizontal-passed faces over their vertical-passed counterparts. Neurons in AL, however, had a preference for vertical-passed faces, while neurons in CONTROL had no systematic preference. Importantly, orientation filtering did not modulate the firing rate of neurons to phase-scrambled face stimuli in any recording region. Together these results suggest that face-selective neurons found in the face-selective patches are differentially tuned to orientation content, with horizontal tuning in area ML and vertical tuning in area AL.

  12. A fully functionalized metamaterial perfect absorber with simple design and implementation.

    PubMed

    Fu, Sze Ming; Zhong, Yan Kai; Tu, Ming Hsiang; Chen, Bo Ruei; Lin, Albert

    2016-10-26

    Broadband perfect metamaterial absorbers have been drawing significant attention in recent years. A close-to-unity absorption over a broad spectral range is established and this facilitates many photonic applications. A more challenging goal is to construct a broadband absorber with a tailored spectral absorption. The spectral absorption control and spectral shaping are very critical in many applications, such as thermal-photovoltaic, thermal emitters, spectrum imaging system, biomedical and extraterrestrial sensing, and refractive index sensor. In this work, one-dimensional (1D) planar stacking structure is designed to achieve the ultimate goal of a functionalized absorber with a fully tailorable spectral absorption. The lithography and etching process are totally eliminated in this proposed structure, and the fabrication is fully compatible with the regular silicon IC processing. By using ~2 nm ultra-thin metallic layers with a 10-pair (10X) SiO 2 /Si 3 N 4 integrated dielectric filter, we can achieve decent spectral response shaping. The planar configuration of the ultra-thin-metal metamaterial perfect absorber (MPA) is the key to the easy design/integration of the dielectric filters on top of the MPA. Specifically, band-rejected, high-pass, low-pass and band-pass structure are constructed successfully. Finally, experimental evidence to support our simulation result is also provided, which proves the feasibility of our proposal.

  13. Empirical dual energy calibration (EDEC) for cone-beam computed tomography.

    PubMed

    Stenner, Philip; Berkus, Timo; Kachelriess, Marc

    2007-09-01

    Material-selective imaging using dual energy CT (DECT) relies heavily on well-calibrated material decomposition functions. These require the precise knowledge of the detected x-ray spectra, and even if they are exactly known the reliability of DECT will suffer from scattered radiation. We propose an empirical method to determine the proper decomposition function. In contrast to other decomposition algorithms our empirical dual energy calibration (EDEC) technique requires neither knowledge of the spectra nor of the attenuation coefficients. The desired material-selective raw data p1 and p2 are obtained as functions of the measured attenuation data q1 and q2 (one DECT scan = two raw data sets) by passing them through a polynomial function. The polynomial's coefficients are determined using a general least squares fit based on thresholded images of a calibration phantom. The calibration phantom's dimension should be of the same order of magnitude as the test object, but other than that no assumptions on its exact size or positioning are made. Once the decomposition coefficients are determined DECT raw data can be decomposed by simply passing them through the polynomial. To demonstrate EDEC simulations of an oval CTDI phantom, a lung phantom, a thorax phantom and a mouse phantom were carried out. The method was further verified by measuring a physical mouse phantom, a half-and-half-cylinder phantom and a Yin-Yang phantom with a dedicated in vivo dual source micro-CT scanner. The raw data were decomposed into their components, reconstructed, and the pixel values obtained were compared to the theoretical values. The determination of the calibration coefficients with EDEC is very robust and depends only slightly on the type of calibration phantom used. The images of the test phantoms (simulations and measurements) show a nearly perfect agreement with the theoretical micro values and density values. Since EDEC is an empirical technique it inherently compensates for scatter components. The empirical dual energy calibration technique is a pragmatic, simple, and reliable calibration approach that produces highly quantitative DECT images.

  14. Flame Imaging System

    NASA Technical Reports Server (NTRS)

    Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)

    1998-01-01

    A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.

  15. Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope.

    PubMed

    Burns, Stephen A; Tumbar, Remy; Elsner, Ann E; Ferguson, Daniel; Hammer, Daniel X

    2007-05-01

    We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide-field line scan scanning laser ophthalmoscope (SLO), and a high-resolution microelectromechanical-systems-based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point-spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the psf. The retinal image was stabilized to within 18 microm 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images.

  16. Information-Efficient Spectral Imaging Sensor With Tdi

    DOEpatents

    Rienstra, Jeffrey L.; Gentry, Stephen M.; Sweatt, William C.

    2004-01-13

    A programmable optical filter for use in multispectral and hyperspectral imaging employing variable gain time delay and integrate arrays. A telescope focuses an image of a scene onto at least one TDI array that is covered by a multispectral filter that passes separate bandwidths of light onto the rows in the TDI array. The variable gain feature of the TDI array allows individual rows of pixels to be attenuated individually. The attenuations are functions of the magnitudes of the positive and negative components of a spectral basis vector. The spectral basis vector is constructed so that its positive elements emphasize the presence of a target and its negative elements emphasize the presence of the constituents of the background of the imaged scene. This system provides for a very efficient determination of the presence of the target, as opposed to the very data intensive data manipulations that are required in conventional hyperspectral imaging systems.

  17. Feasibility of a high-speed gamma-camera design using the high-yield-pileup-event-recovery method.

    PubMed

    Wong, W H; Li, H; Uribe, J; Baghaei, H; Wang, Y; Yokoyama, S

    2001-04-01

    Higher count-rate gamma cameras than are currently used are needed if the technology is to fulfill its promise in positron coincidence imaging, radionuclide therapy dosimetry imaging, and cardiac first-pass imaging. The present single-crystal design coupled with conventional detector electronics and the traditional Anger-positioning algorithm hinder higher count-rate imaging because of the pileup of gamma-ray signals in the detector and electronics. At an interaction rate of 2 million events per second, the fraction of nonpileup events is < 20% of the total incident events. Hence, the recovery of pileup events can significantly increase the count-rate capability, increase the yield of imaging photons, and minimize image artifacts associated with pileups. A new technology to significantly enhance the performance of gamma cameras in this area is introduced. We introduce a new electronic design called high-yield-pileup-event-recovery (HYPER) electronics for processing the detector signal in gamma cameras so that the individual gamma energies and positions of pileup events, including multiple pileups, can be resolved and recovered despite the mixing of signals. To illustrate the feasibility of the design concept, we have developed a small gamma-camera prototype with the HYPER-Anger electronics. The camera has a 10 x 10 x 1 cm NaI(Tl) crystal with four photomultipliers. Hot-spot and line sources with very high 99mTc activities were imaged. The phantoms were imaged continuously from 60,000 to 3,500,000 counts per second to illustrate the efficacy of the method as a function of counting rates. At 2-3 million events per second, all phantoms were imaged with little distortion, pileup, and dead-time loss. At these counting rates, multiple pileup events (> or = 3 events piling together) were the predominate occurrences, and the HYPER circuit functioned well to resolve and recover these events. The full width at half maximum of the line-spread function at 3,000,000 counts per second was 1.6 times that at 60,000 counts per second. This feasibility study showed that the HYPER electronic concept works; it can significantly increase the count-rate capability and dose efficiency of gamma cameras. In a larger clinical camera, multiple HYPER-Anger circuits may be implemented to further improve the imaging counting rates that we have shown by multiple times. This technology would facilitate the use of gamma cameras for radionuclide therapy dosimetry imaging, cardiac first-pass imaging, and positron coincidence imaging and the simultaneous acquisition of transmission and emission data using different isotopes with less cross-contamination between transmission and emission data.

  18. Spatiotemporal Characteristics for the Depth from Luminance Contrast

    PubMed Central

    Matsubara, Kazuya; Matsumiya, Kazumichi; Shioiri, Satoshi; Takahashi, Shuichi; Hyodo, Yasuhide; Ohashi, Isao

    2011-01-01

    Images with higher luminance contrast tend to be perceived closer in depth. To investigate a spatiotemporal characteristic of this effect, we evaluated subjective depth of a test stimulus with various spatial and temporal frequencies. For the purpose, the depth of a reference stimulus was matched to that of the test stimulus by changing the binocular disparity. The results showed that the test stimulus was perceived closer with higher luminance contrast for all conditions. Contrast efficiency was obtained from the contrast that provided the subjective depth for each spatiotemporal frequency. The shape of the contrast efficiency function was spatially low-pass and temporally band-pass. This characteristic is different from the one measure for a detection task. This suggests that only subset of contrast signals are used for depth from contrast.

  19. Structure for implementation of back-illuminated CMOS or CCD imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2009-01-01

    A structure for implementation of back-illuminated CMOS or CCD imagers. An epitaxial silicon layer is connected with a passivation layer, acting as a junction anode. The epitaxial silicon layer converts light passing through the passivation layer and collected by the imaging structure to photoelectrons. A semiconductor well is also provided, located opposite the passivation layer with respect to the epitaxial silicon layer, acting as a junction cathode. Prior to detection, light does not pass through a dielectric separating interconnection metal layers.

  20. The Myth of the Normal, Average Human Brain—The ICBM Experience: (1) Subject Screening and Eligibility

    PubMed Central

    Mazziotta, John C.; Woods, Roger; Iacoboni, Marco; Sicotte, Nancy; Yaden, Kami; Tran, Mary; Bean, Courtney; Kaplan, Jonas; Toga, Arthur W.

    2009-01-01

    In the course of developing an atlas and reference system for the normal human brain throughout the human age span from structural and functional brain imaging data, the International Consortium for Brain Mapping (ICBM) developed a set of “normal” criteria for subject inclusion and the associated exclusion criteria. The approach was to minimize inclusion of subjects with any medical disorders that could affect brain structure or function. In the past two years, a group of 1,685 potential subjects responded to solicitation advertisements at one of the consortium sites (UCLA). Subjects were screened by a detailed telephone interview and then had an in-person history and physical examination. Of those who responded to the advertisement and considered themselves to be normal, only 31.6% (532 subjects) passed the telephone screening process. Of the 348 individuals who submitted to in-person history and physical examinations, only 51.7% passed these screening procedures. Thus, only 10.7% of those individuals who responded to the original advertisement qualified for imaging. The most frequent cause for exclusion in the second phase of subject screening was high blood pressure followed by abnormal signs on neurological examination. It is concluded that the majority of individuals who consider themselves normal by self-report are found not to be so by detailed historical interviews about underlying medical conditions and by thorough medical and neurological examinations. Recommendations are made with regard to the inclusion of subjects in brain imaging studies and the criteria used to select them. PMID:18775497

  1. Segmentation of the canine corpus callosum using diffusion-tensor imaging tractography.

    PubMed

    Pierce, Theodore T; Calabrese, Evan; White, Leonard E; Chen, Steven D; Platt, Simon R; Provenzale, James M

    2014-01-01

    We set out to determine functional white matter (WM) connections passing through the canine corpus callosum; these WM connections would be useful for subsequent studies of canine brains that serve as models for human WM pathway disease. Based on prior studies, we anticipated that the anterior corpus callosum would send projections to the anterior cerebral cortex whereas progressively posterior segments would send projections to more posterior cortex. A postmortem canine brain was imaged using a 7-T MRI system producing 100-μm-isotropic-resolution diffusion-tensor imaging analyzed by tractography. Using regions of interest (ROIs) within cortical locations, which were confirmed by a Nissl stain that identified distinct cortical architecture, we successfully identified six important WM pathways. We also compared fractional anisotropy (FA), apparent diffusion coefficient (ADC), radial diffusivity, and axial diffusivity in tracts passing through the genu and splenium. Callosal fibers were organized on the basis of cortical destination (e.g., fibers from the genu project to the frontal cortex). Histologic results identified the motor cortex on the basis of cytoarchitectonic criteria that allowed placement of ROIs to discriminate between frontal and parietal lobes. We also identified cytoarchitecture typical of the orbital frontal, anterior frontal, and occipital regions and placed ROIs accordingly. FA, ADC, radial diffusivity, and axial diffusivity values were all higher in posterior corpus callosum fiber tracts. Using six cortical ROIs, we identified six major WM tracts that reflect major functional divisions of the cerebral hemispheres, and we derived quantitative values that can be used for study of canine models of human WM pathologic states.

  2. Widefield in vivo spectral and fluorescence imaging microscopy of microvessel blood supply and oxygenation

    NASA Astrophysics Data System (ADS)

    Lee, Jennifer; Kozikowski, Raymond; Wankhede, Mamta; Sorg, Brian S.

    2011-02-01

    Abnormal microvascular function and angiogenesis are key components of various diseases that can contribute to the perpetuation of the disease. Several skin diseases and ophthalmic pathologies are characterized by hypervascularity, and in cancer the microvasculature of tumors is structurally and functionally abnormal. Thus, the microvasculature can be an important target for treatment of diseases characterized by abnormal microvasculature. Motivated largely by cancer research, significant effort has been devoted to research on drugs that target the microvasculature. Several vascular targeting drugs for cancer therapy are in clinical trials and approved for clinical use, and several off-label uses of these drugs have been reported for non-cancer diseases. The ability to image and measure parameters related to microvessel function preclinically in laboratory animals can be useful for development and comparison of vascular targeting drugs. For example, blood supply time measurements give information related to microvessel morphology and can be measured with first-pass fluorescence imaging. Hemoglobin saturation measurements give an indication of microvessel oxygen transport and can be measured with spectral imaging. While each measurement individually gives some information regarding microvessel function, the measurements together may yield even more information since theoretically microvessel morphology can influence microvessel oxygenation, especially in metabolically active tissue like tumors. However, these measurements have not yet been combined. In this study, we report the combination of blood supply time imaging and hemoglobin saturation imaging of microvessel networks in tumors using widefield fluorescence and spectral imaging, respectively. The correlation between the measurements in a mouse mammary tumor is analyzed.

  3. A no-key-exchange secure image sharing scheme based on Shamir's three-pass cryptography protocol and the multiple-parameter fractional Fourier transform.

    PubMed

    Lang, Jun

    2012-01-30

    In this paper, we propose a novel secure image sharing scheme based on Shamir's three-pass protocol and the multiple-parameter fractional Fourier transform (MPFRFT), which can safely exchange information with no advance distribution of either secret keys or public keys between users. The image is encrypted directly by the MPFRFT spectrum without the use of phase keys, and information can be shared by transmitting the encrypted image (or message) three times between users. Numerical simulation results are given to verify the performance of the proposed algorithm.

  4. Geometrical superresolved imaging using nonperiodic spatial masking.

    PubMed

    Borkowski, Amikam; Zalevsky, Zeev; Javidi, Bahram

    2009-03-01

    The resolution of every imaging system is limited either by the F-number of its optics or by the geometry of its detection array. The geometrical limitation is caused by lack of spatial sampling points as well as by the shape of every sampling pixel that generates spectral low-pass filtering. We present a novel approach to overcome the low-pass filtering that is due to the shape of the sampling pixels. The approach combines special algorithms together with spatial masking placed in the intermediate image plane and eventually allows geometrical superresolved imaging without relation to the actual shape of the pixels.

  5. System and method for disrupting suspect objects

    DOEpatents

    Gladwell, T. Scott; Garretson, Justin R; Hobart, Clinton G; Monda, Mark J

    2013-07-09

    A system and method for disrupting at least one component of a suspect object is provided. The system includes a source for passing radiation through the suspect object, a screen for receiving the radiation passing through the suspect object and generating at least one image therefrom, a weapon having a discharge deployable therefrom, and a targeting unit. The targeting unit displays the image(s) of the suspect object and aims the weapon at a disruption point on the displayed image such that the weapon may be positioned to deploy the discharge at the disruption point whereby the suspect object is disabled.

  6. Cortical neuroanatomic correlates of symptom severity in primary progressive aphasia

    PubMed Central

    Sapolsky, D.; Bakkour, A.; Negreira, A.; Nalipinski, P.; Weintraub, S.; Mesulam, M.-M.; Caplan, D.; Dickerson, B.C.

    2010-01-01

    Objective: To test the validity and reliability of a new measure of clinical impairment in primary progressive aphasia (PPA), the Progressive Aphasia Severity Scale (PASS), and to investigate relationships with MRI-based cortical thickness biomarkers for localizing and quantifying the severity of anatomic abnormalities. Methods: Patients with PPA were rated using the PASS and underwent performance-based language testing and MRI scans that were processed for cortical thickness measures. Results: The level of impairment in PASS fluency, syntax/grammar, and word comprehension showed strong specific correlations with performance-based measures of these domains of language, and demonstrated high interrater reliability. Left inferior frontal thinning correlated with impairment in fluency and grammar/syntax, while left temporopolar thinning correlated with impairment in word comprehension. Discriminant function analysis demonstrated that a combination of left inferior frontal, left temporopolar, and left superior temporal sulcal thickness separated the 3 PPA subtypes from each other with 100% accuracy (87% accuracy in a leave-one-out analysis). Conclusions: The PASS, a novel measure of the severity of clinical impairment within domains of language typically affected in PPA, demonstrates reliable and valid clinical-behavioral properties. Furthermore, the presence of impairment in individual PASS domains demonstrates specific relationships with focal abnormalities in particular brain regions and the severity of impairment is strongly related to the severity of anatomic abnormality within the relevant brain region. These anatomic imaging biomarkers perform well in classifying PPA subtypes. These data provide robust support for the value of this novel clinical measure and the new imaging measure as markers for potential use in clinical research and trials in PPA. GLOSSARY AD = Alzheimer disease; BDAE = Boston Diagnostic Aphasia Examination; CDR = Clinical Dementia Rating; CSB = Cambridge Semantic Battery; ICC = intraclass correlation coefficient; NACC UDS = National Alzheimer's Coordinating Center Uniform Data Set; OC = older control participants; PASS = Progressive Aphasia Severity Scale; PPA = primary progressive aphasia; PPA-G = agrammatic primary progressive aphasia; PPA-L = logopenic primary progressive aphasia; PPA-S = semantic primary progressive aphasia; ROI = region of interest; WAB = Western Aphasia Battery. PMID:20660866

  7. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Bailey, John W.

    2004-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS, was shown to be capable of spectral sampling of images in the visible range over a 200 nm spectral range with a spectral resolution of 30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses incoming light to a field stop that is also a focal point of each spherical lens. A correcting lens in front of the field stop compensates for the spherical aberration of the spherical lenses. The front surface of each spherical lens collimates the light coming from the field stop. After the collimated light passes through the filter in the spherical lens, the rear surface of the lens focuses the light onto a charge-coupled-device image detector.

  8. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Aye, Tin; Yu, Kevin; Dimov, Fedor; Savant, Gajendra

    2006-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote-sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS was shown to be capable of spectral sampling of images in the visible range over a 200-nm spectral range with a spectral resolution of .30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of the lenses are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses incoming light to a field stop that is also a focal point of each spherical lens. A correcting lens in front of the field stop compensates for the spherical aberration of the spherical lenses. The front surface of each spherical lens collimates the light coming from the field stop. After the collimated light passes through the filter in the spherical lens, the rear surface of the lens focuses the light onto a charge-coupled-device image detector.

  9. Forward light scatter analysis of the eye in a spatially-resolved double-pass optical system.

    PubMed

    Nam, Jayoung; Thibos, Larry N; Bradley, Arthur; Himebaugh, Nikole; Liu, Haixia

    2011-04-11

    An optical analysis is developed to separate forward light scatter of the human eye from the conventional wavefront aberrations in a double pass optical system. To quantify the separate contributions made by these micro- and macro-aberrations, respectively, to the spot image blur in the Shark-Hartmann aberrometer, we develop a metric called radial variance for spot blur. We prove an additivity property for radial variance that allows us to distinguish between spot blurs from macro-aberrations and micro-aberrations. When the method is applied to tear break-up in the human eye, we find that micro-aberrations in the second pass accounts for about 87% of the double pass image blur in the Shack-Hartmann wavefront aberrometer under our experimental conditions. © 2011 Optical Society of America

  10. High Probability of Cyclone Development in the Bay of Bengal

    NASA Image and Video Library

    2014-05-22

    The Joint Typhoon Warning Center states that formation of a significant tropical cyclone is possible in the Bay of Bengal within the next 12 - 24 hours as of 0730Z on May 21, 2014. Along with deep convective banding associated with a consolidating low-level circulation center, warm sea surface temperatures are conducive for further development. This image was taken by the Suomi NPP satellite's VIIRS instrument in two passes, the east pass around 0615Z and the west pass around 0755Z on May 21, 2014. Credit: NASA/NOAA/NPP/VIIRS The Joint Typhoon Warning Center states that formation of a significant tropical cyclone is possible in the Bay of Bengal within the next 12 - 24 hours as of 0730Z on May 21, 2014. Along with deep convective banding associated with a consolidating low-level circulation center, warm sea surface temperatures are conducive for further development. This image was taken by the Suomi NPP satellite's VIIRS instrument in two passes, the east pass around 0615Z and the west pass around 0755Z on May 21, 2014.

  11. Evaluation of bile reflux in HIDA images based on fluid mechanics.

    PubMed

    Lo, Rong-Chin; Huang, Wen-Lin; Fan, Yu-Ming

    2015-05-01

    We propose a new method to help physicians assess, using a hepatobiliary iminodiacetic acid scan image, whether or not there is bile reflux into the stomach. The degree of bile reflux is an important index for clinical diagnosis of stomach diseases. The proposed method applies image-processing technology combined with a hydrodynamic model to determine the extent of bile reflux or whether the duodenum is also folded above the stomach. This condition in 2D dynamic images suggests that bile refluxes into the stomach, when endoscopy shows no bile reflux. In this study, we used optical flow to analyze images from Tc99m-diisopropyl iminodiacetic acid cholescintigraphy (Tc99m-DISIDA) to ascertain the direction and velocity of bile passing through the pylorus. In clinical diagnoses, single photon emission computed tomography (SPECT) is the main clinical tool for evaluating functional images of hepatobiliary metabolism. Computed tomography (CT) shows anatomical images of the external contours of the stomach, liver, and biliary extent. By exploiting the functional fusion of the two kinds of medical image, physicians can obtain a more accurate diagnosis. We accordingly reconstructed 3D images from SPECT and CT to help physicians choose which cross sections to fuse with software and to help them more accurately diagnose the extent and quantity of bile reflux. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. First results of electron temperature measurements by the use of multi-pass Thomson scattering system in GAMMA 10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, M., E-mail: yosikawa@prc.tsukuba.ac.jp; Nagasu, K.; Shimamura, Y.

    2014-11-15

    A multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components. Moreover, we applied the system to the electron temperature measurements in the GAMMA 10 plasma for the first time. The integrated scattering signal was magnified by approximately three times by using the multi-pass TS system with four passes. The electron temperature measurement accuracy is improved by using this multi-pass system.

  13. First results of electron temperature measurements by the use of multi-pass Thomson scattering system in GAMMA 10.

    PubMed

    Yoshikawa, M; Yasuhara, R; Nagasu, K; Shimamura, Y; Shima, Y; Kohagura, J; Sakamoto, M; Nakashima, Y; Imai, T; Ichimura, M; Yamada, I; Funaba, H; Kawahata, K; Minami, T

    2014-11-01

    A multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components. Moreover, we applied the system to the electron temperature measurements in the GAMMA 10 plasma for the first time. The integrated scattering signal was magnified by approximately three times by using the multi-pass TS system with four passes. The electron temperature measurement accuracy is improved by using this multi-pass system.

  14. Neptune False Color Image of Haze

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This false color photograph of Neptune was made from Voyager 2 images taken through three filters: blue, green, and a filter that passes light at a wavelength that is absorbed by methane gas. Thus, regions that appear white or bright red are those that reflect sunlight before it passes through a large quantity of methane. The image reveals the presence of a ubiquitous haze that covers Neptune in a semitransparent layer. Near the center of the disk, sunlight passes through the haze and deeper into the atmosphere, where some wavelengths are absorbed by methane gas, causing the center of the image to appear less red. Near the edge of the planet, the haze scatters sunlight at higher altitude, above most of the methane, causing the bright red edge around the planet. By measuring haze brightness at several wavelengths, scientists are able to estimate the thickness of the haze and its ability to scatter sunlight. The image is among the last full disk photos that Voyager 2 took before beginning its endless journey into interstellar space. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  15. New Finger Biometric Method Using Near Infrared Imaging

    PubMed Central

    Lee, Eui Chul; Jung, Hyunwoo; Kim, Daeyeoul

    2011-01-01

    In this paper, we propose a new finger biometric method. Infrared finger images are first captured, and then feature extraction is performed using a modified Gaussian high-pass filter through binarization, local binary pattern (LBP), and local derivative pattern (LDP) methods. Infrared finger images include the multimodal features of finger veins and finger geometries. Instead of extracting each feature using different methods, the modified Gaussian high-pass filter is fully convolved. Therefore, the extracted binary patterns of finger images include the multimodal features of veins and finger geometries. Experimental results show that the proposed method has an error rate of 0.13%. PMID:22163741

  16. Scanning computed confocal imager

    DOEpatents

    George, John S.

    2000-03-14

    There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.

  17. 3D and 4D magnetic susceptibility tomography based on complex MR images

    DOEpatents

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  18. Receiver function images of the central Chugoku region in the Japanese islands using Hi-net data

    NASA Astrophysics Data System (ADS)

    Ramesh, D. S.; Wakatsu, H. K.; Watada, S.; Yuan, X.

    2005-04-01

    Crustal configuration of the central Chugoku region with disposition of the Philippine Sea Plate (PHS) in this area are investigated through the receiver function approach using short-period Hi-net data. Images of the upper mantle discontinuities are also obtained. Restituted short-period receiver functions bring out discernible variations in average composition of the crust and its thickness in the study region. The Vp/ Vs values in the study area are generally high, reaching values in excess of 1.85 at a few places. The central part of the study region showing the highest Vp/ Vs values is coincidentally a subregion of least seismicity, possibly bestowed with special subsurface structure. Migrated receiver function images, both Ps and Pps images, unambiguously trace the NW subducting PHS taking a steeper plunge in the northwest part of the Chugoku region reaching depths of 70 km from its low dip disposition in the southeast. An excellent correlation of the subducting PHS with the hypocenters is also seen. We demonstrate that short-period data after restitution and application of appropriate low pass filters can indeed detect presence of the global 410-km and 660-km discontinuities and map their disposition reasonably well. Our migrated receiver functions image the deflections in the 410-km and 660-km discontinuities in an anti-correlated fashion on expected lines of Clapeyron slope predictions induced by subduction of the Pacific plate (PAC) beneath Japanese islands, though PAC itself is feebly traced but shows good correlation with slab seismicity.

  19. Neighbourhood-consensus message passing and its potentials in image processing applications

    NASA Astrophysics Data System (ADS)

    Ružic, Tijana; Pižurica, Aleksandra; Philips, Wilfried

    2011-03-01

    In this paper, a novel algorithm for inference in Markov Random Fields (MRFs) is presented. Its goal is to find approximate maximum a posteriori estimates in a simple manner by combining neighbourhood influence of iterated conditional modes (ICM) and message passing of loopy belief propagation (LBP). We call the proposed method neighbourhood-consensus message passing because a single joint message is sent from the specified neighbourhood to the central node. The message, as a function of beliefs, represents the agreement of all nodes within the neighbourhood regarding the labels of the central node. This way we are able to overcome the disadvantages of reference algorithms, ICM and LBP. On one hand, more information is propagated in comparison with ICM, while on the other hand, the huge amount of pairwise interactions is avoided in comparison with LBP by working with neighbourhoods. The idea is related to the previously developed iterated conditional expectations algorithm. Here we revisit it and redefine it in a message passing framework in a more general form. The results on three different benchmarks demonstrate that the proposed technique can perform well both for binary and multi-label MRFs without any limitations on the model definition. Furthermore, it manifests improved performance over related techniques either in terms of quality and/or speed.

  20. Automated processing of first-pass radioisotope ventriculography data to determine essential central circulation parameters

    NASA Astrophysics Data System (ADS)

    Krotov, Aleksei; Pankin, Victor

    2017-09-01

    The assessment of central circulation (including heart function) parameters is vital in the preventive diagnostics of inherent and acquired heart failures and during polychemotherapy. The protocols currently applied in Russia do not fully utilize the first-pass assessment (FPRNA) and that results in poor data formalization, while the FPRNA is the one of the fastest, affordable and compact methods among other radioisotope diagnostics protocols. A non-imaging algorithm basing on existing protocols has been designed to use the readings of an additional detector above vena subclavia to determine the total blood volume (TBV), not requiring blood sampling in contrast to current protocols. An automated processing of precordial detector readings is presented, in order to determine the heart strike volume (SV). Two techniques to estimate the ejection fraction (EF) of the heart are discussed.

  1. Super-resolution pupil filtering for visual performance enhancement using adaptive optics

    NASA Astrophysics Data System (ADS)

    Zhao, Lina; Dai, Yun; Zhao, Junlei; Zhou, Xiaojun

    2018-05-01

    Ocular aberration correction can significantly improve visual function of the human eye. However, even under ideal aberration correction conditions, pupil diffraction restricts the resolution of retinal images. Pupil filtering is a simple super-resolution (SR) method that can overcome this diffraction barrier. In this study, a 145-element piezoelectric deformable mirror was used as a pupil phase filter because of its programmability and high fitting accuracy. Continuous phase-only filters were designed based on Zernike polynomial series and fitted through closed-loop adaptive optics. SR results were validated using double-pass point spread function images. Contrast sensitivity was further assessed to verify the SR effect on visual function. An F-test was conducted for nested models to statistically compare different CSFs. These results indicated CSFs for the proposed SR filter were significantly higher than the diffraction correction (p < 0.05). As such, the proposed filter design could provide useful guidance for supernormal vision optical correction of the human eye.

  2. Modelling the dependence of contrast sensitivity on grating area and spatial frequency.

    PubMed

    Rovamo, J; Luntinen, O; Näsänen, R

    1993-12-01

    We modelled the human foveal visual system in a detection task as a simple image processor comprising (i) low-pass filtering due to the optical transfer function of the eye, (ii) high-pass filtering of neural origin, (iii) addition of internal neural noise, and (iv) detection by a local matched filter. Its detection efficiency for gratings was constant up to a critical area but then decreased with increasing area. To test the model we measured Michelson contrast sensitivity as a function of grating area at spatial frequencies of 0.125-32 c/deg for simple vertical and circular cosine gratings. In circular gratings luminance was sinusoidally modulated as a function of the radius of the grating field. In agreement with the model, contrast sensitivity at all spatial frequencies increased in proportion to the square-root of grating area at small areas. When grating area exceeded critical area, the increase saturated and contrast sensitivity became independent of area at large grating areas. Spatial integration thus obeyed Piper's law at small grating areas. The critical area of spatial integration, marking the cessation of Piper's law, was constant in solid degrees at low spatial frequencies but inversely proportional to spatial frequency squared at medium and high spatial frequencies. At low spatial frequencies the maximum contrast sensitivity obtainable by spatial integration increased in proportion to spatial frequency but at high spatial frequencies it decreased in proportion to the cube of the increasing spatial frequency. The increase was due to high-pass filtering of neural origin (lateral inhibition) and the decrease was mainly due to the optical transfer function of the eye. Our model explained 95% of the total variance of the contrast sensitivity data.

  3. TU-AB-202-06: Quantitative Evaluation of Deformable Image Registration in MRI-Guided Adaptive Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooney, K; Zhao, T; Green, O

    Purpose: To assess the performance of the deformable image registration algorithm used for MRI-guided adaptive radiation therapy using image feature analysis. Methods: MR images were collected from five patients treated on the MRIdian (ViewRay, Inc., Oakwood Village, OH), a three head Cobalt-60 therapy machine with an 0.35 T MR system. The images were acquired immediately prior to treatment with a uniform 1.5 mm resolution. Treatment sites were as follows: head/neck, lung, breast, stomach, and bladder. Deformable image registration was performed using the ViewRay software between the first fraction MRI and the final fraction MRI, and the DICE similarity coefficient (DSC)more » for the skin contours was reported. The SIFT and Harris feature detection and matching algorithms identified point features in each image separately, then found matching features in the other image. The target registration error (TRE) was defined as the vector distance between matched features on the two image sets. Each deformation was evaluated based on comparison of average TRE and DSC. Results: Image feature analysis produced between 2000–9500 points for evaluation on the patient images. The average (± standard deviation) TRE for all patients was 3.3 mm (±3.1 mm), and the passing rate of TRE<3 mm was 60% on the images. The head/neck patient had the best average TRE (1.9 mm±2.3 mm) and the best passing rate (80%). The lung patient had the worst average TRE (4.8 mm±3.3 mm) and the worst passing rate (37.2%). DSC was not significantly correlated with either TRE (p=0.63) or passing rate (p=0.55). Conclusions: Feature matching provides a quantitative assessment of deformable image registration, with a large number of data points for analysis. The TRE of matched features can be used to evaluate the registration of many objects throughout the volume, whereas DSC mainly provides a measure of gross overlap. We have a research agreement with ViewRay Inc.« less

  4. A fully functionalized metamaterial perfect absorber with simple design and implementation

    PubMed Central

    Fu, Sze Ming; Zhong, Yan Kai; Tu, Ming Hsiang; Chen, Bo Ruei; Lin, Albert

    2016-01-01

    Broadband perfect metamaterial absorbers have been drawing significant attention in recent years. A close-to-unity absorption over a broad spectral range is established and this facilitates many photonic applications. A more challenging goal is to construct a broadband absorber with a tailored spectral absorption. The spectral absorption control and spectral shaping are very critical in many applications, such as thermal-photovoltaic, thermal emitters, spectrum imaging system, biomedical and extraterrestrial sensing, and refractive index sensor. In this work, one-dimensional (1D) planar stacking structure is designed to achieve the ultimate goal of a functionalized absorber with a fully tailorable spectral absorption. The lithography and etching process are totally eliminated in this proposed structure, and the fabrication is fully compatible with the regular silicon IC processing. By using ~2 nm ultra-thin metallic layers with a 10-pair (10X) SiO2/Si3N4 integrated dielectric filter, we can achieve decent spectral response shaping. The planar configuration of the ultra-thin-metal metamaterial perfect absorber (MPA) is the key to the easy design/integration of the dielectric filters on top of the MPA. Specifically, band-rejected, high-pass, low-pass and band-pass structure are constructed successfully. Finally, experimental evidence to support our simulation result is also provided, which proves the feasibility of our proposal. PMID:27782181

  5. Imaging Spectrometer on a Chip

    NASA Technical Reports Server (NTRS)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Zheng, Xinyu

    2007-01-01

    A proposed visible-light imaging spectrometer on a chip would be based on the concept of a heterostructure comprising multiple layers of silicon-based photodetectors interspersed with long-wavelength-pass optical filters. In a typical application, this heterostructure would be replicated in each pixel of an image-detecting integrated circuit of the active-pixel-sensor type (see figure). The design of the heterostructure would exploit the fact that within the visible portion of the spectrum, the characteristic depth of penetration of photons increases with wavelength. Proceeding from the front toward the back, each successive long-wavelength-pass filter would have a longer cutoff wavelength, and each successive photodetector would be made thicker to enable it to absorb a greater proportion of incident longer-wavelength photons. Incident light would pass through the first photodetector and encounter the first filter, which would reflect light having wavelengths shorter than its cutoff wavelength and pass light of longer wavelengths. A large portion of the incident and reflected shorter-wavelength light would be absorbed in the first photodetector. The light that had passed through the first photodetector/filter pair of layers would pass through the second photodetector and encounter the second filter, which would reflect light having wavelengths shorter than its cutoff wavelength while passing light of longer wavelengths. Thus, most of the light reflected by the second filter would lie in the wavelength band between the cutoff wavelengths of the first and second filters. Thus, further, most of the light absorbed in the second photodetector would lie in this wavelength band. In a similar manner, each successive photodetector would detect, predominantly, light in a successively longer wavelength band bounded by the shorter cutoff wavelength of the preceding filter and the longer cutoff wavelength of the following filter.

  6. Technical Support Task Report for the Modernization of Defense Logistics Standard Systems. Volume 3: Logistics Gateway Node Technical Specifications

    DTIC Science & Technology

    1991-05-01

    or may not bypass the editing function. At present, editing rules beyond those required for translation have not been stipulated. 2When explicit... editing rules become defined, the editor at a site LGN may perform two levels of edit checking: warning, which would insert blanks or pass as submitted...position image transactions into a transaction set. This low-level edit checking is performed at the site LGN to reduce transmission costs and to

  7. Functional imaging of the brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ell, P.J.; Jarritt, P.H.; Costa, D.C.

    1987-07-01

    The radionuclide tracer method is unique among all other imaging methodologies in its ability to trace organ or tissue function and metabolism. Physical processes such as electron or proton density assessment or resonance, edge identification, electrical or ultrasonic impedence, do not pertain to the image generation process in nuclear medicine, and if so, only in a rather secondary manner. The nuclear medicine imaging study is primarily a study of the chemical nature, distribution and interaction of the tracer/radiopharmaceutical utilized with the cellular system which requires investigation: the thyroid cells with sodium iodide, the recticular endothelial cells with colloidal particles, themore » adrenal medulla cells with metaiodobenzylguanidine, and so on. In the two most recent areas of nuclear medicine expansion, oncology (with labelled monoclonal antibodies) and neurology and psychiatry (with a whole new series of lipid soluble radiopharmaceuticals), specific cell systems can also be targeted and hence imaged and investigated. The study of structure as masterly performed by Virchow and all his successors over more than a century, is now definitely the prerogative of such imaging systems which excel with spatial and contrast resolution However the investigation of function and metabolism, has clearly passed from the laboratory animal protocol and experiment to the direct investigation in man, this being the achievement of the radionuclide tracer methodology. In this article, we review present interest and developments in that part of nuclear medicine activity which is aimed at the study of the neurological or psychiatric patient.« less

  8. SU-F-T-301: Planar Dose Pass Rate Inflation Due to the MapCHECK Measurement Uncertainty Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, D; Spaans, J; Kumaraswamy, L

    Purpose: To quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as analyzed with Sun Nuclear Corporation analytic software (“MapCHECK” or “SNC Patient”). This optional function is toggled on by default upon software installation, and automatically increases the user-defined dose percent difference (%Diff) tolerance for each planar dose comparison. Methods: Dose planes from 109 IMRT fields and 40 VMAT arcs were measured with the MapCHECK 2 diode array, and compared to calculated planes from a commercial treatment planning system. Pass rates were calculated within the SNC analytic software using varying calculation parameters, including Measurement Uncertainty onmore » and off. By varying the %Diff criterion for each dose comparison performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with MapCHECK Uncertainty turned on. Results: For 3%/3mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.8–1.1% average, depending on plan type and calculation technique, for an average pass rate increase of 1.0–3.5% (maximum +8.7%). For 2%, 2 mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.7–1.2% average, for an average pass rate increase of 3.5–8.1% (maximum +14.2%). The largest increases in pass rate are generally seen with poorly-matched planar dose comparisons; the MapCHECK Uncertainty effect is markedly smaller as pass rates approach 100%. Conclusion: The Measurement Uncertainty function may substantially inflate planar dose comparison pass rates for typical IMRT and VMAT planes. The types of uncertainties incorporated into the function (and their associated quantitative estimates) as described in the software user’s manual may not accurately estimate realistic measurement uncertainty for the user’s measurement conditions. Pass rates listed in published reports or otherwise compared to the results of other users or vendors should clearly indicate whether the Measurement Uncertainty function is used.« less

  9. Grain-Scale Analyses of Curiosity Data at Marias Pass, Gale Crater, Mars: Methods Comparison and Depositional Interpretation

    NASA Astrophysics Data System (ADS)

    Sacks, L. E.; Edgar, L. A.; Edwards, C. S.; Anderson, R. B.

    2016-12-01

    Images acquired by the Mars Hand Lens Imager (MAHLI) and the ChemCam Remote Micro Imager (RMI) onboard the Mars Science Laboratory (MSL) Curiosity rover provide grain-scale data that are critical for interpreting sedimentary deposits. At the location informally known as Marias Pass, Curiosity used both cameras to image the nine rock targets used in this study. We used manual point-counts to measure grain size distributions from those images to compare the abilities of the two cameras. The manually derived results were compared to automated grain size data obtained using pyDGS (Digital Grain Size), an open-source python program. Grain size analyses were used to test the lacustrine and aeolian depositional hypotheses for the Murray and Stimson formations at Marias Pass. Results indicate that the MAHLI and RMI instruments, despite their different fields of view and properties, provide comparable grain size measurements. Additionally, pyDGS does not account for grains smaller than a few pixels and thus does not report representative grain size data and should not be used on images with a large fraction of unresolved grains. Finally, the data collected at Marias Pass are consistent with the existing interpretations of the Murray and Stimson formations. The fine-grained results of the Murray formation analyses support lacustrine deposition, while the mean grain size of the Stimson formation is fine to medium sized sand, consistent with aeolian deposition. However, directly above the contact with the Murray formation, larger rip-up clasts of the Murray formation are present in the Stimson formation. It is possible that water was involved at this stage of erosion and re-deposition, prior to aeolian deposition. Additionally, the grain-scale analyses conducted in this study show that the Dust Removal Tool on Curiosity should be used prior to capturing images for grain-scale analysis. Two images of the target informally named Ronan, taken before and after brushing, resulted in dramatically different grain size results, suggesting that the common, thin layer of dust obscured the true grain size distribution. These grain-scale analyses at Marias Pass have important implications for the collection and processing of image data, as well as the depositional environments recorded in Gale crater. Funded by NSF Grant AST-1461200

  10. LDA merging and splitting with applications to multiagent cooperative learning and system alteration.

    PubMed

    Pang, Shaoning; Ban, Tao; Kadobayashi, Youki; Kasabov, Nikola K

    2012-04-01

    To adapt linear discriminant analysis (LDA) to real-world applications, there is a pressing need to equip it with an incremental learning ability to integrate knowledge presented by one-pass data streams, a functionality to join multiple LDA models to make the knowledge sharing between independent learning agents more efficient, and a forgetting functionality to avoid reconstruction of the overall discriminant eigenspace caused by some irregular changes. To this end, we introduce two adaptive LDA learning methods: LDA merging and LDA splitting. These provide the benefits of ability of online learning with one-pass data streams, retained class separability identical to the batch learning method, high efficiency for knowledge sharing due to condensed knowledge representation by the eigenspace model, and more preferable time and storage costs than traditional approaches under common application conditions. These properties are validated by experiments on a benchmark face image data set. By a case study on the application of the proposed method to multiagent cooperative learning and system alternation of a face recognition system, we further clarified the adaptability of the proposed methods to complex dynamic learning tasks.

  11. Geostatistical noise filtering of geophysical images : application to unexploded ordnance (UXO) sites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Hirotaka; McKenna, Sean Andrew; Coburn, Timothy C.

    2004-07-01

    Geostatistical and non-geostatistical noise filtering methodologies, factorial kriging and a low-pass filter, and a region growing method are applied to analytic signal magnetometer images at two UXO contaminated sites to delineate UXO target areas. Overall delineation performance is improved by removing background noise. Factorial kriging slightly outperforms the low-pass filter but there is no distinct difference between them in terms of finding anomalies of interest.

  12. MODIS polarization performance and anomalous four-cycle polarization phenomenon

    NASA Astrophysics Data System (ADS)

    Young, James B.; Knight, Ed; Merrow, Cindy

    1998-10-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) will be one of the primary instruments observing the earth on the Earth Observing System (EOS) scheduled for launch in 1999. MODIS polarization performance characterization was required for the 0.4 to 0.6 micrometers (VIS), 0.6 micrometers to 1.0 micrometers (NIR), and 1.0 micrometers to 2.3 micrometers (SWIR) regions. A polarized source assembly (PSA) consisting of a collimator with a rotatable Ahrens polarizer was used to illuminate MODIS with a linearly polarized beam. MODIS signal function having two-cycles per 360 degrees prism rotation signal function was expected. However, some spectral bands had a distinct four-cycle anomalous signal. The expected two-cycle function was present in all regions with the four-cycle anomaly being limited to the NIR region. Fourier analysis was very useful tooling determining the cause of the anomaly. A simplified polarization model of the PSA and MODIS was generated using Mueller matrices-Stokes vector formalism. Parametric modeling illustrated that this anomaly could be produced by energy having multiple passes between PSA Ahrens prism and the MODIS focal plane filters. Furthermore, the model gave NIR four-cycle magnitudes that were consistent with observations. The IVS and SWIR optical trans had birefringent elements that served to scramble the multiple pass anomaly. The model validity was demonstrated with an experimental setup that had partial aperture illumination which eliminated the possibility of multiple passes. The four-cycle response was eliminated while producing the same two-cycle polarization response. Data will be shown to illustrate the four-cycle phenomenon.

  13. Digital elevation model generation from satellite interferometric synthetic aperture radar: Chapter 5

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Lei; Lee, Wonjin; Lee, Chang-Wook

    2012-01-01

    An accurate digital elevation model (DEM) is a critical data set for characterizing the natural landscape, monitoring natural hazards, and georeferencing satellite imagery. The ideal interferometric synthetic aperture radar (InSAR) configuration for DEM production is a single-pass two-antenna system. Repeat-pass single-antenna satellite InSAR imagery, however, also can be used to produce useful DEMs. DEM generation from InSAR is advantageous in remote areas where the photogrammetric approach to DEM generation is hindered by inclement weather conditions. There are many sources of errors in DEM generation from repeat-pass InSAR imagery, for example, inaccurate determination of the InSAR baseline, atmospheric delay anomalies, and possible surface deformation because of tectonic, volcanic, or other sources during the time interval spanned by the images. This chapter presents practical solutions to identify and remove various artifacts in repeat-pass satellite InSAR images to generate a high-quality DEM.

  14. Image Augmentation for Object Image Classification Based On Combination of Pre-Trained CNN and SVM

    NASA Astrophysics Data System (ADS)

    Shima, Yoshihiro

    2018-04-01

    Neural networks are a powerful means of classifying object images. The proposed image category classification method for object images combines convolutional neural networks (CNNs) and support vector machines (SVMs). A pre-trained CNN, called Alex-Net, is used as a pattern-feature extractor. Alex-Net is pre-trained for the large-scale object-image dataset ImageNet. Instead of training, Alex-Net, pre-trained for ImageNet is used. An SVM is used as trainable classifier. The feature vectors are passed to the SVM from Alex-Net. The STL-10 dataset are used as object images. The number of classes is ten. Training and test samples are clearly split. STL-10 object images are trained by the SVM with data augmentation. We use the pattern transformation method with the cosine function. We also apply some augmentation method such as rotation, skewing and elastic distortion. By using the cosine function, the original patterns were left-justified, right-justified, top-justified, or bottom-justified. Patterns were also center-justified and enlarged. Test error rate is decreased by 0.435 percentage points from 16.055% by augmentation with cosine transformation. Error rates are increased by other augmentation method such as rotation, skewing and elastic distortion, compared without augmentation. Number of augmented data is 30 times that of the original STL-10 5K training samples. Experimental test error rate for the test 8k STL-10 object images was 15.620%, which shows that image augmentation is effective for image category classification.

  15. Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves

    DOEpatents

    Vincent, Paul

    2005-06-28

    A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.

  16. Power strain imaging based on vibro-elastography techniques

    NASA Astrophysics Data System (ADS)

    Wen, Xu; Salcudean, S. E.

    2007-03-01

    This paper describes a new ultrasound elastography technique, power strain imaging, based on vibro-elastography (VE) techniques. With this method, tissue is compressed by a vibrating actuator driven by low-pass or band-pass filtered white noise, typically in the 0-20 Hz range. Tissue displacements at different spatial locations are estimated by correlation-based approaches on the raw ultrasound radio frequency signals and recorded in time sequences. The power spectra of these time sequences are computed by Fourier spectral analysis techniques. As the average of the power spectrum is proportional to the squared amplitude of the tissue motion, the square root of the average power over the range of excitation frequencies is used as a measure of the tissue displacement. Then tissue strain is determined by the least squares estimation of the gradient of the displacement field. The computation of the power spectra of the time sequences can be implemented efficiently by using Welch's periodogram method with moving windows or with accumulative windows with a forgetting factor. Compared to the transfer function estimation originally used in VE, the computation of cross spectral densities is not needed, which saves both the memory and computational times. Phantom experiments demonstrate that the proposed method produces stable and operator-independent strain images with high signal-to-noise ratio in real time. This approach has been also tested on a few patient data of the prostate region, and the results are encouraging.

  17. Statistical image-domain multimaterial decomposition for dual-energy CT.

    PubMed

    Xue, Yi; Ruan, Ruoshui; Hu, Xiuhua; Kuang, Yu; Wang, Jing; Long, Yong; Niu, Tianye

    2017-03-01

    Dual-energy CT (DECT) enhances tissue characterization because of its basis material decomposition capability. In addition to conventional two-material decomposition from DECT measurements, multimaterial decomposition (MMD) is required in many clinical applications. To solve the ill-posed problem of reconstructing multi-material images from dual-energy measurements, additional constraints are incorporated into the formulation, including volume and mass conservation and the assumptions that there are at most three materials in each pixel and various material types among pixels. The recently proposed flexible image-domain MMD method decomposes pixels sequentially into multiple basis materials using a direct inversion scheme which leads to magnified noise in the material images. In this paper, we propose a statistical image-domain MMD method for DECT to suppress the noise. The proposed method applies penalized weighted least-square (PWLS) reconstruction with a negative log-likelihood term and edge-preserving regularization for each material. The statistical weight is determined by a data-based method accounting for the noise variance of high- and low-energy CT images. We apply the optimization transfer principles to design a serial of pixel-wise separable quadratic surrogates (PWSQS) functions which monotonically decrease the cost function. The separability in each pixel enables the simultaneous update of all pixels. The proposed method is evaluated on a digital phantom, Catphan©600 phantom and three patients (pelvis, head, and thigh). We also implement the direct inversion and low-pass filtration methods for a comparison purpose. Compared with the direct inversion method, the proposed method reduces noise standard deviation (STD) in soft tissue by 95.35% in the digital phantom study, by 88.01% in the Catphan©600 phantom study, by 92.45% in the pelvis patient study, by 60.21% in the head patient study, and by 81.22% in the thigh patient study, respectively. The overall volume fraction accuracy is improved by around 6.85%. Compared with the low-pass filtration method, the root-mean-square percentage error (RMSE(%)) of electron densities in the Catphan©600 phantom is decreased by 20.89%. As modulation transfer function (MTF) magnitude decreased to 50%, the proposed method increases the spatial resolution by an overall factor of 1.64 on the digital phantom, and 2.16 on the Catphan©600 phantom. The overall volume fraction accuracy is increased by 6.15%. We proposed a statistical image-domain MMD method using DECT measurements. The method successfully suppresses the magnified noise while faithfully retaining the quantification accuracy and anatomical structure in the decomposed material images. The proposed method is practical and promising for advanced clinical applications using DECT imaging. © 2017 American Association of Physicists in Medicine.

  18. Optical performance of the SO/PHI full disk telescope due to temperature gradients effect on the heat rejection entrance window

    NASA Astrophysics Data System (ADS)

    Garranzo, D.; Núñez, A.; Zuluaga-Ramírez, P.; Barandiarán, J.; Fernández-Medina, A.; Belenguer, T.; Álvarez-Herrero, A.

    2017-11-01

    The Polarimetric Helioseismic Imager for Solar Orbiter (SO/PHI) is an instrument on board in the Solar Orbiter mission. The Full Disk Telescope (FDT) will have the capability of providing images of the solar disk in all orbital faces with an image quality diffraction-limited. The Heat Rejection Entrance Window (HREW) is the first optical element of the instrument. Its function is to protect the instrument by filtering most of the Solar Spectrum radiation. The HREW consists of two parallel-plane plates made from Suprasil and each surface has a coating with a different function: an UV shield coating, a low pass band filter coating, a high pass band filter coating and an IR shield coating, respectively. The temperature gradient on the HREW during the mission produces a distortion of the transmitted wave-front due to the dependence of the refractive index with the temperature (thermo-optic effect) mainly. The purpose of this work is to determine the capability of the PHI/FDT refocusing system to compensate this distortion. A thermal gradient profile has been considered for each surface of the plates and a thermal-elastic analysis has been done by Finite Element Analysis to determine the deformation of the optical elements. The Optical Path Difference (OPD) between the incident and transmitted wavefronts has been calculated as a function of the ray tracing and the thermo-optic effect on the optical properties of Suprasil (at the work wavelength of PHI) by means of mathematical algorithms based on the 3D Snell Law. The resultant wavefronts have been introduced in the optical design of the FDT to evaluate the performance degradation of the image at the scientific focal plane and to estimate the capability of the PHI refocusing system for maintaining the image quality diffraction-limited. The analysis has been carried out considering two different situations: thermal gradients due to on axis attitude of the instrument and thermal gradients due to 1° off pointing attitude. The effect over the boresight at the instrument focal plane has also been analyzed. The results show that the effect of the FDT HREW thermal gradients on the FDT performance can be optically corrected. The influence of the thermal gradients on the system is also presented.

  19. Laser Line Scan System for UXO Characterization

    DTIC Science & Technology

    2012-04-01

    they geometrically rectified. The Year 2 survey collected LLSS images from seven passes over two separate calibration strings and six passes over two...Microsoft DOS-based software tool. According to the side- by-side comparisons shown in Figure 9, the morphometrics were relatively equal between...survey. Note: The imagery in this figure is not presented at full resolution nor geometrically rectified. LLSS Targets, Pass One 1. Danforth

  20. Multi-pass transmission electron microscopy

    DOE PAGES

    Juffmann, Thomas; Koppell, Stewart A.; Klopfer, Brannon B.; ...

    2017-05-10

    Feynman once asked physicists to build better electron microscopes to be able to watch biology at work. While electron microscopes can now provide atomic resolution, electron beam induced specimen damage precludes high resolution imaging of sensitive materials, such as single proteins or polymers. Here, we use simulations to show that an electron microscope based on a multi-pass measurement protocol enables imaging of single proteins, without averaging structures over multiple images. While we demonstrate the method for particular imaging targets, the approach is broadly applicable and is expected to improve resolution and sensitivity for a range of electron microscopy imaging modalities,more » including, for example, scanning and spectroscopic techniques. The approach implements a quantum mechanically optimal strategy which under idealized conditions can be considered interaction-free.« less

  1. Segmentation of the Canine Corpus Callosum using Diffusion Tensor Imaging Tractography

    PubMed Central

    Pierce, T.T.; Calabrese, E.; White, L.E.; Chen, S.D.; Platt, S.R.; Provenzale, J.M.

    2014-01-01

    Background We set out to determine functional white matter (WM) connections passing through the canine corpus callosum useful for subsequent studies of canine brains that serve as models for human WM pathway disease. Based on prior studies, we anticipated that the anterior corpus callosum would send projections to the anterior cerebral cortex while progressively posterior segments would send projections to more posterior cortex. Methods A post mortem canine brain was imaged using a 7T MRI producing 100 micron isotropic resolution DTI analyzed by tractography. Using ROIs within cortical locations, which were confirmed by a Nissl stain that identified distinct cortical architecture, we successfully identified 6 important WM pathways. We also compared fractional anisotropy (FA), apparent diffusion coefficient (ADC), radial diffusivity (RD), and axial diffusivity (AD) in tracts passing through the genu and splenium. Results Callosal fibers were organized based upon cortical destination, i.e. fibers from the genu project to the frontal cortex. Histologic results identified the motor cortex based on cytoarchitectonic criteria that allowed placement of ROIs to discriminate between frontal and parietal lobes. We also identified cytoarchitecture typical of the orbital frontal, anterior frontal, and occipital regions and placed ROIs accordingly. FA, ADC, RD and AD values were all higher in posterior corpus callosum fiber tracts. Conclusions Using 6 cortical ROIs, we identified 6 major white matter tracts that reflect major functional divisions of the cerebral hemispheres and we derived quantitative values that can be used for study of canine models of human WM pathological states. PMID:24370161

  2. Comparison of the sensitivity and specificity of 5 image sets of dual-energy computed tomography for detecting first-pass myocardial perfusion defects compared with positron emission tomography.

    PubMed

    Li, Wenhuan; Zhu, Xiaolian; Li, Jing; Peng, Cheng; Chen, Nan; Qi, Zhigang; Yang, Qi; Gao, Yan; Zhao, Yang; Sun, Kai; Li, Kuncheng

    2014-12-01

    The sensitivity and specificity of 5 different image sets of dual-energy computed tomography (DECT) for the detection of first-pass myocardial perfusion defects have not systematically been compared using positron emission tomography (PET) as a reference standard. Forty-nine consecutive patients, with known or strongly suspected of coronary artery disease, were prospectively enrolled in our study. Cardiac DECT was performed at rest state using a second-generation 128-slice dual-source CT. The DECT data were reconstructed to iodine maps, monoenergetic images, 100 kV images, nonlinearly blended images, and linearly blended images by different postprocessing techniques. The myocardial perfusion defects on DECT images were visually assessed by 5 observers, using standard 17-segment model. Diagnostic accuracy of 5 image sets was assessed using nitrogen-13 ammonia PET as the gold standard. Discrimination was quantified using the area under the receiver operating characteristic curve (AUC), and AUCs were compared using the method of DeLong. The DECT and PET examinations were successfully completed in 30 patients and a total of 90 territories and 510 segments were analyzed. Cardiac PET revealed myocardial perfusion defects in 56 territories (62%) and 209 segments (41%). The AUC of iodine maps, monoenergetic images, 100 kV images, nonlinearly blended images, and linearly blended images were 0.986, 0.934, 0.913, 0.881, and 0.871, respectively, on a per-territory basis. These values were 0.922, 0.813, 0.779, 0.763, and 0.728, respectively, on a per-segment basis. DECT iodine maps shows high sensitivity and specificity, and is superior to other DECT image sets for the detection of myocardial perfusion defects in the first-pass myocardial perfusion.

  3. Analytic solutions to modelling exponential and harmonic functions using Chebyshev polynomials: fitting frequency-domain lifetime images with photobleaching.

    PubMed

    Malachowski, George C; Clegg, Robert M; Redford, Glen I

    2007-12-01

    A novel approach is introduced for modelling linear dynamic systems composed of exponentials and harmonics. The method improves the speed of current numerical techniques up to 1000-fold for problems that have solutions of multiple exponentials plus harmonics and decaying components. Such signals are common in fluorescence microscopy experiments. Selective constraints of the parameters being fitted are allowed. This method, using discrete Chebyshev transforms, will correctly fit large volumes of data using a noniterative, single-pass routine that is fast enough to analyse images in real time. The method is applied to fluorescence lifetime imaging data in the frequency domain with varying degrees of photobleaching over the time of total data acquisition. The accuracy of the Chebyshev method is compared to a simple rapid discrete Fourier transform (equivalent to least-squares fitting) that does not take the photobleaching into account. The method can be extended to other linear systems composed of different functions. Simulations are performed and applications are described showing the utility of the method, in particular in the area of fluorescence microscopy.

  4. Three-pass protocol scheme for bitmap image security by using vernam cipher algorithm

    NASA Astrophysics Data System (ADS)

    Rachmawati, D.; Budiman, M. A.; Aulya, L.

    2018-02-01

    Confidentiality, integrity, and efficiency are the crucial aspects of data security. Among the other digital data, image data is too prone to abuse of operation like duplication, modification, etc. There are some data security techniques, one of them is cryptography. The security of Vernam Cipher cryptography algorithm is very dependent on the key exchange process. If the key is leaked, security of this algorithm will collapse. Therefore, a method that minimizes key leakage during the exchange of messages is required. The method which is used, is known as Three-Pass Protocol. This protocol enables message delivery process without the key exchange. Therefore, the sending messages process can reach the receiver safely without fear of key leakage. The system is built by using Java programming language. The materials which are used for system testing are image in size 200×200 pixel, 300×300 pixel, 500×500 pixel, 800×800 pixel and 1000×1000 pixel. The result of experiments showed that Vernam Cipher algorithm in Three-Pass Protocol scheme could restore the original image.

  5. Dynamics Explorer guest investigator

    NASA Technical Reports Server (NTRS)

    Sojka, Jan J.

    1991-01-01

    A data base of satellite particle, electric field, image, and plasma data was used to determine correlations between the fields and the particle auroral boundaries. A data base of 8 days of excellent coverage from all instruments was completed. The geomagnetic conditions associated with each of the selected data periods, the number of UV image passes per study day that were obtained, and the total number of UV images for each day are given in tabular form. For each of the days listed in Table 1, both Vector Electric Field Instrument (VEFI) electric potential data and LAPI integrated particle energy fluxes were obtained. On the average, between 8 and 11 passes of useful data per day were obtained. These data are displayed in a format such that either the statistical electric field model potential or the statistical precipitation energy flux could be superimposed. The Heppner and Maynard (1987) and Hardy et al. (1987) models were used for the electric potential and precipitation, respectively. In addition, the auroral image intensity along the Dynamics Explorer-2 satellite pass could be computed and plotted along with the LAPI precipitation data and Hardy et al. (1987) values.

  6. Fractal analysis of the ischemic transition region in chronic ischemic heart disease using magnetic resonance imaging.

    PubMed

    Michallek, Florian; Dewey, Marc

    2017-04-01

    To introduce a novel hypothesis and method to characterise pathomechanisms underlying myocardial ischemia in chronic ischemic heart disease by local fractal analysis (FA) of the ischemic myocardial transition region in perfusion imaging. Vascular mechanisms to compensate ischemia are regulated at various vascular scales with their superimposed perfusion pattern being hypothetically self-similar. Dedicated FA software ("FraktalWandler") has been developed. Fractal dimensions during first-pass (FD first-pass ) and recirculation (FD recirculation ) are hypothesised to indicate the predominating pathomechanism and ischemic severity, respectively. Twenty-six patients with evidence of myocardial ischemia in 108 ischemic myocardial segments on magnetic resonance imaging (MRI) were analysed. The 40th and 60th percentiles of FD first-pass were used for pathomechanical classification, assigning lesions with FD first-pass  ≤ 2.335 to predominating coronary microvascular dysfunction (CMD) and ≥2.387 to predominating coronary artery disease (CAD). Optimal classification point in ROC analysis was FD first-pass  = 2.358. FD recirculation correlated moderately with per cent diameter stenosis in invasive coronary angiography in lesions classified CAD (r = 0.472, p = 0.001) but not CMD (r = 0.082, p = 0.600). The ischemic transition region may provide information on pathomechanical composition and severity of myocardial ischemia. FA of this region is feasible and may improve diagnosis compared to traditional noninvasive myocardial perfusion analysis. • A novel hypothesis and method is introduced to pathophysiologically characterise myocardial ischemia. • The ischemic transition region appears a meaningful diagnostic target in perfusion imaging. • Fractal analysis may characterise pathomechanical composition and severity of myocardial ischemia.

  7. Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hua; Noel, Camille; Chen, Haijian

    Purpose: Severe artifacts in kilovoltage-CT simulation images caused by large metallic implants can significantly degrade the conspicuity and apparent CT Hounsfield number of targets and anatomic structures, jeopardize the confidence of anatomical segmentation, and introduce inaccuracies into the radiation therapy treatment planning process. This study evaluated the performance of the first commercial orthopedic metal artifact reduction function (O-MAR) for radiation therapy, and investigated its clinical applications in treatment planning. Methods: Both phantom and clinical data were used for the evaluation. The CIRS electron density phantom with known physical (and electron) density plugs and removable titanium implants was scanned on amore » Philips Brilliance Big Bore 16-slice CT simulator. The CT Hounsfield numbers of density plugs on both uncorrected and O-MAR corrected images were compared. Treatment planning accuracy was evaluated by comparing simulated dose distributions computed using the true density images, uncorrected images, and O-MAR corrected images. Ten CT image sets of patients with large hip implants were processed with the O-MAR function and evaluated by two radiation oncologists using a five-point score for overall image quality, anatomical conspicuity, and CT Hounsfield number accuracy. By utilizing the same structure contours delineated from the O-MAR corrected images, clinical IMRT treatment plans for five patients were computed on the uncorrected and O-MAR corrected images, respectively, and compared. Results: Results of the phantom study indicated that CT Hounsfield number accuracy and noise were improved on the O-MAR corrected images, especially for images with bilateral metal implants. The {gamma} pass rates of the simulated dose distributions computed on the uncorrected and O-MAR corrected images referenced to those of the true densities were higher than 99.9% (even when using 1% and 3 mm distance-to-agreement criterion), suggesting that dose distributions were clinically identical. In all patient cases, radiation oncologists rated O-MAR corrected images as higher quality. Formerly obscured critical structures were able to be visualized. The overall image quality and the conspicuity in critical organs were significantly improved compared with the uncorrected images: overall quality score (1.35 vs 3.25, P= 0.0022); bladder (2.15 vs 3.7, P= 0.0023); prostate and seminal vesicles/vagina (1.3 vs 3.275, P= 0.0020); rectum (2.8 vs 3.9, P= 0.0021). The noise levels of the selected ROIs were reduced from 93.7 to 38.2 HU. On most cases (8/10), the average CT Hounsfield numbers of the prostate/vagina on the O-MAR corrected images were closer to the referenced value (41.2 HU, an average measured from patients without metal implants) than those on the uncorrected images. High {gamma} pass rates of the five IMRT dose distribution pairs indicated that the dose distributions were not significantly affected by the CT image improvements. Conclusions: Overall, this study indicated that the O-MAR function can remarkably reduce metal artifacts and improve both CT Hounsfield number accuracy and target and critical structure visualization. Although there was no significant impact of the O-MAR algorithm on the calculated dose distributions, we suggest that O-MAR corrected images are more suitable for the entire treatment planning process by offering better anatomical structure visualization, improving radiation oncologists' confidence in target delineation, and by avoiding subjective density overrides of artifact regions on uncorrected images.« less

  8. Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy

    PubMed Central

    Li, Hua; Noel, Camille; Chen, Haijian; Harold Li, H.; Low, Daniel; Moore, Kevin; Klahr, Paul; Michalski, Jeff; Gay, Hiram A.; Thorstad, Wade; Mutic, Sasa

    2012-01-01

    Purpose: Severe artifacts in kilovoltage-CT simulation images caused by large metallic implants can significantly degrade the conspicuity and apparent CT Hounsfield number of targets and anatomic structures, jeopardize the confidence of anatomical segmentation, and introduce inaccuracies into the radiation therapy treatment planning process. This study evaluated the performance of the first commercial orthopedic metal artifact reduction function (O-MAR) for radiation therapy, and investigated its clinical applications in treatment planning. Methods: Both phantom and clinical data were used for the evaluation. The CIRS electron density phantom with known physical (and electron) density plugs and removable titanium implants was scanned on a Philips Brilliance Big Bore 16-slice CT simulator. The CT Hounsfield numbers of density plugs on both uncorrected and O-MAR corrected images were compared. Treatment planning accuracy was evaluated by comparing simulated dose distributions computed using the true density images, uncorrected images, and O-MAR corrected images. Ten CT image sets of patients with large hip implants were processed with the O-MAR function and evaluated by two radiation oncologists using a five-point score for overall image quality, anatomical conspicuity, and CT Hounsfield number accuracy. By utilizing the same structure contours delineated from the O-MAR corrected images, clinical IMRT treatment plans for five patients were computed on the uncorrected and O-MAR corrected images, respectively, and compared. Results: Results of the phantom study indicated that CT Hounsfield number accuracy and noise were improved on the O-MAR corrected images, especially for images with bilateral metal implants. The γ pass rates of the simulated dose distributions computed on the uncorrected and O-MAR corrected images referenced to those of the true densities were higher than 99.9% (even when using 1% and 3 mm distance-to-agreement criterion), suggesting that dose distributions were clinically identical. In all patient cases, radiation oncologists rated O-MAR corrected images as higher quality. Formerly obscured critical structures were able to be visualized. The overall image quality and the conspicuity in critical organs were significantly improved compared with the uncorrected images: overall quality score (1.35 vs 3.25, P = 0.0022); bladder (2.15 vs 3.7, P = 0.0023); prostate and seminal vesicles/vagina (1.3 vs 3.275, P = 0.0020); rectum (2.8 vs 3.9, P = 0.0021). The noise levels of the selected ROIs were reduced from 93.7 to 38.2 HU. On most cases (8/10), the average CT Hounsfield numbers of the prostate/vagina on the O-MAR corrected images were closer to the referenced value (41.2 HU, an average measured from patients without metal implants) than those on the uncorrected images. High γ pass rates of the five IMRT dose distribution pairs indicated that the dose distributions were not significantly affected by the CT image improvements. Conclusions: Overall, this study indicated that the O-MAR function can remarkably reduce metal artifacts and improve both CT Hounsfield number accuracy and target and critical structure visualization. Although there was no significant impact of the O-MAR algorithm on the calculated dose distributions, we suggest that O-MAR corrected images are more suitable for the entire treatment planning process by offering better anatomical structure visualization, improving radiation oncologists’ confidence in target delineation, and by avoiding subjective density overrides of artifact regions on uncorrected images. PMID:23231300

  9. Dynamic MTF, an innovative test bench for detector characterization

    NASA Astrophysics Data System (ADS)

    Emmanuel, Rossi; Raphaël, Lardière; Delmonte, Stephane

    2017-11-01

    PLEIADES HR are High Resolution satellites for Earth observation. Placed at 695km they reach a 0.7m spatial resolution. To allow such performances, the detectors are working in a TDI mode (Time and Delay Integration) which consists in a continuous charge transfer from one line to the consecutive one while the image is passing on the detector. The spatial resolution, one of the most important parameter to test, is characterized by the MTF (Modulation Transfer Function). Usually, detectors are tested in a staring mode. For a higher level of performances assessment, a dedicated bench has been set-up, allowing detectors' MTF characterization in the TDI mode. Accuracy and reproducibility are impressive, opening the door to new perspectives in term of HR imaging systems testing.

  10. Optimal frequency domain textural edge detection filter

    NASA Technical Reports Server (NTRS)

    Townsend, J. K.; Shanmugan, K. S.; Frost, V. S.

    1985-01-01

    An optimal frequency domain textural edge detection filter is developed and its performance evaluated. For the given model and filter bandwidth, the filter maximizes the amount of output image energy placed within a specified resolution interval centered on the textural edge. Filter derivation is based on relating textural edge detection to tonal edge detection via the complex low-pass equivalent representation of narrowband bandpass signals and systems. The filter is specified in terms of the prolate spheroidal wave functions translated in frequency. Performance is evaluated using the asymptotic approximation version of the filter. This evaluation demonstrates satisfactory filter performance for ideal and nonideal textures. In addition, the filter can be adjusted to detect textural edges in noisy images at the expense of edge resolution.

  11. Per-point and per-field contextual classification of multipolarization and multiple incidence angle aircraft L-band radar data

    NASA Technical Reports Server (NTRS)

    Hoffer, Roger M.; Hussin, Yousif Ali

    1989-01-01

    Multipolarized aircraft L-band radar data are classified using two different image classification algorithms: (1) a per-point classifier, and (2) a contextual, or per-field, classifier. Due to the distinct variations in radar backscatter as a function of incidence angle, the data are stratified into three incidence-angle groupings, and training and test data are defined for each stratum. A low-pass digital mean filter with varied window size (i.e., 3x3, 5x5, and 7x7 pixels) is applied to the data prior to the classification. A predominately forested area in northern Florida was the study site. The results obtained by using these image classifiers are then presented and discussed.

  12. Frequency-Domain Characterization of Optic Flow and Vision-Based Ocellar Sensing for Rotational Motion

    DTIC Science & Technology

    2017-04-01

    complementary fusion: Fourth-order Butterworth filter was used to high -pass ocelli and low-pass optic flow. The normalized cutoff frequency had to be kept...information introduced by luminance change. The high - frequency cutoff was added to reject the flickering noise for indoor usage. The filtered signals from the...function of the low- pass filter is to attenuate high - frequency noise. The final band-pass filter transfer function is in Eq. 2. (()

  13. Markerless positional verification using template matching and triangulation of kV images acquired during irradiation for lung tumors treated in breath-hold

    NASA Astrophysics Data System (ADS)

    Hazelaar, Colien; Dahele, Max; Mostafavi, Hassan; van der Weide, Lineke; Slotman, Ben; Verbakel, Wilko

    2018-06-01

    Lung tumors treated in breath-hold are subject to inter- and intra-breath-hold variations, which makes tumor position monitoring during each breath-hold important. A markerless technique is desirable, but limited tumor visibility on kV images makes this challenging. We evaluated if template matching  +  triangulation of kV projection images acquired during breath-hold stereotactic treatments could determine 3D tumor position. Band-pass filtering and/or digital tomosynthesis (DTS) were used as image pre-filtering/enhancement techniques. On-board kV images continuously acquired during volumetric modulated arc irradiation of (i) a 3D-printed anthropomorphic thorax phantom with three lung tumors (n  =  6 stationary datasets, n  =  2 gradually moving), and (ii) four patients (13 datasets) were analyzed. 2D reference templates (filtered DRRs) were created from planning CT data. Normalized cross-correlation was used for 2D matching between templates and pre-filtered/enhanced kV images. For 3D verification, each registration was triangulated with multiple previous registrations. Generally applicable image processing/algorithm settings for lung tumors in breath-hold were identified. For the stationary phantom, the interquartile range of the 3D position vector was on average 0.25 mm for 12° DTS  +  band-pass filtering (average detected positions in 2D  =  99.7%, 3D  =  96.1%, and 3D excluding first 12° due to triangulation angle  =  99.9%) compared to 0.81 mm for band-pass filtering only (55.8/52.9/55.0%). For the moving phantom, RMS errors for the lateral/longitudinal/vertical direction after 12° DTS  +  band-pass filtering were 1.5/0.4/1.1 mm and 2.2/0.3/3.2 mm. For the clinical data, 2D position was determined for at least 93% of each dataset and 3D position excluding first 12° for at least 82% of each dataset using 12° DTS  +  band-pass filtering. Template matching  +  triangulation using DTS  +  band-pass filtered images could accurately determine the position of stationary lung tumors. However, triangulation was less accurate/reliable for targets with continuous, gradual displacement in the lateral and vertical directions. This technique is therefore currently most suited to detect/monitor offsets occurring between initial setup and the start of treatment, inter-breath-hold variations, and tumors with predominantly longitudinal motion.

  14. Computer-Based Algorithmic Determination of Muscle Movement Onset Using M-Mode Ultrasonography

    DTIC Science & Technology

    2017-05-01

    contraction images were analyzed visually and with three different classes of algorithms: pixel standard deviation (SD), high-pass filter and Teager Kaiser...Linear relationships and agreements between computed and visual muscle onset were calculated. The top algorithms were high-pass filtered with a 30 Hz...suggest that computer automated determination using high-pass filtering is a potential objective alternative to visual determination in human

  15. Passive millimeter-wave imaging for concealed article detection

    NASA Astrophysics Data System (ADS)

    Lovberg, John A.; Galliano, Joseph A., Jr.; Clark, Stuart E.

    1997-02-01

    Passive-millimeter-wave imaging (PMI) provides a powerful sensing tool for law enforcement, allowing an unobtrusive means for detecting concealed weapons, explosives, or contraband on persons or in baggage. Natural thermal emissions at millimeter wavelengths from bodies, guns, explosives, and other articles pass easily through clothing or other concealment materials, where they can be detected and converted into conventional 2-dimensional images. A new implementation of PMI has demonstrated a large-area, near- real-time staring capability for personnel inspection at standoff ranges of greater than 10 meters. In this form, PMI does not require operator cuing based on subjective 'profiles' of suspicious appearance or behaviors, which may otherwise be construed as violations of civil rights. To the contrary, PMI detects and images heat generated by any object with no predisposition as to its nature or function (e.g. race or gender of humans). As a totally passive imaging tool, it generates no radio-frequency or other radiation which might raise public health concerns. Specifics of the new PMI architecture are presented along with a host of imaging data representing the current state- of-the-art.

  16. Functional photoacoustic tomography for neonatal brain imaging: developments and challenges

    NASA Astrophysics Data System (ADS)

    Hariri, Ali; Tavakoli, Emytis; Adabi, Saba; Gelovani, Juri; Avanaki, Mohammad R. N.

    2017-03-01

    Transfontanelle ultrasound imaging (TFUSI) is a routine diagnostic brain imaging method in infants who are born prematurely, whose skull bones have not completely fused together and have openings between them, so-called fontanelles. Open fontanelles in neonates provide acoustic windows, allowing the ultrasound beam to freely pass through. TFUSI is used to rule out neurological complications of premature birth including subarachnoid hemorrhage (SAH), intraventricular (IVH), subependimal (SEPH), subdural (SDH) or intracerebral (ICH) hemorrhages, as well as hypoxic brain injuries. TFUSI is widely used in the clinic owing to its low cost, safety, accessibility, and noninvasive nature. Nevertheless, the accuracy of TFUSI is limited. To address several limitations of current clinical imaging modalities, we develop a novel transfontanelle photoacoustic imaging (TFPAI) probe, which, for the first time, should allow for non-invasive structural and functional imaging of the infant brain. In this study, we test the feasibility of TFPAI for detection of experimentally-induced intra ventricular and Intraparenchymal hemorrhage phantoms in a sheep model with a surgically-induced cranial window which will serve as a model of neonatal fontanelle. This study is towards using the probe we develop for bedside monitoring of neonates with various disease conditions and complications affecting brain perfusion and oxygenation, including apnea, asphyxia, as well as for detection of various types of intracranial hemorrhages (SAH, IVH, SEPH, SDH, ICH).

  17. Juno Post-arrival View

    NASA Image and Video Library

    2016-07-12

    This color view from NASA's Juno spacecraft is made from some of the first images taken by JunoCam after the spacecraft entered orbit around Jupiter on July 5th (UTC). The view shows that JunoCam survived its first pass through Jupiter's extreme radiation environment, and is ready to collect images of the giant planet as Juno begins its mission. The image was taken on July 10, 2016 at 5:30 UTC, when the spacecraft was 2.7 million miles (4.3 million kilometers) from Jupiter on the outbound leg of its initial 53.5-day capture orbit. The image shows atmospheric features on Jupiter, including the Great Red Spot, and three of Jupiter's four largest moons. JunoCam will continue to image Jupiter during Juno's capture orbits. The first high-resolution images of the planet will be taken on August 27 when the Juno spacecraft makes its next close pass to Jupiter. http://photojournal.jpl.nasa.gov/catalog/PIA20707

  18. Laser imaging for clinical applications

    NASA Astrophysics Data System (ADS)

    Van Houten, John P.; Cheong, Wai-Fung; Kermit, Eben L.; King, Richard A.; Spilman, Stanley D.; Benaron, David A.

    1995-03-01

    Medical optical imaging (MOI) uses light emitted into opaque tissues in order to determine the interior structure and chemical content. These optical techniques have been developed in an attempt to prospectively identify impending brain injuries before they become irreversible, thus allowing injury to be avoided or minimized. Optical imaging and spectroscopy center around the simple idea that light passes through the body in small amounts, and emerges bearing clues about tissues through which it passed. Images can be reconstructed from such data, and this is the basis of optical tomography. Over the past few years, techniques have been developed to allow construction of images from such optical data at the bedside. We have used a time-of-flight system reported earlier to monitor oxygenation and image hemorrhage in neonatal brain. This article summarizes the problems that we believe can be addressed by such techniques, and reports on some of our early results.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Yousef W., E-mail: yujwni01@heh.regionh.d; Eiberg, Jonas P.; Logager, Vibeke B.

    The purpose of this investigation was to determine if addition of infragenicular steady-state (SS) magnetic resonance angiography (MRA) to first-pass imaging improves diagnostic performance compared with first-pass imaging alone in patients with peripheral arterial disease (PAD) undergoing whole-body (WB) MRA. Twenty consecutive patients with PAD referred to digital-subtraction angiography (DSA) underwent WB-MRA. Using a bolus-chase technique, first-pass WB-MRA was performed from the supra-aortic vessels to the ankles. The blood-pool contrast agent gadofosveset trisodium was used at a dose of 0.03 mmol/kg body weight. Ten minutes after injection of the contrast agent, high-resolution (0.7-mm isotropic voxels) SS-MRA of the infragenicular arteriesmore » was performed. Using DSA as the 'gold standard,' sensitivities and specificities for detecting significant arterial stenoses ({>=}50% luminal narrowing) with first-pass WB-MRA, SS-MRA, and combined first-pass and SS-MRA were calculated. Kappa statistics were used to determine intermodality agreement between MRA and DSA. Overall sensitivity and specificity for detecting significant arterial stenoses with first-pass WB-MRA was 0.70 (95% confidence interval 0.61 to 0.78) and 0.97 (0.94 to 0.99), respectively. In first-pass WB-MRA, the lowest sensitivity was in the infragenicular region, with a value of 0.42 (0.23 to 0.63). Combined analysis of first-pass WB-MRA and SS-MRA increased sensitivity to 0.81 (0.60 to 0.93) in the infragenicular region, with specificity of 0.94 (0.88 to 0.97). Sensitivity and specificity for detecting significant arterial stenoses with isolated infragenicular SS-MRA was 0.47 (0.27 to 0.69) and 0.86 (0.78 to 0.91), respectively. Intermodality agreement between MRA and DSA in the infragenicular region was moderate for first-pass WB-MRA ({kappa} = 0.49), fair for SS-MRA ({kappa} = 0.31), and good for combined first-pass/SS-MRA ({kappa} = 0.71). Addition of infragenicular SS-MRA to first-pass WB MRA improves diagnostic performance.« less

  20. Expertise and decision-making in American football

    PubMed Central

    Woods, Adam J.; Kranjec, Alexander; Lehet, Matt; Chatterjee, Anjan

    2015-01-01

    In American football, pass interference calls can be difficult to make, especially when the timing of contact between players is ambiguous. American football history contains many examples of controversial pass interference decisions, often with fans, players, and officials interpreting the same event differently. The current study sought to evaluate the influence of experience with concepts important for officiating decisions in American football on the probability (i.e., response criteria) of pass interference calls. We further investigated the extent to which such experience modulates perceptual biases that might influence the interpretation of such events. We hypothesized that observers with less experience with the American football concepts important for pass interference would make progressively more pass interference calls than more experienced observers, even when given an explicit description of the necessary criteria for a pass interference call. In a go/no-go experiment using photographs from American football games, three groups of participants with different levels of experience with American football (Football Naïve, Football Player, and Football Official) made pass interference calls for pictures depicting left-moving and right-moving events. More experience was associated with progressively and significantly fewer pass interference calls [F(2,48) = 10.4, p < 0.001], with Football Naïve participants making the most pass interference calls, and Football Officials the least. In addition, our data replicated a prior finding of spatial biases for interpreting left-moving images more harshly than identical right-moving images, but only in Football Players. These data suggest that experience with the concepts important for making a decision may influence the rate of decision-making, and may also play a role in susceptibility to spatial biases. PMID:26217294

  1. Expertise and decision-making in American football.

    PubMed

    Woods, Adam J; Kranjec, Alexander; Lehet, Matt; Chatterjee, Anjan

    2015-01-01

    In American football, pass interference calls can be difficult to make, especially when the timing of contact between players is ambiguous. American football history contains many examples of controversial pass interference decisions, often with fans, players, and officials interpreting the same event differently. The current study sought to evaluate the influence of experience with concepts important for officiating decisions in American football on the probability (i.e., response criteria) of pass interference calls. We further investigated the extent to which such experience modulates perceptual biases that might influence the interpretation of such events. We hypothesized that observers with less experience with the American football concepts important for pass interference would make progressively more pass interference calls than more experienced observers, even when given an explicit description of the necessary criteria for a pass interference call. In a go/no-go experiment using photographs from American football games, three groups of participants with different levels of experience with American football (Football Naïve, Football Player, and Football Official) made pass interference calls for pictures depicting left-moving and right-moving events. More experience was associated with progressively and significantly fewer pass interference calls [F (2,48) = 10.4, p < 0.001], with Football Naïve participants making the most pass interference calls, and Football Officials the least. In addition, our data replicated a prior finding of spatial biases for interpreting left-moving images more harshly than identical right-moving images, but only in Football Players. These data suggest that experience with the concepts important for making a decision may influence the rate of decision-making, and may also play a role in susceptibility to spatial biases.

  2. Fast image processing with a microcomputer applied to speckle photography

    NASA Astrophysics Data System (ADS)

    Erbeck, R.

    1985-11-01

    An automated image recognition system is described for speckle photography investigations in fluid dynamics. The system is employed for characterizing the pattern of interference fringes obtained using speckle interferometry. A rotating ground glass serves as a screen on which laser light passing through a specklegraph plate, the flow and a compensation plate (CP) is shone to produce a compensated Young's pattern. The image produced on the ground glass is photographed by a video camera whose signal is digitized and processed through a microcomputer using a 6502 CPU chip. The normalized correlation function of the intensity is calculated in two directions of the recorded pattern to obtain the wavelength and the light deflection angle. The system has a capability of one picture every two seconds. Sample data are provided for a free jet of CO2 issuing into air in both laminar and turbulent form.

  3. Functional imaging and the cerebellum: recent developments and challenges. Editorial.

    PubMed

    Habas, Christophe

    2012-06-01

    Recent neuroimaging developments allow a better in vivo characterization of the structural and functional connectivity of the human cerebellum. Ultrahigh fields, which considerably increase spatial resolution, enable to visualize deep cerebellar nuclei and cerebello-cortical sublayers. Tractography reconstructs afferent and efferent pathway of the cerebellum. Resting-state functional connectivity individualizes the prewired, parallel close-looped sensorimotor, cognitive, and affective networks passing through the cerebellum. These results are un agreement with activation maps obtained during stimulation functional neuroimaging or inferred from neurological deficits due to cerebellar lesions. Therefore, neuroimaging supports the hypothesis that cerebellum constitutes a general modulator involved in optimizing mental performance and computing internal models. However, the great challenges will remain to unravel: (1) the functional role of red and bulbar olivary nuclei, (2) the information processing in the cerebellar microcircuitry, and (3) the abstract computation performed by the cerebellum and shared by sensorimotor, cognitive, and affective domains.

  4. [Assessment of myocardial perfusion and left ventricular function with 99mTc-PPN 1011].

    PubMed

    Kumita, S; Mizumura, S; Oishi, T; Kumazaki, T; Sano, J; Yamazaki, Y; Munakata, K

    1993-04-01

    First-pass radionuclide angiography (FPRNA) was performed with the new myocardial perfusion agent 99mTc-1,2,bis[bis(2-ethoxyethyl)phosphino] ethane (99mTc-PPN 1011) on stress and at rest. One hour after that, myocardial perfusion was counted by 99mTc-PPN 1011 SPECT. Left ventricular ejection fraction (LVEF) obtained by FPRNA correlated with that by multigated image with 99mTc-HSAD (r = 0.94, n = 11). The reduction of left ventricular function under the exercise (delta LVEF) and the increase of severity score (delta Severity score) have a good relation (r = 0.88) in 7 patients with prior myocardial infarction. Thus 99mTc-PPN 1011 appears to be an ideal radiopharmaceutical for evaluation of ventricular function and myocardial perfusion.

  5. Spanish validation of the Premorbid Adjustment Scale (PAS-S).

    PubMed

    Barajas, Ana; Ochoa, Susana; Baños, Iris; Dolz, Montse; Villalta-Gil, Victoria; Vilaplana, Miriam; Autonell, Jaume; Sánchez, Bernardo; Cervilla, Jorge A; Foix, Alexandrina; Obiols, Jordi E; Haro, Josep Maria; Usall, Judith

    2013-02-01

    The Premorbid Adjustment Scale (PAS) has been the most widely used scale to quantify premorbid status in schizophrenia, coming to be regarded as the gold standard of retrospective assessment instruments. To examine the psychometric properties of the Spanish version of the PAS (PAS-S). Retrospective study of 140 individuals experiencing a first episode of psychosis (n=77) and individuals who have schizophrenia (n=63), both adult and adolescent patients. Data were collected through a socio-demographic questionnaire and a battery of instruments which includes the following scales: PAS-S, PANSS, LSP, GAF and DAS-sv. The Cronbach's alpha was performed to assess the internal consistency of PAS-S. Pearson's correlations were performed to assess the convergent and discriminant validity. The Cronbach's alpha of the PAS-S scale was 0.85. The correlation between social PAS-S and total PAS-S was 0.85 (p<0.001); while for academic PAS-S and total PAS-S it was 0.53 (p<0.001). Significant correlations were observed between all the scores of each age period evaluated across the PAS-S scale, with a significance value less than 0.001. There was a relationship between negative symptoms and social PAS-S (0.20, p<0.05) and total PAS-S (0.22, p<0.05), but not with academic PAS-S. However, there was a correlation between academic PAS-S and general subscale of the PANSS (0.19, p<0.05). Social PAS-S was related to disability measures (DAS-sv); and academic PAS-S showed discriminant validity with most of the variables of social functioning. PAS-S did not show association with the total LSP scale (discriminant validity). The Spanish version of the Premorbid Adjustment Scale showed appropriate psychometric properties in patients experiencing a first episode of psychosis and who have a chronic evolution of the illness. Moreover, each domain of the PAS-S (social and academic premorbid functioning) showed a differential relationship to other characteristics such as psychotic symptoms, disability or social functioning after onset of illness. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Holographic Optical Coherence Imaging of Rat Osteogenic Sarcoma Tumor Spheroids

    NASA Astrophysics Data System (ADS)

    Yu, Ping; Mustata, Mirela; Peng, Leilei; Turek, John J.; Melloch, Michael R.; French, Paul M. W.; Nolte, David D.

    2004-09-01

    Holographic optical coherence imaging is a full-frame variant of coherence-domain imaging. An optoelectronic semiconductor holographic film functions as a coherence filter placed before a conventional digital video camera that passes coherent (structure-bearing) light to the camera during holographic readout while preferentially rejecting scattered light. The data are acquired as a succession of en face images at increasing depth inside the sample in a fly-through acquisition. The samples of living tissue were rat osteogenic sarcoma multicellular tumor spheroids that were grown from a single osteoblast cell line in a bioreactor. Tumor spheroids are nearly spherical and have radial symmetry, presenting a simple geometry for analysis. The tumors investigated ranged in diameter from several hundred micrometers to over 1 mm. Holographic features from the tumors were observed in reflection to depths of 500-600 µm with a total tissue path length of approximately 14 mean free paths. The volumetric data from the tumor spheroids reveal heterogeneous structure, presumably caused by necrosis and microcalcifications characteristic of some human avascular tumors.

  7. Development and evaluation of amusement machine using autostereoscopic 3D display

    NASA Astrophysics Data System (ADS)

    Kawai, Takashi; Shibata, Takashi; Shimizu, Yoichi; Kawata, Mitsuhiro; Suto, Masahiro

    2004-05-01

    Pachinko is a pinball-like game peculiar to Japan, and is one of the most common pastimes around the country. Recently, with the videogame market contracting, various multimedia technologies have been introduced into Pachinko machines. The authors have developed a Pachinko machine incorporating an autostereoscopic 3D display, and evaluated its effect on the visual function. As of April 2003, the new Pachinko machine has been on sale in Japan. The stereoscopic 3D image is displayed using an LCD. Backlighting for the right and left images is separate, and passes through a polarizing filter before reaching the LCD, which is sandwiched with a micro polarizer. The content selected for display was ukiyoe pictures (Japanese traditional woodblocks). The authors intended to reduce visual fatigue by presenting 3D images with depth "behind" the display and switching between 3D and 2D images. For evaluation of the Pachinko machine, a 2D version with identical content was also prepared, and the effects were examined and compared by testing psycho-physiological responses.

  8. A mercury arc lamp-based multi-color confocal real time imaging system for cellular structure and function.

    PubMed

    Saito, Kenta; Kobayashi, Kentaro; Tani, Tomomi; Nagai, Takeharu

    2008-01-01

    Multi-point scanning confocal microscopy using a Nipkow disk enables the acquisition of fluorescent images with high spatial and temporal resolutions. Like other single-point scanning confocal systems that use Galvano meter mirrors, a commercially available Nipkow spinning disk confocal unit, Yokogawa CSU10, requires lasers as the excitation light source. The choice of fluorescent dyes is strongly restricted, however, because only a limited number of laser lines can be introduced into a single confocal system. To overcome this problem, we developed an illumination system in which light from a mercury arc lamp is scrambled to make homogeneous light by passing it through a multi-mode optical fiber. This illumination system provides incoherent light with continuous wavelengths, enabling the observation of a wide range of fluorophores. Using this optical system, we demonstrate both the high-speed imaging (up to 100 Hz) of intracellular Ca(2+) propagation, and the multi-color imaging of Ca(2+) and PKC-gamma dynamics in living cells.

  9. Pass-transistor very large scale integration

    NASA Technical Reports Server (NTRS)

    Maki, Gary K. (Inventor); Bhatia, Prakash R. (Inventor)

    2004-01-01

    Logic elements are provided that permit reductions in layout size and avoidance of hazards. Such logic elements may be included in libraries of logic cells. A logical function to be implemented by the logic element is decomposed about logical variables to identify factors corresponding to combinations of the logical variables and their complements. A pass transistor network is provided for implementing the pass network function in accordance with this decomposition. The pass transistor network includes ordered arrangements of pass transistors that correspond to the combinations of variables and complements resulting from the logical decomposition. The logic elements may act as selection circuits and be integrated with memory and buffer elements.

  10. First-pass myocardial perfusion imaging with whole-heart coverage using L1-SPIRiT accelerated variable density spiral trajectories

    PubMed Central

    Yang, Yang; Kramer, Christopher M.; Shaw, Peter W.; Meyer, Craig H.; Salerno, Michael

    2015-01-01

    Purpose To design and evaluate 2D L1-SPIRiT accelerated spiral pulse sequences for first-pass myocardial perfusion imaging with whole heart coverage capable of measuring 8 slices at 2 mm in-plane resolution at heart rates up to 125 beats per minute (BPM). Methods Combinations of 5 different spiral trajectories and 4 k-t sampling patterns were retrospectively simulated in 25 fully sampled datasets and reconstructed with L1-SPIRiT to determine the best combination of parameters. Two candidate sequences were prospectively evaluated in 34 human subjects to assess in-vivo performance. Results A dual density broad transition spiral trajectory with either angularly uniform or golden angle in time k-t sampling pattern had the largest structural similarity (SSIM) and smallest root mean square error (RMSE) from the retrospective simulation, and the L1-SPIRiT reconstruction had well-preserved temporal dynamics. In vivo data demonstrated that both of the sampling patterns could produce high quality perfusion images with whole-heart coverage. Conclusion First-pass myocardial perfusion imaging using accelerated spirals with optimized trajectory and k-t sampling pattern can produce high quality 2D-perfusion images with wholeheart coverage at the heart rates up to 125 BPM. PMID:26538511

  11. Testosterone affects language areas of the adult human brain

    PubMed Central

    Hahn, Andreas; Kranz, Georg S.; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.

    2016-01-01

    Abstract Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high‐dose hormone application in adult female‐to‐male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel‐based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting‐state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone‐dependent neuroplastic adaptations in adulthood within language‐specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738–1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303

  12. Testosterone affects language areas of the adult human brain.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert

    2016-05-01

    Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high-dose hormone application in adult female-to-male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel-based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting-state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone-dependent neuroplastic adaptations in adulthood within language-specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738-1748, 2016. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  13. Dual energy approach for cone beam artifacts correction

    NASA Astrophysics Data System (ADS)

    Han, Chulhee; Choi, Shinkook; Lee, Changwoo; Baek, Jongduk

    2017-03-01

    Cone beam computed tomography systems generate 3D volumetric images, which provide further morphological information compared to radiography and tomosynthesis systems. However, reconstructed images by FDK algorithm contain cone beam artifacts when a cone angle is large. To reduce the cone beam artifacts, two-pass algorithm has been proposed. The two-pass algorithm considers the cone beam artifacts are mainly caused by high density materials, and proposes an effective method to estimate error images (i.e., cone beam artifacts images) by the high density materials. While this approach is simple and effective with a small cone angle (i.e., 5 - 7 degree), the correction performance is degraded as the cone angle increases. In this work, we propose a new method to reduce the cone beam artifacts using a dual energy technique. The basic idea of the proposed method is to estimate the error images generated by the high density materials more reliably. To do this, projection data of the high density materials are extracted from dual energy CT projection data using a material decomposition technique, and then reconstructed by iterative reconstruction using total-variation regularization. The reconstructed high density materials are used to estimate the error images from the original FDK images. The performance of the proposed method is compared with the two-pass algorithm using root mean square errors. The results show that the proposed method reduces the cone beam artifacts more effectively, especially with a large cone angle.

  14. Landsat TM image maps of the Shirase and Siple Coast ice streams, West Antarctica

    USGS Publications Warehouse

    Ferrigno, Jane G.; Mullins, Jerry L.; Stapleton, Jo Anne; Bindschadler, Robert; Scambos, Ted A.; Bellisime, Lynda B.; Bowell, Jo-Ann; Acosta, Alex V.

    1994-01-01

    Fifteen 1: 250000 and one 1: 1000 000 scale Landsat Thematic Mapper (TM) image mosaic maps are currently being produced of the West Antarctic ice streams on the Shirase and Siple Coasts. Landsat TM images were acquired between 1984 and 1990 in an area bounded approximately by 78°-82.5°S and 120°- 160° W. Landsat TM bands 2, 3 and 4 were combined to produce a single band, thereby maximizing data content and improving the signal-to-noise ratio. The summed single band was processed with a combination of high- and low-pass filters to remove longitudinal striping and normalize solar elevation-angle effects. The images were mosaicked and transformed to a Lambert conformal conic projection using a cubic-convolution algorithm. The projection transformation was controled with ten weighted geodetic ground-control points and internal image-to-image pass points with annotation of major glaciological features. The image maps are being published in two formats: conventional printed map sheets and on a CD-ROM.

  15. Marias Pass, Contact Zone of Two Martian Rock Units

    NASA Image and Video Library

    2015-12-17

    This view from the Mast Camera (Mastcam) in NASA's Curiosity Mars rover shows the "Marias Pass" area where a lower and older geological unit of mudstone -- the pale zone in the center of the image -- lies in contact with an overlying geological unit of sandstone. Just before Curiosity reached Marias Pass, the rover's laser-firing Chemistry and Camera (ChemCam) instrument examined a rock found to be rich in silica, a mineral-forming chemical. This scene combines several images taken on May 22, 2015, during the 992nd Martian day, or sol, of Curiosity's work on Mars. The scene is presented with a color adjustment that approximates white balancing, to resemble how the rocks and sand would appear under daytime lighting conditions on Earth. http://photojournal.jpl.nasa.gov/catalog/?IDNumber=pia20174

  16. Variable waveband infrared imager

    DOEpatents

    Hunter, Scott R.

    2013-06-11

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  17. Optical correlator method and apparatus for particle image velocimetry processing

    NASA Technical Reports Server (NTRS)

    Farrell, Patrick V. (Inventor)

    1991-01-01

    Young's fringes are produced from a double exposure image of particles in a flowing fluid by passing laser light through the film and projecting the light onto a screen. A video camera receives the image from the screen and controls a spatial light modulator. The spatial modulator has a two dimensional array of cells the transmissiveness of which are controlled in relation to the brightness of the corresponding pixel of the video camera image of the screen. A collimated beam of laser light is passed through the spatial light modulator to produce a diffraction pattern which is focused onto another video camera, with the output of the camera being digitized and provided to a microcomputer. The diffraction pattern formed when the laser light is passed through the spatial light modulator and is focused to a point corresponds to the two dimensional Fourier transform of the Young's fringe pattern projected onto the screen. The data obtained fro This invention was made with U.S. Government support awarded by the Department of the Army (DOD) and NASA grand number(s): DOD #DAAL03-86-K0174 and NASA #NAG3-718. The U.S. Government has certain rights in this invention.

  18. First-pass myocardial perfusion MRI with reduced subendocardial dark-rim artifact using optimized Cartesian sampling.

    PubMed

    Zhou, Zhengwei; Bi, Xiaoming; Wei, Janet; Yang, Hsin-Jung; Dharmakumar, Rohan; Arsanjani, Reza; Bairey Merz, C Noel; Li, Debiao; Sharif, Behzad

    2017-02-01

    The presence of subendocardial dark-rim artifact (DRA) remains an ongoing challenge in first-pass perfusion (FPP) cardiac magnetic resonance imaging (MRI). We propose a free-breathing FPP imaging scheme with Cartesian sampling that is optimized to minimize the DRA and readily enables near-instantaneous image reconstruction. The proposed FPP method suppresses Gibbs ringing effects-a major underlying factor for the DRA-by "shaping" the underlying point spread function through a two-step process: 1) an undersampled Cartesian sampling scheme that widens the k-space coverage compared to the conventional scheme; and 2) a modified parallel-imaging scheme that incorporates optimized apodization (k-space data filtering) to suppress Gibbs-ringing effects. Healthy volunteer studies (n = 10) were performed to compare the proposed method against the conventional Cartesian technique-both using a saturation-recovery gradient-echo sequence at 3T. Furthermore, FPP imaging studies using the proposed method were performed in infarcted canines (n = 3), and in two symptomatic patients with suspected coronary microvascular dysfunction for assessment of myocardial hypoperfusion. Width of the DRA and the number of DRA-affected myocardial segments were significantly reduced in the proposed method compared to the conventional approach (width: 1.3 vs. 2.9 mm, P < 0.001; number of segments: 2.6 vs. 8.7; P < 0.0001). The number of slices with severe DRA was markedly lower for the proposed method (by 10-fold). The reader-assigned image quality scores were similar (P = 0.2), although the quantified myocardial signal-to-noise ratio was lower for the proposed method (P < 0.05). Animal studies showed that the proposed method can detect subendocardial perfusion defects and patient results were consistent with the gold-standard invasive test. The proposed free-breathing Cartesian FPP imaging method significantly reduces the prevalence of severe DRAs compared to the conventional approach while maintaining similar resolution and image quality. 2 J. Magn. Reson. Imaging 2017;45:542-555. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Temperature-Dependent Photoluminescence Imaging and Characterization of a Multi-Crystalline Silicon Solar Cell Defect Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, S.; Yan, F.; Li, J.

    2011-01-01

    Photoluminescence (PL) imaging is used to detect areas in multi-crystalline silicon that appear dark in band-to-band imaging due to high recombination. Steady-state PL intensity can be correlated to effective minority-carrier lifetime, and its temperature dependence can provide additional lifetime-limiting defect information. An area of high defect density has been laser cut from a multi-crystalline silicon solar cell. Both band-to-band and defect-band PL imaging have been collected as a function of temperature from {approx}85 to 350 K. Band-to-band luminescence is collected by an InGaAs camera using a 1200-nm short-pass filter, while defect band luminescence is collected using a 1350-nm long passmore » filter. The defect band luminescence is characterized by cathodoluminescence. Small pieces from adjacent areas within the same wafer are measured by deep-level transient spectroscopy (DLTS). DLTS detects a minority-carrier electron trap level with an activation energy of 0.45 eV on the sample that contained defects as seen by imaging.« less

  20. Temperature-Dependent Photoluminescence Imaging and Characterization of a Multi-Crystalline Silicon Solar Cell Defect Area: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, S.; Yan, F.; Li, J.

    2011-07-01

    Photoluminescence (PL) imaging is used to detect areas in multi-crystalline silicon that appear dark in band-to-band imaging due to high recombination. Steady-state PL intensity can be correlated to effective minority-carrier lifetime, and its temperature dependence can provide additional lifetime-limiting defect information. An area of high defect density has been laser cut from a multi-crystalline silicon solar cell. Both band-to-band and defect-band PL imaging have been collected as a function of temperature from ~85 to 350 K. Band-to-band luminescence is collected by an InGaAs camera using a 1200-nm short-pass filter, while defect band luminescence is collected using a 1350-nm long passmore » filter. The defect band luminescence is characterized by cathodo-luminescence. Small pieces from adjacent areas within the same wafer are measured by deep-level transient spectroscopy (DLTS). DLTS detects a minority-carrier electron trap level with an activation energy of 0.45 eV on the sample that contained defects as seen by imaging.« less

  1. A Weld Position Recognition Method Based on Directional and Structured Light Information Fusion in Multi-Layer/Multi-Pass Welding.

    PubMed

    Zeng, Jinle; Chang, Baohua; Du, Dong; Wang, Li; Chang, Shuhe; Peng, Guodong; Wang, Wenzhu

    2018-01-05

    Multi-layer/multi-pass welding (MLMPW) technology is widely used in the energy industry to join thick components. During automatic welding using robots or other actuators, it is very important to recognize the actual weld pass position using visual methods, which can then be used not only to perform reasonable path planning for actuators, but also to correct any deviations between the welding torch and the weld pass position in real time. However, due to the small geometrical differences between adjacent weld passes, existing weld position recognition technologies such as structured light methods are not suitable for weld position detection in MLMPW. This paper proposes a novel method for weld position detection, which fuses various kinds of information in MLMPW. First, a synchronous acquisition method is developed to obtain various kinds of visual information when directional light and structured light sources are on, respectively. Then, interferences are eliminated by fusing adjacent images. Finally, the information from directional and structured light images is fused to obtain the 3D positions of the weld passes. Experiment results show that each process can be done in 30 ms and the deviation is less than 0.6 mm. The proposed method can be used for automatic path planning and seam tracking in the robotic MLMPW process as well as electron beam freeform fabrication process.

  2. Numerical simulation of terahertz transmission of bilayer metallic meshes with different thickness of substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Gaohui; Zhao, Guozhong; Zhang, Shengbo

    2012-12-01

    The terahertz transmission characteristics of bilayer metallic meshes are studied based on the finite difference time domain method. The bilayer well-shaped grid, the array of complementary square metallic pill and the cross wire-hole array were investigated. The results show that the bilayer well-shaped grid achieves a high-pass of filter function, while the bilayer array of complementary square metallic pill achieves a low-pass of filter function, the bilayer cross wire-hole array achieves a band-pass of filter function. Between two metallic microstructures, the medium need to be deposited. Obviously, medium thicknesses have an influence on the terahertz transmission characteristics of metallic microstructures. Simulation results show that with increasing the thicknesses of the medium the cut-off frequency of high-pass filter and low-pass filter move to low frequency. But the bilayer cross wire-hole array possesses two transmission peaks which display competition effect.

  3. Advances of FishNet towards a fully automatic monitoring system for fish migration

    NASA Astrophysics Data System (ADS)

    Kratzert, Frederik; Mader, Helmut

    2017-04-01

    Restoring the continuum of river networks, affected by anthropogenic constructions, is one of the main objectives of the Water Framework Directive. Regarding fish migration, fish passes are a widely used measure. Often the functionality of these fish passes needs to be assessed by monitoring. Over the last years, we developed a new semi-automatic monitoring system (FishCam) which allows the contact free observation of fish migration in fish passes through videos. The system consists of a detection tunnel, equipped with a camera, a motion sensor and artificial light sources, as well as a software (FishNet), which helps to analyze the video data. In its latest version, the software is capable of detecting and tracking objects in the videos as well as classifying them into "fish" and "no-fish" objects. This allows filtering out the videos containing at least one fish (approx. 5 % of all grabbed videos) and reduces the manual labor to the analysis of these videos. In this state the entire system has already been used in over 20 different fish passes across Austria for a total of over 140 months of monitoring resulting in more than 1.4 million analyzed videos. As a next step towards a fully automatic monitoring system, a key feature is the automatized classification of the detected fish into their species, which is still an unsolved task in a fully automatic monitoring environment. Recent advances in the field of machine learning, especially image classification with deep convolutional neural networks, sound promising in order to solve this problem. In this study, different approaches for the fish species classification are tested. Besides an image-only based classification approach using deep convolutional neural networks, various methods that combine the power of convolutional neural networks as image descriptors with additional features, such as the fish length and the time of appearance, are explored. To facilitate the development and testing phase of this approach, a subset of six fish species of Austrian rivers and streams is considered in this study. All scripts and the data to reproduce the results of this study will be made publicly available on GitHub* at the beginning of the EGU2017 General Assembly. * https://github.com/kratzert/EGU2017_public/

  4. Real-time volume rendering of 4D image using 3D texture mapping

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoo; Kim, June-Sic; Kim, Jae Seok; Kim, In Young; Kim, Sun Il

    2001-05-01

    Four dimensional image is 3D volume data that varies with time. It is used to express deforming or moving object in virtual surgery of 4D ultrasound. It is difficult to render 4D image by conventional ray-casting or shear-warp factorization methods because of their time-consuming rendering time or pre-processing stage whenever the volume data are changed. Even 3D texture mapping is used, repeated volume loading is also time-consuming in 4D image rendering. In this study, we propose a method to reduce data loading time using coherence between currently loaded volume and previously loaded volume in order to achieve real time rendering based on 3D texture mapping. Volume data are divided into small bricks and each brick being loaded is tested for similarity to one which was already loaded in memory. If the brick passed the test, it is defined as 3D texture by OpenGL functions. Later, the texture slices of the brick are mapped into polygons and blended by OpenGL blending functions. All bricks undergo this test. Continuously deforming fifty volumes are rendered in interactive time with SGI ONYX. Real-time volume rendering based on 3D texture mapping is currently available on PC.

  5. Simulation and analysis of light scattering by multilamellar bodies present in the human eye

    PubMed Central

    Méndez-Aguilar, Emilia M.; Kelly-Pérez, Ismael; Berriel-Valdos, L. R.; Delgado-Atencio, José A.

    2017-01-01

    A modified computational model of the human eye was used to obtain and compare different probability density functions, radial profiles of light pattern distributions, and images of the point spread function formed in the human retina under the presence of different kinds of particles inside crystalline lenses suffering from cataracts. Specifically, this work uses simple particles without shells and multilamellar bodies (MLBs) with shells. The emergence of such particles alters the formation of images on the retina. Moreover, the MLBs change over time, which affects properties such as the refractive index of their shell. Hence, this work not only simulates the presence of such particles but also evaluates the incidence of particle parameters such as particle diameter, particle thickness, and shell refractive index, which are set based on reported experimental values. In addition, two wavelengths (400 nm and 700 nm) are used for light passing through the different layers of the computational model. The effects of these parameters on light scattering are analyzed using the simulation results. Further, in these results, the effects of light scattering on image formation can be seen when single particles, early-stage MLBs, or mature MLBs are incorporated in the model. Finally, it is found that particle diameter has the greatest impact on image formation. PMID:28663924

  6. Simulation and analysis of light scattering by multilamellar bodies present in the human eye.

    PubMed

    Méndez-Aguilar, Emilia M; Kelly-Pérez, Ismael; Berriel-Valdos, L R; Delgado-Atencio, José A

    2017-06-01

    A modified computational model of the human eye was used to obtain and compare different probability density functions, radial profiles of light pattern distributions, and images of the point spread function formed in the human retina under the presence of different kinds of particles inside crystalline lenses suffering from cataracts. Specifically, this work uses simple particles without shells and multilamellar bodies (MLBs) with shells. The emergence of such particles alters the formation of images on the retina. Moreover, the MLBs change over time, which affects properties such as the refractive index of their shell. Hence, this work not only simulates the presence of such particles but also evaluates the incidence of particle parameters such as particle diameter, particle thickness, and shell refractive index, which are set based on reported experimental values. In addition, two wavelengths (400 nm and 700 nm) are used for light passing through the different layers of the computational model. The effects of these parameters on light scattering are analyzed using the simulation results. Further, in these results, the effects of light scattering on image formation can be seen when single particles, early-stage MLBs, or mature MLBs are incorporated in the model. Finally, it is found that particle diameter has the greatest impact on image formation.

  7. Infarct characterization using CT

    PubMed Central

    Toia, Patrizia; Maffei, Erica; Cademartiri, Filippo; Lagalla, Roberto; Midiri, Massimo

    2017-01-01

    Myocardial infarction (MI) is a major cause of death and disability worldwide. The incidence is not expected to diminish, despite better prevention, diagnosis and treatment, because of the ageing population in industrialized countries and unhealthy lifestyles in developing countries. Nowadays it is highly requested an imaging tool able to evaluate MI and viability. Technology improvements determined an expansion of clinical indications from coronary plaque evaluation to functional applications (perfusion, ischemia and viability after MI) integrating additional phases and information in the mainstream examination. Cardiac computed tomography (CCT) and cardiac MR (CMR) employ different contrast media, but may characterize MI with overlapping imaging findings due to the similar kinetics and tissue distribution of gadolinium and iodinated contrast media. CCT may detect first-pass perfusion defects, dynamic perfusion after pharmacological stress, and delayed enhancement (DE) of non-viable territories. PMID:28540212

  8. Compact OAM microscope for edge enhancement of biomedical and object samples

    NASA Astrophysics Data System (ADS)

    Gozali, Richard; Nguyen, Thien-An; Bendau, Ethan; Alfano, Robert R.

    2017-09-01

    The production of orbital angular momentum (OAM) by using a q-plate, which functions as an electrically tunable spatial frequency filter, provides a simple and efficient method of edge contrast in biological and medical sample imaging for histological evaluation of tissue, smears, and PAP smears. An instrument producing OAM, such as a q-plate, situated at the Fourier plane of a 4f lens system, similar to the use of a high-pass spatial filter, allows the passage of high spatial frequencies and enables the production of an image with highly illuminated edges contrasted against a dark background for both opaque and transparent objects. Compared with ordinary spiral phase plates and spatial light modulators, the q-plate has the added advantage of electric control and tunability.

  9. Star scanner. [with a reticle with a pair of slits having differing separation

    NASA Technical Reports Server (NTRS)

    Gutshall, R. L.; Mcconaughey, R. T.; Volpe, F. A. (Inventor)

    1974-01-01

    A star scanner on a spin stabilized spacecraft is described which includes a reticle with a pair of slits having different separations as a function of the spacecraft vertical plane, to form a V slit. The time between a star image crossing one of the slits relative to a reference telemetry time provides an indication of azimuth angle. The time between the image crossing the two slits provides an indication of elevation angle of the star. If a star cluster is detected such that two stars pass the slits in less time than normally required for a single star to cross the two slits, an indication of the cluster occurrence is derived. Means are provided to prevent effective detection of large celestial bodies, such as the sun or moon.

  10. Satellite image fusion based on principal component analysis and high-pass filtering.

    PubMed

    Metwalli, Mohamed R; Nasr, Ayman H; Allah, Osama S Farag; El-Rabaie, S; Abd El-Samie, Fathi E

    2010-06-01

    This paper presents an integrated method for the fusion of satellite images. Several commercial earth observation satellites carry dual-resolution sensors, which provide high spatial resolution or simply high-resolution (HR) panchromatic (pan) images and low-resolution (LR) multi-spectral (MS) images. Image fusion methods are therefore required to integrate a high-spectral-resolution MS image with a high-spatial-resolution pan image to produce a pan-sharpened image with high spectral and spatial resolutions. Some image fusion methods such as the intensity, hue, and saturation (IHS) method, the principal component analysis (PCA) method, and the Brovey transform (BT) method provide HR MS images, but with low spectral quality. Another family of image fusion methods, such as the high-pass-filtering (HPF) method, operates on the basis of the injection of high frequency components from the HR pan image into the MS image. This family of methods provides less spectral distortion. In this paper, we propose the integration of the PCA method and the HPF method to provide a pan-sharpened MS image with superior spatial resolution and less spectral distortion. The experimental results show that the proposed fusion method retains the spectral characteristics of the MS image and, at the same time, improves the spatial resolution of the pan-sharpened image.

  11. Impact of Image Noise on Gamma Index Calculation

    NASA Astrophysics Data System (ADS)

    Chen, M.; Mo, X.; Parnell, D.; Olivera, G.; Galmarini, D.; Lu, W.

    2014-03-01

    Purpose: The Gamma Index defines an asymmetric metric between the evaluated image and the reference image. It provides a quantitative comparison that can be used to indicate sample-wised pass/fail on the agreement of the two images. The Gamma passing/failing rate has become an important clinical evaluation tool. However, the presence of noise in the evaluated and/or reference images may change the Gamma Index, hence the passing/failing rate, and further, clinical decisions. In this work, we systematically studied the impact of the image noise on the Gamma Index calculation. Methods: We used both analytic formulation and numerical calculations in our study. The numerical calculations included simulations and clinical images. Three different noise scenarios were studied in simulations: noise in reference images only, in evaluated images only, and in both. Both white and spatially correlated noises of various magnitudes were simulated. For clinical images of various noise levels, the Gamma Index of measurement against calculation, calculation against measurement, and measurement against measurement, were evaluated. Results: Numerical calculations for both the simulation and clinical data agreed with the analytic formulations, and the clinical data agreed with the simulations. For the Gamma Index of measurement against calculation, its distribution has an increased mean and an increased standard deviation as the noise increases. On the contrary, for the Gamma index of calculation against measurement, its distribution has a decreased mean and stabilized standard deviation as the noise increases. White noise has greater impact on the Gamma Index than spatially correlated noise. Conclusions: The noise has significant impact on the Gamma Index calculation and the impact is asymmetric. The Gamma Index should be reported along with the noise levels in both reference and evaluated images. Reporting of the Gamma Index with switched roles of the images as reference and evaluated images or some composite metrics would be a good practice.

  12. An Artificial Intelligence Approach to Automatic Left Ventricular Border Detection in 2-D Echocardiography

    PubMed Central

    Buchan, Iris; Covvey, H. Dominic; Rakowski, Harry

    1985-01-01

    A program has been developed for left ventricular (LV) border tracking on ultrasound images. For each frame, forty border points at equally-spaced angles around the LV center are found gradually during three passes. Pass 1 uses adaptive thresholding to find the most obvious border points. Pass 2 then uses an artificial intelligence technique of finding possible border path segments, associating a score with each, and, from paths with superior scores, obtaining more of the border points. Pass 3 closes any remaining gaps by interpolation. The program tracks the LV border quite well in spite of dropout and interference from intracardiac structures, except during end-systole. Multi-level passes provide a very useful structure for border tracking, with increasingly slow but more sophisticated algorithms possible at higher levels for use when earlier passes recognise failure.

  13. Design of CT reconstruction kernel specifically for clinical lung imaging

    NASA Astrophysics Data System (ADS)

    Cody, Dianna D.; Hsieh, Jiang; Gladish, Gregory W.

    2005-04-01

    In this study we developed a new reconstruction kernel specifically for chest CT imaging. An experimental flat-panel CT scanner was used on large dogs to produce 'ground-truth" reference chest CT images. These dogs were also examined using a clinical 16-slice CT scanner. We concluded from the dog images acquired on the clinical scanner that the loss of subtle lung structures was due mostly to the presence of the background noise texture when using currently available reconstruction kernels. This qualitative evaluation of the dog CT images prompted the design of a new recon kernel. This new kernel consisted of the combination of a low-pass and a high-pass kernel to produce a new reconstruction kernel, called the 'Hybrid" kernel. The performance of this Hybrid kernel fell between the two kernels on which it was based, as expected. This Hybrid kernel was also applied to a set of 50 patient data sets; the analysis of these clinical images is underway. We are hopeful that this Hybrid kernel will produce clinical images with an acceptable tradeoff of lung detail, reliable HU, and image noise.

  14. Influence of the noise sources motion on the estimated Green's functions from ambient noise cross-correlations.

    PubMed

    Sabra, Karim G

    2010-06-01

    It has been demonstrated theoretically and experimentally that an estimate of the Green's function between two receivers can be obtained by cross-correlating acoustic (or elastic) ambient noise recorded at these two receivers. Coherent wavefronts emerge from the noise cross-correlation time function due to the accumulated contributions over time from noise sources whose propagation path pass through both receivers. Previous theoretical studies of the performance of this passive imaging technique have assumed that no relative motion between noise sources and receivers occurs. In this article, the influence of noise sources motion (e.g., aircraft or ship) on this passive imaging technique was investigated theoretically in free space, using a stationary phase approximation, for stationary receivers. The theoretical results were extended to more complex environments, in the high-frequency regime, using first-order expansions of the Green's function. Although sources motion typically degrades the performance of wideband coherent processing schemes, such as time-delay beamforming, it was found that the Green's function estimated from ambient noise cross-correlations are not expected to be significantly affected by the Doppler effect, even for supersonic sources. Numerical Monte-Carlo simulations were conducted to confirm these theoretical predictions for both cases of subsonic and supersonic moving sources.

  15. Frequency domain analysis of knock images

    NASA Astrophysics Data System (ADS)

    Qi, Yunliang; He, Xin; Wang, Zhi; Wang, Jianxin

    2014-12-01

    High speed imaging-based knock analysis has mainly focused on time domain information, e.g. the spark triggered flame speed, the time when end gas auto-ignition occurs and the end gas flame speed after auto-ignition. This study presents a frequency domain analysis on the knock images recorded using a high speed camera with direct photography in a rapid compression machine (RCM). To clearly visualize the pressure wave oscillation in the combustion chamber, the images were high-pass-filtered to extract the luminosity oscillation. The luminosity spectrum was then obtained by applying fast Fourier transform (FFT) to three basic colour components (red, green and blue) of the high-pass-filtered images. Compared to the pressure spectrum, the luminosity spectra better identify the resonant modes of pressure wave oscillation. More importantly, the resonant mode shapes can be clearly visualized by reconstructing the images based on the amplitudes of luminosity spectra at the corresponding resonant frequencies, which agree well with the analytical solutions for mode shapes of gas vibration in a cylindrical cavity.

  16. Coronary Microembolization with Normal Epicardial Coronary Arteries and No Visible Infarcts on Nitrobluetetrazolium Chloride-Stained Specimens: Evaluation with Cardiac Magnetic Resonance Imaging in a Swine Model.

    PubMed

    Jin, Hang; Yun, Hong; Ma, Jianying; Chen, Zhangwei; Chang, Shufu; Zeng, Mengsu

    2016-01-01

    To assess magnetic resonance imaging (MRI) features of coronary microembolization in a swine model induced by small-sized microemboli, which may cause microinfarcts invisible to the naked eye. Eleven pigs underwent intracoronary injection of small-sized microspheres (42 µm) and catheter coronary angiography was obtained before and after microembolization. Cardiac MRI and measurement of cardiac troponin T (cTnT) were performed at baseline, 6 hours, and 1 week after microembolization. Postmortem evaluation was performed after completion of the imaging studies. Coronary angiography pre- and post-microembolization revealed normal epicardial coronary arteries. Systolic wall thickening of the microembolized regions decreased significantly from 42.6 ± 2.0% at baseline to 20.3 ± 2.3% at 6 hours and 31.5 ± 2.1% at 1 week after coronary microembolization (p < 0.001 for both). First-pass perfusion defect was visualized at 6 hours but the extent was largely decreased at 1 week. Delayed contrast enhancement MRI (DE-MRI) demonstrated hyperenhancement within the target area at 6 hours but not at 1 week. The microinfarcts on gross specimen stained with nitrobluetetrazolium chloride were invisible to the naked eye and only detectable microscopically. Increased cTnT was observed at 6 hours and 1 week after microembolization. Coronary microembolization induced by a certain load of small-sized microemboli may result in microinfarcts invisible to the naked eye with normal epicardial coronary arteries. MRI features of myocardial impairment secondary to such microembolization include the decline in left ventricular function and myocardial perfusion at cine and first-pass perfusion imaging, and transient hyperenhancement at DE-MRI.

  17. Estimation of glacier surface motion by robust phase correlation and point like features of SAR intensity images

    NASA Astrophysics Data System (ADS)

    Fang, Li; Xu, Yusheng; Yao, Wei; Stilla, Uwe

    2016-11-01

    For monitoring of glacier surface motion in pole and alpine areas, radar remote sensing is becoming a popular technology accounting for its specific advantages of being independent of weather conditions and sunlight. In this paper we propose a method for glacier surface motion monitoring using phase correlation (PC) based on point-like features (PLF). We carry out experiments using repeat-pass TerraSAR X-band (TSX) and Sentinel-1 C-band (S1C) intensity images of the Taku glacier in Juneau icefield located in southeast Alaska. The intensity imagery is first filtered by an improved adaptive refined Lee filter while the effect of topographic reliefs is removed via SRTM-X DEM. Then, a robust phase correlation algorithm based on singular value decomposition (SVD) and an improved random sample consensus (RANSAC) algorithm is applied to sequential PLF pairs generated by correlation using a 2D sinc function template. The approaches for glacier monitoring are validated by both simulated SAR data and real SAR data from two satellites. The results obtained from these three test datasets confirm the superiority of the proposed approach compared to standard correlation-like methods. By the use of the proposed adaptive refined Lee filter, we achieve a good balance between the suppression of noise and the preservation of local image textures. The presented phase correlation algorithm shows the accuracy of better than 0.25 pixels, when conducting matching tests using simulated SAR intensity images with strong noise. Quantitative 3D motions and velocities of the investigated Taku glacier during a repeat-pass period are obtained, which allows a comprehensive and reliable analysis for the investigation of large-scale glacier surface dynamics.

  18. [Old age in primary school readers: a journey through the end of the 19th century to the start of the 21st century in Argentina].

    PubMed

    Oddone, María Julieta

    2013-04-01

    This article presents the content (discourse) analysis of messages transmitted by primary school readers in the period between 1880 to 2012. This study allowed us to explore the image of old age and aging that society has and passes on to new generations as well as the role assigned to this generational group. The historical periods that provide the context for the data were defined according to the continuity of or the turning points in the social values transmitted in the reading materials. The role assigned to elderly people and the image of old age that the Argentine society passed on and continues to pass on to younger generations demonstrate that each period described has its own model of aging.

  19. Monitoring Phosphatidic Acid Signaling in Breast Cancer Cells Using Genetically Encoded Biosensors.

    PubMed

    Lu, Maryia; Tay, Li Wei Rachel; He, Jingquan; Du, Guangwei

    2016-01-01

    Phospholipids are important signaling molecules that regulate cell proliferation, death, migration, and metabolism. Many phospholipid signaling cascades are altered in breast cancer. To understand the functions of phospholipid signaling molecules, genetically encoded phospholipid biosensors have been developed to monitor their spatiotemporal dynamics. Compared to other phospholipids, much less is known about the subcellular production and cellular functions of phosphatidic acid (PA), partially due to the lack of a specific and sensitive PA biosensor in the past. This chapter describes the use of a newly developed PA biosensor, PASS, in two applications: regular fluorescent microscopy and fluorescence lifetime imaging microscopy-Förster/fluorescence resonance energy transfer (FLIM-FRET). These protocols can be also used with other phospholipid biosensors.

  20. Plasmon-resonant nanorods as multimodal agents for two-photon luminescent imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Huff, Terry B.; Hansen, Matthew N.; Tong, Ling; Zhao, Yan; Wang, Haifeng; Zweifel, Daniel A.; Cheng, Ji-Xin; Wei, Alexander

    2007-02-01

    Plasmon-resonant gold nanorods have outstanding potential as multifunctional agents for image-guided therapies. Nanorods have large absorption cross sections at near-infrared (NIR) frequencies, and produce two-photon luminescence (TPL) when excited by fs-pulsed laser irradiation. The TPL signals can be detected with single-particle sensitivity, enabling nanorods to be imaged in vivo while passing through blood vessels at subpicomolar concentrations. Furthermore, cells labeled with nanorods become highly susceptible to photothermal damage when irradiated at plasmon resonance, often resulting in a dramatic blebbing of the cell membrane. However, the straightforward application of gold nanorods for cell-specific labeling is obstructed by the presence of CTAB, a cationic surfactant carried over from nanorod synthesis which also promotes their nonspecific uptake into cells. Careful exchange and replacement of CTAB can be achieved by introducing oligoethyleneglycol (OEG) units capable of chemisorption onto nanorod surfaces by in situ dithiocarbamate formation, a novel method of surface functionalization. Nanorods with a dense coating of methyl-terminated OEG chains are shielded from nonspecific cell uptake, whereas nanorods functionalized with folate-terminated OEG chains accumulate on the surface of tumor cells overexpressing their cognate receptor, with subsequent delivery of photoinduced cell damage at low laser fluence.

  1. Combined multi-kernel head computed tomography images optimized for depicting both brain parenchyma and bone.

    PubMed

    Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki

    2014-01-01

    The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.

  2. Multiple pass reimaging optical system

    NASA Technical Reports Server (NTRS)

    Gunter, W. D., Jr.; Brown, R. M. (Inventor)

    1973-01-01

    An optical imaging system for enabling nonabsorbed light imaged onto a photodetective surface to be collected and reimaged one or more times onto that surface in register with the original image. The system includes an objective lens, one or more imaging lenses, one or more retroreflectors and perhaps a prism for providing optical matching of the imaging lens focal planes to the photo detective surface.

  3. First-pass myocardial perfusion imaging with whole-heart coverage using L1-SPIRiT accelerated variable density spiral trajectories.

    PubMed

    Yang, Yang; Kramer, Christopher M; Shaw, Peter W; Meyer, Craig H; Salerno, Michael

    2016-11-01

    To design and evaluate two-dimensional (2D) L1-SPIRiT accelerated spiral pulse sequences for first-pass myocardial perfusion imaging with whole heart coverage capable of measuring eight slices at 2 mm in-plane resolution at heart rates up to 125 beats per minute (BPM). Combinations of five different spiral trajectories and four k-t sampling patterns were retrospectively simulated in 25 fully sampled datasets and reconstructed with L1-SPIRiT to determine the best combination of parameters. Two candidate sequences were prospectively evaluated in 34 human subjects to assess in vivo performance. A dual density broad transition spiral trajectory with either angularly uniform or golden angle in time k-t sampling pattern had the largest structural similarity and smallest root mean square error from the retrospective simulation, and the L1-SPIRiT reconstruction had well-preserved temporal dynamics. In vivo data demonstrated that both of the sampling patterns could produce high quality perfusion images with whole-heart coverage. First-pass myocardial perfusion imaging using accelerated spirals with optimized trajectory and k-t sampling pattern can produce high quality 2D perfusion images with whole-heart coverage at the heart rates up to 125 BPM. Magn Reson Med 76:1375-1387, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  4. Segmentation of optical coherence tomography images for differentiation of the cavernous nerves from the prostate gland

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab; Weldon, Thomas P.; Fried, Nathaniel M.

    2009-07-01

    The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. Two-dimensional (2-D) optical coherence tomography (OCT) images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low-pass sub-band was chosen as the filtered image. Last, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. N-ary morphological postprocessing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058+/-0.019. This algorithm may be useful for implementation in clinical endoscopic OCT systems currently being studied for potential intraoperative diagnostic use in laparoscopic and robotic nerve-sparing prostate cancer surgery.

  5. Segmentation of optical coherence tomography images for differentiation of the cavernous nerves from the prostate gland.

    PubMed

    Chitchian, Shahab; Weldon, Thomas P; Fried, Nathaniel M

    2009-01-01

    The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. Two-dimensional (2-D) optical coherence tomography (OCT) images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low-pass sub-band was chosen as the filtered image. Last, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. N-ary morphological postprocessing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058+/-0.019. This algorithm may be useful for implementation in clinical endoscopic OCT systems currently being studied for potential intraoperative diagnostic use in laparoscopic and robotic nerve-sparing prostate cancer surgery.

  6. 30 CFR 57.19018 - Overtravel by-pass switches.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Overtravel by-pass switches. 57.19018 Section... Hoisting Hoists § 57.19018 Overtravel by-pass switches. When an overtravel by-pass switch is installed, the switch shall function so as to allow the conveyance to be moved through the overtravel position when the...

  7. 30 CFR 56.19018 - Overtravel by-pass switches.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Overtravel by-pass switches. 56.19018 Section... Hoisting Hoists § 56.19018 Overtravel by-pass switches. When an overtravel by-pass switch is installed, the switch shall function so as to allow the conveyance to be moved through the overtravel position when the...

  8. 30 CFR 57.19018 - Overtravel by-pass switches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Overtravel by-pass switches. 57.19018 Section... Hoisting Hoists § 57.19018 Overtravel by-pass switches. When an overtravel by-pass switch is installed, the switch shall function so as to allow the conveyance to be moved through the overtravel position when the...

  9. 30 CFR 56.19018 - Overtravel by-pass switches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Overtravel by-pass switches. 56.19018 Section... Hoisting Hoists § 56.19018 Overtravel by-pass switches. When an overtravel by-pass switch is installed, the switch shall function so as to allow the conveyance to be moved through the overtravel position when the...

  10. 30 CFR 57.19018 - Overtravel by-pass switches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Overtravel by-pass switches. 57.19018 Section... Hoisting Hoists § 57.19018 Overtravel by-pass switches. When an overtravel by-pass switch is installed, the switch shall function so as to allow the conveyance to be moved through the overtravel position when the...

  11. 30 CFR 56.19018 - Overtravel by-pass switches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Overtravel by-pass switches. 56.19018 Section... Hoisting Hoists § 56.19018 Overtravel by-pass switches. When an overtravel by-pass switch is installed, the switch shall function so as to allow the conveyance to be moved through the overtravel position when the...

  12. 30 CFR 57.19018 - Overtravel by-pass switches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Overtravel by-pass switches. 57.19018 Section... Hoisting Hoists § 57.19018 Overtravel by-pass switches. When an overtravel by-pass switch is installed, the switch shall function so as to allow the conveyance to be moved through the overtravel position when the...

  13. 30 CFR 57.19018 - Overtravel by-pass switches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Overtravel by-pass switches. 57.19018 Section... Hoisting Hoists § 57.19018 Overtravel by-pass switches. When an overtravel by-pass switch is installed, the switch shall function so as to allow the conveyance to be moved through the overtravel position when the...

  14. 30 CFR 56.19018 - Overtravel by-pass switches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Overtravel by-pass switches. 56.19018 Section... Hoisting Hoists § 56.19018 Overtravel by-pass switches. When an overtravel by-pass switch is installed, the switch shall function so as to allow the conveyance to be moved through the overtravel position when the...

  15. 30 CFR 56.19018 - Overtravel by-pass switches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Overtravel by-pass switches. 56.19018 Section... Hoisting Hoists § 56.19018 Overtravel by-pass switches. When an overtravel by-pass switch is installed, the switch shall function so as to allow the conveyance to be moved through the overtravel position when the...

  16. Differential roles of low and high spatial frequency content in abnormal facial emotion perception in schizophrenia.

    PubMed

    McBain, Ryan; Norton, Daniel; Chen, Yue

    2010-09-01

    While schizophrenia patients are impaired at facial emotion perception, the role of basic visual processing in this deficit remains relatively unclear. We examined emotion perception when spatial frequency content of facial images was manipulated via high-pass and low-pass filtering. Unlike controls (n=29), patients (n=30) perceived images with low spatial frequencies as more fearful than those without this information, across emotional salience levels. Patients also perceived images with high spatial frequencies as happier. In controls, this effect was found only at low emotional salience. These results indicate that basic visual processing has an amplified modulatory effect on emotion perception in schizophrenia. (c) 2010 Elsevier B.V. All rights reserved.

  17. Ultrafast transient grating radiation to optical image converter

    DOEpatents

    Stewart, Richard E; Vernon, Stephen P; Steel, Paul T; Lowry, Mark E

    2014-11-04

    A high sensitivity transient grating ultrafast radiation to optical image converter is based on a fixed transmission grating adjacent to a semiconductor substrate. X-rays or optical radiation passing through the fixed transmission grating is thereby modulated and produces a small periodic variation of refractive index or transient grating in the semiconductor through carrier induced refractive index shifts. An optical or infrared probe beam tuned just below the semiconductor band gap is reflected off a high reflectivity mirror on the semiconductor so that it double passes therethrough and interacts with the radiation induced phase grating therein. A small portion of the optical beam is diffracted out of the probe beam by the radiation induced transient grating to become the converted signal that is imaged onto a detector.

  18. Air-core grid for scattered x-ray rejection

    DOEpatents

    Logan, C.M.; Lane, S.M.

    1995-10-03

    The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 {micro}m pore size, 80% open area, and 4 mm thickness. 2 figs.

  19. NASA Satellite Image of Japan Captured March 11, 2011

    NASA Image and Video Library

    2017-12-08

    NASA's Aqua satellite passed over Japan one hour and 41 minutes before the quake hit. At the time Aqua passed overhead, the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument captured a visible of Japan covered by clouds. The image was taken at 0405 UTC on March 11 (1:05 p.m. local time Japan /11:05 p.m. EST March 10). The quake hit at 2:46 p.m. local time/Japan. Satellite: Aqua Credit: NASA/GSFC/Aqua NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  20. Air-core grid for scattered x-ray rejection

    DOEpatents

    Logan, Clinton M.; Lane, Stephen M.

    1995-01-01

    The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 .mu.m pore size, 80% open area, and 4 mm thickness.

  1. Evaluation of a potential generator-produced PET tracer for cerebral perfusion imaging: Single-pass cerebral extraction measurements and imaging with radiolabeled Cu-PTSM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathias, C.J.; Welch, M.J.; Raichle, M.E.

    1990-03-01

    Copper(II) pyruvaldehyde bis(N4-methylthiosemicarbazone) (Cu-PTSM), copper(II) pyruvaldehyde bis(N4-dimethylthiosemicarbazone) (Cu-PTSM2), and copper(II) ethylglyoxal bis(N4-methylthiosemicarbazone) (Cu-ETSM), have been proposed as PET tracers for cerebral blood flow (CBF) when labeled with generator-produced 62Cu (t1/2 = 9.7 min). To evaluate the potential of Cu-PTSM for CBF PET studies, baboon single-pass cerebral extraction measurements and PET imaging were carried out with the use of 67Cu (t1/2 = 2.6 days) and 64Cu (t1/2 = 12.7 hr), respectively. All three chelates were extracted into the brain with high efficiency. There was some clearance of all chelates in the 10-50-sec time frame and Cu-PTSM2 continued to clear. Cu-PTSM andmore » Cu-ETSM have high residual brain activity. PET imaging of baboon brain was carried out with the use of (64Cu)-Cu-PTSM. For comparison with the 64Cu brain image, a CBF (15O-labeled water) image (40 sec) was first obtained. Qualitatively, the H2(15)O and (64Cu)-Cu-PTSM images were very similar; for example, a comparison of gray to white matter uptake resulted in ratios of 2.42 for H2(15)O and 2.67 for Cu-PTSM. No redistribution of 64Cu was observed in 2 hr of imaging, as was predicted from the single-pass study results. Quantitative determination of blood flow using Cu-PTSM showed good agreement with blood flow determined with H2(15)O. This data suggests that (62Cu)-Cu-PTSM may be a useful generator-produced radiopharmaceutical for blood flow studies with PET.« less

  2. Sensitivity of an Elekta iView GT a-Si EPID model to delivery errors for pre-treatment verification of IMRT fields.

    PubMed

    Herwiningsih, Sri; Hanlon, Peta; Fielding, Andrew

    2014-12-01

    A Monte Carlo model of an Elekta iViewGT amorphous silicon electronic portal imaging device (a-Si EPID) has been validated for pre-treatment verification of clinical IMRT treatment plans. The simulations involved the use of the BEAMnrc and DOSXYZnrc Monte Carlo codes to predict the response of the iViewGT a-Si EPID model. The predicted EPID images were compared to the measured images obtained from the experiment. The measured EPID images were obtained by delivering a photon beam from an Elekta Synergy linac to the Elekta iViewGT a-Si EPID. The a-Si EPID was used with no additional build-up material. Frame averaged EPID images were acquired and processed using in-house software. The agreement between the predicted and measured images was analyzed using the gamma analysis technique with acceptance criteria of 3 %/3 mm. The results show that the predicted EPID images for four clinical IMRT treatment plans have a good agreement with the measured EPID signal. Three prostate IMRT plans were found to have an average gamma pass rate of more than 95.0 % and a spinal IMRT plan has the average gamma pass rate of 94.3 %. During the period of performing this work a routine MLC calibration was performed and one of the IMRT treatments re-measured with the EPID. A change in the gamma pass rate for one field was observed. This was the motivation for a series of experiments to investigate the sensitivity of the method by introducing delivery errors, MLC position and dosimetric overshoot, into the simulated EPID images. The method was found to be sensitive to 1 mm leaf position errors and 10 % overshoot errors.

  3. MISR High-Resolution, Cross-Track Winds for Hurricane Ida

    NASA Image and Video Library

    2009-11-10

    This image shows JPL Multi-angle Imaging SpectroRadiometer instrument onboard NASA Terra satellite on Sunday, Nov. 8, 2009 as it passed over Hurricane Ida while situated between western Cuba and the Yucatan Peninsula.

  4. Scintimammography (Breast Specific Gamma Imaging-BSGI)

    MedlinePlus

    ... pictures. top of page How does the procedure work? With ordinary x-ray examinations, an image is made by passing x-rays through the patient's body. In contrast, nuclear medicine procedures use a radioactive material, called a ...

  5. Digital holographic image fusion for a larger size object using compressive sensing

    NASA Astrophysics Data System (ADS)

    Tian, Qiuhong; Yan, Liping; Chen, Benyong; Yao, Jiabao; Zhang, Shihua

    2017-05-01

    Digital holographic imaging fusion for a larger size object using compressive sensing is proposed. In this method, the high frequency component of the digital hologram under discrete wavelet transform is represented sparsely by using compressive sensing so that the data redundancy of digital holographic recording can be resolved validly, the low frequency component is retained totally to ensure the image quality, and multiple reconstructed images with different clear parts corresponding to a laser spot size are fused to realize the high quality reconstructed image of a larger size object. In addition, a filter combing high-pass and low-pass filters is designed to remove the zero-order term from a digital hologram effectively. The digital holographic experimental setup based on off-axis Fresnel digital holography was constructed. The feasible and comparative experiments were carried out. The fused image was evaluated by using the Tamura texture features. The experimental results demonstrated that the proposed method can improve the processing efficiency and visual characteristics of the fused image and enlarge the size of the measured object effectively.

  6. Band-pass filtering algorithms for adaptive control of compressor pre-stall modes in aircraft gas-turbine engine

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. A.

    2018-05-01

    The methods for increasing gas-turbine aircraft engines' (GTE) adaptive properties to interference based on empowerment of automatic control systems (ACS) are analyzed. The flow pulsation in suction and a discharge line of the compressor, which may cause the stall, are considered as the interference. The algorithmic solution to the problem of GTE pre-stall modes’ control adapted to stability boundary is proposed. The aim of the study is to develop the band-pass filtering algorithms to provide the detection functions of the compressor pre-stall modes for ACS GTE. The characteristic feature of pre-stall effect is the increase of pressure pulsation amplitude over the impeller at the multiples of the rotor’ frequencies. The used method is based on a band-pass filter combining low-pass and high-pass digital filters. The impulse response of the high-pass filter is determined through a known low-pass filter impulse response by spectral inversion. The resulting transfer function of the second order band-pass filter (BPF) corresponds to a stable system. The two circuit implementations of BPF are synthesized. Designed band-pass filtering algorithms were tested in MATLAB environment. Comparative analysis of amplitude-frequency response of proposed implementation allows choosing the BPF scheme providing the best quality of filtration. The BPF reaction to the periodic sinusoidal signal, simulating the experimentally obtained pressure pulsation function in the pre-stall mode, was considered. The results of model experiment demonstrated the effectiveness of applying band-pass filtering algorithms as part of ACS to identify the pre-stall mode of the compressor for detection of pressure fluctuations’ peaks, characterizing the compressor’s approach to the stability boundary.

  7. The flight test of Pi-SAR(L) for the repeat-pass interferometric SAR

    NASA Astrophysics Data System (ADS)

    Nohmi, Hitoshi; Shimada, Masanobu; Miyawaki, Masanori

    2006-09-01

    This paper describes the experiment of the repeat pass interferometric SAR using Pi-SAR(L). The air-borne repeat-pass interferometric SAR is expected as an effective method to detect landslide or predict a volcano eruption. To obtain a high-quality interferometric image, it is necessary to make two flights on the same flight pass. In addition, since the antenna of the Pi-SAR(L) is secured to the aircraft, it is necessary to fly at the same drift angle to keep the observation direction same. We built a flight control system using an auto pilot which has been installed in the airplane. This navigation system measures position and altitude precisely with using a differential GPS, and the PC Navigator outputs a difference from the desired course to the auto pilot. Since the air density is thinner and the speed is higher than the landing situation, the gain of the control system is required to be adjusted during the repeat pass flight. The observation direction could be controlled to some extent by adjusting a drift angle with using a flight speed control. The repeat-pass flight was conducted in Japan for three days in late November. The flight was stable and the deviation was within a few meters for both horizontal and vertical direction even in the gusty condition. The SAR data were processed in time domain based on range Doppler algorism to make the complete motion compensation. Thus, the interferometric image processed after precise phase compensation is shown.

  8. Application of acoustic imaging techniques on snowmobile pass-by noise.

    PubMed

    Padois, Thomas; Berry, Alain

    2017-02-01

    Snowmobile manufacturers invest important efforts to reduce the noise emission of their products. The noise sources of snowmobiles are multiple and closely spaced, leading to difficult source separation in practice. In this study, source imaging results for snowmobile pass-by noise are discussed. The experiments involve a 193-microphone Underbrink array, with synchronization of acoustic with video data provided by a high-speed camera. Both conventional beamforming and Clean-SC deconvolution are implemented to provide noise source maps of the snowmobile. The results clearly reveal noise emission from the engine, exhaust, and track depending on the frequency range considered.

  9. Elongated Asteroid Will Safely Pass Earth on Christmas Eve

    NASA Image and Video Library

    2015-12-23

    The elongated asteroid in this radar image, named 2003 SD220, will safely fly past Earth on Thursday, Dec. 24, 2015, at a distance of 6.8 million miles (11 million kilometers). The image was taken on Dec. 22 by scientists using NASA's 230-foot (70-meter) Deep Space Network antenna at Goldstone, California, when the asteroid was approaching its flyby distance. This asteroid is at least 3,600 feet (1,100 meters) long. In 2018, it will safely pass Earth at a distance of 1.8 million miles (2.8 million kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA20280

  10. A hyperspectral image optimizing method based on sub-pixel MTF analysis

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Li, Kai; Wang, Jinqiang; Zhu, Yajie

    2015-04-01

    Hyperspectral imaging is used to collect tens or hundreds of images continuously divided across electromagnetic spectrum so that the details under different wavelengths could be represented. A popular hyperspectral imaging methods uses a tunable optical band-pass filter settled in front of the focal plane to acquire images of different wavelengths. In order to alleviate the influence of chromatic aberration in some segments in a hyperspectral series, in this paper, a hyperspectral optimizing method uses sub-pixel MTF to evaluate image blurring quality was provided. This method acquired the edge feature in the target window by means of the line spread function (LSF) to calculate the reliable position of the edge feature, then the evaluation grid in each line was interpolated by the real pixel value based on its relative position to the optimal edge and the sub-pixel MTF was used to analyze the image in frequency domain, by which MTF calculation dimension was increased. The sub-pixel MTF evaluation was reliable, since no image rotation and pixel value estimation was needed, and no artificial information was introduced. With theoretical analysis, the method proposed in this paper is reliable and efficient when evaluation the common images with edges of small tilt angle in real scene. It also provided a direction for the following hyperspectral image blurring evaluation and the real-time focal plane adjustment in real time in related imaging system.

  11. Matching rendered and real world images by digital image processing

    NASA Astrophysics Data System (ADS)

    Mitjà, Carles; Bover, Toni; Bigas, Miquel; Escofet, Jaume

    2010-05-01

    Recent advances in computer-generated images (CGI) have been used in commercial and industrial photography providing a broad scope in product advertising. Mixing real world images with those rendered from virtual space software shows a more or less visible mismatching between corresponding image quality performance. Rendered images are produced by software which quality performance is only limited by the resolution output. Real world images are taken with cameras with some amount of image degradation factors as lens residual aberrations, diffraction, sensor low pass anti aliasing filters, color pattern demosaicing, etc. The effect of all those image quality degradation factors can be characterized by the system Point Spread Function (PSF). Because the image is the convolution of the object by the system PSF, its characterization shows the amount of image degradation added to any taken picture. This work explores the use of image processing to degrade the rendered images following the parameters indicated by the real system PSF, attempting to match both virtual and real world image qualities. The system MTF is determined by the slanted edge method both in laboratory conditions and in the real picture environment in order to compare the influence of the working conditions on the device performance; an approximation to the system PSF is derived from the two measurements. The rendered images are filtered through a Gaussian filter obtained from the taking system PSF. Results with and without filtering are shown and compared measuring the contrast achieved in different final image regions.

  12. Ash from Kilauea Eruption Viewed by NASA's MISR

    Atmospheric Science Data Center

    2018-06-07

    ... title:  Ash from Kilauea Eruption Viewed by NASA's MISR View Larger Image   Ash ... Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite captured this view of the island as it passed overhead. ...

  13. Global Monitoring of Mountain Glaciers Using High-Resolution Spotlight Imaging from the International Space Station

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Green, J. J.; Bills, B. G.; Goguen, J.; Ansar, A.; Knight, R. L.; Hallet, B.; Scambos, T. A.; Thompson, L. G.; Morin, P. J.

    2013-12-01

    Mountain glaciers around the world are retreating rapidly, contributing about 20% to present-day sea level rise. Numerous studies have shown that mountain glaciers are sensitive to global environmental change. Temperate-latitude glaciers and snowpack provide water for over 1 billion people. Glaciers are a resource for irrigation and hydroelectric power, but also pose flood and avalanche hazards. Accurate mass balance assessments have been made for only 280 glaciers, yet there are over 130,000 in the World Glacier Inventory. The rate of glacier retreat or advance can be highly variable, is poorly sampled, and inadequately understood. Liquid water from ice front lakes, rain, melt, or sea water and debris from rocks, dust, or pollution interact with glacier ice often leading to an amplification of warming and further melting. Many mountain glaciers undergo rapid and episodic events that greatly change their mass balance or extent but are sparsely documented. Events include calving, outburst floods, opening of crevasses, or iceberg motion. Spaceborne high-resolution spotlight optical imaging provides a means of clarifying the relationship between the health of mountain glaciers and global environmental change. Digital elevation models (DEMs) can be constructed from a series of images from a range of perspectives collected by staring at a target during a satellite overpass. It is possible to collect imagery for 1800 targets per month in the ×56° latitude range, construct high-resolution DEMs, and monitor changes in high detail over time with a high-resolution optical telescope mounted on the International Space Station (ISS). Snow and ice type, age, and maturity can be inferred from different color bands as well as distribution of liquid water. Texture, roughness, albedo, and debris distribution can be estimated by measuring bidirectional reflectance distribution functions (BRDF) and reflectance intensity as a function of viewing angle. The non-sun-synchronous orbit of the ISS results in varying illumination angles and fix-point spotlight imaging results in varying viewing angles, ideal for viewing steep slopes on glaciers and adjacent areas. Rapid events may be observed in progress by correlating changes in images over a single pass or between passes. We present a working design, data acquisition parameters, science objectives, and data processing strategy for a conceptual instrument, MUIR (Mission to Understand Ice Retreat).

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, A.; Frenkel, J.; Hopf, R.

    Amyloidosis is a systemic disease frequently involving the myocardium and leading to functional disturbances of the heart. Amyloidosis can mimic other cardiac diseases. A conclusive clinical diagnosis of cardiac involvement can only be made by a combination of different diagnostic methods. In 7 patients with myocardial amyloidosis we used a combined first-pass and static scintigraphy with technetium-99 m-pyrophosphate. There was only insignificant myocardial uptake of the tracer. The first-pass studies however revealed reduced systolic function in 4/7 patients and impaired diastolic function in 6/7 patients. Therefore, although cardiac amyloid could not be demonstrated in the static scintigraphy due to amyloidmore » fibril amount and composition, myocardial functional abnormalities were seen in the first-pass study.« less

  15. Visual tool for estimating the fractal dimension of images

    NASA Astrophysics Data System (ADS)

    Grossu, I. V.; Besliu, C.; Rusu, M. V.; Jipa, Al.; Bordeianu, C. C.; Felea, D.

    2009-10-01

    This work presents a new Visual Basic 6.0 application for estimating the fractal dimension of images, based on an optimized version of the box-counting algorithm. Following the attempt to separate the real information from "noise", we considered also the family of all band-pass filters with the same band-width (specified as parameter). The fractal dimension can be thus represented as a function of the pixel color code. The program was used for the study of paintings cracks, as an additional tool which can help the critic to decide if an artistic work is original or not. Program summaryProgram title: Fractal Analysis v01 Catalogue identifier: AEEG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 29 690 No. of bytes in distributed program, including test data, etc.: 4 967 319 Distribution format: tar.gz Programming language: MS Visual Basic 6.0 Computer: PC Operating system: MS Windows 98 or later RAM: 30M Classification: 14 Nature of problem: Estimating the fractal dimension of images. Solution method: Optimized implementation of the box-counting algorithm. Use of a band-pass filter for separating the real information from "noise". User friendly graphical interface. Restrictions: Although various file-types can be used, the application was mainly conceived for the 8-bit grayscale, windows bitmap file format. Running time: In a first approximation, the algorithm is linear.

  16. Optoelectronic image scanning with high spatial resolution and reconstruction fidelity

    NASA Astrophysics Data System (ADS)

    Craubner, Siegfried I.

    2002-02-01

    In imaging systems the detector arrays deliver at the output time-discrete signals, where the spatial frequencies of the object scene are mapped into the electrical signal frequencies. Since the spatial frequency spectrum cannot be bandlimited by the front optics, the usual detector arrays perform a spatial undersampling and as a consequence aliasing occurs. A means to partially suppress the backfolded alias band is bandwidth limitation in the reconstruction low-pass, at the price of resolution loss. By utilizing a bilinear detector array in a pushbroom-type scanner, undersampling and aliasing can be overcome. For modeling the perception, the theory of discrete systems and multirate digital filter banks is applied, where aliasing cancellation and perfect reconstruction play an important role. The discrete transfer function of a bilinear array can be imbedded into the scheme of a second-order filter bank. The detector arrays already build the analysis bank and the overall filter bank is completed with the synthesis bank, for which stabilized inverse filters are proposed, to compensate for the low-pass characteristics and to approximate perfect reconstruction. The synthesis filter branch can be realized in a so-called `direct form,' or the `polyphase form,' where the latter is an expenditure-optimal solution, which gives advantages when implemented in a signal processor. This paper attempts to introduce well-established concepts of the theory of multirate filter banks into the analysis of scanning imagers, which is applicable in a much broader sense than for the problems addressed here. To the author's knowledge this is also a novelty.

  17. Probabilistic atlases of default mode, executive control and salience network white matter tracts: an fMRI-guided diffusion tensor imaging and tractography study

    PubMed Central

    Figley, Teresa D.; Bhullar, Navdeep; Courtney, Susan M.; Figley, Chase R.

    2015-01-01

    Diffusion tensor imaging (DTI) is a powerful MRI technique that can be used to estimate both the microstructural integrity and the trajectories of white matter pathways throughout the central nervous system. This fiber tracking (aka, “tractography”) approach is often carried out using anatomically-defined seed points to identify white matter tracts that pass through one or more structures, but can also be performed using functionally-defined regions of interest (ROIs) that have been determined using functional MRI (fMRI) or other methods. In this study, we performed fMRI-guided DTI tractography between all of the previously defined nodes within each of six common resting-state brain networks, including the: dorsal Default Mode Network (dDMN), ventral Default Mode Network (vDMN), left Executive Control Network (lECN), right Executive Control Network (rECN), anterior Salience Network (aSN), and posterior Salience Network (pSN). By normalizing the data from 32 healthy control subjects to a standard template—using high-dimensional, non-linear warping methods—we were able to create probabilistic white matter atlases for each tract in stereotaxic coordinates. By investigating all 198 ROI-to-ROI combinations within the aforementioned resting-state networks (for a total of 6336 independent DTI tractography analyses), the resulting probabilistic atlases represent a comprehensive cohort of functionally-defined white matter regions that can be used in future brain imaging studies to: (1) ascribe DTI or other white matter changes to particular functional brain networks, and (2) compliment resting state fMRI or other functional connectivity analyses. PMID:26578930

  18. Measuring fire spread rates from repeat pass airborne thermal infrared imagery

    Treesearch

    Douglas A. Stow; Philip J. Riggan; Emanual A. Storey; Lloyd L. Coulter

    2014-01-01

    The objective is to evaluate procedures for direct measurement of fire spread rates (FSRs) based on archived repeat pass airborne thermal infrared (ATIR) imagery and to identify requirements for more refined measurements of FSR and environmental factors that influence FSR. Flaming front positions are delineated on sequential FireMapper ATIR images captured at...

  19. Comparison of measured and computed phase functions of individual tropospheric ice crystals

    NASA Astrophysics Data System (ADS)

    Stegmann, Patrick G.; Tropea, Cameron; Järvinen, Emma; Schnaiter, Martin

    2016-07-01

    Airplanes passing the incuda (lat. anvils) regions of tropical cumulonimbi-clouds are at risk of suffering an engine power-loss event and engine damage due to ice ingestion (Mason et al., 2006 [1]). Research in this field relies on optical measurement methods to characterize ice crystals; however the design and implementation of such methods presently suffer from the lack of reliable and efficient means of predicting the light scattering from ice crystals. The nascent discipline of direct measurement of phase functions of ice crystals in conjunction with particle imaging and forward modelling through geometrical optics derivative- and Transition matrix-codes for the first time allow us to obtain a deeper understanding of the optical properties of real tropospheric ice crystals. In this manuscript, a sample phase function obtained via the Particle Habit Imaging and Polar Scattering (PHIPS) probe during a measurement campaign in flight over Brazil will be compared to three different light scattering codes. This includes a newly developed first order geometrical optics code taking into account the influence of the Gaussian beam illumination used in the PHIPS device, as well as the reference ray tracing code of Macke and the T-matrix code of Kahnert.

  20. Dynamic-Receive Focusing with High-Frequency Annular Arrays

    NASA Astrophysics Data System (ADS)

    Ketterling, J. A.; Mamou, J.; Silverman, R. H.

    High-frequency ultrasound is commonly employed for ophthalmic and small-animal imaging because of the fine-resolution images it affords. Annular arrays allow improved depth of field and lateral resolution versus commonly used single-element, focused transducers. The best image quality from an annular array is achieved by using synthetic transmit-to-receive focusing while utilizing data from all transmit-to-receive element combinations. However, annular arrays must be laterally scanned to form an image and this requires one pass for each of the array elements when implementing full synthetic transmit-to-receive focusing. A dynamic-receive focusing approach permits a single pass, although at a sacrifice of depth of field and lateral resolution. A five-element, 20-MHz annular array is examined to determine the acoustic beam properties for synthetic and dynamic-receive focusing. A spatial impulse response model is used to simulate the acoustic beam properties for each focusing case and then data acquired from a human eye-bank eye are processed to demonstrate the effect of each approach on image quality.

  1. Grayscale/resolution trade-off for text: Model predictions and psychophysical results for letter confusion and letter discrimination

    NASA Technical Reports Server (NTRS)

    Gille, Jennifer; Martin, Russel; Lubin, Jeffrey; Larimer, James

    1995-01-01

    In a series of papers presented in 1994, we examined the grayscale/resolution trade-off for natural images displayed on devices with discrete pixellation, such as AMLCD's. In the present paper we extend this study by examining the grayscale/resolution trade-off for text images on discrete-pixel displays. Halftoning in printing is an example of the grayscale/resolution trade-off. In printing, spatial resolution is sacrificed to produce grayscale. Another example of this trade-off is the inherent low-pass spatial filter of a CRT, caused by the point-spread function of the electron beam in the phosphor layer. On a CRT, sharp image edges are blurred by this inherent low-pass filtering, and the block noise created by spatial quantization is greatly reduced. A third example of this trade-off is text anti-aliasing, where grayscale is used to improve letter shape, size and location when rendered at a low spatial resolution. There are additional implications for display system design from the grayscale/resolution trade-off. For example, reduced grayscale can reduce system costs by requiring less complexity in the framestore, allowing the use of lower cost drivers, potentially increasing data transfer rates in the image subsystem, and simplifying the manufacturing processes that are used to construct the active matrix for AMLCD (active-matrix liquid-crystal display) or AMTFEL (active-matrix thin-film electroluminescent) devices. Therefore, the study of these trade-offs is important for display designers and manufacturing and systems engineers who wish to create the highest performance, lowest cost device possible. Our strategy for investigating this trade-off is to generate a set of simple test images, manipulate grayscale and resolution, predict discrimination performance using the ViDEOS(Sarnoff) Human Vision Model, conduct an empirical study of discrimination using psychophysical procedures, and verify the computational results using the psychophysical results.

  2. [Development of a Surgical Navigation System with Beam Split and Fusion of the Visible and Near-Infrared Fluorescence].

    PubMed

    Yang, Xiaofeng; Wu, Wei; Wang, Guoan

    2015-04-01

    This paper presents a surgical optical navigation system with non-invasive, real-time, and positioning characteristics for open surgical procedure. The design was based on the principle of near-infrared fluorescence molecular imaging. The in vivo fluorescence excitation technology, multi-channel spectral camera technology and image fusion software technology were used. Visible and near-infrared light ring LED excitation source, multi-channel band pass filters, spectral camera 2 CCD optical sensor technology and computer systems were integrated, and, as a result, a new surgical optical navigation system was successfully developed. When the near-infrared fluorescence was injected, the system could display anatomical images of the tissue surface and near-infrared fluorescent functional images of surgical field simultaneously. The system can identify the lymphatic vessels, lymph node, tumor edge which doctor cannot find out with naked eye intra-operatively. Our research will guide effectively the surgeon to remove the tumor tissue to improve significantly the success rate of surgery. The technologies have obtained a national patent, with patent No. ZI. 2011 1 0292374. 1.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jens, Sjoerd, E-mail: s.jens@amc.uva.nl; Marquering, Henk A., E-mail: h.a.marquering@amc.uva.nl; Koelemay, Mark J. W., E-mail: m.j.koelemaij@amc.uva.nl

    ObjectiveTo study the feasibility of 2D perfusion imaging in critical limb ischemia (CLI).Methods/ResultsPerfusion angiography is a new technology which was tested in 18 patients with CLI of the foot. A standardized protocol was used with a catheter placed at the mid-part of the popliteal artery, and a total of 9 cc of non-ionic iodinated contrast material was injected at a rate of 3 cc/sec. The technology is based on early cardiology research where iodinated contrast agents were used for imaging of cardiac perfusion. During the first pass of the contrast, there is a significant diffusion of the contrast agents into the interstitialmore » space, particularly for non-ionic and low-molecular-weight compounds.DiscussionThe original angiography data can be used to make a time–density curve, which represents the actual perfusion of the foot in time. Angiographic perfusion imaging is a post-processing modality for which no extra contrast or radiation is needed. With this technique, it is possible to get more information about the perfusion status and microcirculation of the foot. This is a step toward functional imaging in CLI patients.« less

  4. Multispectral Imager With Improved Filter Wheel and Optics

    NASA Technical Reports Server (NTRS)

    Bremer, James C.

    2007-01-01

    Figure 1 schematically depicts an improved multispectral imaging system of the type that utilizes a filter wheel that contains multiple discrete narrow-band-pass filters and that is rotated at a constant high speed to acquire images in rapid succession in the corresponding spectral bands. The improvement, relative to prior systems of this type, consists of the measures taken to prevent the exposure of a focal-plane array (FPA) of photodetectors to light in more than one spectral band at any given time and to prevent exposure of the array to any light during readout. In prior systems, these measures have included, variously the use of mechanical shutters or the incorporation of wide opaque sectors (equivalent to mechanical shutters) into filter wheels. These measures introduce substantial dead times into each operating cycle intervals during which image information cannot be collected and thus incoming light is wasted. In contrast, the present improved design does not involve shutters or wide opaque sectors, and it reduces dead times substantially. The improved multispectral imaging system is preceded by an afocal telescope and includes a filter wheel positioned so that its rotation brings each filter, in its turn, into the exit pupil of the telescope. The filter wheel contains an even number of narrow-band-pass filters separated by narrow, spoke-like opaque sectors. The geometric width of each filter exceeds the cross-sectional width of the light beam coming out of the telescope. The light transmitted by the sequence of narrow-band filters is incident on a dichroic beam splitter that reflects in a broad shorter-wavelength spectral band that contains half of the narrow bands and transmits in a broad longer-wavelength spectral band that contains the other half of the narrow spectral bands. The filters are arranged on the wheel so that if the pass band of a given filter is in the reflection band of the dichroic beam splitter, then the pass band of the adjacent filter is in the longer-wavelength transmission band of the dichroic beam splitter (see Figure 2). Each of the two optical paths downstream of the dichroic beam splitter contains an additional broad-band-pass filter: The filter in the path of the light transmitted by the dichroic beam splitter transmits and attenuates in the same bands that are transmitted and reflected, respectively, by the beam splitter; the filter in the path of the light reflected by the dichroic beam splitter transmits and attenuates in the same bands that are reflected and transmitted, respectively, by the dichroic beam splitter. In each of these paths, the filtered light is focused onto an FPA. As the filter wheel rotates at a constant angular speed, its shaft angle is monitored, and the shaft-angle signal is used to synchronize the exposure times of the two FPAs. When a single narrowband-pass filter on the wheel occupies the entire cross section of the beam of light coming out of the telescope, the spectrum of light that reaches the dichroic beam splitter lies entirely within the pass band of that filter. Therefore, the beam in its entirety is either transmitted by the dichroic beam splitter and imaged on the longer-wavelength FPA or reflected by the beam splitter and imaged onto the shorter-wavelength FPA.

  5. Interferometric superlocalization of two incoherent optical point sources.

    PubMed

    Nair, Ranjith; Tsang, Mankei

    2016-02-22

    A novel interferometric method - SLIVER (Super Localization by Image inVERsion interferometry) - is proposed for estimating the separation of two incoherent point sources with a mean squared error that does not deteriorate as the sources are brought closer. The essential component of the interferometer is an image inversion device that inverts the field in the transverse plane about the optical axis, assumed to pass through the centroid of the sources. The performance of the device is analyzed using the Cramér-Rao bound applied to the statistics of spatially-unresolved photon counting using photon number-resolving and on-off detectors. The analysis is supported by Monte-Carlo simulations of the maximum likelihood estimator for the source separation, demonstrating the superlocalization effect for separations well below that set by the Rayleigh criterion. Simulations indicating the robustness of SLIVER to mismatch between the optical axis and the centroid are also presented. The results are valid for any imaging system with a circularly symmetric point-spread function.

  6. In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution.

    PubMed

    White, Edward R; Singer, Scott B; Augustyn, Veronica; Hubbard, William A; Mecklenburg, Matthew; Dunn, Bruce; Regan, Brian C

    2012-07-24

    An ideal technique for observing nanoscale assembly would provide atomic-resolution images of both the products and the reactants in real time. Using a transmission electron microscope we image in situ the electrochemical deposition of lead from an aqueous solution of lead(II) nitrate. Both the lead deposits and the local Pb(2+) concentration can be visualized. Depending on the rate of potential change and the potential history, lead deposits on the cathode in a structurally compact layer or in dendrites. In both cases the deposits can be removed and the process repeated. Asperities that persist through many plating and stripping cycles consistently nucleate larger dendrites. Quantitative digital image analysis reveals excellent correlation between changes in the Pb(2+) concentration, the rate of lead deposition, and the current passed by the electrochemical cell. Real-time electron microscopy of dendritic growth dynamics and the associated local ionic concentrations can provide new insight into the functional electrochemistry of batteries and related energy storage technologies.

  7. Imaging electron motion in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandari, Sagar; Westervelt, Robert M.

    A cooled scanning probe microscope (SPM) is an ideal tool to image electronic motion in graphene: the SPM tip acts as a scanning gate, which interacts with the electron gas below. We introduce the technique using our group's previous work on imaging electron flow from a quantum point contact in a GaAs 2DEG and tuning an InAs quantum dot in an InAs/InP nanowire. Carriers in graphene have very different characteristics: electrons and holes travel at a constant speed with no bandgap, and they pass through potential barriers via Klein tunneling. In this paper, we review the extension of SPM imagingmore » techniques to graphene. We image the cyclotron orbits passing between two narrow contacts in a single-atomic-layer graphene device in a perpendicular magnetic field. Magnetic focusing produces a peak in transmission between the contacts when the cyclotron diameter is equal to the contact spacing. The charged SPM tip deflects electrons passing from one contact to the other, changing the transmission when it interrupts the flow. By displaying the change in transmission as the tip is raster scanned above the sample, an image of flow is obtained. In addition, we have developed a complementary technique to image electronic charge using a cooled scanning capacitance microscope (SCM) that uses a sensitive charge preamplifier near the SPM tip to achieve a charge noise level 0.13 e Hz -1/2 with high spatial resolution 100 nm. The cooled SPM and SCM can be used to probe the motion of electrons on the nanoscale in graphene devices.« less

  8. Imaging electron motion in graphene

    DOE PAGES

    Bhandari, Sagar; Westervelt, Robert M.

    2017-01-05

    A cooled scanning probe microscope (SPM) is an ideal tool to image electronic motion in graphene: the SPM tip acts as a scanning gate, which interacts with the electron gas below. We introduce the technique using our group's previous work on imaging electron flow from a quantum point contact in a GaAs 2DEG and tuning an InAs quantum dot in an InAs/InP nanowire. Carriers in graphene have very different characteristics: electrons and holes travel at a constant speed with no bandgap, and they pass through potential barriers via Klein tunneling. In this paper, we review the extension of SPM imagingmore » techniques to graphene. We image the cyclotron orbits passing between two narrow contacts in a single-atomic-layer graphene device in a perpendicular magnetic field. Magnetic focusing produces a peak in transmission between the contacts when the cyclotron diameter is equal to the contact spacing. The charged SPM tip deflects electrons passing from one contact to the other, changing the transmission when it interrupts the flow. By displaying the change in transmission as the tip is raster scanned above the sample, an image of flow is obtained. In addition, we have developed a complementary technique to image electronic charge using a cooled scanning capacitance microscope (SCM) that uses a sensitive charge preamplifier near the SPM tip to achieve a charge noise level 0.13 e Hz -1/2 with high spatial resolution 100 nm. The cooled SPM and SCM can be used to probe the motion of electrons on the nanoscale in graphene devices.« less

  9. Dual-contrast agent photon-counting computed tomography of the heart: initial experience.

    PubMed

    Symons, Rolf; Cork, Tyler E; Lakshmanan, Manu N; Evers, Robert; Davies-Venn, Cynthia; Rice, Kelly A; Thomas, Marvin L; Liu, Chia-Ying; Kappler, Steffen; Ulzheimer, Stefan; Sandfort, Veit; Bluemke, David A; Pourmorteza, Amir

    2017-08-01

    To determine the feasibility of dual-contrast agent imaging of the heart using photon-counting detector (PCD) computed tomography (CT) to simultaneously assess both first-pass and late enhancement of the myocardium. An occlusion-reperfusion canine model of myocardial infarction was used. Gadolinium-based contrast was injected 10 min prior to PCD CT. Iodinated contrast was infused immediately prior to PCD CT, thus capturing late gadolinium enhancement as well as first-pass iodine enhancement. Gadolinium and iodine maps were calculated using a linear material decomposition technique and compared to single-energy (conventional) images. PCD images were compared to in vivo and ex vivo magnetic resonance imaging (MRI) and histology. For infarct versus remote myocardium, contrast-to-noise ratio (CNR) was maximal on late enhancement gadolinium maps (CNR 9.0 ± 0.8, 6.6 ± 0.7, and 0.4 ± 0.4, p < 0.001 for gadolinium maps, single-energy images, and iodine maps, respectively). For infarct versus blood pool, CNR was maximum for iodine maps (CNR 11.8 ± 1.3, 3.8 ± 1.0, and 1.3 ± 0.4, p < 0.001 for iodine maps, gadolinium maps, and single-energy images, respectively). Combined first-pass iodine and late gadolinium maps allowed quantitative separation of blood pool, scar, and remote myocardium. MRI and histology analysis confirmed accurate PCD CT delineation of scar. Simultaneous multi-contrast agent cardiac imaging is feasible with photon-counting detector CT. These initial proof-of-concept results may provide incentives to develop new k-edge contrast agents, to investigate possible interactions between multiple simultaneously administered contrast agents, and to ultimately bring them to clinical practice.

  10. Servo-controlled intravital microscope system

    NASA Technical Reports Server (NTRS)

    Mansour, M. N.; Wayland, H. J.; Chapman, C. P. (Inventor)

    1975-01-01

    A microscope system is described for viewing an area of a living body tissue that is rapidly moving, by maintaining the same area in the field-of-view and in focus. A focus sensing portion of the system includes two video cameras at which the viewed image is projected, one camera being slightly in front of the image plane and the other slightly behind it. A focus sensing circuit for each camera differentiates certain high frequency components of the video signal and then detects them and passes them through a low pass filter, to provide dc focus signal whose magnitudes represent the degree of focus. An error signal equal to the difference between the focus signals, drives a servo that moves the microscope objective so that an in-focus view is delivered to an image viewing/recording camera.

  11. Bi-cubic interpolation for shift-free pan-sharpening

    NASA Astrophysics Data System (ADS)

    Aiazzi, Bruno; Baronti, Stefano; Selva, Massimo; Alparone, Luciano

    2013-12-01

    Most of pan-sharpening techniques require the re-sampling of the multi-spectral (MS) image for matching the size of the panchromatic (Pan) image, before the geometric details of Pan are injected into the MS image. This operation is usually performed in a separable fashion by means of symmetric digital low-pass filtering kernels with odd lengths that utilize piecewise local polynomials, typically implementing linear or cubic interpolation functions. Conversely, constant, i.e. nearest-neighbour, and quadratic kernels, implementing zero and two degree polynomials, respectively, introduce shifts in the magnified images, that are sub-pixel in the case of interpolation by an even factor, as it is the most usual case. However, in standard satellite systems, the point spread functions (PSF) of the MS and Pan instruments are centered in the middle of each pixel. Hence, commercial MS and Pan data products, whose scale ratio is an even number, are relatively shifted by an odd number of half pixels. Filters of even lengths may be exploited to compensate the half-pixel shifts between the MS and Pan sampling grids. In this paper, it is shown that separable polynomial interpolations of odd degrees are feasible with linear-phase kernels of even lengths. The major benefit is that bi-cubic interpolation, which is known to represent the best trade-off between performances and computational complexity, can be applied to commercial MS + Pan datasets, without the need of performing a further half-pixel registration after interpolation, to align the expanded MS with the Pan image.

  12. Automated processing of first-pass radionuclide angiocardiography by factor analysis of dynamic structures.

    PubMed

    Cavailloles, F; Bazin, J P; Capderou, A; Valette, H; Herbert, J L; Di Paola, R

    1987-05-01

    A method for automatic processing of cardiac first-pass radionuclide study is presented. This technique, factor analysis of dynamic structures (FADS) provides an automatic separation of anatomical structures according to their different temporal behaviour, even if they are superimposed. FADS has been applied to 76 studies. A description of factor patterns obtained in various pathological categories is presented. FADS provides easy diagnosis of shunts and tricuspid insufficiency. Quantitative information derived from the factors (cardiac output and mean transit time) were compared to those obtained by the region of interest method. Using FADS, a higher correlation with cardiac catheterization was found for cardiac output calculation. Thus compared to the ROI method, FADS presents obvious advantages: a good separation of overlapping cardiac chambers is obtained; this operator independant method provides more objective and reproducible results. A number of parameters of the cardio-pulmonary function can be assessed by first-pass radionuclide angiocardiography (RNA) [1,2]. Usually, they are calculated using time-activity curves (TAC) from regions of interest (ROI) drawn on the cardiac chambers and the lungs. This method has two main drawbacks: (1) the lack of inter and intra-observers reproducibility; (2) the problem of crosstalk which affects the evaluation of the cardio-pulmonary performance. The crosstalk on planar imaging is due to anatomical superimposition of the cardiac chambers and lungs. The activity measured in any ROI is the sum of the activity in several organs and 'decontamination' of the TAC cannot easily be performed using the ROI method [3]. Factor analysis of dynamic structures (FADS) [4,5] can solve the two problems mentioned above. It provides an automatic separation of anatomical structures according to their different temporal behaviour, even if they are superimposed. The resulting factors are estimates of the time evolution of the activity in each structure (underlying physiological components), and the associated factor images are estimates of the spatial distribution of each factor. The aim of this study was to assess the reliability of FADS in first pass RNA and compare the results to those obtained by the ROI method which is generally considered as the routine procedure.

  13. Eccentric correction for off-axis vision in central visual field loss.

    PubMed

    Gustafsson, Jörgen; Unsbo, Peter

    2003-07-01

    Subjects with absolute central visual field loss use eccentric fixation and magnifying devices to utilize their residual vision. This preliminary study investigated the importance of an accurate eccentric correction of off-axis refractive errors to optimize the residual visual function for these subjects. Photorefraction using the PowerRefractor instrument was used to evaluate the ametropia in eccentric fixation angles. Methods were adapted for measuring visual acuity outside the macula using filtered optotypes from high-pass resolution perimetry. Optical corrections were implemented, and the visual function of subjects with central visual field loss was measured with and without eccentric correction. Of the seven cases reported, five experienced an improvement in visual function in their preferred retinal locus with eccentric refraction. The main result was that optical correction for better image quality on the peripheral retina is important for the vision of subjects with central visual field loss, objectively as well as subjectively.

  14. Computer vision based method and system for online measurement of geometric parameters of train wheel sets.

    PubMed

    Zhang, Zhi-Feng; Gao, Zhan; Liu, Yuan-Yuan; Jiang, Feng-Chun; Yang, Yan-Li; Ren, Yu-Fen; Yang, Hong-Jun; Yang, Kun; Zhang, Xiao-Dong

    2012-01-01

    Train wheel sets must be periodically inspected for possible or actual premature failures and it is very significant to record the wear history for the full life of utilization of wheel sets. This means that an online measuring system could be of great benefit to overall process control. An online non-contact method for measuring a wheel set's geometric parameters based on the opto-electronic measuring technique is presented in this paper. A charge coupled device (CCD) camera with a selected optical lens and a frame grabber was used to capture the image of the light profile of the wheel set illuminated by a linear laser. The analogue signals of the image were transformed into corresponding digital grey level values. The 'mapping function method' is used to transform an image pixel coordinate to a space coordinate. The images of wheel sets were captured when the train passed through the measuring system. The rim inside thickness and flange thickness were measured and analyzed. The spatial resolution of the whole image capturing system is about 0.33 mm. Theoretic and experimental results show that the online measurement system based on computer vision can meet wheel set measurement requirements.

  15. Platforms for hyperspectral imaging, in-situ optical and acoustical imaging in urbanized regions

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.; Oney, Taylor

    2016-10-01

    Hyperspectral measurements of the water surface of urban coastal waters are presented. Oblique bidirectional reflectance factor imagery was acquired made in a turbid coastal sub estuary of the Indian River Lagoon, Florida and along coastal surf zone waters of the nearby Atlantic Ocean. Imagery was also collected using a pushbroom hyperspectral imager mounted on a fixed platform with a calibrated circular mechatronic rotation stage. Oblique imagery of the shoreline and subsurface features clearly shows subsurface bottom features and rip current features within the surf zone water column. In-situ hyperspectral optical signatures were acquired from a vessel as a function of depth to determine the attenuation spectrum in Palm Bay. A unique stationary platform methodology to acquire subsurface acoustic images showing the presence of moving bottom boundary nephelometric layers passing through the acoustic fan beam. The acoustic fan beam imagery indicated the presence of oscillatory subsurface waves in the urbanized coastal estuary. Hyperspectral imaging using the fixed platform techniques are being used to collect hyperspectral bidirectional reflectance factor (BRF) measurements from locations at buildings and bridges in order to provide new opportunities to advance our scientific understanding of aquatic environments in urbanized regions.

  16. Health Reports

    DTIC Science & Technology

    1993-07-01

    for transplant, further improvements are needed. 6 Medicare : Physicians Who Invest in Imaging Centers Refer More Patients for More Costly Services ...premature and low birth weight babies were delivered with great frequency by both HealthPASS and fee -for- service providers, (3) some HealthPASS...Supplemental Food Program for Women, Infants, and Children (WIC) is no greater than the enrollment of eligible Medicaid fee -for- service women and children

  17. Images of Bottomside Irregularities Observed at Topside Altitudes (Postprint)

    DTIC Science & Technology

    2012-04-04

    pairs of 20 m tip-to-tip double probes and a fluxgate magnetometer on a 0.6 m boom [Pfaff et al., 2010]. Vector electric fields are obtained with 16-bit... magnetometer out- puts. AC electric fields are measured by passing VEFI data streams though low (0–6 Hz) and high-pass (3–8,000 Hz) filters. AC magnetic field

  18. Earth observation taken by the Expedition 46 crew

    NASA Image and Video Library

    2016-01-23

    ISS046e021993 (01/23/2016) --- Earth observation of the coast of Oman taken during a night pass by the Expedition 46 crew aboard the International Space Station. NASA astronaut Tim Kopra tweeted this image out with this message: "Passing over the Gulf of #Oman at night -- city lights of #Muscat #Dubai #AbuDhabi and #Doha in the distance".

  19. First-Pass Contrast-Enhanced MRA for Pretherapeutic Diagnosis of Spinal Epidural Arteriovenous Fistulas with Intradural Venous Reflux.

    PubMed

    Mathur, S; Symons, S P; Huynh, T J; Muthusami, P; Montanera, W; Bharatha, A

    2017-01-01

    Spinal epidural AVFs are rare spinal vascular malformations. When there is associated intradural venous reflux, they may mimic the more common spinal dural AVFs. Correct diagnosis and localization before conventional angiography is beneficial to facilitate treatment. We hypothesize that first-pass contrast-enhanced MRA can diagnose and localize spinal epidural AVFs with intradural venous reflux and distinguish them from other spinal AVFs. Forty-two consecutive patients with a clinical and/or radiologic suspicion of spinal AVF underwent MR imaging, first-pass contrast-enhanced MRA, and DSA at a single institute (2000-2015). MR imaging/MRA and DSA studies were reviewed by 2 independent blinded observers. DSA was used as the reference standard. On MRA, all 7 spinal epidural AVFs with intradural venous reflux were correctly diagnosed and localized with no interobserver disagreement. The key diagnostic feature was arterialized filling of an epidural venous pouch with a refluxing radicular vein arising from the arterialized epidural venous system. First-pass contrast-enhanced MRA is a reliable and useful technique for the initial diagnosis and localization of spinal epidural AVFs with intradural venous reflux and can distinguish these lesions from other spinal AVFs. © 2017 by American Journal of Neuroradiology.

  20. Neurocognitive assessment in patients with a minor traumatic brain injury and an abnormal initial CT scan: Can cognitive evaluation assist in identifying patients who require surveillance CT brain imaging?

    PubMed

    Clements, Thomas W; Dunham, Michael; Kirkpatrick, Andrew; Rajakumar, Ruphus; Gratton, Carolyn; Lall, Rohan; McBeth, Paul; Ball, Chad G

    2018-05-01

    Evidence for repeat computed tomography (CT) in minor traumatic brain injury (mTBI) patients with intracranial pathology is scarce. The aim of this study was to investigate the utility of clinical cognitive assessment (COG) in defining the need for repeat imaging. COG performance was compared with findings on subsequent CT, and need for neurosurgery in mTBI patients (GCS 13-15 and positive CT findings). Of 152 patients, 65.8% received a COG (53.0% passed). Patients with passed COG underwent fewer repeat CT (43.4% vs. 78.7%; p = .001) and had shorter LOS (8.7 vs. 19.5; p < .05). Only 1 patient required neurosurgery after a passed COG. The negative predictive value of a normal COG was 90.6% (95%CI = 81.8%-95.4%). mTBI patients with an abnormal index CT who pass COG are less likely to undergo repeat CT head, and rarely require neurosurgery. The COG warrants further investigation to determine its role in omitting repeat head CT. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Non-integer expansion embedding techniques for reversible image watermarking

    NASA Astrophysics Data System (ADS)

    Xiang, Shijun; Wang, Yi

    2015-12-01

    This work aims at reducing the embedding distortion of prediction-error expansion (PE)-based reversible watermarking. In the classical PE embedding method proposed by Thodi and Rodriguez, the predicted value is rounded to integer number for integer prediction-error expansion (IPE) embedding. The rounding operation makes a constraint on a predictor's performance. In this paper, we propose a non-integer PE (NIPE) embedding approach, which can proceed non-integer prediction errors for embedding data into an audio or image file by only expanding integer element of a prediction error while keeping its fractional element unchanged. The advantage of the NIPE embedding technique is that the NIPE technique can really bring a predictor into full play by estimating a sample/pixel in a noncausal way in a single pass since there is no rounding operation. A new noncausal image prediction method to estimate a pixel with four immediate pixels in a single pass is included in the proposed scheme. The proposed noncausal image predictor can provide better performance than Sachnev et al.'s noncausal double-set prediction method (where data prediction in two passes brings a distortion problem due to the fact that half of the pixels were predicted with the watermarked pixels). In comparison with existing several state-of-the-art works, experimental results have shown that the NIPE technique with the new noncausal prediction strategy can reduce the embedding distortion for the same embedding payload.

  2. Motion-compensated compressed sensing for dynamic contrast-enhanced MRI using regional spatiotemporal sparsity and region tracking: Block LOw-rank Sparsity with Motion-guidance (BLOSM)

    PubMed Central

    Chen, Xiao; Salerno, Michael; Yang, Yang; Epstein, Frederick H.

    2014-01-01

    Purpose Dynamic contrast-enhanced MRI of the heart is well-suited for acceleration with compressed sensing (CS) due to its spatiotemporal sparsity; however, respiratory motion can degrade sparsity and lead to image artifacts. We sought to develop a motion-compensated CS method for this application. Methods A new method, Block LOw-rank Sparsity with Motion-guidance (BLOSM), was developed to accelerate first-pass cardiac MRI, even in the presence of respiratory motion. This method divides the images into regions, tracks the regions through time, and applies matrix low-rank sparsity to the tracked regions. BLOSM was evaluated using computer simulations and first-pass cardiac datasets from human subjects. Using rate-4 acceleration, BLOSM was compared to other CS methods such as k-t SLR that employs matrix low-rank sparsity applied to the whole image dataset, with and without motion tracking, and to k-t FOCUSS with motion estimation and compensation that employs spatial and temporal-frequency sparsity. Results BLOSM was qualitatively shown to reduce respiratory artifact compared to other methods. Quantitatively, using root mean squared error and the structural similarity index, BLOSM was superior to other methods. Conclusion BLOSM, which exploits regional low rank structure and uses region tracking for motion compensation, provides improved image quality for CS-accelerated first-pass cardiac MRI. PMID:24243528

  3. Thermal effectiveness of multiple shell and tube pass TEMA E heat exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pignotti, A.; Tamborenea, P.I.

    1988-02-01

    The thermal effectiveness of a TEMAE shell-and-tube heat exchanger, with one shell pass and an arbitrary number of tube passes, is determined under the usual simplifying assumptions of perfect transverse mixing of the shell fluid, no phase change, and temperature independence of the heat capacity rates and the heat transfer coefficient. A purely algebraic solution is obtained for the effectiveness as a functions of the heat capacity rate ratio and the number of heat transfer units. The case with M shell passes and N tube passes is easily expressed in terms of the single-shell-pass case.

  4. SU-E-J-86: Functional Conformal Planning for Stereotactic Body Radiation Therapy with CT-Pulmonary Ventilation Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurosawa, T; Moriya, S; Sato, M

    2015-06-15

    Purpose: To evaluate the functional planning using CT-pulmonary ventilation imaging for conformal SBRT. Methods: The CT-pulmonary ventilation image was generated using the Jacobian metric in the in-house program with the NiftyReg software package. Using the ventilation image, the normal lung was split into three lung regions for functionality (high, moderate and low). The anatomical plan (AP) and functional plan (FP) were made for ten lung SBRT patients. For the AP, the beam angles were optimized with the dose-volume constraints for the normal lung sparing and the PTV coverage. For the FP, the gantry angles were also optimized with the additionalmore » constraint for high functional lung. The MLC aperture shapes were adjusted to the PTV with the additional 5 mm margin. The dosimetric parameters for PTV, the functional volumes, spinal cord and so on were compared in both plans. Results: Compared to the AP, the FP showed better dose sparing for high- and moderate-functional lungs with similar PTV coverage while not taking care of the low functional lung (High:−12.9±9.26% Moderate: −2.0±7.09%, Low: +4.1±12.2%). For the other normal organs, the FP and AP showed similar dose sparing in the eight patients. However, the FP showed that the maximum doses for spinal cord were increased with the significant increment of 16.4Gy and 21.0Gy in other two patients, respectively. Because the beam direction optimizer chose the unexpected directions passing through the spinal cord. Conclusion: Even the functional conformal SBRT can selectively reduce high- and moderatefunctional lung while keeping the PTV coverage. However, it would be careful that the optimizer would choose unexpected beam angles and the dose sparing for the other normal organs can be worse. Therefore, the planner needs to control the dose-volume constraints and also limit the beam angles in order to achieve the expected dose sparing and coverage.« less

  5. Statistical variability and confidence intervals for planar dose QA pass rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Daniel W.; Nelms, Benjamin E.; Attwood, Kristopher

    Purpose: The most common metric for comparing measured to calculated dose, such as for pretreatment quality assurance of intensity-modulated photon fields, is a pass rate (%) generated using percent difference (%Diff), distance-to-agreement (DTA), or some combination of the two (e.g., gamma evaluation). For many dosimeters, the grid of analyzed points corresponds to an array with a low areal density of point detectors. In these cases, the pass rates for any given comparison criteria are not absolute but exhibit statistical variability that is a function, in part, on the detector sampling geometry. In this work, the authors analyze the statistics ofmore » various methods commonly used to calculate pass rates and propose methods for establishing confidence intervals for pass rates obtained with low-density arrays. Methods: Dose planes were acquired for 25 prostate and 79 head and neck intensity-modulated fields via diode array and electronic portal imaging device (EPID), and matching calculated dose planes were created via a commercial treatment planning system. Pass rates for each dose plane pair (both centered to the beam central axis) were calculated with several common comparison methods: %Diff/DTA composite analysis and gamma evaluation, using absolute dose comparison with both local and global normalization. Specialized software was designed to selectively sample the measured EPID response (very high data density) down to discrete points to simulate low-density measurements. The software was used to realign the simulated detector grid at many simulated positions with respect to the beam central axis, thereby altering the low-density sampled grid. Simulations were repeated with 100 positional iterations using a 1 detector/cm{sup 2} uniform grid, a 2 detector/cm{sup 2} uniform grid, and similar random detector grids. For each simulation, %/DTA composite pass rates were calculated with various %Diff/DTA criteria and for both local and global %Diff normalization techniques. Results: For the prostate and head/neck cases studied, the pass rates obtained with gamma analysis of high density dose planes were 2%-5% higher than respective %/DTA composite analysis on average (ranging as high as 11%), depending on tolerances and normalization. Meanwhile, the pass rates obtained via local normalization were 2%-12% lower than with global maximum normalization on average (ranging as high as 27%), depending on tolerances and calculation method. Repositioning of simulated low-density sampled grids leads to a distribution of possible pass rates for each measured/calculated dose plane pair. These distributions can be predicted using a binomial distribution in order to establish confidence intervals that depend largely on the sampling density and the observed pass rate (i.e., the degree of difference between measured and calculated dose). These results can be extended to apply to 3D arrays of detectors, as well. Conclusions: Dose plane QA analysis can be greatly affected by choice of calculation metric and user-defined parameters, and so all pass rates should be reported with a complete description of calculation method. Pass rates for low-density arrays are subject to statistical uncertainty (vs. the high-density pass rate), but these sampling errors can be modeled using statistical confidence intervals derived from the sampled pass rate and detector density. Thus, pass rates for low-density array measurements should be accompanied by a confidence interval indicating the uncertainty of each pass rate.« less

  6. Integrating medical imaging analyses through a high-throughput bundled resource imaging system

    NASA Astrophysics Data System (ADS)

    Covington, Kelsie; Welch, E. Brian; Jeong, Ha-Kyu; Landman, Bennett A.

    2011-03-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists.

  7. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fave, Xenia, E-mail: xjfave@mdanderson.org; Fried, David; Mackin, Dennis

    Purpose: Increasing evidence suggests radiomics features extracted from computed tomography (CT) images may be useful in prognostic models for patients with nonsmall cell lung cancer (NSCLC). This study was designed to determine whether such features can be reproducibly obtained from cone-beam CT (CBCT) images taken using medical Linac onboard-imaging systems in order to track them through treatment. Methods: Test-retest CBCT images of ten patients previously enrolled in a clinical trial were retrospectively obtained and used to determine the concordance correlation coefficient (CCC) for 68 different texture features. The volume dependence of each feature was also measured using the Spearman rankmore » correlation coefficient. Features with a high reproducibility (CCC > 0.9) that were not due to volume dependence in the patient test-retest set were further examined for their sensitivity to differences in imaging protocol, level of scatter, and amount of motion by using two phantoms. The first phantom was a texture phantom composed of rectangular cartridges to represent different textures. Features were measured from two cartridges, shredded rubber and dense cork, in this study. The texture phantom was scanned with 19 different CBCT imagers to establish the features’ interscanner variability. The effect of scatter on these features was studied by surrounding the same texture phantom with scattering material (rice and solid water). The effect of respiratory motion on these features was studied using a dynamic-motion thoracic phantom and a specially designed tumor texture insert of the shredded rubber material. The differences between scans acquired with different Linacs and protocols, varying amounts of scatter, and with different levels of motion were compared to the mean intrapatient difference from the test-retest image set. Results: Of the original 68 features, 37 had a CCC >0.9 that was not due to volume dependence. When the Linac manufacturer and imaging protocol were kept consistent, 4–13 of these 37 features passed our criteria for reproducibility more than 50% of the time, depending on the manufacturer-protocol combination. Almost all of the features changed substantially when scatter material was added around the phantom. For the dense cork, 23 features passed in the thoracic scans and 11 features passed in the head scans when the differences between one and two layers of scatter were compared. Using the same test for the shredded rubber, five features passed the thoracic scans and eight features passed the head scans. Motion substantially impacted the reproducibility of the features. With 4 mm of motion, 12 features from the entire volume and 14 features from the center slice measurements were reproducible. With 6–8 mm of motion, three features (Laplacian of Gaussian filtered kurtosis, gray-level nonuniformity, and entropy), from the entire volume and seven features (coarseness, high gray-level run emphasis, gray-level nonuniformity, sum-average, information measure correlation, scaled mean, and entropy) from the center-slice measurements were considered reproducible. Conclusions: Some radiomics features are robust to the noise and poor image quality of CBCT images when the imaging protocol is consistent, relative changes in the features are used, and patients are limited to those with less than 1 cm of motion.« less

  8. Level-tolerant duration selectivity in the auditory cortex of the velvety free-tailed bat Molossus molossus.

    PubMed

    Macías, Silvio; Hernández-Abad, Annette; Hechavarría, Julio C; Kössl, Manfred; Mora, Emanuel C

    2015-05-01

    It has been reported previously that in the inferior colliculus of the bat Molossus molossus, neuronal duration tuning is ambiguous because the tuning type of the neurons dramatically changes with the sound level. In the present study, duration tuning was examined in the auditory cortex of M. molossus to describe if it is as ambiguous as the collicular tuning. From a population of 174 cortical 104 (60 %) neurons did not show duration selectivity (all-pass). Around 5 % (9 units) responded preferentially to stimuli having longer durations showing long-pass duration response functions, 35 (20 %) responded to a narrow range of stimulus durations showing band-pass duration response functions, 24 (14 %) responded most strongly to short stimulus durations showing short-pass duration response functions and two neurons (1 %) responded best to two different stimulus durations showing a two-peaked duration-response function. The majority of neurons showing short- (16 out of 24) and band-pass (24 out 35) selectivity displayed "O-shaped" duration response areas. In contrast to the inferior colliculus, duration tuning in the auditory cortex of M. molossus appears level tolerant. That is, the type of duration selectivity and the stimulus duration eliciting the maximum response were unaffected by changing sound level.

  9. Many Rays Are Better than Two.

    ERIC Educational Resources Information Center

    Grayson, Diane J.

    1995-01-01

    Proposes an alternative approach to locating the image formed by a lens. Two special rays are used to locate the image, then a number of other rays are drawn in to indicate that light from the object passes through every part of the lens. (MVL)

  10. Getting Better or Getting Well? The Patient Acceptable Symptom State (PASS) Better Predicts Patient's Satisfaction than the Decrease of Pain, in Knee Osteoarthritis Subjects Treated with Viscosupplementation.

    PubMed

    Conrozier, Thierry; Monet, Matthieu; Lohse, Anne; Raman, Raghu

    2017-08-01

    Background In the management of knee osteoarthritis (OA), patient-reported-outcomes (PROs) are being developed for relevant assessment of pain. The patient acceptable symptom state (PASS) is a relevant cutoff, which allows classifying patients as being in "an acceptable state" or not. Viscosupplementation is a therapeutic modality widely used in patients with knee OA that many patients are satisfied with despite meta-analyses give conflicting results. Objectives To compare, 6 months after knee viscosupplementation, the percentage of patients who reached the PASS threshold (PASS +) with that obtained from other PROs. Methods Data of 53 consecutive patients treated with viscosupplementation (HANOX-M-XL) and followed using a standardized procedure, were analyzed at baseline and month 6. The PROs were Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain and function, patient's global assessment of pain (PGAP), patient's self-assessment of satisfaction, PASS for WOMAC pain and PGAP. Results At baseline, WOMAC pain and PGAP (range 0-10) were 4.6 (1.1) and 6.0 (1.1). At month 6, they were 1.9 (1.2) and 3.1 (5) ( P < 0.0001). At 6 months, 83% of patients were "PASS + pain," 100% "PASS + function," 79% "PASS + PGAP," 79% were satisfied, and 73.6% experienced a ≥50% decrease in WOMAC pain. Among "PASS + pain" and "PASS + PGAP" subjects, 90% and 83.3% were satisfied with the treatment, respectively. Conclusion In daily practice, clinical response to viscosupplementation slightly varies according to PROs. "PASS + PGAP" was the most related to patient satisfaction.

  11. New Models for Protocol Security

    DTIC Science & Technology

    2015-06-18

    Rafael Pass, Alon Rosen , Eylon Yogev: One- Way Functions and (Im)Perfect Obfuscation. FOCS 2014: 374-383 14. Joseph Y. Halpern, Rafael Pass, Lior Seeman...Conservative belief and rationality. Games and Economic Behavior 80: 186-192 (2013) 21. Rafael Pass, Alon Rosen , Wei-Lung Dustin Tseng: Public-Coin...Pass, Wei-Lung Dustin Tseng: The Knowledge Tightness of Par- allel Zero-Knowledge. TCC 2012: 512-529 44. Boaz Barak , Ran Canetti, Yehuda Lindell, Rafael

  12. Functionally distinct amygdala subregions identified using DTI and high-resolution fMRI

    PubMed Central

    Balderston, Nicholas L.; Schultz, Douglas H.; Hopkins, Lauren

    2015-01-01

    Although the amygdala is often directly linked with fear and emotion, amygdala neurons are activated by a wide variety of emotional and non-emotional stimuli. Different subregions within the amygdala may be engaged preferentially by different aspects of emotional and non-emotional tasks. To test this hypothesis, we measured and compared the effects of novelty and fear on amygdala activity. We used high-resolution blood oxygenation level-dependent (BOLD) imaging and streamline tractography to subdivide the amygdala into three distinct functional subunits. We identified a laterobasal subregion connected with the visual cortex that responds generally to visual stimuli, a non-projecting region that responds to salient visual stimuli, and a centromedial subregion connected with the diencephalon that responds only when a visual stimulus predicts an aversive outcome. We provide anatomical and functional support for a model of amygdala function where information enters through the laterobasal subregion, is processed by intrinsic circuits in the interspersed tissue, and is then passed to the centromedial subregion, where activation leads to behavioral output. PMID:25969533

  13. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    DOEpatents

    Parker, S.

    1995-10-24

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z{sub 1} above upper collimator plane, distance z{sub 2} above the lower collimator plane, and distance z{sub 3} above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v{sub 1}, v{sub 2}, v{sub 3} proportional to z{sub 1}, z{sub 2} and z{sub 3}, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site. 5 figs.

  14. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    DOEpatents

    Parker, Sherwood

    1995-01-01

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.

  15. Fully automatic registration and segmentation of first-pass myocardial perfusion MR image sequences.

    PubMed

    Gupta, Vikas; Hendriks, Emile A; Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2010-11-01

    Derivation of diagnostically relevant parameters from first-pass myocardial perfusion magnetic resonance images involves the tedious and time-consuming manual segmentation of the myocardium in a large number of images. To reduce the manual interaction and expedite the perfusion analysis, we propose an automatic registration and segmentation method for the derivation of perfusion linked parameters. A complete automation was accomplished by first registering misaligned images using a method based on independent component analysis, and then using the registered data to automatically segment the myocardium with active appearance models. We used 18 perfusion studies (100 images per study) for validation in which the automatically obtained (AO) contours were compared with expert drawn contours on the basis of point-to-curve error, Dice index, and relative perfusion upslope in the myocardium. Visual inspection revealed successful segmentation in 15 out of 18 studies. Comparison of the AO contours with expert drawn contours yielded 2.23 ± 0.53 mm and 0.91 ± 0.02 as point-to-curve error and Dice index, respectively. The average difference between manually and automatically obtained relative upslope parameters was found to be statistically insignificant (P = .37). Moreover, the analysis time per slice was reduced from 20 minutes (manual) to 1.5 minutes (automatic). We proposed an automatic method that significantly reduced the time required for analysis of first-pass cardiac magnetic resonance perfusion images. The robustness and accuracy of the proposed method were demonstrated by the high spatial correspondence and statistically insignificant difference in perfusion parameters, when AO contours were compared with expert drawn contours. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maehana, W; Yokohama National University, Yokohama, kanagawa; Nagao, T

    Purpose: For the image guided radiation therapy (IGRT), the shadows caused by the construction of the treatment couch top adversely affect the visual evaluation. Therefore, we developed the new imaging filter in order to remove the shadows. The performance of the new filter was evaluated using the clinical images. Methods: The new filter was composed of the band-pass filter (BPF) weighted by the k factor and the low-pass filter (LPF). In the frequency region, the stop bandwidth were 8.3×10{sup 3} mm{sup −1} on u direction and 11.1×10{sup 3} mm{sup −1} on v direction for the BPF, and the pass bandwidthmore » were 8.3×10{sup 3} mm{sup −1} on u direction and 11.1×10{sup 3} mm{sup −1} on v direction for the LPF. After adding the filter, the shadows from the carbon fiber grid table top (CFGTT, Varian) on the kV-image was removed. To check the filter effect, we compared the clinical images, which are thorax and thoracoabdominal region, with to without the filter. The subjective evaluation tests was performed by adapting a three-point scale (agree, neither agree nor disagree, disagree) about the 15 persons in the department of radiation oncology. Results: We succeeded in removing all shadows of CFGTT using the new filter. This filter is very useful shown by the results of the subjective evaluation having the 23/30 persons agreed to the filtered clinical images. Conclusion: We concluded that the proposed method was useful tool for the IGRT and the new filter leads to improvement of the accuracy of radiation therapy.« less

  17. Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux

    PubMed Central

    Lee, Jonghwan; Jiang, James Y.; Wu, Weicheng; Lesage, Frederic; Boas, David A.

    2014-01-01

    We present a novel optical coherence tomography (OCT)-based technique for rapid volumetric imaging of red blood cell (RBC) flux in capillary networks. Previously we reported that OCT can capture individual RBC passage within a capillary, where the OCT intensity signal at a voxel fluctuates when an RBC passes the voxel. Based on this finding, we defined a metric of statistical intensity variation (SIV) and validated that the mean SIV is proportional to the RBC flux [RBC/s] through simulations and measurements. From rapidly scanned volume data, we used Hessian matrix analysis to vectorize a segment path of each capillary and estimate its flux from the mean of the SIVs gathered along the path. Repeating this process led to a 3D flux map of the capillary network. The present technique enabled us to trace the RBC flux changes over hundreds of capillaries with a temporal resolution of ~1 s during functional activation. PMID:24761298

  18. Polarimeter Blind Deconvolution Using Image Diversity

    DTIC Science & Technology

    2007-09-01

    significant presence when imaging through turbulence and its ease of production in the labora- tory. An innovative algorithm for detection and estimation...1.2.2.2 Atmospheric Turbulence . Atmospheric turbulence spatially distorts the wavefront as light passes through it and causes blurring of images in an...intensity image . Various values of β are used in the experiments. The optimal β value varied with the input and the algorithm . The hybrid seemed to

  19. Method to improve optical parametric oscillator beam quality

    DOEpatents

    Smith, Arlee V.; Alford, William J.; Bowers, Mark S.

    2003-11-11

    A method to improving optical parametric oscillator (OPO) beam quality having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.

  20. Optical parametric osicllators with improved beam quality

    DOEpatents

    Smith, Arlee V.; Alford, William J.

    2003-11-11

    An optical parametric oscillator (OPO) having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.

  1. Optical inspection system for cylindrical objects

    DOEpatents

    Brenden, Byron B.; Peters, Timothy J.

    1989-01-01

    In the inspection of cylindrical objects, particularly O-rings, the object is translated through a field of view and a linear light trace is projected on its surface. An image of the light trace is projected on a mask, which has a size and shape corresponding to the size and shape which the image would have if the surface of the object were perfect. If there is a defect, light will pass the mask and be sensed by a detector positioned behind the mask. Preferably, two masks and associated detectors are used, one mask being convex to pass light when the light trace falls on a projection from the surface and the other concave, to pass light when the light trace falls on a depression in the surface. The light trace may be either dynamic, formed by a scanned laser beam, or static, formed by such a beam focussed by a cylindrical lens. Means are provided to automatically keep the illuminating receiving systems properly aligned.

  2. High-resolution motion compensated MRA in patients with congenital heart disease using extracellular contrast agent at 3 Tesla.

    PubMed

    Dabir, Darius; Naehle, Claas Philip; Clauberg, Ralf; Gieseke, Juergen; Schild, Hans H; Thomas, Daniel

    2012-10-29

    Using first-pass MRA (FP-MRA) spatial resolution is limited by breath-hold duration. In addition, image quality may be hampered by respiratory and cardiac motion artefacts. In order to overcome these limitations an ECG- and navigator-gated high-resolution-MRA sequence (HR-MRA) with slow infusion of extracellular contrast agent was implemented at 3 Tesla for the assessment of congenital heart disease and compared to standard first-pass-MRA (FP-MRA). 34 patients (median age: 13 years) with congenital heart disease (CHD) were prospectively examined on a 3 Tesla system. The CMR-protocol comprised functional imaging, FP- and HR-MRA, and viability imaging. After the acquisition of the FP-MRA sequence using a single dose of extracellular contrast agent the motion compensated HR-MRA sequence with isotropic resolution was acquired while injecting the second single dose, utilizing the timeframe before viability imaging. Qualitative scores for image quality (two independent reviewers) as well as quantitative measurements of vessel sharpness and relative contrast were compared using the Wilcoxon signed-rank test. Quantitative measurements of vessel diameters were compared using the Bland-Altman test. The mean image quality score revealed significantly better image quality of the HR-MRA sequence compared to the FP-MRA sequence in all vessels of interest (ascending aorta (AA), left pulmonary artery (LPA), left superior pulmonary vein (LSPV), coronary sinus (CS), and coronary ostia (CO); all p < 0.0001). In comparison to FP-MRA, HR-MRA revealed significantly better vessel sharpness for all considered vessels (AA, LSPV and LPA; all p < 0.0001). The relative contrast of the HR-MRA sequence was less compared to the FP-MRA sequence (AA: p <0.028, main pulmonary artery: p <0.004, LSPV: p <0.005). Both, the results of the intra- and interobserver measurements of the vessel diameters revealed closer correlation and closer 95 % limits of agreement for the HR-MRA. HR-MRA revealed one additional clinical finding, missed by FP-MRA. An ECG- and navigator-gated HR-MRA-protocol with infusion of extracellular contrast agent at 3 Tesla is feasible. HR-MRA delivers significantly better image quality and vessel sharpness compared to FP-MRA. It may be integrated into a standard CMR-protocol for patients with CHD without the need for additional contrast agent injection and without any additional examination time.

  3. Region-specific connectivity in patients with periventricular nodular heterotopia and epilepsy: A study combining diffusion tensor imaging and functional MRI.

    PubMed

    Liu, Wenyu; An, Dongmei; Tong, Xin; Niu, Running; Gong, Qiyong; Zhou, Dong

    2017-10-01

    Periventricular nodular heterotopia (PNH) is an important cause of chronic epilepsy. The purpose of this study was to evaluate region-specific connectivity in PNH patients with epilepsy and assess correlation between connectivity strength and clinical factors including duration and prognosis. Diffusion tensor imaging (DTI) and resting state functional MRI (fMRI) were performed in 28 subjects (mean age 27.4years; range 9-56years). The structural connectivity of fiber bundles passing through the manually-selected segmented nodules and other brain regions were analyzed by tractography. Cortical lobes showing functional correlations to nodules were also determined. For all heterotopic gray matter nodules, including at least one in each subject, the most frequent segments to which nodular heterotopia showed structural (132/151) and functional (146/151) connectivity were discrete regions of the ipsilateral overlying cortex. Agreement between diffusion tensor tractography and functional connectivity analyses was conserved in 81% of all nodules (122/151). In patients with longer duration or refractory epilepsy, the connectivity was significantly stronger, particularly to the frontal and temporal lobes (P<0.05). Nodules in PNH were structurally and functionally connected to the cortex. The extent is stronger in patients with longstanding or intractable epilepsy. These findings suggest the region-specific interactions may help better evaluate prognosis and seek medical or surgical interventions of PNH-related epilepsy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Earth Observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18082 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when these images were taken from the International Space Station at roughly 11 a.m. (PST). Thick yellow smoke blows south, blanketing the valley below. This image and ISS007-E-18078, looking southeast, capture the smoke pall as the ISS approached and passed over the region. Image numbers 18078 and 18082 were taken roughly a minute apart. A small break in the smoke marks Cajon pass. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help crew members take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/].

  5. Earth Observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18078 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when these images were taken from the International Space Station at roughly 11 a.m. (PST). Thick yellow smoke blows south, blanketing the valley below. This image and ISS007-E-18082, looking southeast, capture the smoke pall as the ISS approached and passed over the region. Image numbers 18078 and 18082 were taken roughly a minute apart. A small break in the smoke marks Cajon pass. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help crew members take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/].

  6. Observations from Juno's Radiation Monitoring Investigation during Juno's Early Orbits

    NASA Astrophysics Data System (ADS)

    Becker, Heidi N.; Jorgensen, John L.; Adriani, Alberto; Mura, Alessandro; Connerney, John E. P.; Santos-Costa, Daniel; Bolton, Scott J.; Levin, Steven M.; Alexander, James W.; Adumitroaie, Virgil; Manor-Chapman, Emily A.; Daubar, Ingrid J.; Lee, Clifford; Benn, Mathias; Denver, Troelz; Sushkova, Julia; Cicchetti, Andrea; Noschese, Raffaella; Thorne, Richard M.

    2017-04-01

    Juno's Radiation Monitoring (RM) Investigation profiles Jupiter's >10-MeV electron environment throughout unexplored regions of the Jovian magnetosphere. RM's measurement approach involves active retrieval of the characteristic noise signatures from penetrating radiation in images obtained by Juno's heavily shielded star cameras and science instruments. Collaborative observation campaigns of "radiation image" collection and penetrating particle counts are conducted at targeted opportunities within the magnetosphere during each of Juno's perijove passes using the spacecraft Stellar Reference Unit, the Magnetic Field Investigation's Advanced Stellar Compass Imagers, and the JIRAM infrared imager. Simultaneous observations gathered from these very different instruments provide comparative spectral information due to substantial differences in instrument shielding. Juno's orbit provides a unique sampling of energetic particles within Jupiter's innermost radiation belts and polar regions. We present a survey of observations of the high energy radiation environment made by Juno's SRU and ASC star cameras and the JIRAM infrared imager during Juno's early perijove passes on August 27 and December 11, 2016; and February 2 and March 27, 2017. The JPL author's copyright for this publication is held by the California Institute of Technology. Government Sponsorship acknowledged.

  7. Improving the uniformity of luminous system in radial imaging capsule endoscope system

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Jeng, Wei-De

    2013-02-01

    This study concerns the illumination system in a radial imaging capsule endoscope (RICE). Uniformly illuminating the object is difficult because the intensity of the light from the light emitting diodes (LEDs) varies with angular displacement. When light is emitted from the surface of the LED, it first encounters the cone mirror, from which it is reflected, before directly passing through the lenses and complementary metal oxide semiconductor (CMOS) sensor. The light that is strongly reflected from the transparent view window (TVW) propagates again to the cone mirror, to be reflected and to pass through the lenses and CMOS sensor. The above two phenomena cause overblooming on the image plane. Overblooming causes nonuniform illumination on the image plane and consequently reduced image quality. In this work, optical design software was utilized to construct a photometric model for the optimal design of the LED illumination system. Based on the original RICE model, this paper proposes an optimal design to improve the uniformity of the illumination. The illumination uniformity in the RICE is increased from its original value of 0.128 to 0.69, greatly improving light uniformity.

  8. EnGeoMAP - geological applications within the EnMAP hyperspectral satellite science program

    NASA Astrophysics Data System (ADS)

    Boesche, N. K.; Mielke, C.; Rogass, C.; Guanter, L.

    2016-12-01

    Hyperspectral investigations from near field to space substantially contribute to geological exploration and mining monitoring of raw material and mineral deposits. Due to their spectral characteristics, large mineral occurrences and minefields can be identified from space and the spatial distribution of distinct proxy minerals be mapped. In the frame of the EnMAP hyperspectral satellite science program a mineral and elemental mapping tool was developed - the EnGeoMAP. It contains a basic mineral mapping and a rare earth element mapping approach. This study shows the performance of EnGeoMAP based on simulated EnMAP data of the rare earth element bearing Mountain Pass Carbonatite Complex, USA, and the Rodalquilar and Lomilla Calderas, Spain, which host the economically relevant gold-silver, lead-zinc-silver-gold and alunite deposits. The mountain pass image data was simulated on the basis of AVIRIS Next Generation images, while the Rodalquilar data is based on HyMap images. The EnGeoMAP - Base approach was applied to both images, while the mountain pass image data were additionally analysed using the EnGeoMAP - REE software tool. The results are mineral and elemental maps that serve as proxies for the regional lithology and deposit types. The validation of the maps is based on chemical analyses of field samples. Current airborne sensors meet the spatial and spectral requirements for detailed mineral mapping and future hyperspectral space borne missions will additionally provide a large coverage. For those hyperspectral missions, EnGeoMAP is a rapid data analysis tool that is provided to spectral geologists working in mineral exploration.

  9. Holographic arrays for multi-path imaging artifact reduction

    DOEpatents

    McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.

    2007-11-13

    A method and apparatus to remove human features utilizing at least one transmitter transmitting a signal between 200 MHz and 1 THz, the signal having at least one characteristic of elliptical polarization, and at least one receiver receiving the reflection of the signal from the transmitter. A plurality of such receivers and transmitters are arranged together in an array which is in turn mounted to a scanner, allowing the array to be passed adjacent to the surface of the item being imaged while the transmitter is transmitting electromagnetic radiation. The array is passed adjacent to the surface of the item, such as a human being, that is being imaged. The portions of the received signals wherein the polarity of the characteristic has been reversed and those portions of the received signal wherein the polarity of the characteristic has not been reversed are identified. An image of the item from those portions of the received signal wherein the polarity of the characteristic was reversed is then created.

  10. Proton radiography based on near-threshold Cerenkov radiation

    DOEpatents

    van Bibber, Karl A.; Dietrich, Frank S.

    2003-01-01

    A Cerenkov imaging system for charged particle radiography that determines the energy loss of the charged particle beam passing through an object. This energy loss information provides additional detail on target densities when used with traditional radiographic techniques like photon or x-ray radiography. In this invention a probe beam of 800 MeV to 50 GeV/c charged particles is passed through an object to be imaged, an imaging magnetic spectrometer, to a silicon aerogel Cerenkov radiator where the charged particles emitted Cerenkov light proportional to their velocity. At the same beam focal plane, a particle scintillator produces a light output proportional to the incident beam flux. Optical imaging systems relay the Cerenkov and scintillator information to CCD's or other measurement equipment. A ratio between the Cerenkov and scintillator is formed, which is directly proportional to the line density of the object for each pixel measured. By rotating the object, tomographic radiography may be performed. By applying pulses of beam, discrete time-step movies of dynamic objects may be made.

  11. SU-E-T-133: Assessing IMRT Treatment Delivery Accuracy and Consistency On a Varian TrueBeam Using the SunNuclear PerFraction EPID Dosimetry Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieterich, S; Trestrail, E; Holt, R

    2015-06-15

    Purpose: To assess if the TrueBeam HD120 collimator is delivering small IMRT fields accurately and consistently throughout the course of treatment using the SunNuclear PerFraction software. Methods: 7-field IMRT plans for 8 canine patients who passed IMRT QA using SunNuclear Mapcheck DQA were selected for this study. The animals were setup using CBCT image guidance. The EPID fluence maps were captured for each treatment field and each treatment fraction, with the first fraction EPID data serving as the baseline for comparison. The Sun Nuclear PerFraction Software was used to compare the EPID data for subsequent fractions using a Gamma (3%/3mm)more » pass rate of 90%. To simulate requirements for SRS, the data was reanalyzed using a Gamma (3%/1mm) pass rate of 90%. Low-dose, low- and high gradient thresholds were used to focus the analysis on clinically relevant parts of the dose distribution. Results: Not all fractions could be analyzed, because during some of the treatment courses the DICOM tags in the EPID images intermittently change from CU to US (unspecified), which would indicate a temporary loss of EPID calibration. This technical issue is still being investigated. For the remaining fractions, the vast majority (7/8 of patients, 95% of fractions, and 96.6% of fields) are passing the less stringent Gamma criteria. The more stringent Gamma criteria caused a drop in pass rate (90 % of fractions, 84% of fields). For the patient with the lowest pass rate, wet towel bolus was used. Another patient with low pass rates experienced masseter muscle wasting. Conclusion: EPID dosimetry using the PerFraction software demonstrated that the majority of fields passed a Gamma (3%/3mm) for IMRT treatments delivered with a TrueBeam HD120 MLC. Pass rates dropped for a DTA of 1mm to model SRS tolerances. PerFraction pass rates can flag missing bolus or internal shields. Sanjeev Saini is an employee of Sun Nuclear Corporation. For this study, a pre-release version of PerFRACTION 1.1 software from Sun Nuclear Corporation was used.« less

  12. [Functional electrical stimulation based on a working pattern influences function of lower extremity in subjects with early stroke and effects on diffusion tensor imaging: a randomized controlled trial].

    PubMed

    Chen, Danfeng; Yan, Tiebin; Li, Guandong; Li, Fangming; Liang, Qitang

    2014-10-14

    To explore the possible mechanisms for improving lower extremity motor function in patients with early stroke through combining magnetic resonance diffusion tensor imaging (DTI) technology and functional electrical stimulation (FES) based on human walking patterns. From August 2012 to September 2013, a total of 48 eligible patients were stratified according to age, gender, disease course, Brunnstrom staging and types of stroke. And the Minimize software was used to divided them randomly into four-channel FES group (n = 18), dual-channel FES group (n = 15) and comfort stimulation group (n = 15). For all three groups, general medication and standard rehabilitation were provided. Based on normal walking pattern design of FES treatment, four-channel FES groups received the stimulations of quadriceps, hamstring, anterior tibialis and medial gastrocnemius. For the dual-channel FES group, the stimulations of tibialis anterior, peroneus longus and peroneus brevis muscles were applied. In comfort electrical stimulation group, the electrode positions were identical to the stimulation group, but there was no current output during stimulation. Before and after 3-week treatment, three groups received weekly rehabilitation evaluations of Fugl-Meyer assessment (FMA), posture assessment of stroke scale (PASS), Brunel balance assessment (BBA), Berg balance scale (BBS) and modified Barthel index (MBI). Before and after treatment, DTI examination was performed for some patients. Among three groups, general patient profiles and pre-treatment evaluations showed no significant difference. For intra-group comparisons versus pre-treatment, at week 1, 2 and 3, the scores of PASS, BBA, BBS, FMA and MBI had statistically significant differences (P < 0.05); At week 3 post-treatment, when four-channel and double-channel FES groups were compared versus pre-treatment, the scores of ipsilateral FA had statistically significant differences (P < 0.05). At week 1 post-treatment, MBI had statistically significant difference among 3 groups (P = 0.037). As compared with placebo, four-channel group had statistically significant difference [(52 ± 12) vs (38 ± 18), P < 0.05]; At week 2 post-treatment, the scores of PASS and MBI were (29 ± 3, 73 ± 13) in four-channel FES group versus (24 ± 8, 60 ± 17) in dual-channel FES group. And the scores of PASS, BBA, BBS, FMA and MBI were (9 ± 3, 8.3 ± 2.4, 37 ± 7, 22 ± 5, 73 ± 13) in four-channel FES group versus (21 ± 7, 6.2 ± 3.1, 24 ± 16, 15 ± 8, 47 ± 20) in comfort electrical stimulation group. When dual-channel FES and comfort stimulation groups were compared, MBI had significant statistical difference [(60 ± 17) vs (47 ± 20), P < 0.05]. At week 3 post-treatment, four-channel and dual-channel FES groups were compared, there was also statistical significance in FMA [(25 ± 5) vs (20 ± 7), P = 0.055]. The scores of PASS, BBS, FMA and MBI were (31 ± 3, 43 ± 8, 25 ± 5, 81 ± 13) in four-channel FES group versus (25 ± 8, 29 ± 17, 17 ± 9, 54 ± 25) in comfort stimulation group respectively. When dual-channel FES and comfort stimulation groups were compared, the scores of MBI were (71 ± 15) and (54 ± 25) respectively. And the difference was statistically significant (P < 0.05). At week 3 post-treatment, the scores of FA significantly increased [four-channel FES group (0.321 ± 0.172) vs comfort stimulation group (0.217 ± 0.135) (P = 0.020)]. When dual-channel FES group (0.333 ± 0.164) and comfort stimulation group (0.217 ± 0.135) (P = 0.049) were compared, the differences were statistically significant. DTI showed that four-channel FES group increased significantly, but contralateral fiber bundle was not obvious. And the improvements of dual-channel FES and comfort stimulation groups were insignificant. Compared with traditional dual-channel FES, functional electrical stimulation based on human walking patterns is more efficacious. And it helps to restore brain structure and function and promote motor function recovery in patients with early stroke.

  13. Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images

    PubMed Central

    Säynäjoki, Raita; Packalén, Petteri; Maltamo, Matti; Vehmas, Mikko; Eerikäinen, Kalle

    2008-01-01

    The aim was to use high resolution Aerial Laser Scanning (ALS) data and aerial images to detect European aspen (Populus tremula L.) from among other deciduous trees. The field data consisted of 14 sample plots of 30 m × 30 m size located in the Koli National Park in the North Karelia, Eastern Finland. A Canopy Height Model (CHM) was interpolated from the ALS data with a pulse density of 3.86/m2, low-pass filtered using Height-Based Filtering (HBF) and binarized to create the mask needed to separate the ground pixels from the canopy pixels within individual areas. Watershed segmentation was applied to the low-pass filtered CHM in order to create preliminary canopy segments, from which the non-canopy elements were extracted to obtain the final canopy segmentation, i.e. the ground mask was analysed against the canopy mask. A manual classification of aerial images was employed to separate the canopy segments of deciduous trees from those of coniferous trees. Finally, linear discriminant analysis was applied to the correctly classified canopy segments of deciduous trees to classify them into segments belonging to aspen and those belonging to other deciduous trees. The independent variables used in the classification were obtained from the first pulse ALS point data. The accuracy of discrimination between aspen and other deciduous trees was 78.6%. The independent variables in the classification function were the proportion of vegetation hits, the standard deviation of in pulse heights, accumulated intensity at the 90th percentile and the proportion of laser points reflected at the 60th height percentile. The accuracy of classification corresponded to the validation results of earlier ALS-based studies on the classification of individual deciduous trees to tree species. PMID:27873799

  14. Perceptual color difference metric including a CSF based on the perception threshold

    NASA Astrophysics Data System (ADS)

    Rosselli, Vincent; Larabi, Mohamed-Chaker; Fernandez-Maloigne, Christine

    2008-01-01

    The study of the Human Visual System (HVS) is very interesting to quantify the quality of a picture, to predict which information will be perceived on it, to apply adapted tools ... The Contrast Sensitivity Function (CSF) is one of the major ways to integrate the HVS properties into an imaging system. It characterizes the sensitivity of the visual system to spatial and temporal frequencies and predicts the behavior for the three channels. Common constructions of the CSF have been performed by estimating the detection threshold beyond which it is possible to perceive a stimulus. In this work, we developed a novel approach for spatio-chromatic construction based on matching experiments to estimate the perception threshold. It consists in matching the contrast of a test stimulus with that of a reference one. The obtained results are quite different in comparison with the standard approaches as the chromatic CSFs have band-pass behavior and not low pass. The obtained model has been integrated in a perceptual color difference metric inspired by the s-CIELAB. The metric is then evaluated with both objective and subjective procedures.

  15. An analytic algorithm for global coverage of the revisiting orbit and its application to the CFOSAT satellite

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Huang, Li

    2014-08-01

    This paper addresses a new analytic algorithm for global coverage of the revisiting orbit and its application to the mission revisiting the Earth within long periods of time, such as Chinese-French Oceanic Satellite (abbr., CFOSAT). In the first, it is presented that the traditional design methodology of the revisiting orbit for some imaging satellites only on the single (ascending or descending) pass, and the repeating orbit is employed to perform the global coverage within short periods of time. However, the selection of the repeating orbit is essentially to yield the suboptimum from the rare measure of rational numbers of passes per day, which will lose lots of available revisiting orbits. Thus, an innovative design scheme is proposed to check both rational and irrational passes per day to acquire the relationship between the coverage percentage and the altitude. To improve the traditional imaging only on the single pass, the proposed algorithm is mapping every pass into its ascending and descending nodes on the specified latitude circle, and then is accumulating the projected width on the circle by the field of view of the satellite. The ergodic geometry of coverage percentage produced from the algorithm is affecting the final scheme, such as the optimal one owning the largest percentage, and the balance one possessing the less gradient in its vicinity, and is guiding to heuristic design for the station-keeping control strategies. The application of CFOSAT validates the feasibility of the algorithm.

  16. Phosphor Scanner For Imaging X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.

    1992-01-01

    Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.

  17. Method and apparatus for imaging through 3-dimensional tracking of protons

    NASA Technical Reports Server (NTRS)

    Ryan, James M. (Inventor); Macri, John R. (Inventor); McConnell, Mark L. (Inventor)

    2001-01-01

    A method and apparatus for creating density images of an object through the 3-dimensional tracking of protons that have passed through the object are provided. More specifically, the 3-dimensional tracking of the protons is accomplished by gathering and analyzing images of the ionization tracks of the protons in a closely packed stack of scintillating fibers.

  18. Low bit-rate image compression via adaptive down-sampling and constrained least squares upconversion.

    PubMed

    Wu, Xiaolin; Zhang, Xiangjun; Wang, Xiaohan

    2009-03-01

    Recently, many researchers started to challenge a long-standing practice of digital photography: oversampling followed by compression and pursuing more intelligent sparse sampling techniques. In this paper, we propose a practical approach of uniform down sampling in image space and yet making the sampling adaptive by spatially varying, directional low-pass prefiltering. The resulting down-sampled prefiltered image remains a conventional square sample grid, and, thus, it can be compressed and transmitted without any change to current image coding standards and systems. The decoder first decompresses the low-resolution image and then upconverts it to the original resolution in a constrained least squares restoration process, using a 2-D piecewise autoregressive model and the knowledge of directional low-pass prefiltering. The proposed compression approach of collaborative adaptive down-sampling and upconversion (CADU) outperforms JPEG 2000 in PSNR measure at low to medium bit rates and achieves superior visual quality, as well. The superior low bit-rate performance of the CADU approach seems to suggest that oversampling not only wastes hardware resources and energy, and it could be counterproductive to image quality given a tight bit budget.

  19. Pyramid image codes

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1990-01-01

    All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.

  20. Experimental evaluation of x-ray acoustic computed tomography for radiotherapy dosimetry applications.

    PubMed

    Hickling, Susannah; Lei, Hao; Hobson, Maritza; Léger, Pierre; Wang, Xueding; El Naqa, Issam

    2017-02-01

    The aim of this work was to experimentally demonstrate the feasibility of x-ray acoustic computed tomography (XACT) as a dosimetry tool in a clinical radiotherapy environment. The acoustic waves induced following a single pulse of linear accelerator irradiation in a water tank were detected with an immersion ultrasound transducer. By rotating the collimator and keeping the transducer stationary, acoustic signals at varying angles surrounding the field were detected and reconstructed to form an XACT image. Simulated XACT images were obtained using a previously developed simulation workflow. Profiles extracted from experimental and simulated XACT images were compared to profiles measured with an ion chamber. A variety of radiation field sizes and shapes were investigated. XACT images resembling the geometry of the delivered radiation field were obtained for fields ranging from simple squares to more complex shapes. When comparing profiles extracted from simulated and experimental XACT images of a 4 cm × 4 cm field, 97% of points were found to pass a 3%/3 mm gamma test. Agreement between simulated and experimental XACT images worsened when comparing fields with fine details. Profiles extracted from experimental XACT images were compared to profiles obtained through clinical ion chamber measurements, confirming that the intensity of XACT images is related to deposited radiation dose. Seventy-seven percent of the points in a profile extracted from an experimental XACT image of a 4 cm × 4 cm field passed a 7%/4 mm gamma test when compared to an ion chamber measured profile. In a complicated puzzle-piece shaped field, 86% of the points in an XACT extracted profile passed a 7%/4 mm gamma test. XACT images with intensity related to the spatial distribution of deposited dose in a water tank were formed for a variety of field sizes and shapes. XACT has the potential to be a useful tool for absolute, relative and in vivo dosimetry. © 2016 American Association of Physicists in Medicine.

  1. System Integration Issues in Digital Photogrammetric Mapping

    DTIC Science & Technology

    1992-01-01

    elevation models, and/or rectified imagery/ orthophotos . Imagery exported from the DSPW can be either in a tiled image format or standard raster format...data. In the near future, correlation using "window shaping" operations along with an iterative orthophoto refinements methodology (Norvelle, 1992) is...components of TIES. The IDS passes tiled image data and ASCII header data to the DSPW. The tiled image file contains only image data. The ASCII header

  2. Coherent Change Detection: Theoretical Description and Experimental Results

    DTIC Science & Technology

    2006-08-01

    Elementary Linear Algebra With Applications. John Wiley and sons, 1987. 49. J. Lee, K. W. Hoppel, and A. R. Miller, “Intensity and phase statistics of...kx, ky, kz = 0). The nature of the image recovered by the PFA may be ascertained by considering a scene consisting of an elementary point scatter...registered image pair estimate any dominant relative linear phase term between the primary image and the resampled repeat pass image and remove this

  3. Compressive Sampling based Image Coding for Resource-deficient Visual Communication.

    PubMed

    Liu, Xianming; Zhai, Deming; Zhou, Jiantao; Zhang, Xinfeng; Zhao, Debin; Gao, Wen

    2016-04-14

    In this paper, a new compressive sampling based image coding scheme is developed to achieve competitive coding efficiency at lower encoder computational complexity, while supporting error resilience. This technique is particularly suitable for visual communication with resource-deficient devices. At the encoder, compact image representation is produced, which is a polyphase down-sampled version of the input image; but the conventional low-pass filter prior to down-sampling is replaced by a local random binary convolution kernel. The pixels of the resulting down-sampled pre-filtered image are local random measurements and placed in the original spatial configuration. The advantages of local random measurements are two folds: 1) preserve high-frequency image features that are otherwise discarded by low-pass filtering; 2) remain a conventional image and can therefore be coded by any standardized codec to remove statistical redundancy of larger scales. Moreover, measurements generated by different kernels can be considered as multiple descriptions of the original image and therefore the proposed scheme has the advantage of multiple description coding. At the decoder, a unified sparsity-based soft-decoding technique is developed to recover the original image from received measurements in a framework of compressive sensing. Experimental results demonstrate that the proposed scheme is competitive compared with existing methods, with a unique strength of recovering fine details and sharp edges at low bit-rates.

  4. Use of Multi-Resolution Wavelet Feature Pyramids for Automatic Registration of Multi-Sensor Imagery

    NASA Technical Reports Server (NTRS)

    Zavorin, Ilya; LeMoigne, Jacqueline

    2003-01-01

    The problem of image registration, or alignment of two or more images representing the same scene or object, has to be addressed in various disciplines that employ digital imaging. In the area of remote sensing, just like in medical imaging or computer vision, it is necessary to design robust, fast and widely applicable algorithms that would allow automatic registration of images generated by various imaging platforms at the same or different times, and that would provide sub-pixel accuracy. One of the main issues that needs to be addressed when developing a registration algorithm is what type of information should be extracted from the images being registered, to be used in the search for the geometric transformation that best aligns them. The main objective of this paper is to evaluate several wavelet pyramids that may be used both for invariant feature extraction and for representing images at multiple spatial resolutions to accelerate registration. We find that the band-pass wavelets obtained from the Steerable Pyramid due to Simoncelli perform better than two types of low-pass pyramids when the images being registered have relatively small amount of nonlinear radiometric variations between them. Based on these findings, we propose a modification of a gradient-based registration algorithm that has recently been developed for medical data. We test the modified algorithm on several sets of real and synthetic satellite imagery.

  5. Hyperemic stress myocardial perfusion cardiovascular magnetic resonance in mice at 3 Tesla: initial experience and validation against microspheres.

    PubMed

    Jogiya, Roy; Makowski, Markus; Phinikaridou, Alkystsis; Patel, Ashish S; Jansen, Christian; Zarinabad, Niloufar; Chiribiri, Amedeo; Botnar, Rene; Nagel, Eike; Kozerke, Sebastian; Plein, Sven

    2013-07-21

    Dynamic first pass contrast-enhanced myocardial perfusion is the standard CMR method for the estimation of myocardial blood flow (MBF) and MBF reserve in man, but it is challenging in rodents because of the high temporal and spatial resolution requirements. Hyperemic first pass myocardial perfusion CMR during vasodilator stress in mice has not been reported. Five C57BL/6 J mice were scanned on a clinical 3.0 Tesla Achieva system (Philips Healthcare, Netherlands). Vasodilator stress was induced via a tail vein catheter with an injection of dipyridamole. Dynamic contrast-enhanced perfusion imaging (Gadobutrol 0.1 mmol/kg) was based on a saturation recovery spoiled gradient echo method with 10-fold k-space and time domain undersampling (k-t PCA). One week later the mice underwent repeat anaesthesia and LV injections of fluorescent microspheres at rest and at stress. Microspheres were analysed using confocal microscopy and fluorescence-activated cell sorting. Mean MBF at rest measured by Fermi-function constrained deconvolution was 4.1 ± 0.5 ml/g/min and increased to 9.6 ± 2.5 ml/g/min during dipyridamole stress (P = 0.005). The myocardial perfusion reserve was 2.4 ± 0.54. The mean count ratio of stress to rest microspheres was 2.4 ± 0.51 using confocal microscopy and 2.6 ± 0.46 using fluorescence. There was good agreement between cardiovascular magnetic resonance CMR and microspheres with no significant difference (P = 0.84). First-pass myocardial stress perfusion CMR in a mouse model is feasible at 3 Tesla. Rest and stress MBF values were consistent with existing literature and perfusion reserve correlated closely to microsphere analysis. Data were acquired on a 3 Tesla scanner using an approach similar to clinical acquisition protocols, potentially facilitating translation of imaging findings between rodent and human studies.

  6. The Role of Common Motor Responses in Stimulus Categorization by Preschool Children

    PubMed Central

    Mahoney, Amanda M; Miguel, Caio F; Ahearn, William H; Bell, Julianne

    2011-01-01

    The purpose of this study was to assess the role of common motor responses as the “speaker” behavior on stimulus class formation, and the emergence of functional classes. Experiment 1 examined whether training one motor response to a set of three stimuli and a second motor response to another set of three stimuli would result in correct category-sort responses for 5 typically developing preschool children. Three of the children passed the categorization tests. Experiment 2 examined whether the classes formed in Experiment 1 were functional classes, and whether participants who did not pass categorization tests in Experiment 1 would do so following common vocal tact training. The 2 participants who failed categorization tests in Experiment 1 passed these tests in Experiment 2, although none of the participants passed the tests for functional classes. The results of the current study did not unequivocally support the naming hypothesis. Future research should therefore evaluate other possible sources of control that aid in stimulus categorization. PMID:21541124

  7. Image quality affected by diffraction of aperture structure arrangement in transparent active-matrix organic light-emitting diode displays.

    PubMed

    Tsai, Yu-Hsiang; Huang, Mao-Hsiu; Jeng, Wei-de; Huang, Ting-Wei; Lo, Kuo-Lung; Ou-Yang, Mang

    2015-10-01

    Transparent display is one of the main technologies in next-generation displays, especially for augmented reality applications. An aperture structure is attached on each display pixel to partition them into transparent and black regions. However, diffraction blurs caused by the aperture structure typically degrade the transparent image when the light from a background object passes through finite aperture window. In this paper, the diffraction effect of an active-matrix organic light-emitting diode display (AMOLED) is studied. Several aperture structures have been proposed and implemented. Based on theoretical analysis and simulation, the appropriate aperture structure will effectively reduce the blur. The analysis data are also consistent with the experimental results. Compared with the various transparent aperture structure on AMOLED, diffraction width (zero energy position of diffraction pattern) of the optimize aperture structure can be reduced 63% and 31% in the x and y directions in CASE 3. Associated with a lenticular lens on the aperture structure, the improvement could reach to 77% and 54% of diffraction width in the x and y directions. Modulation transfer function and practical images are provided to evaluate the improvement of image blurs.

  8. Design and analysis of radial imaging capsule endoscope (RICE) system.

    PubMed

    Ou-Yang, Mang; Jeng, Wei-De

    2011-02-28

    In this study, a radial imaging capsule endoscope (RICE) system is designed, which differs from a conventional front imaging capsule endoscope (FICE) system. To observe the wrinkled intima of the intestine, which spreads without folding around the circumference of the capsule when a capsule endoscope with a diameter that slightly exceeds that of the intestine passes through it, the RICE uses a cone mirror, a radial window shell, and a focus optical module that comprise the radial imaging system. This concept was demonstrated in a packaged optical simulator. The RICE optical model also has been established and verified by many simulations and experiments. In minimizing the sagittal and tangential aberrations, the optical module of the RICE has achieved an F-number of 4.2, a viewing angle of 65.08°, and an RMS radius of the 4th to 6th fields of less than 17 um. A comparison of these characteristics with those of the focus optical module that is used in FICE lenses reveals that the spot size is 50% larger for each field, and the modulation transfer function (MTF) is remarkably improved from 7% to 36% at 100 lp/mm on the 5th field of the sagittal plane.

  9. Programmable Iterative Optical Image And Data Processing

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J.

    1995-01-01

    Proposed method of iterative optical image and data processing overcomes limitations imposed by loss of optical power after repeated passes through many optical elements - especially, beam splitters. Involves selective, timed combination of optical wavefront phase conjugation and amplification to regenerate images in real time to compensate for losses in optical iteration loops; timing such that amplification turned on to regenerate desired image, then turned off so as not to regenerate other, undesired images or spurious light propagating through loops from unwanted reflections.

  10. Noninvasive OCT imaging of the retinal morphology and microvasculature based on the combination of the phase and amplitude method

    NASA Astrophysics Data System (ADS)

    Qin, Lin; Fan, Shanhui; Zhou, Chuanqing

    2017-04-01

    To implement the optical coherence tomography (OCT) angiography on the low scanning speed OCT system, we developed a joint phase and amplitude method to generate 3-D angiograms by analysing the frequency distribution of signals from non-moving and moving scatterers and separating the signals from the tissue and blood flow with high-pass filter dynamically. This approach firstly compensates the sample motion between adjacent A-lines. Then according to the corrected phase information, we used a histogram method to determine the bulk non-moving tissue phases dynamically, which is regarded as the cut-off frequency of a high-pass filter, and separated the moving and non-moving scatters using the mentioned high-pass filter. The reconstructed image can visualize the components of moving scatters flowing, and enables volumetric flow mapping combined with the corrected phase information. Furthermore, retinal and choroidal blood vessels can be simultaneously obtained by separating the B-scan into retinal part and choroidal parts using a simple segmentation algorithm along the RPE. After the compensation of axial displacements between neighbouring images, three-dimensional vasculature of ocular vessels has been visualized. Experiments were performed to demonstrate the effectiveness of the proposed method for 3-D vasculature imaging of human retina and choroid. The results revealed depth-resolved vasculatures in retina and choroid, suggesting that our approach can be used for noninvasive and three-dimensional angiography with a low-speed clinical OCT, and it has a great potential for clinic application.

  11. NASA Sees Heavy Rainfall in Tropical Storm Andrea

    NASA Image and Video Library

    2013-06-06

    NASA’s Terra satellite passed over Tropical Storm Andrea on June 5 at 16:25 UTC (12:25 p.m. EDT) and the MODIS instrument captured this visible image of the storm. Andrea’s clouds had already extended over more than half of Florida. Credit: NASA Goddard MODIS Rapid Response Team --- NASA Sees Heavy Rainfall in Tropical Storm Andrea NASA’s TRMM satellite passed over Tropical Storm Andrea right after it was named, while NASA’s Terra satellite captured a visible image of the storm’s reach hours beforehand. TRMM measures rainfall from space and saw that rainfall rates in the southern part of the storm was falling at almost 5 inches per hour. NASA’s Terra satellite passed over Tropical Storm Andrea on June 5 at 16:25 UTC (12:25 p.m. EDT) and the Moderate Resolution Imaging Spectroradiometer or MODIS instrument, captured a visible image of the storm. At that time, Andrea’s clouds had already extended over more than half of Florida. At 8 p.m. EDT on Wednesday, June 5, System 91L became the first tropical storm of the Atlantic Ocean hurricane season. Tropical Storm Andrea was centered near 25.5 North and 86.5 West, about 300 miles (485 km) southwest of Tampa, Fla. At the time Andrea intensified into a tropical storm, its maximum sustained winds were near 40 mph (65 kph). Full updates can be found at NASA's Hurricane page: www.nasa.gov/hurricane Rob Gutro NASA’s Goddard Space Flight Center

  12. Measuring interfraction and intrafraction lung function changes during radiation therapy using four-dimensional cone beam CT ventilation imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J.; Hugo, Geoffrey

    Purpose: Adaptive ventilation guided radiation therapy could minimize the irradiation of healthy lung based on repeat lung ventilation imaging (VI) during treatment. However the efficacy of adaptive ventilation guidance requires that interfraction (e.g., week-to-week), ventilation changes are not washed out by intrafraction (e.g., pre- and postfraction) changes, for example, due to patient breathing variability. The authors hypothesize that patients undergoing lung cancer radiation therapy exhibit larger interfraction ventilation changes compared to intrafraction function changes. To test this, the authors perform the first comparison of interfraction and intrafraction lung VI pairs using four-dimensional cone beam CT ventilation imaging (4D-CBCT VI), amore » novel technique for functional lung imaging. Methods: The authors analyzed a total of 215 4D-CBCT scans acquired for 19 locally advanced non-small cell lung cancer (LA-NSCLC) patients over 4–6 weeks of radiation therapy. This set of 215 scans was sorted into 56 interfraction pairs (including first day scans and each of treatment weeks 2, 4, and 6) and 78 intrafraction pairs (including pre/postfraction scans on the same-day), with some scans appearing in both sets. VIs were obtained from the Jacobian determinant of the transform between the 4D-CBCT end-exhale and end-inhale images after deformable image registration. All VIs were deformably registered to their corresponding planning CT and normalized to account for differences in breathing effort, thus facilitating image comparison in terms of (i) voxelwise Spearman correlations, (ii) mean image differences, and (iii) gamma pass rates for all interfraction and intrafraction VI pairs. For the side of the lung ipsilateral to the tumor, we applied two-sided t-tests to determine whether interfraction VI pairs were more different than intrafraction VI pairs. Results: The (mean ± standard deviation) Spearman correlation for interfraction VI pairs was r{sup -}{sub Inter}=0.52±0.25, which was significantly lower than for intrafraction pairs (r{sup -}{sub Intra}=0.67±0.20, p = 0.0002). Conversely, mean absolute ventilation differences were larger for interfraction pairs than for intrafraction pairs, with |ΔV{sup -}{sub Inter}|=0.42±0.65 and |ΔV{sup -}{sub Intra}|=0.32±0.53, respectively (p < 10{sup −15}). Applying a gamma analysis with ventilation/distance tolerance of 25%/10 mm, we observed mean pass rate of (69% ± 20%) for interfraction VIs, which was significantly lower compared to intrafraction pairs (80% ± 15%, with p ∼ 0.0003). Compared to the first day scans, all patients experienced at least one subsequent change in median ipsilateral ventilation ≥10%. Patients experienced both positive and negative ventilation changes throughout treatment, with the maximum change occurring at different weeks for different patients. Conclusions: The authors’ data support the hypothesis that interfraction ventilation changes are larger than intrafraction ventilation changes for LA-NSCLC patients over a course of conventional lung cancer radiation therapy. Longitudinal ventilation changes are observed to be highly patient-dependent, supporting a possible role for adaptive ventilation guidance based on repeat 4D-CBCT VIs. We anticipate that future improvement of 4D-CBCT image reconstruction algorithms will improve the capability of 4D-CBCT VI to resolve interfraction ventilation changes.« less

  13. Measuring interfraction and intrafraction lung function changes during radiation therapy using four-dimensional cone beam CT ventilation imaging.

    PubMed

    Kipritidis, John; Hugo, Geoffrey; Weiss, Elisabeth; Williamson, Jeffrey; Keall, Paul J

    2015-03-01

    Adaptive ventilation guided radiation therapy could minimize the irradiation of healthy lung based on repeat lung ventilation imaging (VI) during treatment. However the efficacy of adaptive ventilation guidance requires that interfraction (e.g., week-to-week), ventilation changes are not washed out by intrafraction (e.g., pre- and postfraction) changes, for example, due to patient breathing variability. The authors hypothesize that patients undergoing lung cancer radiation therapy exhibit larger interfraction ventilation changes compared to intrafraction function changes. To test this, the authors perform the first comparison of interfraction and intrafraction lung VI pairs using four-dimensional cone beam CT ventilation imaging (4D-CBCT VI), a novel technique for functional lung imaging. The authors analyzed a total of 215 4D-CBCT scans acquired for 19 locally advanced non-small cell lung cancer (LA-NSCLC) patients over 4-6 weeks of radiation therapy. This set of 215 scans was sorted into 56 interfraction pairs (including first day scans and each of treatment weeks 2, 4, and 6) and 78 intrafraction pairs (including pre/postfraction scans on the same-day), with some scans appearing in both sets. VIs were obtained from the Jacobian determinant of the transform between the 4D-CBCT end-exhale and end-inhale images after deformable image registration. All VIs were deformably registered to their corresponding planning CT and normalized to account for differences in breathing effort, thus facilitating image comparison in terms of (i) voxelwise Spearman correlations, (ii) mean image differences, and (iii) gamma pass rates for all interfraction and intrafraction VI pairs. For the side of the lung ipsilateral to the tumor, we applied two-sided t-tests to determine whether interfraction VI pairs were more different than intrafraction VI pairs. The (mean ± standard deviation) Spearman correlation for interfraction VI pairs was r̄(Inter)=0.52±0.25, which was significantly lower than for intrafraction pairs (r̄(Intra)=0.67±0.20, p = 0.0002). Conversely, mean absolute ventilation differences were larger for interfraction pairs than for intrafraction pairs, with |ΔV̄(Inter)|=0.42±0.65 and |ΔV̄(Intra)|=0.32±0.53, respectively (p < 10(-15)). Applying a gamma analysis with ventilation/distance tolerance of 25%/10 mm, we observed mean pass rate of (69% ± 20%) for interfraction VIs, which was significantly lower compared to intrafraction pairs (80% ± 15%, with p ∼ 0.0003). Compared to the first day scans, all patients experienced at least one subsequent change in median ipsilateral ventilation ≥10%. Patients experienced both positive and negative ventilation changes throughout treatment, with the maximum change occurring at different weeks for different patients. The authors' data support the hypothesis that interfraction ventilation changes are larger than intrafraction ventilation changes for LA-NSCLC patients over a course of conventional lung cancer radiation therapy. Longitudinal ventilation changes are observed to be highly patient-dependent, supporting a possible role for adaptive ventilation guidance based on repeat 4D-CBCT VIs. We anticipate that future improvement of 4D-CBCT image reconstruction algorithms will improve the capability of 4D-CBCT VI to resolve interfraction ventilation changes.

  14. Detection of large-scale concentric gravity waves from a Chinese airglow imager network

    NASA Astrophysics Data System (ADS)

    Lai, Chang; Yue, Jia; Xu, Jiyao; Yuan, Wei; Li, Qinzeng; Liu, Xiao

    2018-06-01

    Concentric gravity waves (CGWs) contain a broad spectrum of horizontal wavelengths and periods due to their instantaneous localized sources (e.g., deep convection, volcanic eruptions, or earthquake, etc.). However, it is difficult to observe large-scale gravity waves of >100 km wavelength from the ground for the limited field of view of a single camera and local bad weather. Previously, complete large-scale CGW imagery could only be captured by satellite observations. In the present study, we developed a novel method that uses assembling separate images and applying low-pass filtering to obtain temporal and spatial information about complete large-scale CGWs from a network of all-sky airglow imagers. Coordinated observations from five all-sky airglow imagers in Northern China were assembled and processed to study large-scale CGWs over a wide area (1800 km × 1 400 km), focusing on the same two CGW events as Xu et al. (2015). Our algorithms yielded images of large-scale CGWs by filtering out the small-scale CGWs. The wavelengths, wave speeds, and periods of CGWs were measured from a sequence of consecutive assembled images. Overall, the assembling and low-pass filtering algorithms can expand the airglow imager network to its full capacity regarding the detection of large-scale gravity waves.

  15. [Discussion to the advanced application of scripting in RayStation TPS system].

    PubMed

    Zhang, Jianying; Sun, Jing; Wang, Yun

    2014-11-01

    In this study, the implementation methods for the several functions are explored on RayStation 4.0 Platform. Those functions are passing the information such as ROI names to a plan prescription Word file. passing the file to RayStation for plan evaluation; passing the evaluation result to form an evaluated report file. The result shows the RayStation scripts can exchange data with Word, as well as control the running of Word and the content of a Word file. Consequently, it's feasible for scripts to inactive with third party softwares upgrade the performance of RayStation itself.

  16. Research and design of an optical system of biochemical analyzer based on the narrow-band pass filter

    NASA Astrophysics Data System (ADS)

    Xiao, Ze-xin; Chen, Kuan

    2008-03-01

    Biochemical analyzer is one of the important instruments in the clinical diagnosis, and its optical system is the important component. The operation of this optical system can be regard as three parts. The first is transforms the duplicate colored light as the monochromatic light. The second is transforms the light signal of the monochromatic, which have the information of the measured sample, as the electric signal by use the photoelectric detector. And the last is to send the signal to data processing system by use the control system. Generally, there are three types monochromators: prism, optical grating and narrow-band pass filter. Thereinto, the narrow-band pass filter were widely used in the semi-auto biochemical analyzer. Through analysed the principle of biochemical analyzer base on the narrow-band pass filter, we known that the optical has three features. The first is the optical path of the optical system is a non- imaging system. The second, this system is wide spectrum region that contain visible light and ultraviolet spectrum. The third, this is a little aperture and little field monochromatic light system. Therefore, design idea of this optical system is: (1) luminous energy in the system less transmission loss; (2) detector coupled to the luminous energy efficient; mainly correct spherical aberration. Practice showed the point of Image quality evaluation: (1) dispersion circle diameter equal the receiving device pixel effective width of 125%, and the energy distribution should point target of 80% of energy into the receiving device pixel width of the effective diameter in this dispersion circle; (2) With MTF evaluation, the requirements in 20lp/ mm spatial frequency, the MTF values should not be lower than 0.6. The optical system should be fit in with ultraviolet and visible light width spectrum, and the detector image plane can but suited the majority visible light spectrum when by defocus optimization, and the image plane of violet and ultraviolet excursion quite large. Traditional biochemical analyzer optical design not fully consider this point, the authors introduce a effective image plane compensation measure innovatively, it greatly increased the reception efficiency of the violet and ultraviolet.

  17. A novel fusion framework of visible light and infrared images based on singular value decomposition and adaptive DUAL-PCNN in NSST domain

    NASA Astrophysics Data System (ADS)

    Cheng, Boyang; Jin, Longxu; Li, Guoning

    2018-06-01

    Visible light and infrared images fusion has been a significant subject in imaging science. As a new contribution to this field, a novel fusion framework of visible light and infrared images based on adaptive dual-channel unit-linking pulse coupled neural networks with singular value decomposition (ADS-PCNN) in non-subsampled shearlet transform (NSST) domain is present in this paper. First, the source images are decomposed into multi-direction and multi-scale sub-images by NSST. Furthermore, an improved novel sum modified-Laplacian (INSML) of low-pass sub-image and an improved average gradient (IAVG) of high-pass sub-images are input to stimulate the ADS-PCNN, respectively. To address the large spectral difference between infrared and visible light and the occurrence of black artifacts in fused images, a local structure information operator (LSI), which comes from local area singular value decomposition in each source image, is regarded as the adaptive linking strength that enhances fusion accuracy. Compared with PCNN models in other studies, the proposed method simplifies certain peripheral parameters, and the time matrix is utilized to decide the iteration number adaptively. A series of images from diverse scenes are used for fusion experiments and the fusion results are evaluated subjectively and objectively. The results of the subjective and objective evaluation show that our algorithm exhibits superior fusion performance and is more effective than the existing typical fusion techniques.

  18. JPEG 2000 Encoding with Perceptual Distortion Control

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Liu, Zhen; Karam, Lina J.

    2008-01-01

    An alternative approach has been devised for encoding image data in compliance with JPEG 2000, the most recent still-image data-compression standard of the Joint Photographic Experts Group. Heretofore, JPEG 2000 encoding has been implemented by several related schemes classified as rate-based distortion-minimization encoding. In each of these schemes, the end user specifies a desired bit rate and the encoding algorithm strives to attain that rate while minimizing a mean squared error (MSE). While rate-based distortion minimization is appropriate for transmitting data over a limited-bandwidth channel, it is not the best approach for applications in which the perceptual quality of reconstructed images is a major consideration. A better approach for such applications is the present alternative one, denoted perceptual distortion control, in which the encoding algorithm strives to compress data to the lowest bit rate that yields at least a specified level of perceptual image quality. Some additional background information on JPEG 2000 is prerequisite to a meaningful summary of JPEG encoding with perceptual distortion control. The JPEG 2000 encoding process includes two subprocesses known as tier-1 and tier-2 coding. In order to minimize the MSE for the desired bit rate, a rate-distortion- optimization subprocess is introduced between the tier-1 and tier-2 subprocesses. In tier-1 coding, each coding block is independently bit-plane coded from the most-significant-bit (MSB) plane to the least-significant-bit (LSB) plane, using three coding passes (except for the MSB plane, which is coded using only one "clean up" coding pass). For M bit planes, this subprocess involves a total number of (3M - 2) coding passes. An embedded bit stream is then generated for each coding block. Information on the reduction in distortion and the increase in the bit rate associated with each coding pass is collected. This information is then used in a rate-control procedure to determine the contribution of each coding block to the output compressed bit stream.

  19. Astronomical polarization studies at radio and infrared wavelengths. Part 1: Gravitational deflection of polarized radiation

    NASA Technical Reports Server (NTRS)

    Dennison, B. K.

    1976-01-01

    The gravitational field is probed in a search for polarization dependence in the light bending. This involves searching for a splitting of a source image into orthogonal polarizations as the radiation passes through the solar gravitational field. This search was carried out using the techniques of very long and intermediate baseline interferometry, and by seeking a relative phase delay in orthogonal polarizations of microwaves passing through the solar gravitational field. In this last technique a change in the total polarization of the Helios 1 carrier wave was sought as the spacecraft passed behind the sun. No polarization splitting was detected.

  20. Raman imaging using fixed bandpass filter

    NASA Astrophysics Data System (ADS)

    Landström, L.; Kullander, F.; Lundén, H.; Wästerby, P.

    2017-05-01

    By using fixed narrow band pass optical filtering and scanning the laser excitation wavelength, hyperspectral Raman imaging could be achieved. Experimental, proof-of-principle results from the Chemical Warfare Agent (CWA) tabun (GA) as well as the common CWA simulant tributyl phosphate (TBP) on different surfaces/substrates are presented and discussed.

  1. Differential phase contrast X-ray imaging system and components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stutman, Daniel; Finkenthal, Michael

    2017-11-21

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  2. Far Side of the Moon

    NASA Image and Video Library

    1996-02-08

    This image of the moon was obtained by the Galileo Solid State imaging system on Dec. 8 at 7 p.m. PST as NASA Galileo spacecraft passed the Earth and was able to view the lunar surface from a vantage point not possible from the Earth. http://photojournal.jpl.nasa.gov/catalog/PIA00225

  3. High frequency fishbone driven by passing energetic ions in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Yu, L. M.; Fu, G. Y.; Shen, Wei

    2017-05-01

    High frequency fishbone instability driven by passing energetic ions was first reported in the Princeton beta experiment with tangential neutral-beam-injection (Heidbrink et al 1986 Phys. Rev. Lett. 57 835-8). It could play an important role for ITER-like burning plasmas, where α particles are mostly passing particles. In this work, a generalized energetic ion distribution function and finite drift orbit width effect are considered to improve the theoretical model for passing particle driving fishbone instability. For purely passing energetic ions with zero drift orbit width, the kinetic energy δ {{W}k} is derived analytically. The derived analytic expression is more accurate as compared to the result of previous work (Wang 2001 Phys. Rev. Lett. 86 5286-8). For a generalized energetic ion distribution function, the fishbone dispersion relation is derived and is solved numerically. Numerical results show that broad and off-axis beam density profiles can significantly increase the beam ion beta threshold {βc} for instability and decrease mode frequency.

  4. High frequency fishbone driven by passing energetic ions in tokamak plasmas

    DOE PAGES

    Wang, Feng; Yu, L. M.; Fu, G. Y.; ...

    2017-03-22

    High frequency fishbone instability driven by passing energetic ions was first reported in the Princeton beta experiment with tangential neutral-beam-injection (Heidbrink et al 1986 Phys. Rev. Lett. 57 835–8). It could play an important role for ITER-like burning plasmas, where α particles are mostly passing particles. In this work, a generalized energetic ion distribution function and finite drift orbit width effect are considered to improve the theoretical model for passing particle driving fishbone instability. For purely passing energetic ions with zero drift orbit width, the kinetic energymore » $$\\delta {{W}_{k}}$$ is derived analytically. The derived analytic expression is more accurate as compared to the result of previous work. For a generalized energetic ion distribution function, the fishbone dispersion relation is derived and is solved numerically. As a result, numerical results show that broad and off-axis beam density profiles can significantly increase the beam ion beta threshold $${{\\beta}_{c}}$$ for instability and decrease mode frequency.« less

  5. Real-time digital signal recovery for a multi-pole low-pass transfer function system.

    PubMed

    Lee, Jhinhwan

    2017-08-01

    In order to solve the problems of waveform distortion and signal delay by many physical and electrical systems with multi-pole linear low-pass transfer characteristics, a simple digital-signal-processing (DSP)-based method of real-time recovery of the original source waveform from the distorted output waveform is proposed. A mathematical analysis on the convolution kernel representation of the single-pole low-pass transfer function shows that the original source waveform can be accurately recovered in real time using a particular moving average algorithm applied on the input stream of the distorted waveform, which can also significantly reduce the overall delay time constant. This method is generalized for multi-pole low-pass systems and has noise characteristics of the inverse of the low-pass filter characteristics. This method can be applied to most sensors and amplifiers operating close to their frequency response limits to improve the overall performance of data acquisition systems and digital feedback control systems.

  6. Building a 2.5D Digital Elevation Model from 2D Imagery

    NASA Technical Reports Server (NTRS)

    Padgett, Curtis W.; Ansar, Adnan I.; Brennan, Shane; Cheng, Yang; Clouse, Daniel S.; Almeida, Eduardo

    2013-01-01

    When projecting imagery into a georeferenced coordinate frame, one needs to have some model of the geographical region that is being projected to. This model can sometimes be a simple geometrical curve, such as an ellipse or even a plane. However, to obtain accurate projections, one needs to have a more sophisticated model that encodes the undulations in the terrain including things like mountains, valleys, and even manmade structures. The product that is often used for this purpose is a Digital Elevation Model (DEM). The technology presented here generates a high-quality DEM from a collection of 2D images taken from multiple viewpoints, plus pose data for each of the images and a camera model for the sensor. The technology assumes that the images are all of the same region of the environment. The pose data for each image is used as an initial estimate of the geometric relationship between the images, but the pose data is often noisy and not of sufficient quality to build a high-quality DEM. Therefore, the source imagery is passed through a feature-tracking algorithm and multi-plane-homography algorithm, which refine the geometric transforms between images. The images and their refined poses are then passed to a stereo algorithm, which generates dense 3D data for each image in the sequence. The 3D data from each image is then placed into a consistent coordinate frame and passed to a routine that divides the coordinate frame into a number of cells. The 3D points that fall into each cell are collected, and basic statistics are applied to determine the elevation of that cell. The result of this step is a DEM that is in an arbitrary coordinate frame. This DEM is then filtered and smoothed in order to remove small artifacts. The final step in the algorithm is to take the initial DEM and rotate and translate it to be in the world coordinate frame [such as UTM (Universal Transverse Mercator), MGRS (Military Grid Reference System), or geodetic] such that it can be saved in a standard DEM format and used for projection.

  7. High-resolution imaging of Saturn's main rings during the Cassini Ring-Grazing Orbits and Grand Finale

    NASA Astrophysics Data System (ADS)

    Tiscareno, M. S.

    2017-12-01

    Cassini is ending its spectacular 13-year mission at Saturn with a two-part farewell, during which it has obtained the sharpest and highest-fidelity images ever taken of Saturn's rings. From December 2016 to April 2017, the spacecraft executed 20 near-polar orbits that passed just outside the outer edge of the main rings; these "Ring-Grazing Orbits" provided the mission's best viewing of the A and F rings and the outer B ring. From April to September 2017, the spacecraft is executing 22 near-polar orbits that pass between the innermost D ring and the planet's clouds; this "Grand Finale" provides the mission's best viewing of the C and D rings and the inner B ring. 1) Clumpy BeltsClumpy structure called "straw" was previously observed in parts of the main rings [Porco et al. 2005, Science]. New images show this structure with greater clarity. More surprisingly, new images reveal strong radial variations in the degree and character of clumpiness, which are probably an index for particle properties and interactions. Belts with different clumpiness characteristics are often adjacent to each other and not easily correlated with other ring characteristics. 2) PropellersA "propeller" is a local disturbance in the ring created by an embedded moon [Tiscareno et al. 2006, Nature; 2010, ApJL]. Cassini has observed two classes of propellers: small propellers that swarm in the "Propeller Belts" of the mid-A ring, and "Giant Propellers" whose individual orbits can be tracked in the outer A ring. Both are shown in unprecedented detail in new images. Targeted flybys of Giant Propellers were executed on both the lit and unlit sides of the ring (see figure), yielding enhanced ability to convert brightness to optical depth and surface density. 3) Impact Ejecta CloudsBeing a large and delicate system, Saturn's rings function as a detector of their planetary environment. Cassini images of impact ejecta clouds in the rings previously constrained the population of decimeter-to-meter-sized meteoroids in Saturn's vicinity [Tiscareno et al. 2013, Science]. Many more IECs are detected in new images, with color data that may constrain the particle-size distribution of the ejecta, and thus the fracture properties of ring material.

  8. Time Line for Noncopers to Pass Return-to-Sports Criteria After Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Hartigan, Erin H.; Axe, Michael J.; Snyder-Mackler, Lynn

    2013-01-01

    STUDY DESIGN Randomized clinical trial. OBJECTIVES Determine effective interventions for improving readiness to return to sports post-operatively in patients with complete, unilateral, anterior cruciate ligament (ACL) rupture who do not compensate well after the injury (noncopers). Specifically, we compared the effects of 2 preoperative interventions on quadriceps strength and functional outcomes. BACKGROUND The percentage of athletes who return to sports after ACL reconstruction varies considerably, possibly due to differential responses after acute ACL rupture and different management. Prognostic data for noncopers following ACL reconstruction is absent in the literature. METHODS Forty noncopers were randomly assigned to receive either progressive quadriceps strength-training exercises (STR group) or perturbation training in conjunction with strength-training exercises (PERT group) for 10 preoperative rehabilitation sessions. Postoperative rehabilitation was similar between groups. Data on quadriceps strength indices [(involved limb/uninvolved limb force) ×100], 4 hop score indices, and 2 self-report questionnaires were collected preoperatively and 3, 6, and 12 months postoperatively. Mann-Whitney U tests were used to compare functional differences between the groups. Chi-square tests were used to compare frequencies of passing functional criteria and reasons for differences in performance between groups postoperatively. RESULTS Functional outcomes were not different between groups, except a greater number of patients in the PERT group achieved global rating scores (current knee function expressed as a percentage of overall knee function prior to injury) necessary to pass return-to-sports criteria 6 and 12 months after surgery. Mean scores for each functional outcome met return-to-sports criteria 6 and 12 months postoperatively. Frequency counts of individual data, however, indicated that 5% of noncopers passed RTS criteria at 3, 48% at 6, and 78% at 12 months after surgery. CONCLUSION Functional outcomes suggest that a subgroup of noncopers require additional supervised rehabilitation to pass stringent criteria to return to sports. LEVEL OF EVIDENCE Therapy, level 2b. PMID:20195019

  9. Time line for noncopers to pass return-to-sports criteria after anterior cruciate ligament reconstruction.

    PubMed

    Hartigan, Erin H; Axe, Michael J; Snyder-Mackler, Lynn

    2010-03-01

    Randomized clinical trial. Determine effective interventions for improving readiness to return to sports postoperatively in patients with complete, unilateral, anterior cruciate ligament (ACL) rupture who do not compensate well after the injury (noncopers). Specifically, we compared the effects of 2 preoperative interventions on quadriceps strength and functional outcomes. The percentage of athletes who return to sports after ACL reconstruction varies considerably, possibly due to differential responses after acute ACL rupture and different management. Prognostic data for noncopers following ACL reconstruction is absent in the literature. Forty noncopers were randomly assigned to receive either progressive quadriceps strength-training exercises (STR group) or perturbation training in conjunction with strength-training exercises (PERT group) for 10 preoperative rehabilitation sessions. Postoperative rehabilitation was similar between groups. Data on quadriceps strength indices [(involved limb/uninvolved limb force) x 100], 4 hop score indices, and 2 self-report questionnaires were collected preoperatively and 3, 6, and 12 months postoperatively. Mann-Whitney U tests were used to compare functional differences between the groups. Chi-square tests were used to compare frequencies of passing functional criteria and reasons for differences in performance between groups postoperatively. Functional outcomes were not different between groups, except a greater number of patients in the PERT group achieved global rating scores (current knee function expressed as a percentage of overall knee function prior to injury) necessary to pass return-to-sports criteria 6 and 12 months after surgery. Mean scores for each functional outcome met return-to-sports criteria 6 and 12 months postoperatively. Frequency counts of individual data, however, indicated that 5% of noncopers passed RTS criteria at 3, 48% at 6, and 78% at 12 months after surgery. Functional outcomes suggest that a subgroup of noncopers require additional supervised rehabilitation to pass stringent criteria to return to sports. Therapy, level 2b.Note: If watching the first video, we recommend downloading and referring to the accompanying PowerPoint slides for any text that is not readable.

  10. UAVSAR Active Electronically-Scanned Array

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory; Brown, Kyle; Chamberlain, Neil; Figueroa, Harry; Fisher, Charlie; Grando, Maurio; Hamilton, Gary; Vorperian, Vatche; Zawadzki, Mark

    2010-01-01

    The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) L-band (1.2-1.3 GHz) repeat pass, interferometric synthetic aperture radar (InSAR) used for Earth science applications. Using complex radar images collected during separate passes on time scales of hours to years, changes in surface topography can be measured. The repeat-pass InSAR technique requires that the radar look angle be approximately the same on successive passes. Due to variations in aircraft attitude between passes, antenna beam steering is required to replicate the radar look angle. This paper describes an active, electronically steered array (AESA) that provides beam steering capability in the antenna azimuth plane. The array contains 24 transmit/receive modules generating 2800 W of radiated power and is capable of pulse-to-pulse beam steering and polarization agility. Designed for high reliability as well as serviceability, all array electronics are contained in single 178cm x 62cm x 12 cm air-cooled panel suitable for operation up 60,000 ft altitude.

  11. [Efficacy of fusion image for the preoperative assessment of anatomical variation of the anterior choroidal artery].

    PubMed

    Aoki, Yasuko; Endo, Hidenori; Niizuma, Kuniyasu; Inoue, Takashi; Shimizu, Hiroaki; Tominaga, Teiji

    2013-12-01

    We report two cases with internal carotid artery(ICA)aneurysms, in which fusion image effectively indicated the anatomical variations of the anterior choroidal artery (AchoA). Fusion image was obtained using fusion application software (Integrated Registration, Advantage Workstation VS4, GE Healthcare). When the artery passed through the choroidal fissure, it was diagnosed as AchoA. Case 1 had an aneurysm at the left ICA. Left internal carotid angiography (ICAG) showed that an artery arising from the aneurysmal neck supplied the medial occipital lobe. Fusion image showed that this artery had a branch passing through the choroidal fissure, which was diagnosed as hyperplastic AchoA. Case 2 had an aneurysm at the supraclinoid segment of the right ICA. AchoA or posterior communicating artery (PcomA) were not detected by the right ICAG. Fusion image obtained from 3D vertebral angiography (VAG) and MRI showed that the right AchoA arose from the right PcomA. Fusion image obtained from the right ICAG and the left VAG suggested that the aneurysm was located on the ICA where the PcomA regressed. Fusion image is an effective tool for assessing anatomical variations of AchoA. The present method is simple and quick for obtaining a fusion image that can be used in a real-time clinical setting.

  12. A novel image enhancement algorithm based on stationary wavelet transform for infrared thermography to the de-bonding defect in solid rocket motors

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zhang, Wei; Yan, Shaoze

    2015-10-01

    In this paper, a multi-scale image enhancement algorithm based on low-passing filtering and nonlinear transformation is proposed for infrared testing image of the de-bonding defect in solid propellant rocket motors. Infrared testing images with high-level noise and low contrast are foundations for identifying defects and calculating the defects size. In order to improve quality of the infrared image, according to distribution properties of the detection image, within framework of stationary wavelet transform, the approximation coefficients at suitable decomposition level is processed by index low-passing filtering by using Fourier transform, after that, the nonlinear transformation is applied to further process the figure to improve the picture contrast. To verify validity of the algorithm, the image enhancement algorithm is applied to infrared testing pictures of two specimens with de-bonding defect. Therein, one specimen is made of a type of high-strength steel, and the other is a type of carbon fiber composite. As the result shown, in the images processed by the image enhancement algorithm presented in the paper, most of noises are eliminated, and contrast between defect areas and normal area is improved greatly; in addition, by using the binary picture of the processed figure, the continuous defect edges can be extracted, all of which show the validity of the algorithm. The paper provides a well-performing image enhancement algorithm for the infrared thermography.

  13. Fine Structure of the Motile Cells and Flagella in a Member of the Actinoplanaceae (Actinomycetales)

    PubMed Central

    Bland, Charles E.

    1970-01-01

    The motile cells (sporangiospores) of an undescribed member of the Actinoplanaceae are studied by electron microscopy as shadowed, negatively stained, and sectioned preparations. The rod-shaped spores exhibit a typically bacterial internal structure. However, a single tubular structure (rhapidosome) is positioned just inside the site of flagellar attachment of each spore and is oriented perpendicular to the direction of the flagella. Flagella arise from basal dises and pass through the plasma membrane and the two-layered cell wall to become associated with other flagella to function as a posteriorly directed unit. Each flagellum consists of a helical band or ribbon which dissociates into 5 or 6 subfibrils. Images PMID:4098725

  14. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media

    NASA Astrophysics Data System (ADS)

    Fiore, Antonio; Zhang, Jitao; Shao, Peng; Yun, Seok Hyun; Scarcelli, Giuliano

    2016-05-01

    Brillouin microscopy has recently emerged as a powerful technique to characterize the mechanical properties of biological tissue, cell, and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we combined a multi-pass Fabry-Perot interferometer with a two-stage virtually imaged phased array spectrometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 μm deep within chicken muscle tissue.

  15. Servomechanism for Doppler shift compensation in optical correlator for synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Constaninides, N. J.; Bicknell, T. J. (Inventor)

    1980-01-01

    A method and apparatus for correcting Doppler shifts in synthetic aperture radar data is described. An optical correlator for synthetic aperture radar data has a means for directing a laser beam at a signal film having radar return pulse intensity information recorded on it. A resultant laser beam passes through a range telescope, an azimuth telescope, and a Fourier transform filter located between the range and azimuth telescopes, and forms an image for recording on an image film. A compensation means for Doppler shift in the radar return pulse intensity information includes a beam splitter for reflecting the modulated laser beam, after having passed through the Fourier transform filter, to a detection screen having two photodiodes mounted on it.

  16. Bandwidth-variable tunable optical filter unit for illumination and spectral imaging systems using thin-film optical band-pass filters.

    PubMed

    Hennig, Georg; Brittenham, Gary M; Sroka, Ronald; Kniebühler, Gesa; Vogeser, Michael; Stepp, Herbert

    2013-04-01

    An optical filter unit is demonstrated, which uses two successively arranged tunable thin-film optical band-pass filters and allows for simultaneous adjustment of the central wavelength in the spectral range 522-555 nm and of the spectral bandwidth in the range 3-16 nm with a wavelength switching time of 8 ms∕nm. Different spectral filter combinations can cover the complete visible spectral range. The transmitted intensity was found to decrease only linearly with the spectral bandwidth for bandwidths >6 nm, allowing a high maximum transmission efficiency of >75%. The image of a fiber bundle was spectrally filtered and analyzed in terms of position-dependency of the transmitted bandwidth and central wavelength.

  17. On the Performance of the Martin Digital Filter for High- and Low-pass Applications

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.

    1979-01-01

    A nonrecursive numerical filter is described in which the weighting sequence is optimized by minimizing the excursion from the ideal rectangular filter in a least squares sense over the entire domain of normalized frequency. Additional corrections to the weights in order to reduce overshoot oscillations (Gibbs phenomenon) and to insure unity gain at zero frequency for the low pass filter are incorporated. The filter is characterized by a zero phase shift for all frequencies (due to a symmetric weighting sequence), a finite memory and stability, and it may readily be transformed to a high pass filter. Equations for the filter weights and the frequency response function are presented, and applications to high and low pass filtering are examined. A discussion of optimization of high pass filter parameters for a rather stringent response requirement is given in an application to the removal of aircraft low frequency oscillations superimposed on remotely sensed ocean surface profiles. Several frequency response functions are displayed, both in normalized frequency space and in period space. A comparison of the performance of the Martin filter with some other commonly used low pass digital filters is provided in an application to oceanographic data.

  18. Linear fixed-field multipass arcs for recirculating linear accelerators

    DOE PAGES

    Morozov, V. S.; Bogacz, S. A.; Roblin, Y. R.; ...

    2012-06-14

    Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting themore » dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. Finally, we present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.« less

  19. A human auditory tuning curves matched wavelet function.

    PubMed

    Abolhassani, Mohammad D; Salimpour, Yousef

    2008-01-01

    This paper proposes a new quantitative approach to the problem of matching a wavelet function to a human auditory tuning curves. The auditory filter shapes were derived from the psychophysical measurements in normal-hearing listeners using the variant of the notched-noise method for brief signals in forward and simultaneous masking. These filters were used as templates for the designing a wavelet function that has the maximum matching to a tuning curve. The scaling function was calculated from the matched wavelet function and by using these functions, low pass and high pass filters were derived for the implementation of a filter bank. Therefore, new wavelet families were derived.

  20. Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision

    PubMed Central

    Kwon, MiYoung; Legge, Gordon E.

    2011-01-01

    It is well known that object recognition requires spatial frequencies exceeding some critical cutoff value. People with central scotomas who rely on peripheral vision have substantial difficulty with reading and face recognition. Deficiencies of pattern recognition in peripheral vision, might result in higher cutoff requirements, and may contribute to the functional problems of people with central-field loss. Here we asked about differences in spatial-cutoff requirements in central and peripheral vision for letter and face recognition. The stimuli were the 26 letters of the English alphabet and 26 celebrity faces. Each image was blurred using a low-pass filter in the spatial frequency domain. Critical cutoffs (defined as the minimum low-pass filter cutoff yielding 80% accuracy) were obtained by measuring recognition accuracy as a function of cutoff (in cycles per object). Our data showed that critical cutoffs increased from central to peripheral vision by 20% for letter recognition and by 50% for face recognition. We asked whether these differences could be accounted for by central/peripheral differences in the contrast sensitivity function (CSF). We addressed this question by implementing an ideal-observer model which incorporates empirical CSF measurements and tested the model on letter and face recognition. The success of the model indicates that central/peripheral differences in the cutoff requirements for letter and face recognition can be accounted for by the information content of the stimulus limited by the shape of the human CSF, combined with a source of internal noise and followed by an optimal decision rule. PMID:21854800

  1. Automated and Adaptable Quantification of Cellular Alignment from Microscopic Images for Tissue Engineering Applications

    PubMed Central

    Xu, Feng; Beyazoglu, Turker; Hefner, Evan; Gurkan, Umut Atakan

    2011-01-01

    Cellular alignment plays a critical role in functional, physical, and biological characteristics of many tissue types, such as muscle, tendon, nerve, and cornea. Current efforts toward regeneration of these tissues include replicating the cellular microenvironment by developing biomaterials that facilitate cellular alignment. To assess the functional effectiveness of the engineered microenvironments, one essential criterion is quantification of cellular alignment. Therefore, there is a need for rapid, accurate, and adaptable methodologies to quantify cellular alignment for tissue engineering applications. To address this need, we developed an automated method, binarization-based extraction of alignment score (BEAS), to determine cell orientation distribution in a wide variety of microscopic images. This method combines a sequenced application of median and band-pass filters, locally adaptive thresholding approaches and image processing techniques. Cellular alignment score is obtained by applying a robust scoring algorithm to the orientation distribution. We validated the BEAS method by comparing the results with the existing approaches reported in literature (i.e., manual, radial fast Fourier transform-radial sum, and gradient based approaches). Validation results indicated that the BEAS method resulted in statistically comparable alignment scores with the manual method (coefficient of determination R2=0.92). Therefore, the BEAS method introduced in this study could enable accurate, convenient, and adaptable evaluation of engineered tissue constructs and biomaterials in terms of cellular alignment and organization. PMID:21370940

  2. Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units.

    PubMed

    Quan, Guotao; Gong, Hui; Deng, Yong; Fu, Jianwei; Luo, Qingming

    2011-02-01

    High-speed fluorescence molecular tomography (FMT) reconstruction for 3-D heterogeneous media is still one of the most challenging problems in diffusive optical fluorescence imaging. In this paper, we propose a fast FMT reconstruction method that is based on Monte Carlo (MC) simulation and accelerated by a cluster of graphics processing units (GPUs). Based on the Message Passing Interface standard, we modified the MC code for fast FMT reconstruction, and different Green's functions representing the flux distribution in media are calculated simultaneously by different GPUs in the cluster. A load-balancing method was also developed to increase the computational efficiency. By applying the Fréchet derivative, a Jacobian matrix is formed to reconstruct the distribution of the fluorochromes using the calculated Green's functions. Phantom experiments have shown that only 10 min are required to get reconstruction results with a cluster of 6 GPUs, rather than 6 h with a cluster of multiple dual opteron CPU nodes. Because of the advantages of high accuracy and suitability for 3-D heterogeneity media with refractive-index-unmatched boundaries from the MC simulation, the GPU cluster-accelerated method provides a reliable approach to high-speed reconstruction for FMT imaging.

  3. Infrared fix pattern noise reduction method based on Shearlet Transform

    NASA Astrophysics Data System (ADS)

    Rong, Shenghui; Zhou, Huixin; Zhao, Dong; Cheng, Kuanhong; Qian, Kun; Qin, Hanlin

    2018-06-01

    The non-uniformity correction (NUC) is an effective way to reduce fix pattern noise (FPN) and improve infrared image quality. The temporal high-pass NUC method is a kind of practical NUC method because of its simple implementation. However, traditional temporal high-pass NUC methods rely deeply on the scene motion and suffer image ghosting and blurring. Thus, this paper proposes an improved NUC method based on Shearlet Transform (ST). First, the raw infrared image is decomposed into multiscale and multi-orientation subbands by ST and the FPN component mainly exists in some certain high-frequency subbands. Then, high-frequency subbands are processed by the temporal filter to extract the FPN due to its low-frequency characteristics. Besides, each subband has a confidence parameter to determine the degree of FPN, which is estimated by the variance of subbands adaptively. At last, the process of NUC is achieved by subtracting the estimated FPN component from the original subbands and the corrected infrared image can be obtained by the inverse ST. The performance of the proposed method is evaluated with real and synthetic infrared image sequences thoroughly. Experimental results indicate that the proposed method can reduce heavily FPN with less roughness and RMSE.

  4. Techniques to improve the accuracy of noise power spectrum measurements in digital x-ray imaging based on background trends removal.

    PubMed

    Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin

    2011-03-01

    Noise characterization through estimation of the noise power spectrum (NPS) is a central component of the evaluation of digital x-ray systems. Extensive works have been conducted to achieve accurate and precise measurement of NPS. One approach to improve the accuracy of the NPS measurement is to reduce the statistical variance of the NPS results by involving more data samples. However, this method is based on the assumption that the noise in a radiographic image is arising from stochastic processes. In the practical data, the artifactuals always superimpose on the stochastic noise as low-frequency background trends and prevent us from achieving accurate NPS. The purpose of this study was to investigate an appropriate background detrending technique to improve the accuracy of NPS estimation for digital x-ray systems. In order to achieve the optimal background detrending technique for NPS estimate, four methods for artifactuals removal were quantitatively studied and compared: (1) Subtraction of a low-pass-filtered version of the image, (2) subtraction of a 2-D first-order fit to the image, (3) subtraction of a 2-D second-order polynomial fit to the image, and (4) subtracting two uniform exposure images. In addition, background trend removal was separately applied within original region of interest or its partitioned sub-blocks for all four methods. The performance of background detrending techniques was compared according to the statistical variance of the NPS results and low-frequency systematic rise suppression. Among four methods, subtraction of a 2-D second-order polynomial fit to the image was most effective in low-frequency systematic rise suppression and variances reduction for NPS estimate according to the authors' digital x-ray system. Subtraction of a low-pass-filtered version of the image led to NPS variance increment above low-frequency components because of the side lobe effects of frequency response of the boxcar filtering function. Subtracting two uniform exposure images obtained the worst result on the smoothness of NPS curve, although it was effective in low-frequency systematic rise suppression. Subtraction of a 2-D first-order fit to the image was also identified effective for background detrending, but it was worse than subtraction of a 2-D second-order polynomial fit to the image according to the authors' digital x-ray system. As a result of this study, the authors verified that it is necessary and feasible to get better NPS estimate by appropriate background trend removal. Subtraction of a 2-D second-order polynomial fit to the image was the most appropriate technique for background detrending without consideration of processing time.

  5. Eruption of Eyjafjallajökull Volcano, Iceland

    NASA Image and Video Library

    2017-12-08

    March 31, 2010..The volcanic eruption near Eyjafjallajökull persists into its second week, with continued lava fountaining and lava flows spilling into nearby canyons. The eruption is located at the Fimmvörduháls Pass between the Eyjafjallajökull ice field to the west (left) and the Mýrdalsjökull ice field to the east (right). This natural-color satellite image was acquired on March 26, 2010, by the MODIS aboard NASA’s Terra satellite. Dark ash and scoria cover the northern half of the Fimmvörduháls Pass. White snow covers the rest of the pass, sandwiched between white glaciers. Snow-free land is tan, brown, or dark gray, devoid of vegetation in early spring. To download a high res version of this image go to: modis.gsfc.nasa.gov/gallery/individual.php?db_date=2010-0... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  6. "Ms." in Transition: A Change of Skin or a Change of Heart?

    ERIC Educational Resources Information Center

    Farrell, Amy E.

    Changing from a non-profit foundation to a for-profit corporation, "Ms." magazine recently passed through a transitional phase, transforming its image to attract more advertisers. Four issues published after the fifteenth anniversary issue, when the new image was introduced, illumine both the hegemony of patriarchal capitalism and the…

  7. Weighted least-squares solver for determining pressure from particle image velocimetry data

    NASA Astrophysics Data System (ADS)

    de Kat, Roeland

    2016-11-01

    Currently, most approaches to determine pressure from particle image velocimetry data are Poisson approaches (e.g.) or multi-pass marching approaches (e.g.). However, these approaches deal with boundary conditions in their specific ways which cannot easily be changed-Poisson approaches enforce boundary conditions strongly, whereas multi-pass marching approaches enforce them weakly. Under certain conditions (depending on the certainty of the data or availability of reference data along the boundary) both types of boundary condition enforcement have to be used together to obtain the best result. In addition, neither of the approaches takes the certainty of the particle image velocimetry data (see e.g.) within the domain into account. Therefore, to address these shortcomings and improve upon current approaches, a new approach is proposed using weighted least-squares. The performance of this new approach is tested on synthetic and experimental particle image velocimetry data. Preliminary results show that a significant improvement can be made in determining pressure fields using the new approach. RdK is supported by a Leverhulme Trust Early Career Fellowship.

  8. (abstract) Topographic Signatures in Geology

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Evans, Diane L.

    1996-01-01

    Topographic information is required for many Earth Science investigations. For example, topography is an important element in regional and global geomorphic studies because it reflects the interplay between the climate-driven processes of erosion and the tectonic processes of uplift. A number of techniques have been developed to analyze digital topographic data, including Fourier texture analysis. A Fourier transform of the topography of an area allows the spatial frequency content of the topography to be analyzed. Band-pass filtering of the transform produces images representing the amplitude of different spatial wavelengths. These are then used in a multi-band classification to map units based on their spatial frequency content. The results using a radar image instead of digital topography showed good correspondence to a geologic map, however brightness variations in the image unrelated to topography caused errors. An additional benefit to the use of Fourier band-pass images for the classification is that the textural signatures of the units are quantative measures of the spatial characteristics of the units that may be used to map similar units in similar environments.

  9. Utilization of a balanced steady state free precession signal model for improved fat/water decomposition.

    PubMed

    Henze Bancroft, Leah C; Strigel, Roberta M; Hernando, Diego; Johnson, Kevin M; Kelcz, Frederick; Kijowski, Richard; Block, Walter F

    2016-03-01

    Chemical shift based fat/water decomposition methods such as IDEAL are frequently used in challenging imaging environments with large B0 inhomogeneity. However, they do not account for the signal modulations introduced by a balanced steady state free precession (bSSFP) acquisition. Here we demonstrate improved performance when the bSSFP frequency response is properly incorporated into the multipeak spectral fat model used in the decomposition process. Balanced SSFP allows for rapid imaging but also introduces a characteristic frequency response featuring periodic nulls and pass bands. Fat spectral components in adjacent pass bands will experience bulk phase offsets and magnitude modulations that change the expected constructive and destructive interference between the fat spectral components. A bSSFP signal model was incorporated into the fat/water decomposition process and used to generate images of a fat phantom, and bilateral breast and knee images in four normal volunteers at 1.5 Tesla. Incorporation of the bSSFP signal model into the decomposition process improved the performance of the fat/water decomposition. Incorporation of this model allows rapid bSSFP imaging sequences to use robust fat/water decomposition methods such as IDEAL. While only one set of imaging parameters were presented, the method is compatible with any field strength or repetition time. © 2015 Wiley Periodicals, Inc.

  10. Double-pass imaging through scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tajahuerce, Enrique; Andrés Bou, Pedro; Artal, Pablo; Lancis, Jesús

    2017-02-01

    In the last years, single-pixel imaging (SPI) was established as a suitable tool for non-invasive imaging of an absorbing object completely embedded in an inhomogeneous medium. One of the main characteristics of the technique is that it uses very simple sensors (bucket detectors such as photodiodes or photomultiplier tubes) combined with structured illumination and mathematical algorithms to recover the image. This reduction in complexity of the sensing device gives these systems the opportunity to obtain images at shallow depth overcoming the scattering problem. Nonetheless, some challenges, such as the need for improved signal-to-noise or the frame rate, remain to be tackled before extensive use in practical systems. Also, for intact or live optically thick tissues, epi-detection is commonly used, while present implementations of SPI are limited to transillumination geometries. In this work we present new features and some recent advances in SPI that involve either the use of computationally efficient algorithms for adaptive sensing or a balanced detection mechanism. Additionally, SPI has been adapted to handle reflected light to create a double pass optical system. Such developments represent a significant step towards the use of SPI in more realistic scenarios, especially in biophotonics applications. In particular, we show the design of a single-pixel ophtalmoscope as a novel way of imaging the retina in real time.

  11. Poly(malic acid) nanoconjugates containing various antibodies and oligonucleotides for multitargeting drug delivery

    PubMed Central

    Fujita, Manabu; Ljubimov, Alexander V; Torchilin, Vladimir P; Black, Keith L; Holler, Eggehard

    2009-01-01

    Nanoconjugates are emerging as promising drug-delivery vehicles because of their multimodular structure enabling them to actively target discrete cells, pass through biological barriers and simultaneously carry multiple drugs of various chemical nature. Nanoconjugates have matured from simple devices to multifunctional, biodegradable, nontoxic and nonimmunogenic constructs, capable of delivering synergistically functioning drugs in vivo. This review mainly concerns the Polycefin family of natural-derived polymeric drug-delivery devices as an example. This type of vehicle is built by hierarchic conjugation of functional groups onto the backbone of poly(malic acid), an aliphatic polyester obtained from the microorganism Physarum polycephalum. Particular Polycefin variants target human brain and breast tumors implanted into animals specifically and actively and could be detected easily by noninvasive imaging analysis. Delivery of antisense oligonucleotides to a tumor-specific angiogenic marker using Polycefin resulted in significant inhibition of tumor angiogenesis and increase of animal survival. PMID:18373429

  12. Functional Optical Coherence Tomography Enables In Vivo Physiological Assessment of Retinal Rod and Cone Photoreceptors

    PubMed Central

    Zhang, Qiuxiang; Lu, Rongwen; Wang, Benquan; Messinger, Jeffrey D.; Curcio, Christine A.; Yao, Xincheng

    2015-01-01

    Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage. PMID:25901915

  13. Special functions of valve organs of blood-sucking female mosquitoes

    NASA Astrophysics Data System (ADS)

    Kim, Boheum; Lee, Sangjoon

    2010-11-01

    Food-feeding insects usually have valve organs to regulate the sucking flow effectively. Female mosquitoes sucking lots of blood instantaneously have a unique valve system between two pumping organs located in their head. The valve system seems to prevent reverse flow and to grind granule particles such as red blood cells. To understand the functional characteristics of this valve organ in detail, the volumetric flow rate passing through the valves and their interaction with the two-pumps need to be investigated. However, it is very difficult to observe the dynamic behaviors of pumping organs and valve system. In this study, the dynamic motions of valve organs of blood-sucking female mosquitoes were observed under in vivo condition using synchrotron X-ray micro imaging technique. X-ray micro computed tomography was also employed to examine the three-dimensional internal structure of the blood pumping system including valve organs.

  14. Mariner 9 data storage subsystem flight performance summary

    NASA Technical Reports Server (NTRS)

    Thomas, N. E.; Larman, B. T.

    1973-01-01

    The performance is summarized of the Mariner 9 Data Storage Subsystem (DSS) throughout the primary and extended missions. Information presented is limited to reporting of anomalies which occurred during the playback sequences. Tables and figures describe the anomalies (dropouts, missing and added bits, in the imaging data) as a function of time (accumulated tape passes). The data results indicate that the performance of the DSS was satisfactory and within specification throughout the mission. The data presented is taken from the Spacecraft Team Incident/Surprise Anomaly Log recorded during the mission. Pertinent statistics concerning the tape transport performance are given. Also presented is a brief description of DSS operation, particularly that related to the recorded anomalies. This covers the video data encoding and how it is interpreted/decoded by ground data processing and the functional operation of the DSS in abnormal conditions such as loss of lock to the playback signal.

  15. Efficiency of Cathodoluminescence Emission by Nitrogen-Vacancy Color Centers in Nanodiamonds.

    PubMed

    Zhang, Huiliang; Glenn, David R; Schalek, Richard; Lichtman, Jeff W; Walsworth, Ronald L

    2017-06-01

    Correlated electron microscopy and cathodoluminescence (CL) imaging using functionalized nanoparticles is a promising nanoscale probe of biological structure and function. Nanodiamonds (NDs) that contain CL-emitting color centers are particularly well suited for such applications. The intensity of CL emission from NDs is determined by a combination of factors, including particle size, density of color centers, efficiency of energy deposition by electrons passing through the particle, and conversion efficiency from deposited energy to CL emission. This paper reports experiments and numerical simulations that investigate the relative importance of each of these factors in determining CL emission intensity from NDs containing nitrogen-vacancy (NV) color centers. In particular, it is found that CL can be detected from NV-doped NDs with dimensions as small as ≈40 nm, although CL emission decreases significantly for smaller NDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Functional Optical Coherence Tomography Enables In Vivo Physiological Assessment of Retinal Rod and Cone Photoreceptors

    NASA Astrophysics Data System (ADS)

    Zhang, Qiuxiang; Lu, Rongwen; Wang, Benquan; Messinger, Jeffrey D.; Curcio, Christine A.; Yao, Xincheng

    2015-04-01

    Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage.

  17. A distributed lumped active all-pass network configuration.

    NASA Technical Reports Server (NTRS)

    Huelsman, L. P.; Raghunath, S.

    1972-01-01

    In this correspondence a new and interesting distributed lumped active network configuration that realizes an all-pass network function is described. A design chart for determining the values of the network elements is included.

  18. Evaluation of the effect of filter apodization for volume PET imaging using the 3-D RP algorithm

    NASA Astrophysics Data System (ADS)

    Baghaei, H.; Wong, Wai-Hoi; Li, Hongdi; Uribe, J.; Wang, Yu; Aykac, M.; Liu, Yaqiang; Xing, Tao

    2003-02-01

    We investigated the influence of filter apodization and cutoff frequency on the image quality of volume positron emission tomography (PET) imaging using the three-dimensional reprojection (3-D RP) algorithm. An important parameter in 3-D RP and other filtered backprojection algorithms is the choice of the filter window function. In this study, the Hann, Hamming, and Butterworth low-pass window functions were investigated. For each window, a range of cutoff frequencies was considered. Projection data were acquired by scanning a uniform cylindrical phantom, a cylindrical phantom containing four small lesion phantoms having diameters of 3, 4, 5, and 6 mm and the 3-D Hoffman brain phantom. All measurements were performed using the high-resolution PET camera developed at the M.D. Anderson Cancer Center (MDAPET), University of Texas, Houston, TX. This prototype camera, which is a multiring scanner with no septa, has an intrinsic transaxial resolution of 2.8 mm. The evaluation was performed by computing the noise level in the reconstructed images of the uniform phantom and the contrast recovery of the 6-mm hot lesion in a warm background and also by visually inspecting images, especially those of the Hoffman brain phantom. For this work, we mainly studied the central slices which are less affected by the incompleteness of the 3-D data. Overall, the Butterworth window offered a better contrast-noise performance over the Hann and Hamming windows. For our high statistics data, for the Hann and Hamming apodization functions a cutoff frequency of 0.6-0.8 of the Nyquist frequency resulted in a reasonable compromise between the contrast recovery and noise level and for the Butterworth window a cutoff frequency of 0.4-0.6 of the Nyquist frequency was a reasonable choice. For the low statistics data, use of lower cutoff frequencies was more appropriate.

  19. Demonstration of Synthetic Aperture Radar and Hyperspectral Imaging for Wide Area Assessment at Pueblo Precision Bombing Range #2, Colorado

    DTIC Science & Technology

    2008-10-01

    resolution orthophoto and LiDAR datasets, as well as for the vegetation modeling conducted for SAR FAR mitigation. 3.4.4 Navigation Systems An Applanix A...these accuracies. By registering eight cardinal pass-direction images per tile to the orthophotography and to each other, the horizontal error in... orthophoto image, which successfully increased the HSI image resolution to 0.25-m. 22 Table 4. SAR Performance Data. Type of Performance

  20. Application of wavelet techniques for cancer diagnosis using ultrasound images: A Review.

    PubMed

    Sudarshan, Vidya K; Mookiah, Muthu Rama Krishnan; Acharya, U Rajendra; Chandran, Vinod; Molinari, Filippo; Fujita, Hamido; Ng, Kwan Hoong

    2016-02-01

    Ultrasound is an important and low cost imaging modality used to study the internal organs of human body and blood flow through blood vessels. It uses high frequency sound waves to acquire images of internal organs. It is used to screen normal, benign and malignant tissues of various organs. Healthy and malignant tissues generate different echoes for ultrasound. Hence, it provides useful information about the potential tumor tissues that can be analyzed for diagnostic purposes before therapeutic procedures. Ultrasound images are affected with speckle noise due to an air gap between the transducer probe and the body. The challenge is to design and develop robust image preprocessing, segmentation and feature extraction algorithms to locate the tumor region and to extract subtle information from isolated tumor region for diagnosis. This information can be revealed using a scale space technique such as the Discrete Wavelet Transform (DWT). It decomposes an image into images at different scales using low pass and high pass filters. These filters help to identify the detail or sudden changes in intensity in the image. These changes are reflected in the wavelet coefficients. Various texture, statistical and image based features can be extracted from these coefficients. The extracted features are subjected to statistical analysis to identify the significant features to discriminate normal and malignant ultrasound images using supervised classifiers. This paper presents a review of wavelet techniques used for preprocessing, segmentation and feature extraction of breast, thyroid, ovarian and prostate cancer using ultrasound images. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A Perijove Pass

    NASA Image and Video Library

    2017-05-25

    This sequence of enhanced-color images shows how quickly the viewing geometry changes for NASA's Juno spacecraft as it swoops by Jupiter. The images were obtained by JunoCam. Once every 53 days the Juno spacecraft swings close to Jupiter, speeding over its clouds. In just two hours, the spacecraft travels from a perch over Jupiter's north pole through its closest approach (perijove), then passes over the south pole on its way back out. This sequence shows 14 enhanced-color images. The first image on the left shows the entire half-lit globe of Jupiter, with the north pole approximately in the center. As the spacecraft gets closer to Jupiter, the horizon moves in and the range of visible latitudes shrinks. The third and fourth images in this sequence show the north polar region rotating away from our view while a band of wavy clouds at northern mid-latitudes comes into view. By the fifth image of the sequence the band of turbulent clouds is nicely centered in the image. The seventh and eighth images were taken just before the spacecraft was at its closest point to Jupiter, near Jupiter's equator. Even though these two pictures were taken just four minutes apart, the view is changing quickly. As the spacecraft crossed into the southern hemisphere, the bright "south tropical zone" dominates the ninth, 10th and 11th images. The white ovals in a feature nicknamed Jupiter's "String of Pearls" are visible in the 12th and 13th images. In the 14th image Juno views Jupiter's south poles. https://photojournal.jpl.nasa.gov/catalog/PIA21645

  2. Cassini's Final Titan Radar Swath

    NASA Image and Video Library

    2017-08-11

    During its final targeted flyby of Titan on April 22, 2017, Cassini's radar mapper got the mission's last close look at the moon's surface. On this 127th targeted pass by Titan (unintuitively named "T-126"), the radar was used to take two images of the surface, shown at left and right. Both images are about 200 miles (300 kilometers) in width, from top to bottom. Objects appear bright when they are tilted toward the spacecraft or have rough surfaces; smooth areas appear dark. At left are the same bright, hilly terrains and darker plains that Cassini imaged during its first radar pass of Titan, in 2004. Scientists do not see obvious evidence of changes in this terrain over the 13 years since the original observation. At right, the radar looked once more for Titan's mysterious "magic island" (PIA20021) in a portion of one of the large hydrocarbon seas, Ligeia Mare. No "island" feature was observed during this pass. Scientists continue to work on what the transient feature might have been, with waves and bubbles being two possibilities. In between the two parts of its imaging observation, the radar instrument switched to altimetry mode, in order to make a first-ever (and last-ever) measurement of the depths of some of the lakes that dot the north polar region. For the measurements, the spacecraft pointed its antenna straight down at the surface and the radar measured the time delay between echoes from the lakes' surface and bottom. A graph is available at https://photojournal.jpl.nasa.gov/catalog/PIA21626

  3. Four-dimensional Microscope-Integrated Optical Coherence Tomography to Visualize Suture Depth in Strabismus Surgery.

    PubMed

    Pasricha, Neel D; Bhullar, Paramjit K; Shieh, Christine; Carrasco-Zevallos, Oscar M; Keller, Brenton; Izatt, Joseph A; Toth, Cynthia A; Freedman, Sharon F; Kuo, Anthony N

    2017-02-14

    The authors report the use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT), capable of live four-dimensional (three-dimensional across time) intraoperative imaging, to directly visualize suture depth during lateral rectus resection. Key surgical steps visualized in this report included needle depth during partial and full-thickness muscle passes along with scleral passes. [J Pediatr Ophthalmol Strabismus. 2017;54:e1-e5.]. Copyright 2017, SLACK Incorporated.

  4. Experimental study on detection of electrostatic discharges generated by polymer granules inside a metal silo

    NASA Astrophysics Data System (ADS)

    Choi, Kwangseok; Mogami, Tomofumi; Suzuki, Teruo

    2014-04-01

    To detect electrostatic discharges generated by polymer granules within a metal silo, we developed a novel and simple electrostatic discharge detector that utilizes a photosensor. The novel detector consists of a photosensor module in a metal cylinder, an optical band-pass filter, a quartz glass, a power supply, an amplifier for the photosensor module, and a digital oscilloscope. In this study, we conducted experiments at a real pneumatic powder transport facility that includes a metal silo to evaluate the novel detector using polypropylene granules. To determine the performance of the novel detector, we observed the electrostatic discharge within the metal silo using a conventional image intensifier system. The results obtained from the experiments show that the novel detector worked well in this study. The signals obtained with the novel detector were identical to the electrostatic discharges obtained with the conventional image intensifier system. The greatest advantage of this novel detector is that it is effective even when placed under external lights. In addition, the influence of various optical band-pass filters on the performance of the novel detector was discussed. Our study confirmed that an optical band-pass filter with a center wavelength of λ 330 nm (λ1/2: 315-345 nm) was the best performer among the optical band-pass filters used in this study.

  5. Experimental study on detection of electrostatic discharges generated by polymer granules inside a metal silo.

    PubMed

    Choi, Kwangseok; Mogami, Tomofumi; Suzuki, Teruo

    2014-04-01

    To detect electrostatic discharges generated by polymer granules within a metal silo, we developed a novel and simple electrostatic discharge detector that utilizes a photosensor. The novel detector consists of a photosensor module in a metal cylinder, an optical band-pass filter, a quartz glass, a power supply, an amplifier for the photosensor module, and a digital oscilloscope. In this study, we conducted experiments at a real pneumatic powder transport facility that includes a metal silo to evaluate the novel detector using polypropylene granules. To determine the performance of the novel detector, we observed the electrostatic discharge within the metal silo using a conventional image intensifier system. The results obtained from the experiments show that the novel detector worked well in this study. The signals obtained with the novel detector were identical to the electrostatic discharges obtained with the conventional image intensifier system. The greatest advantage of this novel detector is that it is effective even when placed under external lights. In addition, the influence of various optical band-pass filters on the performance of the novel detector was discussed. Our study confirmed that an optical band-pass filter with a center wavelength of λ 330 nm (λ1/2: 315-345 nm) was the best performer among the optical band-pass filters used in this study.

  6. Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bootsma, G. J.; Verhaegen, F.; Department of Oncology, Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4

    2013-11-15

    Purpose: X-ray scatter is a source of significant image quality loss in cone-beam computed tomography (CBCT). The use of Monte Carlo (MC) simulations separating primary and scattered photons has allowed the structure and nature of the scatter distribution in CBCT to become better elucidated. This work seeks to quantify the structure and determine a suitable basis function for the scatter distribution by examining its spectral components using Fourier analysis.Methods: The scatter distribution projection data were simulated using a CBCT MC model based on the EGSnrc code. CBCT projection data, with separated primary and scatter signal, were generated for a 30.6more » cm diameter water cylinder [single angle projection with varying axis-to-detector distance (ADD) and bowtie filters] and two anthropomorphic phantoms (head and pelvis, 360 projections sampled every 1°, with and without a compensator). The Fourier transform of the resulting scatter distributions was computed and analyzed both qualitatively and quantitatively. A novel metric called the scatter frequency width (SFW) is introduced to determine the scatter distribution's frequency content. The frequency content results are used to determine a set basis functions, consisting of low-frequency sine and cosine functions, to fit and denoise the scatter distribution generated from MC simulations using a reduced number of photons and projections. The signal recovery is implemented using Fourier filtering (low-pass Butterworth filter) and interpolation. Estimates of the scatter distribution are used to correct and reconstruct simulated projections.Results: The spatial and angular frequencies are contained within a maximum frequency of 0.1 cm{sup −1} and 7/(2π) rad{sup −1} for the imaging scenarios examined, with these values varying depending on the object and imaging setup (e.g., ADD and compensator). These data indicate spatial and angular sampling every 5 cm and π/7 rad (∼25°) can be used to properly capture the scatter distribution, with reduced sampling possible depending on the imaging scenario. Using a low-pass Butterworth filter, tuned with the SFW values, to denoise the scatter projection data generated from MC simulations using 10{sup 6} photons resulted in an error reduction of greater than 85% for the estimating scatter in single and multiple projections. Analysis showed that the use of a compensator helped reduce the error in estimating the scatter distribution from limited photon simulations by more than 37% when compared to the case without a compensator for the head and pelvis phantoms. Reconstructions of simulated head phantom projections corrected by the filtered and interpolated scatter estimates showed improvements in overall image quality.Conclusions: The spatial frequency content of the scatter distribution in CBCT is found to be contained within the low frequency domain. The frequency content is modulated both by object and imaging parameters (ADD and compensator). The low-frequency nature of the scatter distribution allows for a limited set of sine and cosine basis functions to be used to accurately represent the scatter signal in the presence of noise and reduced data sampling decreasing MC based scatter estimation time. Compensator induced modulation of the scatter distribution reduces the frequency content and improves the fitting results.« less

  7. Mirror Observation of Finger Action Enhances Activity in Anterior Intraparietal Sulcus: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Murayama, Takashi; Takasugi, Jun; Monma, Masahiko; Oga, Masaru

    2013-01-01

    Mirror therapy can be used to promote recovery from paralysis in patients with post-stroke hemiplegia, There are a lot of reports that mirror-image observation of the unilateral moving hand enhanced the excitability of the primary motor area (M1) ipsilateral to the moving hand in healthy subjects. but the neural mechanisms underlying its therapeutic effects are currently unclear. To investigate this issue, we used functional magnetic resonance imaging to measure activity in brain regions related to visual information processing during mirror image movement observation. Thirteen healthy subjects performed a finger-thumb opposition task with the left and right hands separately, with or without access to mirror observation. In the mirror condition, one hand was reflected in a mirror placed above the abdomen in the MRI scanner. In the masked mirror condition, subjects performed the same task but with the mirror obscured. In both conditions, the other hand was held at rest behind the mirror. A between-task comparison (mirror versus masked mirror) revealed significant activation in the ipsilateral hemisphere in the anterior intraparietal sulcus (aIP) while performing all tasks, regardless of which hand was used. The right aIP was significantly activated while moving the right hand. In contrast, in the left aIP, a small number of voxels showed a tendency toward activation during both left and right hand movement. The enhancement of ipsilateral aIP activity by the mirror image observation of finger action suggests that bimodal aIP neurons can be activated by visual information. We propose that activation in the M1 ipsilateral to the moving hand can be induced by information passing through the ventral premotor area from the aIP. PMID:25792898

  8. Stomach (image)

    MedlinePlus

    The stomach is the portion of the digestive system most responsible for breaking down food. The lower esophageal sphincter at the top of the stomach regulates food passing from the esophagus into the ...

  9. Dual-frequency ultrasound imaging and therapeutic bilaminar array using frequency selective isolation layer.

    PubMed

    Azuma, Takashi; Ogihara, Makoto; Kubota, Jun; Sasaki, Akira; Umemura, Shin-ichiro; Furuhata, Hiroshi

    2010-05-01

    A new ultrasound array transducer with two different optimal frequencies designed for diagnosis and therapy integration in Doppler imaging-based transcranial sonothrombolysis is described. Previous studies have shown that respective frequencies around 0.5 and 2 MHz are suitable for sonothrombolysis and Doppler imaging. Because of the small acoustic window available for transcranial ultrasound exposure, it is highly desirable that both therapeutic and diagnostic ultrasounds pass through the same aperture with high efficiency. To achieve such a dual-frequency array transducer, we propose a bilaminar array, having an array for imaging and another for therapy, with a frequency selective isolation layer between the two arrays. The function of this layer is to isolate the imaging array from the therapy array at 2 MHz without disturbing the 0.5-MHz ultrasound transmission. In this study, we first used a 1-D model including two lead zirconate titanate (PZT) layers separated by an isolation layer for intuitive understanding of the phenomena. After that, we optimized the acoustic impedance and thickness of the isolation layer by analyzing pulse propagation in a 2-D model by conducting a numerical simulation with commercially available software. The optimal acoustic impedance and thickness are 3 to 4 MRayI and lambda/10, respectively. On the basis of the optimization, a prototype array transducer was fabricated, and the spatial resolutions of the Doppler images it obtained were found to be practically the same as those obtained through conventional imaging array transducers.

  10. Modeling a maintenance simulation of the geosynchronous platform

    NASA Technical Reports Server (NTRS)

    Kleiner, A. F., Jr.

    1980-01-01

    A modeling technique used to conduct a simulation study comparing various maintenance routines for a space platform is dicussed. A system model is described and illustrated, the basic concepts of a simulation pass are detailed, and sections on failures and maintenance are included. The operation of the system across time is best modeled by a discrete event approach with two basic events - failure and maintenance of the system. Each overall simulation run consists of introducing a particular model of the physical system, together with a maintenance policy, demand function, and mission lifetime. The system is then run through many passes, each pass corresponding to one mission and the model is re-initialized before each pass. Statistics are compiled at the end of each pass and after the last pass a report is printed. Items of interest typically include the time to first maintenance, total number of maintenance trips for each pass, average capability of the system, etc.

  11. High-fidelity artifact correction for cone-beam CT imaging of the brain

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Zbijewski, W.; Xu, J.; Dang, H.; Stayman, J. W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-02-01

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement with the nominal blood contrast of 50 HU. Although noise was amplified by the corrections, the contrast-to-noise ratio (CNR) of simulated bleeds was improved by nearly a factor of 3.5 (CNR = 0.54 without corrections and 1.91 after correction). The resulting image quality motivates further development and translation of the FPD-CBCT system for imaging of acute TBI.

  12. High-resolution motion compensated MRA in patients with congenital heart disease using extracellular contrast agent at 3 Tesla

    PubMed Central

    2012-01-01

    Background Using first-pass MRA (FP-MRA) spatial resolution is limited by breath-hold duration. In addition, image quality may be hampered by respiratory and cardiac motion artefacts. In order to overcome these limitations an ECG- and navigator-gated high-resolution-MRA sequence (HR-MRA) with slow infusion of extracellular contrast agent was implemented at 3 Tesla for the assessment of congenital heart disease and compared to standard first-pass-MRA (FP-MRA). Methods 34 patients (median age: 13 years) with congenital heart disease (CHD) were prospectively examined on a 3 Tesla system. The CMR-protocol comprised functional imaging, FP- and HR-MRA, and viability imaging. After the acquisition of the FP-MRA sequence using a single dose of extracellular contrast agent the motion compensated HR-MRA sequence with isotropic resolution was acquired while injecting the second single dose, utilizing the timeframe before viability imaging. Qualitative scores for image quality (two independent reviewers) as well as quantitative measurements of vessel sharpness and relative contrast were compared using the Wilcoxon signed-rank test. Quantitative measurements of vessel diameters were compared using the Bland-Altman test. Results The mean image quality score revealed significantly better image quality of the HR-MRA sequence compared to the FP-MRA sequence in all vessels of interest (ascending aorta (AA), left pulmonary artery (LPA), left superior pulmonary vein (LSPV), coronary sinus (CS), and coronary ostia (CO); all p < 0.0001). In comparison to FP-MRA, HR-MRA revealed significantly better vessel sharpness for all considered vessels (AA, LSPV and LPA; all p < 0.0001). The relative contrast of the HR-MRA sequence was less compared to the FP-MRA sequence (AA: p <0.028, main pulmonary artery: p <0.004, LSPV: p <0.005). Both, the results of the intra- and interobserver measurements of the vessel diameters revealed closer correlation and closer 95 % limits of agreement for the HR-MRA. HR-MRA revealed one additional clinical finding, missed by FP-MRA. Conclusions An ECG- and navigator-gated HR-MRA-protocol with infusion of extracellular contrast agent at 3 Tesla is feasible. HR-MRA delivers significantly better image quality and vessel sharpness compared to FP-MRA. It may be integrated into a standard CMR-protocol for patients with CHD without the need for additional contrast agent injection and without any additional examination time. PMID:23107424

  13. Design of the computerized 3D endoscopic imaging system for delicate endoscopic surgery.

    PubMed

    Song, Chul-Gyu; Kang, Jin U

    2011-02-01

    This paper describes a 3D endoscopic video system designed to improve visualization and enhance the ability of the surgeon to perform delicate endoscopic surgery. In a comparison of the polarized and conventional electric shutter-type stereo imaging systems, the former was found to be superior in terms of both accuracy and speed for suturing and for the loop pass test. Among the groups performing loop passing and suturing, there was no significant difference in the task performance between the 2D and 3D modes, however, suturing was performed 15% (p < 0.05) faster in 3D mode by both groups. The results of our experiments show that the proposed 3D endoscopic system has a sufficiently wide viewing angle and zone for multi-viewing.

  14. Satellite observations of mesoscale features in lower Cook Inlet and Shelikof Strait, Gulf of Alaska

    NASA Technical Reports Server (NTRS)

    Schumacher, James D.; Barber, Willard E.; Holt, Benjamin; Liu, Antony K.

    1991-01-01

    The Seasat satellite launched in Summer 1978 carried a synthetic aperture radar (SAR). Although Seasat failed after 105 days in orbit, it provided observations that demonstrate the potential to examine and monitor upper oceanic processes. Seasat made five passes over lower Cook Inlet and Shelikof Strait, Alaska, during Summer 1978. SAR images from the passes show oceanographic features, including a meander in a front, a pair of mesoscale eddies, and internal waves. These features are compared with contemporary and representative images from a satellite-borne Advanced Very High Resolution Radiometer (AVHRR) and Coastal Zone Color Scanner (CZCS), with water property data, and with current observations from moored instruments. The results indicate that SAR data can be used to monitor mesoscale oceanographic features.

  15. Sensory Information Processing and Symbolic Computation

    DTIC Science & Technology

    1973-12-31

    plague all image deblurring methods when working with high signal to noise ratios, is that of a ringing or ghost image phenomenon which surrounds high...Figure 11 The Impulse Response of an All-Pass Random Phase Filter 24 Figure 12 (a) Unsmoothed Log Spectra of the Sentence "The pipe began to...of automatic deblurring of images, linear predictive coding of speech and the refinement and application of mathematical models of human vision and

  16. Investigation of focal ratio degradation in optical fibres for astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Crause, Lisa; Bershady, Matthew; Buckley, David

    2008-07-01

    A differential method was used to investigate the focal ratio degradation (FRD) exhibited by, and throughput of, a selection of current-generation optical fibres. These fibres were tested to establish which would be best suited to feed the High Resolution Spectrograph being built for the Southern African Large Telescope (SALT), as well as for future instruments on WIYN and SALT. The double re-imaging system of Bershady et al. (2004) was substantially modified to improve image quality and measurement efficiency, and to permit a direct FRD-measurement in the far-field. The re-imaging method compares the beam profile produced by light which passes through a fibre to that which does not. Broad and intermediate band-pass filters were used between 400-800 nm to test for wavelength dependence in the observed FRD over a wide range in beam-speeds. Our results continue to be at odds with a mico-bend model for FRD. We conclude that the new Polymicro FBP fibre is the most suitable product for broadband applications.

  17. Evaluation of entropy and JM-distance criterions as features selection methods using spectral and spatial features derived from LANDSAT images

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Dutra, L. V.; Mascarenhas, N. D. A.; Mitsuo, Fernando Augusta, II

    1984-01-01

    A study area near Ribeirao Preto in Sao Paulo state was selected, with predominance in sugar cane. Eight features were extracted from the 4 original bands of LANDSAT image, using low-pass and high-pass filtering to obtain spatial features. There were 5 training sites in order to acquire the necessary parameters. Two groups of four channels were selected from 12 channels using JM-distance and entropy criterions. The number of selected channels was defined by physical restrictions of the image analyzer and computacional costs. The evaluation was performed by extracting the confusion matrix for training and tests areas, with a maximum likelihood classifier, and by defining performance indexes based on those matrixes for each group of channels. Results show that in spatial features and supervised classification, the entropy criterion is better in the sense that allows a more accurate and generalized definition of class signature. On the other hand, JM-distance criterion strongly reduces the misclassification within training areas.

  18. Ghost imaging via optical parametric amplification

    NASA Astrophysics Data System (ADS)

    Li, Hong-Guo; Zhang, De-Jian; Xu, De-Qin; Zhao, Qiu-Li; Wang, Sen; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige

    2015-10-01

    We investigate theoretically and experimentally thermal light ghost imaging where the light transmitted through the object as the seed light is amplified by an optical parametric amplifier (OPA). In conventional lens imaging systems with OPA, the spectral bandwidth of OPA dominates the image resolution. Theoretically, we prove that in ghost imaging via optical parametric amplification (GIOPA) the bandwidth of OPA will not affect the image resolution. The experimental results show that for weak seed light the image quality in GIOPA is better than that of conventional ghost imaging. Our work may be valuable in remote sensing with ghost imaging technique, where the light passed through the object is weak after a long-distance propagation.

  19. X-Windows Widget for Image Display

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.

    2011-01-01

    XvicImage is a high-performance XWindows (Motif-compliant) user interface widget for displaying images. It handles all aspects of low-level image display. The fully Motif-compliant image display widget handles the following tasks: (1) Image display, including dithering as needed (2) Zoom (3) Pan (4) Stretch (contrast enhancement, via lookup table) (5) Display of single-band or color data (6) Display of non-byte data (ints, floats) (7) Pseudocolor display (8) Full overlay support (drawing graphics on image) (9) Mouse-based panning (10) Cursor handling, shaping, and planting (disconnecting cursor from mouse) (11) Support for all user interaction events (passed to application) (12) Background loading and display of images (doesn't freeze the GUI) (13) Tiling of images.

  20. Core Noise Diagnostics of Turbofan Engine Noise Using Correlation and Coherence Functions

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey H.

    2009-01-01

    Cross-correlation and coherence functions are used to look for periodic acoustic components in turbofan engine combustor time histories, to investigate direct and indirect combustion noise source separation based on signal propagation time delays, and to provide information on combustor acoustics. Using the cross-correlation function, time delays were identified in all cases, clearly indicating the combustor is the source of the noise. In addition, unfiltered and low-pass filtered at 400 Hz signals had a cross-correlation time delay near 90 ms, while the low-pass filtered at less than 400 Hz signals had a cross-correlation time delay longer than 90 ms. Low-pass filtering at frequencies less than 400 Hz partially removes the direct combustion noise signals. The remainder includes the indirect combustion noise signal, which travels more slowly because of the dependence on the entropy convection velocity in the combustor. Source separation of direct and indirect combustion noise is demonstrated by proper use of low-pass filters with the cross-correlation function for a range of operating conditions. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting direct and indirect combustion noise.

  1. SU-F-J-151: Evaluation of a Magnetic Resonance Image Gated Radiotherapy System Using a Motion Phantom and Radiochromic Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, J; Ginn, J; O’Connell, D

    Purpose: Magnetic resonance image (MRI) guided radiotherapy enables gating directly on target position for soft-tissue targets in the lung and abdomen. We present a dosimetric evaluation of a commercially-available FDA-approved MRI-guided radiotherapy system’s gating performance using a MRI-compatible respiratory motion phantom and radiochromic film. Methods: The MRI-compatible phantom was capable of one-dimensional motion. The phantom consisted of a target rod containing high-contrast target inserts which moved inside a body structure containing background contrast material. The target rod was equipped with a radiochromic film insert. Treatment plans were generated for a 3 cm diameter spherical target, and delivered to the phantommore » at rest and in motion with and without gating. Both sinusoidal and actual tumor trajectories (two free-breathing trajectories and one repeated-breath hold) were used. Gamma comparison at 5%/3mm was used to measure fidelity to the static target dose distribution. Results: Without gating, gamma pass rates were 24–47% depending on motion trajectory. Using our clinical standard of repeated breath holds and a gating window of 3 mm with 10% of the target allowed outside the gating boundary, the gamma pass rate was 99.6%. Relaxing the gating window to 5 mm resulted in gamma pass rate of 98.6% with repeated breath holds. For all motion trajectories gated with 3 mm margin and 10% allowed out, gamma pass rates were between 64–100% (mean:87.5%). For a 5 mm margin and 10% allowed out, gamma pass rates were between 57–98% (mean: 82.49%), significantly lower than for 3 mm by paired t-test (p=0.01). Conclusion: We validated the performance of respiratory gating based on real-time cine MRI images with the only FDA-approved MRI-guided radiotherapy system. Our results suggest that repeated breath hold gating should be used when possible for best accuracy. A 3 mm gating margin is statistically significantly more accurate than a 5 mm gating margin.« less

  2. Partially Covered Lenses and Additive Color Mixing

    ERIC Educational Resources Information Center

    Razpet, Nada; Kranjc, Tomaž

    2017-01-01

    When doing experimental work of image formation by mirrors and (thin) lenses, it turns out again and again that students often have partially incorrect preconceptions about how the light emerging from an object passes through a lens and how the image is formed on a screen or directly in the eye. To check students' prior knowledge and help get a…

  3. Electric field effects on a near-critical fluid in microgravity

    NASA Technical Reports Server (NTRS)

    Zimmerli, G.; Wilkinson, R. A.; Ferrell, R. A.; Hao, H.; Moldover, M. R.

    1994-01-01

    The effects of an electric field on a sample of SF6 fluid in the vicinity of the liquid-vapor critical point is studied. The isothermal increase of the density of a near-critical sample as a function of the applied electric field was measured. In agreement with theory, this electrostriction effect diverges near the critical point as the isothermal compressibility diverges. Also as expected, turning on the electric field in the presence of density gradients can induce flow within the fluid, in a way analogous to turning on gravity. These effects were observed in a microgravity environment by using the Critical Point Facility which flew onboard the Space Shuttle Columbia in July 1994 as part of the Second International Microgravity Laboratory Mission. Both visual and interferometric images of two separate sample cells were obtained by means of video downlink. The interferometric images provided quantitative information about the density distribution throughout the sample. The electric field was generated by applying 500 Volts to a fine wire passing through the critical fluid.

  4. Essentials and guidelines for clinical medical physics residency training programs: executive summary of AAPM Report Number 249.

    PubMed

    Prisciandaro, Joann I; Willis, Charles E; Burmeister, Jay W; Clarke, Geoffrey D; Das, Rupak K; Esthappan, Jacqueline; Gerbi, Bruce J; Harkness, Beth A; Patton, James A; Peck, Donald J; Pizzutiello, Robert J; Sandison, George A; White, Sharon L; Wichman, Brian D; Ibbott, Geoffrey S; Both, Stefan

    2014-05-08

    There is a clear need for established standards for medical physics residency training. The complexity of techniques in imaging, nuclear medicine, and radiation oncology continues to increase with each passing year. It is therefore imperative that training requirements and competencies are routinely reviewed and updated to reflect the changing environment in hospitals and clinics across the country. In 2010, the AAPM Work Group on Periodic Review of Medical Physics Residency Training was formed and charged with updating AAPM Report Number 90. This work group includes AAPM members with extensive experience in clinical, professional, and educational aspects of medical physics. The resulting report, AAPM Report Number 249, concentrates on the clinical and professional knowledge needed to function independently as a practicing medical physicist in the areas of radiation oncology, imaging, and nuclear medicine, and constitutes a revision to AAPM Report Number 90. This manuscript presents an executive summary of AAPM Report Number 249.

  5. Essentials and guidelines for clinical medical physics residency training programs: executive summary of AAPM Report Number 249

    PubMed Central

    Willis, Charles E.; Burmeister, Jay W.; Clarke, Geoffrey D.; Das, Rupak K.; Esthappan, Jacqueline; Gerbi, Bruce J.; Harkness, Beth A.; Patton, James A.; Peck, Donald J.; Pizzutiello, Robert J.; Sandison, George A.; White, Sharon L.; Wichman, Brian D.; Ibbott, Geoffrey S.; Both, Stefan

    2014-01-01

    There is a clear need for established standards for medical physics residency training. The complexity of techniques in imaging, nuclear medicine, and radiation oncology continues to increase with each passing year. It is therefore imperative that training requirements and competencies are routinely reviewed and updated to reflect the changing environment in hospitals and clinics across the country. In 2010, the AAPM Work Group on Periodic Review of Medical Physics Residency Training was formed and charged with updating AAPM Report Number 90. This work group includes AAPM members with extensive experience in clinical, professional, and educational aspects of medical physics. The resulting report, AAPM Report Number 249, concentrates on the clinical and professional knowledge needed to function independently as a practicing medical physicist in the areas of radiation oncology, imaging, and nuclear medicine, and constitutes a revision to AAPM Report Number 90. This manuscript presents an executive summary of AAPM Report Number 249. PACS number: 87.10.‐e PMID:24892354

  6. Nondestructive method and apparatus for imaging grains in curved surfaces of polycrystalline articles

    DOEpatents

    Carpenter, Donald A.

    1995-01-01

    A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data.

  7. The environment of south-central Tunisia as observed on Landsat scene 206/036

    USGS Publications Warehouse

    Grolier, M.J.; Schultejann, P.A.

    1982-01-01

    One Landsat image in south-central Tunisia was analyzed to demonstrate the application of remote-sensing technology to regional development. A preliminary analysis included I) major landscape features; 2) gypsum-encrusted soils; and 3) phosphate-bearing beds exposed in the Gafsa mining district. The products specifically used for this report include: 1) A false-color composite (FCC), which had been linearly stretched to enhance contrast, and to which a modulation transfer function correction (a high-pass filter 3 pixels by 3 pixels wide) had been applied to enhance fine topographic relief. 2) A sinusoidally stretched false-color composite, on which mappable gypsum-encrusted soils and saline soils are detectable in greater detail than on the existing soil map of Tunisia at 1:500,000 scale. 3) A sinusoidally stretched band-ratio false-color composite, from which a thematic map of most phosphate-bearing beds in the Gafsa mining district was prepared. Recommendations for future Landsat image interpretation in Tunisia are offered.

  8. Nondestructive method and apparatus for imaging grains in curved surfaces of polycrystalline articles

    DOEpatents

    Carpenter, D.A.

    1995-05-23

    A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data. 7 Figs.

  9. Economy of scale: a motion sensor with variable speed tuning.

    PubMed

    Perrone, John A

    2005-01-26

    We have previously presented a model of how neurons in the primate middle temporal (MT/V5) area can develop selectivity for image speed by using common properties of the V1 neurons that precede them in the visual motion pathway (J. A. Perrone & A. Thiele, 2002). The motion sensor developed in this model is based on two broad classes of V1 complex neurons (sustained and transient). The S-type neuron has low-pass temporal frequency tuning, p(omega), and the T-type has band-pass temporal frequency tuning, m(omega). The outputs from the S and T neurons are combined in a special way (weighted intersection mechanism [WIM]) to generate a sensor tuned to a particular speed, v. Here I go on to show that if the S and T temporal frequency tuning functions have a particular form (i.e., p(omega)/(m(omega) = k/omega), then a motion sensor with variable speed tuning can be generated from just two V1 neurons. A simple scaling of the S- or T-type neuron output before it is incorporated into the WIM model produces a motion sensor that can be tuned to a wide continuous range of optimal speeds.

  10. Walking simulator for evaluation of ophthalmic devices

    NASA Astrophysics Data System (ADS)

    Barabas, James; Woods, Russell L.; Peli, Eli

    2005-03-01

    Simulating mobility tasks in a virtual environment reduces risk for research subjects, and allows for improved experimental control and measurement. We are currently using a simulated shopping mall environment (where subjects walk on a treadmill in front of a large projected video display) to evaluate a number of ophthalmic devices developed at the Schepens Eye Research Institute for people with vision impairment, particularly visual field defects. We have conducted experiments to study subject's perception of "safe passing distance" when walking towards stationary obstacles. The subject's binary responses about potential collisions are analyzed by fitting a psychometric function, which gives an estimate of the subject's perceived safe passing distance, and the variability of subject responses. The system also enables simulations of visual field defects using head and eye tracking, enabling better understanding of the impact of visual field loss. Technical infrastructure for our simulated walking environment includes a custom eye and head tracking system, a gait feedback system to adjust treadmill speed, and a handheld 3-D pointing device. Images are generated by a graphics workstation, which contains a model with photographs of storefronts from an actual shopping mall, where concurrent validation experiments are being conducted.

  11. All-Systolic Non-ECG-gated Myocardial Perfusion MRI: Feasibility of Multi-Slice Continuous First-Pass Imaging

    PubMed Central

    Sharif, Behzad; Arsanjani, Reza; Dharmakumar, Rohan; Bairey Merz, C. Noel; Berman, Daniel S.; Li, Debiao

    2015-01-01

    Purpose To develop and test the feasibility of a new method for non-ECG-gated first-pass perfusion (FPP) cardiac MR capable of imaging multiple short-axis slices at the same systolic cardiac phase. Methods A magnetization-driven pulse sequence was developed for non-ECG-gated FPP imaging without saturation-recovery preparation using continuous slice-interleaved radial sampling. The image reconstruction method, dubbed TRACE, employed self-gating based on reconstruction of a real-time image-based navigator combined with reference-constrained compressed sensing. Data from ischemic animal studies (n=5) was used in a simulation framework to evaluate temporal fidelity. Healthy subjects (n=5) were studied using both the proposed and conventional method to compare the myocardial contrast-to-noise ratio (CNR). Patients (n=2) underwent adenosine stress studies using the proposed method. Results Temporal fidelity of the developed method was shown to be sufficient at high heart-rates. The healthy volunteers studies demonstrated normal perfusion and no artifacts. Compared to the conventional scheme, myocardial CNR for the proposed method was slightly higher (8.6±0.6 vs. 8.0±0.7). Patient studies showed stress-induced perfusion defects consistent with invasive angiography. Conclusions The presented methods and results demonstrate feasibility of the proposed approach for high-resolution non-ECG-gated FPP imaging and indicate its potential for achieving desirable image quality (high CNR, no dark-rim artifacts) with a 3-slice spatial coverage, all imaged at the same systolic phase. PMID:26052843

  12. Negative Differential Conductance in Polyporphyrin Oligomers with Nonlinear Backbones.

    PubMed

    Kuang, Guowen; Chen, Shi Zhang; Yan, Linghao; Chen, Ke Qiu; Shang, Xuesong; Liu, Pei Nian; Lin, Nian

    2018-01-17

    We study negative differential conductance (NDC) effects in polyporphyrin oligomers with nonlinear backbones. Using a low-temperature scanning tunneling microscope, we selectively controlled the charge transport path in single oligomer wires. We observed robust NDC when charge passed through a T-shape junction, bistable NDC when charge passed through a 90° kink and no NDC when charge passed through a 120° kink. Aided by density functional theory with nonequilibrium Green's functions simulations, we attributed this backbone-dependent NDC to bias-modulated hybridization of the electrode states with the resonant transport molecular orbital. We argue this mechanism is generic in molecular systems, which opens a new route of designing molecular NDC devices.

  13. Texas Fires

    Atmospheric Science Data Center

    2014-05-15

    ... one-year drought on record and the warmest month in Texas history. The Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra spacecraft passed over the wildfires at 12:05 p.m. CDT on ...

  14. SOHO-Ulysses Coordinated Studies During the Two Extended Quadratures and the Radial Alignment of 2007-2008

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Poletto, G.

    2007-01-01

    During quadrature, plasma seen on the limb of the Sun, along the radi al direction to Ulysses, by SOHO or STEREO can be sampled in situ as lt later passes Ulysses. A figure shows a coronagraph image, the rad ial towards Ulysses at 58 deg. S. and the SOHO/UVCS slit positions d uring one set of observations. A CME subsequently occurred and passed Ulysses (at 3/4 AU) 15 days later.

  15. Flying Past Pluto Animation

    NASA Image and Video Library

    2015-08-28

    This dramatic view of the Pluto system is as NASA's New Horizons spacecraft saw it in July 2015. The animation, made with real images taken by New Horizons, begins with Pluto flying in for its close-up on July 14; we then pass behind Pluto and see the atmosphere glow in sunlight before the sun passes behind Pluto's largest moon, Charon. The movie ends with New Horizons' departure, looking back on each body as thin crescents. http://photojournal.jpl.nasa.gov/catalog/PIA19873

  16. Enhanced-Contrast Viewing of White-Hot Objects in Furnaces

    NASA Technical Reports Server (NTRS)

    Witherow, William K.; Holmes, Richard R.; Kurtz, Robert L.

    2006-01-01

    An apparatus denoted a laser image contrast enhancement system (LICES) increases the contrast with which one can view a target glowing with blackbody radiation (a white-hot object) against a background of blackbody radiation in a furnace at a temperature as high as approximately 1,500 C. The apparatus utilizes a combination of narrowband illumination, along with band-pass filtering and polarization filtering to pass illumination reflected by the target while suppressing blackbody light from both the object and its background.

  17. Passivation Behavior of Ultrafine-Grained Pure Copper Fabricated by Accumulative Roll Bonding (ARB) Process

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Imantalab, Omid

    2016-01-01

    In this study, passivation behavior of ultrafine-grained (UFG) pure copper fabricated by ARB process in 0.01 M borax solution has been investigated. Before any electrochemical measurements, evaluation of microstructure was obtained by transmission electron microscopy (TEM). TEM observations revealed that with increasing the number of ARB passes, the grain size of specimens decrease. Also, TEM images showed that UFGs with average size of below 100 nm appeared after 7 passes of ARB. To investigate the passivation behavior of the specimens, electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis was carried out. For this purpose, three potentials within the passive region were chosen for potentiostatic passive film growth. EIS results showed that both passive film and charge-transfer resistance increases with increasing the number of ARB passes. Moreover, Mott-Schottky analysis revealed that with increasing the number of ARB passes, the acceptor density of the passive films decreased. In conclusion, increasing the number of ARB passes offers better conditions for forming the passive films with higher protection behavior, due to the growth of a much thicker and less defective films.

  18. Functional expression of SGLTs in rat brain.

    PubMed

    Yu, Amy S; Hirayama, Bruce A; Timbol, Gerald; Liu, Jie; Basarah, Ernest; Kepe, Vladimir; Satyamurthy, Nagichettiar; Huang, Sung-Cheng; Wright, Ernest M; Barrio, Jorge R

    2010-12-01

    This work provides evidence of previously unrecognized uptake of glucose via sodium-coupled glucose transporters (SGLTs) in specific regions of the brain. The current understanding of functional glucose utilization in brain is largely based on studies using positron emission tomography (PET) with the glucose tracer 2-deoxy-2-[F-18]fluoro-D-glucose (2-FDG). However, 2-FDG is only a good substrate for facilitated-glucose transporters (GLUTs), not for SGLTs. Thus, glucose accumulation measured by 2-FDG omits the role of SGLTs. We designed and synthesized two high-affinity tracers: one, α-methyl-4-[F-18]fluoro-4-deoxy-D-glucopyranoside (Me-4FDG), is a highly specific SGLT substrate and not transported by GLUTs; the other one, 4-[F-18]fluoro-4-deoxy-D-glucose (4-FDG), is transported by both SGLTs and GLUTs and will pass through the blood brain barrier (BBB). In vitro Me-4FDG autoradiography was used to map the distribution of uptake by functional SGLTs in brain slices with a comparable result from in vitro 4-FDG autoradiography. Immunohistochemical assays showed that uptake was consistent with the distribution of SGLT protein. Ex vivo 4-FDG autoradiography showed that SGLTs in these areas are functionally active in the normal in vivo brain. The results establish that SGLTs are a normal part of the physiology of specific areas of the brain, including hippocampus, amygdala, hypothalamus, and cerebral cortices. 4-FDG PET imaging also established that this BBB-permeable SGLT tracer now offers a functional imaging approach in humans to assess regulation of SGLT activity in health and disease.

  19. Functional reorganization during cognitive function tasks in patients with amyotrophic lateral sclerosis.

    PubMed

    Keller, Jürgen; Böhm, Sarah; Aho-Özhan, Helena E A; Loose, Markus; Gorges, Martin; Kassubek, Jan; Uttner, Ingo; Abrahams, Sharon; Ludolph, Albert C; Lulé, Dorothée

    2018-06-01

    Cognitive deficits, especially in the domains of social cognition and executive function including verbal fluency, are common in amyotrophic lateral sclerosis (ALS) patients. There is yet sparse understanding of pathogenesis of the underlying, possibly adaptive, cortical patterns. To address this issue, 65 patients with ALS and 33 age-, gender- and education-matched healthy controls were tested on cognitive and behavioral deficits with the Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Using functional magnetic resonance imaging (fMRI), cortical activity during social cognition and executive function tasks (theory of mind, verbal fluency, alternation) adapted from the ECAS was determined in a 3 Tesla scanner. Compared to healthy controls, ALS patients performed worse in the ECAS overall (p < 0.001) and in all of its subdomains (p < 0.02), except memory. Imaging revealed altered cortical activation during all tasks, with patients consistently showing a hyperactivation in relevant brain areas compared to healthy controls. Additionally, cognitively high performing ALS patients consistently exhibited more activation in frontal brain areas than low performing patients and behaviorally unimpaired patients presented with more neuronal activity in orbitofrontal areas than behaviorally impaired patients. In conclusion, hyperactivation in fMRI cognitive tasks seems to represent an early adaptive process to overcome neuronal cell loss in relevant brain areas. The hereby presented cortical pattern change might suggest that, once this loss passes a critical threshold and no cortical buffering is possible, clinical representation of cognitive and behavioral impairment evolves. Future studies might shed light on the pattern of cortical pattern change in the course of ALS.

  20. TU-F-CAMPUS-I-04: Head-Only Asymmetric Gradient System Evaluation: ACR Image Quality and Acoustic Noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weavers, P; Shu, Y; Tao, S

    Purpose: A high-performance head-only magnetic resonance imaging gradient system with an acquisition volume of 26 cm employing an asymmetric design for the transverse coils has been developed. It is able to reach a magnitude of 85 mT/m at a slew rate of 700 T/m/s, but operated at 80 mT/m and 500 T/m/s for this test. A challenge resulting from this asymmetric design is that the gradient nonlinearly exhibits both odd- and even-ordered terms, and as the full imaging field of view is often used, the nonlinearity is pronounced. The purpose of this work is to show the system can producemore » clinically useful images after an on-site gradient nonlinearity calibration and correction, and show that acoustic noise levels fall within non-significant risk (NSR) limits for standard clinical pulse sequences. Methods: The head-only gradient system was inserted into a standard 3T wide-bore scanner without acoustic damping. The ACR phantom was scanned in an 8-channel receive-only head coil and the standard American College of Radiology (ACR) MRI quality control (QC) test was performed. Acoustic noise levels were measured for several standard pulse sequences. Results: Images acquired with the head-only gradient system passed all ACR MR image quality tests; Both even and odd-order gradient distortion correction terms were required for the asymmetric gradients to pass. Acoustic noise measurements were within FDA NSR guidelines of 99 dBA (with assumed 20 dBA hearing protection) A-weighted and 140 dB for peak for all but one sequence. Note the gradient system was installed without any shroud or acoustic batting. We expect final system integration to greatly reduce noise experienced by the patient. Conclusion: A high-performance head-only asymmetric gradient system operating at 80 mT/m and 500 T/m/s conforms to FDA acoustic noise limits in all but one case, and passes all the ACR MR image quality control tests. This work was supported in part by the NIH grant 5R01EB010065.« less

  1. Integration of Irma tactical scene generator into directed-energy weapon system simulation

    NASA Astrophysics Data System (ADS)

    Owens, Monte A.; Cole, Madison B., III; Laine, Mark R.

    2003-08-01

    Integrated high-fidelity physics-based simulations that include engagement models, image generation, electro-optical hardware models and control system algorithms have previously been developed by Boeing-SVS for various tracking and pointing systems. These simulations, however, had always used images with featureless or random backgrounds and simple target geometries. With the requirement to engage tactical ground targets in the presence of cluttered backgrounds, a new type of scene generation tool was required to fully evaluate system performance in this challenging environment. To answer this need, Irma was integrated into the existing suite of Boeing-SVS simulation tools, allowing scene generation capabilities with unprecedented realism. Irma is a US Air Force research tool used for high-resolution rendering and prediction of target and background signatures. The MATLAB/Simulink-based simulation achieves closed-loop tracking by running track algorithms on the Irma-generated images, processing the track errors through optical control algorithms, and moving simulated electro-optical elements. The geometry of these elements determines the sensor orientation with respect to the Irma database containing the three-dimensional background and target models. This orientation is dynamically passed to Irma through a Simulink S-function to generate the next image. This integrated simulation provides a test-bed for development and evaluation of tracking and control algorithms against representative images including complex background environments and realistic targets calibrated using field measurements.

  2. Navigator-gated 3D blood oxygen level-dependent CMR at 3.0-T for detection of stress-induced myocardial ischemic reactions.

    PubMed

    Jahnke, Cosima; Gebker, Rolf; Manka, Robert; Schnackenburg, Bernhard; Fleck, Eckart; Paetsch, Ingo

    2010-04-01

    This study determined the value of navigator-gated 3-dimensional blood oxygen level-dependent (BOLD) cardiac magnetic resonance (CMR) at 3.0-T for the detection of stress-induced myocardial ischemic reactions. Although BOLD CMR has been introduced for characterization of myocardial oxygenation status, previously reported CMR approaches suffered from a low signal-to-noise ratio and motion-related artifacts with impaired image quality and a limited diagnostic value in initial patient studies. Fifty patients with suspected or known coronary artery disease underwent CMR at 3.0-T followed by invasive X-ray angiography within 48 h. Three-dimensional BOLD images were acquired during free breathing with full coverage of the left ventricle in a short-axis orientation. The BOLD imaging was performed at rest and under adenosine stress, followed by stress and rest first-pass perfusion and delayed enhancement imaging. Quantitative coronary X-ray angiography (QCA) was used for coronary stenosis definition (diameter reduction > or =50%). The BOLD and first-pass perfusion images were semiquantitatively evaluated (for BOLD imaging, signal intensity differences between stress and rest [DeltaSI]; for perfusion imaging, myocardial perfusion reserve index [MPRI]). The image quality of BOLD CMR at rest and during adenosine stress was considered good to excellent in 90% and 84% of the patients, respectively. The DeltaSI measurements differed significantly between normal myocardium, myocardium supplied by a stenotic coronary artery, and infarcted myocardium (p < 0.001). The receiver-operator characteristic analysis identified a cutoff value of DeltaSI = 2.7% for the detection of coronary stenosis, resulting in a sensitivity and specificity of 85.0% and 80.5%, respectively. An MPRI cutoff value of 1.35 yielded a sensitivity and specificity of 89.5% and 85.8%, respectively. The DeltaSI significantly correlated with the degree of coronary stenosis (r = -0.65, p < 0.001). Additionally, DeltaSI and MPRI showed substantial agreement (kappa value 0.66). Navigator-gated 3-dimensional BOLD imaging at 3.0-T reliably detected stress-induced myocardial ischemic reactions and may be considered a valid alternative to first-pass exogenous contrast-enhancement studies. Copyright 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  3. Emergency airway puncture - series (image)

    MedlinePlus

    ... passes to the lungs. The thryoid and cricoid cartilage form the narrowest section of this airway. ... the larynx bounded by the thyroid and cricoid cartilage is a frequent site for obstruction, either by ...

  4. Male pattern baldness (image)

    MedlinePlus

    Male pattern baldness is a sex-linked characteristic that is passed from mother to child. A man can more accurately predict his chances of developing male pattern baldness by observing his mother's father than ...

  5. Spectral analysis and filtering techniques in digital spatial data processing

    USGS Publications Warehouse

    Pan, Jeng-Jong

    1989-01-01

    A filter toolbox has been developed at the EROS Data Center, US Geological Survey, for retrieving or removing specified frequency information from two-dimensional digital spatial data. This filter toolbox provides capabilities to compute the power spectrum of a given data and to design various filters in the frequency domain. Three types of filters are available in the toolbox: point filter, line filter, and area filter. Both the point and line filters employ Gaussian-type notch filters, and the area filter includes the capabilities to perform high-pass, band-pass, low-pass, and wedge filtering techniques. These filters are applied for analyzing satellite multispectral scanner data, airborne visible and infrared imaging spectrometer (AVIRIS) data, gravity data, and the digital elevation models (DEM) data. -from Author

  6. Back to the Basics: Cnidarians Start to Fire

    PubMed Central

    Bosch, Thomas C. G.; Klimovich, Alexander; Domazet-Lošo, Tomislav; Gründer, Stefan; Holstein, Thomas W.; Jékely, Gáspár; Miller, David J.; Murillo-Rincon, Andrea P.; Rentzsch, Fabian; Richards, Gemma S.; Schröder, Katja; Technau, Ulrich; Yuste, Rafael

    2016-01-01

    The nervous systems of cnidarians, pre-bilaterian animals that diverged close to the base of the metazoan radiation, are structurally simple and thus have great potential to inform us about basic structural and functional principles of neural circuits. Unfortunately, cnidarians have thus far been relatively intractable to electrophysiological and genetic techniques and consequently have been largely passed over by neurobiologists. However, recent advances in molecular and imaging methods are fueling a renaissance of interest in and research into cnidarians nervous systems. Here, we review current knowledge on the nervous systems of some cnidarian species and propose that researchers should seize this opportunity and undertake the study of this phylum as strategic experimental systems with great basic and translational relevance for neuroscience. PMID:28041633

  7. Quantification of fibre polymerization through Fourier space image analysis

    PubMed Central

    Nekouzadeh, Ali; Genin, Guy M.

    2011-01-01

    Quantification of changes in the total length of randomly oriented and possibly curved lines appearing in an image is a necessity in a wide variety of biological applications. Here, we present an automated approach based upon Fourier space analysis. Scaled, band-pass filtered power spectral densities of greyscale images are integrated to provide a quantitative measurement of the total length of lines of a particular range of thicknesses appearing in an image. A procedure is presented to correct for changes in image intensity. The method is most accurate for two-dimensional processes with fibres that do not occlude one another. PMID:24959096

  8. Multi-spectral endogenous fluorescence imaging for bacterial differentiation

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.

    2017-07-01

    In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.

  9. A Bayesian Model for Highly Accelerated Phase-Contrast MRI

    PubMed Central

    Rich, Adam; Potter, Lee C.; Jin, Ning; Ash, Joshua; Simonetti, Orlando P.; Ahmad, Rizwan

    2015-01-01

    Purpose Phase-contrast magnetic resonance imaging (PC-MRI) is a noninvasive tool to assess cardiovascular disease by quantifying blood flow; however, low data acquisition efficiency limits the spatial and temporal resolutions, real-time application, and extensions to 4D flow imaging in clinical settings. We propose a new data processing approach called Reconstructing Velocity Encoded MRI with Approximate message passing aLgorithms (ReVEAL) that accelerates the acquisition by exploiting data structure unique to PC-MRI. Theory and Methods ReVEAL models physical correlations across space, time, and velocity encodings. The proposed Bayesian approach exploits the relationships in both magnitude and phase among velocity encodings. A fast iterative recovery algorithm is introduced based on message passing. For validation, prospectively undersampled data are processed from a pulsatile flow phantom and five healthy volunteers. Results ReVEAL is in good agreement, quantified by peak velocity and stroke volume (SV), with reference data for acceleration rates R ≤ 10. For SV, Pearson r ≥ 0.996 for phantom imaging (n = 24) and r ≥ 0.956 for prospectively accelerated in vivo imaging (n = 10) for R ≤ 10. Conclusion ReVEAL enables accurate quantification of blood flow from highly undersampled data. The technique is extensible to 4D flow imaging, where higher acceleration may be possible due to additional redundancy. PMID:26444911

  10. Are reconstruction filters necessary?

    NASA Astrophysics Data System (ADS)

    Holst, Gerald C.

    2006-05-01

    Shannon's sampling theorem (also called the Shannon-Whittaker-Kotel'nikov theorem) was developed for the digitization and reconstruction of sinusoids. Strict adherence is required when frequency preservation is important. Three conditions must be met to satisfy the sampling theorem: (1) The signal must be band-limited, (2) the digitizer must sample the signal at an adequate rate, and (3) a low-pass reconstruction filter must be present. In an imaging system, the signal is band-limited by the optics. For most imaging systems, the signal is not adequately sampled resulting in aliasing. While the aliasing seems excessive mathematically, it does not significantly affect the perceived image. The human visual system detects intensity differences, spatial differences (shapes), and color differences. The eye is less sensitive to frequency effects and therefore sampling artifacts have become quite acceptable. Indeed, we love our television even though it is significantly undersampled. The reconstruction filter, although absolutely essential, is rarely discussed. It converts digital data (which we cannot see) into a viewable analog signal. There are several reconstruction filters: electronic low-pass filters, the display media (monitor, laser printer), and your eye. These are often used in combination to create a perceived continuous image. Each filter modifies the MTF in a unique manner. Therefore image quality and system performance depends upon the reconstruction filter(s) used. The selection depends upon the application.

  11. Document image cleanup and binarization

    NASA Astrophysics Data System (ADS)

    Wu, Victor; Manmatha, Raghaven

    1998-04-01

    Image binarization is a difficult task for documents with text over textured or shaded backgrounds, poor contrast, and/or considerable noise. Current optical character recognition (OCR) and document analysis technology do not handle such documents well. We have developed a simple yet effective algorithm for document image clean-up and binarization. The algorithm consists of two basic steps. In the first step, the input image is smoothed using a low-pass filter. The smoothing operation enhances the text relative to any background texture. This is because background texture normally has higher frequency than text does. The smoothing operation also removes speckle noise. In the second step, the intensity histogram of the smoothed image is computed and a threshold automatically selected as follows. For black text, the first peak of the histogram corresponds to text. Thresholding the image at the value of the valley between the first and second peaks of the histogram binarizes the image well. In order to reliably identify the valley, the histogram is smoothed by a low-pass filter before the threshold is computed. The algorithm has been applied to some 50 images from a wide variety of source: digitized video frames, photos, newspapers, advertisements in magazines or sales flyers, personal checks, etc. There are 21820 characters and 4406 words in these images. 91 percent of the characters and 86 percent of the words are successfully cleaned up and binarized. A commercial OCR was applied to the binarized text when it consisted of fonts which were OCR recognizable. The recognition rate was 84 percent for the characters and 77 percent for the words.

  12. Compact whole-body fluorescent imaging of nude mice bearing EGFP expressing tumor

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Xiong, Tao; Chu, Jun; Yu, Li; Zeng, Shaoqun; Luo, Qingming

    2005-01-01

    Issue of tumor has been a hotspot of current medicine. It is important for tumor research to detect tumors bearing in animal models easily, fast, repetitively and noninvasivly. Many researchers have paid their increasing interests on the detecting. Some contrast agents, such as green fluorescent protein (GFP) and Discosoma red fluorescent protein (Dsred) were applied to enhance image quality. Three main kinds of imaging scheme were adopted to visualize fluorescent protein expressing tumors in vivo. These schemes based on fluorescence stereo microscope, cooled charge-coupled-device (CCD) or camera as imaging set, and laser or mercury lamp as excitation light source. Fluorescence stereo microscope, laser and cooled CCD are expensive to many institutes. The authors set up an inexpensive compact whole-body fluorescent imaging tool, which consisted of a Kodak digital camera (model DC290), fluorescence filters(B and G2;HB Optical, Shenyang, Liaoning, P.R. China) and a mercury 50-W lamp power supply (U-LH50HG;Olympus Optical, Japan) as excitation light source. The EGFP was excited directly by mercury lamp with D455/70 nm band-pass filter and fluorescence was recorded by digital camera with 520nm long-pass filter. By this easy operation tool, the authors imaged, in real time, fluorescent tumors growing in live mice. The imaging system is external and noninvasive. For half a year our experiments suggested the imaging scheme was feasible. Whole-body fluorescence optical imaging for fluorescent expressing tumors in nude mouse is an ideal tool for antitumor, antimetastatic, and antiangiogenesis drug screening.

  13. Detection of single-copy functional genes in prokaryotic cells by two-pass TSA-FISH with polynucleotide probes.

    PubMed

    Kawakami, Shuji; Hasegawa, Takuya; Imachi, Hiroyuki; Yamaguchi, Takashi; Harada, Hideki; Ohashi, Akiyoshi; Kubota, Kengo

    2012-02-01

    In situ detection of functional genes with single-cell resolution is currently of interest to microbiologists. Here, we developed a two-pass tyramide signal amplification (TSA)-fluorescence in situ hybridization (FISH) protocol with PCR-derived polynucleotide probes for the detection of single-copy genes in prokaryotic cells. The mcrA gene and the apsA gene in methanogens and sulfate-reducing bacteria, respectively, were targeted. The protocol showed bright fluorescence with a good signal-to-noise ratio and achieved a high efficiency of detection (>98%). The discrimination threshold was approximately 82-89% sequence identity. Microorganisms possessing the mcrA or apsA gene in anaerobic sludge samples were successfully detected by two-pass TSA-FISH with polynucleotide probes. The developed protocol is useful for identifying single microbial cells based on functional gene sequences. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Making Mosaics Of SAR Imagery

    NASA Technical Reports Server (NTRS)

    Curlander, John C.; Kwok, Ronald; Pang, Shirley S.; Pang, Amy A.

    1990-01-01

    Spaceborne synthetic-aperture-radar (SAR) images useful for mapping of planets and investigations in Earth sciences. Produces multiframe mosaic by combining images along ground track, in adjacent cross-track swaths, or in ascending and descending passes. Images registered with geocoded maps such as ones produced by MAPJTC (NPO-17718), required as input. Minimal intervention by operator required. MOSK implemented on DEC VAX 11/785 computer running VMS 4.5. Most subroutines in FORTRAN, but three in MAXL and one in APAL.

  15. Fully automated motion correction in first-pass myocardial perfusion MR image sequences.

    PubMed

    Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2008-11-01

    This paper presents a novel method for registration of cardiac perfusion magnetic resonance imaging (MRI). The presented method is capable of automatically registering perfusion data, using independent component analysis (ICA) to extract physiologically relevant features together with their time-intensity behavior. A time-varying reference image mimicking intensity changes in the data of interest is computed based on the results of that ICA. This reference image is used in a two-pass registration framework. Qualitative and quantitative validation of the method is carried out using 46 clinical quality, short-axis, perfusion MR datasets comprising 100 images each. Despite varying image quality and motion patterns in the evaluation set, validation of the method showed a reduction of the average right ventricle (LV) motion from 1.26+/-0.87 to 0.64+/-0.46 pixels. Time-intensity curves are also improved after registration with an average error reduced from 2.65+/-7.89% to 0.87+/-3.88% between registered data and manual gold standard. Comparison of clinically relevant parameters computed using registered data and the manual gold standard show a good agreement. Additional tests with a simulated free-breathing protocol showed robustness against considerable deviations from a standard breathing protocol. We conclude that this fully automatic ICA-based method shows an accuracy, a robustness and a computation speed adequate for use in a clinical environment.

  16. Space Radar Image of Long Valley, California in 3-D

    NASA Image and Video Library

    1999-05-01

    This three-dimensional perspective view of Long Valley, California was created from data taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. This image was constructed by overlaying a color composite SIR-C radar image on a digital elevation map. The digital elevation map was produced using radar interferometry, a process by which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The interferometry data were acquired on April 13,1994 and on October 3, 1994, during the first and second flights of the SIR-C/X-SAR instrument. The color composite radar image was taken in October and was produced by assigning red to the C-band (horizontally transmitted and vertically received) polarization; green to the C-band (vertically transmitted and received) polarization; and blue to the ratio of the two data sets. Blue areas in the image are smooth and yellow areas are rock outcrops with varying amounts of snow and vegetation. The view is looking north along the northeastern edge of the Long Valley caldera, a volcanic collapse feature created 750,000 years ago and the site of continued subsurface activity. Crowley Lake is the large dark feature in the foreground. http://photojournal.jpl.nasa.gov/catalog/PIA01769

  17. A Bayesian model for highly accelerated phase-contrast MRI.

    PubMed

    Rich, Adam; Potter, Lee C; Jin, Ning; Ash, Joshua; Simonetti, Orlando P; Ahmad, Rizwan

    2016-08-01

    Phase-contrast magnetic resonance imaging is a noninvasive tool to assess cardiovascular disease by quantifying blood flow; however, low data acquisition efficiency limits the spatial and temporal resolutions, real-time application, and extensions to four-dimensional flow imaging in clinical settings. We propose a new data processing approach called Reconstructing Velocity Encoded MRI with Approximate message passing aLgorithms (ReVEAL) that accelerates the acquisition by exploiting data structure unique to phase-contrast magnetic resonance imaging. The proposed approach models physical correlations across space, time, and velocity encodings. The proposed Bayesian approach exploits the relationships in both magnitude and phase among velocity encodings. A fast iterative recovery algorithm is introduced based on message passing. For validation, prospectively undersampled data are processed from a pulsatile flow phantom and five healthy volunteers. The proposed approach is in good agreement, quantified by peak velocity and stroke volume (SV), with reference data for acceleration rates R≤10. For SV, Pearson r≥0.99 for phantom imaging (n = 24) and r≥0.96 for prospectively accelerated in vivo imaging (n = 10) for R≤10. The proposed approach enables accurate quantification of blood flow from highly undersampled data. The technique is extensible to four-dimensional flow imaging, where higher acceleration may be possible due to additional redundancy. Magn Reson Med 76:689-701, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. First Radar Images of Halloween Asteroid

    NASA Image and Video Library

    2015-10-30

    These first radar images of 2015 TB145 from the National Science Foundation 1,000-foot 305-meter Arecibo Observatory in Puerto Rico, indicate the near-Earth object is spherical in shape and approximately 2,000 feet 600 meters in diameter. The radar images were taken on Oct. 30, 2015, and the image resolution is 25 feet (7.5 meters) per pixel. The celestial object is more than likely a dead comet that has shed its volatiles after numerous passes around the sun. http://photojournal.jpl.nasa.gov/catalog/PIA20040

  19. Do Patients Failing Return-to-Activity Criteria at 6 Months After Anterior Cruciate Ligament Reconstruction Continue Demonstrating Deficits at 2 Years?

    PubMed Central

    Nawasreh, Zakariya; Logerstedt, David; Cummerm, Kathleen; Axe, Michael J.; Risberg, May Arna; Snyder-Mackler, Lynn

    2017-01-01

    Background The variability in outcomes after anterior cruciate ligament reconstruction (ACLR) might be related to the criteria that are used to determine athletes’ readiness to return to their preinjury activity level. A battery of return-to-activity criteria (RTAC) that emphasize normal knee function and movement symmetry has been instituted to quantitatively determine athletes’ readiness to return to preinjury activities. Purpose To investigate performance-based and patient-reported measures at 12 and 24 months after ACLR between patients who passed or failed RTAC at 6 months after ACLR. Study Design Cohort study; Level of evidence, 2. Methods A total of 108 patients who had participated in International Knee Documentation Committee level 1 or 2 sports activities completed RTAC testing at 6, 12, and 24 months after surgery. The RTAC included the isometric quadriceps strength index (QI), 4 single-legged hop tests, the Knee Outcome Survey–activities of daily living subscale (KOS-ADLS), and the global rating scale of perceived function (GRS). Patients who scored ≥90% on all RTAC were classified as the pass group, and those who scored <90% on any RTAC were classified as the fail group. At 12- and 24-month follow-ups, patients were asked if they had returned to the same preinjury activity level. Results At the 6-month follow-up, there were 48 patients in the pass group and 47 in the fail group. At the 12-month follow-up, 31 patients (73.8%) from the pass group and 15 patients (39.5%) from the fail group passed RTAC, and at the 24-month follow-up, 25 patients (75.8%) from the pass group and 14 patients (51.9%) from the fail group passed RTAC. The rate of return to activities in the pass group was 81% and 84% at 12 and 24 months after ACLR, respectively, compared with only 44% and 46% in the fail group (P ≤ .012), respectively; however, some patients in the fail group participated in preinjury activities without being cleared by their therapists. At 12 and 24 months, 60.5% and 48.1% of patients continued to fail again on the criteria, respectively. A statistically significant group × time interaction was found for the single hop and 6-m timed hop limb symmetry indices (LSIs) (P ≤ .037), with only the fail group demonstrating a significant improvement over time. A main effect of group was detected for the QI and the crossover hop and triple hop LSIs (P <.01), with patients in the pass group demonstrating higher performance. A main effect of time was detected for the crossover hop and triple hop LSIs and the GRS, with improvements seen in both groups (P <.05). Conclusion Patients who passed the RTAC early after ACLR were more likely to demonstrate normal knee function and movement symmetry at 12 and 24 months postoperatively, while patients who failed the RTAC early were more likely to demonstrate impaired knee function and movement asymmetry at 12- and 24-month follow-ups. Patients in the pass group had a higher rate of return to their preinjury activity level compared with those in the fail group. A group of patients chose to return to their preinjury activities, even though they were functionally not ready. PMID:28125899

  20. Design of a concise Féry-prism hyperspectral imaging system based on multi-configuration

    NASA Astrophysics Data System (ADS)

    Dong, Wei; Nie, Yun-feng; Zhou, Jin-song

    2013-08-01

    In order to meet the needs of space borne and airborne hyperspectral imaging system for light weight, simplification and high spatial resolution, a novel design of Féry-prism hyperspectral imaging system based on Zemax multi-configuration method is presented. The novel structure is well arranged by analyzing optical monochromatic aberrations theoretically, and the optical structure of this design is concise. The fundamental of this design is Offner relay configuration, whereas the secondary mirror is replaced by Féry-prism with curved surfaces and a reflective front face. By reflection, the light beam passes through the Féry-prism twice, which promotes spectral resolution and enhances image quality at the same time. The result shows that the system can achieve light weight and simplification, compared to other hyperspectral imaging systems. Composed of merely two spherical mirrors and one achromatized Féry-prism to perform both dispersion and imaging functions, this structure is concise and compact. The average spectral resolution is 6.2nm; The MTFs for 0.45~1.00um spectral range are greater than 0.75, RMSs are less than 2.4um; The maximal smile is less than 10% pixel, while the keystones is less than 2.8% pixel; image quality approximates the diffraction limit. The design result shows that hyperspectral imaging system with one modified Féry-prism substituting the secondary mirror of Offner relay configuration is feasible from the perspective of both theory and practice, and possesses the merits of simple structure, convenient optical alignment, and good image quality, high resolution in space and spectra, adjustable dispersive nonlinearity. The system satisfies the requirements of airborne or space borne hyperspectral imaging system.

  1. Benefits of utilizing CellProfiler as a characterization tool for U–10Mo nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collette, R.; Douglas, J.; Patterson, L.

    2015-07-15

    Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium–molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellularmore » measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to ‘pass’ or ‘fail’ an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries. - Graphical abstract: Display Omitted - Highlights: • A technique is developed to score U–10Mo FIB-SEM image quality using CellProfiler. • The pass/fail metric is based on image illumination, focus, and area scratched. • Automated image analysis is performed in pipeline fashion to characterize images. • Fission gas void, interaction layer, and grain boundary coverage data is extracted. • Preliminary characterization results demonstrate consistency of the algorithm.« less

  2. X-ray - skeleton

    MedlinePlus

    ... pass through the body. A computer or special film records the images. Structures that are dense (such ... Guidelines Viewers & Players MedlinePlus Connect for EHRs For Developers U.S. National Library of Medicine 8600 Rockville Pike, ...

  3. Incidence of major hemorrhage after aggressive image-guided liver mass biopsy in the era of individualized medicine.

    PubMed

    Boyum, James H; Atwell, Thomas D; Wall, Darci J; Mansfield, Aaron S; Kerr, Sarah E; Gunderson, Tina M; Rumilla, Kandelaria M; Weisbrod, Adam J; Kurup, A Nicholas

    2018-05-17

    To analyze a large volume of image-guided liver mass biopsies to assess for an increased incidence of major hemorrhage after aggressive liver mass sampling, and to determine if coaxial technique reduces major hemorrhage rate. Patients who underwent image-guided liver mass biopsy over a 15-year period (December 7, 2001-September 22, 2016) were retrospectively identified. An aggressive biopsy was defined as a biopsy event in which ≥ 4 core needle passes were performed. Association of major hemorrhage after aggressive liver mass biopsy and other potential risk factors of interest were assessed using logistic regression analysis. For the subset of aggressive biopsies, Fisher's exact test was used to compare the incidence of major hemorrhage using coaxial versus noncoaxial techniques. Aggressive biopsies constituted 11.6% of biopsy events (N =579/5011). The incidence of major hemorrhage with <4 passes was 0.4% (N =18/4432) and with ≥4 passes 1.2% (N =6/579). In univariable models, aggressive biopsy was significantly associated with major hemorrhage (OR 3.0, 95% CI 1.16-6.92, p =0.025). After adjusting for gender and platelet count, the association was not significant at the p =0.05 level (OR 2.58, 95% CI 0.927-6.24, p =0.067). The rate of major hemorrhage in the coaxial biopsy technique group was 1.4% (N =3/209) compared to 1.1% (N =4/370) in the noncoaxial biopsy technique group, which was not a significant difference (p =0.707). Although aggressive image-guided liver mass biopsies had an increased incidence of major hemorrhage, the overall risk of bleeding remained low. The benefit of such biopsies will almost certainly outweigh the risk in most patients.

  4. Multiparameter double hole contrast detail phantom: Ability to detect image displacement due to off position anode stem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauzi, Nur Farahana; Majid, Zafri Azran Abdul; Sapuan, Abdul Halim

    Contrast Detail phantom is a quality control tool to analyze the performance of imaging devices. Currently, its function is solely to evaluate the contrast detail characteristic of imaging system. It consists of drilled hole which gives effect to the penetration of x-ray beam divergence to pass through the base of each hole. This effect will lead to false appearance of image from its original location but it does not being visualized in the radiograph. In this study, a new design of Contrast Detail phantom’s hole which consists of double hole construction has been developed. It can detect the image displacementmore » which is due to off position of anode stem from its original location. The double hole differs from previous milled hole, whereby it consists of combination of different hole diameters. Small hole diameter (3 mm) is positioned on top of larger hole diameter (10 mm). The thickness of double hole acrylic blocks is 13 mm. Result revealed that Multiparameter Double Hole Contrast Detail phantom can visualize the shifted flaw image quality produced by x-ray machine due to improper position of the anode stem which is attached to rotor and stator. The effective focal spot of x-ray beam also has been shifted from the center of collimator as a result of off-position anode stem. As a conclusion, the new design of double hole Contrast Detail phantom able to measure those parameters in a well manner.« less

  5. Selected-zone dark-field electron microscopy.

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1972-01-01

    Description of a new method which makes it possible to reduce drastically the resolution-limiting influence of chromatic aberration, and thus to obtain high-quality images, by selecting the image-forming electrons that have passed through a small annular zone of an objective lens. In addition, the manufacture of special objective-lens aperture diaphragms that are needed for this method is also described.

  6. Method for observing phase objects without halos and directional shadows

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshimasa; Kajitani, Kazuo; Ohde, Hisashi

    2015-03-01

    A new microscopy method for observing phase objects without halos and directional shadows is proposed. The key optical element is an annular aperture at the front focal plane of a condenser with a larger diameter than those used in standard phase contrast microscopy. The light flux passing through the annular aperture is changed by the specimen's surface profile and then passes through an objective and contributes to image formation. This paper presents essential conditions for realizing the method. In this paper, images of colonies formed by induced pluripotent stem (iPS) cells using this method are compared with the conventional phase contrast method and the bright-field method when the NA of the illumination is small to identify differences among these techniques. The outlines of the iPS cells are clearly visible with this method, whereas they are not clearly visible due to halos when using the phase contrast method or due to weak contrast when using the bright-field method. Other images using this method are also presented to demonstrate a capacity of this method: a mouse ovum and superimposition of several different images of mouse iPS cells.

  7. Space Radar Image of Kennedy Space Center, Florida

    NASA Image and Video Library

    1999-06-25

    This image was produced during radar observations taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar as it flew over the Gulf Stream, Florida, and past the Atlantic Ocean on October 7, 1994. The data were produced using the X-band radar frequency. Knowing ahead of time that this region would be included in a regularly scheduled radar pass, the Kennedy Space Center team, who assembled and integrated the SIR-C/X-SAR equipment with the Spacelab pallet system, designed a set of radar reflectors from common construction materials and formed the letters "KSC" on the ground adjacent to the main headquarters building at the entrance to the Cape Canaveral launch facility. The point of light formed by the bright return from these reflectors are visible in the image. Other more diffuse bright spots are reflections from building faces, roofs and other large structures at the Kennedy Space Center complex. This frame covers an area of approximately 6 kilometers by 8 kilometers (4 miles by 5 miles), which was just a small portion of the data taken on this particular pass. http://photojournal.jpl.nasa.gov/catalog/PIA01747

  8. DMD-based implementation of patterned optical filter arrays for compressive spectral imaging.

    PubMed

    Rueda, Hoover; Arguello, Henry; Arce, Gonzalo R

    2015-01-01

    Compressive spectral imaging (CSI) captures multispectral imagery using fewer measurements than those required by traditional Shannon-Nyquist theory-based sensing procedures. CSI systems acquire coded and dispersed random projections of the scene rather than direct measurements of the voxels. To date, the coding procedure in CSI has been realized through the use of block-unblock coded apertures (CAs), commonly implemented as chrome-on-quartz photomasks. These apertures block or permit us to pass the entire spectrum from the scene at given spatial locations, thus modulating the spatial characteristics of the scene. This paper extends the framework of CSI by replacing the traditional block-unblock photomasks by patterned optical filter arrays, referred to as colored coded apertures (CCAs). These, in turn, allow the source to be modulated not only spatially but spectrally as well, entailing more powerful coding strategies. The proposed CCAs are synthesized through linear combinations of low-pass, high-pass, and bandpass filters, paired with binary pattern ensembles realized by a digital micromirror device. The optical forward model of the proposed CSI architecture is presented along with a proof-of-concept implementation, which achieves noticeable improvements in the quality of the reconstruction.

  9. Ripple FPN reduced algorithm based on temporal high-pass filter and hardware implementation

    NASA Astrophysics Data System (ADS)

    Li, Yiyang; Li, Shuo; Zhang, Zhipeng; Jin, Weiqi; Wu, Lei; Jin, Minglei

    2016-11-01

    Cooled infrared detector arrays always suffer from undesired Ripple Fixed-Pattern Noise (FPN) when observe the scene of sky. The Ripple Fixed-Pattern Noise seriously affect the imaging quality of thermal imager, especially for small target detection and tracking. It is hard to eliminate the FPN by the Calibration based techniques and the current scene-based nonuniformity algorithms. In this paper, we present a modified space low-pass and temporal high-pass nonuniformity correction algorithm using adaptive time domain threshold (THP&GM). The threshold is designed to significantly reduce ghosting artifacts. We test the algorithm on real infrared in comparison to several previously published methods. This algorithm not only can effectively correct common FPN such as Stripe, but also has obviously advantage compared with the current methods in terms of detail protection and convergence speed, especially for Ripple FPN correction. Furthermore, we display our architecture with a prototype built on a Xilinx Virtex-5 XC5VLX50T field-programmable gate array (FPGA). The hardware implementation of the algorithm based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay (less than 20 lines). The hardware has been successfully applied in actual system.

  10. Sprectroscopic and time-resolved optical methods and apparatus for imaging objects in turbed media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Zevallos, Manuel E. (Inventor); Gayen, Swapan Kumar (Inventor)

    2003-01-01

    Method and apparatus for imaging objects in turbid media. In one embodiment, the method comprises illuminating at least a portion of the turbid medium with substantially monochromatic light of at least two wavelengths in the 600-1500 nm spectral range. A first of the at least two wavelengths is equal to a resonance wavelength for an optical property of an object in the illuminated portion of the turbid medium but is not equal to a resonance wavelength for the turbid medium. A second of the at least two wavelengths is not equal to a resonance wavelength for either the object or the turbid medium. Light emergent from the turbid medium following each of the foregoing illuminations comprises a ballistic component, a snake component and a diffuse component. A direct shadowgram image may be obtained by preferentially passing from the emergent light, following each illumination. the ballistic and snake components thereof and detecting the preferentially passed light. Alternatively, an inverse reconstruction image may be obtained by determining, following each illumination, the intensity of the diffuse component at a plurality of points in time and then using these pluralities of intensity determinations and a mathematical inversion algorithm to form an image of the object in the turbid medium. An image of the object with higher contrast and better quality may be obtained by using the ratio or difference of the images recorded with resonant light and non-resonant light.

  11. A review and empirical study of the composite scales of the Das-Naglieri cognitive assessment system.

    PubMed

    McCrea, Simon M

    2009-01-01

    Alexander Luria's model of the working brain consisting of three functional units was formulated through the examination of hundreds of focal brain-injury patients. Several psychometric instruments based on Luria's syndrome analysis and accompanying qualitative tasks have been developed since the 1970s. In the mid-1970s, JP Das and colleagues defined a specific cognitive processes model based directly on Luria's two coding units termed simultaneous and successive by studying diverse cross-cultural, ability, and socioeconomic strata. The cognitive assessment system is based on the PASS model of cognitive processes and consists of four composite scales of Planning-Attention-Simultaneous-Successive (PASS) devised by Naglieri and Das in 1997. Das and colleagues developed the two new scales of planning and attention to more closely model Luria's theory of higher cortical functions. In this paper a theoretical review of Luria's theory, Das and colleagues elaboration of Luria's model, and the neural correlates of PASS composite scales based on extant studies is summarized. A brief empirical study of the neuropsychological specificity of the PASS composite scales in a sample of 33 focal cortical stroke patients using cluster analysis is then discussed. Planning and simultaneous were sensitive to right hemisphere lesions. These findings were integrated with recent functional neuroimaging studies of PASS scales. In sum it was found that simultaneous is strongly dependent on dual bilateral occipitoparietal interhemispheric coordination whereas successive demonstrated left frontotemporal specificity with some evidence of interhemispheric coordination across the prefrontal cortex. Hence, support for the validity of the PASS composite scales was found as well as for the axiom of the independence of code content from code type originally specified in 1994 by Das, Naglieri, and Kirby.

  12. A review and empirical study of the composite scales of the Das–Naglieri cognitive assessment system

    PubMed Central

    McCrea, Simon M

    2009-01-01

    Alexander Luria’s model of the working brain consisting of three functional units was formulated through the examination of hundreds of focal brain-injury patients. Several psychometric instruments based on Luria’s syndrome analysis and accompanying qualitative tasks have been developed since the 1970s. In the mid-1970s, JP Das and colleagues defined a specific cognitive processes model based directly on Luria’s two coding units termed simultaneous and successive by studying diverse cross-cultural, ability, and socioeconomic strata. The cognitive assessment system is based on the PASS model of cognitive processes and consists of four composite scales of Planning–Attention–Simultaneous–Successive (PASS) devised by Naglieri and Das in 1997. Das and colleagues developed the two new scales of planning and attention to more closely model Luria’s theory of higher cortical functions. In this paper a theoretical review of Luria’s theory, Das and colleagues elaboration of Luria’s model, and the neural correlates of PASS composite scales based on extant studies is summarized. A brief empirical study of the neuropsychological specificity of the PASS composite scales in a sample of 33 focal cortical stroke patients using cluster analysis is then discussed. Planning and simultaneous were sensitive to right hemisphere lesions. These findings were integrated with recent functional neuroimaging studies of PASS scales. In sum it was found that simultaneous is strongly dependent on dual bilateral occipitoparietal interhemispheric coordination whereas successive demonstrated left frontotemporal specificity with some evidence of interhemispheric coordination across the prefrontal cortex. Hence, support for the validity of the PASS composite scales was found as well as for the axiom of the independence of code content from code type originally specified in 1994 by Das, Naglieri, and Kirby. PMID:22110322

  13. Adaptive Optics at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavel, D T

    2003-03-10

    Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media andmore » must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.« less

  14. A normalisation framework for (hyper-)spectral imagery

    NASA Astrophysics Data System (ADS)

    Grumpe, Arne; Zirin, Vladimir; Wöhler, Christian

    2015-06-01

    It is well known that the topography has an influence on the observed reflectance spectra. This influence is not compensated by spectral ratios, i.e. the effect is wavelength dependent. In this work, we present a complete normalisation framework. The surface temperature is estimated based on the measured surface reflectance. To normalise the spectral reflectance with respect to a standard illumination geometry, spatially varying reflectance parameters are estimated based on a non-linear reflectance model. The reflectance parameter estimation has one free parameter, i.e. a low-pass function, which sets the scale of the spatial-variance, i.e. the lateral resolution of the reflectance parameter maps. Since the local surface topography has a major influence on the measured reflectance, often neglected shading information is extracted from the spectral imagery and an existing topography model is refined to image resolution. All methods are demonstrated on the Moon Mineralogy Mapper dataset. Additionally, two empirical methods are introduced that deal with observed systematic reflectance changes in co-registered images acquired at different phase angles. These effects, however, may also be caused by the sensor temperature, due to its correlation with the phase angle. Surface temperatures above 300 K are detected and are very similar to a reference method. The proposed method, however, seems more robust in case of absorptions visible in the reflectance spectrum near 2000 nm. By introducing a low-pass into the computation of the reflectance parameters, the reflectance behaviour of the surfaces may be derived at different scales. This allows for an iterative refinement of the local surface topography using shape from shading and the computation reflectance parameters. The inferred parameters are derived from all available co-registered images and do not show significant influence of the local surface topography. The results of the empirical correction show that both proposed methods greatly reduce the influence of different phase angles or sensor temperatures.

  15. SU-F-T-62: Three-Dimensional Dosimetric Gamma Analysis for Impacts of Tissue Inhomogeneity Using Monte Carlo Simulation in Intracavitary Brachytheray for Cervix Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Tran Thi Thao; Nakamoto, Takahiro; Shibayama, Yusuke

    Purpose: The aim of this study was to investigate the impacts of tissue inhomogeneity on dose distributions using a three-dimensional (3D) gamma analysis in cervical intracavitary brachytherapy using Monte Carlo (MC) simulations. Methods: MC simulations for comparison of dose calculations were performed in a water phantom and a series of CT images of a cervical cancer patient (stage: Ib; age: 27) by employing a MC code, Particle and Heavy Ion Transport Code System (PHIT) version 2.73. The {sup 192}Ir source was set at fifteen dwell positions, according to clinical practice, in an applicator consisting of a tandem and two ovoids.more » Dosimetric comparisons were performed for the dose distributions in the water phantom and CT images by using gamma index image and gamma pass rate (%). The gamma index is the minimum Euclidean distance between two 3D spatial dose distributions of the water phantom and CT images in a same space. The gamma pass rates (%) indicate the percentage of agreement points, which mean that two dose distributions are similar, within an acceptance criteria (3 mm/3%). The volumes of physical and clinical interests for the gamma analysis were a whole calculated volume and a region larger than t% of a dose (close to a target), respectively. Results: The gamma pass rates were 77.1% for a whole calculated volume and 92.1% for a region within 1% dose region. The differences of 7.7% to 22.9 % between two dose distributions in the water phantom and CT images were found around the applicator region and near the target. Conclusion: This work revealed the large difference on the dose distributions near the target in the presence of the tissue inhomogeneity. Therefore, the tissue inhomogeneity should be corrected in the dose calculation for clinical treatment.« less

  16. Linked color imaging reduces the miss rate of neoplastic lesions in the right colon: a randomized tandem colonoscopy study.

    PubMed

    Paggi, Silvia; Mogavero, Giuseppe; Amato, Arnaldo; Rondonotti, Emanuele; Andrealli, Alida; Imperiali, Gianni; Lenoci, Nicoletta; Mandelli, Giovanna; Terreni, Natalia; Conforti, Francesco Simone; Conte, Dario; Spinzi, Giancarlo; Radaelli, Franco

    2018-04-01

     Linked color imaging (LCI) is a newly developed image-enhancing endoscopy technology that provides bright endoscopic images and increases color contrast. We investigated whether LCI improves the detection of neoplastic lesions in the right colon when compared with high definition white-light imaging (WLI).  Consecutive patients undergoing colonoscopy were randomized (1:1) after cecal intubation into right colon inspection at first pass by LCI or by WLI. At the hepatic flexure, the scope was reintroduced to the cecum under LCI and a second right colon inspection was performed under WLI in previously LCI-scoped patients (LCI-WLI group) and vice versa (WLI-LCI group). Lesions detected on first- and second-pass examinations were used to calculate detection and miss rates, respectively. The primary outcome was the right colon adenoma miss rate.  Of the 600 patients enrolled, 142 had at least one adenoma in the right colon, with similar right colon adenoma detection rates (r-ADR) in the two groups (22.7 % in LCI-WLI and 24.7 % in WLI-LCI). At per-polyp analysis, double inspection of the right colon in the LCI-WLI and WLI-LCI groups resulted in an 11.8 % and 30.6 % adenoma miss rate, respectively ( P  < 0.001). No significant difference in miss rate was found for advanced adenomas or sessile serrated lesions. At per-patient analysis, at least one adenoma was identified in the second pass only (incremental ADR) in 2 of 300 patients (0.7 %) in the LCI - WLI group and in 13 of 300 patients (4.3 %) in the WLI - LCI group ( P  = 0.01).  LCI could reduce the miss rate of neoplastic lesions in the right colon. © Georg Thieme Verlag KG Stuttgart · New York.

  17. The subjective importance of noise spectral content

    NASA Astrophysics Data System (ADS)

    Baxter, Donald; Phillips, Jonathan; Denman, Hugh

    2014-01-01

    This paper presents secondary Standard Quality Scale (SQS2) rankings in overall quality JNDs for a subjective analysis of the 3 axes of noise, amplitude, spectral content, and noise type, based on the ISO 20462 softcopy ruler protocol. For the initial pilot study, a Python noise simulation model was created to generate the matrix of noise masks for the softcopy ruler base images with different levels of noise, different low pass filter noise bandwidths and different band pass filter center frequencies, and 3 different types of noise: luma only, chroma only, and luma and chroma combined. Based on the lessons learned, the full subjective experiment, involving 27 observers from Google, NVIDIA and STMicroelectronics was modified to incorporate a wider set of base image scenes, and the removal of band pass filtered noise masks to ease observer fatigue. Good correlation was observed with the Aptina subjective noise study. The absence of tone mapping in the noise simulation model visibly reduced the contrast at high levels of noise, due to the clipping of the high levels of noise near black and white. Under the 34-inch viewing distance, no significant difference was found between the luma only noise masks and the combined luma and chroma noise masks. This was not the intuitive expectation. Two of the base images with large uniform areas, `restaurant' and `no parking', were found to be consistently more sensitive to noise than the texture rich scenes. Two key conclusions are (1) there are fundamentally different sensitivities to noise on a flat patch versus noise in real images and (2) magnification of an image accentuates visual noise in a way that is non-representative of typical noise reduction algorithms generating the same output frequency. Analysis of our experimental noise masks applied to a synthetic Macbeth ColorChecker Chart confirmed the color-dependent nature of the visibility of luma and chroma noise.

  18. Quantum imaging with undetected photons.

    PubMed

    Lemos, Gabriela Barreto; Borish, Victoria; Cole, Garrett D; Ramelow, Sven; Lapkiewicz, Radek; Zeilinger, Anton

    2014-08-28

    Information is central to quantum mechanics. In particular, quantum interference occurs only if there exists no information to distinguish between the superposed states. The mere possibility of obtaining information that could distinguish between overlapping states inhibits quantum interference. Here we introduce and experimentally demonstrate a quantum imaging concept based on induced coherence without induced emission. Our experiment uses two separate down-conversion nonlinear crystals (numbered NL1 and NL2), each illuminated by the same pump laser, creating one pair of photons (denoted idler and signal). If the photon pair is created in NL1, one photon (the idler) passes through the object to be imaged and is overlapped with the idler amplitude created in NL2, its source thus being undefined. Interference of the signal amplitudes coming from the two crystals then reveals the image of the object. The photons that pass through the imaged object (idler photons from NL1) are never detected, while we obtain images exclusively with the signal photons (from NL1 and NL2), which do not interact with the object. Our experiment is fundamentally different from previous quantum imaging techniques, such as interaction-free imaging or ghost imaging, because now the photons used to illuminate the object do not have to be detected at all and no coincidence detection is necessary. This enables the probe wavelength to be chosen in a range for which suitable detectors are not available. To illustrate this, we show images of objects that are either opaque or invisible to the detected photons. Our experiment is a prototype in quantum information--knowledge can be extracted by, and about, a photon that is never detected.

  19. High Resolution SAR Imaging Employing Geometric Features for Extracting Seismic Damage of Buildings

    NASA Astrophysics Data System (ADS)

    Cui, L. P.; Wang, X. P.; Dou, A. X.; Ding, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) image is relatively easy to acquire but difficult for interpretation. This paper probes how to identify seismic damage of building using geometric features of SAR. The SAR imaging geometric features of buildings, such as the high intensity layover, bright line induced by double bounce backscattering and dark shadow is analysed, and show obvious differences texture features of homogeneity, similarity and entropy in combinatorial imaging geometric regions between the un-collapsed and collapsed buildings in airborne SAR images acquired in Yushu city damaged by 2010 Ms7.1 Yushu, Qinghai, China earthquake, which implicates a potential capability to discriminate collapsed and un-collapsed buildings from SAR image. Study also shows that the proportion of highlight (layover & bright line) area (HA) is related to the seismic damage degree, thus a SAR image damage index (SARDI), which related to the ratio of HA to the building occupation are of building in a street block (SA), is proposed. While HA is identified through feature extraction with high-pass and low-pass filtering of SAR image in frequency domain. A partial region with 58 natural street blocks in the Yushu City are selected as study area. Then according to the above method, HA is extracted, SARDI is then calculated and further classified into 3 classes. The results show effective through validation check with seismic damage classes interpreted artificially from post-earthquake airborne high resolution optical image, which shows total classification accuracy 89.3 %, Kappa coefficient 0.79 and identical to the practical seismic damage distribution. The results are also compared and discussed with the building damage identified from SAR image available by other authors.

  20. Perception of differences in naturalistic dynamic scenes, and a V1-based model.

    PubMed

    To, Michelle P S; Gilchrist, Iain D; Tolhurst, David J

    2015-01-16

    We investigate whether a computational model of V1 can predict how observers rate perceptual differences between paired movie clips of natural scenes. Observers viewed 198 pairs of movies clips, rating how different the two clips appeared to them on a magnitude scale. Sixty-six of the movie pairs were naturalistic and those remaining were low-pass or high-pass spatially filtered versions of those originals. We examined three ways of comparing a movie pair. The Spatial Model compared corresponding frames between each movie pairwise, combining those differences using Minkowski summation. The Temporal Model compared successive frames within each movie, summed those differences for each movie, and then compared the overall differences between the paired movies. The Ordered-Temporal Model combined elements from both models, and yielded the single strongest predictions of observers' ratings. We modeled naturalistic sustained and transient impulse functions and compared frames directly with no temporal filtering. Overall, modeling naturalistic temporal filtering improved the models' performance; in particular, the predictions of the ratings for low-pass spatially filtered movies were much improved by employing a transient impulse function. The correlations between model predictions and observers' ratings rose from 0.507 without temporal filtering to 0.759 (p = 0.01%) when realistic impulses were included. The sustained impulse function and the Spatial Model carried more weight in ratings for normal and high-pass movies, whereas the transient impulse function with the Ordered-Temporal Model was most important for spatially low-pass movies. This is consistent with models in which high spatial frequency channels with sustained responses primarily code for spatial details in movies, while low spatial frequency channels with transient responses code for dynamic events. © 2015 ARVO.

  1. In vivo imaging of mammalian cochlear blood flow using fluorescence microendoscopy.

    PubMed

    Monfared, Ashkan; Blevins, Nikolas H; Cheung, Eunice L M; Jung, Juergen C; Popelka, Gerald; Schnitzer, Mark J

    2006-02-01

    We sought to develop techniques for visualizing cochlear blood flow in live mammalian subjects using fluorescence microendoscopy. Inner ear microcirculation appears to be intimately involved in cochlear function. Blood velocity measurements suggest that intense sounds can alter cochlear blood flow. Disruption of cochlear blood flow may be a significant cause of hearing impairment, including sudden sensorineural hearing loss. However, inability to image cochlear blood flow in a nondestructive manner has limited investigation of the role of inner ear microcirculation in hearing function. Present techniques for imaging cochlear microcirculation using intravital light microscopy involve extensive perturbations to cochlear structure, precluding application in human patients. The few previous endoscopy studies of the cochlea have suffered from optical resolution insufficient for visualizing cochlear microvasculature. Fluorescence microendoscopy is an emerging minimally invasive imaging modality that provides micron-scale resolution in tissues inaccessible to light microscopy. In this article, we describe the use of fluorescence microendoscopy in live guinea pigs to image capillary blood flow and movements of individual red blood cells within the basal turn of the cochlea. We anesthetized eight adult guinea pigs and accessed the inner ear through the mastoid bulla. After intravenous injection of fluorescein dye, we made a limited cochleostomy and introduced a compound doublet gradient refractive index endoscope probe 1 mm in diameter into the inner ear. We then imaged cochlear blood flow within individual vessels in an epifluorescence configuration using one-photon fluorescence microendoscopy. We observed single red blood cells passing through individual capillaries in several cochlear structures, including the round window membrane, spiral ligament, osseous spiral lamina, and basilar membrane. Blood flow velocities within inner ear capillaries varied widely, with observed speeds reaching up to approximately 500 microm/s. Fluorescence microendoscopy permits visualization of cochlear microcirculation with micron-scale optical resolution and determination of blood flow velocities through analysis of video sequences.

  2. SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation.

    PubMed

    Xue, Yuan; Xu, Tao; Zhang, Han; Long, L Rodney; Huang, Xiaolei

    2018-05-03

    Inspired by classic Generative Adversarial Networks (GANs), we propose a novel end-to-end adversarial neural network, called SegAN, for the task of medical image segmentation. Since image segmentation requires dense, pixel-level labeling, the single scalar real/fake output of a classic GAN's discriminator may be ineffective in producing stable and sufficient gradient feedback to the networks. Instead, we use a fully convolutional neural network as the segmentor to generate segmentation label maps, and propose a novel adversarial critic network with a multi-scale L 1 loss function to force the critic and segmentor to learn both global and local features that capture long- and short-range spatial relationships between pixels. In our SegAN framework, the segmentor and critic networks are trained in an alternating fashion in a min-max game: The critic is trained by maximizing a multi-scale loss function, while the segmentor is trained with only gradients passed along by the critic, with the aim to minimize the multi-scale loss function. We show that such a SegAN framework is more effective and stable for the segmentation task, and it leads to better performance than the state-of-the-art U-net segmentation method. We tested our SegAN method using datasets from the MICCAI BRATS brain tumor segmentation challenge. Extensive experimental results demonstrate the effectiveness of the proposed SegAN with multi-scale loss: on BRATS 2013 SegAN gives performance comparable to the state-of-the-art for whole tumor and tumor core segmentation while achieves better precision and sensitivity for Gd-enhance tumor core segmentation; on BRATS 2015 SegAN achieves better performance than the state-of-the-art in both dice score and precision.

  3. A general dual-bolus approach for quantitative DCE-MRI.

    PubMed

    Kershaw, Lucy E; Cheng, Hai-Ling Margaret

    2011-02-01

    To present a dual-bolus technique for quantitative dynamic contrast-enhanced MRI (DCE-MRI) and show that it can give an arterial input function (AIF) measurement equivalent to that from a single-bolus protocol. Five rabbits were imaged using a dual-bolus technique applicable for high-resolution DCE-MRI, incorporating a time resolved imaging of contrast kinetics (TRICKS) sequence for rapid temporal sampling. AIFs were measured from both the low-dose prebolus and the high-dose main bolus in the abdominal aorta. In one animal, TRICKS and fast spoiled gradient echo (FSPGR) acquisitions were compared. The scaled prebolus AIF was shown to match the main bolus AIF, with 95% confidence intervals overlapping for fits of gamma-variate functions to the first pass and linear fits to the washout phase, with the exception of one case. The AIFs measured using TRICKS and FSPGR were shown to be equivalent in one animal. The proposed technique can capture even the rapid circulation kinetics in the rabbit aorta, and the scaled prebolus AIF is equivalent to the AIF from a high-dose injection. This allows separate measurements of the AIF and tissue uptake curves, meaning that each curve can then be acquired using a protocol tailored to its specific requirements. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Influence of the corneal optical zone on the point-spread function of the human eye

    NASA Astrophysics Data System (ADS)

    Rol, Pascal O.; Parel, Jean-Marie A.

    1992-08-01

    In refractive surgery, a number of surgical techniques have been developed to correct ametropia (refractive defaults) of the eye by changing the exterior shape of the cornea. Because the air-cornea interface makes up for about two thirds of the refractive power of the eye, a refractive correction can be obtained by a suitable reshaping of the cornea. Postoperatively, it is usually observed that the corneal region consists of two or more zones which are characterized by different optical parameters exhibiting in particular different focal distances. Under normal circumstances, only the central area of the cornea is involved in the formation of the retinal image. However, if part of the light entering the eye through peripheral portions of the cornea with refractive properties different from the central area can pass the pupil, an out-of-focus `ghost' image may be overlaid on the retina causing a blur. In such a case the resolution, and the contrast performance of the eye which is expected from a successful operation, may be reduced. This study is an attempt to quantify the vision blur as a function of the diameter of the central zone, i.e., the optical zone which is of importance for vision.

  5. Experiments on Spray from a Rolling Tire

    NASA Astrophysics Data System (ADS)

    Radovich, Charles; Browand, Fred

    2010-11-01

    A novel laboratory apparatus has been built to understand the mechanisms and statistics of droplet production for spray emerging from a rolling tire. Using high-speed imaging, water passing through a single circumferential groove was observed to leave the tire contact patch in the form of a liquid sheet of non-uniform thickness. The sheet breaks into droplets as a result of several, organized instabilities. Measurements for the breakup length of the liquid sheet showed a dependence on Weber number proportional to We-1/6, for Weber numbers of 2700, 10900 and 24400. A technique to identify and size water droplets was developed and the distribution of droplet sizes was determined as a function of Weber number. At We = 2700, droplet sizes between 80 and 9000μm were detected, with a mean diameter near 800μm. Both the range of droplet sizes and the mean diameter were found to decrease with increasing Weber number as (approximately) We-1/2. Correlation Image Velocimetry (CIV) was used to estimate the distribution of droplet velocities as a function of droplet size. The spread of droplet velocities about the tire peripheral speed is strongly correlated with droplet size. The spread can be estimated by a simple physical model incorporating rigid droplets subject to gravity and drag.

  6. Integrating image processing and classification technology into automated polarizing film defect inspection

    NASA Astrophysics Data System (ADS)

    Kuo, Chung-Feng Jeffrey; Lai, Chun-Yu; Kao, Chih-Hsiang; Chiu, Chin-Hsun

    2018-05-01

    In order to improve the current manual inspection and classification process for polarizing film on production lines, this study proposes a high precision automated inspection and classification system for polarizing film, which is used for recognition and classification of four common defects: dent, foreign material, bright spot, and scratch. First, the median filter is used to remove the impulse noise in the defect image of polarizing film. The random noise in the background is smoothed by the improved anisotropic diffusion, while the edge detail of the defect region is sharpened. Next, the defect image is transformed by Fourier transform to the frequency domain, combined with a Butterworth high pass filter to sharpen the edge detail of the defect region, and brought back by inverse Fourier transform to the spatial domain to complete the image enhancement process. For image segmentation, the edge of the defect region is found by Canny edge detector, and then the complete defect region is obtained by two-stage morphology processing. For defect classification, the feature values, including maximum gray level, eccentricity, the contrast, and homogeneity of gray level co-occurrence matrix (GLCM) extracted from the images, are used as the input of the radial basis function neural network (RBFNN) and back-propagation neural network (BPNN) classifier, 96 defect images are then used as training samples, and 84 defect images are used as testing samples to validate the classification effect. The result shows that the classification accuracy by using RBFNN is 98.9%. Thus, our proposed system can be used by manufacturing companies for a higher yield rate and lower cost. The processing time of one single image is 2.57 seconds, thus meeting the practical application requirement of an industrial production line.

  7. Imaging and characterizing cells using tomography

    PubMed Central

    Do, Myan; Isaacson, Samuel A.; McDermott, Gerry; Le Gros, Mark A.; Larabell, Carolyn A.

    2015-01-01

    We can learn much about cell function by imaging and quantifying sub-cellular structures, especially if this is done non-destructively without altering said structures. Soft x-ray tomography (SXT) is a high-resolution imaging technique for visualizing cells and their interior structure in 3D. A tomogram of the cell, reconstructed from a series of 2D projection images, can be easily segmented and analyzed. SXT has a very high specimen throughput compared to other high-resolution structure imaging modalities; for example, tomographic data for reconstructing an entire eukaryotic cell is acquired in a matter of minutes. SXT visualizes cells without the need for chemical fixation, dehydration, or staining of the specimen. As a result, the SXT reconstructions are close representations of cells in their native state. SXT is applicable to most cell types. The deep penetration of soft x-rays allows cells, even mammalian cells, to be imaged without being sectioned. Image contrast in SXT is generated by the differential attenuation soft x-ray illumination as it passes through the specimen. Accordingly, each voxel in the tomographic reconstruction has a measured linear absorption coefficient (LAC) value. LAC values are quantitative and give rise to each sub-cellular component having a characteristic LAC profile, allowing organelles to be identified and segmented from the milieu of other cell contents. In this chapter, we describe the fundamentals of SXT imaging and how this technique can answer real world questions in the study of the nucleus. We also describe the development of correlative methods for the localization of specific molecules in a SXT reconstruction. The combination of fluorescence and SXT data acquired from the same specimen produces composite 3D images, rich with detailed information on the inner workings of cells. PMID:25602704

  8. Stray light calibration of the Dawn Framing Camera

    NASA Astrophysics Data System (ADS)

    Kovacs, Gabor; Sierks, Holger; Nathues, Andreas; Richards, Michael; Gutierrez-Marques, Pablo

    2013-10-01

    Sensitive imaging systems with high dynamic range onboard spacecrafts are susceptible to ghost and stray-light effects. During the design phase, the Dawn Framing Camera was laid out and optimized to minimize those unwanted, parasitic effects. However, the requirement of low distortion to the optical design and use of a front-lit focal plane array induced an additional stray light component. This paper presents the ground-based and in-flight procedures characterizing the stray-light artifacts. The in-flight test used the Sun as the stray light source, at different angles of incidence. The spacecraft was commanded to point predefined solar elongation positions, and long exposure images were recorded. The PSNIT function was calculated by the known illumination and the ground based calibration information. In the ground based calibration, several extended and point sources were used with long exposure times in dedicated imaging setups. The tests revealed that the major contribution to the stray light is coming from the ghost reflections between the focal plan array and the band pass interference filters. Various laboratory experiments and computer modeling simulations were carried out to quantify the amount of this effect, including the analysis of the diffractive reflection pattern generated by the imaging sensor. The accurate characterization of the detector reflection pattern is the key to successfully predict the intensity distribution of the ghost image. Based on the results, and the properties of the optical system, a novel correction method is applied in the image processing pipeline. The effect of this correction procedure is also demonstrated with the first images of asteroid Vesta.

  9. Development and Application of Multifunctional Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Zhi, Zhongwei

    Microcirculation refers to the functions of capillaries and the neighboring lymphatic vessels. It plays a vital role in the pathophysiology of disorders in many clinical areas including cardiology, dermatology, neurology and ophthalmology, and so forth. It is crucial to develop imaging technologies that can provide both qualitative and quantitative information as to how microcirculation responds to certain injury and/or disease, and its treatment. Optical coherence tomography (OCT) is a non-invasive optical imaging technique for high-resolution cross-sectional imaging of specimens, with many applications in clinical medicine. Current state-of-the-art OCT systems operate in the Fourier domain, using either a broadband light source with a spectrometer, known as spectral domain OCT (SDOCT), or a rapidly tunable laser, known as swept source OCT (SSOCT). The current Fourier domain OCT systems have dramatically improvement in sensitivity, resolution and speed compared to time domain OCT. In addition to the improvement in the OCT system hardware, different methods for functional measurements of tissue beds have been developed and demonstrated. This includes but not limited to, i) Phase-resolved Doppler OCT for quantifying the blood flow, ii) OCT angiography for visualization of microvasculature, iii) Polarization sensitive OCT for measuring the intrinsic optical property/ birefringence of tissue, iv) spectroscopic OCT for measuring blood oxygenation, etc. Functional OCT can provide important clinical information that is not available in the typical intensity based structural OCT images. Among these functional OCT modalities, Doppler OCT and OCT angiography attract great interests as they show high capability for in vivo study of microvascular pathology. By analyzing the Doppler effect of a flowing particle on light frequency, Doppler OCT allows the quantification of the blood flow speed and blood flow rate. The most popular approach for Doppler OCT is achieved through analysis of the phase term in complex OCT signal which termed as Phase-resolved Doppler OCT. However, as limited by the phase noise and motion, Phase-resolved Doppler OCT can only be applied for relative large blood vessels, such as arterioles and venules. On the other hand, in order to visualize the microcirculation network, a number of strategies to enable better contrast of microvasculature components, which we termed OCT angiography, have been introduced during recent years. As a variation of Fourier domain OCT, optical microangiography (OMAG) is one of earliest proposed OCT angiography technique which is capable of generating 3D images of dynamic blood perfusion distribution within microcirculatory tissue beds. The OMAG algorithm works by separating the static and moving elements by high pass filtering on complex valued interferometric data after Fourier transform. Based on the conventional OMAG algorithm, we further developed ultra-high sensitive OMAG (UHS-OMAG) by switching the high-pass filtering from fast scan direction (adjacent A-lines within one B-frame) to slow scan direction (adjacent B-frames), which has a dramatically improved performance for capillary network imaging and analysis. Apart from the microvascular study with current available functional OCT for, visualization of the lymphatic system (lymph nodes and lymphatic vessels) plays a significant role in assessing patients with various malignancies and lymphedema. However, there is a lack of label-free and noninvasive method for lymphangiography. Hence, a cutting edge research to investigate the capability of OCT as a tool for non-invasive and label-free lymphangiography would be highly desired. The objective of my thesis is to develop a multiple-functional SDOCT system to image the microcirculation and quantify the several important parameters of microcirculation within microcirculatory tissue beds, and further apply it for pre-clinical research applications. The multifunctional OCT system provides modalities including structural OCT, OCT angiography, Doppler OCT and Optical lymphangiography, for multi-parametric study of tissue microstructure, blood vessel morphology, blood flow and lymphatic vessel all together. The thesis mainly focus on two parts: first, development of multi-functional OCT/optical microangiography (OMAG) system and methods for volumetric imaging of microvasculature and quantitative measurement of blood flow, and its application for pathological research in ophthalmology on rodent eye models; second, development of ultra-high resolution OCT system and algorithm for simultaneous label free imaging of blood and lymphatic vessel, and its application in wound healing study on mouse ear flap model. Objectives of my research are achieved through the following specific aims: Aim 1: Improve the sensitivity of OMAG for microvasculature imaging; perform volumetric and quantitative imaging of vasculature with combined OMAG and Phase-resolved Doppler OCT for in vivo study of vascular physiology. Aim 2: Develop high speed high resolution OCT system and method for rodent eye imaging. Apply the combined OMAG and Phase-resolved Doppler OCT approach to investigate the impact of elevated intraocular pressure on retinal, choroidal and optic nerve head blood flow in rat eye model, which aids to the better understanding of the mechanism and development of glaucoma. Aim 3: Apply the developed OCT system and ultra-high sensitive OMAG algorithm for noninvasive imaging of retinal morphology and microvasculature in obese mice, which may play an important role in early diagnosis of Diabetic retinopathy. Aim 4: Developing an ultra-high resolution SDOCT system using broadband Supercontinuum light source to achieve ultra-high resolution microvasculature imaging of biological tissue. Aim 5: Develop methods for simultaneous label free optical imaging of blood and lymphatic vessel and demonstrate its capability by monitoring the blood and lymph response to wound healing on mouse ear pinna model.

  10. Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography.

    PubMed

    Li, Wen-Di; Chou, Stephen Y

    2010-01-18

    We designed, fabricated and demonstrated a solar-blind deep-UV pass filter, that has a measured optical performance of a 27% transmission peak at 290 nm, a pass-band width of 100 nm (from 250 to 350 nm), and a 20dB rejection ratio between deep-UV wavelength and visible wavelength. The filter consists of an aluminum nano-grid, which was made by coating 20 nm Al on a SiO(2) square grid with 190 nm pitch, 30 nm linewidth and 250 nm depth. The performances agree with a rigorous coupled wave analysis. The wavelength for the peak transmission and the pass-bandwidth can be tuned through adjusting the metal nano-grid dimensions. The filter was fabricated by nanoimprint lithography, hence is large area and low cost. Combining with Si photodetectors, the filter offers simple yet effective and low cost solar-blind deep-UV detection at either a single device or large-area complex integrated imaging array level.

  11. Residual Stress Distribution and Microstructure of a Multiple Laser-Peened Near-Alpha Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Umapathi, A.; Swaroop, S.

    2018-04-01

    Laser peening without coating (LPwC) was performed on a Ti-2.5 Cu alloy with multiple passes (1, 3 and 5), using a Nd:YAG laser (1064 nm) at a constant overlap rate of 70% and power density of 6.7 GW cm-2. Hardness and residual stress profiles indicated thermal softening near the surface (< 100 μm) and bulk softening due to adiabatic heating. Maximum hardness (235 HV at 500 μm) and maximum residual stress (- 890 MPa at 100 μm) were observed for LPwC with 1 pass. Surface roughness and surface 3-D topography imaging showed that the surface roughness increased with the increase in the number of passes. XRD results indicated no significant β phases. However, peak shifts, broadening and asymmetry were observed and interpreted based on dislocation activity. Microstructures indicated no melting or resolidification or refinement of grains at the surface. Twin density was found to increase with the increase in the number of passes.

  12. Residual Stress Distribution and Microstructure of a Multiple Laser-Peened Near-Alpha Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Umapathi, A.; Swaroop, S.

    2018-05-01

    Laser peening without coating (LPwC) was performed on a Ti-2.5 Cu alloy with multiple passes (1, 3 and 5), using a Nd:YAG laser (1064 nm) at a constant overlap rate of 70% and power density of 6.7 GW cm-2. Hardness and residual stress profiles indicated thermal softening near the surface (< 100 μm) and bulk softening due to adiabatic heating. Maximum hardness (235 HV at 500 μm) and maximum residual stress (- 890 MPa at 100 μm) were observed for LPwC with 1 pass. Surface roughness and surface 3-D topography imaging showed that the surface roughness increased with the increase in the number of passes. XRD results indicated no significant β phases. However, peak shifts, broadening and asymmetry were observed and interpreted based on dislocation activity. Microstructures indicated no melting or resolidification or refinement of grains at the surface. Twin density was found to increase with the increase in the number of passes.

  13. Big Obscures Small

    NASA Image and Video Library

    2010-02-17

    NASA Cassini spacecraft captures a mutual event between Titan and Mimas in front of a backdrop of the planet rings. This image was snapped shortly before Saturn largest moon passed in front of and occulted the small moon Mimas.

  14. Rectal prolapse repair - series (image)

    MedlinePlus

    ... the body through the anus. The rectum is anchored in position by ligaments. When these ligaments weaken, the rectum can move out of its normal position, downward, and pass through the anus. This is called rectal prolapse.

  15. The inclusion of capillary distribution in the adiabatic tissue homogeneity model of blood flow

    NASA Astrophysics Data System (ADS)

    Koh, T. S.; Zeman, V.; Darko, J.; Lee, T.-Y.; Milosevic, M. F.; Haider, M.; Warde, P.; Yeung, I. W. T.

    2001-05-01

    We have developed a non-invasive imaging tracer kinetic model for blood flow which takes into account the distribution of capillaries in tissue. Each individual capillary is assumed to follow the adiabatic tissue homogeneity model. The main strength of our new model is in its ability to quantify the functional distribution of capillaries by the standard deviation in the time taken by blood to pass through the tissue. We have applied our model to the human prostate and have tested two different types of distribution functions. Both distribution functions yielded very similar predictions for the various model parameters, and in particular for the standard deviation in transit time. Our motivation for developing this model is the fact that the capillary distribution in cancerous tissue is drastically different from in normal tissue. We believe that there is great potential for our model to be used as a prognostic tool in cancer treatment. For example, an accurate knowledge of the distribution in transit times might result in an accurate estimate of the degree of tumour hypoxia, which is crucial to the success of radiation therapy.

  16. Longitudinal changes in the visual field and optic disc in glaucoma.

    PubMed

    Artes, Paul H; Chauhan, Balwantray C

    2005-05-01

    The nature and mode of functional and structural progression in open-angle glaucoma is a subject of considerable debate in the literature. While there is a traditionally held viewpoint that optic disc and/or nerve fibre layer changes precede visual field changes, there is surprisingly little published evidence from well-controlled prospective studies in this area, specifically with modern perimetric and imaging techniques. In this paper, we report on clinical data from both glaucoma patients and normal controls collected prospectively over several years, to address the relationship between visual field and optic disc changes in glaucoma using standard automated perimetry (SAP), high-pass resolution perimetry (HRP) and confocal scanning laser tomography (CSLT). We use several methods of analysis of longitudinal data and describe a new technique called "evidence of change" analysis which facilitates comparison between different tests. We demonstrate that current clinical indicators of visual function (SAP and HRP) and measures of optic disc structure (CSLT) provide largely independent measures of progression. We discuss the reasons for these findings as well as several methodological issues that pose challenges to elucidating the true structure-function relationship in glaucoma.

  17. Orion Optical Navigation Progress Toward Exploration: Mission 1

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher N.; Saley, David

    2018-01-01

    Optical navigation of human spacecraft was proposed on Gemini and implemented successfully on Apollo as a means of autonomously operating the vehicle in the event of lost communication with controllers on Earth. It shares a history with the "method of lunar distances" that was used in the 18th century and gained some notoriety after its use by Captain James Cook during his 1768 Pacific voyage of the HMS Endeavor. The Orion emergency return system utilizing optical navigation has matured in design over the last several years, and is currently undergoing the final implementation and test phase in preparation for Exploration Mission 1 (EM-1) in 2019. The software development is being worked as a Government Furnished Equipment (GFE) project delivered as an application within the Core Flight Software of the Orion camera controller module. The mathematical formulation behind the initial ellipse fit in the image processing is detailed in Christian. The non-linear least squares refinement then follows the technique of Mortari as an estimation process of the planetary limb using the sigmoid function. The Orion optical navigation system uses a body fixed camera, a decision that was driven by mass and mechanism constraints. The general concept of operations involves a 2-hour pass once every 24 hours, with passes specifically placed before all maneuvers to supply accurate navigation information to guidance and targeting. The pass lengths are limited by thermal constraints on the vehicle since the OpNav attitude generally deviates from the thermally stable tail-to-sun attitude maintained during the rest of the orbit coast phase. Calibration is scheduled prior to every pass due to the unknown nature of thermal effects on the lens distortion and the mounting platform deformations between the camera and star trackers. The calibration technique is described in detail by Christian, et al. and simultaneously estimates the Brown-Conrady coefficients and the Star Tracker/Camera interlock angles. Accurate attitude information is provided by the star trackers during each pass. Figure 1 shows the various phases of lunar return navigation when the vehicle is in autonomous operation with lost ground communication. The midcourse maneuvers are placed to control the entry interface conditions to the desired corridor for safe landing. The general form of optical navigation on Orion is where still images of the Moon or Earth are processed to find the apparent angular diameter and centroid in the camera focal plane. This raw data is transformed into range and bearing angle measurements using planetary data and precise star tracker inertial attitude. The measurements are then sent to the main flight computer's Kalman filter to update the onboard state vector. The images are, of course, collected over an arc to converge the state and estimate velocity. The same basic technique was used by Apollo to satisfy loss-of-comm, but Apollo used manual crew sightings with a vehicle-integral sextant instead of autonomously processing optical imagery. The software development is past its Critical Design Review, and is progressing through test and certification for human rating. In support of this, a hardware-in-the-loop test rig was developed in the Johnson Space Center Electro-Optics Lab to exercise the OpNav system prior to integrated testing on the Orion vehicle. Figure 2 shows the rig, which the test team has dubbed OCILOT (Orion Camera In the Loop Optical Testbed). Analysis performed to date shows a delivery that satisfies an allowable entry corridor as shown in Figure 3.

  18. Dust Devil Art

    NASA Technical Reports Server (NTRS)

    2005-01-01

    12 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark squiggles and streaks created by passing spring and summer dust devils near Pallacopas Vallis in the martian southern hemisphere.

    Location near: 53.9oS, 17.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  19. Assessing Alternative Breaks: Moving beyond Sleeping on Floors and Pass-the-Candle Reflection

    ERIC Educational Resources Information Center

    Porter, Melody C.

    2011-01-01

    Alternative breaks (ABs) often bring a smattering of images to mind: college students in matching T-shirts, cramped vans, well-used work gloves, physical labor, and, perhaps, way too much peanut butter. All of these images are at least in part accurate for the AB program at the College of William and Mary. Add to them a strong sense that sending…

  20. Neutron radiographic viewing system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design, development and application of a neutron radiographic viewing system for use in nondestructive testing applications is considered. The system consists of a SEC vidicon camera, neutron image intensifier system, disc recorder, and TV readout. Neutron bombardment of the subject is recorded by an image converter and passed through an optical system into the SEC vidicon. The vidicon output may be stored, or processed for visual readout.

  1. SU-E-T-164: Clinical Implementation of ASi EPID Panels for QA of IMRT/VMAT Plans.

    PubMed

    Hosier, K; Wu, C; Beck, K; Radevic, M; Asche, D; Bareng, J; Kroner, A; Lehmann, J; Logsdon, M; Dutton, S; Rosenthal, S

    2012-06-01

    To investigate various issues for clinical implementation of aSi EPID panels for IMRT/VMAT QA. Six linacs are used in our clinic for EPID-based plan QA; two Varian Truebeams, two Varian 2100 series, two Elekta Infiniti series. Multiple corrections must be accounted for in the calibration of each panel for dosimetric use. Varian aSi panels are calibrated with standard dark field, flood field, and 40×40 diagonal profile for beam profile correction. Additional corrections to account for off-axis and support arm backscatter are needed for larger field sizes. Since Elekta iViewGT system does not export gantry angle with images, a third-party inclinometer must be physically mounted to back of linac gantry and synchronized with data acquisition via iViewGT PC clock. A T/2 offset correctly correlates image and gantry angle for arc plans due to iView image time stamp at the end of data acquisition for each image. For both Varian and Elekta panels, a 5 MU 10×10 calibration field is used to account for the nonlinear MU to dose response at higher energies. Acquired EPID images are deconvolved via a high pass filter in Fourier space and resultant fluence maps are used to reconstruct a 3D dose 'delivered' to patient using DosimetryCheck. Results are compared to patient 3D dose computed by TPS using a 3D-gamma analysis. 120 IMRT and 100 VMAT cases are reported. Two 3D gamma quantities (Gamma(V10) and Gamma(PTV)) are proposed for evaluating QA results. The Gamma(PTV) is sensitive to MLC offsets while Gamma(V10) is sensitive to gantry rotations. When a 3mm/3% criteria and 90% or higher 3D gamma pass rate is used, all IMRT and 90% of VMAT QA pass QA. After appropriate calibration of aSi panels and setup of image acquisition systems, EPID based 3D dose reconstruction method is found clinically feasible. © 2012 American Association of Physicists in Medicine.

  2. Late-summer Martian Dust Storm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an image of Mars taken from orbit by the Mars Reconnaissance Orbiter's Mars Color Imager (MARCI). The Red Planet's polar ice-cap is in the middle of the image. Captured in this image is a 37,000 square-kilometer (almost 23,000 miles) dust storm that moved counter-clockwise through the Phoenix landing site on Oct 11, 2008, or Sol 135 of the mission.

    Viewing this image as if it were the face of a clock, Phoenix is shown as a small white dot, located at about 10 AM. The storm, which had already passed over the landing site earlier in the day, is located at about 9:30 AM.

  3. Functional connectivity in the prefrontal cortex measured by near-infrared spectroscopy during ultrarapid object recognition

    NASA Astrophysics Data System (ADS)

    Medvedev, Andrei V.; Kainerstorfer, Jana M.; Borisov, Sergey V.; Vanmeter, John

    2011-01-01

    Near-infrared spectroscopy (NIRS) is a developing technology for low-cost noninvasive functional brain imaging. With multichannel optical instruments, it becomes possible to measure not only local changes in hemoglobin concentrations but also temporal correlations of those changes in different brain regions which gives an optical analog of functional connectivity traditionally measured by fMRI. We recorded hemodynamic activity during the Go-NoGo task from 11 right-handed subjects with probes placed bilaterally over prefrontal areas. Subjects were detecting animals as targets in natural scenes pressing a mouse button. Data were low-pass filtered <1 Hz and cardiac/respiration/superficial layers artifacts were removed using Independent Component Analysis. Fisher's transformed correlations of poststimulus responses (30 s) were averaged over groups of channels unilaterally in each hemisphere (intrahemispheric connectivity) and the corresponding channels between hemispheres (interhemispheric connectivity). The hemodynamic response showed task-related activation (an increase/decrease in oxygenated/deoxygenated hemoglobin, respectively) greater in the right versus left hemisphere. Intra- and interhemispheric functional connectivity was also significantly stronger during the task compared to baseline. Functional connectivity between the inferior and the middle frontal regions was significantly stronger in the right hemisphere. Our results demonstrate that optical methods can be used to detect transient changes in functional connectivity during rapid cognitive processes.

  4. Angular shear plate

    DOEpatents

    Ruda, Mitchell C [Tucson, AZ; Greynolds, Alan W [Tucson, AZ; Stuhlinger, Tilman W [Tucson, AZ

    2009-07-14

    One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.

  5. Charon Message-Passing Toolkit for Scientific Computations

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Yan, Jerry (Technical Monitor)

    2000-01-01

    Charon is a library, callable from C and Fortran, that aids the conversion of structured-grid legacy codes-such as those used in the numerical computation of fluid flows-into parallel, high- performance codes. Key are functions that define distributed arrays, that map between distributed and non-distributed arrays, and that allow easy specification of common communications on structured grids. The library is based on the widely accepted MPI message passing standard. We present an overview of the functionality of Charon, and some representative results.

  6. Method for enhanced control of welding processes

    DOEpatents

    Sheaffer, Donald A.; Renzi, Ronald F.; Tung, David M.; Schroder, Kevin

    2000-01-01

    Method and system for producing high quality welds in welding processes, in general, and gas tungsten arc (GTA) welding, in particular by controlling weld penetration. Light emitted from a weld pool is collected from the backside of a workpiece by optical means during welding and transmitted to a digital video camera for further processing, after the emitted light is first passed through a short wavelength pass filter to remove infrared radiation. By filtering out the infrared component of the light emitted from the backside weld pool image, the present invention provides for the accurate determination of the weld pool boundary. Data from the digital camera is fed to an imaging board which focuses on a 100.times.100 pixel portion of the image. The board performs a thresholding operation and provides this information to a digital signal processor to compute the backside weld pool dimensions and area. This information is used by a control system, in a dynamic feedback mode, to automatically adjust appropriate parameters of a welding system, such as the welding current, to control weld penetration and thus, create a uniform weld bead and high quality weld.

  7. Rebelling for a Reason: Protein Structural “Outliers”

    PubMed Central

    Arumugam, Gandhimathi; Nair, Anu G.; Hariharaputran, Sridhar; Ramanathan, Sowdhamini

    2013-01-01

    Analysis of structural variation in domain superfamilies can reveal constraints in protein evolution which aids protein structure prediction and classification. Structure-based sequence alignment of distantly related proteins, organized in PASS2 database, provides clues about structurally conserved regions among different functional families. Some superfamily members show large structural differences which are functionally relevant. This paper analyses the impact of structural divergence on function for multi-member superfamilies, selected from the PASS2 superfamily alignment database. Functional annotations within superfamilies, with structural outliers or ‘rebels’, are discussed in the context of structural variations. Overall, these data reinforce the idea that functional similarities cannot be extrapolated from mere structural conservation. The implication for fold-function prediction is that the functional annotations can only be inherited with very careful consideration, especially at low sequence identities. PMID:24073209

  8. Sound Frequency Representation in the Auditory Cortex of the Common Marmoset Visualized Using Optical Intrinsic Signal Imaging

    PubMed Central

    Tani, Toshiki; Abe, Hiroshi; Hayami, Taku; Banno, Taku; Kitamura, Naohito; Mashiko, Hiromi

    2018-01-01

    Abstract Natural sound is composed of various frequencies. Although the core region of the primate auditory cortex has functionally defined sound frequency preference maps, how the map is organized in the auditory areas of the belt and parabelt regions is not well known. In this study, we investigated the functional organizations of the core, belt, and parabelt regions encompassed by the lateral sulcus and the superior temporal sulcus in the common marmoset (Callithrix jacchus). Using optical intrinsic signal imaging, we obtained evoked responses to band-pass noise stimuli in a range of sound frequencies (0.5–16 kHz) in anesthetized adult animals and visualized the preferred sound frequency map on the cortical surface. We characterized the functionally defined organization using histologically defined brain areas in the same animals. We found tonotopic representation of a set of sound frequencies (low to high) within the primary (A1), rostral (R), and rostrotemporal (RT) areas of the core region. In the belt region, the tonotopic representation existed only in the mediolateral (ML) area. This representation was symmetric with that found in A1 along the border between areas A1 and ML. The functional structure was not very clear in the anterolateral (AL) area. Low frequencies were mainly preferred in the rostrotemplatal (RTL) area, while high frequencies were preferred in the caudolateral (CL) area. There was a portion of the parabelt region that strongly responded to higher sound frequencies (>5.8 kHz) along the border between the rostral parabelt (RPB) and caudal parabelt (CPB) regions. PMID:29736410

  9. Physique and Performance of Young Wheelchair Basketball Players in Relation with Classification

    PubMed Central

    Zancanaro, Carlo

    2015-01-01

    The relationships among physical characteristics, performance, and functional ability classification of younger wheelchair basketball players have been barely investigated to date. The purpose of this work was to assess anthropometry, body composition, and performance in sport-specific field tests in a national sample of Italian younger wheelchair basketball players as well as to evaluate the association of these variables with the players’ functional ability classification and game-related statistics. Several anthropometric measurements were obtained for 52 out of 91 eligible players nationwide. Performance was assessed in seven sport-specific field tests (5m sprint, 20m sprint with ball, suicide, maximal pass, pass for accuracy, spot shot and lay-ups) and game-related statistics (free-throw points scored per match, two- and three-point field-goals scored per match, and their sum). Association between variables, and predictivity was assessed by correlation and regression analysis, respectively. Players were grouped into four Classes of increasing functional ability (A-D). One-way ANOVA with Bonferroni’s correction for multiple comparisons was used to assess differences between Classes. Sitting height and functional ability Class especially correlated with performance outcomes, but wheelchair basketball experience and skinfolds did not. Game-related statistics and sport-specific field-test scores all showed significant correlation with each other. Upper arm circumference and/or maximal pass and lay-ups test scores were able to explain 42 to 59% of variance in game-related statistics (P<0.001). A clear difference in performance was only found for functional ability Class A and D. Conclusion: In younger wheelchair basketball players, sitting height positively contributes to performance. The maximal pass and lay-ups test should be carefully considered in younger wheelchair basketball training plans. Functional ability Class reflects to a limited extent the actual differences in performance. PMID:26606681

  10. SFG synthesis of general high-order all-pass and all-pole current transfer functions using CFTAs.

    PubMed

    Tangsrirat, Worapong

    2014-01-01

    An approach of using the signal flow graph (SFG) technique to synthesize general high-order all-pass and all-pole current transfer functions with current follower transconductance amplifiers (CFTAs) and grounded capacitors has been presented. For general nth-order systems, the realized all-pass structure contains at most n + 1 CFTAs and n grounded capacitors, while the all-pole lowpass circuit requires only n CFTAs and n grounded capacitors. The resulting circuits obtained from the synthesis procedure are resistor-less structures and especially suitable for integration. They also exhibit low-input and high-output impedances and also convenient electronic controllability through the g m-value of the CFTA. Simulation results using real transistor model parameters ALA400 are also included to confirm the theory.

  11. SFG Synthesis of General High-Order All-Pass and All-Pole Current Transfer Functions Using CFTAs

    PubMed Central

    Tangsrirat, Worapong

    2014-01-01

    An approach of using the signal flow graph (SFG) technique to synthesize general high-order all-pass and all-pole current transfer functions with current follower transconductance amplifiers (CFTAs) and grounded capacitors has been presented. For general nth-order systems, the realized all-pass structure contains at most n + 1 CFTAs and n grounded capacitors, while the all-pole lowpass circuit requires only n CFTAs and n grounded capacitors. The resulting circuits obtained from the synthesis procedure are resistor-less structures and especially suitable for integration. They also exhibit low-input and high-output impedances and also convenient electronic controllability through the g m-value of the CFTA. Simulation results using real transistor model parameters ALA400 are also included to confirm the theory. PMID:24688375

  12. Apparatus and method for a light direction sensor

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2011-01-01

    The present invention provides a light direction sensor for determining the direction of a light source. The system includes an image sensor; a spacer attached to the image sensor, and a pattern mask attached to said spacer. The pattern mask has a slit pattern that as light passes through the slit pattern it casts a diffraction pattern onto the image sensor. The method operates by receiving a beam of light onto a patterned mask, wherein the patterned mask as a plurality of a slit segments. Then, diffusing the beam of light onto an image sensor and determining the direction of the light source.

  13. SU-E-J-16: Automatic Image Contrast Enhancement Based On Automatic Parameter Optimization for Radiation Therapy Setup Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, J; Washington University in St Louis, St Louis, MO; Li, H. Harlod

    Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The mostmore » important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools.« less

  14. Endoscopic retrograde cholangio pancreatography (ERCP) - series (image)

    MedlinePlus

    ... small intestine, also called the duodenum. The common bile duct carries bile from the liver to the duodenum, and enters ... sometimes pass from the gallbladder into the common bile duct, and block the flow of bile into ...

  15. Development of thin-film tunable band-pass filters based hyper-spectral imaging system applied for both surface enhanced Raman scattering and plasmon resonance Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Iga, Mitsuhiro; Kakuryu, Nobuyuki; Tanaami, Takeo; Sajiki, Jiro; Isozaki, Katsumi; Itoh, Tamitake

    2012-10-01

    We describe the development of a hyper-spectral imaging (HSI) system composed of thin-film tunable band-pass filters (TF-TBPFs) and its application to inhomogeneous sample surfaces. Compared with existing HSI systems, the system has a simpler optical arrangement and has an optical transmittance of up to 80% owing to polarization independence. The HSI system exhibits a constant spectral resolution over a spectral window of 80 nm (530 to 610 nm) and tunable spectral resolution from 1.5 to 3.0 nm, and requires only 5.4 s per measurement. Plasmon resonance and surface enhanced Raman scattering (SERS) from inhomogeneous surfaces dispersed with Ag nanoparticles (NP) have been measured with the HSI system. The measurement of multiple Ag NPs is consistent with conventional isolated NP measurements as explained by the electromagnetic mechanism of SERS, demonstrating the validity of the HSI system.

  16. LabVIEW 2010 Computer Vision Platform Based Virtual Instrument and Its Application for Pitting Corrosion Study.

    PubMed

    Ramos, Rogelio; Zlatev, Roumen; Valdez, Benjamin; Stoytcheva, Margarita; Carrillo, Mónica; García, Juan-Francisco

    2013-01-01

    A virtual instrumentation (VI) system called VI localized corrosion image analyzer (LCIA) based on LabVIEW 2010 was developed allowing rapid automatic and subjective error-free determination of the pits number on large sized corroded specimens. The VI LCIA controls synchronously the digital microscope image taking and its analysis, finally resulting in a map file containing the coordinates of the detected probable pits containing zones on the investigated specimen. The pits area, traverse length, and density are also determined by the VI using binary large objects (blobs) analysis. The resulting map file can be used further by a scanning vibrating electrode technique (SVET) system for rapid (one pass) "true/false" SVET check of the probable zones only passing through the pit's centers avoiding thus the entire specimen scan. A complete SVET scan over the already proved "true" zones could determine the corrosion rate in any of the zones.

  17. A new maximum-likelihood change estimator for two-pass SAR coherent change detection

    DOE PAGES

    Wahl, Daniel E.; Yocky, David A.; Jakowatz, Jr., Charles V.; ...

    2016-01-11

    In previous research, two-pass repeat-geometry synthetic aperture radar (SAR) coherent change detection (CCD) predominantly utilized the sample degree of coherence as a measure of the temporal change occurring between two complex-valued image collects. Previous coherence-based CCD approaches tend to show temporal change when there is none in areas of the image that have a low clutter-to-noise power ratio. Instead of employing the sample coherence magnitude as a change metric, in this paper, we derive a new maximum-likelihood (ML) temporal change estimate—the complex reflectance change detection (CRCD) metric to be used for SAR coherent temporal change detection. The new CRCD estimatormore » is a surprisingly simple expression, easy to implement, and optimal in the ML sense. As a result, this new estimate produces improved results in the coherent pair collects that we have tested.« less

  18. Statistical analysis of loopy belief propagation in random fields

    NASA Astrophysics Data System (ADS)

    Yasuda, Muneki; Kataoka, Shun; Tanaka, Kazuyuki

    2015-10-01

    Loopy belief propagation (LBP), which is equivalent to the Bethe approximation in statistical mechanics, is a message-passing-type inference method that is widely used to analyze systems based on Markov random fields (MRFs). In this paper, we propose a message-passing-type method to analytically evaluate the quenched average of LBP in random fields by using the replica cluster variation method. The proposed analytical method is applicable to general pairwise MRFs with random fields whose distributions differ from each other and can give the quenched averages of the Bethe free energies over random fields, which are consistent with numerical results. The order of its computational cost is equivalent to that of standard LBP. In the latter part of this paper, we describe the application of the proposed method to Bayesian image restoration, in which we observed that our theoretical results are in good agreement with the numerical results for natural images.

  19. Effects of spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the Tetracorder algorithm

    USGS Publications Warehouse

    Swayze, G.A.; Clark, R.N.; Goetz, A.F.H.; Chrien, T.H.; Gorelick, N.S.

    2003-01-01

    Estimates of spectrometer band pass, sampling interval, and signal-to-noise ratio required for identification of pure minerals and plants were derived using reflectance spectra convolved to AVIRIS, HYDICE, MIVIS, VIMS, and other imaging spectrometers. For each spectral simulation, various levels of random noise were added to the reflectance spectra after convolution, and then each was analyzed with the Tetracorder spectra identification algorithm [Clark et al., 2003]. The outcome of each identification attempt was tabulated to provide an estimate of the signal-to-noise ratio at which a given percentage of the noisy spectra were identified correctly. Results show that spectral identification is most sensitive to the signal-to-noise ratio at narrow sampling interval values but is more sensitive to the sampling interval itself at broad sampling interval values because of spectral aliasing, a condition when absorption features of different materials can resemble one another. The band pass is less critical to spectral identification than the sampling interval or signal-to-noise ratio because broadening the band pass does not induce spectral aliasing. These conclusions are empirically corroborated by analysis of mineral maps of AVIRIS data collected at Cuprite, Nevada, between 1990 and 1995, a period during which the sensor signal-to-noise ratio increased up to sixfold. There are values of spectrometer sampling and band pass beyond which spectral identification of materials will require an abrupt increase in sensor signal-to-noise ratio due to the effects of spectral aliasing. Factors that control this threshold are the uniqueness of a material's diagnostic absorptions in terms of shape and wavelength isolation, and the spectral diversity of the materials found in nature and in the spectral library used for comparison. Array spectrometers provide the best data for identification when they critically sample spectra. The sampling interval should not be broadened to increase the signal-to-noise ratio in a photon-noise-limited system when high levels of accuracy are desired. It is possible, using this simulation method, to select optimum combinations of band-pass, sampling interval, and signal-to-noise ratio values for a particular application that maximize identification accuracy and minimize the volume of imaging data.

  20. S4EI (Spectral Sampling with Slicer for Stellar and Extragalactical Instrumentation), a new-generation of 3D spectro-imager dedicated to night astronomy

    NASA Astrophysics Data System (ADS)

    Sayède, Frédéric; Puech, Mathieu; Mein, Pierre; Bonifacio, Piercarlo; Malherbe, Jean-Marie; Galicher, Raphaël.; Amans, Jean-Philippe; Fasola, Gilles

    2014-07-01

    Multichannel Subtractive Double Pass (MSDP) spectrographs have been widely used in solar spectroscopy because of their ability to provide an excellent compromise between field of view and spatial and spectral resolutions. Compared with other types of spectrographs, MSDP can deliver simultaneous monochromatic images at higher spatial and spectral resolutions without any time-scanning requirement (as with Fabry-Perot spectrographs), and with limited loss of flux. These performances are obtained thanks to a double pass through the dispersive element. Recent advances with VPH (Volume phase holographic) Grisms as well as with image slicers now make MSDP potentially sensitive to much smaller fluxes. We present S4EI (Spectral Sampling with Slicer for Stellar and Extragalactical Instrumentation), which is a new concept for extending MSDP to night-time astronomy. It is based on new generation reflecting plane image slicers working with large apertures specific to night-time telescopes. The resulting design could be potentially very attractive and innovative for different domains of astronomy, e.g., the simultaneous spatial mapping of accurately flux-calibrated emission lines between OH sky lines in extragalactic astronomy or the simultaneous imaging of stars, exoplanets and interstellar medium. We present different possible MSDP/S4EI configurations for these science cases and expected performances on telescopes such as the VLT.

  1. X-Ray Excited Luminescence Chemical Imaging of Bacterial Growth on Surfaces Implanted in Tissue.

    PubMed

    Wang, Fenglin; Raval, Yash; Tzeng, Tzuen-Rong J; Anker, Jeffrey N

    2015-04-22

    A pH sensor film is developed that can be coated on an implant surface and imaged using a combination of X-ray excitation and visible spectroscopy to monitor bacterial infection and treatment of implanted medical devices (IMDs) through tissue. X-ray scintillators in the pH sensor film generate light when an X-ray beam irradiates them. This light first passes through a layer containing pH indicator that alters the spectrum according to pH, then passes through and out of the tissue where it is detected by a spectrometer. A reference region on the film is used to account for spectral distortion from wavelength-dependent absorption and scattering in the tissue. pH images are acquired by moving the sample relative to the X-ray beam and collecting a spectrum at each location, with a spatial resolution limited by the X-ray beam width. Using this X-ray excited luminescence chemical imaging (XELCI) to map pH through ex vivo porcine tissue, a pH drop is detected during normal bacterial growth on the sensor surface, and a restoration of the pH to the bulk value during antibiotic treatment over the course of hours with milli-meter resolution. Overall, XELCI provides a novel approach to noninvasively image surface pH for studying implant infections and treatments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application.

    PubMed

    Karakatsanis, Nicolas A; Lodge, Martin A; Tahari, Abdel K; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ~15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ~45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole body. In addition, the total acquisition length can be reduced from 45 to ~35 min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error and the CNR metrics, resulting in enhanced task-based imaging.

  3. Dynamic whole body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    PubMed Central

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-01-01

    Static whole body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single bed-coverage limiting the axial field-of-view to ~15–20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole body PET acquisition protocol of ~45min total length is presented, composed of (i) an initial 6-min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (6 passes x 7 bed positions, each scanned for 45sec). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares (OLS) Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of 10 different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole-body. In addition, the total acquisition length can be reduced from 45min to ~35min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error (MSE) and the CNR metrics, resulting in enhanced task-based imaging. PMID:24080962

  4. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-10-01

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ˜15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ˜45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole body. In addition, the total acquisition length can be reduced from 45 to ˜35 min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error and the CNR metrics, resulting in enhanced task-based imaging.

  5. Quantitative Analysis of First-Pass Contrast-Enhanced Myocardial Perfusion Multidetector CT Using a Patlak Plot Method and Extraction Fraction Correction During Adenosine Stress

    NASA Astrophysics Data System (ADS)

    Ichihara, Takashi; George, Richard T.; Silva, Caterina; Lima, Joao A. C.; Lardo, Albert C.

    2011-02-01

    The purpose of this study was to develop a quantitative method for myocardial blood flow (MBF) measurement that can be used to derive accurate myocardial perfusion measurements from dynamic multidetector computed tomography (MDCT) images by using a compartment model for calculating the first-order transfer constant (K1) with correction for the capillary transit extraction fraction (E). Six canine models of left anterior descending (LAD) artery stenosis were prepared and underwent first-pass contrast-enhanced MDCT perfusion imaging during adenosine infusion (0.14-0.21 mg/kg/min). K1 , which is the first-order transfer constant from left ventricular (LV) blood to myocardium, was measured using the Patlak plot method applied to time-attenuation curve data of the LV blood pool and myocardium. The results were compared against microsphere MBF measurements, and the extraction fraction of contrast agent was calculated. K1 is related to the regional MBF as K1=EF, E=(1-exp(-PS/F)), where PS is the permeability-surface area product and F is myocardial flow. Based on the above relationship, a look-up table from K1 to MBF can be generated and Patlak plot-derived K1 values can be converted to the calculated MBF. The calculated MBF and microsphere MBF showed a strong linear association. The extraction fraction in dogs as a function of flow (F) was E=(1-exp(-(0.2532F+0.7871)/F)) . Regional MBF can be measured accurately using the Patlak plot method based on a compartment model and look-up table with extraction fraction correction from K1 to MBF.

  6. Poster - 09: A MATLAB-based Program for Automated Quality Assurance of a Prostate Brachytherapy Ultrasound System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poon, Justin; Sabondjian, Eric; Sankreacha, Raxa

    Purpose: A robust Quality Assurance (QA) program is essential for prostate brachytherapy ultrasound systems due to the importance of imaging accuracy during treatment and planning. Task Group 128 of the American Association of Physicists in Medicine has recommended a set of QA tests covering grayscale visibility, depth of penetration, axial and lateral resolution, distance measurement, area measurement, volume measurement, and template/electronic grid alignment. Making manual measurements on the ultrasound system can be slow and inaccurate, so a MATLAB program was developed for automation of the described tests. Methods: Test images were acquired using a BK Medical Flex Focus 400 ultrasoundmore » scanner and 8848 transducer with the CIRS Brachytherapy QA Phantom – Model 045A. For each test, the program automatically segments the inputted image(s), makes the appropriate measurements, and indicates if the test passed or failed. The program was tested by analyzing two sets of images, where the measurements from the first set were used as baseline values. Results: The program successfully analyzed the images for each test and determined if any action limits were exceeded. All tests passed – the measurements made by the program were consistent and met the requirements outlined by Task Group 128. Conclusions: The MATLAB program we have developed can be used for automated QA of an ultrasound system for prostate brachytherapy. The GUI provides a user-friendly way to analyze images without the need for any manual measurement, potentially removing intra- and inter-user variability for more consistent results.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plautz, Tia E.; Johnson, R. P.; Sadrozinski, H. F.-W.

    Purpose: To characterize the modulation transfer function (MTF) of the pre-clinical (phase II) head scanner developed for proton computed tomography (pCT) by the pCT collaboration. To evaluate the spatial resolution achievable by this system. Methods: Our phase II proton CT scanner prototype consists of two silicon telescopes that track individual protons upstream and downstream from a phantom, and a 5-stage scintillation detector that measures a combination of the residual energy and range of the proton. Residual energy is converted to water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and associated pathsmore » of protons passing through the object over a 360° angular scan is processed by an iterative parallelizable reconstruction algorithm that runs on GP-GPU hardware. A custom edge phantom composed of water-equivalent polymer and tissue-equivalent material inserts was constructed. The phantom was first simulated in Geant4 and then built to perform experimental beam tests with 200 MeV protons at the Northwestern Medicine Chicago Proton Center. The oversampling method was used to construct radial and azimuthal edge spread functions and modulation transfer functions. The spatial resolution was defined by the 10% point of the modulation transfer function in units of lp/cm. Results: The spatial resolution of the image was found to be strongly correlated with the radial position of the insert but independent of the relative stopping power of the insert. The spatial resolution varies between roughly 4 and 6 lp/cm in both the the radial and azimuthal directions depending on the radial displacement of the edge. Conclusion: The amount of image degradation due to our detector system is small compared with the effects of multiple Coulomb scattering, pixelation of the image and the reconstruction algorithm. Improvements in reconstruction will be made in order to achieve the theoretical limits of spatial resolution.« less

  8. Hubble Catches Jupiter's Largest Moon Going to the 'Dark Side'

    NASA Image and Video Library

    2017-12-08

    Hubble Catches Jupiter's Largest Moon Going to the 'Dark Side' HST/WFPC2 Image of Jupiter and Ganymede Taken April 9, 2007 NASA's Hubble Space Telescope has caught Jupiter's moon Ganymede playing a game of "peek-a-boo." In this crisp Hubble image, Ganymede is shown just before it ducks behind the giant planet. Ganymede completes an orbit around Jupiter every seven days. Because Ganymede's orbit is tilted nearly edge-on to Earth, it routinely can be seen passing in front of and disappearing behind its giant host, only to reemerge later. Composed of rock and ice, Ganymede is the largest moon in our solar system. It is even larger than the planet Mercury. But Ganymede looks like a dirty snowball next to Jupiter, the largest planet in our solar system. Jupiter is so big that only part of its Southern Hemisphere can be seen in this image. Hubble's view is so sharp that astronomers can see features on Ganymede's surface, most notably the white impact crater, Tros, and its system of rays, bright streaks of material blasted from the crater. Tros and its ray system are roughly the width of Arizona. The image also shows Jupiter's Great Red Spot, the large eye-shaped feature at upper left. A storm the size of two Earths, the Great Red Spot has been raging for more than 300 years. Hubble's sharp view of the gas giant planet also reveals the texture of the clouds in the Jovian atmosphere as well as various other storms and vortices. Astronomers use these images to study Jupiter's upper atmosphere. As Ganymede passes behind the giant planet, it reflects sunlight, which then passes through Jupiter's atmosphere. Imprinted on that light is information about the gas giant's atmosphere, which yields clues about the properties of Jupiter's high-altitude haze above the cloud tops. This color image was made from three images taken on April 9, 2007, with the Wide Field Planetary Camera 2 in red, green, and blue filters. The image shows Jupiter and Ganymede in close to natural colors. For additional information go to: hubblesite.org/newscenter/archive/releases/2008/42/ Credit: NASA, ESA, and E. Karkoschka (University of Arizona) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. PASS2: an automated database of protein alignments organised as structural superfamilies.

    PubMed

    Bhaduri, Anirban; Pugalenthi, Ganesan; Sowdhamini, Ramanathan

    2004-04-02

    The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins. An automated and updated version of PASS2 is, in direct correspondence with SCOP 1.63, consisting of sequences having identity below 40% among themselves. Protein domains have been grouped into 628 multi-member superfamilies and 566 single member superfamilies. Structure-based sequence alignments for the superfamilies have been obtained using COMPARER, while initial equivalencies have been derived from a preliminary superposition using LSQMAN or STAMP 4.0. The final sequence alignments have been annotated for structural features using JOY4.0. The database is supplemented with sequence relatives belonging to different genomes, conserved spatially interacting and structural motifs, probabilistic hidden markov models of superfamilies based on the alignments and useful links to other databases. Probabilistic models and sensitive position specific profiles obtained from reliable superfamily alignments aid annotation of remote homologues and are useful tools in structural and functional genomics. PASS2 presents the phylogeny of its members both based on sequence and structural dissimilarities. Clustering of members allows us to understand diversification of the family members. The search engine has been improved for simpler browsing of the database. The database resolves alignments among the structural domains consisting of evolutionarily diverged set of sequences. Availability of reliable sequence alignments of distantly related proteins despite poor sequence identity and single-member superfamilies permit better sampling of structures in libraries for fold recognition of new sequences and for the understanding of protein structure-function relationships of individual superfamilies. PASS2 is accessible at http://www.ncbs.res.in/~faculty/mini/campass/pass2.html

  10. MPF: A portable message passing facility for shared memory multiprocessors

    NASA Technical Reports Server (NTRS)

    Malony, Allen D.; Reed, Daniel A.; Mcguire, Patrick J.

    1987-01-01

    The design, implementation, and performance evaluation of a message passing facility (MPF) for shared memory multiprocessors are presented. The MPF is based on a message passing model conceptually similar to conversations. Participants (parallel processors) can enter or leave a conversation at any time. The message passing primitives for this model are implemented as a portable library of C function calls. The MPF is currently operational on a Sequent Balance 21000, and several parallel applications were developed and tested. Several simple benchmark programs are presented to establish interprocess communication performance for common patterns of interprocess communication. Finally, performance figures are presented for two parallel applications, linear systems solution, and iterative solution of partial differential equations.

  11. Phase-contrast scanning transmission electron microscopy.

    PubMed

    Minoda, Hiroki; Tamai, Takayuki; Iijima, Hirofumi; Hosokawa, Fumio; Kondo, Yukihito

    2015-06-01

    This report introduces the first results obtained using phase-contrast scanning transmission electron microscopy (P-STEM). A carbon-film phase plate (PP) with a small center hole is placed in the condenser aperture plane so that a phase shift is introduced in the incident electron waves except those passing through the center hole. A cosine-type phase-contrast transfer function emerges when the phase-shifted scattered waves interfere with the non-phase-shifted unscattered waves, which passed through the center hole before incidence onto the specimen. The phase contrast resulting in P-STEM is optically identical to that in phase-contrast transmission electron microscopy that is used to provide high contrast for weak phase objects. Therefore, the use of PPs can enhance the phase contrast of the STEM images of specimens in principle. The phase shift resulting from the PP, whose thickness corresponds to a phase shift of π, has been confirmed using interference fringes displayed in the Ronchigram of a silicon single crystal specimen. The interference fringes were found to abruptly shift at the edge of the PP hole by π. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Driving and off-road impairments underlying failure on road testing in Parkinson's disease.

    PubMed

    Devos, Hannes; Vandenberghe, Wim; Tant, Mark; Akinwuntan, Abiodun E; De Weerdt, Willy; Nieuwboer, Alice; Uc, Ergun Y

    2013-12-01

    Parkinson's disease (PD) affects driving ability. We aimed to determine the most critical impairments in specific road skills and in clinical characteristics leading to failure on a road test in PD. In this cross-sectional study, certified driving assessment experts evaluated specific driving skills in 104 active, licensed drivers with PD using a standardized, on-road checklist and issued a global decision of pass/fail. Participants also completed an off-road evaluation assessing demographic features, disease characteristics, motor function, vision, and cognition. The most important driving skills and off-road predictors of the pass/fail outcome were identified using multivariate stepwise regression analyses. Eighty-six (65%) passed and 36 (35%) failed the on-road driving evaluation. Persons who failed performed worse on all on-road items. When adjusted for age and gender, poor performances on lateral positioning at low speed, speed adaptations at high speed, and left turning maneuvers yielded the best model that determined the pass/fail decision (R(2) = 0.56). The fail group performed poorer on all motor, visual, and cognitive tests. Measures of visual scanning, motor severity, PD subtype, visual acuity, executive functions, and divided attention were independent predictors of pass/fail decisions in the multivariate model (R(2) = 0.60). Our study demonstrated that failure on a road test in PD is determined by impairments in specific driving skills and associated with deficits in motor, visual, executive, and visuospatial functions. These findings point to specific driving and off-road impairments that can be targeted in multimodal rehabilitation programs for drivers with PD. © 2013 Movement Disorder Society.

  13. Best fit refractive index of matching liquid for 3D NIPAM gel dosimeters using optical CT

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Hsing; Wu, Jay; Hsieh, Bor-Tsung; Chen, De-Shiou; Wang, Tzu-Hwei; Chien, Sou-Hsin; Chang, Yuan-Jen

    2014-11-01

    The accuracy of an optical computed tomography (CT)-based dosimeter is significantly affected by the refractive index (RI) of the matching liquid. Mismatched RI induces reflection and refraction as the laser beam passes through the gel phantom. Moreover, the unwanted light rays collected by the photodetector produce image artifacts after image reconstruction from the collected data. To obtain the best image quality, this study investigates the best-fit RI of the matching liquid for a 3D NIPAM gel dosimeter. The three recipes of NIPAM polymer gel used in this study consisted of 5% gelatin, 5% NIPAM and 3% N,N'-methylene bisacrylamide, which were combined with three compositions (5, 10, and 20 mM) of Tetrakis (hydroxymethyl) phosphonium chloride. Results were evaluated using a quantitative evaluation method of the gamma evaluation technique. Results showed that the best-fit RI for the non-irradiated NIPAM gel ranges from 1.340 to 1.346 for various NIPAM recipes with sensitivities ranging from 0.0113 to 0.0227. The greatest pass rate of 88.00% is achieved using best-fit RI=1.346 of the matching liquid. The adoption of mismatching RI decreases the gamma pass rate by 2.63% to 16.75% for all three recipes of NIPAM gel dosimeters. In addition, the maximum average deviation is less than 0.1% for the red and transparent matching liquids. Thus, the color of the matching liquid does not affect the measurement accuracy of the NIPAM gel dosimeter, as measured by optical CT.

  14. Neural networks: further insights into error function, generalized weights and others

    PubMed Central

    2016-01-01

    The article is a continuum of a previous one providing further insights into the structure of neural network (NN). Key concepts of NN including activation function, error function, learning rate and generalized weights are introduced. NN topology can be visualized with generic plot() function by passing a “nn” class object. Generalized weights assist interpretation of NN model with respect to the independent effect of individual input variables. A large variance of generalized weights for a covariate indicates non-linearity of its independent effect. If generalized weights of a covariate are approximately zero, the covariate is considered to have no effect on outcome. Finally, prediction of new observations can be performed using compute() function. Make sure that the feature variables passed to the compute() function are in the same order to that in the training NN. PMID:27668220

  15. ThermalTracker Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The software processes recorded thermal video and detects the flight tracks of birds and bats that passed through the camera's field of view. The output is a set of images that show complete flight tracks for any detections, with the direction of travel indicated and the thermal image of the animal delineated. A report of the descriptive features of each detected track is also output in the form of a comma-separated value text file.

  16. Dream Images and Creation.

    PubMed

    Masson, Céline; Schauder, Silke; Sausse, Simone Korff

    2017-02-01

    This article links contemporary psychoanalytic theories of the dream, especially Bion's, with the work of the American video artist Bill Viola, who is deeply influenced by altered states of consciousness and produces images of dreamlike quality. We discuss the oneiric and infantile roots of creativity and artistic inspiration, finally taking Viola's monumental artwork The Passing (1991) as paradigmatic of the artist's aesthetic and philosophical elaboration of the relationship between life and death.

  17. Determining Snow Depth Using Airborne Multi-Pass Interferometric Synthetic Aperture Radar

    DTIC Science & Technology

    2013-09-01

    relatively low resolution 10m DEM of the survey area was obtained from the USDA NAIP and then geocorrected to match the SAR image area. Centered on...Propulsion Laboratory LiDAR Light Detection and Ranging METAR Meteorological reporting observations medivac Medical Evacuation NASA National...Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X- SAR) mission was a joint National Aeronautical and Space Administration ( NASA

  18. Percutaneous transgastric computed tomography-guided biopsy of the pancreas using large needles

    PubMed Central

    Tseng, Hsiuo-Shan; Chen, Chia-Yuen; Chan, Wing P; Chiang, Jen-Huey

    2009-01-01

    AIM: To assess the safety, yield and clinical utility of percutaneous transgastric computed tomography (CT)-guided biopsy of pancreatic tumor using large needles, in selected patients. METHODS: We reviewed 34 CT-guided biopsies in patients with pancreas mass, of whom 24 (71%) had a direct path to the mass without passing through a major organ. The needle passed through the liver in one case (3%). Nine passes (26%) were made through the stomach. These nine transgastric biopsies which used a coaxial technique (i.e. a 17-gauge coaxial introducer needle and an 18-gauge biopsy needle) were the basis of this study. Immediate and late follow-up CT images to detect complications were obtained. RESULTS: Tumor tissues were obtained in nine pancreatic biopsies, and histologic specimens for diagnosis were obtained in all cases. One patient, who had a rare sarcomatoid carcinoma, received a second biopsy. One patient had a complication of transient pneumoperitoneum but no subjective complaints. An immediate imaging study and clinical follow-up detected neither hemorrhage nor peritonitis. No delayed procedure-related complication was seen during the survival period of our patients. CONCLUSION: Pancreatic biopsy can be obtained by a transgastric route using a large needle as an alternative method, without complications of peritonitis or bleeding. PMID:20014462

  19. Multimodal ophthalmic imaging using handheld spectrally encoded coherence tomography and reflectometry (SECTR)

    NASA Astrophysics Data System (ADS)

    Leeburg, Kelsey C.; El-Haddad, Mohamed T.; Malone, Joseph D.; Terrones, Benjamin D.; Tao, Yuankai K.

    2018-02-01

    Scanning laser ophthalmoscopy (SLO) provides high-speed, noninvasive en face imaging of the retinal fundus. Optical coherence tomography (OCT) is the current "gold-standard" for ophthalmic diagnostic imaging and enables depth-resolved visualization of ophthalmic structures and image-based surrogate biomarkers of disease. We present a compact optical and mechanical design for handheld spectrally encoded coherence tomography and reflectometry (SECTR) for multimodality en face spectrally encoded reflectometry (SER) and cross-sectional OCT imaging. We custom-designed a double-pass telecentric scan lens, which halves the size of 4-f optical relays and allowed us to reduce the footprint of our SECTR scan-head by a factor of >2.7x (volume) over our previous design. The double-pass scan lens was optimized for diffraction-limited performance over a +/-10° scan field. SECTR optics and optomechanics were combined in a compact rapid-prototyped enclosure with dimensions 87 x 141.8 x 137 mm (w x h x d). SECTR was implemented using a custom-built 400 kHz 1050 nm swept-source. OCT and SER were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.4 GS/s per channel. In vivo human en face SER and cross-sectional OCT images were acquired at 350 fps. OCT volumes of 1000 B-scans were acquired in 2.86 s. We believe clinical translation of our compact handheld design will benefit point-of-care ophthalmic diagnostics in patients who are unable to be imaged on conventional slit-lamp based systems, such as infants and the bedridden. When combined with multi-volumetric registration methods, handheld SECTR will have advantages in motion-artifact free imaging over existing handheld technologies.

  20. Edge smoothing for real-time simulation of a polygon face object system as viewed by a moving observer

    NASA Technical Reports Server (NTRS)

    Lotz, Robert W. (Inventor); Westerman, David J. (Inventor)

    1980-01-01

    The visual system within an aircraft flight simulation system receives flight data and terrain data which is formated into a buffer memory. The image data is forwarded to an image processor which translates the image data into face vertex vectors Vf, defining the position relationship between the vertices of each terrain object and the aircraft. The image processor then rotates, clips, and projects the image data into two-dimensional display vectors (Vd). A display generator receives the Vd faces, and other image data to provide analog inputs to CRT devices which provide the window displays for the simulated aircraft. The video signal to the CRT devices passes through an edge smoothing device which prolongs the rise time (and fall time) of the video data inversely as the slope of the edge being smoothed. An operational amplifier within the edge smoothing device has a plurality of independently selectable feedback capacitors each having a different value. The values of the capacitors form a series which doubles as a power of two. Each feedback capacitor has a fast switch responsive to the corresponding bit of a digital binary control word for selecting (1) or not selecting (0) that capacitor. The control word is determined by the slope of each edge. The resulting actual feedback capacitance for each edge is the sum of all the selected capacitors and is directly proportional to the value of the binary control word. The output rise time (or fall time) is a function of the feedback capacitance, and is controlled by the slope through the binary control word.

  1. On a Family of Circles

    ERIC Educational Resources Information Center

    Feeman, Timothy G.

    2011-01-01

    We generalize a standard example from precalculus and calculus texts to give a simple description in polar coordinates of any circle that passes through the origin. We discuss an occurrence of this formula in the context of medical imaging. (Contains 1 figure.)

  2. Candidate Drilling Target on Mars Doesnt Pass Exam

    NASA Image and Video Library

    2014-08-22

    This image from the front Hazcam on NASA Curiosity Mars rover shows the rover drill in place during a test of whether the rock beneath it, Bonanza King, would be an acceptable target for drilling to collect a sample.

  3. Two Moons Passing in the Night

    NASA Image and Video Library

    2013-07-22

    This image from NASA Cassini spacecraft reminds us of how different Mimas and Pandora are when they appear together; although both are moons of Saturn, Pandora small size means that it lacks sufficient gravity to pull itself into a round shape.

  4. Pyrocumulus Clouds Tower Over Silver Fire in New Mexico

    NASA Image and Video Library

    2013-06-14

    NASA Terra satellite passed over the Silver Fire in New Mexico June 12, 2013. By combining information from different MISR cameras, scientists have produced a 3D image of the smoke plume associated with the Silver Fire.

  5. Laser addressed holographic memory system

    NASA Technical Reports Server (NTRS)

    Gange, R. A.; Wagle, E. M.; Steinmetz, C. C.

    1973-01-01

    Holographic recall and storage system uses red-lipid microcrystalline wax as storage medium. When laser beam strikes wax, its energy heats point of incidence enough to pass wax through transition temperature. Holograph image can then be written or erased in softened wax.

  6. Hysterectomy - Series (image)

    MedlinePlus

    ... hysterectomy. If the bladder was involved, then a catheter may remain in place for 3 to 4 days to help the bladder pass urine. Moving about as soon as possible helps to avoid blood clots in the legs and other problems. Walking to ...

  7. What is Cystic Fibrosis?

    MedlinePlus

    ... pass the faulty CFTR gene to their children. Example of an Inheritance Pattern for Cystic Fibrosis The image shows how CFTR genes are inherited. A person inherits two copies of the CFTR gene—one from each parent. If each parent has a ...

  8. Brief Report: Cognitive Performance in Autism and Asperger's Syndrome: What Are the Differences?

    ERIC Educational Resources Information Center

    Taddei, Stefano; Contena, Bastianina

    2013-01-01

    Autism spectrum disorders include autistic and Asperger's Syndrome (AS), often studied in terms of executive functions (EF), with controversial results. Using Planning Attention Simultaneous Successive theory (PASS; Das et al. in "Assessment of cognitive processes: the PASS theory of intelligence." Allyn and Bacon, Boston, MA, 1994),…

  9. Congress Creates Super Federal Library Agency

    ERIC Educational Resources Information Center

    Steere, Paul J.

    2010-01-01

    In a rare show of bipartisanship, the Senate passed the controversial Federal Library Agency Act (FLAA) on a nearly unanimous voice vote, sending it to President Obama for his expected signature. The House had passed it in February with a two-thirds majority. The FLAA creates a new mandate by combining federal library functions scattered…

  10. Non local means denoising in photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Siregar, Syahril; Nagaoka, Ryo; Haq, Israr Ul; Saijo, Yoshifumi

    2018-07-01

    Photoacoustic (PA) imaging has the ability to visualize human organs with high spatial resolution and high contrast. Like digital images, PA images are contaminated with random noise due to some parameters. The band-pass filter does not effectively remove the noise because noise is randomly distributed in the bandwidth frequency. We present noise removal method in PA images by using non local means denoising (NLMD) method. The NLMD can be used if there are similarities or redundancies in the image. PA images contain of blood vessel which repeating on the small patch. The method was tested on PA images of carbon nanotubes in micropipe, in vivo mice brain and in vivo mice ear. We estimated the suggested input parameters of NLMD, so it can be automatically applied after scanning the image in PA imaging system. Our results declared that the NLMD enhanced the image quality of PA images.

  11. Nondirective meditation activates default mode network and areas associated with memory retrieval and emotional processing.

    PubMed

    Xu, Jian; Vik, Alexandra; Groote, Inge R; Lagopoulos, Jim; Holen, Are; Ellingsen, Oyvind; Håberg, Asta K; Davanger, Svend

    2014-01-01

    Nondirective meditation techniques are practiced with a relaxed focus of attention that permits spontaneously occurring thoughts, images, sensations, memories, and emotions to emerge and pass freely, without any expectation that mind wandering should abate. These techniques are thought to facilitate mental processing of emotional experiences, thereby contributing to wellness and stress management. The present study assessed brain activity by functional magnetic resonance imaging (fMRI) in 14 experienced practitioners of Acem meditation in two experimental conditions. In the first, nondirective meditation was compared to rest. Significantly increased activity was detected in areas associated with attention, mind wandering, retrieval of episodic memories, and emotional processing. In the second condition, participants carried out concentrative practicing of the same meditation technique, actively trying to avoid mind wandering. The contrast nondirective meditation > concentrative practicing was characterized by higher activity in the right medial temporal lobe (parahippocampal gyrus and amygdala). In conclusion, the present results support the notion that nondirective meditation, which permits mind wandering, involves more extensive activation of brain areas associated with episodic memories and emotional processing, than during concentrative practicing or regular rest.

  12. a Fast Segmentation Algorithm for C-V Model Based on Exponential Image Sequence Generation

    NASA Astrophysics Data System (ADS)

    Hu, J.; Lu, L.; Xu, J.; Zhang, J.

    2017-09-01

    For the island coastline segmentation, a fast segmentation algorithm for C-V model method based on exponential image sequence generation is proposed in this paper. The exponential multi-scale C-V model with level set inheritance and boundary inheritance is developed. The main research contributions are as follows: 1) the problems of the "holes" and "gaps" are solved when extraction coastline through the small scale shrinkage, low-pass filtering and area sorting of region. 2) the initial value of SDF (Signal Distance Function) and the level set are given by Otsu segmentation based on the difference of reflection SAR on land and sea, which are finely close to the coastline. 3) the computational complexity of continuous transition are successfully reduced between the different scales by the SDF and of level set inheritance. Experiment results show that the method accelerates the acquisition of initial level set formation, shortens the time of the extraction of coastline, at the same time, removes the non-coastline body part and improves the identification precision of the main body coastline, which automates the process of coastline segmentation.

  13. Nondirective meditation activates default mode network and areas associated with memory retrieval and emotional processing

    PubMed Central

    Xu, Jian; Vik, Alexandra; Groote, Inge R.; Lagopoulos, Jim; Holen, Are; Ellingsen, Øyvind; Håberg, Asta K.; Davanger, Svend

    2014-01-01

    Nondirective meditation techniques are practiced with a relaxed focus of attention that permits spontaneously occurring thoughts, images, sensations, memories, and emotions to emerge and pass freely, without any expectation that mind wandering should abate. These techniques are thought to facilitate mental processing of emotional experiences, thereby contributing to wellness and stress management. The present study assessed brain activity by functional magnetic resonance imaging (fMRI) in 14 experienced practitioners of Acem meditation in two experimental conditions. In the first, nondirective meditation was compared to rest. Significantly increased activity was detected in areas associated with attention, mind wandering, retrieval of episodic memories, and emotional processing. In the second condition, participants carried out concentrative practicing of the same meditation technique, actively trying to avoid mind wandering. The contrast nondirective meditation > concentrative practicing was characterized by higher activity in the right medial temporal lobe (parahippocampal gyrus and amygdala). In conclusion, the present results support the notion that nondirective meditation, which permits mind wandering, involves more extensive activation of brain areas associated with episodic memories and emotional processing, than during concentrative practicing or regular rest. PMID:24616684

  14. Martian Moon Blocks Sun

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the transit of Mars' moon Phobos across the Sun. It is made up of images taken by the Mars Exploration Rover Opportunity on the morning of the 45th martian day, or sol, of its mission. This observation will help refine our knowledge of the orbit and position of Phobos. Other spacecraft may be able to take better images of Phobos using this new information. This event is similar to solar eclipses seen on Earth in which our Moon passes in front of the Sun. The images were taken by the rover's panoramic camera.

  15. Devilish Details

    NASA Technical Reports Server (NTRS)

    2005-01-01

    23 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small, springtime dust devil creating a dark streak on the plains of Argyre. The small, bright dot is the dust devil. Many other dark streaks on the plains indicate the areas where other dust devils had passed within the past several weeks before this July 2005 image was acquired.

    Location near: 44.6oS, 40.3oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  16. Multiple interpretations of a pair of images of a surface

    NASA Astrophysics Data System (ADS)

    Longuet-Higgins, H. C.

    1988-07-01

    It is known that, if two optical images of a visually textured surface, projected from finitely separated viewpoints, allow more than one three-dimensional interpretation, then the surface must be part of a quadric passing through the two viewpoints. It is here shown that this quadric is either a plane or a ruled surface of a type first considered by Maybank (1985) in a study of ambiguous optic flow fields. In the latter case, three is the maximum number of distinct interpretations that the two images can sustain.

  17. High speed quantitative digital microscopy

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Price, K. H.; Eskenazi, R.; Ovadya, M. M.; Navon, M. A.

    1984-01-01

    Modern digital image processing hardware makes possible quantitative analysis of microscope images at high speed. This paper describes an application to automatic screening for cervical cancer. The system uses twelve MC6809 microprocessors arranged in a pipeline multiprocessor configuration. Each processor executes one part of the algorithm on each cell image as it passes through the pipeline. Each processor communicates with its upstream and downstream neighbors via shared two-port memory. Thus no time is devoted to input-output operations as such. This configuration is expected to be at least ten times faster than previous systems.

  18. Phantom testing of a novel endoscopic OCT probe: a prelude to clinical in-vivo laryngeal use

    NASA Astrophysics Data System (ADS)

    Tatla, Taran; Pang, J. Y.; Cernat, R.; Dobre, G.; Tadrous, P. J.; Bradu, A.; Gelikonov, G.; Gelikonov, V.; Podoleanu, A. G.

    2012-12-01

    Optical coherence tomography is a novel imaging technique providing potentially high resolution tri-dimensional images of tissue microstructure up to 2-3mm deep. We present pre-clinical data from a novel miniaturised OCT probe utilised for endoscopic imaging of laryngeal mucosa. A 1300nm SS-OCT probe was passed in tandem with a flexible fibreoptic nasoendoscope into the larynx of a manikin. Ex vivo OCT images were acquired using a desktop 1300nm TD-OCT imaging system. The feasibility, robustness and safety of this set-up was demonstrated as a preliminary step to extending the use of this assembly to a clinical patient cohort with varying laryngeal pathologies.

  19. Restoration and reconstruction from overlapping images

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Kaiser, Daniel J.; Hanson, Andrew L.; Li, Jing

    1997-01-01

    This paper describes a technique for restoring and reconstructing a scene from overlapping images. In situations where there are multiple, overlapping images of the same scene, it may be desirable to create a single image that most closely approximates the scene, based on all of the data in the available images. For example, successive swaths acquired by NASA's planned Moderate Imaging Spectrometer (MODIS) will overlap, particularly at wide scan angles, creating a severe visual artifact in the output image. Resampling the overlapping swaths to produce a more accurate image on a uniform grid requires restoration and reconstruction. The one-pass restoration and reconstruction technique developed in this paper yields mean-square-optimal resampling, based on a comprehensive end-to-end system model that accounts for image overlap, and subject to user-defined and data-availability constraints on the spatial support of the filter.

  20. Controlled, sustained release of proteins via an injectable, mineral-coated microsphere delivery vehicle

    NASA Astrophysics Data System (ADS)

    Franklin-Ford, Travelle

    Hydroxyapatite interfaces have demonstrated strong protein binding and protein selection from a passing solution and can serve as a biocompatible carrier for controlled protein delivery. Hydroxyapatite is a major component of long bones and tooth enamel and is the most stable of all calcium phosphate isoforms in aqueous solutions at physiologic pH, providing a sensitive chromatographic mechanism for separating proteins. Here we describe an approach to create a synthetic hydroxyapatite coating through a biomimetic, heterogeneous nucleation from a modified simulated body fluid--supersaturated with calcium and phosphate ions on the surface of injectable polymer microspheres. We are able to bind and release bioactive growth factors into a variety of in vitro and in vivo conditions, demonstrating the functionality and advantage of the biomaterial. Creating a hydroxyapatite layer on the Poly(D,L-lactide-co-glycolide) (PLG) microsphere surface, avails the microsphere interior for another application that will not compete with protein binding and release. Encapsulating an imaging agent within the aqueous phase of the emulsion provides a visual reference for the injectable therapy upon microsphere fabrication. Another advantage of this system is that the mineral coating and subsequent protein binding is not compromised by the encapsulated imaging agent. This dual function delivery vehicle is not only advantageous for spatial tracking therapeutic applications, but also determining the longevity of the delivery vehicle once injected. In the broader sense, providing a mechanism to image and track our temporally controlled, sustained delivery system gives more evidence to support the effects of released protein on in vivo responses (bioactivity) and locate microspheres within different biological systems.

Top