Science.gov

Sample records for passive environmental radon

  1. Passive environmental radon detector study

    SciTech Connect

    Not Available

    1992-03-01

    There are three stages at which the ambient air concentrations of radon-222 are monitored around the Uranium Mill Tailings Remedial Action (UMTRA) Project sites: before, during, and after construction. Pre-remedial-action measurements are taken for approximately 1 year. Monitoring is conducted during the entire duration of construction, and post-remedial-action monitoring is performed for approximately 1 year. Currently, the UMTRA Project uses Radtrak{reg_sign} brand alpha-track radon detectors for these environmental measurements. The purposes of radon monitoring around the UMTRA sites are (1) to determine background values around the site and pre-remedial-action conditions, (2) to control construction activities and monitor off-site releases, and (3) to compare post-remedial-action concentrations with pre-remedial-action values to demonstrate that radon concentrations have been reduced to approximately background levels. The Technical Assistance Contractor to the DOE for the UMTRA Project evaluated the performance of four different types of passive environmental radon detectors under both controlled laboratory conditions and field conditions at an unremediated UMTRA site. This study was undertaken to evaluate the accuracy and precision of four different passive, timeintegrating, environmental radon detectors in an effort to determine which brand of detector is best suited to measure environmental outdoor radon concentrations for the UMTRA Project. Voluntary manufacturer participation in the study was solicited by placing an advertisement in the Commerce Business Daily. All manufacturers participating in the study supplied the detectors and analysis free of charge.

  2. Passive environmental radon detector study

    SciTech Connect

    Not Available

    1992-03-01

    There are three stages at which the ambient air concentrations of radon-222 are monitored around the Uranium Mill Tailings Remedial Action (UMTRA) Project sites: before, during, and after construction. Pre-remedial-action measurements are taken for approximately 1 year. Monitoring is conducted during the entire duration of construction, and post-remedial-action monitoring is performed for approximately 1 year. Currently, the UMTRA Project uses Radtrak[reg sign] brand alpha-track radon detectors for these environmental measurements. The purposes of radon monitoring around the UMTRA sites are (1) to determine background values around the site and pre-remedial-action conditions, (2) to control construction activities and monitor off-site releases, and (3) to compare post-remedial-action concentrations with pre-remedial-action values to demonstrate that radon concentrations have been reduced to approximately background levels. The Technical Assistance Contractor to the DOE for the UMTRA Project evaluated the performance of four different types of passive environmental radon detectors under both controlled laboratory conditions and field conditions at an unremediated UMTRA site. This study was undertaken to evaluate the accuracy and precision of four different passive, timeintegrating, environmental radon detectors in an effort to determine which brand of detector is best suited to measure environmental outdoor radon concentrations for the UMTRA Project. Voluntary manufacturer participation in the study was solicited by placing an advertisement in the Commerce Business Daily. All manufacturers participating in the study supplied the detectors and analysis free of charge.

  3. A practical E-PERM (electret passive environmental radon monitor) system for indoor 222Rn measurement.

    PubMed

    Kotrappa, P; Dempsey, J C; Ramsey, R W; Stieff, L R

    1990-04-01

    The technical and scientific basis for the measurement of indoor 222Rn concentration using an E-PERM (Electret passive environmental radon monitor) has been described in our earlier work. The purpose of this paper is to describe further development of a practical and convenient system that can be used routinely for indoor 222Rn measurement. The ion chamber is now made of electrically conducting plastic to minimize the response from natural gamma radiation. A spring-loaded shutter method is used to cover and uncover the electret from outside the chamber. The electret voltage reader has been modified to improve the accuracy and the ease in operation. The calibration, performance, error analysis, and lower limits of detection for these standardized versions of E-PERMs are also described.

  4. Intercomparison of active and passive instruments for radon and radon progeny in North America

    SciTech Connect

    George, A.C.; Tu, Keng-Wu; Knutson, E.O.

    1995-02-01

    An intercomparison exercise for radon and radon progeny instruments and methods was held at the Environmental Measurements Laboratory (EML) from April 22--May 2, 1994. The exercise was conducted in the new EML radon test and calibration facility in which conditions of exposure are very well controlled. The detection systems of the intercompared instruments consisted of. (1) pulse ionization chambers, (2) electret ionization chambers, (3) scintillation detectors, (4) alpha particle spectrometers with silicon diodes, surface barrier or diffused junction detectors, (5) registration of nuclear tracks in solid-state materials, and (6) activated carbon collectors counted by gamma-ray spectrometry or by alpha- and beta-liquid scintillation counting. 23 private firms, government laboratories and universities participated with a 165 passive integrating devices consisting of: Activated carbon collectors, nuclear alpha track detectors and electret ionization chambers, and 11 active and passive continuous radon monitors. Five portable integrating and continuous instruments were intercompared for radon progeny. Forty grab samples for radon progeny were taken by five groups that participated in person to test and evaluate their primary instruments and methods that measure individual radon progeny and the potential alpha energy concentration (PAEC) in indoor air. Results indicate that more than 80% of the measurements for radon performed with a variety of instruments, are within {plus_minus}10% of actual value. The majority of the instruments that measure individual radon progeny and the PAEC gave results that are in good agreement with the EML reference value. Radon progeny measurements made with continuous and integrating instruments are satisfactory with room for improvement.

  5. Demonstrating effectiveness of passive radon-resistant new construction.

    PubMed

    LaFollette, S; Dickey, T

    2001-01-01

    Fifty percent of homes tested for radon in Rock Island County, IL, have radon levels above the U.S. Environmental Protection Agency (EPA) action guideline of 4 picoCuries per liter (pCi/L) of air. Therefore, the county is classified by the EPA as Zone 1 on the EPA's Map of Radon Potential. Radon-resistant new construction (RRNC) strategies for new homes are recommended by the EPA in Zone 1 areas. One city in the county, East Moline, reduced the cost of building permits for contractors volunteering to build new homes incorporating modified passive RRNC. Forty-six of 124 new homes built with passive RRNC in the city were tested during this study. Only 27 of the homes tested were below 4-pCi/L, justifying the importance of testing the system to ensure levels are below the action guideline. To provide additional support to an argument in favor of changing city building codes to the required RRNC, 23 of the homes were also tested with the systems deactivated. After systems were deactivated, 73% of the homes had radon levels above the action guideline. Four homes were sampled for bioaerosols to evaluate if passive RRNC might impact other indicators of poor indoor air quality (IAQ). The results of the research will be discussed here.

  6. The measurement accuracy of passive radon instruments.

    PubMed

    Beck, T R; Foerster, E; Buchröder, H; Schmidt, V; Döring, J

    2014-01-01

    This paper analyses the data having been gathered from interlaboratory comparisons of passive radon instruments over 10 y with respect to the measurement accuracy. The measurement accuracy is discussed in terms of the systematic and the random measurement error. The analysis shows that the systematic measurement error of the most instruments issued by professional laboratory services can be within a range of ±10 % from the true value. A single radon measurement has an additional random measurement error, which is in the range of up to ±15 % for high exposures to radon (>2000 kBq h m(-3)). The random measurement error increases for lower exposures. The analysis especially applies to instruments with solid-state nuclear track detectors and results in proposing criteria for testing the measurement accuracy. Instruments with electrets and charcoal have also been considered, but the low stock of data enables only a qualitative discussion.

  7. Error in measuring radon in soil gas by means of passive detectors

    USGS Publications Warehouse

    Tanner, A.B.

    1991-01-01

    Passive detection of radon isotopes depends on diffusion of radon atoms from the sites of their generation to the location of the detecting or collecting device. Because some radon decays en route to a passive detector in soil, the radon concentration measured by the detector must be less than the concentration in those soil pores where it is undiminished by diffusion to the detector cavity. The true radon concentration may be significantly underestimated in moist soils. -Author

  8. Environmental radon studies in Mexico.

    PubMed

    Segovia, N; Gaso, M I; Armienta, M A

    2007-04-01

    Radon has been determined in soil, groundwater, and air in Mexico, both indoors and outdoors, as part of geophysical studies and to estimate effective doses as a result of radon exposure. Detection of radon has mainly been performed with solid-state nuclear track detectors (SSNTD) and, occasionally, with active detection devices based on silicon detectors or ionization chambers. The liquid scintillation technique, also, has been used for determination of radon in groundwater. The adjusted geometric mean indoor radon concentration (74 Bq m-3) in urban developments, for example Mexico City, is higher than the worldwide median concentration of radon in dwellings. In some regions, particularly hilly regions of Mexico where air pollution is high, radon concentrations are higher than action levels and the effective dose for the general population has increased. Higher soil radon levels have been found in the uranium mining areas in the northern part of the country. Groundwater radon levels are, in general, low. Soil-air radon contributing to indoor atmospheres and air pollution is the main source of increased exposure of the population.

  9. Effectiveness Analysis of Filters Used with Radon Detectors under Extreme Environmental Conditions for Long-term Exposures

    NASA Astrophysics Data System (ADS)

    Moreno, V.; Font, Ll.; Baixeras, C.; Garcia-Orellana, J.; Bach, J.; Grossi, C.; Vargas, A.

    Active and passive radon detectors have been exposed with different filter configurations at the INTE radon chamber controlled conditions. Correction factors and delay times of the radon diffusion through each filter have been determined. Additionally, some of the studied filter/detector configurations have been used to measure radon in several workplaces and outdoor sites under real extreme environmental conditions. Analysis of these detectors showed partial degradation, so used filters seem not to be protective enough for long-term exposures.

  10. Evaluation of a passive stack radon mitigation system

    SciTech Connect

    Johns, M.R.; Hintenlang, D.E.

    1996-06-01

    A builder in the Gainesville area wants to incorporate passive radon mitigation in the houses he builds. He has designed and constructed three passive stack systems. This paper presents the performance evaluation of these systems in three houses. The systems consist of a horizontal and vertical component. The horizontal component consists of a 4 inch diameter perforated PVC pipe laid inside a bed of 3/4 inch limerock under the concrete slab. The vertical component is a PVC pipe connected into the horizontal pipe running inside an interior wall into the attic. Each house has a slightly different geometry for the horizontal component. In house number one, the rock bed runs across the length of the foundation and is open to the outdoor air on both ends. In house number two, the rock bed runs in a U-shape two-thirds the length of the foundation and has only one end open to the outdoor air. In house number three, the rock bed runs two-thirds the length of the foundation. The vertical stack is connected at one end and the other end is open to the outdoor air. The systems were evaluated under several configurations. Two of the configurations evaluated were all openings either open or closed. The initial data taken with the system in different configurations indicated the system had little impact on the indoor radon concentration. The average radon concentration remained approximately 4.7{+-}0.6 pCi L{sup -1}, even with all openings closed. The system was then modified to extend the stack pipe through the attic and out the roof. The average concentration dropped to 3.9{+-}0.5 pCi L{sup -1}. These passive systems do not significantly decrease the indoor radon concentration. However, in homes with moderate levels of radon, some reduction in radon concentration can be expected.

  11. Radiological risk assessment of environmental radon

    NASA Astrophysics Data System (ADS)

    Khalid, Norafatin; Majid, Amran Ab; Yahaya, Redzuwan; Yasir, Muhammad Samudi

    2013-11-01

    Measurements of radon gas (222Rn) in the environmental are important to assess indoor air quality and to study the potential risk to human health. Generally known that exposure to radon is considered the second leading cause of lung cancer after smoking. The environmental radon concentration depends on the 226Ra concentration, indoor atmosphere, cracking on rocks and building materials. This study was carried out to determine the indoor radon concentration from selected samples of tin tailings (amang) and building materials in an airtight sealed homemade radon chamber. The radiological risk assessment for radon gas was also calculated based on the annual exposure dose, effective dose equivalent, radon exhalation rates and fatal cancer risk. The continuous radon monitor Sun Nuclear model 1029 was used to measure the radon concentration emanates from selected samples for 96 hours. Five types of tin tailings collected from Kampar, Perak and four samples of building materials commonly used in Malaysia dwellings or building constructions were analysed for radon concentration. The indoor radon concentration determined in ilmenite, monazite, struverite, xenotime and zircon samples varies from 219.6 ± 76.8 Bq m-3 to 571.1 ± 251.4 Bq m-3, 101.0 ± 41.0 Bq m-3 to 245.3 ± 100.2 Bq m-3, 53.1 ± 7.5 Bq m-3 to 181.8 ± 9.7 Bq m-3, 256.1 ± 59.3 Bq m-3 to 652.2 ± 222.2 Bq m-3 and 164.5 ± 75.9 Bq m-3 to 653.3 ± 240.0 Bq m-3, respectively. Whereas, in the building materials, the radon concentration from cement brick, red-clay brick, gravel aggregate and cement showed 396.3 ± 194.3 Bq m-3, 192.1 ± 75.4 Bq m-3, 176.1 ± 85.9 Bq m-3 and 28.4 ± 5.7 Bq m-3, respectively. The radon concentration in tin tailings and building materials were found to be much higher in xenotime and cement brick samples than others. All samples in tin tailings were exceeded the action level for radon gas of 148 Bq m-3 proposed by EPA except monazite 0.15 kg, struverite 0.15 kg and 0.25 kg. Whereas

  12. Radiological risk assessment of environmental radon

    SciTech Connect

    Khalid, Norafatin; Majid, Amran Ab; Yahaya, Redzuwan; Yasir, Muhammad Samudi

    2013-11-27

    Measurements of radon gas ({sup 222}Rn) in the environmental are important to assess indoor air quality and to study the potential risk to human health. Generally known that exposure to radon is considered the second leading cause of lung cancer after smoking. The environmental radon concentration depends on the {sup 226}Ra concentration, indoor atmosphere, cracking on rocks and building materials. This study was carried out to determine the indoor radon concentration from selected samples of tin tailings (amang) and building materials in an airtight sealed homemade radon chamber. The radiological risk assessment for radon gas was also calculated based on the annual exposure dose, effective dose equivalent, radon exhalation rates and fatal cancer risk. The continuous radon monitor Sun Nuclear model 1029 was used to measure the radon concentration emanates from selected samples for 96 hours. Five types of tin tailings collected from Kampar, Perak and four samples of building materials commonly used in Malaysia dwellings or building constructions were analysed for radon concentration. The indoor radon concentration determined in ilmenite, monazite, struverite, xenotime and zircon samples varies from 219.6 ± 76.8 Bq m{sup −3} to 571.1 ± 251.4 Bq m{sup −3}, 101.0 ± 41.0 Bq m{sup −3} to 245.3 ± 100.2 Bq m{sup −3}, 53.1 ± 7.5 Bq m{sup −3} to 181.8 ± 9.7 Bq m{sup −3}, 256.1 ± 59.3 Bq m{sup −3} to 652.2 ± 222.2 Bq m{sup −3} and 164.5 ± 75.9 Bq m{sup −3} to 653.3 ± 240.0 Bq m{sup −3}, respectively. Whereas, in the building materials, the radon concentration from cement brick, red-clay brick, gravel aggregate and cement showed 396.3 ± 194.3 Bq m{sup −3}, 192.1 ± 75.4 Bq m{sup −3}, 176.1 ± 85.9 Bq m{sup −3} and 28.4 ± 5.7 Bq m{sup −3}, respectively. The radon concentration in tin tailings and building materials were found to be much higher in xenotime and cement brick samples than others. All samples in tin tailings were exceeded the

  13. Radon/radon daughter environmental chamber located in the northwest end of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Radon/radon daughter environmental chamber located in the northwest end of building. VIEW LOOKING WEST - Department of Energy, Grand Junction Office, Building No. 32, 2597 B3/4 Road, Grand Junction, Mesa County, CO

  14. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    SciTech Connect

    George, A.C.; Knutson, E.O.; Tu, K.W.; Fisenne, I.M.

    1995-12-01

    The results from the May 1995 Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurement conducted in the EML radon exposure and test facility are presented. Represented were 13 participants that measure radon with open faced and diffusion barrier activated carbon collectors, 10 with nuclear alpha track detectors, 9 with short-term and long-term electret/ionization chambers, and 13 with active and passive commercial electronic continuous monitors. For radon progeny, there were four participants that came in person to take part in the grab sampling methodology for measuring individual radon progeny and the potential alpha energy concentration (PAEC). There were 11 participants with continuous and integrating commercial electronic instruments that are used for measuring the PAEC. The results indicate that all the tested instruments that measure radon fulfill their intended purpose. All instruments and methods used for grab sampling for radon progeny did very well. However, most of the continuous and integrating electronic instruments used for measuring the PAEC or working level appear to underestimate the potential risk from radon progeny when the concentration of particles onto which the radon progeny are attached is <5,000 cm{sup -3}.

  15. Quality assurance for radon exposure chambers at the National Air and Radiation Environmental Laboratory, Montgomery, Alabama

    SciTech Connect

    Semler, M.O.; Sensintaffar, E.L.

    1993-12-31

    The Office of Radiation and Indoor Air, U.S. Environmental Protection Agency (EPA), operates six radon exposure chambers in its two laboratories, the National Air and Radiation Environmental Laboratory (NAREL) in Montgomery, Alabama, and the Las Vegas Facility, Las Vegas, Nevada. These radon exposure chambers are used to calibrate and test portable radon measuring instruments, test commercial suppliers of radon measurement services through the Radon Measurement Proficiency Program, and expose passive measurement devices to known radon concentrations as part of a quality assurance plan for federal and state studies measuring indoor radon concentrations. Both laboratories participate in national and international intercomparisons for the measurement of radon and are presently working with the National Institute of Standards and Technology (NIST) to receive a certificate of traceability for radon measurements. NAREL has developed an estimate of the total error in its calibration of each chamber`s continuous monitors as part of an internal quality assurance program. This paper discusses the continuous monitors and their calibration for the three chambers located in Montgomery, Alabama, as well as the results of the authors intercomparisons and total error analysis.

  16. A Calibration and Quality Assurance Program for Environmental Radon Measurements

    PubMed Central

    Fisenne, Isabel M.; George, Andreas C.; Keller, Helen W.

    1990-01-01

    The ideal facility for assessing the quality of radon measurements at environmental levels consists of: (1) an instrument whose response to radon and its progeny is determined from measurements of a certified or standard 226Ra source, and (2) a calibration room with a known radon concentration. The linkage between these two elements and additional quality control requirements are discussed here for some Environmental Measurements Laboratory radon measurements programs. PMID:28179764

  17. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    SciTech Connect

    Scarpitta, S.C.; Tu, K.W.; Fisenne, I.M.; Cavallo, A.; Perry, P.

    1996-10-01

    Results are presented from the Fifth Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurements conducted in the EML radon exposure and test facility in May 1996. In total, thirty-four government, private and academic facilities participated in the exercise with over 170 passive and electronic devices exposed in the EML test chamber. During the first week of the exercise, passive and continuous measuring devices were exposed (usually in quadruplicate) to about 1,280 Bq m{sup {minus}3} {sup 222}Rn for 1--7 days. Radon progeny measurements were made during the second week of the exercise. The results indicate that all of the tested devices that measure radon gas performed well and fulfill their intended purpose. The grand mean (GM) ratio of the participants` reported values to the EML values, for all four radon device categories, was 0.99 {plus_minus} 0.08. Eighty-five percent of all the radon measuring devices that were exposed in the EML radon test chamber were within {plus_minus}1 standard deviation (SD) of the EML reference values. For the most part, radon progeny measurements were also quite good as compared to the EML values. The GM ratio for the 10 continuous PAEC instruments was 0.90 {plus_minus} 0.12 with 75% of the devices within 1 SD of the EML reference values. Most of the continuous and integrating electronic instruments used for measuring the PAEC underestimated the EML values by about 10--15% probably because the concentration of particles onto which the radon progeny were attached was low (1,200--3,800 particles cm{sup {minus}3}). The equilibrium factor at that particle concentration level was 0.10--0.22.

  18. An Environmentally Controlled Chamber for the Study of Radon Detection

    DTIC Science & Technology

    1991-03-01

    constant coefficients respectively. Concentrations calculated using this equation should be correct to within 2.8 pCi/liter. Radon Concentration (pCi/t...physical volume of the radon chamber is approximately one-half of the effective volume because of the delay in emanations of the radon from the dry...ENVIRONMENTALLY CONTROLLED CHAMBER FOR THE STUDY OF RADON DETECTION THESIS William R. Wharton, Jr, Capt, USAF AFIT/EN/GNE/9 IM-11 I I Approved for public release

  19. Development of a high efficiency personal/environmental radon dosimeter using polycarbonate detectors.

    PubMed

    Taheri, M; Jafarizadeh, M; Baradaran, S; Zainali, Gh

    2006-12-01

    Passive radon dosimeters, based on alpha particle etched track detectors, are widely used for the assessment of radon exposure. These methods are often applied in radon dosimetry for long periods of time. In this research work, we have developed a highly efficient method of personal/environmental radon dosimetry that is based upon the detection of alpha particles from radon daughters, (218)Po and (214)Po, using a polycarbonate detector (PC). The radon daughters are collected on the filter surface by passing a fixed flow of air through it and the PC detector, placed at a specified distance from the filter, is simultaneously exposed to alpha particles. After exposure, the latent tracks on the detector are made to appear by means of an electrochemical etching process; these are proportional to the radon dose. The air flow rate and the detector-filter distance are the major factors that can affect the performance of the dosimeter. The results obtained in our experimental investigations have shown that a distance of 1.5 cm between the detector and the filter, an absorber layer of Al with a thickness of 12 microm and an air flow rate of 4 l min(-1) offer the best design parameters for a high efficiency radon dosimeter. Then, the designed dosimeter was calibrated against different values of radon exposures and the obtained sensitivity was found to be 2.1 (tracks cm(-2)) (kBq h m(-3))(-1). The most important advantages of this method are that it is reliable, fast and convenient when used for radon dose assessment. In this paper, the optimized parameters of the dosimeter structure and its calibration procedure are presented and discussed.

  20. Environmental Challenges: Radon and Carbon Dioxide in School Buildings.

    ERIC Educational Resources Information Center

    Krueger, James

    1991-01-01

    Many school buildings with high radon levels also exhibit high carbon dioxide levels that starve the minds of students for oxygen. Administrators must realize that the world's best educator cannot teach minds made dysfunctional by their environment. This article describes Environmental Protection Agency testing results and offers radon monitoring…

  1. Environmental Challenges: Radon and Carbon Dioxide in School Buildings.

    ERIC Educational Resources Information Center

    Krueger, James

    1991-01-01

    Many school buildings with high radon levels also exhibit high carbon dioxide levels that starve the minds of students for oxygen. Administrators must realize that the world's best educator cannot teach minds made dysfunctional by their environment. This article describes Environmental Protection Agency testing results and offers radon monitoring…

  2. Effectiveness of a passive subslab ventilation system in reducing radon concentrations in a home

    SciTech Connect

    Holford, D.J.; Freeman, H.D.

    1996-10-01

    The effectiveness of a passive subslab ventilation system in reducing radon concentrations in an occupied home was investigated by measuring radon concentrations and pressure differentials during a 1-year period when a passive subslab ventilation system was being cycled on and off. Radon concentrations in the house were 30% lower during periods when the stack was open to the atmosphere. The effect was most pronounced when the home was unoccupied and during the winter and spring months. Furnace use and wind speed were the best predictors of transient changes in basement radon concentrations, whether the stack was open or closed. Pressure differential measurements show that subslab depressurization occurs when the stack is open during the winter and spring months due to bouyancy-driven air flow up the stack, but not during the summer. Numerical simulations of gas flow and radon transport into the house from the surrounding soil were calibrated to observed pressure differentials and radon concentrations. The model predicts that peak radon concentrations caused by furnace use will be reduced by flow out of the stack. However, the model is unable to account for the reduction in average radon concentrations observed while the stack is open in the winter. 19 refs., 16 figs., 1 tab.

  3. Assessment of inhalation and ingestion doses from exposure to radon gas using passive and active detecting techniques

    SciTech Connect

    Ismail, A. H.; Jafaar, M. S.

    2011-07-01

    The aim of this study was to assess an environmental hazard of radon exhalation rate from the samples of soil and drinking water in selected locations in Iraqi Kurdistan, passive (CR-39NTDs) and active (RAD7) detecting techniques has been employed. Long and short term measurements of emitted radon concentrations were estimated for 124 houses. High and lower radon concentration in soil samples was in the cities of Hajyawa and Er. Tyrawa, respectively. Moreover, for drinking water, high and low radon concentration was in the cities of Similan and Kelak, respectively. A comparison between our results with that mentioned in international reports had been done. Average annual dose equivalent to the bronchial epithelium, stomach and whole body in the cities of Kelak and Similan are estimated, and it was varied from 0.04{+-}0.01 mSv to 0.547{+-}0.018 mSv, (2.832{+-}0.22)x10{sup -5} to (11.972{+-}2.09)x10{sup -5} mSv, and (0.056 {+-}0.01) x10{sup -5} to (0.239{+-}0.01)x10{sup -5} mSv, respectively. This indicated that the effects of dissolved radon on the bronchial epithelium are much than on the stomach and whole body. (authors)

  4. Enhancement of exposure to radon progeny as a consequence of passive smoking

    SciTech Connect

    Moghissi, A.A.; Seiler, M.C. )

    1989-01-01

    Among indoor air pollutants, radon and tobacco smoke take dominant positions. Because radon decay products have a relatively short residence time in air, the extent of the equilibrium between radon and its daughter products is linearly proportional to the carcinogenic risk, at least at low exposure levels. The relevant factor is the equilibrium factor F. This paper discusses the enhancement of radon exposure as a result of the presence of particulate matter originating from tobacco smoke. The presence of tobacco smoke provides a mechanism for radon progeny to be attached to inhalable particles and to remain in indoor air for a prolonged time. The results of our study indicate a significant increase in F as a consequence of passive smoking. These modeling efforts are consistent with the experimental data reported previously.

  5. Comparison of active and passive methods for radon exhalation from a high-exposure building material.

    PubMed

    Abbasi, A; Mirekhtiary, F

    2013-12-01

    The radon exhalation rates and radon concentrations in granite stones used in Iran were measured by means of a high-resolution high purity Germanium gamma-spectroscopy system (passive method) and an AlphaGUARD model PQ 2000 (active method). For standard rooms (4.0 × 5.0 m area × 2.8 height) where ground and walls have been covered by granite stones, the radon concentration and the radon exhalation rate by two methods were calculated. The activity concentrations of (226)Ra in the selected granite samples ranged from 3.8 to 94.2 Bq kg(-1). The radon exhalation rate from the calculation of the (226)Ra activity concentration was obtained. The radon exhalation rates were 1.31-7.86 Bq m(-2)h(-1). The direction measurements using an AlphaGUARD were from 218 to 1306 Bq m(-3) with a mean of 625 Bq m(-3). Also, the exhalation rates measured by the passive and active methods were compared and the results of this study were the same, with the active method being 22 % higher than the passive method.

  6. Radon

    EPA Pesticide Factsheets

    Exposure to radon is the second leading cause of lung cancer after smoking. Radon is a colorless, odorless, tasteless and invisible gas produced by the decay of naturally occurring uranium in soil and water.

  7. Radon

    MedlinePlus

    ... Risks . Accessed August 19, 2016. U.S. EPA. Indoor Air Quality. What about Radon and Radioactivity in Granite Countertops ? Accessed August 19, 2016 U.S. EPA. Indoor Air Quality. A Citizen's Guide to Radon . Accessed August 19, ...

  8. Radon

    MedlinePlus

    ... move to air, groundwater, and surface water. Radon-222 has a radioactive half-life of about 4 ... The main isotope of health concern is radon-222 ( 222 Rn). Many scientists believe that the alpha ...

  9. Study of radon dispersion in typical dwelling using CFD modeling combined with passive-active measurements

    NASA Astrophysics Data System (ADS)

    Rabi, R.; Oufni, L.

    2017-10-01

    Inhalation of radon (222Rn) and its decay products are a major source of natural radiation exposure. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. Indoor air conditions and ventilation systems strongly influence the indoor radon concentration. This study focuses on investigating both numerically and experimentally the influence of environmental conditions on the indoor radon concentration and spatial distribution. The numerical results showed that ventilation rate, temperature and humidity have significant impacts on both radon content and distribution. The variations of radon concentration with the ventilation, temperature and relative humidity are discussed. The measurement results show the diurnal variations of the indoor radon concentration are found to exhibit a positive correlation with relative humidity and negatively correlate with the air temperature. The analytic solution is used to validate the numeric results. The comparison amongst analytical, numerical and measurement results shows close agreement.

  10. Radon

    MedlinePlus

    ... comes from the natural breakdown of uranium in soil, rock, and water. Radon is the second leading cause of lung cancer in the United States. There are low levels of radon outdoors. Indoors, there can be high levels. Radon can enter ...

  11. Invited Article: In situ comparison of passive radon-thoron discriminative monitors at subsurface workplaces in Hungary

    SciTech Connect

    Kávási, Norbert; Vigh, Tamás; Németh, Csaba; Ishikawa, Tetsuo; Omori, Yasutaka; Janik, Miroslaw; Yonehara, Hidenori

    2014-02-15

    During a one-year long measurement period, radon and thoron data obtained by two different passive radon-thoron discriminative monitors were compared at subsurface workplaces in Hungary, such as mines (bauxite and manganese ore) and caves (medical and touristic). These workplaces have special environmental conditions, such as, stable and high relative humidity (100%), relatively stable temperature (12°C–21°C), low or high wind speed (max. 2.4 m s{sup −1}) and low or elevated aerosol concentration (130–60 000 particles m{sup −3}). The measured radon and thoron concentrations fluctuated in a wide range among the different workplaces. The respective annual average radon concentrations and their standard deviations (in brackets) measured by the passive radon-thoron discriminative monitor with cellulose filter (CF) and the passive radon-thoron discriminative monitor with sponge filter (SF) were: 350(321) Bq m{sup −3} and 550(497) Bq m{sup −3} in the bauxite mine; 887(604) Bq m{sup −3} and 1258(788) Bq m{sup −3} in the manganese ore mine; 2510(2341) Bq m{sup −3} and 3403(3075) Bq m{sup −3} in the medical cave (Hospital Cave of Tapolca); and 6239(2057) Bq m{sup −3} and 8512(1955) Bq m{sup −3} in the touristic cave (Lake Cave of Tapolca). The respective average thoron concentrations and their standard deviation (in brackets) measured by CF and SF monitors were: 154(210) Bq m{sup −3} and 161(148) Bq m{sup −3} in the bauxite mine; 187(191) Bq m{sup −3} and 117(147) Bq m{sup −3} in the manganese-ore mine; 360(524) Bq m{sup −3} and 371(789) Bq m{sup −3} in the medical cave (Hospital Cave of Tapolca); and 1420(1184) Bq m{sup −3} and 1462(3655) Bq m{sup −3} in the touristic cave (Lake Cave of Tapolca). Under these circumstances, comparison of the radon data for the SF and CF monitors showed the former were consistently 51% higher in the bauxite mine, 38% higher in the manganese ore mine, and 34% higher in the caves

  12. Invited article: in situ comparison of passive radon-thoron discriminative monitors at subsurface workplaces in Hungary.

    PubMed

    Kávási, Norbert; Vigh, Tamás; Németh, Csaba; Ishikawa, Tetsuo; Omori, Yasutaka; Janik, Miroslaw; Yonehara, Hidenori

    2014-02-01

    During a one-year long measurement period, radon and thoron data obtained by two different passive radon-thoron discriminative monitors were compared at subsurface workplaces in Hungary, such as mines (bauxite and manganese ore) and caves (medical and touristic). These workplaces have special environmental conditions, such as, stable and high relative humidity (100%), relatively stable temperature (12°C-21°C), low or high wind speed (max. 2.4 m s(-1)) and low or elevated aerosol concentration (130-60,000 particles m(-3)). The measured radon and thoron concentrations fluctuated in a wide range among the different workplaces. The respective annual average radon concentrations and their standard deviations (in brackets) measured by the passive radon-thoron discriminative monitor with cellulose filter (CF) and the passive radon-thoron discriminative monitor with sponge filter (SF) were: 350(321) Bq m(-3) and 550(497) Bq m(-3) in the bauxite mine; 887(604) Bq m(-3) and 1258(788) Bq m(-3) in the manganese ore mine; 2510(2341) Bq m(-3) and 3403(3075) Bq m(-3) in the medical cave (Hospital Cave of Tapolca); and 6239(2057) Bq m(-3) and 8512(1955) Bq m(-3) in the touristic cave (Lake Cave of Tapolca). The respective average thoron concentrations and their standard deviation (in brackets) measured by CF and SF monitors were: 154(210) Bq m(-3) and 161(148) Bq m(-3) in the bauxite mine; 187(191) Bq m(-3) and 117(147) Bq m(-3) in the manganese-ore mine; 360(524) Bq m(-3) and 371(789) Bq m(-3) in the medical cave (Hospital Cave of Tapolca); and 1420(1184) Bq m(-3) and 1462(3655) Bq m(-3) in the touristic cave (Lake Cave of Tapolca). Under these circumstances, comparison of the radon data for the SF and CF monitors showed the former were consistently 51% higher in the bauxite mine, 38% higher in the manganese ore mine, and 34% higher in the caves. Consequently, correction is required on previously obtained radon data acquired by CF monitors at subsurface workplaces to gain

  13. Invited Article: In situ comparison of passive radon-thoron discriminative monitors at subsurface workplaces in Hungary

    NASA Astrophysics Data System (ADS)

    Kávási, Norbert; Vigh, Tamás; Németh, Csaba; Ishikawa, Tetsuo; Omori, Yasutaka; Janik, Miroslaw; Yonehara, Hidenori

    2014-02-01

    During a one-year long measurement period, radon and thoron data obtained by two different passive radon-thoron discriminative monitors were compared at subsurface workplaces in Hungary, such as mines (bauxite and manganese ore) and caves (medical and touristic). These workplaces have special environmental conditions, such as, stable and high relative humidity (100%), relatively stable temperature (12°C-21°C), low or high wind speed (max. 2.4 m s-1) and low or elevated aerosol concentration (130-60 000 particles m-3). The measured radon and thoron concentrations fluctuated in a wide range among the different workplaces. The respective annual average radon concentrations and their standard deviations (in brackets) measured by the passive radon-thoron discriminative monitor with cellulose filter (CF) and the passive radon-thoron discriminative monitor with sponge filter (SF) were: 350(321) Bq m-3 and 550(497) Bq m-3 in the bauxite mine; 887(604) Bq m-3 and 1258(788) Bq m-3 in the manganese ore mine; 2510(2341) Bq m-3 and 3403(3075) Bq m-3 in the medical cave (Hospital Cave of Tapolca); and 6239(2057) Bq m-3 and 8512(1955) Bq m-3 in the touristic cave (Lake Cave of Tapolca). The respective average thoron concentrations and their standard deviation (in brackets) measured by CF and SF monitors were: 154(210) Bq m-3 and 161(148) Bq m-3 in the bauxite mine; 187(191) Bq m-3 and 117(147) Bq m-3 in the manganese-ore mine; 360(524) Bq m-3 and 371(789) Bq m-3 in the medical cave (Hospital Cave of Tapolca); and 1420(1184) Bq m-3 and 1462(3655) Bq m-3 in the touristic cave (Lake Cave of Tapolca). Under these circumstances, comparison of the radon data for the SF and CF monitors showed the former were consistently 51% higher in the bauxite mine, 38% higher in the manganese ore mine, and 34% higher in the caves. Consequently, correction is required on previously obtained radon data acquired by CF monitors at subsurface workplaces to gain comparable data for SF monitors. In the

  14. Active-passive measurements and CFD based modelling for indoor radon dispersion study.

    PubMed

    Chauhan, Neetika; Chauhan, R P

    2015-06-01

    Computational fluid dynamics (CFD) play a significant role in indoor pollutant dispersion study. Radon is an indoor pollutant which is radioactive and inert gas in nature. The concentration level and spatial distribution of radon may be affected by the dwelling's ventilation conditions. Present work focus at the study of indoor radon gas distribution via measurement and CFD modeling in naturally ventilated living room. The need of the study is the prediction of activity level and to study the effect of natural ventilation on indoor radon. Two measurement techniques (Passive measurement using pin-hole dosimeters and active measurement using continuous radon monitor (SRM)) were used for the validation purpose of CFD results. The CFD simulation results were compared with the measurement results at 15 points, 3 XY planes at different heights along with the volumetric average concentration. The simulation results found to be comparable with the measurement results. The future scope of these CFD codes is to study the effect of varying inflow rate of air on the radon concentration level and dispersion pattern. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Identification of high radon areas with passive methods and geological assessments in some Italian regions

    NASA Astrophysics Data System (ADS)

    Rossetti, Marta; Bartolomei, Paolo; Esposito, Massimo; Marrocchino, Elena; Vaccaro, Carmela

    2010-05-01

    Internationally the indoor radon exposition as health hazard is widely recognized; so in many countries specific laws and regulations and so-called radon - risk maps have been introduced. Few Italian Regions have started surveys for the identification of 'radon prone areas', with independent standards and protocols and this involves a bigger uncertainty on the definition of a national risk map failing guidelines. In the present work a standardized methodology for indoor radon measurements has been set up by U-Series Srl (Bologna), with attention to the development of a passive measurement technique (solid state nuclear track detectors) on large scale. The developed technique has been validated through an inter-laboratory comparison conducted by the German Federal Office for Radiation Protection (BfS) in 2008 and repeated in 2009. An indoor radon monitoring survey has been conducted in all Italian Regions with the developed methodology and 5425 measurements have been elaborated to obtain the annual average radon concentration in regional scale and the relapse of seasonal fluctuations on radon concentrations were verified. For the survey, the detectors were installed in underground rooms in workplaces and the measurements were performed over one solar year. As a consequence of our developed methodology (measurements only in underground rooms), indoor radon concentrations resulted generally higher than the concentrations obtained in the National Survey; we estimated an annual mean radon concentration of 110 Bqm3 compared to 70 Bq/m3 obtained by the National Survey. Only for the Italian Regions with the largest number of sampling (Lombardia, with the case studies of Milano Province and Milano city, Emilia Romagna, Toscana, Puglia) the data obtained were georeferentiated and we elaborated these data using geostatistical technique in order to produce distribution maps of the annual average indoor radon concentration. We have integrated the elaborated maps with the

  16. Environmental radon and cancer correlations in Maine.

    PubMed

    Hess, C T; Weiffenbach, C V; Norton, S A

    1983-08-01

    The distribution of 222Rn has been measured in the sixteen counties of Maine, U.S.A. by liquid scintillation counting of water samples from more than two thousand public and private wells. Three hundred and fifty of these wells have been characterized for geology and hydrology. Airborne radon has been measured in seventy houses with grab samples and in eighteen houses for 5-7 days each with continuously recording diffusion-electrostatic radon detectors. Concentrations of radon in water ranged from 20 to 180,000 pCi/l. Granite areas yielded the highest average levels (mean = 22,100 pCi/l.; n = 136), with considerable intra-granite variation. Metasedimentary rocks yielded levels characteristic of the lithology for metamorphic grades ranging from chlorite to andalusite. Sillimanite and higher-grade rocks yielded higher 222Rn levels, probably due to the intrusion of uranium-bearing pegmatites in these terranes. Airborne 222Rn in homes ranged from 0.05 to 210 pCi/l. At the high end of this range, doses will exceed recommended industrial limits. In some homes only a small fraction of the airborne 222Rn was due to the water supply. Average 222Rn levels in domestic water supplies for each of the 16 counties, calculated by areally averaging rock types and their associated 222Rn levels, were found to be significantly correlated with rates for all cancers combined and rates for lung and reproductive cancers in the counties. Although numerous factors other than cancer induction by indoor daughter exposures may be responsible for the observed correlations, these have not been investigated in detail.

  17. A diffusion chamber for passive separated measurements of radon/thoron concentration in dwellings

    NASA Astrophysics Data System (ADS)

    Torabi Nabil, F.; Hosseini Pooya, S. M.; Shamsaie Zafarghandi, M.; Taheri, M.

    2012-12-01

    In this research, a passive diffusion chamber has been developed for separated measurement of radon and thoron. The chamber consists of two volumes which are separated by a fiber glass filter. Two lexan polycarbonate nuclear track detectors (film) are placed inside of the volumes to detect the alpha particles of radon/thorn and/or their progenies. Another lexan polycarbonate detector covered with an optimized thickness of an attenuator is placed outside of the chamber to measure only 212Po which its concentration can be related to that of long-life thoron progeny, 212Pb. The sensitivities have been measured by 2.06 and 0.053 [tracks cm-2(kBq m-3 day)-1] values for radon and thoron respectively inside of the chamber, and 7960 [tracks cm-2(kBq m-3 day)-1] value for thoron outside of the chamber. So the system can be successfully used for separated measurement of an extended range of radon/thoron concentrations in dwellings.

  18. Electret ion chamber-based passive radon-thoron discriminative monitors.

    PubMed

    Kotrappa, P; Steck, D

    2010-10-01

    Electret ion chambers (EICs), commercially available under brand name E-PERM(®), are widely used for measuring indoor and outdoor (222)Rn concentrations in air. These are designed to respond only to (222)Rn and not to (220)Rn by restricting diffusional entry area. Such radon EIC (R EIC) monitors are modified by increasing the entry area to allow (220)Rn, in addition to (222)Rn. Such modified units are called RT EIC. When a set of R and RT EICs are collocated, it is possible to discriminate and measure both radon and thoron concentrations, using appropriate calibration factors (CFs) and algorithms. The EICs come in different volumes, providing different sensitivities. The thoron CFs for 58-, 210- and 960-ml volume R and RT pairs are, respectively, 2.8-, 18.7- and 89-V drop per (kBq m(-3) d ), respectively. These provide much wider sensitivities and ranges compared to alpha track-based passive radon-thoron discriminative monitors.

  19. Air pollution, environmental tobacco smoke, radon, and lung cancer

    SciTech Connect

    Crawford, W.A.

    1988-11-01

    The health of populations in industrialized societies has been affected for many years by ambient air pollutants presenting a threat of chronic bronchitis and lung cancer. In the 1980s indoor pollutants received much needed investigation to assess their hazards to health. Exposure to environmental tobacco smoke and radon is now the subject of much research and concern. This review attempts to put some perspective on lung cancer that is attributable to lifetime exposure to airborne pollutants. The view is expressed that air pollution control authorities have played and are playing a major role in health improvement.

  20. Layered neural networks based analysis of radon concentration and environmental parameters in earthquake prediction.

    PubMed

    Negarestani, A; Setayeshi, S; Ghannadi-Maragheh, M; Akashe, B

    2002-01-01

    A layered neural network (LNN) has been employed to estimate the radon concentration in soil related to the environmental parameters. This technique can find any functional relationship between the radon concentration and the environmental parameters. Analysis of the data obtained from a site in Thailand indicates that this approach is able to differentiate time variation of radon concentration caused by environmental parameters from those arising by anomaly phenomena in the earth (e.g. earthquake). This method is compared with a linear computational technique based on impulse responses from multivariable time series. It is indicated that the proposed method can give a better estimation of radon variations related to environmental parameters that may have a non-linear effect on the radon concentration in soil, such as rainfall.

  1. Passive environmental temperature control system

    DOEpatents

    Corliss, John M.; Stickford, George H.

    1981-01-01

    Passive environmental heating and cooling systems are described, which utilize heat pipes to transmit heat to or from a thermal reservoir. In a solar heating system, a heat pipe is utilized to carry heat from a solar heat absorber plate that receives sunlight, through a thermal insulation barrier, to a heat storage wall, with the outer end of the pipe which is in contact with the solar absorber being lower than the inner end. The inclining of the heat pipe assures that the portion of working fluid, such as Freon, which is in a liquid phase will fall by gravity to the outer end of the pipe, thereby assuring diode action that prevents the reverse transfer of heat from the reservoir to the outside on cool nights. In a cooling system, the outer end of the pipe which connects to a heat dissipator, is higher than the inner end that is coupled to a cold reservoir, to allow heat transfer only out of the reservoir to the heat dissipator, and not in the reverse direction.

  2. An Environmental Chemistry Experiment: The Determination of Radon Levels in Water.

    ERIC Educational Resources Information Center

    Welch, Lawrence E.; Mossman, Daniel M.

    1994-01-01

    Describes a radiation experiment developed to complement a new environmental chemistry laboratory curriculum. A scintillation counter is used to measure radon in water. The procedure relies on the fact that toluene will preferentially extract radon from water. Sample preparation is complete in less than 90 minutes. Because the level of…

  3. An Environmental Chemistry Experiment: The Determination of Radon Levels in Water.

    ERIC Educational Resources Information Center

    Welch, Lawrence E.; Mossman, Daniel M.

    1994-01-01

    Describes a radiation experiment developed to complement a new environmental chemistry laboratory curriculum. A scintillation counter is used to measure radon in water. The procedure relies on the fact that toluene will preferentially extract radon from water. Sample preparation is complete in less than 90 minutes. Because the level of…

  4. A COMPARATIVE STUDY OF RADIUM CONTENT AND RADON EXHALATION RATE FROM SOIL SAMPLES USING ACTIVE AND PASSIVE TECHNIQUES.

    PubMed

    Yadav, Manjulata; Prasad, Mukesh; Joshi, Veena; Gusain, G S; Ramola, R C

    2016-10-01

    Soil is the most important factor affecting the radon level in the human living environments. It depends not only on uranium and thorium contents but also on the physical and chemical properties of the soil. In this paper, the measurements of radium content and mass exhalation rate of radon from the soil samples collected from Uttarkashi area of Garhwal Himalaya are presented. The correlation between radium content and radon mass exhalation rate from soil has also been obtained. The radium was measured by gamma ray spectrometry, while the mass exhalation rate of radon has been determined by both active and passive methods. The radium activity in the soil of study area was found to vary from 45±7 to 285±29 Bq kg(-1) with an average of 99 Bq kg(-1) The radon mass exhalation rate was found to vary from 0.59 × 10(-5) to 2.2 × 10(-5) Bq kg(-1) h(-1) with an average of 1.4 × 10(-5) Bq kg(-1) h(-1) by passive technique and from 0.8 × 10(-5) to 3.2 × 10(-5) Bq kg(-1) h(-1) with an average of 1.5 × 10(-5) Bq kg(-1) h(-1) by active technique. The results suggest that the measured radium value is positively correlated with the radon mass exhalation rate measured with both the active and passive techniques. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Consumer's Guide to Radon Reduction

    MedlinePlus

    ... provide feedback, or report a problem. Radon Indoor Air Quality Home Page Radon Home Local Radon Zones and State Contact Information Individuals and Families Radon Publications Home Buyers and ... Air Bed Bugs Chemicals and Toxics Climate Change Environmental ...

  6. Dual home screening and tailored environmental feedback to reduce radon and secondhand smoke: an exploratory study.

    PubMed

    Hahn, Ellen J; Rayens, Mary Kay; Kercsmar, Sarah E; Adkins, Sarah M; Wright, Ashton Potter; Robertson, Heather E; Rinker, Gwendolyn

    2014-01-01

    Combined exposure to secondhand smoke (SHS) and radon increases lung cancer risk 10-fold. The authors assessed the feasibility and impact of a brief home screening and environmental feedback intervention to reduce radon and SHS (Freedom from Radon and Smoking in the Home [FRESH]) and measured perceived risk of lung cancer and synergistic risk perception (SHS x radon). Participants (N = 50) received home radon and SHS kits and completed baseline surveys. Test results were shared using an intervention guided by the Teachable Moment Model. Half of the participants completed online surveys two months later. Most (76%) returned the radon test kits; 48% returned SHS kits. Of the returned radon test kits, 26% were >4.0 pCi/L. Of the returned SHS kits, 38% had nicotine > .1 microg/m3. Of those with high radon, more than half had contacted a mitigation specialist or planned contact. Of those with positive air nicotine, 75% had adopted smoke-free homes. A significant increase occurred in perceived risk for lung cancer and synergistic risk perception after FRESH.

  7. Lorenz Curve and Gini coefficient: novel tools for analysing seasonal variation of environmental radon gas.

    PubMed

    Groves-Kirkby, C J; Denman, A R; Phillips, P S

    2009-06-01

    Using a methodology derived from Economics, the Lorenz Curve and Gini Coefficient are introduced as tools for investigating and quantifying seasonal variability in environmental radon gas concentration. While the Lorenz Curve presents a graphical view of the cumulative exposure during the course of the time-frame of interest, typically one year, the Gini Coefficient distils this data still further, to provide a single-parameter measure of temporal clustering. Using the assumption that domestic indoor radon concentrations show annual cyclic behaviour, generally higher in the winter months than in summer, published data on seasonal variability of domestic radon concentration levels, in various areas of the UK, Europe, Asia and North America, are analysed. The results demonstrate significantly different annual variation profiles between domestic radon concentrations in different countries and between regions within a country, highlighting the need for caution in ascribing seasonal correction factors to extended geographical areas. The underlying geography, geology and meteorology of a region have defining influences on the seasonal variability of domestic radon concentration, and some examples of potential associations between the Gini Coefficient and regional geological and geographical characteristics are proposed. Similar differences in annual variation profiles are found for soil-gas radon measured as a function of depth at a common site, and among the activity levels of certain radon progeny species, specifically (214)Bi deposited preferentially in human body-fat by decay of inhaled radon gas. Conclusions on the association between these observed measures of variation and potential underlying defining parameters are presented.

  8. [Radon risk in healthcare facilities: environmental monitoring and effective dose].

    PubMed

    Cammarota, B; Cascone, Maria Teresa; De Paola, L; Schillirò, F; Del Prete, U

    2009-01-01

    Radon, the second cause of lung cancer after smoking (WHO- IARC), is a natural, radioactive gas, which originates from the soil and pollutes indoor air, especially in closed or underground spaces. The purpose of this study was to determine the concentration of radon gas, its effective dose, and the measurement of microclimatic degrees C; U.R. % and air velocity in non-academic intensive care units of public hospitals in the Naples area. The annual average concentrations of radon gas were detected with EIC type ionization electret chambers, type LLT with exposure over four 3-month periods. The concentrations varied for all health facilities between 186 and 1191 Bq/m3. Overall, the effective dose of exposure to radon gas of 3mSv/a recommended by Italian legislation was never exceeded. The concentration of radon gas showed a decreasing trend starting from the areas below ground level to those on higher floors; such concentrations were also influenced by natural and artificial ventilation of the rooms, building materials used for walls, and by the state of maintenance and improvements of the building (insulation of floors and walls). The data obtained confirmed the increased concentration of radionuclides in the yellow tuff of volcanic origin in the Campania Region and the resulting rate of release of radon gas, whereas the reinforced concrete structure (a hospital located on the hillside), which had the lowest values, proved to provide good insulation against penetration and accumulation of radon gas.

  9. Three-Dimensional Passive Seismic Imaging around the SAFOD Site, California, Using the Generalized Radon Transform

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wang, P.; van der Hilst, R.; Thurber, C. H.

    2008-12-01

    The generalized Radon transform (GRT) has been successful in exploration seismology in search for hydrocarbon reservoirs such as gas and oil. Recently, combined with the modern statistical methods, the GRT has been applied to image the structures in the interior of the Earth all the way from the upper mantle to the core-mantle boundary using global passive seismic data excited by large natural earthquakes [Wang et al., JGR, 2006; Ma et al., JGR, 2007; Van der Hilst et al., SCIENCE, 2007]. In this study, we applied a similar approach, i.e., GRT plus statistical models, to characterize the structure near the San Andreas Fault Observatory at Depth (SAFOD) site using ~560 local earthquakes recorded by PASO and HRSN network stations. We calculated travel time tables for each event and station using the Podvin and Lecomte (1991) finite-difference method and an updated version of the P-wave velocity model around the SAFOD site. An across-fault section at the SAFOD site obtained using GRT is similar to that found by steep-dip pre-stack seismic migration using active seismic reflection and refraction data [Bleibinhaus et al., 2007]. This result demonstrates that passive source GRT imaging (with local seismicity) can provide 3D images of similar quality as 2D or 3D active source surveys, but at a fraction of the cost for the 3D case. The steep reflectors to the southwest of the San Andreas fault, some of which continue along the strike of the fault, may indicate multiple intrusive cycles within the granite.

  10. EGFR Somatic Mutations in Lung Tumors: Radon Exposure and Passive-smoking in Former- and Never-smoking U.S. Women

    PubMed Central

    Taga, Masataka; Mechanic, Leah E.; Hagiwara, Nobutoshi; Vähäkangas, Kirsi H.; Bennett, William P.; Alavanja, Michael C. R.; Welsh, Judith A.; Khan, Mohammed A.; Lee, Adam; Diasio, Robert; Edell, Eric; Bungum, Aaron; Jang, Jin Sung; Yang, Ping; Jen, Jin; Harris, Curtis C.

    2012-01-01

    Background Lung cancer patients with mutations in EGFR tyrosine kinase have improved prognosis when treated with EGFR inhibitors. We hypothesized that EGFR mutations may be related to residential radon or passive tobacco smoke. Methods This hypothesis was investigated by analyzing EGFR mutations in seventy lung tumors from a population of never and long-term former female smokers from Missouri with detailed exposure assessments. The relationship with passive-smoking was also examined in never-smoking female lung cancer cases from the Mayo clinic. Results Overall, the frequency of EGFR mutation was 41% [95% Confidence Interval (CI): 32-49%]. Neither radon nor passive-smoking exposure was consistently associated with EGFR mutations in lung tumors. Conclusions The results suggest that EGFR mutations are common in female, never-smoking, lung cancer cases from the U.S, and EGFR mutations are unlikely due to exposure to radon or passive-smoking. PMID:22523180

  11. Residential radon and environmental burden of disease among Non-smokers.

    PubMed

    Noh, Juhwan; Sohn, Jungwoo; Cho, Jaelim; Kang, Dae Ryong; Joo, Sowon; Kim, Changsoo; Shin, Dong Chun

    2016-01-01

    Lung cancer was the second highest absolute cancer incidence globally and the first cause of cancer mortality in 2014. Indoor radon is the second leading risk factor of lung cancer after cigarette smoking among ever smokers and the first among non-smokers. Environmental burden of disease (EBD) attributable to residential radon among non-smokers is critical for identifying threats to population health and planning health policy. To identify and retrieve literatures describing environmental burden of lung cancer attributable to residential radon, we searched databases including Ovid-MEDLINE, -EMBASE from 1980 to 2016. Search terms included patient keywords using 'lung', 'neoplasm', exposure keywords using 'residential', 'radon', and outcomes keywords using 'years of life lost', 'years of life lost due to disability', 'burden'. Searching through literatures identified 261 documents; further 9 documents were identified using manual searching. Two researchers independently assessed 271 abstracts eligible for inclusion at the abstract level. Full text reviews were conducted for selected publications after the first assessment. Ten studies were included in the final evaluation. Global disability-adjusted life years (DALYs)(95 % uncertainty interval) for lung cancer were increased by 35.9 % from 23,850,000(18,835,000-29,845,000) in 1900 to 32,405,000(24,400,000-38,334,000) in 2000. DALYs attributable to residential radon were 2,114,000(273,000-4,660,000) DALYs in 2010. Lung cancer caused 34,732,900(33,042,600 ~ 36,328,100) DALYs in 2013. DALYs attributable to residential radon were 1,979,000(1,331,000-2,768,000) DALYs for in 2013. The number of attributable lung cancer cases was 70-900 and EBD for radon was 1,000-14,000 DALYs in Netherland. The years of life lost were 0.066 years among never-smokers and 0.198 years among ever-smoker population in Canada. In summary, estimated global EBD attributable to residential radon was 1,979,000 DALYs for both sexes in 2013

  12. Portable apparatus for the measurement of environmental radon and thoron

    DOEpatents

    Negro, Vincent C.

    2001-01-01

    The radometer is a portable instrument for the measurement of the concentration of atmospheric radon/thoron in a test area. A constant velocity pump pulls the air from the outside at a constant flow rate. If the air is too moist, some or all of the sample is passed through a desiccant filter prior to encountering an electrostatic filter. The electrostatic filter prevents any charged particles from entering the sampling chamber. Once the sample has entered the chamber, the progeny of the decay of radon/thoron are collected on a detector and measured. The measured data is compiled by a computer and displayed.

  13. Ambient Radon-222 Monitoring in Amargosa Valley, Nevada

    SciTech Connect

    L.H. Karr; J.J. Tappen; D. Shafer; K.J. Gray

    2008-06-05

    As part of a program to characterize and baseline selected environmental parameters in the region around the proposed repository at Yucca Mountain, Nevada, ambient radon-222 monitoring was conducted in the rural community of Amargosa Valley, the community closest to the proposed repository site. Passive integrating radon monitors and a continuous radon monitoring instrument were deployed adjacent to the Community Environmental Monitoring Program (CEMP) (http://www.cemp.dri.edu/index.html) station located in the Amargosa Valley Community Center near the library. The CEMP station provided real-time ambient gamma exposure and meteorological data used to correct the integrated radon measurements as well as verify meteorological data collected by the continuous radon monitoring instrument. Additionally, different types of environmental enclosures that housed the monitors and instrument were used to determine if particular designs influenced the ambient radon measurements.

  14. Relations among soil radon, environmental parameters, volcanic and seismic events at Mt. Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Giammanco, S.; Ferrera, E.; Cannata, A.; Montalto, P.; Neri, M.

    2013-12-01

    From November 2009 to April 2011 soil radon activity was continuously monitored using a Barasol probe located on the upper NE flank of Mt. Etna volcano (Italy), close both to the Piano Provenzana fault and to the NE-Rift. Seismic, volcanological and radon data were analysed together with data on environmental parameters, such as air and soil temperature, barometric pressure, snow and rain fall. In order to find possible correlations among the above parameters, and hence to reveal possible anomalous trends in the radon time-series, we used different statistical methods: i) multivariate linear regression; ii) cross-correlation; iii) coherence analysis through wavelet transform. Multivariate regression indicated a modest influence on soil radon from environmental parameters (R2 = 0.31). When using 100-day time windows, the R2 values showed wide variations in time, reaching their maxima (~0.63-0.66) during summer. Cross-correlation analysis over 100-day moving averages showed that, similar to multivariate linear regression analysis, the summer period was characterised by the best correlation between radon data and environmental parameters. Lastly, the wavelet coherence analysis allowed a multi-resolution coherence analysis of the time series acquired. This approach allowed to study the relations among different signals either in the time or in the frequency domain. It confirmed the results of the previous methods, but also allowed to recognize correlations between radon and environmental parameters at different observation scales (e.g., radon activity changed during strong precipitations, but also during anomalous variations of soil temperature uncorrelated with seasonal fluctuations). Using the above analysis, two periods were recognized when radon variations were significantly correlated with marked soil temperature changes and also with local seismic or volcanic activity. This allowed to produce two different physical models of soil gas transport that explain the

  15. Intercomparison of passive radon-detectors under field conditions in epidemiological studies

    SciTech Connect

    Kreienbrock, L. ); Poffijn, A. ); Tirmarche, M. ); Feider, M. ); Kies, A. ); Darby, S.C. )

    1999-05-01

    The Ardennes and Eifel region is a geologically distinct area covering parts of Germany, Belgium, France, and Luxembourg where enhanced concentrations of radon occur in some houses and other buildings. An international case-control study is being conducted to examine the role of radon in the etiology of lung cancer in this area. The radon detectors used are issued by different laboratories involving a variety of detector types and processes. A series of intercomparisons in houses was therefore conducted under similar conditions of exposure in the field. In most situations the different detectors gave similar results. Nevertheless, in some situations open and closed detectors yielded different results. Therefore, estimates of radon exposure have to be adjusted if results are to be pooled.

  16. The Radon Project: A Study in Environmental Hazard Education.

    ERIC Educational Resources Information Center

    Himes, Lori; And Others

    1996-01-01

    An extension project sold 4,000 radon kits; 46% were returned for testing and 23% of homes were at risk. Interviews with 100 of those at risk found that only 41% believed they had a problem; women and college graduates were more likely than men and high school graduates to believe it. Of those who believed they had a problem, only 63% took any…

  17. The Radon Project: A Study in Environmental Hazard Education.

    ERIC Educational Resources Information Center

    Himes, Lori; And Others

    1996-01-01

    An extension project sold 4,000 radon kits; 46% were returned for testing and 23% of homes were at risk. Interviews with 100 of those at risk found that only 41% believed they had a problem; women and college graduates were more likely than men and high school graduates to believe it. Of those who believed they had a problem, only 63% took any…

  18. Estimating population health risk from low-level environmental radon

    SciTech Connect

    Fisher, D.R.

    1980-01-01

    Although incidence of respiratory cancer is directly related to inhalation of radon and radon daughters, the magnitude of the actual risk is uncertain for members of the general population exposed for long periods to low-level concentrations. Currently, any such estimate of the risk must rely on data obtained through previous studies of underground-miner populations. Several methods of risk analysis have resulted from these studies. Since the breathing atmospheres, smoking patterns, and physiology are different between miners and the general public, overestimates of lung cancer risk to the latter may have resulted. Strong evidence exists to support the theory of synergistic action between alpha radiation and other agents, and therefore a modified relative risk model was developed to predict lung cancer risks to the general public. The model considers latent period, observation period, age dependency, and inherent risks from smoking or geographical location. A test of the model showed excellent agreement with results of the study of Czechoslovakian uranium miners, for which the necessary time factors were available. The risk model was also used to predict lung cancer incidence among residents of homes on reclaimed Florida phosphate lands, and results of this analysis indicate that over the space of many years, the increased incidence of lung cancer due to elevated radon levels may be indisgtinguishable from those due to other causes.

  19. Radon Resources for Home Buyers and Sellers

    MedlinePlus

    ... provide feedback, or report a problem. Radon Indoor Air Quality Home Page Radon Home Local Radon Zones and State Contact Information Individuals and Families Radon Publications Home Buyers and ... Air Bed Bugs Chemicals and Toxics Climate Change Environmental ...

  20. Laboratory measurements on radon exposure effects on local environmental temperature: Implications for satellite TIR measurements

    NASA Astrophysics Data System (ADS)

    Martinelli, Giovanni; Solecki, Andrzej Tomasz; Tchorz-Trzeciakiewicz, Dagmara Eulalia; Piekarz, Magdalena; Karolina Grudzinska, Katarzyna

    Surface latent heat flux (SLHF) is proportional to the heat released by phase changes during solidification, evaporation or melting. Effects of SLHF on the earth's surface could be measured by satellite techniques capable of measuring thermal infrared radiation (TIR). Recent studies have found a possible correlation between SLHF and earthquakes, hence satellite techniques are widely used in research into the possible link between SLHF and earthquakes. Possible fluctuations in SLHF values during seismic periods have been attributed to different causes, such as the expulsion from the ground of greenhouse gases or because of radon. In particular, ionization processes due to radon decay could lead to changes in air temperature. Laboratory experiments have been carried out to highlight the possible role of radon in the thermal environmental conditions of a laboratory-controlled atmospheric volume.

  1. Development of a framework of quality assurance practices for a radon passive dosemeter service.

    PubMed

    D'Alessandro, M; Leonardi, F; Tonnarini, S; Trevisi, R; Veschetti, M

    2010-06-01

    Etched track detectors are widely used for the detection of radon and its decay products. The reliability of radon measurement performed with such devices requires that laboratories producing analytical data are able to provide results of the required quality. The need for uniform results from laboratories at an international level therefore requires the implementation of a quality assurance programme, the harmonization of criteria, sampling procedures, calculations and the reporting of results, agreed on the basis of fundamental principles and international standards. The quality assurance programme described here is the first step on the way to ISO/IEC 17025 certification for the RI-RN (ISPESL) laboratory.

  2. Radon flux measurements on Gardinier and Royster phosphogypsum piles near Tampa and Mulberry, Florida

    SciTech Connect

    Hartley, J.N.; Freeman, H.D.

    1986-01-01

    As part of the planned Environmental Protection Agency (EPA) radon flux monitoring program for the Florida phosphogypsum piles, Pacific Northwest Laboratory (PNL), under contract to the EPA, constructed 50 large-area passive radon collection devices and demonstrated their use at two phosphogypsum piles near Tampa and Mulberry, Florida. The passive devices were also compared to the PNL large-area flow-through system. The main objectives of the field tests were to demonstrate the use of the large-area passive radon collection devices to EPA and PEI personnel and to determine the number of radon flux measurement locations needed to estimate the average radon flux from a phosphogypsum pile. This report presents the results of the field test, provides recommendations for long-term monitoring, and includes a procedure for making the radon flux measurements.

  3. Health effects from radon-222 in drinking water in Algiers.

    PubMed

    Amrani, D; Cherouati, D E

    1999-09-01

    As part of a national programme, 222Rn in public water supply systems, private wells and in natural mineral waters has been measured in some locations of Algiers City. Radon concentration was determined by means of a passive method based on the use of electret ion chambers (EIC). The determination of radon concentration in the water samples consisted of sealing a known volume of water in a jar and measuring the airborne radon using an E-PERM (electret-passive environmental radon monitor) device. The radon concentrations in natural mineral waters were found to be the highest of all other water samples. It is found that the mean radon concentration of water samples was lower than the value of 11000 Bq m(-3) (11 Bq l(-1)) reported by the US Environmental Protection Agency. These investigations enabled a first estimate of the corresponding annual effective dose to the stomach and the lungs. It was observed that the annual effective dose resulting from direct consumption of water is far greater than that due to inhalation of radon emanating from tap water. Moreover, it is also shown that the annual effective dose due to inhalation of radon emanating from tap water and flushing water is negligible compared to the total annual dose for indoor radon in Algiers.

  4. Laboratory measurements on Radon exposure effects on local environmental temperature: implications for satellite TIR measurements

    NASA Astrophysics Data System (ADS)

    Martinelli, Giovanni; Tomasz Solecki, Andrzej; Eulalia Tchorz-Trzeciakiewicz, Dagmara; Karolina Grudzinska, Katarzyna

    2014-05-01

    Surface latent heat flux (SLHF) is proportional to the heat released by phase changes during solidification or evaporation or melting. Effects of SLHF on earth's surface have also been measured by satellite techniques able to measure thermal infrared radiation (TIR). Recent studies found a possible correlation between SLHF and earthquakes thus satellite techniques are widely utilized in researches on the possible link between SLHF and earthquakes. Possible fluctuations on SLHF values during seismic periods have been attributed to different causes like the expulsion from the ground of greenhouse gases or by Radon. In particular ionization processes due to Radon decay could lead to changes in air temperature. Laboratory experiments have been carried out to highlight the possible role of Radon in thermal environmental conditions of a laboratory controlled atmospheric volume. Samples of highly radioactive granite powder containing 600 Bq/kg of Radium that is 20 times higher than the average continental lithosphere content has been stored in a desiccator of 0,005 m3 volume for 30 days to accumulate radon 222Rn in the desiccator air. After radon accumulation the desiccator was placed inside a styrofoam chamber of 1x0.5x0.5 m size and the cover removed. The relative humidity of chamber air was 72% and temperature 24 oC. Experiment was monitored by an infrared camera Flir Therma CAM PM695 operating in the spectrum band 7,5-13 µm with thermal resolution 0,01ºC and a RadStar RS300-I Radon Detector/Monitor with 1 hour time resolution. Air temperature and humidity were monitored by a digital Terdens thermohygrometer. No significant thermal or humidity effects were observed.

  5. Public perceptions of radon risk

    SciTech Connect

    Mainous, A.G. III; Hagen, M.D. )

    1993-03-01

    Since 1984, a significant amount of media attention has focused on health threats from radon gas exposure. Using a probability telephone survey of adults (n = 685), we studied public perceptions of risk from radon exposure versus other environmental health risks. The results indicated that 92% of those individuals who had heard of radon believe radon to be a health risk, although only 4% believe they are currently exposed to high levels of radon gas. Perception of risk from radon was positively related to other perceptions of environmental risks. Younger and less educated individuals were more likely to perceive radon as a health risk. Women were three-and-one-half times as likely as men to perceive risk from radon. However, there was no significant relationship between perceived risk from radon and cigarette smoking. Media attention has apparently led to public awareness of radon hazards, but further attention is needed to improve smokers' awareness of their special risks from radon.

  6. Radon reduction and radon-resistant construction demonstrations in New York State

    SciTech Connect

    Not Available

    1991-02-01

    The United States Environmental Protection Agency (EPA) and the New York Energy Research and Development Authority (NYSERDA) cosponsored a project in New York State to demonstrate radon migration techniques in existing homes with elevated radon concentrations and to test radon-resistant construction techniques in new houses. The first part of the existing home evaluation demonstrated radon migration techniques in homes where the indoor radon concentrations exceeded the EPA guidance of 4 pCi/L. Results demonstrated that sealing all accessible foundation penetrations in the basement was an effective way to reduce the radon concentration, although not below the EPA guideline, and that sealing aids in the effectiveness of an active depressurization system. Basement pressurization also proved to be an effective method. Water aeration systems were effective at mitigating radon from residential water supplied although the system tested was large and noisy. Activated charcoal filters adsorbed the radon and eventually became an unacceptable source of gamma radiation. The second part of the existing home evaluation involved the inspection of homes where radon mitigation systems were installed in 1984 as part of an earlier NYSERDA/Niagara Mohawk Power Corporation (NMPC) project. It was found that new systems and techniques, such as in- line centrifugal fans, were generally superior to the earlier method using axial computer-type fans. Polyurethane caulk was found to be in good condition; butyl caulk, on the other hand, had deteriorated. In the new house task, a radon-resistant system was developed for integration into a house during construction. This system included sealing foundation floors, sealing concrete block foundation walls, and passive sub-slab ventilation. This integrated system reduced the radon concentration in new test houses below that of control houses, but the reduction was not usually sufficient to meet the EPA guideline.

  7. Environmental Assessment for moving the Pacific Northwest Laboratory radon generators from Life Sciences Laboratory II, Richland North Area, to Life Sciences Laboratory I, 300 Area, and their continued use in physical and biological research

    SciTech Connect

    Nelson, I.C.

    1993-09-01

    The Pacific Northwest Laboratory (PNL) radon generators are a core resource of the overall U. S. Department of Energy`s (DOE) Radon Research Program and are administratively controlled within the ``Radon Hazards in Homes`` project. This project primarily focuses on radon exposures of animals and addresses the major biologic effects and factors influencing risks of indoor radon exposures. For example, the ``Mechanisms of Radon Injury`` and ``In vivo/In vitro Radon-Induced Cellular Damage`` projects specifically address the cytogenetic and DNA damage produced by radon exposure as part of a larger effort to understand radon carcinogenesis. Several other ongoing PNL projects, namely: ``Biological Effectiveness of Radon Alpha Particles: A Microbeam Study of Dose Rate Effects,`` ``Laser Measurements of Pb-210,`` ``Radon Transport Modeling in Soils,`` ``Oncogenes in Radiation Carcinogenesis,`` ``Mutation of DNA Targets,`` ``Dosimetry of Radon Progeny,`` and ``Aerosol Technology Development`` also use the radon exposure facilities in the conduct of their work. While most, but not all, studies in the PNL Radon Research Program are funded through DOE`s Office of Health and Environmental Research, PNL also has ongoing collaborative radon studies with investigators worldwide; many of these use the radon exposure facilities. The purpose of the proposed action is to provide for relocation of the radon generators to a DOE-owned facility and to continue to provide a controlled source of radon-222 for continued use in physical and biological research.

  8. Indoor Radon Measurement in Van

    SciTech Connect

    Kam, E.; Osmanlioglu, A. E.; Celebi, N.; Dogan, I.

    2007-04-23

    In this study, indoor radon concentrations obtained from the radon surveys conducted in the Van. Radon monitoring was performed by applying a passive, time-integrating measuring technique. For this purpose, CR-39 nuclear track detectors were installed in dwellings for 2 months. After the monitoring period, detectors were collected. In order to make the alpha tracks visible, chemical etching was applied to the exposed detectors. Nuclear track numbers and the corresponding indoor radon concentrations were determined. Annual effective dose equivalents and the risk probabilities caused by indoor radon inhalation were calculated, and the found results compared with the indoor radon concentrations' data measured in different provinces of Turkey.

  9. Radon-contaminated drinking water from private wells: an environmental health assessment examining a rural Colorado mountain community's exposure.

    PubMed

    Cappello, Michael Anthony; Ferraro, Aimee; Mendelsohn, Aaron B; Prehn, Angela Witt

    2013-11-01

    In the study discussed in this article, 27 private drinking water wells located in a rural Colorado mountain community were sampled for radon contamination and compared against (a) the U.S. Environmental Protection Agency's (U.S. EPA's) proposed maximum contaminant level (MCL), (b) the U.S. EPA proposed alternate maximum contaminate level (AMCL), and (c) the average radon level measured in the local municipal drinking water system. The data from the authors' study found that 100% of the wells within the study population had radon levels in excess of the U.S. EPA MCL, 37% were in excess of the U.S. EPA AMCL, and 100% of wells had radon levels greater than that found in the local municipal drinking water system. Radon contamination in one well was found to be 715 times greater than the U.S. EPA MCL, 54 times greater than the U.S. EPA AMLC, and 36,983 times greater than that found in the local municipal drinking water system. According to the research data and the reviewed literature, the results indicate that this population has a unique and elevated contamination profile and suggest that radon-contaminated drinking water from private wells can present a significant public health concern.

  10. Estimation of the radon concentration in soil related to the environmental parameters by a modified Adaline neural network.

    PubMed

    Negarestani, A; Setayeshi, S; Ghannadi-Maragheh, M; Akashe, B

    2003-02-01

    A new method based on adaptive linear neuron (Adaline) is used to estimate the radon concentration in soil associated with the environmental parameters. Analysis of the data obtained from a site in Thailand indicates that our proposed method is able to differentiate temporal variation of radon concentration related to the environmental parameters from those caused by phenomena in the earth (e.g. earthquake). The result also shows agreement between our method and another method based on impulse responses from multivariable time series (complex mathematical equations).

  11. Field experience with soil gas mapping using Japanese passive radon/thoron discriminative detectors for comparing high and low radiation areas in Serbia (Balkan Region).

    PubMed

    Zunić, Zora S; Janik, Miroslaw; Tokonami, Shinji; Veselinović, Nenad; Yarmoshenko, Ilia V; Zhukovsky, Michael; Ishikawa, Tetsuo; Ramola, Rakesh C; Ciotoli, Giancarlo; Jovanović, Peter; Kozak, Krzysztof; Mazur, Jadwiga; Celiković, Igor; Ujić, Predrag; Onischenko, Aleksandra; Sahoo, Sarat K; Bochicchio, Francesco

    2009-07-01

    Based on results of fieldwork in the Balkan Region of Serbia from 2005 to 2007, soil gas radon and thoron concentrations as well as gamma dose rates were measured. Campaigns were conducted in two different geological regions: Niska Banja, considered a high natural radiation area, and Obrenovac around the TentB Thermal Power Plant (TPP), a low natural radiation area. Radon and thoron gas measurements were made by using two types of Japanese passive radon/thoron detectors, which included GPS data and gamma dose rates. The concentrations of soil radon gas in Niska Banja ranged from 1.8 to 161.1 kBq m(-3), whereas the concentrations for soil thoron gas ranged from 0.9 to 23.5 kBq m(-3). The gamma dose rates varied from 70 to 320 nGy h(-1). In the TentB area, radon concentration was found to range from 0.8 to 24.9 kBq m(-3) and thoron from 0.6 to 1.9 kBq m(-3). The gamma dose rate ranged from 90 to 130 nGy h(-1). In addition, the natural radioactivity of the soil was investigated at the low background area. The radium and thorium contents in collected soil samples ranged from 23 to 58 and 33 to 67 Bq kg(-1), respectively. As a result of correlation analyses between the measured values, the highest correlation coefficient (R > 0.95) was found for thorium in the soil and the thoron gas concentration.

  12. OCCUPATIONAL EXPOSURE TO RADON IN DIFFERENT KINDS OF NON-URANIUM MINES.

    PubMed

    Fan, D; Zhuo, W; Zhang, Y

    2016-09-01

    For more accurate assessments of the occupational exposure to radon for miners, the individual monitoring was conducted by using an improved passive integrating (222)Rn monitor. A total of 120 miners in 3 different kinds of mines were monitored throughout a year. The results showed that the individual exposure to radon significantly varied with types of mines and work. Compared with the exposure to coal miners, the exposure to copper miners was much higher. Furthermore, it was found that the exposure might be overestimated if the environmental (222)Rn monitored by the passive integrating monitors was used for assessment. The results indicate that the individual monitoring of radon is necessary for an accurate assessment of radon exposure to miners, and radon exposure to non-uranium miners should also be assessed from the viewpoint of radiation protection.

  13. Geologic controls on radon

    SciTech Connect

    Gates, A.E.; Gundersen, L.C.S.

    1992-01-01

    This text provides a review of recent research on geological controls of [sup 222]Rn concentrations in soil gas in relation to the problem of high indoor radon concentrations in houses. The importance of the subject matter is highlighted in the preface by the observation that the US Environmental Protection Agency (EPA) estimates that 15,000 to 25,000 deaths result from radon-induced lung cancer each year in the United States. The text contains 8 Chapters: (1) Geology of radon in the United States; (2) Sensitivity of soil radon to geology and the distribution of radon and uranium in the Hylas Zone Area, Virginia; (3) Geologic and environmental implications of high soil-gas radon concentrations in The Great Valley, Jefferson and Berkeley Counties, West Virginia; (4) Soil radon distribution in glaciated areas: an example from the New Jersey Highlands; (5) Radon in the coastal plain of Texas, Alabama, and New Jersey; (6) Effects of weather and soil characteristics on temporal variations in soil-gas radon concentrations; (7) A theoretical model for the flux of radon from rock to ground water; (8) The influence of season, bedrock, overburden, and house construction on airborne levels of radon in Maine homes. The individual chapters are written by different authors in the form of self-contained research papers, each of which is followed by a comprehensive list of references.

  14. Using radon as environmental tracer for the assessment of subsurface Non-Aqueous Phase Liquid (NAPL) contamination - A review

    NASA Astrophysics Data System (ADS)

    Schubert, M.

    2015-05-01

    The radioactive noble gas radon has an ambivalent nature: on the one hand is it of main concern with regard to radiation protection, on the other hand can it be applied as powerful tracer tool in various fields of applied geosciences. Due to its omnipresence in nature, its chemical and physical properties, and its uncomplicated detectability radon fulfils all requirements for being used as environmental tracer. This application is discussed in the paper with focus on the use of radon as tracer for subsurface contamination with Non-Aqueous Phase Liquids (NAPL). After a short introduction in the ambivalence and ubiquitous presence of radon in nature, the theoretical background of its suitability as NAPL tracer is summarized. Finally three potential applications are discussed. Background information and practical examples are given for (i) the investigation of residual NAPL contamination in soils, (ii) the investigation of residual NAPL contamination in aquifers and (iii) the monitoring of the remediation of dissolved NAPL contamination in groundwater. The presented information reveals that radon is an ideal tracer for the assessment of a wide range of subsurface NAPL contamination. Still, its application is not without restrictions. Problems may occur due to mineralogical heterogeneity of the soil or aquifer matrix. Furthermore, local changes in the permeability of the subsurface may be associated with preferential groundwater or soil gas flow paths bypassing isolated sub-domains of an investigated NAPL source zone. Moreover, NAPL aging may result in alterations in the composition of a complex NAPL mixture thus giving rise to significant changes of the radon partition coefficient between NAPL and water or soil gas. However, since radon shows a strong affinity to NAPLs in general, semi-quantitative results will always be possible.

  15. Indoor radon: deadliest pollutant

    SciTech Connect

    Pool, R.

    1988-04-29

    Radon in individual homes may be the greatest source of radiation that people are exposed to during a lifetime. In areas where radon concentrations in homes are high, people may be exposed to more radiation than were the Russian people living in the vicinity of Chernobyl Nuclear Power Plant. Studies indicate that the radon exposure contributes to 5000 to 20,000 deaths per year from lung cancer and that smoking may have a lethal interaction with the radon exposure. One study found an average annual concentration of radon in living spaces of 1.5 picocuries per liter. 7% of U.S. homes were found to have a radon concentration above the 4 picocuries per liter level set by the Environmental Protection Agency, and 1 - 3% of the homes have levels above 8 picocuries. Some ways are described for changing the air pressure in a house so that air is not constantly drawn from the permeable soil where the radon originates.

  16. Lung Cancer Risk from Occupational and Environmental Radon and Role of Smoking in Two Czech Nested Case-Control Studies

    PubMed Central

    Tomasek, Ladislav

    2013-01-01

    The aim of the present study was to evaluate the risk of lung cancer from combined exposure to radon and smoking. Methodologically, it is based on case-control studies nested within two Czech cohort studies of nearly 11,000 miners followed-up for mortality in 1952–2010 and nearly 12,000 inhabitants exposed to high levels of radon in homes, with mortality follow-up in 1960–2010. In addition to recorded radon exposure, these studies use information on smoking collected from the subjects or their relatives. A total of 1,029 and 370 cases with smoking information have been observed in the occupational and environmental (residential) studies, respectively. Three or four control subjects have been individually matched to cases according to sex, year of birth, and age. The combined effect from radon and smoking is analyzed in terms of geometric mixture models of which the additive and multiplicative models are special cases. The resulting models are relatively close to the additive interaction (mixing parameter 0.2 and 0.3 in the occupational and residential studies, respectively). The impact of the resulting model in the residential radon study is illustrated by estimates of lifetime risk in hypothetical populations of smokers and non-smokers. In comparison to the multiplicative risk model, the lifetime risk from the best geometric mixture model is considerably higher, particularly in the non-smoking population. PMID:23470882

  17. The radon indicator

    NASA Astrophysics Data System (ADS)

    Samuelsson, L.

    2005-11-01

    The radon indicator is an efficient instrument for measuring the radon daughter concentrations in a house or dwelling. Physics or environmental science students could build a radon indicator as a student project. Another possibility would be to use a radon indicator in a student investigation of radon levels in different houses. Finally the radon indicator is an excellent device for producing a radioactive source, free of charge, for the study of α-, β- and γ-radiation. The half-life of the activity collected is approximately 40 min. The radon indicator makes use of an electrostatic method by which charged particles are drawn to a small aluminium plate with a high negative voltage (-5 kV), thus creating a strong electric field between the plate and a surrounding copper wire. The radioactivity on the plate is subsequently measured by a GM-counter and the result calculated in Bq m-3. The collecting time is just 5.5 min and therefore the instrument is only suitable for use in a short-time method for indicating the radon concentration. An improved diagram, ground-radon and/or wall-radon in houses, is presented on the basis of the author's measurements recorded with the radon indicator over many years. This diagram is very useful when discussing how to reduce radiation levels in homes.

  18. Exposure to radon and radon progeny in the indoor environment. Final report

    SciTech Connect

    Socolow, R.H.

    1994-10-01

    This report discusses the work done by the Center for Energy and Environmental Studies at Princeton University as part of the radon research program. It involves radon measurements in various buildings, as well as the use of natural ventilation to mitigate radon levels. The report is divided into four chapters: The use of radon entry rate measurements to understand radon concentration in buildings; Use of natural basement ventilation to control radon in single family dwellings; The effect of natural ventilation on radon and radon progeny levels in houses; and Comparison of natural and forced ventilation for radon mitigation in houses.

  19. Environmental factors affecting long-term stabilization of radon suppression covers for uranium mill tailings

    SciTech Connect

    Young, J.K.; Long, L.W.; Reis, J.W.

    1982-04-01

    Pacific Northwest Laboratory is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon suppression cover applied to uranium mill tailings. To help determine design stresses for the tailings piles, environmental parameters are characterized for the five active uranium-producing regions on a site-specific basis. Only conventional uranium mills that are currently operating or that are scheduled to open in the mid 1980s are considered. Available data indicate that flooding has the most potential for disrupting a tailings pile. The arid regions of the Wyoming Basins and the Colorado Plateau are subject to brief storms of high intensity. The Texas Gulf Coast has the highest potential for extreme precipitation from hurricane-related storms. Wind data indicate average wind speeds from 3 to 6 m/sec for the sites, but extremes of 40 m/sec can be expected. Tornado risks range from low to moderate. The Colorado Plateau has the highest seismic potential, with maximum acceleration caused by earthquakes ranging from 0.2 to 0.4 g. Any direct effect from volcanic eruption is negligible, as all mills are located 90 km or more from an igneous or hydrothermal system.

  20. Natural distribution of environmental radon daughters in the different brain areas of an Alzheimer Disease victim

    PubMed Central

    Momčilović, Berislav; Lykken, Glenn I; Cooley, Marvin

    2006-01-01

    Background Radon is a ubiquitous noble gas in the environment and a primary source of harmful radiation exposure for humans; it decays in a cascade of daughters (RAD) by releasing the cell damaging high energy alpha particles. Results We studied natural distribution of RAD 210Po and 210Bi in the different parts of the postmortem brain of 86-year-old woman who had suffered from Alzheimer's disease (AD). A distinct brain map emerged, since RAD distribution was different among the analyzed brain areas. The highest RAD irradiation (mSv·year-1) occurred in the decreasing order of magnitude: amygdale (Amy) >> hippocampus (Hip) > temporal lobe (Tem) ~ frontal lobe (Fro) > occipital lobe (Occ) ~ parietal lobe (Par) > substantia nigra (SN) >> locus ceruleus (LC) ~ nucleus basalis (NB); generally more RAD accumulated in the proteins than lipids of gray and white (gray > white) brain matter. Amy and Hip are particularly vulnerable brain structure targets to significant RAD internal radiation damage in AD (5.98 and 1.82 mSv·year-1, respectively). Next, naturally occurring RAD radiation for Tem and Fro, then Occ and Par, and SN was an order of magnitude higher than that in LC and NB; the later was within RAD we observed previously in the healthy control brains. Conclusion Naturally occurring environmental RAD exposure may dramatically enhance AD deterioration by selectively targeting brain areas of emotions (Amy) and memory (Hip). PMID:16965619

  1. Influence of environmental changes on continuous radon monitors. Results of a Spanish intercomparison exercise.

    PubMed

    Vargas, A; Ortega, X

    2006-01-01

    The first Spanish intercomparison exercise for continuous radon monitors was carried out with the participation of nine monitoring systems from eight laboratories. The exposures were carried out in the radon and thoron chambers at the Institute of Energy Techniques (INTE) of the Technical University of Catalonia (UPC), which is considered to be the Spanish reference chamber. The monitors were exposed to three different temperatures (13, 20 and 30 degrees C), relative humidities (30, 45 and 80%) and radon concentrations (450, 2000 and 9000 Bq m(-3)). Exposures in the thoron chamber were carried out at concentrations of approximately 450 Bq m(-3). The response of the ionisation chambers and scintillation monitors was acceptable. However, the response of monitors based on electrostatic collection was found to be influenced by external climatic conditions. Moreover, all radon monitors were sensitive to thoron concentration, which was especially significant for scintillation monitors.

  2. Comparative study of various techniques for environmental radon, thoron and progeny measurements.

    PubMed

    Ramola, R C; Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Gusain, G S; Mishra, Rosaline; Sahoo, S K; Tokonami, S

    2015-11-01

    Long-term average concentrations of radon, thoron and progeny were measured in normal and high background radiation areas in India using different techniques. Radon, thoron and progeny concentrations were measured using Raduet, Pin-Hole dosimeter, deposition-based CR-39 and deposition-based direct radon/thoron progeny sensor (DRPS/DTPS) detector system. All these techniques were used at a same time inside an individual dwelling. Radon concentration was recorded higher than thoron concentration in Garhwal Homes (NBRA) while thoron concentration was found relatively higher in the houses of Chhatarpur area (HBRA) in Odisha, India. The values measured with the CR-39 detector-based technique were found comparable with the values measured with the LR-115 detector-based technique. The comparisons of results using various techniques and their usefulness in radiation measurements are discussed in detail.

  3. Radon: Counseling patients about risk

    SciTech Connect

    Birrer, R.B. )

    1990-09-01

    Exposure to radon and its decay products has increased as the United States has changed from an outdoor society to a largely indoor society. Radon, which is found primarily in the soil, enters houses and buildings through cracks, holes and pipes in foundation walls and floors. Although radon is suspected of being a significant cause of lung cancer, comparisons with other risk factors cannot yet be made. Radon levels in the home can be measured with commercially available kits. Guidelines for reducing the amount of radon in a home are provided by the U.S. Environmental Protection Agency.18 references.

  4. Experience in using radon and thoron data to solve environmental and water problems.

    PubMed

    Chanyotha, S; Burnett, W C; Taniguchi, M; Kritsananuwat, R; Sriploy, P

    2010-10-01

    This study aims to introduce thoron ((220)Rn), a naturally occurring isotope, as a new groundwater tracer for detecting groundwater seepage into Bangkok canals. Previous studies by the group using radioactive radon ((222)Rn) and conductivity as groundwater tracers suggested that there is shallow groundwater seeping into the man-made canals ('klongs') around Bangkok. Furthermore, the groundwater was shown to be an important pathway of nutrient contamination to the surface waters. Thoron is a member of the natural (232)Th decay chain, has exactly the same chemical properties as radon, but has a much shorter half-life (56 s) than radon (3.84 d). By using its advantage of rapid decay, if one detects thoron in the environment, there must be a source nearby. Thus, thoron is potentially an excellent prospecting tool. In the case of measurements in natural waters, sources of thoron should indicate the point of groundwater discharges more precisely than radon. During the surveys in the canals of Bangkok, thoron was successfully measured and its distribution was more variable than that of radon, suggesting that seepage into the canals is not uniform.

  5. Real-time radon monitoring at Stromboli volcano: influence of environmental parameters on 222Rn degassing

    NASA Astrophysics Data System (ADS)

    Cigolini, C.; Ripepe, M.; Poggi, P.; Laiolo, M.

    2008-12-01

    Two real-time stations for radon monitoring are currently operative at Stromboli volcano. The 222Rn electronic dosimeters are interfaced with an electronic board connected to a radiomodem for wireless data transfer (through a directional antenna) to a receiving station at the volcano observatory (COA). Radon activity data and enviromental parameters (soil temperature and atmospheric pressure) are sampled every 15 minutes and are instantaneously elaborated and transferred via web so that they can be checked in remote. Collected time series show that there is an overall inverse correlation between radon emissions and seasonal temperature variations. Signal processing analysis show that radon emissions in sectors of diffuse degassing are modulated by tidal forces as well. In addition, radon activities recorded at the summit station, located along the summit fracture zone where the gas flux is concentrated, are positively correlated with changes in atmospheric pressure and confirm the occurrence of the 'atmospheric stack effect'. It is not excluded that this process may play an active role in modulating Stromboli explosivity.

  6. Carcinogenic risk coefficients at environmental levels of radon exposures: A microdosimetric approach

    SciTech Connect

    Zaider, M.; Varma, N.

    1996-06-01

    We report a microdosimetric-based evaluation of the effects of domestic exposure to radon. The risk coefficients obtained here are based on the microdosimetry of radon progeny alpha particles, on a function q(y) for in vivo radiogenic neoplasia, and on scaling A-bomb results (epidemiology + microdosimetry) to radon exposure. We do not use miner data, nor do we invoke such notions as quality factors, dose equivalent or equivalent dose. With basal cells as targets our estimated risk coefficients are in good agreement with the miner data, and thus a quality factor of about 20 (as suggested by ICRP 60) is not unreasonable. However, if we take as targets the secretory cells our risk coefficients are twice as large as those reported by BEIR-IV. The main uncertainty in these estimates remains the dosimetric model. 35 refs., 4 figs., 2 tabs.

  7. EPA recommends radon testing in January

    EPA Pesticide Factsheets

    PHILADELPHIA (January 8, 2015) - The U.S. Environmental Protection Agency has designated January as national Radon Action Month, a perfect time for you to protect your family by testing your home for radon.

  8. One year of real-time radon monitoring at Stromboli volcano and the effect of environmental parameters on 222Rn concentrations

    NASA Astrophysics Data System (ADS)

    Cigolini, C.; Laiolo, M.; Coppola, D.; Piscopo, D.; Bertolino, S.

    2009-12-01

    Real-time radon monitoring at Stromboli volcano has been operative within the last two years. In this contribution we will discuss the recent one-year-long time series analyses in the light of environmental parameters. Two sites for real-time monitoring have been identified by means of a network of periodic radon surveys in order to locate the areas of more efficient response to seismic transients and/or volcanic degassing. Two real-time stations are positioned at Stromboli: one at the summit and located along a fracture zone where the gas flux is concentrated, and the second one at a lower altitude in a sector of diffuse degassing. The signals of the two time-series are essentially concordant but radon concentrations are considerably higher at the summit station. Raw data show that there is a negative correlation between radon emissions and seasonal temperature variations, whereas the correlation with atmospheric pressure is negative for the site of diffuse degassing and sligthly positive for the station lacated along the summit fracture zone. These data and the previously collected ones show that SW winds may substantially decrease radon concentrations at the summit station. Multivarite regression statistics on the radon signals in the light of the above enviromental parameters and tidal forces, may contribute to better idenfify the correlation between radon emissions and variations in volcanic activity. Fig. 1. Radon monitoring stations at Stromboli and the two major summit faults. Stars identify sites for real-time monitoring: LSC and PZZ. The diamond is the location of the automated Labronzo Station. Full dots are stations for periodic measurements using alpha track-etches detectors and E-PERM® electrets. Inset with the location of Stromboli and the major structures of the Aeolian arc.

  9. Indoor radon measurements in Turkey dwellings.

    PubMed

    Celebi, N; Ataksor, B; Taskın, H; Bingoldag, N Albayrak

    2015-12-01

    In this work, indoor radon radioactivity concentration levels have been measured in dwellings of Turkey within the frame of the National Radon Monitoring Programme. The (222)Rn concentrations were measured with time-integrating passive nuclear etched track detectors in 7293 dwellings in 153 residential units of 81 provinces, and the radon map of Turkey was prepared. Indoor radon concentrations were distributed in the range of 1-1400 Bq m(-3). The arithmetic mean of the radon gas concentration was found to be 81 Bq m(-3); the geometric mean was 57 Bq m(-3) with a geometric standard deviation of 2.3.

  10. Active-to-Passive Environmental Cleanup Transition Strategies - 13220

    SciTech Connect

    Gaughan, Thomas F.; Aylward, Robert S.; Denham, Miles E.; Looney, Brian B.; Whitaker, Wade C.; Mills, Gary L.

    2013-07-01

    The Savannah River Site uses a graded approach to environmental cleanup. The selection of groundwater and vadose zone remediation technologies for a specific contamination area is based on the size, contaminant type, contaminant concentration, and configuration of the plume. These attributes are the result of the nature and mass of the source of contamination and the subsurface characteristics in the area of the plume. Many large plumes consist of several zones that are most efficiently addressed with separate complementary corrective action/remedial technologies. The highest concentrations of contaminants are found in the source zone. The most robust, high mass removal technologies are often best suited for remediation of the source zone. In the primary plume zone, active remedies, such as pump-and-treat, may be necessary to remove contaminants and exert hydraulic control of the plume. In the dilute fringe zone, contaminants are generally lower in concentration and can often be treated with passive techniques. A key determination in achieving an acceptable and cost-effective end state for a given waste unit is when to transition from an active treatment system to a more passive or natural approach (e.g., monitored natural attenuation or enhanced attenuation). This paper will discuss the considerations for such a transition as well as provide examples of successful transitions at the Savannah River Site. (authors)

  11. A creeping suspicion about radon

    SciTech Connect

    Alderson, L.

    1994-10-01

    Who would expect an odorless, invisible gas that occurs nearly everywhere on earth to cause such trouble Yet radon, the gas emitted by decay of uranium in the earth's crust, is one of America's most significant environmental risks, according to the EPA, which estimates that residential radon levels lead to approximately 13,600 lung cancer deaths each year. A new National Cancer Institute analysis of multiple studies of miners confirms early estimates, putting the number at 15,000. No other risk comes close, not even environmental tobacco smoke, which is estimates to cause some 3,000 deaths each year. Hot debate surrounds the assessment of risk from radon exposure to Americans via indoor air and water supplies. The primary culprit is not radon gas itself, but its decay products, including polonium-214 and polonium-218, which have long half-lives and emit alpha particles - positively charged particles - and lung cancer when inhaled. Radon seeps into homes from the ground or is present in water supplies. Waterborne radon may be inhaled as radon or its progeny during household use - cooking or showering - or it may be ingested. But the EPA estimates that water sources contribute only about 5% of total airborne radon exposure, leaving indoor air as the worst offender. While the EPA estimates that approximately 200 cancer cases per year result from exposure to radon from public groundwater systems, estimates of annual lung cancer deaths from indoor air radon range from 7,000 to 30,000.

  12. ENVIRONMENTAL MONITORING WITH PASSIVE DETECTORS AT CTN IN PORTUGAL.

    PubMed

    Pereira, M F; Pereira, J; Rangel, S; Saraiva, M; Santos, L M; Cardoso, J V; Alves, J G

    2016-09-01

    The aim of this work is to present the methods in use for environmental dose assessment with passive detectors at Campus Tecnológico e Nuclear (CTN) of Instituto Superior Técnico, in Portugal. The methods are based on LiF:Mg,Ti (TLD-100) detectors inserted in Harshaw holders placed at four locations and exchanged on a quarterly basis. An initial group of measurements allowed the estimation of the time interval necessary to attain a stable value, the determination of a fading factor, as well as the calculation method for the assessment of the ambient dose equivalent rate. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Radon and radon daughter measurements in solar buildings.

    PubMed

    George, A C; Knutson, E O; Franklin, H

    1983-08-01

    Measurements of radon and radon daughters in 11 buildings in five states, using active or passive solar heating, showed no significant excess in concentrations over the levels measured in buildings with conventional heating systems. Radon levels in two buildings using rock storage in their active solar systems exceeded the U.S. Nuclear Regulatory Commission's limit of 3 pCi/l. for continuous exposure in uncontrolled areas. In the remainder of the buildings, radon concentrations were found to be at levels considered to be normal. It appears that the slightly elevated indoor radon concentrations result from the local geological formations and from the tightening of the buildings rather than as a result of the solar heating technology.

  14. Is environmental radon gas associated with the incidence of neurodegenerative conditions? A retrospective study of multiple sclerosis in radon affected areas in England and Wales.

    PubMed

    Groves-Kirkby, Christopher J; Denman, Antony R; Campbell, Jackie; Crockett, Robin G M; Phillips, Paul S; Rogers, Stephen

    2016-04-01

    To test whether an association exists between radon gas concentration in the home and increased multiple sclerosis (MS) incidence, a retrospective study was undertaken of MS incidence in known areas of raised domestic radon concentration in England and Wales, using The Health Improvement Network (THIN) clinical research database. The study population comprised 20,140,498 person-years of clinical monitoring (males: 10,056,628: 49.93%; females: 10,083,870: 50.07%), representing a mean annual population of 2.5 million individuals. To allow for the possible latency of MS initiation following exposure, data extraction was limited to patients with at least five years registration history with the same GP practice before first diagnosis. Patient records were allocated to one of nine radon concentration bands depending on the average radon level in their postcode sector. MS incidence was analysed by searching for patients with first MS diagnosis over the eight calendar years 2005-2012 inclusive. 1512 new MS cases were diagnosed, 1070 females, 442 males, equivalent to raw incidence rates of 7.51, 10.61 and 4.40 per 10(5) person-years respectively, comparable to previously reported results. Of these new cases, 115 could be allocated to one of the radon bands representing high radon areas. Standardising to the UK 2010 population, excess relative risk (ERR) figures for MS were calculated for each radon band. Linear regression of ERR against mean band radon concentration shows a positive gradient of 0.22 per 100 Bq·m(-3) (R(2) = 0.25, p = 0.0961) when forced through the origin to represent a linear-no-threshold response. The null hypothesis falls inside the 95% confidence interval for the linear fit and therefore this fit is not statistically significant. We conclude that, despite THIN sampling around 5% of the population, insufficient data was available to confirm or refute the hypothesised association between MS incidence and radon concentration. Copyright © 2015. Published

  15. The health risk of radon

    SciTech Connect

    Conrath, S.M.; Kolb, L.

    1995-10-01

    Although radon is the second leading cause of lung cancer in the United States, second only to cigarette smoking, many members of the public are not aware that radon is one of the most serious environmental cancer risks in the US. Based on extensive data from epidemiological studies of underground miners, radon has been classified as a known human carcinogen. In contrast to most pollutants, the assessment of human risk from radon is based on human occupational exposure data rather than animal data. That radon causes lung cancer has been well established by the scientific community. More is known about radon than most other cancer causing environmental carcinogens. While there are some uncertainties involved when estimating radon risk to the public, it is important to recognize that the risk information is based on human data and that the uncertainties have been addressed in the risk assessment. The US Environmental Protection Agency (EPA) estimates that the number of annual US lung cancer deaths due to residential radon exposures is approximately 14,000 with an uncertainty range of 7,000 to 30,000. The abundant information on radon health risks that supports EPA`s risk assessment indicates that recommendations for public action by the federal government and other public health organizations constitute prudent public policy.

  16. Evaluating Cost when Selecting Performance Reference Compounds for the Environmental Deployment of Polyethylene Passive Samplers

    EPA Science Inventory

    A challenge in environmental passive sampling is determining when equilibrium is achieved between the sampler, target contaminants, and environmental phases. A common approach is the use of performance reference compounds (PRCs) to indicate degree of equilibrium. One logistical...

  17. Evaluating Cost when Selecting Performance Reference Compounds for the Environmental Deployment of Polyethylene Passive Samplers

    EPA Science Inventory

    A challenge in environmental passive sampling is determining when equilibrium is achieved between the sampler, target contaminants, and environmental phases. A common approach is the use of performance reference compounds (PRCs) to indicate degree of equilibrium. One logistical...

  18. The overview of the radon and environmental characteristics measurements in the Czech show caves.

    PubMed

    Thinová, L; Froňka, A; Rovenská, K

    2015-06-01

    This paper focuses on the measurement and assessment of absorbed doses of radiation in caves of the Czech Republic, some of which exhibit high activity concentration of radon in air. Presented is an analysis and recommendations based on measurement results obtained in the underground caves over the past 12 y. The most important results for cave environments were as follows: integral radon monitoring using RAMARN detectors can provide more consistent results for calculating the effective dose; no major differences were shown in the average radon activity concentration during working time as opposed to non-working time; the unattached fraction of radioactive particles in air ranged from 0.03 to 0.6, with arithmetical average fp = 0.13; the direct dependence between equilibrium factor F and the size of the unattached fraction fp was described using the Log-Power expression ln(1/fp) = a*ln(1/F)(b); the calculated values for coefficients a and b were 1.85 and -1.096, respectively. The individual cave factor for each investigated underground area was calculated. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. New Methods of Energy Efficient Radon Mitigation

    SciTech Connect

    Fisk, W.J.; Prill, R.J.; Wooley, J.; Bonnefous, Y.C.; Gadgil, A.J.; Riley, W.J.

    1994-05-01

    Two new radon mitigation techniques are introduced and their evaluation in a field study complemented by numerical model predictions is described. Based on numerical predictions, installation of a sub gravel membrane at the study site resulted in a factor of two reduction in indoor radon concentrations. Experimental data indicated that installation of 'short-circuit' pipes extending between the subslab gravel and outdoors, caused an additional factor of two decrease in the radon concentration. Consequently, the combination of these two passive radon mitigation features, called the membrane and short-circuit (MASC) technique, was associated with a factor of four reduction in indoor radon concentration. The energy-efficient active radon mitigation method, called efficient active subslab pressurization (EASP), required only 20% of the fan energy of conventional active subslab depressurization and reduced the indoor radon concentration by approximately a factor of 15, including the numerically-predicted impact of the sub-gravel membrane.

  20. Measurement of Indoor Radon-222 and Radon-220 Concentrations in Central Japan

    SciTech Connect

    Oka, Mitsuaki; Shimo, Michikuni; Tokonami, Shinji; Sorimachi, Atsuyuki; Takahashi, Hiromichi; Ishikawa, Tetsuo

    2008-08-07

    A passive-type radon/thoron detector was used for measuring indoor radon and thoron concentrations at 90 dwellings in Aichi and Gifu prefectures in central Japan during 90 days from December, 2006 to March, 2007. The radon and thoron concentrations were 21.1 Bq/m3 and 25.1 Bq/m3, respectively. The dose due to radon and thoron in dwellings was roughly evaluated as 0.7 mSv/y and 2.4 mSv/y, respectively. The examination of the geological factor and house condition having an effect on indoor radon concentration was performed.

  1. Indoor radon.

    PubMed

    Polpong, P; Bovornkitti, S

    1998-01-01

    The naturally radioactive but chemically inert gas, radon, is formed from the radioactive decay of radium which is part of the uranium series. Radon gas, which has a half life of 3.8 days, must escape from soil particles through air-filled pores in order to enter the atmosphere following the decay of radium. The concentration of radon in the atmosphere varies, depending on the place, time, height above the ground and meteorological conditions. It is thus an inescapable source of radiation exposure, both at home and at work. The potential hazards posed by exposure to radiation from indoor radon gas and its daughter products are of great concern worldwide. Noting of an excessive lung cancer risk among several groups of underground miners exposed to radon and its daughter products, studies on radon concentrations in the workplace and in dwellings have been conducted in many countries. The results have shown that the distribution of radon concentrations are approximately lognormal from which population weighted; the arithmetic mean of radon concentration of 40 Bq.m-3 has been adopted worldwide for dwellings and workplaces. The principal methods for reducing a high indoor radon concentration are: reducing the radon supply by reversing the pressure difference between the building and the soil; raising the resistance of the foundations to soil gas entry; removing the radon sources such as water or underlying soil; diluting the concentration by increasing the ventilation rate; and reducing the concentration of radon progeny by filtering and increasing the circulation of indoor air. Buildings which have a radon concentration higher than 200 Bq.m-3 should be investigated by the national authorities concerned; meanwhile, householders should be advised to take simple temporary precautions, such as increasing ventilation, until a permanent remedy can be effected.

  2. Association of School District Policies for Radon Testing and Radon-Resistant New Construction Practices with Indoor Radon Zones.

    PubMed

    Foster, Stephanie; Everett Jones, Sherry

    2016-12-13

    Radon is a naturally occurring, colorless, odorless, and tasteless radioactive gas. Without testing, its presence is unknown. Using nationally representative data from the 2012 School Health Policies and Practices Study, we examined whether the prevalence of school district policies for radon testing and for radon-resistant new construction practices varied by district location in relation to the U.S. Environmental Protection Agency Map of Radon Zones. Among school districts located in counties with high predicted average indoor radon, 42.4% had policies for radon testing and 37.5% had policies for radon-resistant new construction practices. These findings suggest a critical need for improved awareness among policy makers regarding potential radon exposure for both students and school staff.

  3. Association of School District Policies for Radon Testing and Radon-Resistant New Construction Practices with Indoor Radon Zones

    PubMed Central

    Foster, Stephanie; Everett Jones, Sherry

    2016-01-01

    Radon is a naturally occurring, colorless, odorless, and tasteless radioactive gas. Without testing, its presence is unknown. Using nationally representative data from the 2012 School Health Policies and Practices Study, we examined whether the prevalence of school district policies for radon testing and for radon-resistant new construction practices varied by district location in relation to the U.S. Environmental Protection Agency Map of Radon Zones. Among school districts located in counties with high predicted average indoor radon, 42.4% had policies for radon testing and 37.5% had policies for radon-resistant new construction practices. These findings suggest a critical need for improved awareness among policy makers regarding potential radon exposure for both students and school staff. PMID:27983613

  4. Radon free storage container and method

    DOEpatents

    Langner, Jr., G. Harold; Rangel, Mark J.

    1991-01-01

    A radon free containment environment for either short or long term storage of radon gas detectors can be provided as active, passive, or combined active and passive embodiments. A passive embodiment includes a resealable vessel containing a basket capable of holding and storing detectors and an activated charcoal adsorbing liner between the basket and the containment vessel wall. An active embodiment includes the resealable vessel of the passive embodiment, and also includes an external activated charcoal filter that circulates the gas inside the vessel through the activated charcoal filter. An embodiment combining the active and passive embodiments is also provided.

  5. Environmental Influence on Passive Films Formed on Alloy 22

    SciTech Connect

    Szmodis, A W; Anderson, K L; Farmer, J C; Lian, T; Orme, C A

    2002-10-07

    The passive corrosion rate of Alloy 22 is exceptionally low in a wide range of aqueous solutions, temperatures and electrochemical potentials, Alloy 22 contains approximately 22% chromium (Cr) by weight; thus, it forms a Cr-rich passive film in most environments. Very little is known about the composition, thickness and other properties of this passive film. The aim of this research was to determine the general characteristics of the oxide film that forms on Alloy 22, as a function of solution pH, temperature and applied electrochemical potential.

  6. The Japanese Radon and Thoron Reference Chambers

    SciTech Connect

    Tokonami, Shinji; Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Takahashi, Hiroyuki; Miyahara, Nobuyuki

    2008-08-07

    Passive detectors used for large-scale and long-term surveys are generally calibrated in a well-controlled environment such as a radon chamber. It has been also pointed out that some of them are sensitive to thoron. Thus it is necessary to check the thoron contribution to the detector response with the proposed or similar test before practical use. The NIRS accommodates radon/aerosol and thoron chambers for quality assurance and quality control of radon measurements. Thus both chambers work so well that they can supply us with the calibration technique and consequently, a good level of knowledge of the radon and thoron issue.

  7. Researching Radon.

    ERIC Educational Resources Information Center

    Lucidi, Louis; Mecca, Peter M.

    2001-01-01

    Introduces a project in which students examined the physics, chemistry, and geology of radon and used available technology to measure radon concentrations in their homes. Uses the inquiry process, analytical skills, communication skills, content knowledge, and production of authentic products for student assessment. (YDS)

  8. Researching Radon.

    ERIC Educational Resources Information Center

    Lucidi, Louis; Mecca, Peter M.

    2001-01-01

    Introduces a project in which students examined the physics, chemistry, and geology of radon and used available technology to measure radon concentrations in their homes. Uses the inquiry process, analytical skills, communication skills, content knowledge, and production of authentic products for student assessment. (YDS)

  9. A Physician's Guide to Radon

    EPA Pesticide Factsheets

    This booklet has been developed for physicians by the U.S. Environmental Protection Agency in consultation with the American Medical Association (AMA). Its purpose is to enlist physicians in the national effort to inform the American public about radon.

  10. Environmental and indoor study of Radon concentration in San Joaquin area, Querétaro, México

    NASA Astrophysics Data System (ADS)

    Kotsarenko, A.; Hernandez Silva, G.; Hinojo Alonso, N. A.; Yutsis, V.; Grimalsky, V.; Koshevaya, S.; Martínez Reyes, J.

    2012-04-01

    Highly contaminated zone with a maximum over 57,000 Bq/m3 was discovered in low-populated area "Agua de Venados" during the 2009-2011 soil Radon survey in San Joaquin, Querétaro state, Mexico. Indoor Radon monitoring accomplished in 2 different époques in a nearby 4 dwellings have shown increased Radon contamination in 1 of the 4 building (up to 300 Bq/m3) during a raining season and a highly elevated indoor level (over 400 Bq/m3) already in 3 buildings during a dry season. Averaged diurnal indoor Radon variations are in a correlation with atmosphere pressure and air humidity and are independent on air temperature. The daily interval 5-10 a.m. was estimated as a maximum risky period in terms of Radon contamination hazard for inhabitants in mentioned zone.

  11. Radon monitoring and hazard prediction in Ireland

    NASA Astrophysics Data System (ADS)

    Elio, Javier; Crowley, Quentin; Scanlon, Ray; Hodgson, Jim; Cooper, Mark; Long, Stephanie

    2016-04-01

    Radon is a naturally occurring radioactive gas which forms as a decay product from uranium. It is the largest source of natural ionizing radiation affecting the global population. When radon is inhaled, its short-lived decay products can interact with lung tissue leading to DNA damage and development of lung cancer. Ireland has among the highest levels of radon in Europe and eighth highest of an OECD survey of 29 countries. Every year some two hundred and fifty cases of lung cancer in Ireland are linked to radon exposure. This new research project will build upon previous efforts of radon monitoring in Ireland to construct a high-resolution radon hazard map. This will be achieved using recently available high-resolution airborne gamma-ray spectrometry (radiometric) and soil geochemistry data (http://www.tellus.ie/), indoor radon concentrations (http://www.epa.ie/radiation), and new direct measurement of soil radon. In this regard, legacy indoor radon concentrations will be correlated with soil U and Th concentrations and other geogenic data. This is a new approach since the vast majority of countries with a national radon monitoring programme rely on indoor radon measurements, or have a spatially limited dataset of soil radon measurements. Careful attention will be given to areas where an indicative high radon hazard based on geogenic factors does not match high indoor radon concentrations. Where such areas exist, it may imply that some parameter(s) in the predictive model does not match that of the environment. These areas will be subjected to measurement of radon soil gas using a combination of time averaged (passive) and time dependant (active) measurements in order to better understand factors affecting production, transport and accumulation of radon in the natural environment. Such mapping of radon-prone areas will ultimately help to inform when prevention and remediation measures are necessary, reducing the radon exposure of the population. Therefore, given

  12. A review on mathematical models for estimating indoor radon concentrations.

    PubMed

    Park, Ji Hyun; Kang, Dae Ryong; Kim, Jinheum

    2016-01-01

    Radiation from natural sources is one of causes of the environmental diseases. Radon is the leading environmental cause of lung cancer next to smoking. To investigate the relationship between indoor radon concentrations and lung cancer, researchers must be able to estimate an individual's cumulative level of indoor radon exposure and to do so, one must first be able to assess indoor radon concentrations. In this article, we outline factors affecting indoor radon concentrations and review related mathematical models based on the mass balance equation and the differential equations. Furthermore, we suggest the necessities of applying time-dependent functions for indoor radon concentrations and developing stochastic models.

  13. Comparison study and thoron interference test of different radon monitors.

    PubMed

    Sumesh, C G; Kumar, A Vinod; Tripathi, R M; Puranik, V D

    2013-03-01

    A comparison study and thoron interference test for different continuous radon monitors were carried out. The comparison study includes three passive diffusion monitors [one pulse ionisation chamber based-Alpha Guard and two silicon semi-conductor based-Radon Scout Plus (RSP)] and one silicon semi-conductor-based active radon thoron discriminating monitor--RAD 7. Radon emanation standard, supplied by National Institute of Science and Technology, has been utilised for the comparison study to qualify the calibration of the continuous radon monitors. All the instruments showed good agreement with the estimated radon concentration using (226)Ra/(222)Rn emanation standard. It was found that the active radon monitoring system is having a higher initial response towards the transient radon concentration than the passive radon monitors studied. The instruments measuring radon concentration without energy discrimination are likely to have some sensitivity towards the thoron concentration. Thus, thoron interference study was carried out in the above monitors. Nine percent interference in measured radon concentration in the Alpha Guard monitor and 4 % interference in the semi-conductor-based RSP monitors was observed. Study indicates that the interference of thoron in radon monitors depends on the area of diffusion of gas, volume of detection and sensitivity factor.

  14. The use of passive environmental TLDs in the operation of the Spanish early warning network 'REVIRA'.

    PubMed

    Sáez-Vergara, J C; Romero, A M; Vila Pena, M; Rodriguez, R; Muñiz, J L

    2002-01-01

    As required by different international agreements, the regulatory body in Spain (Consejo de Seguridad Nuclear) implemented in 1992 a national automatic network (REVIRA) that continuously monitors radiation levels in order to give early warning of incidents having potential transboundary implications. The detector for environmental gamma-radiation dose rate is an active instrument based on a Geiger-Müller counter. However, the use of passive environmental dosemeters provides an additional low-cost dose estimate with an independent centralised calibration and even better basic features than active instruments. Since 1999, all 25 REVIRA stations have been monitored with passive TL environmental dosemeters based on LiF:Mg,Cu,P and operated according to the procedures established at Ciemat. This paper presents the obtained results and the further analysis considering differences in aspects such as photon energy response, inherent background or response to cosmic rays. The benefits of the use of passive environmental dosemeters in early warning networks are discussed.

  15. Radon Measurement in Schools. Revised Edition.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The Environmental Protection Agency (EPA) and other major national and international scientific organizations have concluded that radon is a human carcinogen and a serious environmental health problem. The EPA has conducted extensive research on the presence and measurement of radon in schools. This report provides school administrators and…

  16. Environmentally friendly education: A passive solar, straw-bale school

    SciTech Connect

    Stone, L.; Dickinson, J.

    1999-07-01

    The Waldorf students in the Roaring Fork Valley of western Colorado are learning their reading, writing and arithmetic in the cozy confines of a solar heated, naturally lit, straw-bale school. The Waldorf education system, founded in 1919 by Austrian Rudolph Steiner, stresses what's appropriate for the kids, not what's easiest to teach. In constructing a new school, the Waldorf community wanted a building that would reflect their philosophy. There was a long list of requirements: natural, energy efficient, light, warm, alive, and earthy. Passive solar straw-bale construction brought together all those qualities.

  17. Estimation of the residential radon levels and the annual effective dose in dwellings of Shiraz, Iran, in 2015.

    PubMed

    Yarahmadi, Maryam; Shahsavani, Abbas; Mahmoudian, Mohammad Hassan; Shamsedini, Narges; Rastkari, Noushin; Kermani, Majid

    2016-06-01

    Radon is the second most important cause of lung cancer after smoking. Thus, the determination of indoor radon concentrations in dwellings and workplaces is an important public health concern. The purpose of this research was to measure the concentration of radon gas in residential homes and public places in the city of Shiraz and its relationship with the type and age of the buildings as well as the type of materials used to construct the building (brick, block). We also determined the radon dosages that occupants of the building would receive. The present study is a descriptive-analytical and cross-sectional research that was conducted on the building's indoor air in the city of Shiraz in 2015. Using geographic information system (GIS) software and a spatial sampling cell with an area of 25 square kilometers, 200 points were selected. In this study, we used passive diffusive samplers as Solid State Nuclear Track Detector (SSNTD) CR-39 polycarbonate films for three months in the winter. Sampling was conducted in accordance with the U.S. Environmental Protection Agency's protocol. We determined the concentrations of radon gas at the time of sampling, and calibration factors were determined. The data were analyzed by IBM-SPSS, version 20, descriptive statistics, Kruskal-Wallis, and Mann-Whitney tests. This study showed that the average radon concentration was 57.6 ± 33.06 Bq/m(3) in residential dwellings. The average effective dose was 1.45 mSv/y. The concentration of radon in 5.4% of the houses was found to be greater than 100 Bq/m(3), which is above the level allowed by the World Health Organization (WHO). Since radon is the second leading cause of lung cancer, it seems necessary to increase the public's awareness of this issue and to take action to reduce radon in homes when the concentrations are above the WHO's guideline.

  18. Variable spacial and seasonal hazards of airborne radon

    NASA Astrophysics Data System (ADS)

    Mose, Douglas G.; Mushrush, George W.

    The concentrations of indoor radon in the basements of homes located in northern Virginia average about 1.4 times the first-floor radon concentration. Basement indoor radon concentrations exhibit seasonal variations which can be related to home use patterns of the occupants. Little indoor radon difference was seen between homes that have concrete block basement walls and poured concrete basement walls, but homes that use oil or gas furnaces for heating have a 25% lower indoor radon than homes that use electrical heating systems. Particular geological units seem to be associated with elevated indoor radon concentrations, and several units are associated with indoor radon concentrations that exceed 4 pCi l-1 (the U.S. Environmental Agency "Action Level") in more than 40% of the homes. Comparative studies between indoor radon and total-gamma aeroradioactivity show that aeroradioactivity can be accurately used to estimate community radon hazards.

  19. Carcinogenic risk associated with radon-enriched well water

    SciTech Connect

    Mose, D.G.; Mushrush, G.W.

    1997-08-01

    A comparison has been made between radon in drinking water and the incidence of cancer using a set of home occupants in Virginia and Maryland. In a subset of people who drink radon-free but chlorinated drinking water from a reservoir, about 3% develop some type of cancer. In a subset of people who drink low-radon water from private water wells, about 3% develop cancer. In a subset who drink high-radon well water, about 6% develop cancer. A comparison with Environmental Protection Agency (EPA) estimates of cancer related to airborne radon indicates that for the general population, the incidence of radon-related cancer from drinking water is similar to the incidence of cancer from inhaled radon. For the 10% of the population that consumes well water and, in particular, for the 5% of the population that consumes high-radon well water, the drinking water carries a considerably higher cancer risk than inhaling airborne radon.

  20. Spacecraft Environmental Testing SMAP (Soil, Moisture, Active, Passive)

    NASA Technical Reports Server (NTRS)

    Fields, Keith

    2014-01-01

    Testing a complete full up spacecraft to verify it will survive the environment, in which it will be exposed to during its mission, is a formidable task in itself. However, the ''test like you fly'' philosophy sometimes gets compromised because of cost, design and or time. This paper describes the thermal-vacuum and mass properties testing of the Soil Moisture Active Passive (SMAP) earth orbiting satellite. SMAP will provide global observations of soil moisture and freeze/thaw state (the hydrosphere state). SMAP hydrosphere state measurements will be used to enhance understanding of processes that link the water, energy, and carbon cycles, and to extend the capabilities of weather and climate prediction models. It will explain the problems encountered, and the solutions developed, which minimized the risk typically associated with such an arduous process. Also discussed, the future of testing on expensive long lead-time spacecraft. Will we ever reach the ''build and shoot" scenario with minimal or no verification testing?

  1. Spacecraft Environmental Testing SMAP (Soil, Moisture, Active, Passive)

    NASA Technical Reports Server (NTRS)

    Fields, Keith

    2014-01-01

    Testing a complete full up spacecraft to verify it will survive the environment, in which it will be exposed to during its mission, is a formidable task in itself. However, the ''test like you fly'' philosophy sometimes gets compromised because of cost, design and or time. This paper describes the thermal-vacuum and mass properties testing of the Soil Moisture Active Passive (SMAP) earth orbiting satellite. SMAP will provide global observations of soil moisture and freeze/thaw state (the hydrosphere state). SMAP hydrosphere state measurements will be used to enhance understanding of processes that link the water, energy, and carbon cycles, and to extend the capabilities of weather and climate prediction models. It will explain the problems encountered, and the solutions developed, which minimized the risk typically associated with such an arduous process. Also discussed, the future of testing on expensive long lead-time spacecraft. Will we ever reach the ''build and shoot" scenario with minimal or no verification testing?

  2. Radon detection

    DOEpatents

    MacArthur, D.W.; Allander, K.S.; Bounds, J.A.

    1994-01-25

    A detector for atmospheric radon using a long range alpha detector as its sensing element is described. An electrostatic filter removes ions from ambient air, while allowing radon atoms to pass into a decay cavity. Here, radon atoms are allowed to decay, creating air ions. These air ions are drawn by a fan through a second electrostatic filter which can be activated or deactivated, and into the long range alpha detector. With the second electrostatic filter activated, no air ions are allowed to pass, and the signal output from the long range alpha detector consists of only the electronic background. With the second electrostatic filter deactivated, air ions and cosmic rays will be detected. The cosmic ray contribution can be minimized by shielding. 3 figures.

  3. Radon detection

    DOEpatents

    MacArthur, Duncan W.; Allander, Krag S.; Bounds, John A.

    1994-01-01

    A detector for atmospheric radon using a long range alpha detector as its sensing element. An electrostatic filter removes ions from ambient air, while allowing radon atoms to pass into a decay cavity. Here, radon atoms are allowed to decay, creating air ions. These air ions are drawn by a fan through a second electrostatic filter which can be activated or deactivated, and into the long range alpha detector. With the second electrostatic filter activated, no air ions are allowed to pass, and the signal output from the long range alpha detector consists of only the electronic background. With the second electrostatic filter deactivated, air ions and cosmic rays will be detected. The cosmic ray contribution can be minimized by shielding.

  4. 40 CFR 700.41 - Radon user fees.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Radon user fees. 700.41 Section 700.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT GENERAL Fees § 700.41 Radon user fees. User fees relating to radon proficiency programs authorized under the...

  5. 40 CFR 700.41 - Radon user fees.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Radon user fees. 700.41 Section 700.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT GENERAL Fees § 700.41 Radon user fees. User fees relating to radon proficiency programs authorized under the...

  6. 40 CFR 700.41 - Radon user fees.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Radon user fees. 700.41 Section 700.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT GENERAL Fees § 700.41 Radon user fees. User fees relating to radon proficiency programs authorized under the...

  7. 40 CFR 700.41 - Radon user fees.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Radon user fees. 700.41 Section 700.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT GENERAL Fees § 700.41 Radon user fees. User fees relating to radon proficiency programs authorized under the...

  8. 40 CFR 700.41 - Radon user fees.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Radon user fees. 700.41 Section 700.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT GENERAL Fees § 700.41 Radon user fees. User fees relating to radon proficiency programs authorized under the...

  9. Calibration of the Politrack® system based on CR39 solid-state nuclear track detectors for passive indoor radon concentration measurements.

    PubMed

    Kropat, G; Baechler, S; Bailat, C; Barazza, F; Bochud, F; Damet, J; Meyer, N; Palacios Gruson, M; Butterweck, G

    2015-11-01

    Swiss national requirements for measuring radon gas exposures demand a lower detection limit of 50 kBq h m(-3), representing the Swiss concentration average of 70 Bq m(-3) over a 1-month period. A solid-state nuclear track detector (SSNTD) system (Politrack, Mi.am s.r.l., Italy) has been acquired to fulfil these requirements. This work was aimed at the calibration of the Politrack system with traceability to international standards and the development of a procedure to check the stability of the system. A total of 275 SSNTDs was exposed to 11 different radon exposures in the radon chamber of the Secondary Calibration Laboratory at the Paul Scherrer Institute, Switzerland. The exposures ranged from 50 to 15000 kBq h m(-3). For each exposure of 20 detectors, 5 SSNTDs were used to monitor possible background exposures during transport and storage. The response curve and the calibration factor of the whole system were determined using a Monte Carlo fitting procedure. A device to produce CR39 samples with a reference number of tracks using a (241)Am source was developed for checking the long-term stability of the Politrack system. The characteristic limits for the detection of a possible system drift were determined following ISO Standard 11929. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Radon and its daughters in vivo

    SciTech Connect

    Rundo, J.

    1983-01-01

    Some aspects of the behavior of radon and its short-lived daughters in vivo are described and a relationship between the radon exhalation rate and time after a meal is demonstrated. A major but short-lived postprandial increase in the exhalation rate of radon produced from skeletally-deposited radium was observed and a similar effect in exhalation rate of environmental radon by persons containing no radium was noted. Persons living in houses with elevated concentrations of radon may contain sufficient activity for its detection by external gamma-ray counting. Some of the activity observed is due to inhaled daughter-products in the chest, and some to daughter-products associated with and produced by the decay of radon throughout the body. 3 references, 8 figures. (MF)

  11. Intercomparison of retrospective radon detectors.

    PubMed Central

    Field, R W; Steck, D J; Parkhurst, M A; Mahaffey, J A; Alavanja, M C

    1999-01-01

    We performed both a laboratory and a field intercomparison of two novel glass-based retrospective radon detectors previously used in major radon case-control studies performed in Missouri and Iowa. The new detectors estimate retrospective residential radon exposure from the accumulation of a long-lived radon decay product, (210)Pb, in glass. The detectors use track registration material in direct contact with glass surfaces to measure the alpha-emission of a (210)Pb-decay product, (210)Po. The detector's track density generation rate (tracks per square centimeter per hour) is proportional to the surface alpha-activity. In the absence of other strong sources of alpha-emission in the glass, the implanted surface alpha-activity should be proportional to the accumulated (210)Po, and hence to the cumulative radon gas exposure. The goals of the intercomparison were to a) perform collocated measurements using two different glass-based retrospective radon detectors in a controlled laboratory environment to compare their relative response to implanted polonium in the absence of environmental variation, b) perform collocated measurements using two different retrospective radon progeny detectors in a variety of residential settings to compare their detection of glass-implanted polonium activities, and c) examine the correlation between track density rates and contemporary radon gas concentrations. The laboratory results suggested that the materials and methods used by the studies produced similar track densities in detectors exposed to the same implanted (210)Po activity. The field phase of the intercomparison found excellent agreement between the track density rates for the two types of retrospective detectors. The correlation between the track density rates and direct contemporary radon concentration measurements was relatively high, considering that no adjustments were performed to account for either the residential depositional environment or glass surface type

  12. Radium on soil mineral surfaces: Its mobility under environmental conditions and its role in radon emanation. Final report

    SciTech Connect

    Turekian, K.K.

    1997-08-01

    The ultimate source of {sup 222}Rn to the atmosphere is, of course, {sup 226}Ra. Tracking the mobility of radium therefore is part of the story of radon flux assessment. The study of radium mobility and radon flux measurements has involved virtually all the reservoirs at the Earth`s surface. These include soils, groundwaters, coastal waters and the atmosphere. The attempt to understand the mobility of radium involved the study of almost all the radium isotopes ({sup 226}Ra, {sup 228}Ra, {sup 224}Ra) and the parent and daughters of these isotopes.

  13. Use of a Radon Stripping Algorithm for Retrospective Assessment of Air Filter Samples

    SciTech Connect

    Robert Hayes

    2009-01-23

    An evaluation of a large number of air sample filters was undertaken using a commercial alpha and beta spectroscopy system employing a passive implanted planar silicon (PIPS) detector. Samples were only measured after air flow through the filters had ceased. Use of a commercial radon stripping algorithm was implemented to discriminate anthropogenic alpha and beta activity on the filters from the radon progeny. When uncontaminated air filters were evaluated, the results showed that there was a time-dependent bias in both average estimates and measurement dispersion with the relative bias being small compared to the dispersion. By also measuring environmental air sample filters simultaneously with electroplated alpha and beta sources, use of the radon stripping algorithm demonstrated a number of substantial unexpected deviations. Use of the current algorithm is therefore not recommended for assay applications and so use of the PIPS detector should only be utilized for gross counting without appropriate modifications to the curve fitting algorithm. As a screening method, the radon stripping algorithm might be expected to see elevated alpha and beta activities on air sample filters (not due to radon progeny) around the 200 dpm level.

  14. Removal of Radon from Household Water.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Research and Development.

    By far, the greatest risk to health from radon occurs when the gas enters the house from underlying soil and is inhaled. The U.S. Environmental Protection Agency (EPA) is studying ways to reduce radon in houses, including methods to remove the gas from water to prevent its release in houses when the water is used. While this research has not…

  15. Radon Reduction Methods: A Homeowner's Guide.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The U.S. Environmental Protection Agency (EPA) is studying the effectiveness of various ways to reduce high concentrations of radon in houses. This booklet was produced to share what has been learned with those whose radon problems demand immediate action. The booklet describes nine methods that have been tested successfully--by EPA and/or other…

  16. Radon Measurements in Schools: An Interim Report.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation Programs.

    Radon-222 is a colorless, odorless, tasteless, radioactive gas that occurs naturally in soil, rocks, underground water, and air. The United States Environmental Protection Agency (EPA) and other scientific organizations have identified an increased risk of lung cancer associated with exposure to elevated levels of radon in homes. Schools in many…

  17. Radon 222

    Integrated Risk Information System (IRIS)

    Radon 222 ; CASRN 14859 - 67 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  18. Assessment and management of residential radon health risks: a report from the health Canada radon workshop.

    PubMed

    Tracy, Bliss L; Krewski, Daniel; Chen, Jing; Zielinski, Jan M; Brand, Kevin P; Meyerhof, Dorothy

    2006-04-01

    Epidemiologic studies of uranium miners and other underground miners have consistently shown miners exposed to high levels of radon to be at increased risk of lung cancer. More recently, concern has arisen about lung cancer risks among people exposed to lower levels of radon in homes. The current Canadian guideline for residential radon exposure was set in 1988 at 800 Bq/m(3). Because of the accumulation of a considerable body of new scientific evidence on radon lung cancer risks since that time, Health Canada sponsored a workshop to review the current state-of-the-science on radon health risks. The specific objectives of the workshop were (1) to collect and assess scientific information relevant to setting national radon policy in Canada, and (2) to gather information on social, political, and operational considerations in setting national policy. The workshop, held on 3-4 March 2004, was attended by 38 invited scientists, regulators, and other stakeholders from Canada and the United States. The presentations on the first day dealt primarily with scientific issues. The combined analysis of North American residential radon and lung cancer studies was reviewed. The analysis confirmed a small but detectable increase in lung cancer risk at residential exposure levels. Current estimates suggest that radon in homes is responsible for approximately 10% of all lung cancer deaths in Canada, making radon the second leading cause of lung cancer after tobacco smoking. This was followed by a perspective from an UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) working group on radon. There were two presentations on occupational exposures to radon and two presentations considered the possibility of radon as a causative factor for cardiovascular disease and for cancer in other organs besides the lung. The possible contribution of environmental tobacco smoke to lung cancers in nonsmokers was also considered. Areas for future research were identified

  19. The effects of high ambient radon on thermoluminescence dosimetry readings.

    PubMed

    Harvey, John A; Kearfott, Kimberlee J

    2011-11-01

    The effect of a high level of ambient (222)Rn gas on thermoluminescence dosemeters (TLDs) is examined. Groups of LiF:Mg,Ti and CaF(2):Dy TLDs were exposed to (222)Rn under controlled environmental conditions over ∼7 d using a luminous (226)Ra aircraft dial. LiF:Mg,Ti TLDs were tested bare, and both types were tested mounted in cards used for environmental dosimetry and mounted in cards enclosed in plastic badges. A passive continuous radon monitor was used to measure the (222)Rn level in the small chamber during the experiments. The data were analysed to determine the relationship between the integrated (222)Rn level and the TLD response. Although both LiF:Mg,Ti and CaF(2):Dy TLDs showed a strong response to (222)Rn, the badges prevented measurable radon detection by the TLDs within. The TLDs were not used to directly measure the radon concentration; rather, a correction for its influence was desired.

  20. Managing Radon in Schools

    EPA Pesticide Factsheets

    EPA recommends testing all schools for radon. As part of an effective IAQ management program, schools can take simple steps to test for radon and reduce risks to occupants if high radon levels are found.

  1. Radon: The Invisible Invader.

    ERIC Educational Resources Information Center

    School Leader, 1987

    1987-01-01

    A brief background on indoor radon and the health risks associated with radon exposure, with special emphasis on nonresidential buildings. One school district's experience in radon testing and monitoring is included. (MLF)

  2. Radon Testing in Schools.

    ERIC Educational Resources Information Center

    Wheeler, Robert

    1989-01-01

    Schools may be a significant source of radon exposure for children and staff. Describes radon detection kits and technologies, when to use them, and what action to take given the results of a radon test. (MLF)

  3. Radon: The Invisible Invader.

    ERIC Educational Resources Information Center

    School Leader, 1987

    1987-01-01

    A brief background on indoor radon and the health risks associated with radon exposure, with special emphasis on nonresidential buildings. One school district's experience in radon testing and monitoring is included. (MLF)

  4. Radon Testing in Schools.

    ERIC Educational Resources Information Center

    Wheeler, Robert

    1989-01-01

    Schools may be a significant source of radon exposure for children and staff. Describes radon detection kits and technologies, when to use them, and what action to take given the results of a radon test. (MLF)

  5. Application of the can technique and radon gas analyzer for radon exhalation measurements.

    PubMed

    Fazal-ur-Rehman; Al-Jarallah, M I; Musazay, M S; Abu-Jarad, F

    2003-01-01

    A passive "can technique" and an active radon gas analyzer with an emanation container were applied for radon exhalation rate measurements from different construction materials, viz. five marble seven ceramic and 100 granite tiles used in Saudi Arabia. The marble and ceramic tiles did not show detectable radon exhalation using the active radon gas analyzer system. However the granite tiles showed relatively high radon exhalations, indicating a relatively high uranium content. A comparison of the radon exhalation rates measured by the two techniques showed a linear correlation coefficient of 0.57. The radon exhalation rates from the granites varied from 0.02 to 6.58 Bqm(-2)h(-1) with an average of 1.35+/-1.40 Bqm(-2)h(-1). The geometric mean and the geometric standard deviation of the frequency distribution were found to be 0.80 and 3.1, respectively. The track density found on the nuclear track detectors in the can technique exposed to the granites, having high exhalation rates, varied linearly with exposure time with a linear correlation coefficient of 0.99. This experimental finding agrees with the theoretical prediction. The can technique showed sensitivity to low radon exhalation rates from ceramic, marble and some granite over a period of 2 months, which were not detectable by the active radon gas analyzer system. The reproducibility of data with both measuring techniques was found to be within a 7% deviation.

  6. Radon in homes of the Portland, Oregon Area: Radon data from local radon testing companies collected by CRM (Continuous Radon Measurement) machines

    NASA Astrophysics Data System (ADS)

    Whitney, H.; Lindsey, K.; Linde, T.; Burns, S. F.

    2013-12-01

    Students from the Department of Geology at Portland State University paired up with the Oregon Health Authority to better understand radon gas values in homes of the Portland metropolitan area. This study focuses on radon values collected by continuous radon measurement (CRM) machines, taken by local radon testing companies. The local companies participating in this study include Alpha Environmental Services, Inc., Cascade Radon, Environmental Works, The House Detectives, LLC, and Soil Solutions Environmental Services, Inc. In total, 2491 radon readings spanning across 77 zip codes were collected from local companies in the Portland metropolitan area. The maximum value, average value, percentage of homes greater than 4 pCi/L and total rank sum was calculated and used to determine the overall radon potential for each zip code (Burns et al., 1998). A list and four maps were produced showing the results from each category. Out of the total records, 24 zip codes resulted in high radon potential and the average reading for the entire Portland Metropolitan area was 3.7 pCi/L. High potential zip codes are thought to be a result of sand and gravel (Missoula Flood deposits) and faults present in the subsurface. The CRM data was compared with both long-term and short-term data provided by the Oregon Health Authority to validate radon potentials in each zip code. If a home is located in a zip code with high or moderate radon potential across two types of data sets, it is recommended that those homes be tested for radon gas.

  7. AN OVERVIEW OF INDOOR RADON RISK REDUCTION IN THE UNITED STATES

    EPA Science Inventory

    Radon in the indoor environment is a recognized environmental hazard. The Environmental Protection Agency (EPA) has established several programs to develop, demonstrate, and transfer radon mitigation technology. Administration and management of these programs are shared by EPA's ...

  8. AN OVERVIEW OF INDOOR RADON RISK REDUCTION IN THE UNITED STATES

    EPA Science Inventory

    Radon in the indoor environment is a recognized environmental hazard. The Environmental Protection Agency (EPA) has established several programs to develop, demonstrate, and transfer radon mitigation technology. Administration and management of these programs are shared by EPA's ...

  9. Diffusion of radon through concrete block walls: A significant source of indoor radon

    USGS Publications Warehouse

    Lively, R.S.; Goldberg, L.F.

    1999-01-01

    Basement modules located in southern Minnesota have been the site of continuous radon and environmental measurements during heating seasons since 1993. Concentrations of radon within the basement modules ranged from 70 Bq.m-3 to over 4000 Bq.m-3 between November to April during the three measurement periods. In the soil gas for the same times, concentrations of radon ranged between 25,000 and 70,000 Bq.m-3. Levels of radon within the basement modules changed by factors of five or more within 24 h, in concert with pressure gradients of 4 to 20 Pa that developed between the basement modules and their surroundings. Diffusion is identified as the principal method by which radon is transferred into and out of the basement modules, and appears to be relatively independent of insulating materials and vapour retarders. The variability of radon and correlations with differential pressure gradients may be related to air currents in the block walls and soil that interrupt radon diffusing inward. This yields a net decrease of radon in the basement modules by decay and outward diffusion. Levels of radon within the basement modules increase when the pressure differential is zero and air flow ceases, allowing diffusion gradients to be re-established. Radon levels in both the soil and the basement modules then increase until an equilibrium is achieved.

  10. A Radon Progeny Deposition Model

    SciTech Connect

    Guiseppe, V. E.; Elliott, S. R.; Hime, A.; Rielage, K.; Westerdale, S.

    2011-04-27

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly {sup 222}Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of {sup 210}Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.

  11. A radon progeny deposition model

    SciTech Connect

    Rielage, Keith; Elliott, Steven R; Hime, Andrew; Guiseppe, Vincente E; Westerdale, S.

    2010-12-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly {sup 222}Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of {sup 210}Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.

  12. Radon daughter considerations in a nuclear power plant

    SciTech Connect

    VanderMey, T.J.

    1987-07-01

    A boiling water reactor in the start-up phase experienced a significant number of personnel contamination monitor alarms caused by radon daughter plateout on hard hats, clothing, and shoes. Alarm frequencies were compared to environmental conditions and ventilation system operations to determine the effects of various factors on radon plateout. High normal ventilation, radon daughter concentrations in the plant were found to be similar to outdoor concentrations, and alarm frequencies were inversely related to relative humidity. When ventilation systems were shutdown, indoor radon levels and personnel contamination monitor alarm rates increased significantly. In this paper some suggestions for accounting for radon daughter contamination in monitoring and training programs are presented.

  13. The effects of environmental parameters on diffuse degassing at Stromboli volcano: Insights from joint monitoring of soil CO2 flux and radon activity

    NASA Astrophysics Data System (ADS)

    Laiolo, M.; Ranaldi, M.; Tarchini, L.; Carapezza, M. L.; Coppola, D.; Ricci, T.; Cigolini, C.

    2016-04-01

    Soil CO2 flux and 222Rn activity measurements may positively contribute to the geochemical monitoring of active volcanoes. The influence of several environmental parameters on the gas signals has been substantially demonstrated. Therefore, the implementation of tools capable of removing (or minimising) the contribution of the atmospheric effects from the acquired time series is a challenge in volcano surveillance. Here, we present 4 years-long continuous monitoring (from April 2007 to September 2011) of radon activity and soil CO2 flux collected on the NE flank of Stromboli volcano. Both gases record higher emissions during fall-winter (up to 2700 Bq * m- 3 for radon and 750 g m- 2 day- 1 for CO2) than during spring-summer seasons. Short-time variations on 222Rn activity are modulated by changes in soil humidity (rainfall), and changes in soil CO2 flux that may be ascribed to variations in wind speed and direction. The spectral analyses reveal diurnal and semi-diurnal cycles on both gases, outlining that atmospheric variations are capable to modify the gas release rate from the soil. The long-term soil CO2 flux shows a slow decreasing trend, not visible in 222Rn activity, suggesting a possible difference in the source depth of the of the gases, CO2 being deeper and likely related to degassing at depth of the magma batch involved in the February-April 2007 effusive eruption. To minimise the effect of the environmental parameters on the 222Rn concentrations and soil CO2 fluxes, two different statistical treatments were applied: the Multiple Linear Regression (MLR) and the Principal Component Regression (PCR). These approaches allow to quantify the weight of each environmental factor on the two gas species and show a strong influence of some parameters on the gas transfer processes through soils. The residual values of radon and CO2 flux, i.e. the values obtained after correction for the environmental influence, were then compared with the eruptive episodes that

  14. Radon in earth-sheltered structures

    USGS Publications Warehouse

    Landa, E.R.

    1984-01-01

    Radon concentration in the indoor air of six residential and three non-residential earth-sheltered buildings in eastern Colorado was monitored quarterly over a nine-month period using passive, integrating detectors. Average radon concentrations during the three-month sampling periods ranged from about 1 to 9 pCi/L, although one building, a poorly ventilated storage bunker, had concentrations as high as 39 pCi/L. These radon concentrations are somewhat greater than those typically reported for conventional buildings (around 1 pCi/L); but they are of the same order of magnitude as radon concentrations reported for energy-efficient buildings which are not earth-sheltered. ?? 1984.

  15. Exposure to atmospheric radon.

    PubMed Central

    Steck, D J; Field, R W; Lynch, C F

    1999-01-01

    We measured radon (222Rn) concentrations in Iowa and Minnesota and found that unusually high annual average radon concentrations occur outdoors in portions of central North America. In some areas, outdoor concentrations exceed the national average indoor radon concentration. The general spatial patterns of outdoor radon and indoor radon are similar to the spatial distribution of radon progeny in the soil. Outdoor radon exposure in this region can be a substantial fraction of an individual's total radon exposure and is highly variable across the population. Estimated lifetime effective dose equivalents for the women participants in a radon-related lung cancer study varied by a factor of two at the median dose, 8 mSv, and ranged up to 60 mSv (6 rem). Failure to include these doses can reduce the statistical power of epidemiologic studies that examine the lung cancer risk associated with residential radon exposure. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9924007

  16. Exposure to atmospheric radon.

    PubMed

    Steck, D J; Field, R W; Lynch, C F

    1999-02-01

    We measured radon (222Rn) concentrations in Iowa and Minnesota and found that unusually high annual average radon concentrations occur outdoors in portions of central North America. In some areas, outdoor concentrations exceed the national average indoor radon concentration. The general spatial patterns of outdoor radon and indoor radon are similar to the spatial distribution of radon progeny in the soil. Outdoor radon exposure in this region can be a substantial fraction of an individual's total radon exposure and is highly variable across the population. Estimated lifetime effective dose equivalents for the women participants in a radon-related lung cancer study varied by a factor of two at the median dose, 8 mSv, and ranged up to 60 mSv (6 rem). Failure to include these doses can reduce the statistical power of epidemiologic studies that examine the lung cancer risk associated with residential radon exposure.

  17. Measurement of Radon, Thoron, Isotopic Uranium and Thorium to Determine Occupational and Environmental Exposure and Risk at Fernald Feed Material Production Center

    SciTech Connect

    Harley, Naomi H.

    2002-10-31

    There are three basic research objectives. (1) To develop an accurate personal and area radon/thoron (222Rn/220Rn) detector for accurate measurement of the exposure to low airborne concentrations of these gases during remediation at Fernald. These are to be used to determine atmospheric dispersion and exposure to radon and thoron prior to and during retrieval and removal of the 4000 Ci of radium (226Ra) in the two silos at Fernald . (2) To develop a miniature personal (or area) aerosol particle size sampler that will operate continuously for weeks of continuous sampling under adverse conditions such as outdoors. Aerosol particle size is the major determinant of lung dose and without a measurement of the inhaled aerosol particle size accurate lung dosimetry cannot be obtained. No DOE site, with the exception of Fernald, is measuring the inhaled particle size spectrum for dosimetric purposes. (3) To develop the sequential radiochemistry necessary to measure any environmental sample (soil or water) for 228,230,232Th, 226,228Ra, 234,235,238U and 210Pb. To utilize the radiochemistry to accurately trace and delineate these nuclides in the environment.

  18. Comparative analysis of radon, thoron and thoron progeny concentration measurements.

    PubMed

    Janik, Miroslaw; Tokonami, Shinji; Kranrod, Chutima; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Hosoda, Masahiro; McLaughlin, James; Chang, Byung-Uck; Kim, Yong Jae

    2013-07-01

    This study examined correlations between radon, thoron and thoron progeny concentrations based on surveys conducted in several different countries. For this purpose, passive detectors developed or modified by the National Institute of Radiological Sciences (NIRS) were used. Radon and thoron concentrations were measured using passive discriminative radon-thoron detectors. Thoron progeny measurements were conducted using the NIRS-modified detector, originally developed by Zhuo and Iida. Weak correlations were found between radon and thoron as well as between thoron and thoron progeny. The statistical evaluation showed that attention should be paid to the thoron equilibrium factor for calculation of thoron progeny concentrations based on thoron measurements. In addition, this evaluation indicated that radon, thoron and thoron progeny were independent parameters, so it would be difficult to estimate the concentration of one from those of the others.

  19. Radon: implications for the health professional

    SciTech Connect

    Romano, C.A.

    1990-01-01

    Radon is a colorless, odorless gas formed by radioactive decay of radium and uranium, which are naturally present in the earth's crust. When concentrated indoors, this invisible gas becomes a potential health hazard. The Environmental Protection Agency estimates that up to 20,000 lung cancer deaths annually can be attributed to prolonged radon exposure. Radon is an important health issue that should be understood by all health care professionals. This paper discusses some of the important issues regarding radon, such as the incidences of lung cancer believed to be attributable to radon, the high-risk areas in the United States, federal safety guidelines, and public apathy. These issues and their impact on the health care required by professionals, especially nurse practitioners, are discussed.

  20. Methodology issues in risk assessment for radon.

    PubMed Central

    Harley, N H

    1991-01-01

    The alpha dose per unit radon daughter exposure in mines and homes is comparable at about 5 mGy/WLM. This means that excess lung cancer risk determined in follow-up studies of miners should be valid to extrapolating to environmental populations. There are several models currently used for risk projection to estimate lung cancer in the U.S. from indoor radon exposure. The accuracy of the estimates depends upon the quality of the exposure data and the models. Recent miner epidemiology confirms that excess lung cancer risk decreases with time subsequent to cessation of exposure. The most rigorous ecological study, to date, shows a persistent negative relationship between average measured indoor radon in U.S. counties and lung cancer mortality. A model for lung cancer risk is proposed that includes smoking, urbanization, and radon exposure. The model helps to explain the difficulties in observing the direct effects of indoor radon in the environment. PMID:2050058

  1. STUDY OF RADON FLUX FROM SOIL IN BUDHAKEDAR REGION USING SRM.

    PubMed

    Bourai, A A; Aswal, Sunita; Kandari, Tushar; Kumar, Shiv; Joshi, Veena; Sahoo, B K; Ramola, R C

    2016-10-01

    In the present study, the radon flux rate of the soil is measured using portable radon monitor (scintillation radon monitor) in the Budhakedar region of District Tehri, India. The study area falls along a fault zone named Main Central Thrust, which is relatively rich in radium-bearing minerals. Radon flux rate from the soil is one of the most important factors for the evaluation of environmental radon levels. The earlier studies in the Budhakedar region shows a high level of radon (>4000 Bq m(-3)). Hence, it is important to measure the radon flux rate. The aim of the present study is to calculate the average estimate of the surface radon flux rate as well as the effective mass exhalation rate. A positive correlation of 0.54 was found between radon flux rate and radon mass exhalation rate. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Compilation of geogenic radon potential map of Pest County, Hungary

    NASA Astrophysics Data System (ADS)

    Szabó, K. Zs.; Pásztor, L.; Horváth, Á.; Bakacsi, Zs.; Szabó, J.; Szabó, Cs.

    2010-05-01

    222Rn and its effect on the human health have recently received major importance in environmental studies. This natural radioactive gas accounts for about 9% of lung cancer death and about 2% of all deaths from cancer in Europe due to indoor radon concentrations. It moves into the buildings from the natural decay chain of uranium in soils, rocks and building materials. Radon mapping regionalizes the average hazard from radon in a selected area as a radon risk map. Two major methods (concerning the applied radon data) have been used for mapping. One uses indoor radon data whereas the other is based on soil gas radon data. The outputs of the second approach are the geogenic radon potential maps. The principal objective of our work is to take the first step in geogenic radon mapping in Hungary. Soil samples collected in Pest County (Central Region of Hungary) in the frame of a countrywide soil survey (Soil Information and Monitoring System) were studied to have empirical information of the potential radon risk. As the first two steps radium concentration of soil samples, collected at 43 locations sampling soil profiles by genetic horizons from the surface level down to 60-150 cm, were determined using HPGe gamma-spectroscopy technique, as well as measurement of radon exhalation on the soil samples were carried out applying closed radon accumulation chamber coupled with RAD7 radon monitor detector. From these data the exhalation coefficient was calculated, which shows how many percent of the produced radon can come out from the sample. This rate strongly depends on the depth: at circa 100 cm a drastic decrease have been noticed, which is explained by the change in soil texture. The major source of indoor radon is the soil gas radon concentration (Barnet et al., 2005). We estimated this value from the measured radon exhalation and calculated soil porosity and density. The soil gas radon concentration values were categorized after Kemski et al. (2001) and then the

  3. Measurement of Radon, Thoron, Isotopic Uranium and Thorium to Determine Occupational and Environmental Exposure and Risk at Fernald Feed Material Production Center Publication Date: September 25, 2001

    SciTech Connect

    Harley, Naomi H.

    2001-09-25

    Research Objectives: (1) To develop an accurate personal radon/thoron monitor to quantitate exposure to low airborne concentrations before and during removal and relocation of radium from the silos. (2) To develop a personal aerosol particle size sampler, based on the principles of the novel sampler we have developed. The sampler measures not only 222Rn decay product aerosol size but long lived nuclides. There are, as yet, no particle size distribution data on the aerosol particle size distribution of these nuclides during remediation at any DOE site, although the aerosol particle size is the major determinant of lung dose. (3) To develop the sequential radiochemistry necessary to measure any environmental sample for 228,230,232Th, 226,228Ra, 234,235,238U and 210Pb. To utilize the radiochemistry and accurately trace and delineate these nuclides in the environment. To obtain historic and present radiochemical data to determine the need for supplemental soil/water etc., measurements.

  4. 41 CFR 102-80.20 - What are Federal agencies' responsibilities concerning the abatement of radon?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... agencies' responsibilities concerning the abatement of radon? 102-80.20 Section 102-80.20 Public Contracts... REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Radon § 102-80.20 What are Federal agencies' responsibilities concerning the abatement of radon? Federal...

  5. 41 CFR 102-80.20 - What are Federal agencies' responsibilities concerning the abatement of radon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... agencies' responsibilities concerning the abatement of radon? 102-80.20 Section 102-80.20 Public Contracts... REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Radon § 102-80.20 What are Federal agencies' responsibilities concerning the abatement of radon? Federal...

  6. 41 CFR 102-80.20 - What are Federal agencies' responsibilities concerning the abatement of radon?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... agencies' responsibilities concerning the abatement of radon? 102-80.20 Section 102-80.20 Public Contracts... REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Radon § 102-80.20 What are Federal agencies' responsibilities concerning the abatement of radon? Federal...

  7. 41 CFR 102-80.20 - What are Federal agencies' responsibilities concerning the abatement of radon?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... agencies' responsibilities concerning the abatement of radon? 102-80.20 Section 102-80.20 Public Contracts... REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Radon § 102-80.20 What are Federal agencies' responsibilities concerning the abatement of radon? Federal...

  8. Modeled atmospheric radon concentrations from uranium mines

    SciTech Connect

    Droppo, J.G.

    1985-04-01

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs.

  9. Contamination of individuals by radon daughters: a preliminary study

    SciTech Connect

    Stebbings, J.H.; Dignam, J.J.

    1988-03-01

    Body radon daughter contamination reflects relative individual respiratory exposures to radon daughters; counts can be related both to household radon levels and to lung cancer risk factors such as sex and tobacco smoking. Radon daughters were counted by gamma spectroscopy from 180 adult residents of eastern Pennsylvania. A seven-position, 35-min scan was conducted in a mobile body counter, generally during afternoon or evening hours. Track-etch detectors for household radon were distributed, and were recovered from 80% of the subjects. Over 75% of the population had environmentally enhanced radon daughter contamination. House radon levels were strongly related, as anticipated, to radon daughter contamination in the 112 subjects for whom both sets of measurements were available (p less than .001); basement measurements were as strongly related to personal contamination as were living area measurements; bedroom measurements were slightly more strongly correlated. Both sex (p less than .02) and cigarette smoking (p less than .01) significantly modified the relationships, after nonlinear adjustment for travel times. Using a logarithmic model, a given house living-area radon level was associated in females with body contamination by radon daughters 2-3 times that in males. Nonsmokers had 2-4 times higher levels of contamination than smokers. Results are for the total of internal and external contamination, these being highly correlated in preliminary experiments. Time usage and activity patterns of the subjects are believed to be important in explaining these findings, and may become important variables in radon risk assessment.

  10. Measurement of Radon, Thoron, Isotopic Uranium and Thorium to Determine Occupational and Environmental Exposure and Risk at Fernald Feed Material Production Center

    SciTech Connect

    Naomi H. Harley, Ph.D.

    2004-07-01

    To develop a new and novel area and personal radon/thoron detector for both radon isotopes to better measure the exposure to low airborne concentrations of these gases at Fernald. These measurements are to be used to determine atmospheric dispersion and exposure to radon and thoron prior to and during retrieval and removal of the 4000 Ci of radium in the two silos at Fernald.

  11. Radon entry control in new house construction.

    PubMed

    Najafi, F T; Lalwani, L; Li, W G

    1995-07-01

    People exposed to high concentration levels of radon face an increased risk of developing lung cancer. The risk is directly proportional to the length and level of radon exposure. Because of health reasons, it is safer to build new houses with radon mitigation systems installed in slab-on-grade houses. However, the interrelationships between parameters and factors governing radon entry and control are highly complex. A study performed by the University of Florida has examined the effectiveness of different radon entry control approaches. The analysis was based on 47 houses from three research projects conducted by the University of Florida (14 houses), Florida Solar Energy Center (13 houses), and GEOMET Technologies (20 houses). The evaluation of the performance and effectiveness of improved floor slabs, space conditioning, and ventilating systems were analyzed. Statistical analyses of the interrelationship between various parameters were also performed. Study findings such as the important factors in reducing radon entry and the effectiveness of passive construction approach and active subslab depressurization systems are presented in this paper.

  12. Relationship between environmental tobacco smoke and urinary cotinine levels in passive smokers at their residence.

    PubMed

    Kim, Hyojin; Lim, Youngwook; Lee, Seokju; Park, Soungeun; Kim, Changsoo; Hong, Cheinsoo; Shin, Dongchun

    2004-01-01

    Studies of the health effects of environmental tobacco smoke (ETS) using measured air concentrations are subject to bias. Cotinine, a nicotine metabolite detected in urine, has been recommended as a quantitative measure of nicotine intake and thus as a marker for ETS exposure in humans. The aim of this study was to correlate home indoor ETS levels with passive smokers' urinary cotinine levels. The urinary cotinine concentrations of 57 non-smoking women who spend >19 h a day at home and the nicotine levels in their living room air were measured over a period of 24 h. Nicotine and urinary cotinine levels were analyzed using GC/MS and HPLC/UV, respectively. In addition, information was collected regarding the smoking habits of the subjects' families. A significant correlation was found between the nicotine levels in indoor air and the urinary cotinine to creatinine ratio of the passive smokers. The smoking habits of the subjects' family members were also correlated to the urinary cotinine levels of the passive smokers.

  13. Development of a System to Perform, Record, and Analyze Measurements of Radon Concentrations on a Large Scale.

    DTIC Science & Technology

    1990-10-01

    rate of radon gas through air is much higher than through water. Strong and Levins measured the emanation rate of radon gas from columns of uranium mill...19 passive detectors attempt to average the radon concentrations * over longer periods. Ionization chambers are large metal containers, generally...floor which separates the interior from the crawl space is only wooden planks, and does not provide an airtight seal. Thus radon emanating out of the

  14. What Is Radon?

    MedlinePlus

    ... materials may contribute significantly to radon exposure. Some granite countertops may expose people to different levels of ... experts agree that while a small portion of granite countertops might give off increased levels of radon, ...

  15. Radon in Schools

    MedlinePlus

    ... cannot ignore this problem." Kathryn Whitfill, National PTA President. The EPA ranks indoor radon among the most ... our children demands no less. Keith Geiger, NEA President. Top of Page Radon gas decays into radioactive ...

  16. Radon: A health problem

    SciTech Connect

    Pucci, J.; Gaston, S.

    1990-01-01

    Nurses can and should function as effective teachers about the potential hazards to health of radon contamination in the home as well as become activists in the development of health care policy on radon.

  17. Radon and Cancer

    MedlinePlus

    ... Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid ... does radon cause cancer? How many people develop lung cancer because of exposure to radon? How did scientists ...

  18. Radon Guide for Tenants

    EPA Pesticide Factsheets

    This guide is for people who rent their apartments or houses. The guide explains what radon is, and how to find out if there is a radon problem in your home. The guide also talks about what you can do if there are high radon levels in your home.

  19. The US radon problem, policy, program and industry: achievements, challenges and strategies.

    PubMed

    Angell, W J

    2008-01-01

    US radon research, policy and programs have stalled since their start in the late 1980s and early 1990s. In 2005, more homes had radon above the US Environmental Protection Agency (EPA) Reference Level than anytime in history since more homes were added to the housing stock that had indoor radon concentrations exceeding 150 Bq m(-3) than had been mitigated. Funding for the US radon program has declined two-thirds from 1997 to 2007. Despite impressive goals for radon reduction, EPA lacks sound progress indicators especially in new construction radon control systems. School radon reduction has been at a standstill since the early 1990s. There has been no significant radon risk reduction in low-income sectors of the population. There is need for effective partnerships between the public and private sectors of the US radon professional communities as well as with the international programs and professionals.

  20. Potential Use of Passive Sampling for Environmental Monitoring of Petroleum E&P Operations

    EPA Pesticide Factsheets

    Traditional environmental monitoring relies on water or soil samples being taken at various time increments and sent to offsite laboratories for analysis. Reliance on grab samples generally captures limited “snapshots” of environmental contaminant concentrations, is time intensive, costly, and generates residual waste from excess sample and/or reagents used in the analysis procedures. As an alternative, we are evaluating swellable organosilica sorbents to create passive sampling systems for monitoring applications. Previous work has focused on absorption and detection of fuels, chlorinated solvents, endocrine disruptors, explosives, pesticides, fluorinated chemicals, and metals including Ba, Sr, Hg, Pb, Fe, Cu, and Zn. The advantages of swellable organosilica are that the material cancapture target compounds for an extended periods of time, does not absorb natural organic matter, and resists biofilm formation since the sorbent possesses an animated surface morphology.

  1. Mapping radon-prone areas using γ-radiation dose rate and geological information.

    PubMed

    García-Talavera, M; García-Pérez, A; Rey, C; Ramos, L

    2013-09-01

    Identifying radon-prone areas is key to policies on the control of this environmental carcinogen. In the current paper, we present the methodology followed to delineate radon-prone areas in Spain. It combines information from indoor radon measurements with γ-radiation and geological maps. The advantage of the proposed approach is that it lessens the requirement for a high density of measurements by making use of commonly available information. It can be applied for an initial definition of radon-prone areas in countries committed to introducing a national radon policy or to improving existing radon maps in low population regions.

  2. TESTING OF INDOOR RADON REDUCTION TECHNIQUES IN 19 MARYLAND HOUSES

    EPA Science Inventory

    The report gives results of testing of indoor radon reduction techniques in 19 existing houses in Maryland. The focus was on passive measures: various passive soil depressurization methods, where natural wind and temperature effects are utilized to develop suction in the system; ...

  3. TESTING OF INDOOR RADON REDUCTION TECHNIQUES IN 19 MARYLAND HOUSES

    EPA Science Inventory

    The report gives results of testing of indoor radon reduction techniques in 19 existing houses in Maryland. The focus was on passive measures: various passive soil depressurization methods, where natural wind and temperature effects are utilized to develop suction in the system; ...

  4. One cubic metre NIST traceable radon test chamber.

    PubMed

    Kotrappa, P; Stieff, F

    2008-01-01

    With the availability of the National Institute of Standards and Technology (NIST) Radon Emanation Standard with a content of approximately 5000 Bq of 226Ra, it is possible to build a flow through a practical radon test chamber. A standard glove box with four gloves and a transfer port is used. Air is pumped through a flow integrator, water jar for humidification and NIST source holder, and into the glove box through a manifold. A derived theoretical expression provides the calculated radon concentration inside the chamber. The calculation includes a derived decay correction due to the large volume and low flow rate of the system. Several calibrated continuous radon monitors and passive integrating electret ion chambers tested in the chamber agreed fairly well with the calculated radon concentrations. The chamber is suitable for handling the calibration of several detectors at the same time.

  5. Assessment of PDMS-water partition coefficients: implications for passive environmental sampling of hydrophobic organic compounds

    USGS Publications Warehouse

    DiFilippo, Erica L.; Eganhouse, Robert P.

    2010-01-01

    Solid-phase microextraction (SPME) has shown potential as an in situ passive-sampling technique in aquatic environments. The reliability of this method depends upon accurate determination of the partition coefficient between the fiber coating and water (Kf). For some hydrophobic organic compounds (HOCs), Kf values spanning 4 orders of magnitude have been reported for polydimethylsiloxane (PDMS) and water. However, 24% of the published data examined in this review did not pass the criterion for negligible depletion, resulting in questionable Kf values. The range in reported Kf is reduced to just over 2 orders of magnitude for some polychlorinated biphenyls (PCBs) when these questionable values are removed. Other factors that could account for the range in reported Kf, such as fiber-coating thickness and fiber manufacturer, were evaluated and found to be insignificant. In addition to accurate measurement of Kf, an understanding of the impact of environmental variables, such as temperature and ionic strength, on partitioning is essential for application of laboratory-measured Kf values to field samples. To date, few studies have measured Kf for HOCs at conditions other than at 20 degrees or 25 degrees C in distilled water. The available data indicate measurable variations in Kf at different temperatures and different ionic strengths. Therefore, if the appropriate environmental variables are not taken into account, significant error will be introduced into calculated aqueous concentrations using this passive sampling technique. A multiparameter linear solvation energy relationship (LSER) was developed to estimate log Kf in distilled water at 25 degrees C based on published physicochemical parameters. This method provided a good correlation (R2 = 0.94) between measured and predicted log Kf values for several compound classes. Thus, an LSER approach may offer a reliable means of predicting log Kf for HOCs whose experimental log Kf values are presently unavailable. Future

  6. Assessment of PDMS-water partition coefficients: implications for passive environmental sampling of hydrophobic organic compounds.

    PubMed

    DiFilippo, Erica L; Eganhouse, Robert P

    2010-09-15

    Solid-phase microextraction (SPME) has shown potential as an in situ passive-sampling technique in aquatic environments. The reliability of this method depends upon accurate determination of the partition coefficient between the fiber coating and water (K(f)). For some hydrophobic organic compounds (HOCs), K(f) values spanning 4 orders of magnitude have been reported for polydimethylsiloxane (PDMS) and water. However, 24% of the published data examined in this review did not pass the criterion for negligible depletion, resulting in questionable K(f) values. The range in reported K(f) is reduced to just over 2 orders of magnitude for some polychlorinated biphenyls (PCBs) when these questionable values are removed. Other factors that could account for the range in reported K(f), such as fiber-coating thickness and fiber manufacturer, were evaluated and found to be insignificant. In addition to accurate measurement of K(f), an understanding of the impact of environmental variables, such as temperature and ionic strength, on partitioning is essential for application of laboratory-measured K(f) values to field samples. To date, few studies have measured K(f) for HOCs at conditions other than at 20° or 25 °C in distilled water. The available data indicate measurable variations in K(f) at different temperatures and different ionic strengths. Therefore, if the appropriate environmental variables are not taken into account, significant error will be introduced into calculated aqueous concentrations using this passive sampling technique. A multiparameter linear solvation energy relationship (LSER) was developed to estimate log K(f) in distilled water at 25 °C based on published physicochemical parameters. This method provided a good correlation (R(2) = 0.94) between measured and predicted log K(f) values for several compound classes. Thus, an LSER approach may offer a reliable means of predicting log K(f) for HOCs whose experimental log K(f) values are presently

  7. Radon: Detection and treatment

    SciTech Connect

    Loken, S.; Loken, T. )

    1989-11-01

    Within the last few years, natural radon exposure in non-industrial settings, primarily homes, has become a health concern. Research has demonstrated that many homes throughout the United States have radon concentrations much higher than the legal federal limits set for miners. Thousands of unsuspecting people are being exposed to high levels of radiation. It is estimated that up to 15 percent of lung cancers are caused from radon. This is a significant health risk. With basic knowledge of the current information on radon, a primary health care provider can address patients' radon concerns and make appropriate referrals.

  8. Radon is out

    SciTech Connect

    Harley, J.H.

    1992-12-31

    This paper discusses some facets of outdoor radon. There is only one source of radon - the decay of radium. Radium is everywhere but the bulk is in soil, rock, and ocean sediments. Soil porosity is a prime factor in radon movement. Exhalation from soil is fed by the high concentrations of radon in soil gas. Because the surface soil is losing radon to the atmosphere, soil gas concentration would be expected to increase with depth. There is a wide range of air radon concentrations, with marked seasonal and diurnal variations. Atmospheric stability is certainly a major factor - radon increases during inversions and decreases when the inversion breaks up. In addition, temperature, soil moisture, snow cover, and wind direction all play a part. Different investigators sometimes come to contrary conclusions on the effects of these factors. They are probably all correct - for the conditions in effect at the time - since no simple generalities exist for most factors.

  9. Controlling the Radon Threat Needn't Be Another Costly Nightmare.

    ERIC Educational Resources Information Center

    Freije, Matthew R.

    1989-01-01

    After a study of 3,000 classrooms in 130 schools in 16 states, the Environmental Protection Agency urged all schools to conduct tests for radon. Explains a 6-step screening test, methods of reducing radon concentrations, and how the risk from radon exposure compares with other risks. (MLF)

  10. Radon Concentration in the Cataniapo-Autana River Basin, Amazonas State, Venezuela

    NASA Astrophysics Data System (ADS)

    Sajo-Bohus, L.; Greaves, E. D.; Alvarez, H.; Liendo, J.; Vásquez, G.

    2007-10-01

    Radon activity concentration is measured in rivers of the Autana-Cataniapo hydrologic basin. The region experiments mining and it is forecasted that the basin will be perturbed. Radon activity monitoring is one of the methods to measure environmental changes. Values of radon concentration in water range between 0.4 and 30 Bq L-1.

  11. EFFECTS OF NATURAL AND FORCED BASEMENT VENTILATION ON RADON LEVELS IN SINGLE FAMILY DWELLINGS

    EPA Science Inventory

    The report gives, for the first time, results of an extensive study of the effect of ventilation on radon concentrations and radon entry rate in a single-family dwelling. Measurements of radon concentrations, building dynamics, and environmental parameters made in Princeton Unive...

  12. Controlling the Radon Threat Needn't Be Another Costly Nightmare.

    ERIC Educational Resources Information Center

    Freije, Matthew R.

    1989-01-01

    After a study of 3,000 classrooms in 130 schools in 16 states, the Environmental Protection Agency urged all schools to conduct tests for radon. Explains a 6-step screening test, methods of reducing radon concentrations, and how the risk from radon exposure compares with other risks. (MLF)

  13. EFFECTS OF NATURAL AND FORCED BASEMENT VENTILATION ON RADON LEVELS IN SINGLE FAMILY DWELLINGS

    EPA Science Inventory

    The report gives, for the first time, results of an extensive study of the effect of ventilation on radon concentrations and radon entry rate in a single-family dwelling. Measurements of radon concentrations, building dynamics, and environmental parameters made in Princeton Unive...

  14. Estimation of the residential radon levels and the annual effective dose in dwellings of Shiraz, Iran, in 2015

    PubMed Central

    Yarahmadi, Maryam; Shahsavani, Abbas; Mahmoudian, Mohammad Hassan; Shamsedini, Narges; Rastkari, Noushin; Kermani, Majid

    2016-01-01

    Introduction Radon is the second most important cause of lung cancer after smoking. Thus, the determination of indoor radon concentrations in dwellings and workplaces is an important public health concern. The purpose of this research was to measure the concentration of radon gas in residential homes and public places in the city of Shiraz and its relationship with the type and age of the buildings as well as the type of materials used to construct the building (brick, block). We also determined the radon dosages that occupants of the building would receive. Methods The present study is a descriptive-analytical and cross-sectional research that was conducted on the building’s indoor air in the city of Shiraz in 2015. Using geographic information system (GIS) software and a spatial sampling cell with an area of 25 square kilometers, 200 points were selected. In this study, we used passive diffusive samplers as Solid State Nuclear Track Detector (SSNTD) CR-39 polycarbonate films for three months in the winter. Sampling was conducted in accordance with the U.S. Environmental Protection Agency’s protocol. We determined the concentrations of radon gas at the time of sampling, and calibration factors were determined. The data were analyzed by IBM-SPSS, version 20, descriptive statistics, Kruskal-Wallis, and Mann–Whitney tests. Results This study showed that the average radon concentration was 57.6 ± 33.06 Bq/m3 in residential dwellings. The average effective dose was 1.45 mSv/y. The concentration of radon in 5.4% of the houses was found to be greater than 100 Bq/m3, which is above the level allowed by the World Health Organization (WHO). Conclusion Since radon is the second leading cause of lung cancer, it seems necessary to increase the public’s awareness of this issue and to take action to reduce radon in homes when the concentrations are above the WHO’s guideline. PMID:27504164

  15. Atmosphere purification of radon and radon daughter elements

    DOEpatents

    Stein, L.

    1974-01-01

    A method of removing radon and radon daughter elements from an atmosphere containing these elements by passing the atmosphere through a bed of fluorinating compound whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. These fluorides adhere to the fluorinating compound and are thus removed from the atmosphere which may then be recirculated. A method for recovering radon and separating radon from its daughter elements is also described. (Official Gazette)

  16. Overview of current radon and radon daughter research at LBL

    SciTech Connect

    Not Available

    1983-01-01

    This report provides a brief summary of radon and radon daughter research at Lawrence Berkeley Laboratory. The radon and radon daughter research program has two broad goals: (1) the study of sources of radon and its subsequent transport into houses, and (2) research on the behavior of radon daughters in indoor environments. Additional research effort is directed to several auxiliary areas, including development of instrumentation and monitoring techniques, studies of indoor air movement, and measurement and control of indoor particulate concentrations.

  17. Environmentally stable, simple passively mode-locked fiber ring laser using a four-port circulator.

    PubMed

    Masuda, Shin; Niki, Shoji; Nakazawa, Masataka

    2009-04-13

    We present here a self-starting passively mode-locked fiber ring laser with a novel cavity configuration using a four-port optical circulator. Our special ring cavity design enables highly stable mode-locked operation between 25 and 60 degrees C to be maintained without the need for any polarization-adjusting devices. The pulse width and the integrated timing jitter from 10 Hz to 10 MHz of our fiber ring laser were measured to be 120 fs and 39.1 fs, respectively. As a result, a robust and environmentally stable all-fiber mode-locked fiber ring laser with a simple ring cavity configuration in a small package has been achieved.

  18. Study of indoor radon distribution using measurements and CFD modeling.

    PubMed

    Chauhan, Neetika; Chauhan, R P; Joshi, M; Agarwal, T K; Aggarwal, Praveen; Sahoo, B K

    2014-10-01

    Measurement and/or prediction of indoor radon ((222)Rn) concentration are important due to the impact of radon on indoor air quality and consequent inhalation hazard. In recent times, computational fluid dynamics (CFD) based modeling has become the cost effective replacement of experimental methods for the prediction and visualization of indoor pollutant distribution. The aim of this study is to implement CFD based modeling for studying indoor radon gas distribution. This study focuses on comparison of experimentally measured and CFD modeling predicted spatial distribution of radon concentration for a model test room. The key inputs for simulation viz. radon exhalation rate and ventilation rate were measured as a part of this study. Validation experiments were performed by measuring radon concentration at different locations of test room using active (continuous radon monitor) and passive (pin-hole dosimeters) techniques. Modeling predictions have been found to be reasonably matching with the measurement results. The validated model can be used to understand and study factors affecting indoor radon distribution for more realistic indoor environment.

  19. Reporting on Radon: The Role of Local Newspapers.

    ERIC Educational Resources Information Center

    Post, James F.; And Others

    Noting that past local media coverage of environmental topics, including those dealing with radiation topics, has often been superficial, a study assessed press coverage of the radon problem in the Lehigh Valley region of Pennsylvania during the first nine months of 1985. The study explored whether local media coverage of radon--a colorless,…

  20. Reporting on Radon: The Role of Local Newspapers.

    ERIC Educational Resources Information Center

    Post, James F.; And Others

    Noting that past local media coverage of environmental topics, including those dealing with radiation topics, has often been superficial, a study assessed press coverage of the radon problem in the Lehigh Valley region of Pennsylvania during the first nine months of 1985. The study explored whether local media coverage of radon--a colorless,…

  1. Evaluating cost when selecting performance reference compounds for the environmental deployment of polyethylene passive samplers.

    PubMed

    Perron, Monique M; Burgess, Robert M; Cantwell, Mark G; Fernandez, Loretta A

    2015-04-01

    A challenge in environmental passive sampling is determining when equilibrium is achieved between the sampler, target contaminants, and environmental phases. A common approach is the use of performance reference compounds (PRCs) to estimate target contaminant sampling rates and indicate degree of sampler equilibrium. One logistical issue associated with using PRCs is their sometimes exorbitant cost. To address PRC expense, this investigation 1) compared the performance of inexpensive PRCs (deuterated PAHs) and expensive PRCs ((13) C-labeled PCBs) to estimate dissolved PCB concentrations in freshwater and marine deployments, and 2) evaluated the use of smaller quantities of PRC relative to regular amounts used for estimating dissolved PAH and PCB concentrations. Saltwater and freshwater site average differences between total dissolved PCB concentrations calculated using the 2 classes of PRCs was 34 pg/L (20%) and 340 pg/L (51%), respectively, and in some deployments, statistical differences in PCB concentrations generated by the 2 types of PRCs were detected. However, no statistical differences were detected between total dissolved PAH and PCB for the 3 quantities of PRCs. In both investigations, individual dissolved PCB congeners and PAH compounds demonstrated comparable behavior as those expressed as total PCB or PAH dissolved concentrations. This research provides evidence that in some applications passive sampling using inexpensive and smaller quantities of PRCs can yield cost savings of approximately 75%. This approach appears most promising in the marine water column and when focusing on dissolved concentrations of low and medium molecular weight congeners or total PCBs. Published 2014 SETAC. This article is a US Government work and, as such, is in the public domain in the USA.

  2. [Radon and domestic exposure].

    PubMed

    Melloni, B; Vergnenègre, A; Lagrange, P; Bonnaud, F

    2000-12-01

    Radon is a noble gas derived from the decay of radium, which itself is a decay product of uranium. The decay products of radon can collect electrostatically on dust particles in the air and, if these particles are inhaled and attach to bronchial epithelium, produce a high local radiation dose. Alpha particles can induce DNA double-strand breaks and the development of cancer. A causal relation between lung cancer and radon exposure and its progeny has been demonstrated in epidemiological studies of miners. Radon exposure became a public health issue almost 15 years ago. Most radon exposure occurs indoors, predominantly in the home. There is however, a wide range of radon concentration values in different countries. The highest level occurs in areas with granite and permeable soils. The risk for smoking, the leading cause of lung cancer, is far greater than for radon, the second leading cause. The estimates obtained from case-control studies of indoor radon are very contradictory. Scientific knowledge of effects of low levels of exposure to radon and the role of cigarette smoking, as a combined factor, must be studied. Smoking and radon probably interact in a multiplicative fashion.

  3. Indoor Radon: The Deadliest Pollutant.

    ERIC Educational Resources Information Center

    Kerr, Richard A.

    1988-01-01

    Describes the origin, occurrence, and effects of radon gas. Cites studies which attribute 5,000 to 20,000 deaths per year to radon exposure and the synergistic effect between radon and smoking. Explains ways to reduce risks. (RT)

  4. Indoor Radon: The Deadliest Pollutant.

    ERIC Educational Resources Information Center

    Kerr, Richard A.

    1988-01-01

    Describes the origin, occurrence, and effects of radon gas. Cites studies which attribute 5,000 to 20,000 deaths per year to radon exposure and the synergistic effect between radon and smoking. Explains ways to reduce risks. (RT)

  5. Carcinogenic and Cocarcinogenic Effects of Radon and Radon Daughters in Rats.

    PubMed Central

    Monchaux, G; Morlier, JP; Morin, M; Chameaud, J; Lafuma, J; Masse, R

    1994-01-01

    It has been previously established that lung cancer could be induced in rats by exposure to radon and radon daughters. Although the oat-cell carcinomas that are common in humans were not found in rats, other histological types of lung carcinomas, especially squamous cell carcinomas and primitive lung adenocarcinomas, were similar to those observed in humans. A dose-effect relationship was established for cumulative doses varying from 25 to 3000 working-level-months (WLM), which was similar for medium and high cumulative doses to that observed in uranium miners. This experimental protocol was also used to study the potential cocarcinogenic effects of other environmental or industrial airborne pollutants such as tobacco smoke, mineral fibers, diesel exhausts, or minerals from metallic mine ores that may act synergistically with radon exposure. In rats exposed to radon and tobacco smoke combined, the incidence of lung cancers was higher by a factor of 2-4 according to the cumulative radon exposure and the duration of tobacco smoke exposure. When mineral fibers were injected intrapleurally, an increased incidence of malignant thoracic tumors was observed in rats exposed to radon and fibers combined, but synergistic effects resulted in additivity. With diesel exhausts or minerals from metallic ores, a slight, nonsignificant increase in the incidence of lung carcinomas was observed compared with rats exposed to radon alone. These results demonstrated that it is possible to establish the potential cocarcinogenic action, showing either multiplicative, additive, or no effect of various environmental or industrial airborne pollutants combined with radon exposure. This radon model is valid for investigating possible interactions between two occupational exposures. Images p64-a Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. PMID:9719670

  6. Steady-state response of a charcoal bed to radon in flowing air with water vapor

    SciTech Connect

    Blue, T.E.; Jarzemba, M.S.; Fentiman, A.W.

    1995-06-01

    Previously we have developed a mathematical model of radon adsorption in active air with water vapor on small U.S. Environmental Protection Agency charcoal canisters that are used for environmental measurements of radon. The purpose of this paper is to extend this mathematical model to describe the adsorption of radon by large charcoal beds with radon-laden air flowing through them. The resulting model equations are solved analytically to predict the steady-state adsorption of radon by such beds. 14 refs., 3 figs.

  7. Mitigating factors on air concentrations of radon emanating from different granite samples

    SciTech Connect

    Qari, T.M.; Mamoon, A.M.; Abdul-Fattah, A.F. )

    1991-11-01

    Continuous exposure to increased air concentrations of radon in living areas is to be avoided according to the Environmental Protection Agency (EPA) and several published reports. Radon concentrations in ambient air are influenced by several factors related to the nature of the radon source itself, environmental conditions, and the presence of mitigating factors, if any. In this study, crushed granite samples of different types, particle diameters, and moisture contents were compared in simplified test systems with regard to radon emanation from the samples. The effects of selected mitigating factors, namely, ventilation and different barriers to diffusion of emanated radon were determined.

  8. RADON REDUCTION IN A CRAWL SPACE HOUSE

    EPA Science Inventory

    Radon, a naturally occurring radioactive gas, is drawn from the soil into a house when low air pressure exists in the house. This is a commonplace environmental hazard in the United States, Canada, and northern Europe. The U.S. Environmental Protection Agency (EPA) is developing ...

  9. RADON REDUCTION IN A CRAWL SPACE HOUSE

    EPA Science Inventory

    Radon, a naturally occurring radioactive gas, is drawn from the soil into a house when low air pressure exists in the house. This is a commonplace environmental hazard in the United States, Canada, and northern Europe. The U.S. Environmental Protection Agency (EPA) is developing ...

  10. Radon assay and purification techniques

    SciTech Connect

    Simgen, Hardy

    2013-08-08

    Radon is a source of background in many astroparticle physics experiments searching for rare low energy events. In this paper an overview about radon in the field is given including radon detection techniques, radon sources and material screening with respect to radon emanation. Finally, also the problem of long-lived radioactive {sup 222}Rn-daughters and the question of gas purification from radon is addressed.

  11. Indoor radon concentrations in Taiwanese homes

    SciTech Connect

    Hung, I.F.; Yu, C.C.; Tung, C.J. ); Yang, Y.C.; Chou, K.D. )

    1994-10-01

    Many air pollutants may be present in the indoor environment. Commonly reported pollutants are carbon monoxide, nitrogen dioxide, volatile organic compounds, radon and its progeny, asbestos fibers and airborne particles. Among these indoor pollutants, radon and its progeny have been known to increase the risk of lung cancer in the U.S. Various studies also found in general higher concentrations of air pollutants in the indoor environment. It is a serious concern to us because of the long periods of time we spend indoors. In this study, the alpha-track radon monitor was used in the screening of higher risk buildings in Taipei and Hsinchu city. None of the homes in the 32 buildings surveyed in these cities had air concentrations of radon exceeding the action level of 4 pCi/l recommended by the U.S. Environmental Protection Agency. Different sources to indoor radon concentrations are the underlying soil, building materials, outdoor air, water and gaseous fuels. Ventilation of the homes and seasonal variations are major factors of higher radon concentrations. 16 refs., 2 figs., 3 tabs.

  12. Radon as a naturally occurring tracer for the assessment of residual NAPL contamination of aquifers.

    PubMed

    Schubert, Michael; Paschke, Albrecht; Lau, Steffen; Geyer, Wolfgang; Knöller, Kay

    2007-02-01

    The noble gas radon has a strong affinity to non-aqueous phase-liquids (NAPLs). That property makes it applicable as naturally occurring partitioning tracer for assessing residual NAPL contamination of aquifers. In a NAPL contaminated aquifer, radon dissolved in the groundwater partitions preferably into the NAPL. The magnitude of the resulting radon deficit in the groundwater depends on the NAPL-specific radon partition coefficient and on the NAPL saturation of the pore space. Hence, if the partition coefficient is known, the NAPL saturation is attainable by determination of the radon deficit. After a concise discussion of theoretical aspects regarding radon partitioning into NAPL, related experimental data and results of a field investigation are presented. Aim of the laboratory experiments was the determination of radon partition coefficients of multi-component NAPLs of environmental concern. The on-site activities were carried out in order to confirm the applicability of the "radon method" under field conditions.

  13. Radon Control Activities for Lung Cancer Prevention in National Comprehensive Cancer Control Program Plans, 2005–2011

    PubMed Central

    Stewart, Sherri L.; Angell, William

    2013-01-01

    Introduction Radon is the second leading cause of lung cancer among smokers and the leading cause among nonsmokers. The US Environmental Protection Agency recommends that every home be tested for radon. Comprehensive Cancer Control (CCC) programs develop cancer coalitions that coordinate funding and resources to focus on cancer activities that are recorded in cancer plans. Radon tests, remediation, and radon mitigation techniques are relatively inexpensive, but it is unclear whether coalitions recognize radon as an important carcinogen. Methods We reviewed 65 cancer plans created from 2005 through 2011 for the terms “radon,” “radiation,” or “lung.” Plan activities were categorized as radon awareness, home testing, remediation, supporting radon policy activities, or policy evaluation. We also reviewed each CCC program’s most recent progress report. Cancer plan content was reviewed to assess alignment with existing radon-specific policies in each state. Results Twenty-seven of the plans reviewed (42%) had radon-specific terminology. Improving awareness of radon was included in all 27 plans; also included were home testing (n = 21), remediation (n = 11), support radon policy activities (n = 13), and policy evaluation (n = 1). Three plans noted current engagement in radon activities. Thirty states had radon-specific laws; most (n = 21) were related to radon professional licensure. Eleven states had cancer plan activities that aligned with existing state radon laws. Conclusion Although several states have radon-specific policies, approximately half of cancer coalitions may not be aware of radon as a public health issue. CCC-developed cancer coalitions and plans should prioritize tobacco control to address lung cancer but should consider addressing radon through partnership with existing radon control programs. PMID:23928457

  14. Preliminary results on variations of radon concentration associated with rock deformation in a uranium mine

    NASA Astrophysics Data System (ADS)

    Verdoya, Massimo; Bochiolo, Massimo; Chiozzi, Paolo; Pasquale, Vincenzo; Armadillo, Egidio; Rizzello, Daniele; Chiaberto, Enrico

    2013-04-01

    Time-series of radon concentration and environmental parameters were recently recorded in a uranium mine gallery, located in the Maritime Alps (NW Italy). The mine was bored in metarhyolites and porphyric schists mainly composed by quartz, feldspar, sericite and fluorite. U-bearing minerals are generally concentrated in veins heterogeneously spaced and made of crystals of metaautunite and metatorbernite. Radon air concentration monitoring was performed with an ionization chamber which was placed at the bottom of the gallery. Hourly mean values of temperature, pressure, and relative humidity were also measured. External data of atmospheric temperature, pressure and rainfall were also available from a meteorological station located nearby, at a similar altitude of the mine. The analysis of the time series recorded showed variation of radon concentration, of large amplitude, exhibiting daily and half-daily periods, which do not seem correlated with meteorological records. Searching for the origin of radon concentration changes and monitoring their amplitude as a function of time can provide important clues on the complex emanation process. During this process, radon reaches the air- and water-filled interstices by recoil and diffusion, where its migration is directed towards lower concentration regions, following the local gradient. The radon emanation from the rock matrix could also be controlled by stress changes acting on the rate of migration of radon into fissures, and fractures. This may yield emanation boosts due to rock extension and the consequent crack broadening, and emanation decrease when joints between cracks close. Thus, besides interaction and mass transfer with the external atmospheric environment, one possible explanation for the periodic changes in radon concentrations in the investigated mine, could be the variation of rock deformation related to lunar-solar tides. The large variation of concentration could be also due to the fact that the mine is

  15. Assessment of Karst Spring Features in a typical Mediterranean fluvial landscape with an Interdisciplinary Investigation nased on Radon-222 as an Environmental Indicator. The case study of the Bussento River basin (Campania region, Southern Italy).

    NASA Astrophysics Data System (ADS)

    Cuomo, A.; Guadagnuolo, D.; Guida, D.; Guida, M.; Knoeller, K.; Schubert, M.; Siervo, V.

    2012-04-01

    Karst aquifers provide 25% of the overall drinking water resources to the world's population and sustain aquatic life in most fluvial systems, providing several ecological services to human beings, although, because of their complex links between surface and groundwater, turn out to be very vulnerable to contamination and pollution. Hydrological assessment of karst systems reveals to be extremely complex and difficult and requires a stepwise multi-tracers approach. This work describes some of the most relevant findings obtained from the implementation of an interdisciplinary approach based on the use of Environmental Tracers, consisting of Naturally Occurring Radionuclides like Radon-222 (referred to as Radon), for the investigation of Groundwater/Surface water Interaction (GSI) processes in fluvial water bodies. In particular, Radon activity concentration measurement data having been collected from streamflow and instream springs during monthly field campaigns performed in a typical Mediterranean karst river basin: the Bussento river system (Campania region, Southern Italy). The general task has been to investigate the complex interactions and exchanges between streamflow and groundwater in a fluvial water body, at scales that are imperceptible to standard hydrological and hydraulic analyses. The Bussento River basin has been chosen as a study case for the following features of extreme relevance: Its location inside the Cilento and Vallo di Diano National Park, its inclusion of a WWF Nature Reserve, it represents a remarkable Drinking Water resource for the territory and last but not least its system includes Submarine Groundwater Discharges (SGD) to the Policastro Gulf. All these issues causes, therefore, that the management of its relevant water resources requires not only groundwater protection for domestic drinking use, but also riverine wildlife preservation and coastal water quality maintenance. As a support for hydro-geomorphological and hydrological

  16. National radon database documentation. Volume 2. The EPA/state residential radon surveys: Year 2. Final report, 1986-1992

    SciTech Connect

    Not Available

    1993-02-01

    The National Radon Database has been developed by the U.S. Environmental Protection Agency (EPA) to distribute information collected in two recently completed radon surveys: the EPA/State Residential Radon Surveys, Years 1 to 6; and The National Residential Radon Survey. The goals of the state radon surveys were twofold. Some measure of the distribution of radon levels among residences was desired for major geographic areas within each state and for each state as a whole. In addition, it was desired that each state survey would be able to identify areas of potentially high residential radon concentrations (hot spots) in the state, enabling the state to focus its attention on areas where indoor radon concentrations might pose a greater health threat. During the winter and spring of 1987-88, EPA assisted seven states in conducting statewide radon surveys and in addition assisted the Indian Health Service (IHS) in conducting a survey of homes on Indian lands located in EPA region 5. The Year 2 states are: Arizona; Indiana; Massachusetts; Minnesota; Missouri; North Dakota; Pennsylvania; and EPA Region 5 Indian Lands.

  17. Detection of radon decay products in rainwater

    SciTech Connect

    Baker, S.I.

    1999-11-01

    The Argonne National Laboratory-East (ANL-E) Environmental Radiation Monitoring System measures and records ambient radiation levels and provides detection capability for radon decay products in rain clouds. These decay products in rainwater tracked into a facility on the shoes of workers can cause false alarms from hand and shoe monitors. The monitors at ANL-E can easily detect the radon decay products, and the 19.6 and 26.8 min half-lives of the beta-particle emitters are long enough in many cases for sufficient activity to still be present to initiate a contamination alarm when the shoes are checked for radioactivity. The Environmental Radiation Monitoring System provides a warning when precipitation contains elevated levels of radon decay products. It is based on a prototype developed at the Super Collider Laboratory, During its first year of operation there were nine alarms from radon decay products with an alarm trigger point set at 30% greater than background. The alarms occurred at both monitoring stations, which are approximately 1,000 m apart, indicating large diameter radon clouds. The increases in background were associated with low atmospheric pressure. There was no correlation with radon released from the coal-burning steam plant on the site. Alarms also occurred when short-lived accelerator-produced radioactivity in the exhaust stack plume passed over the NaI(TI) detector in one of the stations. The 450 MeV proton accelerator near the station produced {sup 12}C, {sup 13}N, and {sup 15}O by spallation of air nuclei. The gamma-ray spectrum from the plume from the accelerator exhaust stack was dominated by the 511 keV annihilation gamma rays from decay of these radionuclides. These gamma rays were easily distinguished from the 609 keV, 1,120 keV, and 1,764 keV gamma rays emitted by the radon decay products.

  18. Atmosphere purification of radon and radon daughter elements

    DOEpatents

    Stein, L.

    1973-12-11

    A method for purifying an atmosphere of radon and radon daughter elements which may be contained therein by contacting the atmosphere with a fluorinating solution, whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. The fluorides dissolve in the fluorinating solutlon and are removed from the atmosphere, which may then be recirculated. (Official Gazette)

  19. RADON REDUCTION AND RADON RESISTANT CONSTRUCTION DEMONSTRATIONS IN NEW YORK

    EPA Science Inventory

    The report covers three tasks related to indoor radon: (1) the demonstration of radon reduction techniques in 8 houses in each of two uniquely different radon prone areas of the State of New York; (2) the evaluation and repair of 14 radon mitigation systems in houses mitigated 4 ...

  20. RADON REDUCTION AND RADON RESISTANT CONSTRUCTION DEMONSTRATIONS IN NEW YORK

    EPA Science Inventory

    The report covers three tasks related to indoor radon: (1) the demonstration of radon reduction techniques in 8 houses in each of two uniquely different radon prone areas of the State of New York; (2) the evaluation and repair of 14 radon mitigation systems in houses mitigated 4 ...

  1. Radon-Induced Health Effects

    NASA Astrophysics Data System (ADS)

    Muirhead, C. R.

    The following sections are included: * Lung Cancer * Studies of miners * Estimates of lifetime risk associated with indoor radon exposure * Factors that may affect risk estimates * Sex and age at exposure * Joint effect of radon and smoking * Exposure rate * Epidemiological studies of lung cancer and indoor radon exposure * Cancers Other Than Lung * Dosimetry * Epidemiological studies * Studies of miners * Indoor radon exposure * Concluding Remarks * References

  2. LARGE BUILDING RADON MANUAL

    EPA Science Inventory

    The report summarizes information on how bilding systems -- especially the heating, ventilating, and air-conditioning (HVAC) system -- inclurence radon entry into large buildings and can be used to mitigate radon problems. It addresses the fundamentals of large building HVAC syst...

  3. Radon: The Silent Danger.

    ERIC Educational Resources Information Center

    Stoffel, Jennifer

    1989-01-01

    This article discusses the public health dangers associated with radon exposure in homes and schools. In addition, testing and corrective efforts by federal and state agencies are discussed. A map indicating areas in the U.S. with potentially high radon levels is included. (IAH)

  4. Radon: The Silent Danger.

    ERIC Educational Resources Information Center

    Stoffel, Jennifer

    1989-01-01

    This article discusses the public health dangers associated with radon exposure in homes and schools. In addition, testing and corrective efforts by federal and state agencies are discussed. A map indicating areas in the U.S. with potentially high radon levels is included. (IAH)

  5. LARGE BUILDING RADON MANUAL

    EPA Science Inventory

    The report summarizes information on how bilding systems -- especially the heating, ventilating, and air-conditioning (HVAC) system -- inclurence radon entry into large buildings and can be used to mitigate radon problems. It addresses the fundamentals of large building HVAC syst...

  6. Calibrating passive acoustic monitoring: correcting humpback whale call detections for site-specific and time-dependent environmental characteristics.

    PubMed

    Helble, Tyler A; D'Spain, Gerald L; Campbell, Greg S; Hildebrand, John A

    2013-11-01

    This paper demonstrates the importance of accounting for environmental effects on passive underwater acoustic monitoring results. The situation considered is the reduction in shipping off the California coast between 2008-2010 due to the recession and environmental legislation. The resulting variations in ocean noise change the probability of detecting marine mammal vocalizations. An acoustic model was used to calculate the time-varying probability of detecting humpback whale vocalizations under best-guess environmental conditions and varying noise. The uncorrected call counts suggest a diel pattern and an increase in calling over a two-year period; the corrected call counts show minimal evidence of these features.

  7. Active air vs. passive air (settle plate) monitoring in routine environmental monitoring programs.

    PubMed

    Andon, Barbara M

    2006-01-01

    This article discusses the utility of active air versus passive air settle plate monitoring in a routine environmental monitoring program with an emphasis on the monitoring of the critical Grade A environments. It is recognized that there has been a long-standing historical use of settle plates in the pharmaceutical industry, and that European regulatory agencies have supported their use. However, current active air sampling technology can be more advantageous and effective in assessing airborne viable contamination in cleanrooms than settle plate monitoring. Given that both methods are designed to assess viable airborne contamination in cleanrooms, there may be no advantage in performing these two parallel methods for the detection of airborne contamination, especially if doing so increases the number of interventions into critical areas, which may in turn increase the risk of contamination without providing any added benefit in terms of data collection and/or process control. Therefore, the best use of settle plate monitoring may be as an optional test method for those applications where other, more efficient sampling methods may not be possible or may have limited applicability.

  8. Measurement of environmental pollutants using passive sampling devices--a commentary on the current state of the art.

    PubMed

    Mills, Graham A; Greenwood, Richard; Vrana, Branislav; Allan, Ian J; Ocelka, Tomáš

    2011-11-01

    Passive sampling devices have been used since the 1970s to measure time-weighted average (TWA) or equilibrium concentrations of pollutants in various environmental matrices (e.g. air, soils and sediments and water). In recent years the popularity of using such samplers has increased and the technology in now well established for the measurement of atmospheric pollutants. This sector has a long experience of using passive samplers in the short- and long-term assessment of air quality in the local environment and on a global scale (e.g. within the United Nations Stockholm Convention on the trans-boundary movement of persistent organic pollutants (POPs) where large networks of samplers on a continental scale have been established). In comparison, the use of passive samplers for monitoring the aquatic environment has been slower to take off. There has, however, been a recent research drive to develop devices for measuring the wide range of pollutants that can be found in environmental waters (e.g. ground, surface, and marine). It is now being recognised that passive samplers can play a valuable role in monitoring water quality within a legislative framework such as the European Union's Water Framework Directive (WFD). The data from these devices can be used alongside the results obtained from conventional spot or bottle sampling to improve risk assessments and to inform decisions on undertaking potentially expensive remedial actions. Such monitoring techniques may have uses within the European Registration, Evaluation, Authorisation & restriction of CHemicals (REACH) Directive and the forthcoming European Marine Strategy Directive. It is expected that the aquatic monitoring sector will follow a transition similar to that which occurred in air monitoring where data obtained from passive samplers can use used within a legal framework. There has also been increased interest in extending the role of passive samplers to both the measurement of equilibrium concentrations and

  9. Protect Your Family from Lung Cancer Caused by Radon

    EPA Pesticide Factsheets

    DALLAS - (Jan. 15, 2014) One in 15 homes is affected by elevated radon levels, so this month the U.S. Environmental Protection Agency is encouraging Americans around the country to test their homes for this naturally occurring radioactive gas.

  10. Psychosocial and Environmental Correlates of Walking, Cycling, Public Transport and Passive Transport to Various Destinations in Flemish Older Adolescents

    PubMed Central

    Verhoeven, Hannah; Simons, Dorien; Van Dyck, Delfien; Van Cauwenberg, Jelle; Clarys, Peter; De Bourdeaudhuij, Ilse; de Geus, Bas; Vandelanotte, Corneel; Deforche, Benedicte

    2016-01-01

    Background Active transport is a convenient way to incorporate physical activity in adolescents’ daily life. The present study aimed to investigate which psychosocial and environmental factors are associated with walking, cycling, public transport (train, tram, bus, metro) and passive transport (car, motorcycle, moped) over short distances (maximum eight kilometres) among older adolescents (17–18 years), to school and to other destinations. Methods 562 older adolescents completed an online questionnaire assessing socio-demographic variables, psychosocial variables, environmental variables and transport to school/other destinations. Zero-inflated negative binomial regression models were performed. Results More social modelling and a higher residential density were positively associated with walking to school and walking to other destinations, respectively. Regarding cycling, higher self-efficacy and a higher social norm were positively associated with cycling to school and to other destinations. Regarding public transport, a higher social norm, more social modelling of siblings and/or friends, more social support and a higher land use mix access were positively related to public transport to school and to other destinations, whereas a greater distance to school only related positively to public transport to school. Regarding passive transport, more social support and more perceived benefits were positively associated with passive transport to school and to other destinations. Perceiving less walking and cycling facilities at school was positively related to passive transport to school only, and more social modelling was positively related to passive transport to other destinations. Conclusions Overall, psychosocial variables seemed to be more important than environmental variables across the four transport modes. Social norm, social modelling and social support were the most consistent psychosocial factors which indicates that it is important to target both

  11. Mutagenicity of radon and radon daughters

    SciTech Connect

    Evans, H.H.

    1991-01-01

    The objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose rate dependence and the nature of the DNA lesion will be studied, using the thymidine kinase and HPRT loci to measure mutation frequency. A deficiency in DNA repair is shown to lead to a greater proportion of mutants with intergenic lesions. The cytotoxic effects of radon and its daughters are similar in human TK6 lymphoblasts and mouse L5178Y lymphoblasts, the cell line used in previous experiments. The results of molecular analysis of four spontaneous and 25 X-radiation induced HPRT{sup {minus}} mutants. Eleven radon-induced HPRT{sup {minus}} mutants have been isolated, and will be analyzed in a similar fashion. 9 figs.

  12. Mutagenicity of radon and radon daughters

    NASA Astrophysics Data System (ADS)

    Evans, H. H.

    The objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose rate dependence and the nature of the DNA lesion will be studied, using the thymidine kinase and HPRT loci to measure mutation frequency. A deficiency in DNA repair is shown to lead to a greater proportion of mutants with intergenic lesions. The cytotoxic effects of radon and its daughters are similar in human TK6 lymphoblasts and mouse L5178Y lymphoblasts, the cell line used in previous experiments. The results of molecular analysis of four spontaneous and 25 X-radiation induced HPRT(-) mutants. Eleven radon-induced HPRT(-) mutants have been isolated, and will be analyzed in a similar fashion.

  13. Evaluation of building design, construction, and performance for the control of radon in florida houses. Evaluation of radon resistant construction techniques in eight new houses. Final report, January 1993-April 1994

    SciTech Connect

    Hintenlang, D.E.; Shanker, A.; Najafi, F.T.; Roessler, E.C.

    1995-07-01

    The report gives results of a study of eight houses throughout their construction in North Central Florida. Each house was built in compliance with the proposed radon resistant construction standard being developed by the Florida Department of Community Affairs. Each house was monitored for at least 6 days after construction, operating in three different heating, ventilation, and air-conditioning (HVAC) system configurations. Continuous measurements of indoor radon concentrations, house ventilation rates, across-slab differential pressures, and interzone differential pressures provided time-resolved radon entry rates and a performance index for passive radon barriers. Radon entry rates were found to be relatively constant throughout the measurement periods and for the different house operating conditions, implying that the passive radon barrier eliminates most convective entry.

  14. A holistic passive integrative sampling approach for assessing the presence and potential impacts of waterborne environmental contaminants

    USGS Publications Warehouse

    Petty, J.D.; Huckins, J.N.; Alvarez, D.A.; Brumbaugh, W. G.; Cranor, W.L.; Gale, R.W.; Rastall, A.C.; Jones-Lepp, T. L.; Leiker, T.J.; Rostad, C. E.; Furlong, E.T.

    2004-01-01

    As an integral part of our continuing research in environmental quality assessment approaches, we have developed a variety of passive integrative sampling devices widely applicable for use in defining the presence and potential impacts of a broad array of contaminants. The semipermeable membrane device has gained widespread use for sampling hydrophobic chemicals from water and air, the polar organic chemical integrative sampler is applicable for sequestering waterborne hydrophilic organic chemicals, the stabilized liquid membrane device is used to integratively sample waterborne ionic metals, and the passive integrative mercury sampler is applicable for sampling vapor phase or dissolved neutral mercury species. This suite of integrative samplers forms the basis for a new passive sampling approach for assessing the presence and potential toxicological significance of a broad spectrum of environmental contaminants. In a proof-of-concept study, three of our four passive integrative samplers were used to assess the presence of a wide variety of contaminants in the waters of a constructed wetland, and to determine the effectiveness of the constructed wetland in removing contaminants. The wetland is used for final polishing of secondary-treatment municipal wastewater and the effluent is used as a source of water for a state wildlife area. Numerous contaminants, including organochlorine pesticides, polycyclic aromatic hydrocarbons, organophosphate pesticides, and pharmaceutical chemicals (e.g., ibuprofen, oxindole, etc.) were detected in the wastewater. Herein we summarize the results of the analysis of the field-deployed samplers and demonstrate the utility of this holistic approach.

  15. The most recent international intercomparisons of radon and thoron monitors with the NIRS radon and thoron chambers.

    PubMed

    Janik, M; Yonehara, H

    2015-06-01

    The fifth international intercomparison for radon and fourth for thoron monitors were conducted at National Institute of Radiological Sciences (Japan) with the radon and thoron chambers. The tests were made under two different exposures to radon and two exposures (in two rounds due to limited space in the thoron chamber) to thoron. In these most recent intercomparisons, two new graphical methods recommended by the ISO standard, Mandel's h statistic and the Youden plot, were implemented to evaluate the consistency between laboratories and within laboratories.The presented data indicated that the performance quality of laboratories for radon measurement as expressed by the percentage difference parameter has been stable since the first international intercomparison for passive monitors carried out in 2007, and it amounted to around 50 for 10 % of the difference from the reference value. The thoron exercise showed that further development and additional studies to improve its measuring methods and reliability are needed.

  16. Application of activated charcoal radon collectors in high humidity environments.

    PubMed

    Iimoto, Takeshi; Tokonami, Shinji; Morishita, Yasuaki; Kosako, Toshiso

    2005-01-01

    Most commercially based activated charcoal radon collectors were designed for use in indoor environments. However, at present, they are often used for research in radon surveys in unique environments, such as in the bathrooms, underground areas, mines, caves and tunnels. In these environments, the relative humidity would be around 100%, and a change in the sensitivity of cpm(Bq m(-3))(-1)(radon) would occur. For this study, the reduction in the sensitivity of activated charcoal radon collector due to environmental humidity was investigated, and the data correction was discussed. Here, ST-100 (Pico-Rad) was selected as an example of a familiar activated charcoal radon collector. According to our performance test, the humidity of 90% (20 degrees C) resulted in a 15% reduction of the sensitivity for 24 h collection. The ST-100 user should discuss the necessity of data correction by comparing the change of sensitivity with other levels of estimation errors.

  17. Seasonal indoor radon concentration in Eskisehir, Turkey.

    PubMed

    Sogukpinar, H; Algin, E; Asici, C; Altinsoz, M; Cetinkaya, H

    2014-12-01

    Indoor radon concentrations are subject to seasonal variation, which directly depends on weather conditions. The seasonal indoor radon concentrations were measured and the annual effective dose was estimated for the city centre of Eskisehir, Turkey. In order to reflect annual averages measurements were performed over all seasons (winter, spring, summer and autumn) including also the entire year. Measurements were carried out using Kodak-Pathe LR 115 Type II passive alpha track detectors in 220 different houses. A total of 534 measurements including measurements of different seasons were taken between 2010 and 2011. The radon concentrations for winter ranged from 34 to 531 Bq m(-3), for spring ranged from 22 to 424 Bq m(-3), for summer ranged from 25 to 320 Bq m(-3), and for autumn ranged from 19 to 412 Bq m(-3). Yearly measurements ranged from 19 to 338 Bq m(-3). In this study the average annual effective total dose from radon and its decay products was calculated to be 3.398 mSv y(-1).

  18. Invited Article: Radon and thoron intercomparison experiments for integrated monitors at NIRS, Japan

    SciTech Connect

    Janik, M. Ishikawa, T.; Omori, Y.; Kavasi, N.

    2014-02-15

    Inhalation of radon ({sup 222}Rn) and its short-lived decay products and of products of the thoron ({sup 220}Rn) series accounts for more than half of the effective dose from natural radiation sources. At this time, many countries have begun large-scale radon and thoron surveys and many different measurement methods and instruments are used in these studies. Consequently, it is necessary to improve and standardize technical methods of measurements and to verify quality assurance by intercomparisons between laboratories. Four international intercomparisons for passive integrating radon and thoron monitors were conducted at the NIRS (National Institute of Radiological Sciences, Japan). Radon exercises were carried out in the 24.4 m{sup 3} inner volume walk-in radon chamber that has systems to control radon concentration, temperature, and humidity. Moreover, the NIRS thoron chamber with a 150 dm{sup 3} inner volume was utilized to provide three thoron intercomparisons. At present, the NIRS is the only laboratory world-wide that has carried out periodic thoron intercomparison of passive monitors. Fifty laboratories from 26 countries participated in the radon intercomparison, using six types of detectors (charcoal, CR-39, LR 115, polycarbonate film, electret plate, and silicon photodiode). Eighteen laboratories from 12 countries participated in the thoron intercomparisons, using two etch-track types (CR-39 and polycarbonate) detectors. The tests were made under one to three different exposures to radon and thoron. The data presented in this paper indicated that the performance quality of laboratories for radon measurement has been gradually increasing. Results of thoron exercises showed that the quality for thoron measurements still needs further development and additional studies are needed to improve its measuring methods. The present paper provides a summary of all radon and thoron international intercomparisons done at NIRS from 2007 to date and it describes the

  19. Invited Article: Radon and thoron intercomparison experiments for integrated monitors at NIRS, Japan

    NASA Astrophysics Data System (ADS)

    Janik, M.; Ishikawa, T.; Omori, Y.; Kavasi, N.

    2014-02-01

    Inhalation of radon (222Rn) and its short-lived decay products and of products of the thoron (220Rn) series accounts for more than half of the effective dose from natural radiation sources. At this time, many countries have begun large-scale radon and thoron surveys and many different measurement methods and instruments are used in these studies. Consequently, it is necessary to improve and standardize technical methods of measurements and to verify quality assurance by intercomparisons between laboratories. Four international intercomparisons for passive integrating radon and thoron monitors were conducted at the NIRS (National Institute of Radiological Sciences, Japan). Radon exercises were carried out in the 24.4 m3 inner volume walk-in radon chamber that has systems to control radon concentration, temperature, and humidity. Moreover, the NIRS thoron chamber with a 150 dm3 inner volume was utilized to provide three thoron intercomparisons. At present, the NIRS is the only laboratory world-wide that has carried out periodic thoron intercomparison of passive monitors. Fifty laboratories from 26 countries participated in the radon intercomparison, using six types of detectors (charcoal, CR-39, LR 115, polycarbonate film, electret plate, and silicon photodiode). Eighteen laboratories from 12 countries participated in the thoron intercomparisons, using two etch-track types (CR-39 and polycarbonate) detectors. The tests were made under one to three different exposures to radon and thoron. The data presented in this paper indicated that the performance quality of laboratories for radon measurement has been gradually increasing. Results of thoron exercises showed that the quality for thoron measurements still needs further development and additional studies are needed to improve its measuring methods. The present paper provides a summary of all radon and thoron international intercomparisons done at NIRS from 2007 to date and it describes the present status on radon and

  20. Protect Your Home and Family from Radon

    EPA Pesticide Factsheets

    DALLAS - (Jan. 11, 2016) Radon-the silent killer-is responsible for about 21,000 lung cancer deaths every year. The U.S. Environmental Protection Agency encourages Americans around the country to test their homes for this naturally occurring radioac

  1. Assessment of the multimedia mitigation of radon in New York.

    PubMed

    Kitto, Michael E

    2007-05-01

    Although not yet implemented, the 1996 amendments to the Safe Drinking Water Act instructed the states (or local water suppliers) to address radon concentrations in community water systems (CWS). As an alternative to reducing waterborne radon concentrations in the CWS to the maximum contaminant level (MCL) of 11 Bq L(-1), states (or individual CWS) would be permitted to develop a multimedia mitigation (MMM) program, which allowed a greater concentration (148 Bq L(-1)) of waterborne radon in the CWS, if it could be shown that an equivalent health risk reduction could be achieved by reducing indoor radon concentrations. For a MMM program to be acceptable, the U.S. Environmental Protection Agency required the health-risk reduction attained through mitigations and radon-resistant new construction (RRNC) to offset the increased health risk due to radon in community water systems above the MCL of 11 Bq L(-1). A quantitative assessment indicates that the reduction in health risk currently achieved in New York State through radon mitigations and RRNC exceeded the increase in risk associated with an alternative MCL of 148 Bq L(-1). The implementation of a MMM program in New York would result in an overall reduction in the health risk associated with exposure to radon.

  2. Geographical distribution of indoor radon and related geological characteristics in Bonghwa County, a provisional radon-prone area in Korea.

    PubMed

    Lee, E R; Chang, B U; Kim, H J; Song, M H; Kim, Y J

    2015-12-01

    The detailed indoor radon survey was conducted during a year (from September 2012 to August 2013) quarterly in Bonghwa county, one of the provisional radon-prone areas in Korea. The surveyed area was selected on the basis of previously conducted nationwide radon survey results. In order to minimise statistical and environmental uncertainties, ∼3 % of the entire dwellings were carefully selected based on the statistical annual report of Bonghwa county. The measurement is carried out by using solid-state nuclear track detector. The range of indoor radon concentration in each dwelling was 4.36-858 Bq m(-3) and that of annual effective dose due to inhaled radon of the resident in each dwelling was 0.19-23.5 mSv y(-1). Each dwelling was determined for geology criterion using one-way Analysis of Variance for the purpose of comparing indoor radon distribution with geology. Geographical distribution of indoor radon is closely related to the geological characteristics of basement rocks. In addition, the comparison between geographical distribution of indoor radon and terrestrial gamma radiation was done.

  3. Radon reduction and radon monitoring in the NEMO experiment

    SciTech Connect

    Nachab, A.

    2007-03-28

    The first data of the NEMO 3 neutrinoless double beta decay experiment have shown that the radon can be a non negligible component of the background. In order to reduce the radon level in the gas mixture, it has been necessary first to cover the NEMO 3 detector with an airtight tent and then to install a radon-free air factory. With the use of sensitive radon detectors, the level of radon at the exit of the factory and inside the tent is continuously controlled. These radon levels are discussed within the NEMO 3 context.

  4. Assessment of SPME Partitioning Coefficients: Implications for Passive Environmental Sampling of Hydrophobic Organic Compounds

    NASA Astrophysics Data System (ADS)

    Difilippo, E. L.; Eganhouse, R. P.

    2009-12-01

    Solid-phase microextraction (SPME) has shown potential as an in situ passive sampling technique in aqueous environments. The reliability of this method depends upon accurate determination of the partitioning coefficient between the fiber coating and water (Kf) for the compounds of interest. Kf values for poly(dimethylsiloxane) (PDMS) and water spanning 4 orders of magnitude have been reported for hydrophobic organic compounds (HOCs). However, most of the published data (86%) do not pass the criterion for negligible depletion (Vw > 100KfVf , where Vw is the sample volume [μl] and Vf is the fiber coating volume [μl]), resulting in erroneous Kf values. The range in reported Kf values is reduced to just over 2 orders of magnitude for some polychlorinated biphenyls (PCBs) when these erroneous values are removed. We conducted a two-tailed t-test comparing Kf values for the same compounds (polycyclic aromatic hydrocarbons (PAHs) and PCBs) measured with different fiber coating thicknesses and fiber manufacturers; the majority (85%) of these Kf values are not statistically different (p = 0.10). In addition to an accurate measurement of Kf, the impact of environmental factors on partitioning, such as temperature and ionic strength, are essential in applying laboratory-measured Kf values to field samples. To date, few studies have measured Kf at conditions other than at 25° C in distilled water. While the available data indicate slight differences in Kf at different temperatures and ionic strength, the data are too limited to make an accurate assessment of the impact of these factors on the accuracy of in situ concentration measurements. Because of the challenges in measuring Kf for HOCs, it may be useful to develop predictive models for calculating Kf using known or measured physico-chemical properties. A multi-parameter linear solvation energy relationship (LSER) was developed to estimate Kf in distilled water at 25° C for HOCs based on published physico

  5. Radon Optical Processing in Radon Space.

    DTIC Science & Technology

    1986-06-15

    yields one line through the three-dimensional Fourier transform 1. Radon, J., " Uber die Bestimmung von Funktiontn of the three-dimensional function (3...Alamos, New Mexico , April 11-15. 1983.a 6. W. G. Wee, "Application of projection techniques to image image. Figure 1(a) has approximately 8.0 bits/pixel

  6. Mineral dusts and radon in uranium mines

    SciTech Connect

    Abelson, P.H.

    1991-11-08

    The Environmental Protection Agency (EPA) continues to assert that radon is a major cause of lung cancer in this country. EPA is fostering a radon program that could entail huge financial and emotional costs while yielding negligible benefits to public health. Justification for the program was the occurrence of lung cancer in men exposed to huge amounts of radon, mineral dusts, and other lung irritants in uranium mines on the Colorado Plateau. Lung cancer has been reported in about 356 cigarette smokers and in about 25 nonsmokers. During the era of high radon levels, monitoring was sporadic. Conditions in only a small fraction of the mines were measured, and that on a few separate occasions. Later, cumulative exposure to radon was calculated on the basis of measurements involving only a tiny fraction of the miners. Some were exposed to more than 15,000 pCi/liter of radon and its products. The level in the average home is about 1.5 pCi/liter. In making extrapolations from mine to home, the assumption is made that residents are in their dwellings most of the time and that miners spend only 170 hours a month in the mine. Two major questionable assumptions are involved in extrapolations from high doses of radon in the mines to low doses in homes. One is that no threshold is involved; that is, that humans have no remediation mechanism for {alpha} particle damages. There is evidence to the contrary. The most unrealistic assumption is that heavy exposure to silica has no effect on inducing lung cancer. Many studies have shown that silica dust causes lung cancer in animals. Exposure of human culture cells to silica has resulted in formation of neoplastic tissue. EPA has no solid evidence that exposures to 4 pCi/liter of radon causes lung cancer in either smokers or nonsmokers. Indeed, there is abundant evidence to the contrary in the fact that in states with high levels of radon, inhabitants have less lung cancer than those in states with low levels.

  7. Time-dependent response of a charcoal bed to radon and water vapor in flowing air

    SciTech Connect

    Henkel, J.A.; Fentiman, A.W.; Blue, T.E.

    1995-12-31

    Extremely high airborne concentrations of radon gas may be encountered during the remediation of uranium mill tailings storage facilities. Radon is also a constituent of the off-gas of mill-tailing vitrification. An effective way to remove radon from either gas is to pass the gas through a packed bed containing activated charcoal. Measurements of radon concentrations in the environment using charcoal canisters were first described by George. Canisters similar to those used by George in his first experiments have become the U.S. Environmental Protection Agency`s (EPA`s) standard for measuring environmental radon and were described in the EPA protocol for environmental radon measurement. The dynamic behavior of EPA charcoal canisters has been previously described with a mathematical model for the kinetics of radon gas adsorption in air in the presence of water vapor. This model for charcoal canisters has been extended to large charcoal beds with flowing air containing radon and water vapor. The mathematical model for large charcoal beds can be used to evaluate proposed bed designs or to model existing beds. Parameters that affect the radon distribution within a charcoal bed that can be studied using the mathematical model include carrier gas relative humidity and flow velocity, and input radon concentration. In addition, the relative performances of several different charcoals can be studied, provided sufficient information about their adsorption, desorption, and diffusion constants is known.

  8. Recommendations for Radon Research

    EPA Pesticide Factsheets

    This report, undertaken upon the initiative of the Radiation Advisory Committee, is the first Science Advisory Board report to look at the entire field of radon research and the contribution additional scientific understanding can make on EPA's policies.

  9. Health Risk of Radon

    MedlinePlus

    ... related lung cancer in women. Top of Page Biological Effects of Ionizing Radiation (BEIR) VI Report: "The ... of Sciences' (NAS) latest report on radon, the Biological Effects of Ionizing Radiation (BEIR) VI Report (1999). ...

  10. Quantile regression and Bayesian cluster detection to identify radon prone areas.

    PubMed

    Sarra, Annalina; Fontanella, Lara; Valentini, Pasquale; Palermi, Sergio

    2016-11-01

    Albeit the dominant source of radon in indoor environments is the geology of the territory, many studies have demonstrated that indoor radon concentrations also depend on dwelling-specific characteristics. Following a stepwise analysis, in this study we propose a combined approach to delineate radon prone areas. We first investigate the impact of various building covariates on indoor radon concentrations. To achieve a more complete picture of this association, we exploit the flexible formulation of a Bayesian spatial quantile regression, which is also equipped with parameters that controls the spatial dependence across data. The quantitative knowledge of the influence of each significant building-specific factor on the measured radon levels is employed to predict the radon concentrations that would have been found if the sampled buildings had possessed standard characteristics. Those normalised radon measures should reflect the geogenic radon potential of the underlying ground, which is a quantity directly related to the geological environment. The second stage of the analysis is aimed at identifying radon prone areas, and to this end, we adopt a Bayesian model for spatial cluster detection using as reference unit the building with standard characteristics. The case study is based on a data set of more than 2000 indoor radon measures, available for the Abruzzo region (Central Italy) and collected by the Agency of Environmental Protection of Abruzzo, during several indoor radon monitoring surveys. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Development of calibration facility for radon and its progenies at NIM (China).

    PubMed

    Liang, J C; Zheng, P H; Yang, Z J; Liu, H R; Zhang, M; Li, Z S; Zhang, L; Guo, Q J

    2015-11-01

    Accurate measurement of radon and its progenies is the basis to control the radon dose and reduce the risk of lung cancer caused. The precise calibration of measuring instrument is an important part of the quality control of measurements of the concentration of radon and radon progenies. To establish Chinese national standards and realise reliable calibrations of measuring instrument for radon and its progenies, a radon chamber with regulation capability of environmental parameters, aerosol and radon concentrations was designed and constructed at National Institute of Metrology (NIM). The chamber has a total volume of ∼20 m(3) including an exposure volume of 12.44 m(3). The radon concentration can be controlled from 12 Bq m(-3) to the maximum of 232 kBq m(-3). The regulation range of temperature, relative humidity and aerosol are 0.66 -44.39°C, 16.4 -95 %RH and 10(2) -10(6) cm(-3), respectively. The main advantages of the NIM radon chamber with respect to maintaining a stable concentration and equilibrium factor of radon progenies in a wide range through automatic regulation and control of radon and aerosol are described.

  12. Protocols for Radon and Radon Decay Product Measurements in Homes

    EPA Pesticide Factsheets

    This May 1993 document, is a guidance document.The objective of this document is to provide information, recommendations and technological guidance for anyone providing measurement services using 15 radon and radon decay product measurement methods.

  13. Measurement of indoor and outdoor radon concentrations during Superstorm Sandy.

    PubMed

    Kotrappa, Payasada; Paul, Prateek; Stieff, Alex; Stieff, Frederick

    2013-12-01

    Superstorm Sandy affected much of the US East Coast extending over 1800 km. It passed over the test location in the State of Maryland on 29 October 2012. Being 350 km away from the regions of highest intensity the storm was of lower intensity at the test location. Continuous radon monitors and passive radon monitors were used for the measurement. The test location was the basement of a single family home representing the indoor concentration. A partially opened garage of the same test home represented the outdoor radon concentration. In 24 h, the atmospheric pressure dropped from 990 to 960 mbar and the indoor radon concentration increased from 70 to 1500 Bq m(-3) and returned to the normal of 70 Bq m(-3) at the end of the storm. Throughout the storm, the outdoor radon concentration was not significantly affected. Probable reasons for such surprisingly large changes are discussed. However, the outdoor temperature dropped from 13°C to 7°C during the radon peak.

  14. Control of indoor radon and radon progeny concentrations

    SciTech Connect

    Sextro, R.G.

    1985-05-01

    There are three general categories of techniques for the control of radon and radon progeny concentrations in indoor air - restriction of radon entry, reduction of indoor radon concentrations by ventilation or air cleaning, and removal of airborne radon progeny. The predominant radon entry process in most residences appears to be pressure driven flow of soil gas through cracks or other openings in the basement, slab, or subfloor. Sealing these openings or ventilation of the subslab or subfloor space are methods of reducing radon entry rates. Indoor radon concentrations may be reduced by increased ventilation. The use of charcoal filters for removal of radon gas in the indoor air by adsorption has also been proposed. Concentrations of radon progeny, which are responsible for most of the health risks associated with radon exposures, can be controlled by use of electrostatic or mechanical filtration. Air circulation can also reduce radon progeny concentrations in certain cases. This paper reviews the application and limitations of each of these control measures and discusses recent experimental results.

  15. An investigation of factors affecting the entry of radon into structures on the Island of Guam

    SciTech Connect

    Kladder, D.L.; Burkhart, J.F.; Thorburn, M.S.

    1995-12-31

    Factors affecting the entry of radon-222 gas into structures on the Island of Guam were investigated during the summer of 1993. Research findings indicated that radon transport into buildings on Guam, and perhaps in other tropical areas, is driven by sub-grade soil pressure (positive with respect to atmospheric pressure) rather than interior buildings vacuums. Immediate and substantive increases in indoor radon concentrations were associated with environmental effects of wind and rain. Radon entry, and hence indoor radon concentrations, is significantly greater during the rainy season as opposed to the dry season. In the absence of mechanically induced interior vacuums in buildings, external environmental forces creating sub-slab pressures are the predominant factor in affecting radon entry in Guam. Indoor radon potentials can be correlated to the locations where the underlying geology is limestone. Furthermore, the radon source appears to be within the first few feet of the surface of these limestones rather than uniformly distributed throughout the limestone. The effects of seismic activity on radon entry are short-lived unless significant damage occurs to a structure. Radon entry during calm weather conditions may also be a function of the rising and falling of ocean tides.

  16. Radon: Is it a problem

    SciTech Connect

    Hart, B.L.; Mettler, F.A.; Harley, N.H. )

    1989-09-01

    Radon gas is a major source of radiation exposure to the general public. Radon-222 is a product of uranium-238, present in varying concentrations in all soils. Radon enters buildings from soil, water, natural gas, and building materials. Its short-lived breakdown products, termed radon daughters, include alpha-emitting solids that can deposit in the lungs. Firm evidence links lung cancer risk in miners with high exposure to radon daughters. The amount of risk associated with the much lower but chronic doses received in buildings is difficult to establish. By some extrapolations, radon daughters may be responsible for a significant number of lung cancer deaths. The existence or extent of synergism with smoking is unresolved. Local conditions can cause high levels of radon in some buildings, and measures that reduce indoor radon are of potential value. 39 references.

  17. Incidence rates of chronic lymphocytic leukemia in US states are associated with residential radon levels.

    PubMed

    Schwartz, Gary G; Klug, Marilyn G

    2016-01-01

    Environmental risk factors for chronic lymphocytic leukemia (CLL) have not been consistently identified. An etiologic role for ionizing radiation in CLL is controversial. Because most of the ionizing radiation to which individuals are exposed comes from radon at home, we examined CLL incidence rates in relation to residential radon levels. We used population-based rates for CLL for US states from 2007 to 2011 and measurements of residential radon made by the US Environmental Protection Agency. Incidence rates for CLL were significantly correlated with residential radon levels among whites (both genders together and each gender separately; p < 0.005) and among blacks (p < 0.05). We speculate that radon increases CLL risk and that the mechanisms may be similar to those by which radon causes lung cancer.

  18. The influence of thoron on instruments measuring radon activity concentration.

    PubMed

    Michielsen, N; Bondiguel, S

    2015-11-01

    Thoron, the isotope 220 of radon, is a radionuclide whose concentration may influence the measurement of the activity concentration of (222)Rn in the air. If in the case of continuous and active sampling measuring instruments, using a pump for example, the influence of thoron on radon measurement is obvious and is taken into account in the apparatus, it is often assumed that in the case of a passive sampling, by diffusion through a filter for example, this thoron influence is negligible. This is due to the very short radioactive half-life of thoron, 55.6 s (3.82 d for (222)Rn), and the assumption that the diffusion time of thoron in the detection chamber is long enough beside that of the thoron half-life. The objective of this study is to check whether this assumption is true or not for different kinds of commercial electronic apparatus used to measure radon activity concentration from soil to dwellings. First of all, the devices were calibrated in activity concentration of radon, and then they were exposed to a controlled thoron atmosphere. The experiments concerning the thoron aimed to investigate the sensitivity to thoron in the radon measuring mode of the apparatus. Results of these experiments show that all devices have a very quick answer to thoron atmosphere, even though the sensitivities vary from one instrument to another. Results clearly show that this influence on radon measurement due to the thoron is observed also after the exposition because of the decay of (212)Pb and its progenies. In conclusion, the sensitivity to thoron in the radon measuring mode depends strongly on the type of instruments. The results of the present investigation show that for some apparatus, the influence of thoron cannot be disregarded especially when measuring radon in soil.

  19. Soil-gas radon as seismotectonic indicator in Garhwal Himalaya.

    PubMed

    Ramola, R C; Prasad, Yogesh; Prasad, Ganesh; Kumar, Sushil; Choubey, V M

    2008-10-01

    Research on earthquake-related radon monitoring has received enormous attention recently. Anomalous behaviour of radon in soil and groundwater can be used as a reliable precursor for an impending earthquake. While earthquake prediction may not yet be possible, earthquake prediction research has greatly increased our understanding of earthquake source mechanisms, the structural complexities of fault zones, and the earthquake recurrence interval, expected at a given location. This paper presents some results of continuous monitoring of radon in soil-gas in Garhwal Himalaya, India. Daily soil-gas radon monitoring with seismic activity and meteorological parameters were performed in the same laboratory system, located at H.N.B. Garhwal University Campus, Tehri Garhwal, India. Radon anomalies along with meteorological parameters were found to be statistically significant for the seismic events within the magnitudes M2.0-M6.0 and epicentral distances of 16-250 km from the monitoring station. The frequent positive and negative anomalies with constant environmental perturbation indicate the opening and closing of micro cracks within the volume of dilatancy by strain energy. The spike-like and sharp peak anomalies were recorded before, during and after earthquakes occurred in the area. The variations in radon concentrations in soil-gas are found to be correlated with seismic activities in the Garhwal Himalaya. The correlation between radon level and meteorological parameters is also discussed.

  20. Field comparison of commercially available short-term radon detectors.

    PubMed

    Sun, Kainan; Majdan, Marek; Field, Daniel W; Field, R William

    2006-09-01

    We performed a comparison of commercially available short-term radon detectors in order to determine the accuracy and precision of the detectors under actual field conditions. We exposed fifteen radon detectors, under field conditions, from each of six companies to a reference radon concentration. Five of the six companies tested did not pass the U.S. Environmental Protection Agency's previously established accuracy guideline (all individual relative errors radon detectors exposed under actual field conditions may not be as accurate or precise as those detectors available prior to the close of the EPA's National Radon Proficiency Program in 1998. It is unknown if this one-time "snap shot" represents the overall reliability of the accuracy and precision of commercially available radon detectors. Nonetheless, the findings suggest that additional double-blind testing of commercially available radon detectors under actual field conditions is warranted.

  1. Preliminary assessment of radon potential of the Pacific coast states

    SciTech Connect

    Otton, J.K. )

    1993-04-01

    The US Geological Survey has recently released preliminary assessments of the radon potential in Washington, Oregon, and California. These assessments, funded by the Environmental Protection Agency, are based on geology, soils, aeroradiometric data, indoor radon data, and housing characteristics. Coastal mountain areas with low-uranium basaltic rocks and high soil moisture, and drier inland areas of low-uranium basaltic rocks in the northern part of the three-stage area have low round potential (<10 percent of homes with >4 pCi/L). Areas with highly permeable, uraniferous glacial outwash deposits in central and northeastern Washington; local areas with uraniferous marine shales in southern and south-central California; areas of granites, acidic volcanic rocks and alluvium derived from then in southeastern Oregon and central California; and steep soils developed on volcanic rocks in the Columbia River Gorge all have moderate (10-25 percent of homes with >4 pCi/L) radon potential. Extreme levels of indoor radon are possible in the northern Spokane, Wash. suburbs where homes may be sited on uranium occurrences. the radon potential of Mojave-Desert areas with high-uranium soils and rocks seems to be lowered by low radon entry rates, probably caused by slab-on-grade construction, use of evaporative coolers, and lifestyle factors. With the uranium-rich soils and rocks present, however, high indoor radon levels are possible where unusual housing conditions are present.

  2. Test Your Home for Radon, You May Prevent Lung Cancer Radon kills 21,000 Americans each year, readily available tests can warn of high levels in homes

    EPA Pesticide Factsheets

    (01/15/16 -Atlanta) - January is National Radon Action Month and the U.S. Environmental Protection Agency (EPA) encourages Americans around the country to test their homes for radon, the second leading cause of lung cancer. Make 2016 a healthier, safer new

  3. Practical environmental, working area and stack discharge samplers, passive and dynamic, for measurement of tritium as HTO and HT

    SciTech Connect

    Otlet, R.L.; Walker, A.J. ); Caldwell-Nichols, C.J. )

    1992-03-01

    Reliable measurement of Tritium for regulatory and radiological protection purposes requires the design of samplers which are simple to operate and easy to maintain and check during operation. Where measurements of Tritium in only the oxide form suffice, passive (diffusion tube type) samplers are very effective, requiring no moving parts or power supplies for their operation. Where separate measurement of Tritium in the oxide (HTO) and elemental form (HT) is required dynamic samplers, involving pumped gas systems, are generally necessary. In this paper, designs of both type of sampler, commissioned by JET, are described and the results of one year's operation, for environmental applications, are presented and discussed.

  4. Towards a Brazilian radon map: consortium radon Brazil.

    PubMed

    Silva, N C; Bossew, P; Ferreira Filho, A L; Campos, T F C; Pereira, A J S C; Yoshimura, E M; Veiga, L H S; Campos, M P; Rocha, Z; Paschuk, S A; Bonotto, D M

    2014-07-01

    Recently, the idea of generating radon map of Brazil has emerged. First attempts of coordinating radon surveys--carried out by different groups across the country--and initial discussions on how to proceed on a larger scale were made at the First Brazilian Radon Seminary, Natal, September 2012. Conventionally, it is believed that indoor radon is no major problem in Brazil, because the overall benign climate usually allows high ventilation rates. Nevertheless, scattered measurements have shown that moderately high indoor radon concentrations (up to a few hundred Bq m⁻³) do occur regionally. Brazilian geology is very diverse and there are regions where an elevated geogenic radon potential exists or is expected to exist. Therefore, a Brazilian Radon Survey is expected to be a challenge, although it appears an important issue, given the rising concern of the public about the quality of its environment.

  5. Bayesian Prediction of Mean Indoor Radon Concentrations for Minnesota Counties

    SciTech Connect

    Price, P.N.; Nero, A.V.; Gelman, A.

    1995-08-01

    Past efforts to identify areas having higher than average indoor radon concentrations by examining the statistical relationship between local mean concentrations and physical parameters such as the soil radium concentration have been hampered by the noise in local means caused by the small number of homes monitored in some or most areas, In the present paper, indoor radon data from a survey in Minnesota are analyzed in such a way as to minimize the effect of finite sample size within counties, in order to determine the true county-to-county variation of indoor radon concentrations in the state and the extent to which this variation is explained by the variation in surficial radium concentration among counties, The analysis uses hierarchical modeling, in which some parameters of interest (such as county geometric mean (GM) radon concentrations) are assumed to be drawn from a single population, for which the distributional parameters are estimated from the data. Extensions of this technique, known as a random effects regression and mixed effects regression, are used to determine the relationship between predictive variables and indoor radon concentrations; the results are used to refine the predictions of each county's radon levels, resulting in a great decrease in uncertainty. The true county-to-county variation of GM radon levels is found to be substantially less than the county-to-county variation of the observed GMs, much of which is due to the small sample size in each county. The variation in the logarithm of surficial radium content is shown to explain approximately 80% of the variation of the logarithm of GM radon concentration among counties. The influences of housing and measurement factors, such as whether the monitored home has a basement and whether the measurement was made in a basement, are also discussed. This approach offers a self-consistent statistical method for predicting the mean values of indoor radon concentrations or other geographically

  6. Bayesian Prediction of Mean Indoor Radon Concentrations for Minnesota Counties

    SciTech Connect

    Price, P.N.; Nero, A.V.; Gelman, A.

    1996-02-01

    Past efforts to identify areas with higher than average indoor radon concentrations by examining the statistical relationship between local mean concentrations and physical parameters such as the soil radium concentration have been hampered by the variation in local means caused by the small number of homes monitored in most areas. In this paper, indoor radon data from a survey in Minnesota are analyzed to minimize the effect of finite sample size within counties, to determine the true county-to-county variation of indoor radon concentrations in the state, and to find the extent to which this variation is explained by the variation in surficial radium concentration among counties. The analysis uses hierarchical modeling, in which some parameters of interest (such as county geometric mean (GM) radon concentrations) are assumed to be drawn from a single population, for which the distributional parameters are estimated from the data. Extensions of this technique, known as a random effects regression and mixed effects regression, are used to determine the relationship between predictive variables and indoor radon concentrations; the results are used to refine the predictions of each county's radon levels, resulting in a great decrease in uncertainty. The true county-to-county variation of GM radon levels is found to be substantially less than the county-to-county variation of the observed GMs, much of which is due to the small sample size in each county. The variation in the logarithm of surficial radium content is shown to explain approximately 80% of the variation of the logarithm of GM radon concentration among counties. The influences of housing and measurement factors, such as whether the monitored home has a basement and whether the measurement was made in a basement, are also discussed. The statistical method can be used to predict mean radon concentrations, or applied to other geographically distributed environmental parameters.

  7. Bayesian prediction of mean indoor radon concentrations for Minnesota counties.

    PubMed

    Price, P N; Nero, A V; Gelman, A

    1996-12-01

    Past efforts to identify areas with higher than average indoor radon concentrations by examining the statistical relationship between local mean concentrations and physical parameters such as the soil radium concentration have been hampered by the variation in local means caused by the small number of homes monitored in most areas. In this paper, indoor radon data from a survey in Minnesota are analyzed to minimize the effect of finite sample size within counties, to determine the true county-to-county variation of indoor radon concentrations in the state, and to find the extent to which this variation is explained by the variation in surficial radium concentration among counties. The analysis uses hierarchical modeling, in which some parameters of interest (such as county geometric mean radon concentrations) are assumed to be drawn from a single population, for which the distributional parameters are estimated from the data. Extensions of this technique, known as random effects regression and mixed effects regression, are used to determine the relationship between predictive variables and indoor radon concentrations; the results are used to refine the predictions of each county's radon levels, resulting in a great decrease in uncertainty. The true county-to-county variation of geometric mean radon levels is found to be substantially less than the county-to-county variation of the observed geometric means, much of which is due to the small sample size in each county. The variation in the logarithm of surficial radium content is shown to explain approximately 80% of the variation of the logarithm of geometric mean radon concentration among counties. The influences of housing and measurement factors, such as whether the monitored home has a basement and whether the measurement was made in a basement, are also discussed. The statistical method can be used to predict mean radon concentrations, or applied to other geographically distributed environmental parameters.

  8. Evaluation of radon occurrence in groundwater from 16 geologic units in Pennsylvania, 1986–2015, with application to potential radon exposure from groundwater and indoor air

    USGS Publications Warehouse

    Gross, Eliza L.

    2017-05-11

    Results from 1,041 groundwater samples collected during 1986‒2015 from 16 geologic units in Pennsylvania, associated with 25 or more groundwater samples with concentrations of radon-222, were evaluated in an effort to identify variations in radon-222 activities or concentrations and to classify potential radon-222 exposure from groundwater and indoor air. Radon-222 is hereafter referred to as “radon.” Radon concentrations in groundwater greater than or equal to the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) for public-water supply systems of 300 picocuries per liter (pCi/L) were present in about 87 percent of the water samples, whereas concentrations greater than or equal to the proposed alternative MCL (AMCL) for public water-supply systems of 4,000 pCi/L were present in 14 percent. The highest radon concentrations were measured in groundwater from the schists, gneisses, and quartzites of the Piedmont Physiographic Province.In this study, conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Health and the Pennsylvania Department of Environmental Protection, groundwater samples were aggregated among 16 geologic units in Pennsylvania to identify units with high median radon concentrations in groundwater. Graphical plots and statistical tests were used to determine variations in radon concentrations in groundwater and indoor air. Median radon concentrations in groundwater samples and median radon concentrations in indoor air samples within the 16 geologic units were classified according to proposed and recommended regulatory limits to explore potential radon exposure from groundwater and indoor air. All of the geologic units, except for the Allegheny (Pa) and Glenshaw (Pcg) Formations in the Appalachian Plateaus Physiographic Province, had median radon concentrations greater than the proposed EPA MCL of 300 pCi/L, and the Peters Creek Schist (Xpc), which is in the Piedmont

  9. Field investigation of surface-deposited radon progeny as a possible predictor of the airborne radon progeny dose rate.

    PubMed

    Sun, Kainan; Steck, Daniel J; Field, R William

    2009-08-01

    The quantitative relationships between radon gas concentration, the surface-deposited activities of various radon progeny, the airborne radon progeny dose rate, and various residential environmental factors were investigated through actual field measurements in 38 selected Iowa houses occupied by either smokers or nonsmokers. Airborne dose rate was calculated from unattached and attached potential alpha energy concentrations (PAECs) using two dosimetric models with different activity-size weighting factors. These models are labeled Pdose and Jdose, respectively. Surface-deposited 218Po and 214Po were found significantly correlated to radon, unattached PAEC, and both airborne dose rates (p < 0.0001) in nonsmoking environments. However, deposited 218Po was not significantly correlated to the above parameters in smoking environments. In multiple linear regression analysis, natural logarithm transformation was performed for airborne dose rate as the dependent variable, as well as for radon and deposited 218Po and 214Po as predictors. An interaction effect was found between deposited 214Po and an obstacle in front of the Retrospective Reconstruction Detector (RRD) in predicting dose rate (p = 0.049 and 0.058 for Pdose and Jdose, respectively) for nonsmoking environments. After adjusting for radon and deposited radon progeny effects, the presence of either cooking, usage of a fireplace, or usage of a ceiling fan significantly, or marginally significantly, reduced the Pdose to 0.65 (90% CI 0.42-0.996), 0.54 (90% CI 0.28-1.02), and 0.66 (90% CI 0.45-0.96), respectively. For Jdose, only the usage of a ceiling fan significantly reduced the dose rate to 0.57 (90% CI 0.39-0.85). In smoking environments, deposited 218Po was a significant negative predictor for Pdose (RR 0.68, 90% CI 0.55-0.84) after adjusting for long-term 222Rn and environmental factors. A significant decrease of 0.72 (90% CI 0.64-0.83) in the mean Pdose was noted, after adjusting for the radon and radon

  10. Field Investigation of the Surface-deposited Radon Progeny as a Possible Predictor of the Airborne Radon Progeny Dose Rate

    PubMed Central

    Sun, Kainan; Steck, Daniel J.; Field, R. William

    2009-01-01

    The quantitative relationships between radon gas concentration, the surface-deposited activities of various radon progeny, the airborne radon progeny dose rate, and various residential environmental factors were investigated through actual field measurements in 38 selected Iowa houses occupied by either smokers or nonsmokers. Airborne dose rate was calculated from unattached and attached potential alpha energy concentrations (PAECs) using two dosimetric models with different activity-size weighting factors. These models are labeled Pdose and Jdose, respectively. Surface-deposited 218Po and 214Po were found significantly correlated to radon, unattached PAEC, and both airborne dose rates (p < 0.0001) in nonsmoking environments. However, deposited 218Po was not significantly correlated to the above parameters in smoking environments. In multiple linear regression analysis, natural logarithm transformation was performed for airborne dose rate as the dependent variable, as well as for radon and deposited 218Po and 214Po as predictors. An interaction effect was found between deposited 214Po and an obstacle in front of the Retrospective Reconstruction Detector (RRD) in predicting dose rate (p = 0.049 and 0.058 for Pdose and Jdose, respectively) for nonsmoking environments. After adjusting for radon and deposited radon progeny effects, the presence of either cooking, usage of a fireplace, or usage of a ceiling fan significantly, or marginal significantly, reduced the Pdose to 0.65 (90% CI 0.42–0.996), 0.54 (90% CI 0.28–1.02) and 0.66 (90% CI 0.45–0.96), respectively. For Jdose, only the usage of a ceiling fan significantly reduced the dose rate to 0.57 (90% CI 0.39–0.85). In smoking environments, deposited 218Po was a significant negative predictor for Pdose (RR 0.68, 90% CI 0.55–0.84) after adjusting for long-term 222Rn and environmental factors. A significant decrease of 0.72 (90% CI 0.64–0.83) in the mean Pdose was noted, after adjusting for the radon and

  11. Radon: a bibliography

    SciTech Connect

    Lepman, S.R.; Boegel, M.L.; Hollowell, C.D.

    1981-01-01

    The Lawrence Berkeley Laboratory, with the support of the Department of Energy, has developed a computerized database to manage research information in the area of building ventilation and indoor air quality. This literature survey contains references pertaining to the physical properties of radon and its daughters, instrumentation for their measurement, health effects, surveys and measurements, and regulatory information. The references in the bibliography are sequenced in alphabetical order and abstracts are included when supplied by the author. The objective of this report is to disseminate the bibliographic references compiled at the laboratory relating to radon research portion of the program. Interested database users are encouraged to contact the laboratory to receive instructions for direct database acess. A flyer describing the database is supplied at the end of the bibliography and a brief overview of the Radon Research porgram is given.

  12. The radon EDM apparatus

    NASA Astrophysics Data System (ADS)

    Tardiff, E. R.; Rand, E. T.; Ball, G. C.; Chupp, T. E.; Garnsworthy, A. B.; Garrett, P.; Hayden, M. E.; Kierans, C. A.; Lorenzon, W.; Pearson, M. R.; Schaub, C.; Svensson, C. E.

    2014-01-01

    The observation of a permanent electric dipole moment (EDM) at current experimentally accessible levels would provide clear evidence of physics beyond the Standard Model. EDMs violate CP symmetry, making them a possible route to explaining the size of the observed baryon asymmetry in the universe. The Radon EDM Experiment aims to search for an EDM in radon isotopes whose sensitivity to CP-odd interactions is enhanced by octupole-deformed nuclei. A prototype apparatus currently installed in the ISAC hall at TRIUMF includes a gas handling system to move radon from a collection foil to a measurement cell and auxiliary equipment for polarization diagnostics and validation. The features and capabilities of the apparatus are described and an overview of the experimental design for a gamma-ray-anisotropy based EDM measurement is provided.

  13. The effectiveness of mitigation for reducing radon risk in single-family Minnesota homes.

    PubMed

    Steck, Daniel J

    2012-09-01

    Increased lung cancer incidence has been linked with long-term exposure to elevated residential radon. Experimental studies have shown that soil ventilation can be effective in reducing radon concentrations in single-family homes. Most radon mitigation systems in the U.S. are installed by private contractors. The long-term effectiveness of these systems is not well known, since few state radon programs regulate or independently confirm post-mitigation radon concentrations. The effectiveness of soil ventilation systems in Minnesota was measured for 140 randomly selected clients of six professional mitigators. Homeowners reported pre-mitigation radon screening concentrations that averaged 380 Bq m (10.3 pCi L). Long term post-mitigation radon measurements on the two lowest floors show that, even years after mitigation, 97% of these homes have concentrations below the 150 Bq m U.S. Environmental Protection Agency action level. The average post-mitigation radon in the houses was 30 Bq m, an average observed reduction of >90%. If that reduction was maintained over the lifetime of the 1.2 million Minnesotans who currently reside in single-family homes with living space radon above the EPA action level, approximately 50,000 lives could be extended for nearly two decades by preventing radon-related lung cancers.

  14. Factors contributing to elevated indoor radon in the Paso Del Norte region of the Texas-Mexico border: information for physicians.

    PubMed

    Cech, Irina; Burau, Keith D; Al-Hashimi, Radhiya

    2009-07-01

    We collected sample data on radon concentrations concurrently in the air, water, and soil in the northern part of the Texas-Mexico border (both sides) popularly known as Paso Del Norte. These field data were used to statistically correlate relative contributions of yard soil, tap water, location, and house features to concentrations of radon indoors. Indoor air radon concentrations in some homes were up to nine-fold the limit recommended by the US Environmental Protection Agency (USEPA). Concentrations of radon in tap water were up to nearly three-fold the recommended limit. Apartments and manufactured homes had generally greater concentrations of indoor radon. Statistically significant associations were indicated between indoor radon air levels and radon in the soil (P < 0.001); radon in the water and radium in water (P = 0.016); radon air levels and apartment living (P = 0.010); and mobile homes vs. wood, brick, and stucco construction (P = 0.016). Radon soil gas, apartment living, and the aluminum plank wall environment of mobile homes were associated with elevated indoor radon in the homes studied. Physician's attention is invited to the potential nontrivial risk from radon, as it becomes trapped inside enclosed structures. This article is intended to serve as a resource for primary care physicians who want to better understand the distribution and contributing factors for indoor radon. The Surgeon General recommends every US home be tested for radon as of January 13, 2005.

  15. Radon programmes and health marketing.

    PubMed

    Fojtikova, Ivana; Rovenska, Katerina

    2011-05-01

    Being aware of negative health effects of radon exposure, many countries aim for the reduction of the radon exposure of their population. The Czech radon programme was commenced >20 y ago. Since then experts have gathered a lot of knowledge, necessary legislation has been enacted, tens of thousands of inhabitants have been offered free measurement and subsidy for the mitigation. Despite the effort, the effectiveness of the radon programme seems to be poor. Newly built houses still exhibit elevated radon concentrations and the number of houses mitigated is very low. Is it possible to enhance the effectivity of radon programme while keeping it on a voluntary basis? One possible way is to employ health marketing that draws together traditional marketing theories and science-based strategies to prevention. The potential of using marketing principles in communication and delivery of radon information will be discussed.

  16. The April 1994 and October 1994 radon intercomparisons at EML

    SciTech Connect

    Fisenne, I.M.; George, A.C.; Perry, P.M.; Keller, H.W.

    1995-10-01

    Quality assurance/quality control (QA/QC) are the backbone of many commercial and research processes and programs. QA/QC research tests the state of a functioning system, be it the production of manufactured goods or the ability to make accurate and precise measurements. The quality of the radon measurements in the US have been tested under controlled conditions in semi-annual radon gas intercomparison exercises sponsored by the Environmental Measurements Laboratory (EML) since 1981. The two Calendar Year 1994 radon gas intercomparison exercises were conducted in the EML exposure chamber. Thirty-two groups including US Federal facilities, USDOE contractors, national and state laboratories, universities and foreign institutions participated in these exercises. The majority of the participant`s results were within {+-}10% of the EML value at radon concentrations of 570 and 945 Bq m{sup {minus}3}.

  17. What Teachers Should Know about Radon.

    ERIC Educational Resources Information Center

    Bettis, Clifford; Throckmorton, Carl

    1991-01-01

    Attempts to clear up misunderstandings about radon and outlines information teachers can convey to their students. Includes a brief history of radon, health threats posed by radon, methods to measure radon quantities, homeowner risks and preventative actions, and a glossary of radon terms. (MDH)

  18. What Teachers Should Know about Radon.

    ERIC Educational Resources Information Center

    Bettis, Clifford; Throckmorton, Carl

    1991-01-01

    Attempts to clear up misunderstandings about radon and outlines information teachers can convey to their students. Includes a brief history of radon, health threats posed by radon, methods to measure radon quantities, homeowner risks and preventative actions, and a glossary of radon terms. (MDH)

  19. Statistical analysis of real-time, enviromental radon monitoring results at the Fernald Enviromental Management Project

    SciTech Connect

    Liu, Ning; Spitz, H.B.; Tomezak, L.

    1996-02-01

    A comprehensive real-time, environmental radon monitoring program is being conducted at the Fernald Environmental Management Project, where a large quantity of radium-bearing residues have been stored in two covered earth-bermed silos. Statistical analyses was conducted to determine what impact radon emitted by the radium bearing materials contained in the silos has on the ambient radon concentration at the Fernald Environmental Management Project site. The distribution that best describes the outdoor radon monitoring data was determined before statistical analyses were conducted. Random effects associated with the selection of radon monitoring locations were accommodated by using nested and nested factorial classification models. The Project site was divided into four general areas according to their characteristics and functions: (1) the silo area, where the radium-bearing waste is stored; (2) the production/administration area; (3) the perimeter area, or fence-line, of the Fernald Environmental Management Project site; and (4) a background area, located approximately 13 km from the Fernald Environmental Management Project site, representing the naturally-occurring radon concentration. A total of 15 continuous, hourly readout radon monitors were installed to measure the outdoor radon concentration. Measurement results from each individual monitor were found to be log-normally distributed. A series of contrast tests, which take random effects into account, were performed to compare the radon concentration between different areas of the site. These comparisons demonstrate that the radon concentrations in the production/administration area and the perimeter area are statistically equal to the natural background, whereas the silo area is significantly higher than background. The study also showed that the radon concentration in the silo area was significantly reduced after a sealant barrier was applied to the contents of the silos. 10 refs., 6 figs., 8 tabs.

  20. Radon assay for SNO+

    SciTech Connect

    Rumleskie, Janet

    2015-12-31

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  1. Radon assay for SNO+

    NASA Astrophysics Data System (ADS)

    Rumleskie, Janet

    2015-12-01

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  2. Analysis of volatile phase transport in soils using natural radon gas as a tracer

    SciTech Connect

    Chen, C.; Thomas, D.M.

    1992-12-31

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The .experiment monitored soil gas radon activity, soil moisture, and soil temperature at three depths in the shallow soil column; barometric pressure, rainfall and wind speed were monitored at the soil surface. Linear and multiple regression analysis of the data sets has shown that the gas phase radon activities under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been demonstrated.

  3. Analysis of volatile phase transport in soils using natural radon gas as a tracer

    SciTech Connect

    Chen, C.; Thomas, D.M.

    1992-01-01

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The .experiment monitored soil gas radon activity, soil moisture, and soil temperature at three depths in the shallow soil column; barometric pressure, rainfall and wind speed were monitored at the soil surface. Linear and multiple regression analysis of the data sets has shown that the gas phase radon activities under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been demonstrated.

  4. Radon, thoron and their progeny levels in some dwellings of northern Haryana, India using SSNTDs

    NASA Astrophysics Data System (ADS)

    Saini, R. S.; Nain, Mahabir; Chauhan, R. P.; Kishore, Nawal; Chakarvarti, S. K.

    2009-08-01

    Radon pollution is an important global problem of radiation hygiene. Radon and its progeny are the major contributors in the radiation dose received by general population of the world. Keeping this in mind the environmental monitoring of radon, thoron and their progeny in some dwellings of northern part of Haryana state of India has been carried out. The radon-thoron twin dosimeter cups were used for the study. The aim of the study is the possible health risk assessment in the dwellings under consideration.

  5. Radon in the Workplace: the Occupational Safety and Health Administration (OSHA) Ionizing Radiation Standard.

    PubMed

    Lewis, Robert K

    2016-10-01

    On 29 December 1970, the Occupational Safety and Health Act of 1970 established the Occupational Safety and Health Administration (OSHA). This article on OSHA, Title 29, Part 1910.1096 Ionizing Radiation standard was written to increase awareness of the employer, the workforce, state and federal governments, and those in the radon industry who perform radon testing and radon mitigation of the existence of these regulations, particularly the radon relevant aspect of the regulations. This review paper was also written to try to explain what can sometimes be complicated regulations. As the author works within the Radon Division of the Pennsylvania Department of Environmental Protection, Bureau of Radiation Protection, the exclusive focus of the article is on radon. The 1910.1096 standard obviously covers many other aspects of radiation and radiation safety in the work place.

  6. Estimation of radon diffusion coefficients in soil using an updated experimental system.

    PubMed

    Prasad, Ganesh; Ishikawa, Tetsuo; Hosoda, Masahiro; Sorimachi, Atsuyuki; Janik, Miroslaw; Sahoo, Sarata Kumar; Tokonami, Shinji; Uchida, Shigeo

    2012-09-01

    Radon diffusion through soil is strongly affected by the degree of water saturation of the soil pores. Methods have been developed by many researchers to measure radon diffusion coefficient. We developed an updated experimental system to estimate radon diffusion coefficients for typical types of soil in Japan and applied it to a typical loam with different water saturation levels (0-0.82). The system consists of a passive-type scintillation cell, soil column, accumulation tank, and radon source. The radon concentration in the accumulation tank is kept stable, and radon diffused through the soil column is continuously measured with the passive-type scintillation cell. We found the radon diffusion coefficients vary from 9.60 × 10(-6) m(2) s(-1) to 1.27 × 10(-7) m(2) s(-1) for the loam samples. Generally, the diffusion coefficients are almost constant for a water saturation range of 0-0.4 and decrease with increasing water saturation from 0.4 to 0.82.

  7. Contribution of radon and radon daughters to respiratory cancer.

    PubMed Central

    Harley, N; Samet, J M; Cross, F T; Hess, T; Muller, J; Thomas, D

    1986-01-01

    This article reviews studies on the contribution of radon and radon daughters to respiratory cancer and proposes recommendations for further research, particularly a national radon survey. The steady-state outdoor radon concentration averages 200 pCi/m3, and indoor levels are about 4 times higher. The primary source of radon in homes is the underlying soil; entry depends on multiple variables and reduced ventilation for energy conservation increases indoor radon levels. Occupational exposures are expressed in units of radon daughter potential energy concentration or working level (WL). Cumulative exposure is the product of the working level and the time exposed. The unit for cumulative exposure is the working level month (WLM). The occupational standard for radon exposure is 4 WLM/year, and 2 WLM/year has been suggested as a guideline for remedial action in homes. Epidemiologic studies show that miners with cumulative radon daughter exposures somewhat below 100 WLM have excess lung cancer mortality. Some 3% to 8% of miners studied have developed lung cancer attributable to radon daughters. All of the underground mining studies show an increased risk of lung cancer with radon daughter exposure. All cell types of lung cancer increased with radon exposure. If radon and smoking act in a multiplicative manner, then the risk for smokers could be 10 times that for nonsmokers. The potential risk of lung cancer appears to be between 1 and 2 per 10,000/WLM, which yields a significant number of lung cancers as some 220 million persons in the United States are exposed on average to 10 to 20 WLM/lifetime. PMID:3830103

  8. Spatially distributed environmental fate modelling of terbuthylazine in a mesoscale agricultural catchment using passive sampler data

    NASA Astrophysics Data System (ADS)

    Gassmann, Matthias; Farlin, Julien; Gallé, Tom

    2017-04-01

    Agricultural application of herbicides often leads to significant herbicide losses to receiving rivers. The impact of agricultural practices on water pollution can be assessed by process-based reactive transport modelling using catchment scale models. Prior to investigations of management practices, these models have to be calibrated using sampling data. However, most previous studies only used concentrations at the catchment outlet for model calibration and validation. Thus, even if the applied model is spatially distributed, predicted spatial differences of pesticide loss cannot be directly compared to observations. In this study, we applied the spatially distributed reactive transport model Zin-AgriTra in the mesoscale (78 km2) catchment of the Wark River in Luxembourg in order to simulate concentrations of terbuthylazine in river water. In contrast to former studies, we used six sampling points, equipped with passive samplers, for pesticide model validation. Three samplers were located in the main channel of the river and three in smaller tributaries. At each sampling point, event mean concentration of six events from May to July 2011 were calculated by subtraction of baseflow-mass from total collected mass assuming time-proportional uptake by passive samplers. Continuous discharge measurements and high-resolution autosampling during events allowed for accurate load calculations at the outlet. Detailed information about maize cultivation in the catchment and nation-wide terbuthylazine application statistics (341 g/ha in the 3rd week of May) were used for a definition of the pesticide input function of the model. The hydrological model was manually calibrated to fit baseflow and spring/summer events. Substance fluxes were calibrated using a Latin Hypercube of physico-chemical substance characteristics as provided by the literature: surface soil half-lives of 10-35 d, Freundlich KOC of 150-330 ml/g, Freundlich n of 0.9 - 1 and adsorption/desorption kinetics of 20

  9. Mapping geogenic radon potential by regression kriging.

    PubMed

    Pásztor, László; Szabó, Katalin Zsuzsanna; Szatmári, Gábor; Laborczi, Annamária; Horváth, Ákos

    2016-02-15

    Radon ((222)Rn) gas is produced in the radioactive decay chain of uranium ((238)U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. Copyright © 2015 Elsevier B.V. All rights

  10. Radon prevention in new construction in Finland: a nationwide sample survey in 2009.

    PubMed

    Arvela, H; Holmgren, O; Reisbacka, H

    2012-03-01

    The building code for radon prevention and the associated practical guidelines were revised in Finland in 2003-2004. Thereafter, preventive measures have become more common and effective and indoor radon concentrations have been markedly reduced. In this study, the indoor radon concentration was measured in 1500 new low-rise residential houses. The houses were randomly selected and represented 7 % of the houses that received building permission in 2006. The average radon concentration of all the houses measured, which were completed in 2006-2008, was 95 Bq m(-3), the median being 58 Bq m(-3). The average was 33 % lower than in houses completed in 2000-2005. The decrease was 47 % in provinces with the highest indoor radon concentration and 26 % elsewhere in the country. In houses with a slab-on-ground foundation that had both passive radon piping and sealing measures carried out using a strip of bitumen felt in the joint between the foundation wall and floor slab, the radon concentration was on average reduced by 57 % compared with houses with no preventive measures. Preventive measures were taken nationwide in 54 % of detached houses and in provinces with the highest radon concentration in 92 % of houses.

  11. Monitoring trends in civil engineering and their effect on indoor radon.

    PubMed

    Ringer, W

    2014-07-01

    In this paper, the importance of monitoring new building concepts is discussed. The effect of energy-efficient construction technologies on indoor radon is presented in more detail. Comparing the radon levels of about 100 low-energy and passive houses in Austria with radon levels in conventional new houses show that, in energy-efficient new houses, the radon level is about one-third lower than in conventional new houses. Nevertheless, certain features or bad practice may cause high radon levels in energy-efficient new houses. Recommendations to avoid adverse effects were set up. Furthermore, the paper deals with the effect of thermal retrofitting on indoor radon. Results from a Swiss study where 163 dwellings were measured before and after thermal retrofit yield an increase of the radon level of 26% in average. Among the various retrofit measures, replacing windows has the greatest impact on the indoor radon level. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Predictors of Indoor Radon Concentrations in Pennsylvania, 1989–2013

    PubMed Central

    Casey, Joan A.; Ogburn, Elizabeth L.; Rasmussen, Sara G.; Irving, Jennifer K.; Pollak, Jonathan; Locke, Paul A.

    2015-01-01

    Background Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP). Objectives We evaluated predictors of indoor radon concentrations. Methods Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells. Results Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167–679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52–178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = –0.323, 95% CI: –0.333, –0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories (p < 0.001), with higher levels in counties having ≥ 100 drilled wells versus counties with none, and with highest levels in the Reading Prong. Conclusions Geologic unit, well water, community, weather, and unconventional natural gas development were associated with indoor radon

  13. Predictors of Indoor Radon Concentrations in Pennsylvania, 1989-2013.

    PubMed

    Casey, Joan A; Ogburn, Elizabeth L; Rasmussen, Sara G; Irving, Jennifer K; Pollak, Jonathan; Locke, Paul A; Schwartz, Brian S

    2015-11-01

    Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP). We evaluated predictors of indoor radon concentrations. Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells. Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167-679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52-178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = -0.323, 95% CI: -0.333, -0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories (p < 0.001), with higher levels in counties having ≥ 100 drilled wells versus counties with none, and with highest levels in the Reading Prong. Geologic unit, well water, community, weather, and unconventional natural gas development were associated with indoor radon concentrations. Future studies should include direct environmental

  14. A REVIEW OF RADON MITIGATION IN LARGE BUILDINGS IN THE US

    EPA Science Inventory

    The Environmental Protection Agency of the US carried out its initial research on radon mitigation in houses, both existing and new. A review of this work is presented in another paper at this workshop. Four years ago, this work was expanded to include the study of radon in schoo...

  15. A Citizen's Guide to Radon. What It Is and What To Do about It.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) are concerned about the increased risk of developing lung cancer faced by persons exposed to above-average levels of radon in their homes. The purpose of this pamphlet is to help readers to understand the radon problem and decide if they need to take…

  16. A REVIEW OF RADON MITIGATION IN LARGE BUILDINGS IN THE US

    EPA Science Inventory

    The Environmental Protection Agency of the US carried out its initial research on radon mitigation in houses, both existing and new. A review of this work is presented in another paper at this workshop. Four years ago, this work was expanded to include the study of radon in schoo...

  17. The Chemistry of Radon

    NASA Astrophysics Data System (ADS)

    Avrorin, V. V.; Krasikova, R. N.; Nefedov, V. D.; Toropova, M. A.

    1982-01-01

    We shall review the discovery of this element, studies of its chemical nature, and modern ideas on its chemical and physical properties. Possible chemical and nuclear-chemical methods of synthesising new radon compounds and of determining their properties and their identity will be discussed, using information published up to May 1980. 121 references.

  18. Publications about Radon

    EPA Pesticide Factsheets

    There is no known safe level of exposure to radon. EPA strongly recommends that you fix your home if your test shows 4 picocuries (pCi/L) or more. These publications and resources will provide you with the information you need to fix your home.

  19. Relationships between indoor radon concentrations, thermal retrofit and dwelling characteristics.

    PubMed

    Collignan, Bernard; Le Ponner, Eline; Mandin, Corinne

    2016-12-01

    A monitoring campaign was conducted on a sample of more than 3400 dwellings in Brittany, France from 2011 to 2014. The measurements were collected using one passive dosimeter per dwelling over two months during the heating season, according to the NF ISO 11665-8 (2013) standard. Moreover, building characteristics such as the period of construction, construction material, type of foundation, and thermal retrofit were determined using a questionnaire. The final data set consisted of 3233 houses with the measurement results and the questionnaire answers. Multivariate linear regression models were applied to explore the relationships between the indoor radon concentrations and building characteristics, particularly the thermal retrofit. The geometric mean of the indoor radon concentration was 155 Bq m(-3) (with a geometric standard deviation of 3). The houses that had undergone a thermal retrofit had a higher average radon concentration than those that had not, which may have been due to a decrease in air permeability of the building envelope following rehabilitation work that did not systematically include proper management of the ventilation. Other building characteristics, primarily the building material and the foundation type, were associated with the indoor radon concentration. The indoor radon concentrations were higher in older houses built with granite or other stone, with a slab-on-grade foundation and without any ventilation system.

  20. Radon exposure at a radioactive waste storage facility.

    PubMed

    Manocchi, F H; Campos, M P; Dellamano, J C; Silva, G M

    2014-06-01

    The Waste Management Department of Nuclear and Energy Research Institute (IPEN) is responsible for the safety management of the waste generated at all internal research centers and that of other waste producers such as industry, medical facilities, and universities in Brazil. These waste materials, after treatment, are placed in an interim storage facility. Among them are (226)Ra needles used in radiotherapy, siliceous cake arising from conversion processes, and several other classes of waste from the nuclear fuel cycle, which contain Ra-226 producing (222)Rn gas daughter.In order to estimate the effective dose for workers due to radon inhalation, the radon concentration at the storage facility has been assessed within this study. Radon measurements have been carried out through the passive method with solid-state nuclear track detectors (CR-39) over a period of nine months, changing detectors every month in order to determine the long-term average levels of indoor radon concentrations. The radon concentration results, covering the period from June 2012 to March 2013, varied from 0.55 ± 0.05 to 5.19 ± 0.45 kBq m(-3). The effective dose due to (222)Rn inhalation was further assessed following ICRP Publication 65.

  1. The Therapeutic use of Radon: A Biomedical Treatment in Europe; An “Alternative” Remedy in the United States

    PubMed Central

    Erickson, Barbra E.

    2007-01-01

    There is a growing recognition in the United States and Europe that health care is driven to a significant extent by an emphasis on consumer choice and demand. As consumers, people regularly choose their own solutions for health promotion and maintenance, solutions which may or may not be sanctioned by mainstream medicine. Radioactive radon therapy exemplifies a non-sanctioned treatment eagerly sought by certain patients, but scorned or dismissed by many physicians. This is certainly the case in the United States, where well-publicized Environmental Protection Agency (EPA) warnings portray radon as a potential carcinogen. Between 1997 and 2001, I worked with a population of arthritis sufferers who expose themselves to radon gas in Montana radon health mines in order to alleviate their symptoms. In this paper I discuss the decision-making process involved in using radon, and compare the Montana radon health mine facilities with selected radon mines and spas in Europe. PMID:18648554

  2. RESIDENTIAL RADON RESISTANT CONSTRUCTION FEATURE SELECTION SYSTEM

    EPA Science Inventory

    The report describes a proposed residential radon resistant construction feature selection system. The features consist of engineered barriers to reduce radon entry and accumulation indoors. The proposed Florida standards require radon resistant features in proportion to regional...

  3. RESIDENTIAL RADON RESISTANT CONSTRUCTION FEATURE SELECTION SYSTEM

    EPA Science Inventory

    The report describes a proposed residential radon resistant construction feature selection system. The features consist of engineered barriers to reduce radon entry and accumulation indoors. The proposed Florida standards require radon resistant features in proportion to regional...

  4. Predicting indoor radon-222 concentration

    SciTech Connect

    Stowe, M.H.

    1994-12-31

    Radon, a cause of lung cancer among miners, is being investigated as a source of lung cancer in the general population due to long-term low-level exposures in residences. Assessment of cumulative residential radon exposure entails measurements in past residences, some of which no longer exist or are not accessible. Estimates of radon concentrations in these missing homes are necessary for analysis of the radon-lung cancer association. Various approaches have been used by researchers attempting to predict the distribution of radon measurements in homes from specified geological and building characteristics. This study has modelled the set of basement radon measurements of 3788 Connecticut homes with several of these approaches, in addition to a descriptive tree method not previously utilized, and compared their validity on a random subset of homes not used in model construction. Each geographical and geological variable was more predictive of radon concentration than any of the housing characteristics. The single variable which explained the largest fraction of the variability in radon readings was the mean radon concentration for the zipcode area in which the house was located (R{sup 2} = .157). Soil characteristics at individual housing sites were not available for these analyses. They would be expected to increase the predictive power of the models. Multiple regression models, both additive and multiplicative, were not able to explain more than 22% of the variation in radon readings. Variables found to be significant in these models were zipcode mean, residential radon mean of bedrock unit, building age, type of foundation walls, type of water supply, aeroradioactivity reading, and lithology of the bedrock. A site potential index, based upon a classification of the bedrock underlying the house, was a better predictor of indoor radon level than other single geological variables, yet only explained 8% of the radon variability.

  5. Indoor radon concentrations in Poland as determined in short-term (two-day) measurements.

    PubMed

    Zalewski, M; Mnich, Z; Karpińska, M; Kapała, J; Zalewski, P

    2001-01-01

    The aim of the present work was to obtain a pattern of 222Rn concentration distributions in typical buildings in Poland. In the investigations, the environmental passive detectors of the PICO-RAD type were used. The study encompassed buildings that were typical for Poland. The distribution of airborne 222Rn concentrations indoors is of a log-normal type. A total 1171 detectors were measured. Measurements were made in 319 basements, the remaining 852 measurements were carried out in the inhabited part of the houses. The radon concentrations in the basements in Bq x m(-3) ranged from 6 to 1300 with the arithmetic mean AM = 60, geometric mean GM = 30 and median M = 28, whereas those in the inhabited parts of the house (above the ground level) were: AM = 25, GM = 17 and M = 16 with the highest record value of 420.

  6. Residential construction code impacts on radon

    SciTech Connect

    Galbraith, S.; Brennan, T.; Osborne, M.C.

    1988-04-01

    The paper discusses residential construction-code impacts on radon. It references existing residential construction codes that pertain to the elements of construction that impact either the ability to seal radon out of houses or the ability to achieve good soil ventilation for radon control. Several inconsistencies in the codes that will impact radon resistant construction are identified. Resolution of these resulting radon issues is necessary before specification-style building codes can be developed to achieve radon-resistant construction.

  7. Indoor Radon Concentration Levels in Najran Region, Saudi Arabia

    SciTech Connect

    Alyami, S. H.; Al-Ghamdi, S. S.; Baig, M. R.; Al-Garawi, M.S.

    2010-07-07

    Measurement of indoor radon concentration was performed in Najran region in the south west of Saudi Arabia, using CR-39 dosimeter. Despite many previous studies on indoor radon concentrations in Saudi Arabia, the data available are still limited. The objective of this study, which is the first of its kind in the region, is to have preliminary data of radon in this region. Such measurement will contribute towards further studies in this region of Saudi Arabia. The indoor radon concentration was measured in the villages of Fara Al-Jabal and Badr Al-Janoob (about 2000 m above sea level), Hadadah and Al-Khanig (about 1700 m above sea level). It was found that radon distribution in these villages is normal skewed to the right, with a range of 9{+-}5 to 163{+-}32 Bqm{sup -3} and an average of 49{+-}2 Bqm{sup -3}. It was also found that the average radon concentration is independent of altitude. Our findings show that the values are below the safe limit of 150 Bqm{sup -3} set by the Environmental Protection Agency (EPA) of the USA

  8. Indoor Radon Concentration Levels in Najran Region, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alyami, S. H.; Al-Ghamdi, S. S.; Baig, M. R.; Al-Garawi, M. S.

    2010-07-01

    Measurement of indoor radon concentration was performed in Najran region in the south west of Saudi Arabia, using CR-39 dosimeter. Despite many previous studies on indoor radon concentrations in Saudi Arabia, the data available are still limited. The objective of this study, which is the first of its kind in the region, is to have preliminary data of radon in this region. Such measurement will contribute towards further studies in this region of Saudi Arabia. The indoor radon concentration was measured in the villages of Fara Al-Jabal and Badr Al-Janoob (about 2000 m above sea level), Hadadah and Al-Khanig (about 1700 m above sea level). It was found that radon distribution in these villages is normal skewed to the right, with a range of 9±5 to 163±32 Bqm-3 and an average of 49±2 Bqm-3. It was also found that the average radon concentration is independent of altitude. Our findings show that the values are below the safe limit of 150 Bqm-3 set by the Environmental Protection Agency (EPA) of the USA

  9. NRC committee provides new risk estimates for exposure to radon

    SciTech Connect

    Not Available

    1988-03-01

    A new set of age-specific estimates describing the increased risk of lung cancer following exposure to radon was released in January by a National Research Council committee. The revised estimates result from new statistical techniques used to analyze previously collected data. In a study jointly sponsored by the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission, the committee concluded that lifetime exposure to one working level month (WLM) of radon per year, a standard measure used by radiation experts, increases an individual's chances of dying from lung cancer by 1.5 times compared with someone exposed only to background levels of radon. The committee estimated that, for every 1 million people exposed over a lifetime to one WLM of radon, about 350 additional deaths would occur due to lung cancer. The committee found that lung cancer risks associated with radon increased with increasing length of exposure. Moreover, it said that 15 years after exposure to radon has ended, the risk of lung cancer from the exposure declines to half the original risk.

  10. Snow-cover environmental monitoring and assessment in Northeast China using passive microwave emission models.

    PubMed

    Song, Kaishan; Zhang, Yuanzhi

    2008-05-01

    In this study, we present the application of the passive microwave emission models to snow-cover environment monitoring and assessment in Northeast China. The study employs the radiative transfer function and strong fluctuation theory to develop the models. We used the exponential form of a spherical symmetric correlation function to describe random permittivity fluctuations. From strong fluctuation, we then obtained the phase matrix and extinction coefficients of snow-packs for the spherical symmetric correlation function. We also used the vector radiative transfer formula for the layer of a random medium by solving Gaussian quadrature and eigen analysis. By comparing the brightness temperatures at 5, 10.7, 18, and 37 GHz, the modelling results agreed with experimental data of dry-snow physical parameters as measured in the fieldwork.

  11. Compact anti-radon facility

    SciTech Connect

    Fajt, L.; Kouba, P.; Mamedov, F.; Smolek, K.; Štekl, I.

    2015-08-17

    Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m{sup 3}/h of purified air (air radon activity at the output ∼10mBq/m{sup 3}). The basic features and preliminary results of anti-radon device testing are presented.

  12. An integrated radon flux monitor

    NASA Astrophysics Data System (ADS)

    Abdelrazek, M. M.

    1984-07-01

    A radon flux monitor suitable for measuring radon flux emanating from cracks or small surface areas is described. The monitor consists of a charcoal canister, an air pump and a steel container. Radon gas exhaled from a crack or from a surface is collected inside a steel container (10 cm × 10 cm × 10 cm) and is simultaneously circulated through a charcoal canister using an air pump. Radon flux is estimated by measuring the gamma ray activity of the radon gas absorbed by the charcoal. Experimental investigations showed that an air flow of 8 1/min was found adequate for the purpose of the present work. A calibration coefficient representing the ratio of radon flux measured by the monitor to the actual flux was found to be 0.81∓0.03. Experimental results showed that this monitor gives fairly accurate and reliable results.

  13. Radon mapping strategies in Austria.

    PubMed

    Gruber, V; Ringer, W; Wurm, G; Friedmann, H

    2015-11-01

    According to current European and international recommendations (e.g. by IAEA, WHO and European Union), countries shall identify high radon areas. In Austria, this task was initiated already in the early 1990s, which yielded the first Austrian Radon Potential Map. This map is still in use, updated with recent indoor radon data in 2012. The map is based on radon gas measurements in randomly selected dwellings, normalised to a standard situation. To meet the current (legal) requirements, uncertainties in the existing Austrian radon map should be reduced. A new indoor radon survey with a different sampling strategy was started, and possible mapping methods are studied and tested. In this paper, the methodology for the existing map as well as the planned strategies to improve this map is discussed.

  14. Spatial radon anomalies on active faults in California

    USGS Publications Warehouse

    King, C.-Y.; King, B.-S.; Evans, William C.; Zhang, W.

    1996-01-01

    Radon emanation has been observed to be anomalously high along active faults in many parts of the world. We tested this relationship by conducting and repeating soil air radon surveys with a portable radon meter across several faults in California. The results confirm the existence of fault-associated radon anomalies, which show characteristic features that may be related to fault structures but vary in time due to other environmental changes, such as rainfall. Across two creeping faults in San Juan Bautista and Hollister, the radon anomalies showed prominent double peaks straddling the fault gouge zone during dry summers, but the peak-to-background ratios diminished after significant rain fall during winter. Across a locked segment of the San Andreas fault near Olema, the anomaly has a single peak located several meters southwest of the slip zone associated with the 1906 San Francisco earthquake. Across two fault segments that ruptured during the magnitude 7.5 Landers earthquake in 1992, anomalously high radon concentration was found in the fractures three weeks after the earthquake. We attribute the fault-related anomalies to a slow vertical gas flow in or near the fault zones. Radon generated locally in subsurface soil has a concentration profile that increases three orders of magnitude from the surface to a depth or several meters; thus an upward flow that brings up deeper and radon-richer soil air to the detection level can cause a significantly higher concentration reading. This explanation is consistent with concentrations of carbon dioxide and oxygen, measured in soil-air samples collected during one of the surveys.

  15. Residential radon and lung cancer incidence in a Danish cohort

    SciTech Connect

    Braeuner, Elvira V.; Andersen, Claus E.; Sorensen, Mette; Jovanovic Andersen, Zorana; Gravesen, Peter; Ulbak, Kaare; Hertel, Ole; Pedersen, Camilla; Overvad, Kim; Tjonneland, Anne; Raaschou-Nielsen, Ole

    2012-10-15

    High-level occupational radon exposure is an established risk factor for lung cancer. We assessed the long-term association between residential radon and lung cancer risk using a prospective Danish cohort using 57,053 persons recruited during 1993-1997. We followed each cohort member for cancer occurrence until 27 June 2006, identifying 589 lung cancer cases. We traced residential addresses from 1 January 1971 until 27 June 2006 and calculated radon at each of these addresses using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate ratios (IRR) and 95% confidence intervals (CI) for lung cancer risk associated with residential radon exposure with and without adjustment for sex, smoking variables, education, socio-economic status, occupation, body mass index, air pollution and consumption of fruit and alcohol. Potential effect modification by sex, traffic-related air pollution and environmental tobacco smoke was assessed. Median estimated radon was 35.8 Bq/m{sup 3}. The adjusted IRR for lung cancer was 1.04 (95% CI: 0.69-1.56) in association with a 100 Bq/m{sup 3} higher radon concentration and 1.67 (95% CI: 0.69-4.04) among non-smokers. We found no evidence of effect modification. We find a positive association between radon and lung cancer risk consistent with previous studies but the role of chance cannot be excluded as these associations were not statistically significant. Our results provide valuable information at the low-level radon dose range.

  16. Differentiation between the Effect of Temperature and Pressure on Radon Transport within the Subsurface Geological Media

    NASA Astrophysics Data System (ADS)

    Zafrir, H.; Haquin, G.; Malik, U.; Barbosa, S. M.

    2012-04-01

    This work proposes a new method to differentiate between the impact of ambient temperature and pressure on radon transportation within porous media, by long-term radon monitoring based on simultaneous alpha and gamma measurement. If a monitoring site is a closed measuring space with undisturbed environmental conditions, as in the Amram mountain research tunnel situated 25 km NW of Elat, Israel, the radon in the air space will reach equilibrium with the radon in the rock. Then the radon time series as measured by both gamma and alpha detectors exhibit the same temporal variations. The results in this case indicate that the diurnal, intra-seasonal (multi-day) and seasonal variation in the radon concentration is clearly associated with the ambient temperature gradient outside the rock air interface, to 100m above the monitoring cell. If the monitoring site is a shallow borehole, as at the Gevanim valley in Makhtesh Ramon, Israel, no equilibrium between the radon within the porous media and the radon in the open borehole air is necessarily established and the results of radon monitoring are different. Gamma detectors measuring the changes in radon concentration in the porous rock indicate a clear correlation between radon concentrations and the daily variations of external surface temperature, from about 1m up to 85m. On the contrary, the alpha detectors measuring the changes in radon concentration in very shallow borehole air space (about few meters) revealed a clear anti-correlation with atmospheric pressure waves at semi-daily, daily, and intra-seasonal time scales. At depths of several tens of meters, outer pressure waves induce anti-correlated radon variations lasting the same time. The ordered radon daily periodicity in the measuring air space is destroyed but the daily radon variation within the surrounding porous media, as measured by the gamma ray detectors is not disturbed. The results show that the method to differentiate between the impact of ambient

  17. Lung cancer in never-smokers: a case-control study in a radon-prone area (Galicia, Spain).

    PubMed

    Torres-Durán, María; Ruano-Ravina, Alberto; Parente-Lamelas, Isaura; Leiro-Fernández, Virginia; Abal-Arca, José; Montero-Martínez, Carmen; Pena-Álvarez, Carolina; González-Barcala, Francisco Javier; Castro-Añón, Olalla; Golpe-Gómez, Antonio; Martínez, Cristina; Mejuto-Martí, María José; Fernández-Villar, Alberto; Barros-Dios, Juan Miguel

    2014-10-01

    The aim of the study was to assess the effect of residential radon exposure on the risk of lung cancer in never-smokers and to ascertain if environmental tobacco smoke modifies the effect of residential radon. We designed a multicentre hospital-based case-control study in a radon-prone area (Galicia, Spain). All participants were never-smokers. Cases had an anatomopathologically confirmed primary lung cancer and controls were recruited from individuals undergoing minor, non-oncological surgery. Residential radon was measured using alpha track detectors. We included 521 individuals, 192 cases and 329 controls, 21% were males. We observed an odds ratio of 2.42 (95% CI 1.45-4.06) for individuals exposed to ≥200 Bq·m(-3) compared with those exposed to <100 Bq·m(-3). Environmental tobacco smoke exposure at home increased lung cancer risk in individuals with radon exposure>200 Bq·m(-3). Individuals exposed to environmental tobacco smoke and to radon concentrations>200 Bq·m(-3) had higher lung cancer risk than those exposed to lower radon concentrations and exposed to environmental tobacco smoke. Residential radon increases lung cancer risk in never-smokers. An association between residential radon exposure and environmental tobacco smoke on the risk of lung cancer might exist.

  18. Experimental study of effectiveness of four radon mitigation solutions, based on underground depressurization, tested in prototype housing built in a high radon area in Spain.

    PubMed

    Frutos Vázquez, Borja; Olaya Adán, Manuel; Quindós Poncela, Luis Santiago; Sainz Fernandez, Carlos; Fuente Merino, Ismael

    2011-04-01

    The present paper discusses the results of an empirical study of four approaches to reducing indoor radon concentrations based on depressurization techniques in underground sumps. The experiments were conducted in prototype housing built in an area of Spain where the average radon concentration at a depth of 1 m is 250 kBq m(-3). Sump effectiveness was analysed in two locations: underneath the basement, which involved cutting openings into the foundation, ground storey and roof slabs, and outside the basement walls, which entailed digging a pit alongside the building exterior. The effectiveness of both sumps was likewise tested with passive and forced ventilation methods. The systems proved to be highly efficient, lowering radon levels by 91-99%, except in the solution involving passive ventilation and the outside sump, where radon levels were reduced by 53-55%. At wind speeds of over 8 m/s, however, passive ventilation across an outside sump lowered radon levels by 95% due to a Venturi effect induced drop in pressure.

  19. National and regional distributions of airborne radon concentrations in US homes

    SciTech Connect

    Marcinowski, F.; Lucas, R.M.; Yeager, W.M.

    1994-06-01

    The National Residential Radon Survey was conducted during 1989 and 1990 to provide data on the frequency distribution of annual average radon concentrations in U.S. residences nationwide, in U.S. Environmental Protection Agency defined Regions, and in subgroups of the housing stock. The National Residential Radon Survey also provided housing and demographic data and a preliminary assessment of the relationship of housing and geographical characteristics to residential radon concentrations. This paper focuses solely on the national and regional estimates of annual average radon concentrations. A stratified, three-stage sampling procedure was used to select housing units for the survey. Data were collected through personal interviews with residents and placement of alpha track detectors in each level of the residences for 12 mo. The survey found an arithmetic annual average radon concentration in U.S. homes of 46.3 {plus_minus} 4.4 Bq m{sup {minus}3} (1.25 {plus_minus} 0.12 pCi L{sup {minus}}). About 6.0 {plus_minus} 1.4% of homes (5.8 million) had radon levels greater than the U.S. Environmental Protection Agency`s action level for mitigation of 148 Bq m{sup {minus}3} (4 pCi L{sup {minus}1}). Concentrations varied significantly across Environmental Protection Agency Regions. A lognormal distribution was found to closely approximate the major distributions of radon concentrations. 9 refs., 2 figs., 8 tabs.

  20. Environmental assessment and management of metal-rich wastes generated in acid mine drainage passive remediation systems.

    PubMed

    Macías, Francisco; Caraballo, Manuel A; Nieto, José Miguel

    2012-08-30

    As acid mine drainage (AMD) remediation is increasingly faced by governments and mining industries worldwide, the generation of metal-rich solid residues from the treatments plants is concomitantly raising. A proper environmental management of these metal-rich wastes requires a detailed characterization of the metal mobility as well as an assessment of this new residues stability. The European standard leaching test EN 12457-2, the US EPA TCLP test and the BCR sequential extraction procedure were selected to address the environmental assessment of dispersed alkaline substrate (DAS) residues generated in AMD passive treatment systems. Significant discrepancies were observed in the hazardousness classification of the residues according to the TCLP or EN 12457-2 test. Furthermore, the absence of some important metals (like Fe or Al) in the regulatory limits employed in both leaching tests severely restricts their applicability for metal-rich wastes. The results obtained in the BCR sequential extraction suggest an important influence of the landfill environmental conditions on the metals released from the wastes. To ensure a complete stability of the pollutants in the studied DAS-wastes the contact with water or any other leaching solutions must be avoided and a dry environment needs to be provided in the landfill disposal selected.

  1. UTILITY OF SHORT-TERM BASEMENT SCREENING RADON MEASUREMENTS TO PREDICT YEAR-LONG RESIDENTIAL RADON CONCENTRATIONS ON UPPER FLOORS.

    PubMed

    Barros, Nirmalla; Steck, Daniel J; William Field, R

    2016-11-01

    This study investigated temporal and spatial variability between basement radon concentrations (measured for ∼7 d using electret ion chambers) and basement and upper floor radon concentrations (measured for 1 y using alpha track detectors) in 158 residences in Iowa, USA. Utility of short-term measurements to approximate a person's residential radon exposure and effect of housing/occupant factors on predictive ability were evaluated. About 60 % of basement short-term, 60 % of basement year-long and 30 % of upper floor year-long radon measurements were equal to or above the United States Environmental Protection Agency's radon action level of 148 Bq m(-3) Predictive value of a positive short-term test was 44 % given the year-long living space concentration was equal to or above this action level. Findings from this study indicate that cumulative radon-related exposure was more closely approximated by upper floor year-long measurements than short-term or year-long measurements in the basement. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Monitoring and descriptive analysis of radon in relation to seismic activity of Northern Pakistan.

    PubMed

    Jilani, Zeeshan; Mehmood, Tahir; Alam, Aftab; Awais, Muhammad; Iqbal, Talat

    2017-06-01

    Earthquakes are one of the major causes of natural disasters and its forecasting is challenging task. Some precursory phenomenon exists in theory in relation to earthquakes occurrence. The emission of radioactive gas named 'radon' before the earthquakes is a potential earthquake precursory candidate. The study aims to monitor and to analyze the radon in relation to seismic activity in Northern Pakistan. For this purpose RTM-2200 has been used to monitor the changes in radon concentration from August 01, 2014 to January 31, 2015 in Northern Pakistan. Significant temporal variations has been observed in radon concentration. The bivariate analysis of radon with other variables manifests its positive relationship with air pressure and relative humidity and negative relationship with temperature. 2σ upper control limit on monthly basis are computed for detection of anomalous trends in the data. Overall increasing trend is detected in radon concentration. Five earthquakes from August 01, 2014 to January 31, 2015 have been selected from earthquake catalogue, depending upon their magnitude and distance from monitoring station and out of which radon concentration can be associated with only two earthquakes correlated with tectonic effect of radon concentration. Both of events have same magnitude 5.5 and occurred on September 13 and October 14, 2014 respectively. Very large variations have been observed in radon for the last two months of the study period, which may be occurred due to some other geological and environmental changes, but are not related to the earthquake activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fractal and Chaos Analysis for Dynamics of Radon Exhalation from Uranium Mill Tailings

    NASA Astrophysics Data System (ADS)

    Li, Yongmei; Tan, Wanyu; Tan, Kaixuan; Liu, Zehua; Xie, Yanshi

    2016-08-01

    Tailings from mining and milling of uranium ores potentially are large volumes of low-level radioactive materials. A typical environmental problem associated with uranium tailings is radon exhalation, which can significantly pose risks to environment and human health. In order to reduce these risks, it is essential to study the dynamical nature and underlying mechanism of radon exhalation from uranium mill tailings. This motivates the conduction of this study, which is based on the fractal and chaotic methods (e.g. calculating the Hurst exponent, Lyapunov exponent and correlation dimension) and laboratory experiments of the radon exhalation rates. The experimental results show that the radon exhalation rate from uranium mill tailings is highly oscillated. In addition, the nonlinear analyses of the time series of radon exhalation rate demonstrate the following points: (1) the value of Hurst exponent much larger than 0.5 indicates non-random behavior of the radon time series; (2) the positive Lyapunov exponent and non-integer correlation dimension of the time series imply that the radon exhalation from uranium tailings is a chaotic dynamical process; (3) the required minimum number of variables should be five to describe the time evolution of radon exhalation. Therefore, it can be concluded that the internal factors, including heterogeneous distribution of radium, and randomness of radium decay, as well as the fractal characteristics of the tailings, can result in the chaotic evolution of radon exhalation from the tailings.

  4. Domestic and personal determinants of the contamination of individuals by household radon daughters

    SciTech Connect

    Stebbings, J.H.; Kardatzke, D.R.; Toohey, R.E.; Essling, M.E.; Pagnamenta, A.

    1986-01-01

    Radon daughters were counted by gamma spectroscopy from 180 adult residents of eastern Pennsylvania during the winter of 1983-84. Body radon daughter contamination is an index of relative individual respiratory exposures to radon daughters. These can be related to household radon levels, and to personal risk factors such as sex and tobacco smoking. Over 75% of this Pennsylvania population appeared to have environmentally enhanced radon daughter contamination; 59% had counting rates greater than 2 s.d. above background. House radon levels were the major determinants of radon daughters contamination in the 112 subjects for which both sets of measurements were available (p<.001). Both sex (<.02) and cigarette smoking (p<.005) were found to significantly modify that relationship, after nonlinear adjustment for travel times. Using a logarithmic model, for a given radon level body contamination by radon daughters in females was 2-3.5x higher than in males. Nonsmokers had 2-4x higher levels of contamination than smokers. For female nonsmokers relative to male smokers (which in general corresponds to the population of major concern relative to the population from which risk estimates have been derived), the excesses multiply. These results are for total contamination, both internal and external.

  5. 2014 ICHLNRRA intercomparison of radon/thoron gas and radon short-lived decay products measuring instruments in the NRPI Prague.

    PubMed

    Jílek, K; Timková, J

    2015-06-01

    During the Eighth International Conference on High Levels of Natural Radiation and Radon Areas held in autumn 2014 at Prague, the third intercomparison of radon/thoron gas and radon short-lived decay products measurement instruments was organised by and held at the Natural Radiation Division of the National Radiation Protection Institute (NRPI; SÚRO v.v.i.) in Prague. The intercomparison was newly focussed also on continuous monitors with active sampling adapters capable to distinguish radon/thoron gas in their mix field.The results of radon gas measurements carried out in the big NRPI radon chamber indicated very well an average deviation of up to 5 % from the reference NRPI value for 80 % of all the exposed instruments. The results of equilibrium equivalent concentration continuous monitors indicated an average deviation of up to 5 % from the reference NRPI value for 40 % of all the exposed instruments and their ~8-10 % shift compared with the NRPI. The results of investigated ambient conditions upon response of exposed continuous monitors indicated influence of aerosol changes upon response of radon monitors with an active air sampling adapters through the filter, only. The exposures of both radon/thoron gas discriminative continuous monitors and passive detectors have been indicated inconsistent results: on one hand, their excellent agreement up to several per cent for both the gases, and on the other hand, systematic unsatisfactory differences up to 40 %. Additional radon/thoron exercises are recommended to improve both the instruments themselves and quality of their operators.

  6. Radon Treatment Controversy

    PubMed Central

    Zdrojewicz, Zygmunt; Strzelczyk, Jadwiga (Jodi)

    2006-01-01

    In spite of long traditions, treatments utilizing radon-rich air or water have not been unequivocally embraced by modern medicine. The objective of this work is to examine factors that contribute to this continuing controversy. While the exact mechanism of radon's effect on human body is not completely understood, recent advances in radiobiology offer new insights into biochemical processes occurring at low-level exposures to ionizing radiation. Medical evidence and patients' testimonials regarding effectiveness of radon spa treatments of various ailments, most notably rheumatoid arthritis are accumulating worldwide. They challenge the premise of the Linear-No-Threshold (LNT) theory that the dose-effect response is the same per unit dose regardless of the total dose. Historically, such inference overshadowed scientific inquiries into the low-dose region and lead to a popular belief that no amount of radiation can be good. Fortunately, the LNT theory, which lacks any scientific basis, did not remain unchallenged. As the reviewed literature suggests, a paradigm shift, reflected in the consideration of hormetic effects at low-doses, is gaining momentum in the scientific community worldwide. The impetus comes from significant evidence of adaptive and stimulatory effects of low-levels of radiation on human immune system. PMID:18648641

  7. Risk assessment methodologies for passive smoking-induced lung cancer

    SciTech Connect

    Repace, J.L.; Lowrey, A.H. )

    1990-03-01

    Risk assessment methodologies have been successfully applied to control societal risk from outdoor air pollutants. They are now being applied to indoor air pollutants such as environmental tobacco smoke (ETS) and radon. Nonsmokers' exposures to ETS have been assessed based on dosimetry of nicotine, its metabolite, continine, and on exposure to the particulate phase of ETS. Lung cancer responses have been based on both the epidemiology of active and of passive smoking. Nine risk assessments of nonsmokers' lung cancer risk from exposure to ETS have been performed. Some have estimated risks for lifelong nonsmokers only; others have included ex-smokers; still others have estimated total deaths from all causes. To facilitate interstudy comparison, in some cases lung cancers had to be interpolated from a total, or the authors' original estimate had to be adjusted to include ex-smokers. Further, all estimates were adjusted to 1988. Excluding one study whose estimate differs from the mean of the others by two orders of magnitude, the remaining risk assessments are in remarkable agreement. The mean estimate is approximately 5000 +/- 2400 nonsmokers' lung cancer deaths (LCDSs) per year. This is a 25% greater risk to nonsmokers than is indoor radon, and is about 57 times greater than the combined estimated cancer risk from all the hazardous outdoor air pollutants currently regulated by the Environmental Protection Agency: airborne radionuclides, asbestos, arsenic, benzene, coke oven emissions, and vinyl chloride. 48 references.

  8. Map showing radon potential of rocks and soils in Montgomery County, Maryland

    USGS Publications Warehouse

    Gundersen, L.C.; Reimer, G.M.; Wiggs, C.R.; Rice, C.A.

    1988-01-01

    This report summarizes the radon potential of Montgomery County in the context of its geology. Radon is a naturally occurring gas produced by the radioactive decay of uranium. Radon produced by uraniferous rocks and soils may enter a house through porous building materials and through openings in walls and floors. Radon gases has a tendency to move from the higher pressure commonly existing in the soil to the lower pressure commonly existing in the house. The U.S. Environmental Protection Agency (U.S. EPA, 1986a) estimates that elevated levels of indoor radon may be associated with 5,000 to 20,000 of the 130,000 lung cancer deaths per year. They also estimate that 8 to 12 percent of the homes in the United States will have annual average indoor radon levels exceeding 4 picoCuries per liter of air (pCi/L). Above this level, the U.S. EPA recommends homeowners take remedial action. May factors control the amount of radon which may enter a home from the geologic environment. Soil drainage, permeability, and moisture content effect the amount of radon that can be released from rocks and soils (known as the emmanation) and may limit or increase how far it can migrate. Well drained, highly permeable soils facilitate the movement of radon. Soils with water content in the 8 to 15 percent range enhance the emmanation of radon (Lindmark, 1985). Daily and seasonal variations in soil and indoor radon can be caused by meteorologic factors such as barometric pressure, temperature, and wind (Clements and Wilkening, 1974; Schery and other, 1984). Construction practices also inhibit or promote entry of radon into the home (U.S. EPA, 1986b). In general, however, geology controls the source and distribution of radon (Akerblom and Wilson, 1982; Gundersen and others, 1987, 1988; Sextro and others, 1987; U.S. EPA, 1983; Peake, 1988; Peake and Hess, 1988). The following sections describe: 1) the methods used to measure radon and equivalent uranium (eU) in soil; 2) the radon potential

  9. Toxin or medicine? Explanatory models of radon in Montana health mines.

    PubMed

    Erickson, Barbra E

    2007-03-01

    Environmental protection and public health agencies in the United States and elsewhere label radioactive radon gas a toxic environmental hazard and a major cause of lung cancer. Paradoxically, in Europe and Japan radon gas is also used as an analgesic and anti-inflammatory, as one choice in the spectrum of conventional medical care. Although it is possible to find radon therapy in the United States, it exists only as an unconventional practice in Montana "radon health mines." In this article, I examine the use of radon therapy by Americans despite intensive public health education media campaigns. Using the notion of explanatory models as an analytical framework, I argue that American health mine clients adjust or replace "toxic models" of radon with new kinds of explanatory models that allow radon to be redefined as a healing substance. The manner of this adjustment varies according to peoples' individual needs, their own preexisting cultural models and experiences, and their individual personalities; the source of authoritative knowledge accepted by each person is a strong influence. Through these altered explanatory models, mine clients are able to view their use of radon therapy as a rational course of action.

  10. Radon in indoor concentrations and indoor concentrations of metal dust particles in museums and other public buildings.

    PubMed

    Carneiro, G L; Braz, D; de Jesus, E F; Santos, S M; Cardoso, K; Hecht, A A; Dias da Cunha, Moore K

    2013-06-01

    The aim of this study was to evaluate the public and occupational exposure to radon and metal-bearing particles in museums and public buildings located in the city of Rio de Janeiro, Brazil. For this study, four buildings were selected: two historic buildings, which currently house an art gallery and an art museum; and two modern buildings, a chapel and a club. Integrated radon concentration measurements were performed using passive radon detectors with solid state nuclear track detector-type Lexan used as nuclear track detector. Air samplers with a cyclone were used to collect the airborne particle samples that were analyzed by the particle-induced X-ray emission technique. The average unattached-radon concentrations in indoor air in the buildings were above 40 Bq/m(3), with the exception of Building D as measured in 2009. The average radon concentrations in indoor air in the four buildings in 2009 were below the recommended reference level by World Health Organization (100 Bq/m(3)); however, in 2011, the average concentrations of radon in Buildings A and C were above this level, though lower than 300 Bq/m(3). The average concentrations of unattached radon were lower than 148 Bq/m(3) (4pCi/L), the USEPA level recommended to take action to reduce the concentrations of radon in indoor air. The unattached-radon average concentrations were also lower than the value recommended by the European Union for new houses. As the unattached-radon concentrations were below the international level recommended to take action to reduce the radon concentration in air, it was concluded that during the period of sampling, there was low risk to human health due to the inhalation of unattached radon in these four buildings.

  11. Earthquake forecasting studies using radon time series data in Taiwan

    NASA Astrophysics Data System (ADS)

    Walia, Vivek; Kumar, Arvind; Fu, Ching-Chou; Lin, Shih-Jung; Chou, Kuang-Wu; Wen, Kuo-Liang; Chen, Cheng-Hong

    2017-04-01

    For few decades, growing number of studies have shown usefulness of data in the field of seismogeochemistry interpreted as geochemical precursory signals for impending earthquakes and radon is idendified to be as one of the most reliable geochemical precursor. Radon is recognized as short-term precursor and is being monitored in many countries. This study is aimed at developing an effective earthquake forecasting system by inspecting long term radon time series data. The data is obtained from a network of radon monitoring stations eastblished along different faults of Taiwan. The continuous time series radon data for earthquake studies have been recorded and some significant variations associated with strong earthquakes have been observed. The data is also examined to evaluate earthquake precursory signals against environmental factors. An automated real-time database operating system has been developed recently to improve the data processing for earthquake precursory studies. In addition, the study is aimed at the appraisal and filtrations of these environmental parameters, in order to create a real-time database that helps our earthquake precursory study. In recent years, automatic operating real-time database has been developed using R, an open source programming language, to carry out statistical computation on the data. To integrate our data with our working procedure, we use the popular and famous open source web application solution, AMP (Apache, MySQL, and PHP), creating a website that could effectively show and help us manage the real-time database.

  12. RADON MITIGATION STUDIES: NASHVILLE DEMONSTRATION

    EPA Science Inventory

    The report gives results of an EPA radon mitigation demonstration project involving 14 houses in the Nashville, TN, area with indoor radon levels of 5.6-47.6 pCi/L, using a variety of techniques, designed to be the most cost effective methods possible to implement, and yet adequa...

  13. Radon in ground water supplies

    SciTech Connect

    Dixon, K.L.; Lee, R.G.

    1989-06-01

    In September 1986, the System Water Quality Department of the American Water Works Service Co. began conducting a radon survey that was designed to determine the levels of radon in American ground water supplies, and to assess the radon removal efficiency of existing treatment processes such as filtration through granular activated carbon (GAC) and various forms of aeration. The survey found that companies in the northeastern part of the country experienced the highest levels of radon in ground water supplies. The highest concentrations were in individual wells in New Hampshire, Maryland, Connecticut, Rhode Island, New Jersey, Pennsylvania and California. The analytical results from the occurrence phase of the survey seemed to correlate well with the known geology of the aquifer materials from which samples of ground water were drawn. The highest levels were associated with formations of uranium-bearing granitic rocks. GAC can effectively reduce radon concentrations in drinking water supplies to very low levels. However, the amount of contact time within the carbon bed required to do so would be prohibitive to many water utilities from an operational and economic standpoint. Further, disposal of the spent GAC as a low-level radioactive waste may be required. Aeration is very effective in the removal of radon from drinking water. Packed tower aerators achieved > 95% reduction in radon concentrations and conventional cascading tray aerators achieved > 75% reduction in radon concentrations. 7 refs., 6 tabs.

  14. APPLICATION OF RADON REDUCTION METHODS

    EPA Science Inventory

    The document is intended to aid homeowners and contractors in diagnosing and solving indoor radon problems. It will also be useful to State and Federal regulatory officials and many other persons who provide advice on the selection, design and operation of radon reduction methods...

  15. Indoor radon and thoron concentrations in some towns of central and South Serbia.

    PubMed

    Vuckovic, Biljana; Gulan, Ljiljana; Milenkovic, Biljana; Stajic, Jelena M; Milic, Gordana

    2016-12-01

    This study presents the results of indoor radon and thoron activity concentrations of some municipalities in central and south part of Serbia: Krusevac, Brus, Blace and Kursumlija. Measurements were carried out in 60 dwellings during the winter season. Passive discriminative radon-thoron detectors known as UFO detectors were used. The mean values of indoor radon and thoron concentrations were 82 Bq m(-3) and 42 Bq m(-3), respectively. Population-weighted mean values were 76 Bq m(-3) and 40 Bq m(-3), respectively. 26.7% of dwellings had radon concentration higher than 100 Bq m(-3) (one location had even more than 300 Bq m(-3)). There are no statistically significant correlations of indoor radon and thoron concentrations neither with the period of house construction, nor with the existence of a basement. The results of this study represent the first step of investigating radon and thoron levels in these parts of Serbia and therefore could be the basis for creating a radon map. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The correlation between indoor and in soil radon concentrations in a desert climate

    NASA Astrophysics Data System (ADS)

    Al-Khateeb, H. M.; Aljarrah, K. M.; Alzoubi, F. Y.; Alqadi, M. K.; Ahmad, A. A.

    2017-01-01

    This study examines the levels and the correlation between indoor and in soil radon concentration in a desert climate. The measurements are carried out, in Jordan desert in AlMafraq district, using the passive integrated technique. An intelligent automated tracks counting system, modified recently by our group, is used to estimate the overlapping tracks and to decrease the counting percentage error. Results show that radon concentration in soil expands from 4.09 to 11.30 kBq m-3, with an average of 7.53 kBq m-3. Indoor radon concentrations vary from 20.2 Bq m-3 in the AlMafraq city to 46.7 Bq m-3 in Housha village and with an average of 29.6 Bq m-3. All of individual indoor radon concentrations are lower than the limit (100 Bq m-3) recommended by WHO except two dwellings in Housha village which found being higher than this limit. A moderate linear correlation (R2=0.66) was observed between indoor and in soil radon concentrations in the investigated region. Our results showed that an in soil radon measurement can be a satisfactory predictor for indoor radon potential.

  17. Navy Radon Assessment and Mitigation Program

    SciTech Connect

    Not Available

    1991-10-01

    This reporting period marks the end of Phase 1 Screening and the beginning of Phase 2 Assessment. During Phase 1, radon detectors were shipped to all Department of Navy (DON) sites with family housing areas, child-care centers, schools, hospitals, bachelor quarters, and brigs. 14,350 radon detectors have been returned and analyzed, and 3.4% of the housing and nonhousing results obtained were above the Environmental Protection Agency's action level of 4 pCi/L. Suspect screening results were confirmed. Phase 2 Assessment consists of two categories, Assessment and Phase 2 Screening. All activities with radon in excess of 4 pCi/L are included in Assessment. Phase 2 Screening consists of screening Navy-Owned Reserve Centers, Rescreening (sites with inconclusive data), and screening of Nonhousing Unit Identity Codes ((UICs) activities without Phase 1 test structures). All housing assessment was scheduled to be conducted during 1991 and 1992. Phase 2 housing and nonhousing have been established. In addition, a quality assurance program and technical guidebook have been developed to achieve accurate data during Phase 2. As of July 1, 1991, assessment of housing was 40% complete, nonhousing 4%, reserve centers 100%, and nonhousing UICs were 9% complete.

  18. Lung cancer mortality and radon concentration in a chronically exposed neighborhood in Chihuahua, Mexico: a geospatial analysis.

    PubMed

    Hinojosa de la Garza, Octavio R; Sanín, Luz H; Montero Cabrera, María Elena; Serrano Ramirez, Korina Ivette; Martínez Meyer, Enrique; Reyes Cortés, Manuel

    2014-01-01

    This study correlated lung cancer (LC) mortality with statistical data obtained from government public databases. In order to asses a relationship between LC deaths and radon accumulation in dwellings, indoor radon concentrations were measured with passive detectors randomly distributed in Chihuahua City. Kriging (K) and Inverse-Distance Weighting (IDW) spatial interpolations were carried out. Deaths were georeferenced and Moran's I correlation coefficients were calculated. The mean values (over n = 171) of the interpolation of radon concentrations of deceased's dwellings were 247.8 and 217.1 Bq/m(3), for K and IDW, respectively. Through the Moran's I values obtained, correspondingly equal to 0.56 and 0.61, it was evident that LC mortality was directly associated with locations with high levels of radon, considering a stable population for more than 25 years, suggesting spatial clustering of LC deaths due to indoor radon concentrations.

  19. Lung Cancer Mortality and Radon Concentration in a Chronically Exposed Neighborhood in Chihuahua, Mexico: A Geospatial Analysis

    PubMed Central

    Hinojosa de la Garza, Octavio R.; Sanín, Luz H.; Montero Cabrera, María Elena; Serrano Ramirez, Korina Ivette; Martínez Meyer, Enrique; Reyes Cortés, Manuel

    2014-01-01

    This study correlated lung cancer (LC) mortality with statistical data obtained from government public databases. In order to asses a relationship between LC deaths and radon accumulation in dwellings, indoor radon concentrations were measured with passive detectors randomly distributed in Chihuahua City. Kriging (K) and Inverse-Distance Weighting (IDW) spatial interpolations were carried out. Deaths were georeferenced and Moran's I correlation coefficients were calculated. The mean values (over n = 171) of the interpolation of radon concentrations of deceased's dwellings were 247.8 and 217.1 Bq/m3, for K and IDW, respectively. Through the Moran's I values obtained, correspondingly equal to 0.56 and 0.61, it was evident that LC mortality was directly associated with locations with high levels of radon, considering a stable population for more than 25 years, suggesting spatial clustering of LC deaths due to indoor radon concentrations. PMID:25165752

  20. Radiation dose due to radon and thoron progeny inhalation in high-level natural radiation areas of Kerala, India.

    PubMed

    Omori, Yasutaka; Tokonami, Shinji; Sahoo, Sarata Kumar; Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Hosoda, Masahiro; Kudo, Hiromi; Pornnumpa, Chanis; Nair, Raghu Ram K; Jayalekshmi, Padmavaty Amma; Sebastian, Paul; Akiba, Suminori

    2017-03-20

    In order to evaluate internal exposure to radon and thoron, concentrations for radon, thoron, and thoron progeny were measured for 259 dwellings located in high background radiation areas (HBRAs, outdoor external dose: 3-5 mGy y(-1)) and low background radiation areas (control areas, outdoor external dose: 1 mGy y(-1)) in Karunagappally Taluk, Kerala, India. The measurements were conducted using passive-type radon-thoron detectors and thoron progeny detectors over two six-month measurement periods from June 2010 to June 2011. The results showed no major differences in radon and thoron progeny concentrations between the HBRAs and the control areas. The geometric mean of the annual effective dose due to radon and thoron was calculated as 0.10 and 0.44 mSv, respectively. The doses were small, but not negligible compared with the external dose in the two areas.

  1. MEASUREMENT OF RADON, THORON AND THEIR PROGENY CONCENTRATIONS IN THE DWELLINGS OF PAURI GARHWAL, UTTARAKHAND, INDIA.

    PubMed

    Joshi, Veena; Dutt, Sanjay; Yadav, Manjulata; Mishra, Rosaline; Ramola, R C

    2016-10-01

    It is well known that inhalation of radon, thoron and their progeny contributes more than 50 % of natural background radiation dose to human being. The time-integrated passive measurements of radon, thoron and their progeny concentrations were carried out in the dwellings of Pauri Garhwal, Uttarakhand, India. The measurements of radon and thoron concentrations were performed by LR-115 detector-based single-entry pin-hole dosemeter, while for the measurement of progeny concentrations, LR-115 deposition-based direct radon and thoron progeny sensors technique was used. The experimental techniques and results obtained are discussed in detail. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Application of decision trees to the analysis of soil radon data for earthquake prediction.

    PubMed

    Zmazek, B; Todorovski, L; Dzeroski, S; Vaupotic, J; Kobal, I

    2003-06-01

    Different regression methods have been used to predict radon concentration in soil gas on the basis of environmental data, i.e. barometric pressure, soil temperature, air temperature and rainfall. Analyses of the radon data from three stations in the Krsko basin, Slovenia, have shown that model trees outperform other regression methods. A model has been built which predicts radon concentration with a correlation of 0.8, provided it is influenced only by the environmental parameters. In periods with seismic activity this correlation is much lower. This decrease in predictive accuracy appears 1-7 days before earthquakes with local magnitude 0.8-3.3.

  3. EPA and Partners Announce National Plan to Prevent Lung Cancer Deaths Due to Radon Exposure

    EPA Pesticide Factsheets

    WASHINGTON - Today, the U.S. Environmental Protection Agency (EPA), American Lung Association, and other partners are announcing a strategy for preventing 3,200 lung cancer deaths annually by 2020 through radon exposure reduction strategies. Exposur

  4. Exploratory Study of Basement Moisture During Operation of Active Soil Depressurization Radon Control Systems

    EPA Pesticide Factsheets

    As part of an exploratory study, three houses were monitored for moisture indicators, radon levels, building operations, and other environmental parameters while ASD systems were cycled on and off. December 6, 2007, Revised 3/10/08.

  5. Reduction of Radon Progeny in Indoor Air.

    DTIC Science & Technology

    1986-03-01

    methods that can be used to lower radon progeny concentra- tions in homes. V.- Radon in Indoor Air. Radon -222 occurs midway through the Uranium -238...as metals and remain at the site of their formation, radon is a noble gas and is thus able to diffuse away from its forma- tion site. It is through... radon progeny reduction by forced ventilation alone was evaluated because the 1/4 inch metal pre-filter screens for this air cleaner remained installed

  6. Attributable mortality to radon exposure in Galicia, Spain. Is it necessary to act in the face of this health problem?

    PubMed Central

    2010-01-01

    Background Radon is the second risk factor for lung cancer after tobacco consumption and therefore it is necessary to know the burden of disease due to its exposure. The objective of this study is to estimate radon-attributable lung cancer mortality in Galicia, a high emission area located at the Northwest Spain. Methods A prevalence-based attribution method was applied. Prevalence of tobacco use and radon exposure were obtained from a previously published study of the same area. Attributable mortality was calculated for each of six possible risk categories, based on radon exposure and smoking status. Two scenarios were used, with 37 Bq/m3 and 148 Bq/m3 as the respective radon exposure thresholds. As the observed mortality we used lung cancer mortality for 2001 from the Galician mortality registry. Results Mortality exclusively attributable to radon exposure ranged from 3% to 5% for both exposure thresholds, respectively. Attributable mortality to combined exposure to radon and smoking stood at around 22% for exposures above 148 Bq/m3. Applying the United States Environmental Protection Agency (EPA) action level, radon has a role in 25% of all lung cancers. Conclusions Although the estimates have been derived from a study with a relatively limited sample size, these results highlight the importance of radon exposure as a cause of lung cancer and its effect in terms of disease burden. Radon mitigation activities in the study area must therefore be enforced. PMID:20482770

  7. Toward a more realistic appraisal of the lung cancer risk from radon: the effects of residential mobility.

    PubMed Central

    Warner, K E; Mendez, D; Courant, P N

    1996-01-01

    OBJECTIVES: A consideration of the effects of residential mobility produces much more realistic estimates of typical individuals' radon exposures and mortality risks than those of the Environmental Protection Agency (EPA). METHODS: A model linking residential mobility, the distribution of radon in US homes, and lung cancer risk is used to simulate lifetime radon exposure, with and without mitigation of high-radon homes, for typical mobile individuals. Radon-related lung cancer mortality risks are then estimated for smokers and never-smokers. RESULTS: Most individuals residing in high-radon homes have equivalent lifelong radon exposures well below those they are currently experiencing. Consequently, actual lung cancer risks are generally well below those implied in the EPA's radon risk charts. For most people who mitigate high-radon homes, risk reduction is modest. CONCLUSIONS: Radon may indeed be responsible for as large a population risk of lung cancer as the EPA estimates. However, caution must be used in interpreting the EPA's risk assessment for individuals; in many cases, mitigation will have little effect on residents' health risks. PMID:8806372

  8. Identification of tidal and climatic influences within domestic radon time-series from Northamptonshire, UK.

    PubMed

    Groves-Kirkby, C J; Denman, A R; Crockett, R G M; Phillips, P S; Gillmore, G K

    2006-08-15

    Analysis of data from extended radon concentration time-series obtained from domestic and public-sector premises in the vicinity of Northampton, UK, and elsewhere, confirms that, in addition to the generally recognised climatic influences, 'Earth Tides' and 'Ocean Tidal Loading' drive periodic radon liberation via geophysically driven groundwater level variations. Regression and cross-correlation with environmental parameters showed some degree of association between radon concentration and mean temperature and rainfall. Fourier analysis of radon time-series identified periodicities of the order of 23.9 h (luni-solar diurnal, K(1)), 24.0 h (solar day, S(1)), 168 h (1 week) and 661.3 h (lunar month, M(m)), while cross-correlation with tidal strength demonstrated periodicity of the order of 14 days (lunar-solar fortnight, M(f)). These results suggest that astronomical influences, including tides, play a part in controlling radon release from the soil.

  9. Threshold for Radon-Induced Lung Cancer From Inhaled Plutonium Data.

    PubMed

    Cuttler, Jerry M; Sanders, Charles L

    2015-01-01

    Cohen's lung cancer mortality data, from his test of the LNT theory, do not extend to the no observed adverse effects level (NOAEL) above which inhaled radon decay products begin to induce excess lung cancer mortality. Since there is concern about the level of radon in homes, it is important to set the radon limit near the NOAEL to avoid the risk of losing a health benefit. Assuming that dogs model humans, data from a study on inhaled plutonium dioxide particulates in dogs were assessed, and the NOAEL for radon-induced lung tumors was estimated to be about 2100 Bq/m(3). The US Environmental Protection Agency should consider raising its radon action level from 150 to at least 1000 Bq/m(3).

  10. Threshold for Radon-Induced Lung Cancer From Inhaled Plutonium Data

    PubMed Central

    Sanders, Charles L.

    2015-01-01

    Cohen’s lung cancer mortality data, from his test of the LNT theory, do not extend to the no observed adverse effects level (NOAEL) above which inhaled radon decay products begin to induce excess lung cancer mortality. Since there is concern about the level of radon in homes, it is important to set the radon limit near the NOAEL to avoid the risk of losing a health benefit. Assuming that dogs model humans, data from a study on inhaled plutonium dioxide particulates in dogs were assessed, and the NOAEL for radon-induced lung tumors was estimated to be about 2100 Bq/m3. The US Environmental Protection Agency should consider raising its radon action level from 150 to at least 1000 Bq/m3. PMID:26740812

  11. Passive detector for measurement of the implanted (sup 210)Po activity in glass

    NASA Astrophysics Data System (ADS)

    Meesen, G.; Uyttenhove, J.; Poffijn, A.; van Laere, K.; Buysse, J.

    1994-08-01

    It is a well known fact that radon is the most important factor in the natural radiation background. For complete dose calculations we need information about the radon concentration up to 25 years ago. As suggested by C. Samuelsson et al. in 1988, the activity of the implanted radon daughter (sup 210)Po can be used to reconstruct the radon activity over the past decades. For large scale surveys in dwellings a passive detector based on polycarbonate foils has been investigated. This system has a sufficient sensitivity to detect (sup 210)Po levels down to 1 Bq/m(sup 2) with a 6 month measuring period.

  12. Understanding the relative contributions of direct environmental effects and passive genotype-environment correlations in the association between familial risk factors and child disruptive behavior disorders.

    PubMed

    Bornovalova, M A; Cummings, J R; Hunt, E; Blazei, R; Malone, S; Iacono, W G

    2014-03-01

    Previous work reports an association between familial risk factors stemming from parental characteristics and offspring disruptive behavior disorders (DBDs). This association may reflect (a) the direct effects of familial environment and (b) a passive gene-environment correlation (r(GE)), wherein the parents provide both the genes and the environment. The current study examined the contributions of direct environmental influences and passive r(GE) by comparing the effects of familial risk factors on child DBDs in genetically related (biological) and non-related (adoptive) families. Participants were 402 adoptive and 204 biological families. Familial environment was defined as maternal and paternal maladaptive parenting and antisociality, marital conflict and divorce; offspring DBDs included attention deficit hyperactivity disorder (ADHD), conduct disorder (CD) and oppositional defiant disorder (ODD). Mixed-level regressions estimated the main effects of familial environment, adoption status and the familial environment by adoption status interaction term, which tested for the presence of passive r(GE). There was a main effect of maternal and paternal maladaptive parenting and marital discord on child DBDs, indicating a direct environmental effect. There was no direct environmental effect of maternal or paternal antisociality, but maternal and paternal antisociality had stronger associations with child DBDs in biological families than adoptive families, indicating the presence of a passive r(GE). Many familial risk factors affected children equally across genetically related and non-related families, providing evidence for direct environmental effects. The relationship of parental antisociality and offspring DBDs was best explained by a passive r(GE), where a general vulnerability toward externalizing psychopathology is passed down by the parents to the children.

  13. Understanding the Relative Contributions of Direct Environmental Effects and Passive Genotype-Environment Correlations in the Association between Familial Risk Factors and Child Disruptive Behavior Disorders

    PubMed Central

    Bornovalova, Marina A.; Cummings, Jenna R.; Hunt, Elizabeth; Blazei, Ryan; Malone, Steve; Iacono, William G.

    2013-01-01

    Background: Previous work reports an association between familial risk factors stemming from parental characteristics and offspring disruptive behavior disorders (DBDs). This association may reflect a) the direct effects of familial environment, and b) a passive gene-environment correlation, wherein the parents provide both the genes and the environment. The current study examined the contributions of direct environmental influences and passive gene-environment correlations by comparing the effects of familial risk factors on child DBDs in genetically related (biological) and non-related (adoptive) families. Method: Participants were 402 adoptive and 204 biological families. Familial environment was defined as maternal and paternal maladaptive parenting and antisociality, marital conflict, and divorce; offspring DBDs included attention deficit/hyperactivity disorder, conduct disorder, and oppositional defiant disorder. Mixed-level regressions estimated the main effects of familial environment, adoption status, and the familial environment by adoption status interaction term, which tested for a presence of passive gene-environment correlations. Results: There was a main effect of maternal and paternal maladaptive parenting and marital discord on child DBDs, indicating a direct environmental effect. There was no direct environmental effect of maternal or paternal antisociality, but maternal and paternal antisociality had stronger associations with child DBDs in biological families than adoptive families, indicating the presence of a passive gene-environment correlation. Conclusions: Many familial risk factors affected children equally across genetically-related and non-related families, providing evidence for direct environmental effects. The relationship of parental antisociality and offspring DBDs was best explained by a passive gene-environment correlation, where a general vulnerability toward externalizing psychopathology is passed down by the parents to the

  14. RADON REMOVAL TECHNIQUES FOR SMALL COMMUNITY PUBLIC WATER SUPPLIES

    EPA Science Inventory

    The report presents the results of an evaluation, performed by the University of New Hampshire--Environmental Research Group (ERG), of radon removal in small community water supplies using full-scale granular activated carbon adsorption, diffused bubble aeration and packed tower ...

  15. RADON REMOVAL TECHNIQUES FOR SMALL COMMUNITY PUBLIC WATER SUPPLIES

    EPA Science Inventory

    The report presents the results of an evaluation, performed by the University of New Hampshire--Environmental Research Group (ERG), of radon removal in small community water supplies using full-scale granular activated carbon adsorption, diffused bubble aeration and packed tower ...

  16. Comparison of radon doses based on different radon monitoring approaches.

    PubMed

    Vaupotič, Janja; Smrekar, Nataša; Žunić, Zora S

    2017-04-01

    In 43 places (23 schools, 3 kindergartens, 16 offices and one dwelling), indoor radon has been monitored as an intercomparison experiment, using α-scintillation cells (SC - Jožef Stefan Institute, Slovenia), various kinds of solid state nuclear track detectors (KfK - Karlsruhe Institute of Technology, Germany; UFO - National Institute of Radiological Sciences, Chiba, Japan; RET - University College Dublin, Ireland) and active electronic devices (EQF, Sarad, Germany). At the same place, the radon levels and, consequently, the effective doses obtained with different radon devices differed substantially (by a factor of 2 or more), and no regularity was observed as regards which detector would show a higher or lower dose.

  17. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    SciTech Connect

    Riley, William Jowett

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.

  18. Effects of radon mitigation vs smoking cessation in reducing radon-related risk of lung cancer.

    PubMed Central

    Mendez, D; Warner, K E; Courant, P N

    1998-01-01

    OBJECTIVES: The purpose of this paper is to provide smokers with information on the relative benefits of mitigating radon and quitting smoking in reducing radon-related lung cancer risk. METHODS: The standard radon risk model, linked with models characterizing residential radon exposure and patterns of moving to new homes, was used to estimate the risk reduction produced by remediating high-radon homes, quitting smoking, or both. RESULTS: Quitting smoking reduces lung cancer risk from radon more than does reduction of radon exposure itself. CONCLUSIONS: Smokers should understand that, in addition to producing other health benefits, quitting smoking dominates strategies to deal with the problem posed by radon. PMID:9585753

  19. Soil-gas and indoor radon distribution related to geology in Frederick County, Maryland

    SciTech Connect

    Szarzi, S.L.; Reimer, G.M.; Been, J.M.

    1992-12-31

    Soil-gas radon concentrations vary in response to geologic controls in Frederick County, Maryland, and the variation leads to different radon availabilities for potential indoor accumulations. Quartzites, which form from the core of ridges and mountains of the southern and western part of the county, have a mean soil-gas radon concentration of 26 kBq m{sup -3} (700 pCi L{sup -1}). Phyllites, found in the Piedmont province in the eastern part of the county, have a mean soil-gas radon concentration of 59 kBq m{sup -3} (1600 pCi L{sup -1}). Many indoor radon measurements for homes in the southeast portion of the county, made by means of charcoal canisters, exceeded 1850 Bq m{sup -3} (50 pCi L{sup -1}). Homes built in areas where the soil-gas radon concentrations were greater than 75 kBq m{sup -3} (2000 pCi L{sup -1}) may have indoor radon concentrations that exceed 150 Bq m{sup -3} (4 pCi L{sup -1}), the current action level recommended by the U.S. Environmental Protection Agency. Data obtained in studies like ours throughout the United States are essential to identify {open_quotes}hot spots{close_quotes} which may produce elevated indoor radon levels of significant risk.

  20. Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface.

    PubMed

    Tsapalov, Andrey; Kovler, Konstantin; Miklyaev, Peter

    2016-08-01

    Radon exhalation rate from the soil surface can serve as an important criterion in the evaluation of radon hazard of the land. Recently published international standard ISO 11665-7 (2012) is based on the accumulation of radon gas in a closed container. At the same time since 1998 in Russia, as a part of engineering and environmental studies for the construction, radon flux measurements are made using an open charcoal chamber for a sampling duration of 3-5 h. This method has a well-defined metrological justification and was tested in both favorable and unfavorable conditions. The article describes the characteristics of the method, as well as the means of sampling and measurement of the activity of radon absorbed. The results of the metrological study suggest that regardless of the sampling conditions (weather, the mechanism and rate of radon transport in the soil, soil properties and conditions), uncertainty of method does not exceed 20%, while the combined standard uncertainty of radon exhalation rate measured from the soil surface does not exceed 30%. The results of the daily measurements of radon exhalation rate from the soil surface at the experimental site during one year are reported. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Radon reduction systems in the construction of new houses in Gainesville, Florida

    SciTech Connect

    Najafi, F.T.

    1998-11-01

    High radon level exposures increase human risk of lung cancer. The objective of this paper is to present the results of the effectiveness of applying the Enkavent mat method and the suction pit method; as tested by a University of Florida research team; to reduce radon entry in new houses built in the city of Gainesville and the surrounding Alachua County area in Florida. Both of these passive techniques include placement of a barrier under the concrete floor slab right on top of the soil at the new building sites. Passive and active techniques applied in the construction of new houses reduced radon levels to below the minimum requirements of 148 Bq m{sup {minus}3} (4 pCi L{sup {minus}1}). The mitigation systems investigated in this research were adopted by the Florida Legislature to become part of the new building construction code in Florida.

  2. Optimized spectral microwindows for data analysis of the Michelson Interferometer for Passive Atmospheric Sounding on the Environmental Satellite.

    PubMed

    Echle, G; von Clarmann, T; Dudhia, A; Flaud, J M; Funke, B; Glatthor, N; Kerridge, B; López-Puertas, M; Martín-Torres, F J; Stiller, G P

    2000-10-20

    For data analysis of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) atmospheric limb emission spectroscopic experiment on Environmental Satellite microwindows, i.e., small spectral regions for data analysis, have been defined and optimized. A novel optimization scheme has been developed for this purpose that adjusts microwindow boundaries such that the total retrieval error with respect to measurement noise, parameter uncertainties, and systematic errors is minimized. Dedicated databases that contain optimized microwindows for retrieval of vertical profiles of pressure and temperature, H2O, O3, HNO3, CH4, N2O, and NO2 have been generated. Furthermore, a tool for optimal selection of subsets of predefined microwindows for specific retrieval situations has been provided. This tool can be used further for estimating total retrieval errors for a selected microwindow subset. It has been shown by use of this tool that an altitude-dependent definition of microwindows is superior to an altitude-independent definition. For computational efficiency a dedicated microwindow-related list of spectral lines has been defined that contains only those spectral lines that are of relevance for MIPAS limb sounding observations.

  3. Ultra-high performance liquid chromatographic method for the determination of polycyclic aromatic hydrocarbons in a passive environmental sampler.

    PubMed

    Purcaro, Giorgia; Moret, Sabrina; Bučar-Miklavčič, Milena; Conte, Lanfranco S

    2012-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous compounds released in the environment by different sources. The aim of the present work was to validate a solid-phase extraction (SPE) and a rapid ultra-high performance liquid chromatographic (UHPLC) method for the analysis of PAHs in a passive environmental sampler, namely a Dacron® (the commercial name of a synthetic fiber based on polyethylene terephthalate) textile. The elution temperature was optimized to improve the resolution of early-eluted compounds, namely acenaphthene (Ac) and fluorene (F). The UHPLC method lasts about 10 min and showed good linearity for all the 16 PAHs considered, with regression coefficients over 0.99. Recoveries, limits of detection (LODs), and limits of quantification (LOQs) of the SPE method were well within the performance criteria fixed by the Regulation n. 836/2011, namely 0.3 and 0.9 μg/kg, respectively. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The cauliflower-like black crusts on sandstones: A natural passive sampler to evaluate the surrounding environmental pollution.

    PubMed

    Morillas, Héctor; Maguregui, Maite; García-Florentino, Cristina; Carrero, Jose Antonio; Salcedo, Isabel; Madariaga, Juan Manuel

    2016-05-01

    Black crust in buildings can be formed as a result of different kind of chemical and physical reactions between the stone surface and environmental factors (e.g. acid aerosols emitted to the atmosphere, airborne particulate matter, etc.). Moreover, biological colonizations can also be present on them. This kind of pathology is widely present in limestones, but fewer are the case study dealing with the characterization of black crusts on sandstones. In this work we present an innovative methodology based on the use of cauliflower-like black crusts formed on sandstone material as natural passive sampler to evaluate the environmental pollution related with the emission of natural (crustal particles and marine aerosol particles) and metallic elements in the airborne particulate matter from the surrounding atmosphere. To illustrate its usefulness, different cauliflower-like black crusts growing in areas protected from the rain growing in an historical construction, La Galea Fortress, made up of sandstone and placed in the Abra Bay (Getxo, Basque Country, Spain) were characterized. This area suffers the anthropogenic emissions coming from the surrounding industry, traffic, sea port, and the natural ones coming from the surrounding marine atmosphere. The applied analytical methodology began with a previous elemental in situ screening in order to evaluate and compare the presence of the metals trapped in black crusts from different orientations using a hand-held energy dispersive X-Ray Fluorescence spectrometer. After this preliminary study, samples of black crusts were taken in order to characterize them in the laboratory using molecular techniques (Raman spectroscopy and XRD) and elemental techniques (ICP-MS, SEM-EDS and micro energy dispersive X-Ray Fluorescence). With the last two elemental techniques, imaging analyses were performed at different lateral resolutions in order to observe the distribution of the metals and other kind of particles trapped in the black

  5. Passive stacks in a multifamily housing project

    SciTech Connect

    Saum, D.

    1995-12-31

    The Summerfield multi-family, 1242 unit housing project that has been under construction since 1993 in Prince Georges County Maryland near Washington, DC suggests that passive stacks provides significant radon mitigation in multi-family construction. Random radon tests in these buildings indicate an average indoor ground floor concentration of 0.3 pCi/L with the stacks open, and 1.3 pCi/L with the stacks sealed. These buildings were built with post-tension slabs which should be more airtight than conventional floating slabs, and measurements show that the pressure field extension in these slabs in very good.

  6. The history, development and the present status of the radon measurement programme in the United States of America.

    PubMed

    George, A C

    2015-11-01

    The US radon measurement programme began in the late 1950s by the US Public Health Service in Colorado, New Mexico and Utah during the uranium frenzy. After the 1967 Congressional Hearings on the working conditions in uranium mines, the US Atomic Energy Commission (AEC) was asked to conduct studies in active uranium mines to assess the exposure of the miners on the Colorado Plateau and in New Mexico. From 1967 to 1972, the Health and Safety Laboratory of the US AEC in New York investigated more than 20 uranium mines for radon and radon decay product concentrations and particle size in 4 large uranium mines in New Mexico. In 1970, the US Environmental Protection Agency (EPA) was established and took over some of the AEC radon measurement activities. Between 1975 and 1978, the Environmental Measurements Laboratory of the US Department of Energy conducted the first detailed indoor radon survey in the USA. Later in 1984, the very high concentrations of radon found in Pennsylvania homes set the wheels in motion and gave birth to the US Radon Industry. The US EPA expanded its involvement in radon issues and assumed an active role by establishing the National Radon Proficiency Program to evaluate the effectiveness of radon measurement and mitigation methods. In 1998, due to limited resources EPA privatised the radon programme. This paper presents a personal perspective of past events and current status of the US radon programme. It will present an update on radon health effects, the incidence rate of lung cancer in the USA and the number of radon measurements made from 1988 to 2013 using short-term test methods. More than 23 million measurements were made in the last 25 y and as a result more than 1.24 million homes were mitigated successfully. It is estimated that <2 % of the radon measurements performed in the USA are made using long-term testing devices. The number of homes above the US action level of 148 Bq m(-3) (4 pCi l(-1)) may be ∼8.5 million because ∼50

  7. Uranium mill tailings and radon

    SciTech Connect

    Hanchey, L A

    1981-04-01

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the United States may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.

  8. Radon in earthquake prediction research.

    PubMed

    Friedmann, H

    2012-04-01

    The observation of anomalies in the radon concentration in soil gas and ground water before earthquakes initiated systematic investigations on earthquake precursor phenomena. The question what is needed for a meaningful earthquake prediction as well as what types of precursory effects can be expected is shortly discussed. The basic ideas of the dilatancy theory are presented which in principle can explain the occurrence of earthquake forerunners. The reasons for radon anomalies in soil gas and in ground water are clarified and a possible classification of radon anomalies is given.

  9. Guidance on Radon Resistant Construction and Radon Mitigation

    EPA Pesticide Factsheets

    This Unnumbered Letter regarding radon gas mitigation applies to all housing and community facilities, low-rise buildings and dwellings for the mentioned programs. Its intention is to guide staff to best serve our borrowers and protect their health.

  10. Emanation of radon from household granite.

    PubMed

    Kitto, Michael E; Haines, Douglas K; Arauzo, Hernando Diaz

    2009-04-01

    Emanation of radon (222Rn) from granite used for countertops and mantels was measured with continuous and integrating radon monitors. Each of the 24 granite samples emitted a measurable amount of radon. Of the two analytical methods that utilized electret-based detectors, one measured the flux of radon from the granite surfaces, and the other one measured radon levels in a glass jar containing granite cores. Additional methods that were applied utilized alpha-scintillation cells and a continuous radon monitor. Measured radon flux from the granites ranged from 2 to 310 mBq m-2 s-1, with most granites emitting <20 mBq m-2 s-1. Emanation of radon from granites encapsulated in airtight containers produced equilibrium concentrations ranging from <0.01 to 11 Bq kg-1 when alpha-scintillation cells were used, and from <0.01 to 4.0 Bq kg-1 when the continuous radon monitor was used.

  11. Radon Risk and Remediation: A Psychological Perspective

    PubMed Central

    Hevey, David

    2017-01-01

    Although radon exposure in the home increases the risk of lung cancer, this risk can be managed. However, evidence indicates that testing for radon and subsequent home remediation rates are generally low in many countries. The present perspective outlines some key insights from psychological science that might account for sub-optimal radon protection. Psychological aspects of how the health risks posed by radon are perceived and managed are outlined. There is need to consider radon risk perception in terms of the (a) cognitive and emotional responses to radon and (b) social context in which the radon threat occurs. In addition, the nature of the threat itself is integral to the failure for people to act in response to a radon threat. Finally, the challenges arising from defensive processing of radon threat information are outlined. PMID:28396855

  12. Radon measurement and mitigation activity in Finland.

    PubMed

    Valmari, T; Arvela, H; Reisbacka, H; Holmgren, O

    2014-07-01

    Radon prevention, measurement and mitigation activities have been increasing in Finland during the 2000s. Nowadays, many municipal authorities, especially those located in high-radon areas, require radon prevention measures. This has activated radon measurements. Owners of new houses having radon piping installed under the floor slab are the most active group to measure and reduce the found high-radon values. Their radon awareness is apparently better than on the average, and the existing piping makes it easier and cheaper to reduce the radon levels. Local campaigns involving invitation flyers mailed to the residents have been a cost-effective means to activate measurements of older houses. So far 116,611 dwellings in low-rise residential buildings have been measured. At least 15% of the 16,860 dwellings found to exceed the reference level of 400 Bq m(-3) had their indoor radon level reduced below that.

  13. 30 CFR 57.5046 - Protection against radon gas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Protection against radon gas. 57.5046 Section... Protection against radon gas. Where radon daughter concentrations exceed 10 WL, respirator protection against radon gas shall be provided in addition to protection against radon daughters. Protection against radon...

  14. 30 CFR 57.5046 - Protection against radon gas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Protection against radon gas. 57.5046 Section... Protection against radon gas. Where radon daughter concentrations exceed 10 WL, respirator protection against radon gas shall be provided in addition to protection against radon daughters. Protection against radon...

  15. 30 CFR 57.5046 - Protection against radon gas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protection against radon gas. 57.5046 Section... Protection against radon gas. Where radon daughter concentrations exceed 10 WL, respirator protection against radon gas shall be provided in addition to protection against radon daughters. Protection against radon...

  16. 30 CFR 57.5046 - Protection against radon gas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection against radon gas. 57.5046 Section... Protection against radon gas. Where radon daughter concentrations exceed 10 WL, respirator protection against radon gas shall be provided in addition to protection against radon daughters. Protection against radon...

  17. 30 CFR 57.5046 - Protection against radon gas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protection against radon gas. 57.5046 Section... Protection against radon gas. Where radon daughter concentrations exceed 10 WL, respirator protection against radon gas shall be provided in addition to protection against radon daughters. Protection against radon...

  18. Radon Policy in Finland, Achievements and Challenges

    SciTech Connect

    Arvela, Hannu; Maekelaeinen, Ilona; Reisbacka, Heikki

    2008-08-07

    Finland is a country of high indoor radon concentrations. Since 1980 the authority regulations, guidance, radon mapping and research work supporting decision making have been developed continuously. Clear regulations directed to citizens and authorities form the basis for radon policy. Active mapping work and measurement ordered by private home owners has resulted in 100.000 houses measured. National indoor radon data base forms a good basis for decision making, communication and research. The number of new houses provided with radon preventive constructions has increased remarkably. New radon campaigns has increased measurement and mitigation activity. Furher increasing of public awareness is the key challenge.

  19. Map showing radon potential of rocks and soils in Fairfax County, Virginia

    USGS Publications Warehouse

    Otton, James K.; Schumann, R. Randall; Owen, Douglass E.; Thurman, Nelson; Duval, Joseph S.

    1988-01-01

    Since 1984, indoor radon has gained national attention as a significant health hazard in the United States. Radon is a colorless, odorless, radioactive gas derived from uranium by radioactive decay. The U.S. Environmental Protection Agency (EPA) now projects that 5,000 to 20,000 lung-cancer deaths per year may be attributed to the long-term exposure to indoor radon and its radioactive decay products. Indoor radon has been previously recognized as a health hazard associated with uranium-bearing mill tailings or building materials, but it was not until December 1984 that some natural soils and rocks were found to be sources of indoor radon at levels comparable to those in uranium mines. It is now suspected that elevated indoor radon levels are far more widespread than initially though. The EPA considers 4 picoCuries of radon per liter of air (pCi/L) as the level (in a year-round measurement) at which actions ought to be taken to lower the concentration of indoor radon. All soils and rocks contain measurable amounts of uranium, which generate measurable amounts of radon. Certain soils and rocks, however, have a greater potential to cause indoor radon problems than others because (1) they have a higher uranium content and thus can generate higher levels of radon in soil gas (gas that occupies the pores of the soil), and (2) the permeability of the sol or rack is sufficiently high that radon-bearing soil gas can flow freely and move indoors through the foundation of the structure. This study was designed to demonstrate the correlation between the geologic environment and indoor radon levels and to demonstrate a method of assessment that could be used by other informed workers in areas of their interest. A parallel study by Gundersen and others (1988) of the radon potential of rocks and soils in Montgomery County, Md., used somewhat different methods of assessment because the data available for and assessment of Montgomery County differed.

  20. Analysis of volatile-phase transport in soils using natural radon gas as a tracer

    SciTech Connect

    Chen, C.; Thomas, D.M.

    1994-01-01

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The experiment monitored soil gas radon activity, soil moisture, and soil temperature at depth; barometric pressure, rainfall, and wind speed were monitored at the soil surface. Linear and multiple regression analysis under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature, and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been observed. 25 refs., 12 figs., 1 tab.

  1. An interim protocol for the mitigation of radon in nonresidential buildings

    SciTech Connect

    Wilson, D.L.; Dudney, C.S.; Gammage, R.B.

    1993-07-01

    To date, the US Environmental Protection Agency has not published guidance for radon testing, diagnostics, or mitigation within large, nonresidential buildings. Current research indicates that large buildings may contain construction features or mechanical systems that could inhibit the installation or operation of a mitigation system. Health and safety issues such as asbestos and fire codes may further interfere with the installation process. Studies also show that elevated radon can be restricted to a particular area or room within a building and not be uniformly distributed. A four-step, sequential protocol has been developed to address these issues and facilitate large building radon mitigation.

  2. Radon recording of Uttarkashi earthquake

    NASA Astrophysics Data System (ADS)

    Virk, H. S.; Singh, Baljinder

    1994-04-01

    Spatial and temporal distribution of radon is recorded in both soil-gas and groundwater using two different techniques, viz. track etch method and emanometry. Radon recording stations have been set up at one site in Amritsar and four sites in the Kangra valley (Himachal Pradesh) under the Himalayan seismicity project. The track-etch method gives integrated measurement of radon over a week or a fortnight whereas emanometry is used for daily recording of radon activity in soil-gas and groundwater. The Uttarkashi earthquake m(sub b) = 6.5, M(sub S) = 7.0) occurred on October 20, 1991 (Oct. 19 U.T.) in the Garhwal Himalayas (30.78 deg N, 78.77 deg E) about 330 km from our recording stations in the Kangra valley and about 450 km from Amritsar, respectively. Radon anomalies were recorded at all sites in Kangra valley and Amritsar about a week before the Uttarkashi earthquke, which clearly establishes that radon changes can be effective for forecasting some earthquakes.

  3. Radon testing behavior in a sample of individuals with high home radon screening measurements

    SciTech Connect

    Field, R.W.; Kross, B.C.; Vust, L.J. )

    1993-08-01

    Although radon exposure has been identified as the second leading cause of lung cancer, fewer than 6% of US homeowners test their homes for radon. This report examines participants' follow-up radon testing behavior subsequent to receiving an initial screening radon level greater than 20 pCi/L. Sixty-two participants in the Iowa State-Wide Rural Radon Screening Survey who had radon screening measurements over 20 pCi/L were questioned by phone survey 3 months after receipt of their radon screening result to assess: whether participants were aware of radon's health risk; if participants recalled the radon screening results; how participants perceived the relative health risk of radon and whether participants planned follow-up radon testing. Only 19% of the respondents specifically identified lung cancer as the possible adverse health outcome of high radon exposure, and the majority of participants underestimated the health risks high radon levels pose when compared to cigarettes and x-rays. In addition, less than one third (29%) of the participants actually remembered their radon screening level within 10 pCi/L 3 months after receiving their screening results. Only 53% of the individuals correctly interpreted their screening radon level as being in the high range, and only 39% of the participants planned follow-up radon measurements. Receipt of radon screening test results indicating high radon levels was not an adequate motivational factor in itself to stimulate further radon assessment or mitigation. The findings suggest that free radon screening will not result in a dramatic increase in subsequent homeowner initiated remediation or further recommended radon testing. 13 refs., 1 fig., 5 tabs.

  4. Soil radon measurements in the Canadian cities.

    PubMed

    Chen, J; Moir, D; MacLellan, K; Leigh, E; Nunez, D; Murphy, S; Ford, K

    2012-08-01

    Radon has been identified as the second leading cause of lung cancer after tobacco smoking. Information on indoor radon concentrations is required to assess the lung cancer burden due to radon exposure. Since radon in soil is believed to be the main source of radon in homes, measurements of soil gas radon concentrations can be used to estimate variations in radon potential of indoor environments. This study reports surveys of natural background variation in soil radon levels in four cities, Montreal, Gatineau, Kingston and the largest Canadian city of Toronto. A total of 212 sites were surveyed. The average soil gas radon concentrations varied significantly from site to site, and ranged from below detection limit to 157 kBq m(-3). For each site, the soil radon potential (SRP) index was determined with the average soil radon concentration and average soil permeability measured. The average SRP indexes are 20±16, 12±11, 8±9 and 12±10 for Montreal, Gatineau, Kingston and Toronto, respectively. The results provide additional data for the validation of an association between indoor and soil radon potentials and for the development of radon potential map of Canada.

  5. RADON REDUCTION AND RADON-RESISTANT CONSTRUCTION DEMONSTRATIONS IN NEW YORK - VOLUME 1: TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of radon reduction and radon-resistant construction demonstrations in New York. The existing house evaluation demonstrated radon mitigation techniques where indoor radon concentrations exceeded 4 pCi/L. Results demonstrated that sealing all accessible fou...

  6. RADON REDUCTION AND RADON-RESISTANT CONSTRUCTION DEMONSTRATIONS IN NEW YORK - VOLUME 1: TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of radon reduction and radon-resistant construction demonstrations in New York. The existing house evaluation demonstrated radon mitigation techniques where indoor radon concentrations exceeded 4 pCi/L. Results demonstrated that sealing all accessible fou...

  7. Thoron detection with an active Radon exposure meter—First results

    SciTech Connect

    Irlinger, J. Wielunski, M.; Rühm, W.

    2014-02-15

    For state-of-the-art discrimination of Radon and Thoron several measurement techniques can be used, such as active sampling, electrostatic collection, delayed coincidence method, and alpha-particle-spectroscopy. However, most of the devices available are bulky and show high power consumption, rendering them unfeasible for personal exposition monitoring. Based on a Radon exposure meter previously realized at the Helmholtz Center Munich (HMGU), a new electronic prototype for Radon/Thoron monitoring is currently being developed, which features small size and weight. Operating with pin-diode detectors, the low-power passive-sampling device can be used for continuous concentration measurements, employing alpha-particle-spectroscopy and coincidence event registration to distinguish decays originating either from Radon or Thoron isotopes and their decay products. In open geometry, preliminary calibration measurements suggest that one count per hour is produced by a 11 Bq m{sup −3} Radon atmosphere or by a 15 Bq m{sup −3} Thoron atmosphere. Future efforts will concentrate on measurements in mixed Radon/Thoron atmospheres.

  8. 'Radon Concentration Survey in Inner Rooms from Deputy Chamber and National Congress-Brasilia/DF'

    SciTech Connect

    Nicoli, Ieda Gomes; Cardozo, Katia Maria; Azevedo Gouvea, Vandir de

    2008-08-07

    Radon gas has been monitored in many environments such as rural and urban houses, high natural radioactivity areas and underground mining regions. Nevertheless few data are reported in literature about studies in state buildings. So we get in touch with these buildings managers, where work the Deputy Chamber and the National Congress in Brasilia--DF, in order to obtain radon data in these state buildings, so representative for brazilian people. In order to make a preliminary scanning of radon concentration in these buildings, it was put in selected points, radon nuclear track passive detectors type SSNTD, specifically polycarbonate Lexan, which were exposed for periods from two to five months. Afterwards they were sent to Nuclear Engineering Institute in Rio de Janeiro for analysis of {sup 222}Rn contents. Derived values, whose average value was about 73 Bq/m{sup 3}, were all under maximum permissible limits for radon 200 Bq/m{sup 3}, established by International Comission on Radiological Protection--ICRP 65, for inner environments of houses and state buildings. This work has been coordinated by CNEN Office in Braselia with effective participation of Nuclear Engineering Institute from CNEN--RJ, that has worked since beginning of april 2004, supplying and analysing radon detectors.

  9. Thoron detection with an active Radon exposure meter—First results

    NASA Astrophysics Data System (ADS)

    Irlinger, J.; Wielunski, M.; Rühm, W.

    2014-02-01

    For state-of-the-art discrimination of Radon and Thoron several measurement techniques can be used, such as active sampling, electrostatic collection, delayed coincidence method, and alpha-particle-spectroscopy. However, most of the devices available are bulky and show high power consumption, rendering them unfeasible for personal exposition monitoring. Based on a Radon exposure meter previously realized at the Helmholtz Center Munich (HMGU), a new electronic prototype for Radon/Thoron monitoring is currently being developed, which features small size and weight. Operating with pin-diode detectors, the low-power passive-sampling device can be used for continuous concentration measurements, employing alpha-particle-spectroscopy and coincidence event registration to distinguish decays originating either from Radon or Thoron isotopes and their decay products. In open geometry, preliminary calibration measurements suggest that one count per hour is produced by a 11 Bq m-3 Radon atmosphere or by a 15 Bq m-3 Thoron atmosphere. Future efforts will concentrate on measurements in mixed Radon/Thoron atmospheres.

  10. Measurement of radon potential from soil using a special method of sampling

    NASA Astrophysics Data System (ADS)

    Cosma, Constantin; Papp, Botond; Moldovan, Mircea; Cosma, Victor; Cindea, Ciprian; Suciu, Liviu; Apostu, Adelina

    2010-10-01

    Soil radon gas and/or its exhalation rate are used as indicators for some applications, such as uranium exploration, indoor radon concentration, seismic activity, location of subsurface faults, etc., and also in the studies where the main interest is the field verification of radon transport models. This work proposes a versatile method for the soil radon sampling using a special manner of pumping. The soil gas is passed through a column of charcoal by using passive pumping. A plastic bottle filled with water is coupled to an activated charcoal column and the flow of water through an adjustable hole made at the bottom of bottle assures a controlled gas flow from the soil. The results obtained for the activity of activated charcoal are in the range of 20-40 kBq/m3, for a depth of approximately 0.8 m. The results obtained by this method were confirmed by simultaneous measurements using LUK 3C device for soil radon measurements. Possible applications for the estimation of radon soil potential are discussed.

  11. A study of the influence of a gravel subslab layer on radon entry rate using two basement structures

    SciTech Connect

    Robinson, A.L.; Sextro, R.G.; Fisk, W.J.; Garbesi, K.; Wooley, J.; Wollenberg, H.A.

    1993-01-01

    In buildings with elevated radon concentrations, the dominant transport mechanism of radon is advective flow of soil gas into the building substructure. However, the building-soil system is often complex, making detailed studies of the radon source term difficult. In order to examine radon entry into buildings, the authors have constructed two room-size, precisely-fabricated basement structures at a site with relatively homogeneous, moderately permeable soil. The basements are identical except that one lies directly on native soil whereas the other lies on a high permeability aggregate layer. The soil pressure field and radon entry rate have been measured for different basement pressures and environmental conditions. The subslab gravel layer greatly enhances the advective entry of radon into the structure; when the structures are depressurized, the radon entry rate into the structure with the subslab gravel layer is more than a factor of 3 times the radon entry rate into the other structure for the same depressurization. The gravel subslab layer also spreads the pressure field around the structure, extending the field of influence of the structure and the region from which it draws radon.

  12. A study of the influence of a gravel subslab layer on radon entry rate using two basement structures

    SciTech Connect

    Robinson, A.L.; Sextro, R.G.; Fisk, W.J.; Garbesi, K.; Wooley, J.; Wollenberg, H.A.

    1993-01-01

    In buildings with elevated radon concentrations, the dominant transport mechanism of radon is advective flow of soil gas into the building substructure. However, the building-soil system is often complex, making detailed studies of the radon source term difficult. In order to examine radon entry into buildings, the authors have constructed two room-size, precisely-fabricated basement structures at a site with relatively homogeneous, moderately permeable soil. The basements are identical except that one lies directly on native soil whereas the other lies on a high permeability aggregate layer. The soil pressure field and radon entry rate have been measured for different basement pressures and environmental conditions. The subslab gravel layer greatly enhances the advective entry of radon into the structure; when the structures are depressurized, the radon entry rate into the structure with the subslab gravel layer is more than a factor of 3 times the radon entry rate into the other structure for the same depressurization. The gravel subslab layer also spreads the pressure field around the structure, extending the field of influence of the structure and the region from which it draws radon.

  13. Developing geologic tools for finding very high indoor radon, examples from the midwestern and eastern United States

    SciTech Connect

    Gundersen, L.C.S.; Schumann, R.R.

    1995-12-31

    A three-year study of the Geologic Radon Potential of the United States was recently released by the U.S. Geological Survey (USGS) in cooperation with the U.S. Environmental Protection Agency (EPA). These geologic radon potential assessments were made using 5 types of data: 1. building architecture; 2. aerial radiometric surveys; 3. soil characteristics, 4. indoor radon; and 5. geology. These estimates predict the land`s potential to produce radon. Building upon the knowledge gained in this national study of geologic radon potential, the USGS is cooperating with the Department of Energy, Lawrence Berkeley Laboratory, and the EPA to develop a quantitative methodology for assessing the percentage of hmes (as a function of area) that exceed > 20 pCi/L in the current housing stock of the United States. In this paper, we present and contrast the geologic radon potential of two areas of the United States where indoor radon occurrences greater than 20 pCi/L are not uncommon. The Central and Southern Appalachian Highlands are south of the limit of glaciation and bedrock geologic parameters statistically account for a significant amount of the variation seen in indoor radon. Geology, soil radon, and surface gamma radiation have been compared with indoor radon and regression analyses indicate high positive correlations (R<0.5 to 0.9). In glaciated areas such as the northern Appalachian Highlands and the Central Lowlands area of the midwestern United States, the correlation of bedrock geology to indoor radon is obscured. Our most recent investigations indicate that glacial deposit morphology and radionuclide residence in the source rock can be used successfully to predict the magnitude and variation of indoor radon.

  14. Variation of soil radon concentrations in southern Ontario.

    PubMed

    Chen, J; Ly, J; Bergman, L; Wierdsma, J; Klassen, R A

    2008-01-01

    Radon has been identified as the second leading cause of lung cancer after tobacco smoking. Information on indoor radon concentrations is required to assess the lung cancer burden due to radon exposure. However, radon data in highly populated southern Ontario are very limited. Since radon in soil is believed to be the main source of radon in homes, measurements of soil gas radon concentrations can be used to estimate variations in radon potential of indoor environments. This study reports a transect survey of natural background variation in soil radon levels across southern Ontario. The results indicate that radon risk could be high in some areas of southern Ontario.

  15. Highly sensitive radon monitor and radon emanation rates for detector components

    NASA Astrophysics Data System (ADS)

    Choi, E.; Komori, M.; Takahisa, K.; Kudomi, N.; Kume, K.; Hayashi, K.; Yoshida, S.; Ohsumi, H.; Ejiri, H.; Kishimoto, T.; Matsuoka, K.; Tasaka, S.

    2001-02-01

    The radon emanation rates for materials were measured by using the electrostatic precipitation method as a radon monitor. It was found that a low level of radon was emanated from several material components in ELEGANT V. The radon monitor has been developed for the highly sensitive measurements of low-level radon concentration. The system was shown to have a sensitivity to radon concentrations as low as 1.6 mBq/ m3 for one day measurement. The system was also used as the radon concentration monitor for the gas inside the airtight box of the ELEGANT V at Oto Cosmo Observatory.

  16. Indoor radon, geogenic radon surrogates and geology - Investigations on their correlation.

    PubMed

    Friedmann, H; Baumgartner, A; Bernreiter, M; Gräser, J; Gruber, V; Kabrt, F; Kaineder, H; Maringer, F J; Ringer, W; Seidel, C; Wurm, G

    2017-01-01

    The indoor radon concentration was measured in most houses in a couple of municipalities in Austria. At the same time the activity concentration of radium in soil, the soil gas radon concentration, the permeability of the ground and the ambient dose equivalent rate were also measured and the geological situations (geological units) were recorded too. From the indoor radon concentration and different house and living parameters a radon potential (Austrian radon potential) was derived which should represent the radon concentration in a standard room. Another radon potential (Neznal radon potential) was calculated from the soil gas radon concentration and the permeability. The aim of the investigation was to correlate all the different variables and to test if the use of surrogate data (e.g. geological information, ambient dose equivalent rate, etc.) can be used to judge the radon risk for an area without performing numerous indoor measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The use of volunteer radon measurements for radon mapping purposes: an examination of sampling bias issues.

    PubMed

    Burke, Orlaith; Murphy, Patrick

    2011-09-01

    National and regional radon surveys are used in many nations to produce maps detailing the spatial variation of indoor radon concentrations. National surveys which are designed to be representative use either a geographically-weighted or a population-weighted sampling scheme. Additionally, many countries collect a large number of data on indoor radon concentrations from volunteers who have chosen to have the indoor radon concentration measured in their own dwellings. This work examines the representativeness of volunteer-based samples in radon measurement and explores the effect of potential volunteer bias on radon mapping results. We also investigate the influence that media attention has on volunteer sampling of indoor radon concentrations. The result of our work indicates that volunteer measurements are biased due to over-sampling of high radon areas. Consequently such volunteer radon measurements should not be used for radon mapping purposes.

  18. Thermo-diffusional radon waves in soils.

    PubMed

    Minkin, Leonid; Shapovalov, Alexander S

    2016-09-15

    A new theoretical framework for diurnal and seasonal oscillations of the concentration of radon in soil and open air is proposed. The theory is based on the existing temperature waves in soils and thermo-diffusional gas flux in porous media. As soil is a non-isothermal porous medium, usually possessing a large fraction of microscopic pores belonging to Knudsen's free molecular field, a thermo-diffusional gas flow in soil has to arise. The radon mass transfer equation in soil for sinusoidal temperature oscillations at the soil-atmosphere boundary is solved, which reveals that radon concentration behaves as a damped harmonic wave. The amplitude of radon concentration oscillations and phase shift between radon concentration oscillations and soil temperature depend on the radon diffusion coefficient in soil, rate of radon production, soil thermal conductivity, average soil temperature, decay constant, and heat of radon transfer. Primarily numerical calculations are presented and comparisons with experimental data are shown.

  19. Final Federal Radon Action Plan Scorecard

    EPA Pesticide Factsheets

    This page provides information and a link to the draft Federal Radon Action Plan. It also contains a Federal Radon Action Plan Scorecard, a tool designed to display the current status of each federal agency commitments and outcomes to date.

  20. Comparative survey of outdoor, residential and workplace radon concentrations.

    PubMed

    Barros, Nirmalla; Field, Dan W; Steck, Daniel J; Field, R William

    2015-02-01

    This study investigated radon concentrations in above-ground (i.e. first floor) workplace in Missouri and compared them with above-ground radon concentrations in nearby homes and outdoor locations. This study also examined the potential utility of using home and outdoor radon concentrations to predict the radon concentration at a nearby workplace (e.g. county agencies and schools). Even though workplace radon concentrations were not statistically different from home radon concentrations, the radon concentration at a particular home, or outdoor location, was a poor predictor of the radon concentration at a nearby workplace. Overall, 9.6 and 9.9 % of homes and workplace, respectively, exhibited radon concentrations of ≥148 Bq m(-3). Because of the percentage of workplace with elevated radon concentrations, the results suggest that additional surveys of workplace radon concentrations are needed, especially in areas of high radon potential, to assess the contribution of workplace radon exposure to an individual's overall radon exposure.

  1. Factors affecting atmospheric radon concentration, human health.

    PubMed

    Tchorz-Trzeciakiewicz, D E; Kłos, M

    2017-04-15

    We studied the influence of terrain, geology and weather condition on radon concentration in the atmosphere and occurrence of radon density currents. The survey was carried out in Kowary (SW Poland) and in the spoil tip formed during uranium mining. The measurements of radon concentration were performed using SSNTD LR-115. The measurements of uranium thorium and potassium content in soil were carried out using gamma ray spectrometer Exploranium RS-230. We noticed that terrain and stability of weather condition had significant impact on atmospheric radon concentration. The seasonal variations of radon concentrations in Kowary differ from those usually registered in temperate climate. Based on our analyses, the increase of radon concentration in winter and spring was caused by inversion occurring in that area during these seasons. The observed seasonal variations of radon concentrations in the spoil tip were consistent with those characteristic for temperate climate (the highest radon concentration registered in spring and summer and the lowest in winter and autumn). The spoil tip is located above 900m a.s.l. and is not cover by grass or trees. These circumstances promoted radon exhalation. The air movement above the spoil tip area is intensive, even in winter time. The average atmospheric radon concentration in the spoil tip was 318Bqm(-3). The performed research did not reveal occurrence of radon density currents and flow of radon from the spoil tip to lower lying areas in Kowary. We noticed interdependence of atmospheric radon concentration measured at the height of 1.5 above the ground and uranium content in soil and no correlation between thorium content and radon concentration. The lung cancer in residents of Kowary which is more common than in Poland can be associated with increased concentrations of radon. The average radon concentration in the atmosphere in Kowary was 79Bq m(-3).

  2. Dosimetric challenges for residential radon epidemiology.

    PubMed

    Steck, Daniel J; Field, R William

    2006-04-01

    Radon concentration alone may not be an adequate surrogate to measure for lung cancer risk in all residential radon epidemiologic lung cancer studies. The dose delivered to the lungs per unit radon exposure can vary significantly with exposure conditions. These dose-effectiveness variations can be comparable to spatial and temporal factor variations in many situations. New technologies that use surface-deposited and implanted radon progeny activities make more accurate dose estimates available for future epidemiologic studies.

  3. A study of Monitoring and Mapping for Radon-Concentration Distribution in Gyeongju - 12201

    SciTech Connect

    Park, Chan Hee; Lee, Jung Min; Jang, So Young; Kim, Shin Jae; Moon, Joo Hyun

    2012-07-01

    Radon is one of the most important contributors to the radiation exposure in humans. This study measured the indoor radon concentrations at the 17 elementary school auditoriums that were sampled from those in the city of Gyeongju, Korea. The reason that an elementary school was selected as a measurement object is that many students and teachers stay for a long time in a day and it's easy to identify the characteristics of the auditorium building such as the essential building. The measurement shows that most of the indoor radon concentrations at the 17 elementary school auditoriums did not exceed 148 Bq/m{sup 3} that is the action level recommended by U.S. Environmental Protection Agency. This study measured the indoor radon concentrations at the elementary school auditoriums in Gyeongju. The measurements were analyzed according to the bedrock type and the time intervals per day. In this study, it was found that the indoor radon concentrations over off-duty hours were generally higher that those over on-duty hours, and the indoor radon concentration in the area whose bedrock is volcanic rock was higher than those in the area of the other types of bedrock. As mentioned above, attention has to be paid to an elementary school since many young students and teachers stay for more 6 hours a day at it. Hence, it is necessary to continuously monitor and properly manage the indoor radon concentrations in the elementary schools. (authors)

  4. Distribution of radon concentrations in child-care facilities in South Korea.

    PubMed

    Lee, Cheol-Min; Kwon, Myung-Hee; Kang, Dae-Ryong; Park, Tae-Hyun; Park, Si-Hyun; Kwak, Jung-Eun

    2017-02-01

    This study was conducted to provide fundamental data on the distribution of radon concentrations in child day-care facilities in South Korea and to help establish radon mitigation strategies. For this study, 230 child-care centers were randomly chosen from all child-care centers nationwide, and alpha track detectors were used to examine cumulative radon exposure concentrations from January to May 2015. The mean radon concentration measured in Korean child-care centers is approximately 52 Bq m(-3), about one-third of the upper limit of 148 Bq m(-3), which is recommended by South Korea's Indoor Air Quality Control in Public Use Facilities, etc. Act and the U.S. Environmental Protection Agency (EPA). Furthermore, this concentration is about 50% lower than 102 Bq m(-3), which is the measured concentration of radon in houses nationwide from December 2013 to February 2014. Our results indicate that the amount of ventilation, as a major determining factor for indoor radon concentrations, is strongly correlated with the fluctuation of indoor radon concentrations in Korean child-care centers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Determination of radon concentration levels in well water in Konya, Turkey.

    PubMed

    Erdogan, M; Eren, N; Demirel, S; Zedef, V

    2013-10-01

    Radon ((222)Rn) measurements were undertaken in 16 samples of well water representing different depths and different types of aquifers found at the city centre of Konya, Central Turkey. The radon activity concentrations of the well water samples collected in the spring and summer seasons of 2012 were measured by using the radon gas analyser (AlphaGUARD PQ 2000PRO). The radon concentrations for spring and summer seasons are 2.29 ± 0.17 to 27.25 ± 1.07 and 1.44 ± 0.18 to 27.45 ± 1.25 Bq l(-1), respectively. The results at hand revealed that the radon concentration levels of the waters strictly depend on the seasons and are slightly variable with depth. Eleven of the 16 well water samples had radon concentration levels below the safe limit of 11.11 Bq l(-1) recommended by the United States Environmental Protection Agency. However, all measured radon concentration levels are well below the 100 Bq l(-1) safe limit declared by the World Health Organisation. The doses resulting from the consumption of these waters were calculated. The calculated minimum and maximum effective doses are 0.29 and 5.49 µSv a(-1), respectively.

  6. Radon Risk Perception and Testing: Sociodemographic Correlates.

    ERIC Educational Resources Information Center

    Halpern, Michael T.; Warner, Kenneth E.

    1994-01-01

    Using information from the 1990 National Health Interview Survey, examined beliefs regarding radon and radon-testing activities among different sociodemographic groups. Results suggest relatively superficial knowledge regarding radon, and little testing, within the survey population. Significantly less knowledge was observed among female and…

  7. RADON GENERATION AND TRANSPORT THROUGH CONCRETE FOUNDATIONS

    EPA Science Inventory

    The report gives results of an examination of radon generation and transport through Florida residential concretes for their contribution to indoor radon concentrations. Radium concentrations in the 11 concretes tested were all <2.5 pCi/g and radon emanation coefficients were all...

  8. Reducing Radon in Schools: A Team Approach.

    ERIC Educational Resources Information Center

    Ligman, Bryan K.; Fisher, Eugene J.

    This document presents the process of radon diagnostics and mitigation in schools to help educators determine the best way to reduce elevated radon levels found in a school. The guidebook is designed to guide school leaders through the process of measuring radon levels, selecting the best mitigation strategy, and directing the efforts of a…

  9. RADON GENERATION AND TRANSPORT THROUGH CONCRETE FOUNDATIONS

    EPA Science Inventory

    The report gives results of an examination of radon generation and transport through Florida residential concretes for their contribution to indoor radon concentrations. Radium concentrations in the 11 concretes tested were all <2.5 pCi/g and radon emanation coefficients were all...

  10. Is Your School Safe from Radon?

    ERIC Educational Resources Information Center

    Martin, Paul

    1990-01-01

    Radon is a natural, chemically inert, radioactive gas that can seep to the surface from underground rocks. As many as 20,000 lung cancer deaths in the U.S. each year may be radon-caused. Screening a school for radon is not difficult and may be done on weekends. It's safer for students and staff to test and be sure. (MLH)

  11. Is Your School Safe from Radon?

    ERIC Educational Resources Information Center

    Martin, Paul

    1990-01-01

    Radon is a natural, chemically inert, radioactive gas that can seep to the surface from underground rocks. As many as 20,000 lung cancer deaths in the U.S. each year may be radon-caused. Screening a school for radon is not difficult and may be done on weekends. It's safer for students and staff to test and be sure. (MLH)

  12. Radon Risk Perception and Testing: Sociodemographic Correlates.

    ERIC Educational Resources Information Center

    Halpern, Michael T.; Warner, Kenneth E.

    1994-01-01

    Using information from the 1990 National Health Interview Survey, examined beliefs regarding radon and radon-testing activities among different sociodemographic groups. Results suggest relatively superficial knowledge regarding radon, and little testing, within the survey population. Significantly less knowledge was observed among female and…

  13. Radon-hazard potential of Utah

    SciTech Connect

    Black, B.D.; Solomon, B.J. )

    1993-04-01

    Radon is a naturally occurring radioactive gas formed by decay of uranium, and occurs in nearly all geologic materials. Although radon has been shown to be a significant cause of lung cancer in miners, the health hazard from accumulation of radon gas in buildings has only recently been recognized. Indoor-radon hazards depend on both geologic and non-geologic factors. Although non-geologic factors such as construction type, weather, and lifestyles are difficult to measure, geologic factors such as uranium concentration, soil permeability, and depth to ground water can be quantified. Uranium-enriched geologic materials, such as black shales, marine sandstones, and certain granitic, metamorphic, and volcanic rocks, are generally associated with a high radon-hazard potential. Impermeable soil or shallow ground water impedes radon movement and is generally associated with a low radon-hazard potential. A numerical rating system based on these geologic factors has been developed to map radon-hazard potential in Utah. A statewide map shows that the radon-hazard potential of Utah is generally moderate. Assessments of hazard potential from detailed field investigations correlate well with areas of this map. Central Utah has the highest radon-hazard potential, primarily due to uranium-enriched Tertiary volcanic rocks. The radon-hazard potential of eastern Utah is moderate to high, but is generally restricted by low uranium levels. Western Utah, where valley basins with impermeable soils and shallow ground water are common, has the lowest radon-hazard potential.

  14. Soil radon and electromagnetic anomalies before the Ileia(Greece) M6.8 earthquake

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, D.; Vogiannis, E.; Louizi, A.; Zisos, A.

    2009-04-01

    -Thoron) with the aid of a mechanical pump working continuously at a rate of 1 L/min. Radon is continuously measured every ten minutes. Additionally, calibrated passive radon dosimeters based on CR-39 Solid State Nuclear Track Detectors (SSNTD's) are periodically (every two weeks) installed in 50 cm holes dug near the 1-m probe and exposed (passively) to soil radon. After the end of each exposure period, the dosimeters are collected and the SSNTD's are measured via standard methods (optical microscopy track counting). Both methods (active with AG and passive with SSNTD's) provide similar estimates of mean soil radon concentration. Active techniques are much more precise and quick, however, they indicated the necessity of periodical checks for the pumping and measurement status, especially after strong rainfalls. The mean soil radon concentration was found fairly constant (to within +/- 10%) and approximately equal to 25-27 kBq m-3. Numerous soil radon concentration anomalies (sudden statistically significant (p

  15. Mutagenicity of radon and radon daughters. Annual progress report

    SciTech Connect

    Evans, H.H.

    1991-12-01

    The objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose rate dependence and the nature of the DNA lesion will be studied, using the thymidine kinase and HPRT loci to measure mutation frequency. A deficiency in DNA repair is shown to lead to a greater proportion of mutants with intergenic lesions. The cytotoxic effects of radon and its daughters are similar in human TK6 lymphoblasts and mouse L5178Y lymphoblasts, the cell line used in previous experiments. The results of molecular analysis of four spontaneous and 25 X-radiation induced HPRT{sup {minus}} mutants. Eleven radon-induced HPRT{sup {minus}} mutants have been isolated, and will be analyzed in a similar fashion. 9 figs.

  16. Soil radon as a possible earthquake precursor: Preliminary results from Ileia (Greece)

    NASA Astrophysics Data System (ADS)

    Petraki, Ermioni; Nikolopoulos, Dimitrios; Louizi, Anna; Zisos, Athanasios

    2010-05-01

    into AG at a rate of 1 L/min. Pumping is performed via a 1-m soil probe to minimize meteorological influences and a 25-m radon proof 25-mm tube to avoid simultaneous measurement of soil 220Rn. Proper dust and moisture filters are employed. Radon is monitored every 10 minutes. This interval can be reduced to 1 minute, however with lower accuracy and data storage capacity. For comparison purposes, calibrated passive radon dosimeters based on CR-39 Solid State Nuclear Track Detectors (SSNTD's) were periodically installed and exposed to soil radon in 50 cm holes were dug near the 1-m probe. The exposures lasted 1-2 weeks. Afterwards, the SSNTD's were removed, etched and measured via standard methods (optical microscopy track counting). The period of comparison measurements was 6 months. Continuous monitoring and passive measurements were cross-calibrated and found to provide similar estimates of mean soil radon concentration. Active techniques are much more precise and quick, however, they indicated the necessity of periodical checks for the pumping and measurement status, especially after strong rainfalls.The mean soil radon concentration was found fairly constant (~ 25-30 kBq m-3). Numerous soil radon concentration anomalies were detected. These were arbitrarily corresponded in terms of magnitude and duration to seismic events of the near area. All detected anomalies were sudden, significantly (p

  17. Radon in indoor air of primary schools: determinant factors, their variability and effective dose.

    PubMed

    Madureira, Joana; Paciência, Inês; Rufo, João; Moreira, André; de Oliveira Fernandes, Eduardo; Pereira, Alcides

    2016-04-01

    Radon is a radioactive gas, abundant in granitic areas, such as in the city of Porto at the north-east of Portugal. This gas is a recognized carcinogenic agent, being appointed by the World Health Organization as the leading cause of lung cancer after smoking. The aim of this preliminary survey was to determine indoor radon concentrations in public primary schools, to analyse the main factors influencing their indoor concentration levels and to estimate the effective dose in students and teachers in primary schools. Radon concentrations were measured in 45 classrooms from 13 public primary schools located in Porto, using CR-39 passive radon detectors for about 2-month period. In all schools, radon concentrations ranged from 56 to 889 Bq/m(3) (mean = 197 Bq/m(3)). The results showed that the limit of 100 Bq/m(3) established by WHO IAQ guidelines was exceeded in 92 % of the measurements, as well as 8 % of the measurements exceeded the limit of 400 Bq/m(3) established by the national legislation. Moreover, the mean annual effective dose was calculated as 1.25 mSv/y (ranging between 0.58 and 3.07 mSv/y), which is below the action level (3-10 mSv). The considerable variability of radon concentration observed between and within floors indicates a need to monitor concentrations in several rooms for each floor. A single radon detector for each room can be used, provided that the measurement error is considerably lower than variability of radon concentration between rooms. The results of the present survey will provide useful baseline data for adopting safety measures and dealing effectively with radiation emergencies. In particular, radon remediation techniques should be used in buildings located in the highest radon risk areas of Portugal. The results obtained in the current study concerning radon levels and their variations will be useful to optimize the design of future research surveys.

  18. Unusually high indoor radon concentrations

    NASA Astrophysics Data System (ADS)

    Ennemoser, O.; Ambach, W.; Brunner, P.; Schneider, P.; Oberaigner, W.; Purtscheller, F.; Stingl, V.

    Measurements of indoor radon concentrations in the village Umhausen (2600 inhabitants, Ötztal valley, Tyrol, Austria) revealed unusually high indoor radon concentrations up to 274,000 Bq m -3. The medians measured on the basements were 3750 Bq m -3 in winter and 361 Bq m -3 in summer, those on the ground floors were 1180 Bq m -3 and 210 Bq m -3, respectively. Seventy-one per cent of the houses showed basement radon concentrations above the Austrian action level of 400 Bq m -3 in winter, 33% in summer. There are indications that the high radon concentrations are due to a giant rock slide about 8700 years ago. The unusually high radon concentrations in Umhausen coincide with a statistically significant increase in lung cancer mortality. For the period 1970-1991 the age and sex standardized mortality rate is 3.85 (95% confidence interval: 2.9 to 5.1). The control population is the total population of Tyrol (630,000 inhabitants).

  19. Development of a couple of methods for measuring radon exhalation from building materials commonly used in the Iberian Peninsula.

    PubMed

    Miró, C; Andrade, E; Reis, M; Madruga, M J

    2014-07-01

    Radon is considered to be the main contributor to the worldwide population exposure to natural sources of radiation and so a lot of efforts have been made in most countries to assess indoor radon concentrations. Radon exhales from the earth's surface and is part of the radioactive decay series of uranium, which is also present in building materials. In this work, measurements of radon exhalation rates in building materials commonly used in the Iberian Peninsula have been carried out by using two different methods: active and passive techniques. In the first technique, the radon exhalation rate was measured following the radon activity growth as a function of time, by using a continuous radon monitor. The second technique is based on integrated measurements by using solid-state nuclear track detectors and a Spark Counter reading equipment. The results obtained by both measuring methods were found to be consistent. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Measurement of radon concentration for assessment of the radiological hazard in the Chakwal coalmines of the Salt Range, Pakistan.

    PubMed

    Mahmood, Arif; Tufail, M

    2011-09-01

    Radon and its progeny are prevalent everywhere on the lithosphere especially in the mining environment. Coal exists in the Salt Range that passes through Pakistan. The aim of the present study was to measure radon concentration and assess the associated radiological hazard in the coalmines developed in that portion of the Salt Range which passes through the district of Chakwal in Pakistan. Among the various coalmines in the coalfield, five were selected for radon survey. A passive integrated technique consisting of SSNTDs (solid state nuclear track detectors) was employed for the measurement of radon concentration in these coalmines. Box type dosimeters containing CN-85 detectors were placed for three months at six locations in every selected coalmine. After removing the dosimeters, the CN-85 detectors were etched in alkaline solution to enlarge the alpha tracks in the detectors and counted under an optical microscope. The track densities were converted to radon concentration. The average concentration of radon in the coalmines varied in the range 50-114  Bq m(-3). Radon exhalation rates from the samples of coal and shale collected from the coalmines were determined to be respectively 934 (830-1010) and 1302 (1020-1580)  mBq m(-2) h(-1). The radiation dose and corresponding health risk for the mine workers were also estimated.

  1. Psychosocial and environmental correlates of active and passive transport behaviors in college educated and non-college educated working young adults

    PubMed Central

    De Bourdeaudhuij, Ilse; Clarys, Peter; De Cocker, Katrien; de Geus, Bas; Vandelanotte, Corneel; Van Cauwenberg, Jelle; Deforche, Benedicte

    2017-01-01

    Background This study aimed to examine potential differences in walking, cycling, public transport and passive transport (car/moped/motorcycle) to work and to other destinations between college and non-college educated working young adults. Secondly, we aimed to investigate which psychosocial and environmental factors are associated with the four transport modes and whether these associations differ between college and non-college educated working young adults. Methods In this cross-sectional study, 224 working young adults completed an online questionnaire assessing socio-demographic variables (8 items), psychosocial variables (6 items), environmental variables (10 items) and transport mode (4 types) and duration to work/other destinations. Zero-inflated negative binomial regression models were performed in R. Results A trend (p<0.10) indicated that more college educated compared to non-college educated young adults participated in cycling and public transport. However, another trend indicated that cycle time and public transport trips were longer and passive transport trips were shorter in non-college compared to college educated working young adults. In all working young adults, high self-efficacy towards active transport, and high perceived benefits and low perceived barriers towards active and public transport were related to more active and public transport. High social support/norm/modeling towards active, public and passive transport was related to more active, public and passive transport. High neighborhood walkability was related to more walking and less passive transport. Only in non-college educated working young adults, feeling safe from traffic and crime in their neighborhood was related to more active and public transport and less passive transport. Conclusions Educational levels should be taken into account when promoting healthy transport behaviors in working young adults. Among non-college educated working young adults, focus should be on

  2. Regional variations pattern of indoor radon levels in some areas of Punjab and Haryana.

    PubMed

    Singh, Harmanjit; Singh, Joga; Singh, Surinder; Bajwa, B S

    2008-01-01

    The indoor radon concentration levels and their regional variations pattern, for two consecutive half-year periods, in a wide range of dwellings of some regions of Punjab and Haryana states have been studied. The objective was to find the relation between the variations of indoor radon levels with the sub-soil and local geology, type of building materials utilised in the dwellings of the region. Keeping this in view, indoor radon measurements have been carried out in the dwellings of 30 villages around the Tusham Ring Complex, Bhiwani district, Haryana, known to be composed of acidic volcanics and associated granites, along with 11 villages of Amritsar District, Punjab. The indoor radon concentration in the dwellings around Tusham (Haryana) was found to vary from 120 +/- 95 to 915 +/- 233 Bq m(-3), whereas radon levels varied from 60 +/- 37 to 235 +/- 96 Bq m(-3) for the dwellings studied in Punjab. We believe that local geology including embedded granitic rocks, and sub-soil, as well as building materials having higher radioactive content, is the major contributor for the higher indoor radon levels observed particularly in the dwelling around Tusham Ring complex, where some dwellings are showing higher radon concentrations than the ICRP recommendations. The environmental samples from some areas of Punjab state and around the Tusham Ring Complex of Haryana state have also been analysed for radon exhalation studies. Higher values for radon exhalation rates have been observed for the Tusham's soil/rock specimens, as compared with soil samples of the Amritsar region of Punjab.

  3. A critical analysis of climatic influences on indoor radon concentrations: Implications for seasonal correction.

    PubMed

    Groves-Kirkby, Christopher J; Crockett, Robin G M; Denman, Antony R; Phillips, Paul S

    2015-10-01

    Although statistically-derived national Seasonal Correction Factors (SCFs) are conventionally used to convert sub-year radon concentration measurements to an annual mean, it has recently been suggested that external temperature could be used to derive local SCFs for short-term domestic measurements. To validate this approach, hitherto unanalysed radon and temperature data from an environmentally-stable location were analysed. Radon concentration and internal temperature were measured over periods totalling 1025 days during an overall period of 1762 days, the greatest continuous sampling period being 334 days, with corresponding meteorological data collected at a weather station 10 km distant. Mean daily, monthly and annual radon concentrations and internal temperatures were calculated. SCFs derived using monthly mean radon concentration, external temperature and internal-external temperature-difference were cross-correlated with each other and with published UK domestic SCF sets. Relatively good correlation exists between SCFs derived from radon concentration and internal-external temperature difference but correlation with external temperature, was markedly poorer. SCFs derived from external temperature correlate very well with published SCF tabulations, confirming that the complexity of deriving SCFs from temperature data may be outweighed by the convenience of using either of the existing domestic SCF tabulations. Mean monthly radon data fitted to a 12-month sinusoid showed reasonable correlation with many of the annual climatic parameter profiles, exceptions being atmospheric pressure, rainfall and internal temperature. Introducing an additional 6-month sinusoid enhanced correlation with these three parameters, the other correlations remaining essentially unchanged. Radon latency of the order of months in moisture-related parameters suggests that the principal driver for radon is total atmospheric moisture content rather than relative humidity.

  4. Building radon-resistant homes in the U.S.: Strategy for the dissemination of the EPA model standards for control of radon in new residential buildings

    SciTech Connect

    Keller, J.L.

    1995-12-31

    In March, 1994 EPA published Model Standards for radon-resistant new construction in homes. Pursuant to that publication, the Radon Division of EPA has developed an innovative strategy for transferring the Model Standards to the home building community, the building code enforcement community and the general public. The strategy is based on three goal: (1) voluntary adoption of the Model Standards by home builders into their construction practices; (2) adoption of the techniques by State and local jurisdictions into their building codes; and (3) raising consumer awareness/demand for radon-resistant construction. This strategy includes a partnership with the National Association of Home builders, a unique public/private relationship; use of a multi-media campaign aimed at home builders; and creation of {open_quotes}community rountables on radon,{close_quotes} which bring together local building department officials, local home builders, politicians, health officials and activists to discuss a local solution for radon-resistant construction. State radon control programs, EPA regional offices and over eight cooperative partner non-profit organizations are involved in implementing the strategy. The strategy also has an evaluation component. This paper has been reviewed in accordance with the U.S. Environmental Protection Agency`s peer and administration review policies and approved for presentation and publication.

  5. Indoor radon survey in Visegrad countries.

    PubMed

    Műllerová, Monika; Kozak, Krzysztof; Kovács, Tibor; Smetanová, Iveta; Csordás, Anita; Grzadziel, Dominik; Holý, Karol; Mazur, Jadwiga; Moravcsík, Attila; Neznal, Martin; Neznal, Matej

    2016-04-01

    The indoor radon measurements were carried out in 123 residential buildings and 33 schools in Visegrad countries (Slovakia, Hungary and Poland). In 13.2% of rooms radon concentration exceeded 300Bqm(-3), the reference value recommended in the Council Directive 2013/59/EURATOM. Indoor radon in houses shows the typical radon behavior, with a minimum in the summer and a maximum in the winter season, whereas in 32% of schools the maximum indoor radon was reached in the summer months. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Correlation of soil radon and permeability with indoor radon potential in Ottawa.

    PubMed

    Chen, Jing; Falcomer, Renato; Bergman, Lauren; Wierdsma, Jessica; Ly, Jim

    2009-08-01

    Soil gas radon and soil gas permeability measurements were conducted at 32 sites across the five most populated communities in the city of Ottawa where indoor radon measurements were available for 167 houses. A soil radon index (SRI) determined from the soil radon concentration and the soil gas permeability was used to characterise radon availability from soil to air. This study demonstrated that the average SRI in a community area correlates with the indoor radon potential (the percentage of homes above 200 Bq m(-3)) in that community. Soil gas radon concentrations together with soil gas permeability measurements can be a useful tool for the prediction of the indoor radon potential in the development of a Canadian radon risk map.

  7. Moisture content and unsaturated conditions in UMTRA project radon barriers

    SciTech Connect

    Not Available

    1988-12-01

    A typical Uranium Mill Tailings Remedial Action (UMTRA) Project disposal facility consists of uranium tailings and other contaminated materials covered by a three to six foot thick radon barrier and six inches of filter sand, overlain by one foot of erosion-protection riprap. To comply with the proposed US Environmental Protection Agency groundwater protection standards applicable to the UMTRA Project, groundwater concentration limits of hazardous constitutents cannot be exceeded at the point of compliance, which is the downgradient limit of the waste management area. The typical radon barrier has a saturated hydraulic conductivity of approximately 1 {times} 10{sup {minus}7} centimeters per second (cm/s). Long-term seepage rates from a disposal facility with an unsaturated radon barrier may permit the concentration limits to be met at the point of compliance. Field studies were undertaken to measure the percent saturation and the relation of percent saturation to soil tension, and to predict the hydraulic conductivity as a function of percent saturation in radon barriers at three UMTRA Project disposal facilities that have been completed for up to two years. Presently typical covers have been completed at the Shiprock, Clive, and Burrell sites, and they are planned or under construction at the Ambrosia Lake, Green River, Lakeview, Mexican Hat, Slick Rock, and Tuba City sites. 2 refs., 13 figs., 1 tab.

  8. Radon removal from flowing air by a water scrubber

    SciTech Connect

    Blue, T.E.; Jarzemba, M.S.; Fentiman, A.W.; Denison, J.E.

    1994-12-31

    As part of a process that is being developed to vitrify tailings from Belgian Congo ore that is stored in large silos at a former U.S. Department of Energy uranium-processing facility in southwestern Ohio, process off-gas is produced that contains large concentrations of radon gas (on the order of hundreds of thousands of picocuries per litre). To meet U.S. Environmental Protection Agency restrictions, the process off-gas must be stripped of its radon content before it is vented to the atmosphere. It is appropriate to consider a charcoal bed as part of an off-gas treatment system for the removal of radon at the vitrification facility. However, a difficulty arises in incorporating a charcoal bed into an off-gas treatment system at a vitrification facility. That difficulty is that the capability of the charcoal bed to capture and retain radon gas decreases with increasing bed temperature. Thus, it may be necessary to include a water scrubber in the off-gas treatment system to cool the process off-gas before it is passed through the charcoal bed.

  9. Lung-cancer reduction from smoking cessation and radon remediation: a preliminary cost-analysis in Northamptonshire, UK.

    PubMed

    Groves-Kirkby, C J; Timson, K; Shield, G; Denman, A R; Rogers, S; Phillips, P S

    2011-02-01

    uptake or environmental management for radon in the home.

  10. Environmental Health

    MedlinePlus

    ... Some environmental risks are a part of the natural world, like radon in the soil. Others are the result of human activities, like lead poisoning from paint, or exposure to asbestos or mercury from mining or industrial use. NIH: National Institute of Environmental Health Sciences

  11. Modeling radon transport in dry, cracked soil

    SciTech Connect

    Holford, D.J. ); Schery, S.D.; Wilson, J.L.; Phillips, F.M. )

    1993-01-10

    A two-dimensional finite element code was used to investigate the effect of changes in surface air pressure on radon flux from soil with parallel, partially penetrating cracks. A sensitivity analysis investigates the effects of various crack dimensions, soil characteristics, and surface air pressure on radon flux from the soil surface to the atmosphere. Simulation results indicate that radon flux is most sensitive to soil properties; the diffusion coefficient is most important, followed by permeability and porosity. Radon flux is also sensitive to changes in barometric pressure, which cause variations in radon flux above and below the average diffusive flux. Sinusoidal variations in barometric pressure cause a net increase in the average radon flux from the soil, because increases in flux during periods of decreasing pressure are greater than the decreases in flux during periods of decreasing pressure of equal magnitude. Cracks were found to significantly increase radon flux from soils of low permeability. 33 refs. 19 figs., 1 tab.

  12. Automatically processed alpha-track radon monitor

    DOEpatents

    Langner, G.H. Jr.

    1993-01-12

    An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided.

  13. Automatically processed alpha-track radon monitor

    DOEpatents

    Langner, Jr., G. Harold

    1993-01-01

    An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided.

  14. Transport of radon from soil into residences

    SciTech Connect

    Nazaroff, W.W.; Nero, A.V.

    1984-02-01

    To develop effective monitoring and control programs for indoor radon it is important to understand the causes of the broad range of concentrations that has been observed. Measurements of indoor radon concentration and air-exchange rate in dwellings in several countries indicate that this variability arises largely from differences among structures in the rate of radon entry. Recent evidence further suggests that the major source of indoor radon in many circumstances is the soil adjacent to the building foundation and that pressure-driven flow, rather than molecular diffusion, is the dominant transport process by which radon enters the buildings. Key factors affecting radon transport from soil are radon production in soil, flow-inducing mechanisms, soil permeability, and building substructure type. 24 references, 1 figure.

  15. Automatically processed alpha-track radon monitor

    SciTech Connect

    Langner, G.H. Jr.

    1991-05-02

    An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided.

  16. Review of low-energy construction, air tightness, ventilation strategies and indoor radon: results from Finnish houses and apartments.

    PubMed

    Arvela, H; Holmgren, O; Reisbacka, H; Vinha, J

    2014-12-01

    Low-energy and passive house construction practices are characterised by increased insulation, high air tightness of the building shell and controlled mechanical ventilation with heat recovery. As a result of the interaction of mechanical ventilation and high air tightness, the pressure difference in a building can be markedly enhanced. This may lead to elevated indoor radon levels. Minor leakages in the foundation can affect the radon concentration, even in the case where such leaks do not markedly reduce the total air tightness. The potential for high pressures to affect indoor radon concentrations markedly increases when the air tightness ACH50, i.e. the air change per hour induced by a pressure difference of 50 Pa, is <1.0 h(-1). Pressure differences in Finnish low-rise residential houses having mechanical supply and exhaust ventilation with heat recovery (MSEV) are typically 2-3 Pa, clearly lower than the values of 5-9 Pa in houses with only mechanical exhaust ventilation (MEV). In MSEV houses, radon concentrations are typically 30% lower than in MEV houses. In new MSEV houses with an ACH50 of 0.6 h(-1), the limit for passive construction, the analytical estimates predict an increase of 100% in the radon concentration compared with older houses with an ACH50 of 4.0 h(-1). This poses a challenge for efficient radon prevention in new construction. Radon concentrations are typically 30% lower in houses with two storeys compared with only one storey. The introduction of an MSEV ventilation strategy in typically very airtight apartments has markedly reduced pressure differences and radon concentrations.

  17. Probability mapping of indoor radon-prone areas using disjunctive kriging.

    PubMed

    Raspa, G; Salvi, F; Torri, G

    2010-01-01

    After a reference to the use of maps of radon-prone areas for indoor radon risk management, and to the methods used to produce them, there is a brief illustration of the geostatistical method of disjunctive kriging (DK) introduced by G. Matheron as a substitute for conditional expectation. There are some good reasons of using this method for the mapping of radon-prone areas as follows: (1) spatial correlation is exploited; (2) unbiasedness is conserved even in the conditions of quasi-stationarity; (3) lognormality of the data is not required; (4) choosing the point estimation allows drawing up smooth probability maps. An application of DK is also presented for the production of probability maps in a campaign of indoor radon measurements conducted by Institute for Environmental Protection and Research, in the provinces of Rome and Viterbo (Central Italy). In the application, it is assessed in particular how much the spatial correlation, even though low, influences the results.

  18. Radon Exposure Assessment and Relative Effective Dose Estimation to Inhabitants of Puglia Region, South Italy

    PubMed Central

    Quarto, Maria; Pugliese, Mariagabriella; La Verde, Giuseppe; Loffredo, Filomena; Roca, Vincenzo

    2015-01-01

    Indoor radon concentrations were measured in dwellings of the Puglia region in Southern Italy using LR-115 passive detectors. The results show that the radon concentrations varied from 15 ± 2 to 2166 ± 133 Bq/m3 with a geometric mean of 114 Bq/m3 and a geometric standard deviation of 2.3. An analysis on the factors affecting radon concentration such as age of the dwellings, floors, and stories, was performed. The mean effective dose to inhabitants has been calculated and found to be 8.2 mSv/y. Finally, for estimation of cancer risks, the lifetime risk and lung cancer cases per years per million have been calculated. PMID:26610543

  19. Radon Exposure Assessment and Relative Effective Dose Estimation to Inhabitants of Puglia Region, South Italy.

    PubMed

    Quarto, Maria; Pugliese, Mariagabriella; La Verde, Giuseppe; Loffredo, Filomena; Roca, Vincenzo

    2015-11-23

    Indoor radon concentrations were measured in dwellings of the Puglia region in Southern Italy using LR-115 passive detectors. The results show that the radon concentrations varied from 15 ± 2 to 2166 ± 133 Bq/m³ with a geometric mean of 114 Bq/m³ and a geometric standard deviation of 2.3. An analysis on the factors affecting radon concentration such as age of the dwellings, floors, and stories, was performed. The mean effective dose to inhabitants has been calculated and found to be 8.2 mSv/y. Finally, for estimation of cancer risks, the lifetime risk and lung cancer cases per years per million have been calculated.

  20. Residential radon exposure and lung cancer: risk in nonsmokers.

    PubMed

    Neuberger, John S; Gesell, Thomas F

    2002-07-01

    Lung cancer is a disease that is almost entirely caused by smoking; hence, it is almost totally preventable. Yet there are a small percentage of cases, perhaps as many as 5 to 15%, where there are other causes. Risk factors identified for this other group include passive smoking, occupational exposure to certain chemicals and ionizing radiation, diet, and family history of cancer. In the United States cigarette smoking is on the decline among adults, occupational exposures are being reduced, and people are being made more aware of appropriate diets. These changes are gradually resulting in a reduced risk for this disease. Lung cancer in the U.S. may, therefore, eventually become largely a disease of the past. It remains important, however, to continue to study the cause(s) of lung cancer in non-smokers, particularly never smokers. Because of our interest in the effects of residential radon exposure on the development of lung cancer in non-smokers, we conducted a critical review of the scientific literature to evaluate this issue in detail. Strict criteria were utilized in selecting studies, which included being published in a peer reviewed journal, including non-smokers in the studied populations, having at least 100 cases, and being of case-control design. A total of 12 individual studies were found that met the criteria, with 10 providing some information on non-smokers. Most of these studies did not find any significant association between radon and lung cancer in non-smokers. Furthermore, data were not presented in sufficient detail for non-smokers in a number of studies. Based on the most recent findings, there is some evidence that radon may contribute to lung cancer risk in current smokers in high residential radon environments. The situation regarding the risk of lung cancer from radon in non-smokers (ex and never) is unclear, possibly because of both the relatively limited sample size of non-smokers and methodological limitations in most of the individual

  1. Environmental monitoring of selected pesticides and organic chemicals in urban stormwater recycling systems using passive sampling techniques

    NASA Astrophysics Data System (ADS)

    Page, Declan; Miotliński, Konrad; Gonzalez, Dennis; Barry, Karen; Dillon, Peter; Gallen, Christie

    2014-03-01

    Water recycling via aquifers has become a valuable tool to augment urban water supplies in many countries. This study reports the first use of passive samplers for monitoring of organic micropollutants in Managed Aquifer Recharge (MAR). Five different configurations of passive samplers were deployed in a stormwater treatment wetland, groundwater monitoring wells and a recovery tank to capture a range of polar and non-polar micropollutants present in the system. The passive samplers were analysed for a suite of pesticides, polycyclic aromatic hydrocarbons (PAHs) and other chemicals. As a result, 17 pesticides and pesticide degradation products, 5 PAHs and 8 other organic chemicals including flame retardants and fragrances were detected in urban stormwater recharging Aquifer Storage and Recovery (ASR) and an Aquifer Storage Transfer and Recovery (ASTR) system. Of the pesticides detected, diuron, metolachlor and chlorpyrifos were generally detected at the highest concentrations in one or more passive samplers, whereas chlorpyrifos, diuron, metolachlor, simazine, galaxolide and triallate were detected in multiple samplers. Fluorene was the PAH detected at the highest concentration and the flame retardant Tris(1-chloro-2-propyl)phosphate was the chemical detected in the greatest abundance at all sites. The passive samplers showed different efficiencies for capture of micropollutants with the Empore disc samplers giving the most reliable results. The results indicate generally low levels of organic micropollutants in the stormwater, as the contaminants detected were present at very low ng/L levels, generally two to four orders of magnitude below the drinking water guidelines (NHMRC, 2011). The efficiency of attenuation of these organic micropollutants during MAR was difficult to determine due to variations in the source water concentrations. Comparisons were made between different samplers, to give a field-based calibration where existing lab-based calibrations were

  2. Environmental monitoring of selected pesticides and organic chemicals in urban stormwater recycling systems using passive sampling techniques.

    PubMed

    Page, Declan; Miotliński, Konrad; Gonzalez, Dennis; Barry, Karen; Dillon, Peter; Gallen, Christie

    2014-03-01

    Water recycling via aquifers has become a valuable tool to augment urban water supplies in many countries. This study reports the first use of passive samplers for monitoring of organic micropollutants in Managed Aquifer Recharge (MAR). Five different configurations of passive samplers were deployed in a stormwater treatment wetland, groundwater monitoring wells and a recovery tank to capture a range of polar and non-polar micropollutants present in the system. The passive samplers were analysed for a suite of pesticides, polycyclic aromatic hydrocarbons (PAHs) and other chemicals. As a result, 17 pesticides and pesticide degradation products, 5 PAHs and 8 other organic chemicals including flame retardants and fragrances were detected in urban stormwater recharging Aquifer Storage and Recovery (ASR) and an Aquifer Storage Transfer and Recovery (ASTR) system. Of the pesticides detected, diuron, metolachlor and chlorpyrifos were generally detected at the highest concentrations in one or more passive samplers, whereas chlorpyrifos, diuron, metolachlor, simazine, galaxolide and triallate were detected in multiple samplers. Fluorene was the PAH detected at the highest concentration and the flame retardant Tris(1-chloro-2-propyl)phosphate was the chemical detected in the greatest abundance at all sites. The passive samplers showed different efficiencies for capture of micropollutants with the Empore disc samplers giving the most reliable results. The results indicate generally low levels of organic micropollutants in the stormwater, as the contaminants detected were present at very low ng/L levels, generally two to four orders of magnitude below the drinking water guidelines (NHMRC, 2011). The efficiency of attenuation of these organic micropollutants during MAR was difficult to determine due to variations in the source water concentrations. Comparisons were made between different samplers, to give a field-based calibration where existing lab-based calibrations were

  3. RADON AND PROGENY SOURCED DOSE ASSESSMENT OF SPA EMPLOYEES IN BALNEOLOGICAL SITES.

    PubMed

    Uzun, Sefa Kemal; Demiröz, Işık

    2016-09-01

    This study was conducted in the scope of IAEA project with the name 'Establishing a Systematic Radioactivity Survey and Total Effective Dose Assessment in Natural Balneological Sites' (TUR/9/018), at the Health Physics department of Sarayköy Nuclear Research and Training Center (SANAEM). The aim of this study is estimation of radon and progeny sourced effective dose for the people who are working at the spa facilities by measuring radon activity concentration (RAC) at the ambient air of indoor spa pools and dressing rooms. As it is known, the source of the radon gas is the radium content of the earth crust. Therefore, thermal waters coming from ground may contain dissolved radon and the radon can diffuse water to air. So the ambient air of spa pools can contain serious RAC that depends on a lot of parameters. In this regard, RAC measurements were executed at the 70 spa facilities in Turkey. The measurements were done with both active and passive methods at ambient air of spa pools and dressing rooms. Thus, active measurements were carried out by using the Alphaguard(®) with diffusion mode during half an hour, and passive measurements were carried out by using the humidity resistive CR-39 radon detectors during 2 months. Results show that RAC values at ambient air of spa pools varies between 13 Bq m(-3) and 10 kBq m(-3) Because long-term measurements are more reliable, if it is available, for dose calculations passive radon measurements (with CR-39 detectors) at ambient air of spa pools and dressing rooms were used, otherwise active measurement results were used. With the measurement by the conversion coefficients of ICRP 65 and occupational data of the employees has got from questionary forms, effective dose values were calculated. According to the calculations, spa employees are exposed to annual average dose between 0.05 and 29 mSv because of radon and progeny. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions

  4. Predicted indoor radon concentrations from a Monte Carlo simulation of 1,000,000 granite countertop purchases.

    PubMed

    Allen, J G; Zwack, L M; MacIntosh, D L; Minegishi, T; Stewart, J H; McCarthy, J F

    2013-03-01

    Previous research examining radon exposure from granite countertops relied on using a limited number of exposure scenarios. We expanded upon this analysis and determined the probability that installing a granite countertop in a residential home would lead to a meaningful radon exposure by performing a Monte Carlo simulation to obtain a distribution of potential indoor radon concentrations attributable to granite. The Monte Carlo analysis included estimates of the probability that a particular type of granite would be purchased, the radon flux associated with that type, the size of the countertop purchased, the volume of the home where it would be installed and the air exchange rate of that home. One million countertop purchases were simulated and 99.99% of the resulting radon concentrations were lower than the average outdoor radon concentrations in the US (14.8 Bq m(-3); 0.4  pCi l(-1)). The median predicted indoor concentration from granite countertops was 0.06 Bq m(-3) (1.59 × 10(-3) pCi l(-1)), which is over 2000 times lower than the US Environmental Protection Agency's action level for indoor radon (148 Bq m(-3); 4 pCi l(-1)). The results show that there is a low probability of a granite countertop causing elevated levels of radon in a home.

  5. 76 FR 72006 - Draft Interim Staff Guidance: Evaluations of Uranium Recovery Facility Surveys of Radon and Radon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... COMMISSION Draft Interim Staff Guidance: Evaluations of Uranium Recovery Facility Surveys of Radon and Radon... Recovery Facility Surveys of Radon and Radon Progeny in Air and Demonstrations of Compliance with 10 CFR 20... that existing guidance does not sufficiently detail how the NRC staff reviews surveys of radon and...

  6. Radon in ground water of the Lower Susqehanna and Potomac River basins

    USGS Publications Warehouse

    Lindsey, Bruce D.; Ator, Scott W.

    1996-01-01

    Ground-water samples collected from 267 wells were analyzed for radon as part of a water-quality reconnaissance of subunits of the Lower Susquehanna and Potomac River Basins conducted by the United States Geological Survey (USGS) as part of the National Water-Quality Assessment (NAWQA) program. Radon is a product of the radioactive decay of uranium. Airborne radon has been cited by the Surgeon General of the United States as the second-leading cause of lung cancer and the United States Environmental Protection Agency (USEPA) has identified ground-water supplies as possible contributing sources of indoor radon. Eighty percent of ground-water samples collected for this study were found to contain radon at activities greater than 300 pCi/L (picocuries per liter), the USEPA's proposed Maximum Contaminant Level for radon in drinking water, and 31 percent of samples contained radon at activities greater than 1,000 pCi/L. The 10 subunits where samples were collected were grouped into three classes - median ground-water radon activity less than 300 pCi/L, between 300 pCi/L and 1,000 pCi/L, and greater than 1,000 pCi/L. Subunits underlain by igneous and metamorphic rocks of the Piedmont Physiographic Province typically have the highest median ground-water radon activities (greater than 1,000 pCi/L); although there is a large variation in radon activities within most of the subunits. Lower median radon activities (between 300 pCi/L and 1,000 pCi/L) were found in ground water in subunits underlain by limestone and dolomite. Of three subunits underlain by sandstone and shale, one fell into each of the three radon-activity classes. The large variability within these subunits may be attributed to the fact that the uranium content of sandstone and shale is related to the uranium content of the sediments from which they formed.

  7. Vertical distribution of outdoor radon and thoron in Japan using a new discriminative dosimeter

    SciTech Connect

    Doi, Masahiro; Kobayashi, Sadayoshi

    1994-10-01

    Passive measurements of outdoor radon and thoron concentrations were conducted from June 1992 to June 1993 at a monitoring station over a soil area (10 m x 6 m) in Chiba city, Japan. The measurement period was divided into 4 parts to investigate seasonal variations of radon and thoron concentrations. Ten passive radon-thoron discriminative dosimeters (R-T dosimeters) were placed in duplicate at 5 different altitudes to show the vertical distributions of outdoor radon and thoron concentrations. Outdoor radon concentrations showed no significant difference within 1.0 m above the ground, and the annual average of outdoor radon concentration was 3.85 {+-} 0.19 (SE) Bq m{sup {minus}3}. Annual averages of outdoor thoron concentrations at 0.04, 0.15, 0.25, 0.70, and 1.0 m above the ground were 40.5 {+-} 4.4, 22.5 {+-} 3.7, 13.9 {+-} 3.1, 9.5 {+-} 2.9 (SE) Bq m{sup {minus}3}, and < 9.0 Bq m{sup {minus}3}; the lower detection limit of the dosimeter, respectively, and their vertical profiles, n(z) (Bq m{sup {minus}3}), were expressed well by the formula n(z) = {alpha}z{sup B}. Vertical profiles of the atmospheric turbulent diffusion coefficient were also estimated from the observed thoron profiles, as expressed by the power function K(z) = A z{sup B}, of which B values were estimated to vary from 1.034 to 1.609 if averaged thoron exhalation rates during the measurement period were within 0.3 to 2.8 (Bq m{sup {minus}2} s{sup {minus}1}). 45 refs., 6 figs., 3 tabs.

  8. Vertical distribution of outdoor radon and thoron in Japan using a new discriminative dosimeter.

    PubMed

    Doi, M; Kobayashi, S

    1994-10-01

    Passive measurements of outdoor radon and thoron concentrations were conducted from June 1992 to June 1993 at a monitoring station over a soil area (10 m x 6 m) in Chiba city, Japan. The measurement period was divided into 4 parts to investigate seasonal variations of radon and thoron concentrations. Ten passive radon-thoron discriminative dosimeters (R-T dosimeters) were placed in duplicate at 5 different altitudes to show the vertical distributions of outdoor radon and thoron concentrations. Outdoor radon concentrations showed no significant difference within 1.0 m above the ground, and the annual average of outdoor radon concentration was 3.85 +/- 0.19 (SE) Bq m-3. Annual averages of outdoor thoron concentrations at 0.04, 0.15, 0.25, 0.70, and 1.0 m above the ground were 40.5 +/- 4.4, 22.5 +/- 3.7, 13.9 +/- 3.1, 9.5 +/- 2.9 (SE) Bq m-3, and < 9.0 Bq m-3; the lower detection limit of the dosimeter, respectively, and their vertical profiles, n(z) (Bq m-3), were expressed well by the formula n(z) = alpha z beta. Vertical profiles of the atmospheric turbulent diffusion coefficient were also estimated from the observed thoron profiles, as expressed by the power function K(z) = AzB, of which B values were estimated to vary from 1.034 to 1.609 if averaged thoron exhalation rates during the measurement periods were within 0.3 to 2.8 (Bq m-2 s-1).

  9. Environmental Radioactivity, Temperature, and Precipitation.

    ERIC Educational Resources Information Center

    Riland, Carson A.

    1996-01-01

    Reports that environmental radioactivity levels vary with temperature and precipitation and these effects are due to radon. Discusses the measurement of this environmental radioactivity and the theory behind it. (JRH)

  10. Environmental Radioactivity, Temperature, and Precipitation.

    ERIC Educational Resources Information Center

    Riland, Carson A.

    1996-01-01

    Reports that environmental radioactivity levels vary with temperature and precipitation and these effects are due to radon. Discusses the measurement of this environmental radioactivity and the theory behind it. (JRH)

  11. Radon Reduction Experience at a Former Uranium Processing Facility

    SciTech Connect

    Eger, K. J.; Rutherford, L.; Rickett, K.; Fellman, R.; Hungate, S.

    2004-02-29

    Approximately 6,200 cubic meters of waste containing about 2.0E8 MBq of radium-226 are stored in two large silos at the Fernald Site in southwest Ohio. The material is scheduled for retrieval, packaging, off site shipment and disposal by burial. Air in the silos above the stored material contained radon-222 at a concentration of 7.4 E5 Bq/L. Short-lived daughters formed by decay in these headspaces generated dose rates at contact with the top of the silos up to 1.05 mSv/hr and there complicate the process of retrieval. A Radon Control System (RCS) employing carbon adsorption beds has been designed under contract with the Fluor Fernald to remove most of the radon in the headspaces and maintain lower concentrations during periods when work on or above the domes is needed. Removing the radon also removes the short-lived daughters and reduces the dose rate near the domes to 20 to 30 {mu}Sv/hr. Failing to remove the radon would be costly, in the exposure of personnel needed to work extended periods at these moderate dose rates, or in dollars for the application of remote retrieval techniques. In addition, the RCS minimizes the potential for environmental releases. This paper describes the RCS, its mode of operation, and early experiences. The results of the test described herein and the experience gained from operation of the RCS during its first phase of continuous operation, will be used to determine the best air flow, and air flow distribution, the most desirable number and sequence number and sequence of adsorption beds to be used and the optimum application of air recycle within the RCS.

  12. Passive Acoustic Monitoring of the Environmental Impact of Oil Exploration on Marine Mammals in the Gulf of Mexico.

    PubMed

    Sidorovskaia, Natalia A; Ackleh, Azmy S; Tiemann, Christopher O; Ma, Baoling; Ioup, Juliette W; Ioup, George E

    2016-01-01

    The Gulf of Mexico is a region densely populated by marine mammals that must adapt to living in a highly active industrial environment. This paper presents a new approach to quantifying the anthropogenic impact on the marine mammal population. The results for sperm and beaked whales of a case study of regional population dynamics trends after the Deepwater Horizon oil spill, derived from passive acoustic-monitoring data gathered before and after the spill in the vicinity of the accident, are presented.

  13. NEW APPROACHES: Teaching about radon

    NASA Astrophysics Data System (ADS)

    Sang, David; Sutcliffe, Jill

    1997-03-01

    Radon is a major natural hazard and people should know about it. But exactly what needs to be known, how should it be taught and what resources are available to teach it? The answers suggest that a good deal of work needs to be done.

  14. Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment

    PubMed Central

    Ramola, R. C.; Prasad, Mukesh; Kandari, Tushar; Pant, Preeti; Bossew, Peter; Mishra, Rosaline; Tokonami, S.

    2016-01-01

    The annual exposure to indoor radon, thoron and their progeny imparts a major contribution to inhalation doses received by the public. In this study, we report results of time integrated passive measurements of indoor radon, thoron and their progeny concentrations that were carried out in Garhwal Himalaya with the aim of investigating significant health risk to the dwellers in the region. The measurements were performed using recently developed LR-115 detector based techniques. The experimentally determined values of radon, thoron and their progeny concentrations were used to estimate total annual inhalation dose and annual effective doses. The equilibrium factors for radon and thoron were also determined from the observed data. The estimated value of total annual inhalation dose was found to be 1.8 ± 0.7 mSv/y. The estimated values of the annual effective dose were found to be 1.2 ± 0.5 mSv/y and 0.5 ± 0.3 mSv/y, respectively. The estimated values of radiation doses suggest no important health risk due to exposure of radon, thoron and progeny in the study area. The contribution of indoor thoron and its progeny to total inhalation dose ranges between 13–52% with mean value of 30%. Thus thoron cannot be neglected when assessing radiation doses. PMID:27499492

  15. Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment

    NASA Astrophysics Data System (ADS)

    Ramola, R. C.; Prasad, Mukesh; Kandari, Tushar; Pant, Preeti; Bossew, Peter; Mishra, Rosaline; Tokonami, S.

    2016-08-01

    The annual exposure to indoor radon, thoron and their progeny imparts a major contribution to inhalation doses received by the public. In this study, we report results of time integrated passive measurements of indoor radon, thoron and their progeny concentrations that were carried out in Garhwal Himalaya with the aim of investigating significant health risk to the dwellers in the region. The measurements were performed using recently developed LR-115 detector based techniques. The experimentally determined values of radon, thoron and their progeny concentrations were used to estimate total annual inhalation dose and annual effective doses. The equilibrium factors for radon and thoron were also determined from the observed data. The estimated value of total annual inhalation dose was found to be 1.8 ± 0.7 mSv/y. The estimated values of the annual effective dose were found to be 1.2 ± 0.5 mSv/y and 0.5 ± 0.3 mSv/y, respectively. The estimated values of radiation doses suggest no important health risk due to exposure of radon, thoron and progeny in the study area. The contribution of indoor thoron and its progeny to total inhalation dose ranges between 13–52% with mean value of 30%. Thus thoron cannot be neglected when assessing radiation doses.

  16. [Analysis of the natural radioactivity due to the radon gas in the underground of Rome].

    PubMed

    Magrini, A; Grana, M; Gianello, G; La Bua, R; Laurini, C; Messina, A; Pagliari, E; Bergamaschi, A

    2007-01-01

    Radon is a decay product of 238Uranium which is classified by WHO/IARC as group 1 carcinogen, given its causal relationship with lung neoplasia. An annual concentration of this gas higher than 500 Bq/m3 in workplace is considered potentially dangerous by the italian legislation. No data are currently available on radon level in underground tunnels, which are a potentially important source of exposure both for workers and travellers. Measurements have been performed in a station and within the trains. Two months integrated measures, and 5 days continuous (hourly) assessments have been performed. Integrated measurements have been performed by means of 12 passive dosimeters, containing a detector made of CR39 (polymeric type), whereas active scintillation-type dosimeters have been employed for continuous assessments. Two months integrated measures: radon level in the station was 665 +/- 71 Bq/m3, whereas values within the trains ranged between 96 and 117 Bq/m3. Continuous measurements: Mean radon level during work activities was 783 +/- 536 Bq/m3 and thereafter it rose to 850 +/- 131 Bq/m3 Radon nelle levels in underground tunnels may exceed attention levels, whereas within trains they remain well below these levels. Further studies focused to assess the risk of underground employers are needed.

  17. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route "Coal Mine" (SW Poland).

    PubMed

    Tchorz-Trzeciakiewicz, Dagmara Eulalia; Parkitny, Tomasz

    2015-11-01

    The surveys of radon concentrations in the Underground Tourist Route "Coal Mine" were carried out using passive and active measurement techniques. Passive methods with application of Solid State Nuclear Track Detectors LR115 were used at 4 points in years 2004-2007 and at 21 points in year 2011. These detectors were exchanged at the beginning of every season in order to get information about seasonal and spatial changes of radon concentrations. The average radon concentration noted in this facility was 799 Bq m(-3) and is consistent with radon concentrations noted in Polish coal mines. Seasonal variations, observed in this underground tourist route, were as follows: the highest radon concentrations were noted during summers, the lowest during winters, during springs and autumns intermediate but higher in spring than in autumn. The main external factor that affected seasonal changes of radon concentrations was the seasonal variation of outside temperature. No correlation between seasonal variations of radon concentrations and seasonal average atmospheric pressures was found. Spatial variations of radon concentrations corresponded with air movements inside the Underground Tourist Route "Coal Mine". The most vivid air movements were noted along the main tunnel in adit and at the place located near no blinded (in the upper part) shaft. Daily variations of radon concentrations were recorded in May 2012 using RadStar RS-230 as the active measurement technique. Typical daily variations of radon concentrations followed the pattern that the highest radon concentrations were recorded from 8-9 a.m. to 7-8 p.m. and the lowest during nights. The main factor responsible for hourly variations of radon concentrations was the daily variation of outside temperatures. No correlations were found between radon concentration and other meteorological parameters such as atmospheric pressure, wind velocity or precipitation. Additionally, the influence of human factor on radon

  18. Combination of geological data and radon survey results for radon mapping.

    PubMed

    Zhukovsky, Michael; Yarmoshenko, Ilia; Kiselev, Sergey

    2012-10-01

    The typical method of radon mapping usually used in most countries is the presenting of average radon concentrations in dwellings for districts or regions. Sometimes the maps of radon concentrations in the soil or maps of percentage above the reference level also demonstrated. Such approach not always can be used for identification of the regions with high probability of radon exposure above the reference levels where the population density is low. The combination of archive geological data and the results of representative radon survey allow estimating the typical parameters of radon concentration distribution for selected categories of buildings (multi-storey or rural type houses) situated in geological zones with the different radon potential. In this case it is possible to give grounds for the necessary level of radon protection measures in the new buildings constructed in this region. The use of such approach in Ural region of Russia is demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Indoor radon correlated with soil and subsoil radon potential—a case study

    NASA Astrophysics Data System (ADS)

    Keller, G.; Schneiders, H.; Schütz, M.; Siehl, A.; Stamm, R.

    1992-03-01

    High indoor radon concentrations in a uranium-radium low-level area in the Eifel region, Germany, near the village of Döttingen are caused by ascending radon migration following the convection of groundwater and soil gas along pathways (fractures and faults) in the bedrock sediments of Lower Devonian age. Positive radon anomalies in the soil gas are found to coincide with the locations of houses showing the highest concentrations. These houses are older buildings without concrete foundation slabs. Normally radon concentrations in soil gas are highly correlated with the values of emanated radon calculated on the basis of radium content in the surrounding soils and rocks (diffusive radon potential). However, close to zones of tectonic fractures and faults around the maar-type volcano of Döttingen abnormally high radon concentrations, which were transported by circulating groundwater and postvolcanic exhalation of CO2 (convective radon potential) were detected.

  20. Citizen's Guide to Radon: The Guide to Protecting Yourself and Your Family from Radon

    MedlinePlus

    Jump to main content We’ve made some changes to EPA.gov . If the information you are ... The Guide to Protecting Yourself and Your Family from Radon Contains basic information about Radon in the home, how to ...

  1. General Services Administration Childcare Radon Results in the Federal Radon Action Plan

    EPA Pesticide Factsheets

    GSA made a commitment to support the FRAP’s radon risk goal by sampling for radon in its childcare centers. Over the past two years, the sampling has been performed by independent consultants using recommended standard methods and protocols.

  2. The effect of radon-resistant construction techniques in a crawlspace house

    SciTech Connect

    Dudney, C S; Wilson, D L; Dyess, T M

    1992-09-01

    An extensive battery of radon-diagnostic tests were performed on two different houses built on the SAME foundation. A house was studied as part of a multi-year evaluation of radon mitigation measures in the Tennessee Valley. The original house was destroyed in a fire caused by a faulty space heater. The second house was built on the same foundation using passive techniques to reduce radon transport via the crawlspace to the living area. The rebuilt house achieved a 60% reduction in the volumetric transport of air from crawlspace to living area when the heating and cooling system was not operating. An even greater reduction was found when the HAC system was operating, reflecting the benefits of new, well-sealed ductwork. In spite of these enhancements, the passive measures failed to reduce radon concentrations to below 4 pCi/L. The primary reason is believed to be the enclosure of the open carport to form a garage at the time of reconstruction.

  3. Natural-basement ventilation as a radon-mitigation technique. Final report Jun 89-Feb 91

    SciTech Connect

    Cavallo, A.; Gadsby, K.; Reddy, T.A.

    1992-04-01

    The report documents a study of natural basement ventilation in two research houses during both the summer cooling season and the winter heating season. (NOTE: Natural basement ventilation has always been recommended as a way to reduce radon levels in houses. However, its efficacy has never been documented. It has generally been assumed to be a very inefficient mitigation strategy since it was believed that dilution was the mechanism by which radon levels were reduced.) Ventilation rates, environmental and house operating parameters, and radon levels have been monitored; it can be concluded that natural ventilation can reduce radon levels two ways: (1) by simple dilution, and (2) although less obvious, by providing a pressure break that reduces basement depressurization and thus the amount of radon-contaminated soil gas drawn into the house. Thus, basement ventilation can be a much more effective mitigation strategy than was previously believed. It might be especially useful in houses with low radon concentrations (of the order of 10 pCi/L) or those with low levels that cannot be mitigated cost-effectively with conventional technology.

  4. Study of temporal variation of radon concentrations in public drinking water supplies

    SciTech Connect

    York, Emma L.

    1995-01-01

    The Environmental Protection Agency (EPA) has proposed a Maximum Contaminant Level (MCL) for radon-222 in public drinking water supplies of 300 pCi/L. Proposed monitoring requirements include collecting quarterly grab samples for the first year, then annual samples for the remainder of the compliance cycle provided first year quarterly samples average below the MCL. The focus of this research was to study the temporal variation of groundwater radon concentrations to investigate how reliably one can predict an annual average radon concentration based on the results of grab samples. Using a "slow-flow" collection method and liquid scintillation analysis, biweekly water samples were taken from ten public water supply wells in North Carolina (6 month - 11 month sampling periods). Based on study results, temporal variations exist in groundwater radon concentrations. Statistical analysis performed on the data indicates that grab samples taken from each of the ten wells during the study period would exhibit groundwater radon concentrations within 30% of their average radon concentration.

  5. Modeling of indoor radon concentration from radon exhalation rates of building materials and validation through measurements.

    PubMed

    Kumar, Amit; Chauhan, R P; Joshi, Manish; Sahoo, B K

    2014-01-01

    Building materials are the second major source of indoor radon after soil. The contribution of building materials towards indoor radon depends upon the radium content and exhalation rates and can be used as a primary index for radon levels in the dwellings. The radon flux data from the building materials was used for calculation of the indoor radon concentrations and doses by many researchers using one and two dimensional model suggested by various researchers. In addition to radium content, the radon wall flux from a surface strongly depends upon the radon diffusion length (L) and thickness of the wall (2d). In the present work the indoor radon concentrations from the measured radon exhalation rate of building materials calculated using different models available in literature and validation of models was made through measurement. The variation in the predicted radon flux from different models was compared with d/L value for wall and roofs of different dwellings. The results showed that the radon concentrations predicted by models agree with experimental value. The applicability of different model with d/L ratio was discussed. The work aims to select a more appropriate and general model among available models in literature for the prediction of indoor radon. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Successes and Challenges in Implementation of Radon Control Activities in Iowa, 2010–2015

    PubMed Central

    Abbott, Anne L.; Miller, Laura L.

    2016-01-01

    Background Radon gas has recently become more prominent in discussions of lung cancer prevention nationally and in Iowa. A review in 2013 of cancer plans in the National Comprehensive Cancer Control Program found that 42% of cancer plans, including Iowa’s, had terminology on radon. Plans included awareness activities, home testing, remediation, policy, and policy evaluation. Community Context Iowa has the highest average radon concentrations in the United States; 70% of homes have radon concentrations above the Environmental Protection Agency’s action levels. Radon control activities in Iowa are led by the Iowa Cancer Consortium, the Iowa Department of Public Health, and the Iowa Radon Coalition. Methods A collaborative approach was used to increase levels of awareness, testing, and (if necessary) mitigation, and to introduce a comprehensive radon control policy in Iowa by engaging partners and stakeholders across the state. Outcome The multipronged approach and collaborative work in Iowa appears to have been successful in increasing awareness: the number of radon tests completed in Iowa increased by 20% from 19,600 in 2009 to 23,500 in 2014, and the number of mitigations completed by certified mitigators increased by 108% from 2,600 to more than 5,400. Interpretation Through collaboration, Iowa communities are engaged in activities that led to increases in awareness, testing, mitigation, and policy. States interested in establishing a similar program should consider a multipronged approach involving multiple entities and stakeholders with different interests and abilities. Improvements in data collection and analysis are necessary to assess impact. PMID:27079648

  7. Lung Cancer Risk from Radon in Marcellus Shale Gas in Northeast U.S. Homes.

    PubMed

    Mitchell, Austin L; Griffin, W Michael; Casman, Elizabeth A

    2016-11-01

    The amount of radon in natural gas varies with its source. Little has been published about the radon from shale gas to date, making estimates of its impact on radon-induced lung cancer speculative. We measured radon in natural gas pipelines carrying gas from the Marcellus Shale in Pennsylvania and West Virginia. Radon concentrations ranged from 1,520 to 2,750 Bq/m(3) (41-74 pCi/L), and the throughput-weighted average was 1,983 Bq/m(3) (54 pCi/L). Potential radon exposure due to the use of Marcellus Shale gas for cooking and space heating using vent-free heaters or gas ranges in northeastern U.S. homes and apartments was assessed. Though the measured radon concentrations are higher than what has been previously reported, it is unlikely that exposure from natural gas cooking would exceed 1.2 Bq/m(3) (<1% of the U.S. Environmental Protection Agency's action level). Using worst-case assumptions, we estimate the excess lifetime (70 years) lung cancer risk associated with cooking to be 1.8×10(-4) (interval spanning 95% of simulation results: 8.5×10(-5) , 3.4×10(-4) ). The risk profile for supplemental heating with unvented gas appliances is similar. Individuals using unvented gas appliances to provide primary heating may face lifetime risks as high as 3.9×10(-3) . Under current housing stock and gas consumption assumptions, expected levels of residential radon exposure due to unvented combustion of Marcellus Shale natural gas in the Northeast United States do not result in a detectable change in the lung cancer death rates.

  8. Investigation of radon level in air and tap water of workplaces at Thailand Institute of Nuclear Technology, Thailand

    NASA Astrophysics Data System (ADS)

    Sola, P.; Youngchuay, U.; Kongsri, S.; Kongtana, A.

    2017-06-01

    Thailand Institute of Nuclear Technology (TINT) has continuously monitored radiation exposure and radionuclide in workplaces specifically radon gas to estimate effective dose for workers. Radon exposure is the second leading cause of lung cancer in the world. In this study, radon in air and tap water at building no. 3, 7, 8, 9 and 18 on Ongkharak site of TINT have been measured for 5 years from 2012 to 2016. Radon level in air and tap water were investigated on 83 stations (workplaces) and 54 samples, respectively. Radon concentrations in air and tap water were measured by using the pulsed ionization chamber (ATMOS 12 DPX). Indoor radon concentrations in air were in the range of 12-138 Bq.m-3 with an average value of 30.13±17.05 Bq.m-3. Radon concentrations in tap water were in the range of 0.10 to 2.89 Bq.l-1 with an average value of 0.51±0.55 Bq.l-1. The results of radon concentrations at TINT were below the US Environmental Protection Agency (US EPA) safety limit of 148 Bq.m-3 and 150 Bq.l-1, for, air and tap water, respectively. The average effective dose for TINT’s workers due to indoor radon exposure was approximately 0.20±0.11 mSv.y-1. The value is 100 times less than the annual dose limit for limit occupational radiation worker defined by the International Commission on Radiological Protection (ICRP). As a result, the TINT’s workplaces are radiologically safe from radon content in air and tap water.

  9. National radon contractor proficiency program. Proficiency report

    SciTech Connect

    Not Available

    1991-02-01

    The report lists those individual contractors who have met the requirements of the Radon Contractor Proficiency (PCP) Program as of December 15, 1990. These requirements are designed to provide minimum proficiency criteria for individuals who design and supervise the installation of radon mitigation systems in buildings. The RCP Program measures the proficiency of an individual contractor, not their company. The report provides the program requirements, RCP mitigation guidelines, State Radon contacts, and information on how to use the RCP tables.

  10. Collaborative investigations on thoron and radon in some rural communities of Balkans.

    PubMed

    Zunić, Z S; Celiković, I; Tokonami, S; Ishikawa, T; Ujić, P; Onischenko, A; Zhukovsky, M; Milić, G; Jakupi, B; Cuknić, O; Veselinović, N; Fujimoto, K; Sahoo, S K; Yarmoshenko, I

    2010-10-01

    This paper deals with the results of the first-field use in the Balkans, i.e. Serbia and Republic of Srpska (Bosnia and Hercegovina), of a passive polycarbonate Mark II type and poliallyldiglycol carbonate (Cr-39) alpha track detectors sensitive to thoron as well as to radon. Both types of solid state nuclear track detectors were designed and supplied by National Institute of Radiological Sciences (NIRS), Chiba, Japan. The commercial names for these detectors which all have been field tested in Balkan rural communities are known as: UFO and RADUET passive discriminative radon/thoron detectors. No database of thoron and thoron progeny concentrations in dwellings in Serbia or Balkans region exist, and as a result, the level of exposure of the Serbian population to thoron and its progeny is unknown so far.

  11. Indoor and soil gas radon simultaneous measurements for the purpose of detail analysis of radon entry pathways into houses.

    PubMed

    Froňka, A

    2011-05-01

    Detailed knowledge of radon transport mechanisms from the subsoil into the indoor environment is essential for the correct interpretation of results of short-term indoor radon measurements and for proper and effective design of radon mitigation systems. Radon transfer factor time variations have been studied based on simultaneous continuous indoor and soil gas radon measurements within the framework of complex radon diagnosis of individual buildings. In this context, the key influencing factors have been identified and analysed in order to provide satisfactory explanation on radon entry variations under different measurement conditions. Moreover, a new significant manner of radon entry into the indoor environment has been identified and will be discussed in detail.

  12. Arsenic, asbestos and radon: emerging players in lung tumorigenesis

    PubMed Central

    2012-01-01

    The cause of lung cancer is generally attributed to tobacco smoking. However lung cancer in never smokers accounts for 10 to 25% of all lung cancer cases. Arsenic, asbestos and radon are three prominent non-tobacco carcinogens strongly associated with lung cancer. Exposure to these agents can lead to genetic and epigenetic alterations in tumor genomes, impacting genes and pathways involved in lung cancer development. Moreover, these agents not only exhibit unique mechanisms in causing genomic alterations, but also exert deleterious effects through common mechanisms, such as oxidative stress, commonly associated with carcinogenesis. This article provides a comprehensive review of arsenic, asbestos, and radon induced molecular mechanisms responsible for the generation of genetic and epigenetic alterations in lung cancer. A better understanding of the mode of action of these carcinogens will facilitate the prevention and management of lung cancer related to such environmental hazards. PMID:23173984

  13. Effects of Listening to Music versus Environmental Sounds in Passive and Active Situations on Levels of Pain and Fatigue in Fibromyalgia.

    PubMed

    Mercadíe, Lolita; Mick, Gérard; Guétin, Stéphane; Bigand, Emmanuel

    2015-10-01

    In fibromyalgia, pain symptoms such as hyperalgesia and allodynia are associated with fatigue. Mechanisms underlying such symptoms can be modulated by listening to pleasant music. We expected that listening to music, because of its emotional impact, would have a greater modulating effect on the perception of pain and fatigue in patients with fibromyalgia than listening to nonmusical sounds. To investigate this hypothesis, we carried out a 4-week study in which patients with fibromyalgia listened to either preselected musical pieces or environmental sounds when they experienced pain in active (while carrying out a physical activity) or passive (at rest) situations. Concomitant changes of pain and fatigue levels were evaluated. When patients listened to music or environmental sounds at rest, pain and fatigue levels were significantly reduced after 20 minutes of listening, with no difference of effect magnitude between the two stimuli. This improvement persisted 10 minutes after the end of the listening session. In active situations, pain did not increase in presence of the two stimuli. Contrary to our expectations, music and environmental sounds produced a similar relieving effect on pain and fatigue, with no benefit gained by listening to pleasant music over environmental sounds.

  14. Radon in outdoor air in Nevada

    SciTech Connect

    Price, J.G.; Rigby, J.G.; Christensen, L.

    1994-04-01

    Measurements of radon at 50 sites with varying geology indicate that outdoor air in Nevada is comparable to that measured nationwide by Hopper et al. The state-wide median of 15 Bq m{sup -3} (0.4 pCi L{sup -1}) is essentially the same as the nationwide median. The range is considerable: from 2.6-52 Bq m{sup -3} (0.07-1.40 pCi L{sup -1}). Variations in these measurements can generally be correlated with different concentrations of radon in soils and uranium and its progeny in rocks. Silica-rich igneous rocks (rhyolites and granites) appear to be the main sources of high levels of radon in outdoor air in Nevada. Concentrations of radon in outdoor air generally correlate with levels of radon in soil gas. Measurements taken from heights of 0.5, 1.0, and 2.0 m above the ground suggest that radon in outdoor air reflects the local geology throughout this range of heights. Towns for which >20% of the homes have indoor-air radon concentrations >48 Bq m{sup -3} (4 pCi L{sup -1}) generally have relatively high soil-gas radon, relatively high outdoor-air radon, or both. 16 refs., 4 figs., 1 tab.

  15. Radon in outdoor air in Nevada.

    PubMed

    Price, J G; Rigby, J G; Christensen, L; Hess, R; LaPointe, D D; Ramelli, A R; Desilets, M; Hopper, R D; Kluesner, T; Marshall, S

    1994-04-01

    Measurements of radon at 50 sites with varying geology indicate that outdoor air in Nevada is comparable to that measured nationwide by Hopper et al. (1991). The statewide median of 15 Bq m-3 (0.4 pCi L-1) is essentially the same as the nationwide median. The range is considerable: from 2.6-52 Bq m-3 (0.07-1.40 pCi L-1). Variations in these measurements can generally be correlated with different concentrations of radon in soils and uranium and its progeny in rocks. Silica-rich igneous rocks (rhyolites and granites) appear to be the main sources of high levels of radon in outdoor air in Nevada. Concentrations of radon in outdoor air generally correlate with levels of radon in soil gas. Measurements taken from heights of 0.5, 1.0, and 2.0 m above the ground suggest that radon in outdoor air reflects the local geology throughout this range of heights. Towns for which > 20% of the homes have indoor-air radon concentrations > 48 Bq m-3 (4 pCi L-1) generally have relatively high soil-gas radon, relatively high outdoor-air radon, or both.

  16. Radon levels inside residences in Mexico City

    SciTech Connect

    Espinoza, G. . Inst. de Fisica); Gammage, R.B. )

    1989-01-01

    Levels of radon were measured during winter and spring seasons inside 55 colonial and modern houses and 30 multifamily apartment buildings representative of middle and upper income families. The modern houses and apartment buildings in the southern section of the city had average radon levels exceeding 150 Bq m{sup {minus}3} with a maximum single measurement of 458 Bq m{sup {minus}3}. The colonial houses in the central downtown section had radon levels nearly all averaging below 100 Bq m{sup {minus}3}. Between the ground and third floor of the apartment buildings, radon levels diminished by tenfold indicating that entry of radon-bearing soil gas was largely responsible for the elevated concentrations of radon. The radon levels in winter exceeded by about 30% the radon levels during spring. The potentially adverse health effects of these radon levels may be exacerbated by the quality of air in Mexico City which during winter is often highly polluted. 7 refs., 2 figs.

  17. Radon emanation on the San Andreas Fault

    USGS Publications Warehouse

    King, C. Y.

    1978-01-01

    Radon is a radioactive gas with a half-life of 3.8 days. (Half-life is the time required for the substance to lose half of its radioactivity by decay.) It is itself produced by the decay of uranium. Radon is constantly emanated from the Earth into the atmosphere. Many cases are known where anomalously large amounts of radon have been given off along active faults. THe radon emanation has shown variations with time that are related to changing atmospheric conidtions and possibly to nearby seismic activity. 

  18. Low-Cost Radon Reduction Pilot Study

    SciTech Connect

    Rose, William B.; Francisco, Paul W.; Merrin, Zachary

    2015-09-01

    The aim of the research was to conduct a primary scoping study on the impact of air sealing between the foundation and the living space on radon transport reduction across the foundation-living space floor assembly. Fifteen homes in the Champaign, Illinois area participated in the study. These homes were instrumented for hourly continuous radon measurements and simultaneous temperature and humidity the foundation was improved. However, this improved isolation did not lead to significant reductions in radon concentration in the living space. Other factors such as outdoor temperature were shown to have an impact on radon concentration.

  19. Potential health effects of indoor radon exposure.

    PubMed Central

    Radford, E P

    1985-01-01

    Radon-222 is a ubiquitous noble gas arising from decay of radium-226 normally present in the earth's crust. Alpha radiation from inhaled short-lived daughters of radon readily irradiates human bronchial epithelium, and there is now good evidence of excess risk of lung cancer in underground miners exposed to higher concentrations. In homes, radon levels are highly variable, showing approximately log-normal distributions and often a small fraction of homes with high concentrations of radon and radon daughters. Factors affecting indoor concentrations include type of bedrock under dwellings, house foundation characteristics, radon dissolved in artesian water, and ventilation and degree of air movement in living spaces. Despite much recent work, exposures to radon daughters by the general public are not well defined. From application of risk assessments in miners to home conditions, it appears that about 25% or more of lung cancers among nonsmokers over the age of 60, and about 5% in smokers, may be attributable to exposure to radon daughters at home. It may be necessary to take remedial action to reduce this hazard in those dwellings with elevated levels of radon, and new construction should take account of this problem. PMID:4085431

  20. Potential health effects of indoor radon exposure.

    PubMed

    Radford, E P

    1985-10-01

    Radon-222 is a ubiquitous noble gas arising from decay of radium-226 normally present in the earth's crust. Alpha radiation from inhaled short-lived daughters of radon readily irradiates human bronchial epithelium, and there is now good evidence of excess risk of lung cancer in underground miners exposed to higher concentrations. In homes, radon levels are highly variable, showing approximately log-normal distributions and often a small fraction of homes with high concentrations of radon and radon daughters. Factors affecting indoor concentrations include type of bedrock under dwellings, house foundation characteristics, radon dissolved in artesian water, and ventilation and degree of air movement in living spaces. Despite much recent work, exposures to radon daughters by the general public are not well defined. From application of risk assessments in miners to home conditions, it appears that about 25% or more of lung cancers among nonsmokers over the age of 60, and about 5% in smokers, may be attributable to exposure to radon daughters at home. It may be necessary to take remedial action to reduce this hazard in those dwellings with elevated levels of radon, and new construction should take account of this problem.

  1. S. 2844: A Bill to provide for radon testing. Introduced in the Senate of the United States, One Hundredth Congress, Second Session, September 29, 1988

    SciTech Connect

    Not Available

    1988-01-01

    Bill S. 2844 provides for radon testing and is cited as the Department of Housing and Urban Development Policy Act. The bill provides the Department of Housing and Urban Development (HUD) with a mandate to establish a departmental radon policy and program. The department will be required to use its programs to assist the Environmental Protection Agency (EPA) address radon contamination. The bill also requires HUD, in coordination with the EPA, to develop a radon assessment and mitigation program which utilizes EPA recommended guidelines and standards to ensure that occupants of housing covered under this act are not exposed to elevated levels of radon. The entire contents of the bill are presented in eight sections entitled: Short Title, findings, Purpose, Definitions, Program, Information, Cooperation with Environmental Protection Agency, and Authorization. The bill was referred to the Committee on Banking, Housing and Urban Affairs.

  2. Electret ion chamber radon monitors measure dissolved 222Rn in water.

    PubMed

    Kotrappa, P; Jester, W A

    1993-04-01

    This paper describes a simple and relatively inexpensive method of determining the concentration of dissolved 222Rn in water. The method involves a recently developed electret-passive environmental radon monitor, which uses an electret ion chamber. The procedure consists of sealing a known volume of a carefully collected water sample with one of these monitors in an exposure container and determining the average equilibrium 222Rn gas concentration in the air phase during the exposure time period. This average concentration can then be used to calculate the 222Rn concentration in the original water sample. Identical samples were analyzed both by this new method and by a standard liquid scintillation method, and the results were compared over a wide range of 222Rn concentrations. There was good agreement except that the electret ion chamber method gave results that were consistently lower by about 15%. This bias in the results was attributed to both 222Rn losses during sample handling and possibly to some errors in the assumptions made in the theoretical model. A correction factor is recommended to bring the results of this technique into agreement with the standard method. The procedures are simple and economical and can be easily employed by many primary 222Rn-measuring laboratories currently using these monitors for measuring indoor 222Rn.

  3. The distribution of indoor radon in Transylvania (Romania) - influence of the natural and anthropogenic factors

    NASA Astrophysics Data System (ADS)

    Cucos Dinu, Alexandra; Baciu, Calin; Dicu, Tiberius; Papp, Botond; Moldovan, Mircea; Bety Burghele, Denissa; Tenter, Ancuta; Szacsvai, Kinga

    2017-04-01

    Exposure to radon in homes and workplaces is now recognized as the most important natural factor in causing lung cancer. Radon activity is usually higher in buildings than in the outside atmosphere, as it may be released from building materials and soil beneath the constructions, and the concentration builds-up indoor, due to the low air renewal rates. Indoor radon levels can vary from one to multiple orders of magnitude over time and space, as it depends on several natural and anthropogenic factors, such us the radon concentration in soil under the construction, the weather conditions, the degree of containment in the areas where individuals are exposed, building materials, outside air, tap water and even city gas, the architecture, equipment (chimney, mechanical ventilation systems, etc.), the environmental parameters of the building (temperature, pressure, etc.), and on the occupants' lifestyle. The study presents the distribution of indoor radon in Transylvania, Romania, together with the measurements of radon in soil and soil water. Indoor radon measurements were performed by using CR-39 track detectors exposed for 3 months on ground-floor level of dwellings, according to the NRPB Measurement Protocol. Radon concentrations in soil and water were measured using the LUK3C device. A complete map was plotted at the date, based on 3300 indoor radon measurements, covering an area of about 42% of the Romanian territory. The indoor radon concentrations ranged from 5 to 3287 Bq m-3, with an updated preliminary arithmetic mean of 179 Bq m-3, and a geometric mean of 122 Bq m-3. In about 11% of the investigated grid cells the indoor radon concentrations exceed the threshold of 300 Bq m-3. The soil gas radon concentration varies from 0.8 to 169 kBq m-3, with a geometric mean of 26 kBq m-3. For water samples, the results show radon concentrations within the range of 0.3 - 352.2 kBq m-3, with a geometric mean of 7.7 Bq L-1. A weak correlation between the three sets of values

  4. Radon emanation of rock and soil samples: A tool for stratigraphy, geology, geophysical modelling and radon health hazard

    NASA Astrophysics Data System (ADS)

    Girault, Frédéric; Koirala, Bharat P.; Bhattarai, Mukunda; Rajaure, Sudhir; Richon, Patrick; Perrier, Frédéric

    2010-05-01

    Radium-226, the mother of radon-222, with a half-life of 1600 years, is intrinsically present in all the rocks and soils in variable amount. However, a small part only of the radium atoms is able to produce radon atoms in the porous media of the rock allowing this radon to escape the rock media through the pore space. This fraction of radium is referred to as the radon source term in rocks or soils, and is usually called the effective radium concentration (ECRa). This parameter is expressed in Bq kg-1, where CRa is the radium-226 concentration and E the emanation coefficient. Considering a sample, it is not possible to estimate its ECRa value a priori. Therefore, this parameter has to be measured in the laboratory. The method in the laboratory to obtain ECRa values is based on the measurement of the concentration of radon in the inner air of a hermetically sealed container in which one rock or one soil sample was previously placed. In order to measure this radon concentration, Lucas scintillation flasks were used, and their radon content counted by a photomultiplier (Stoulos et al., Journal of Environmental Radioactivity, 2003). This method was compared in detail with another method using SSNTD (Solid-State Nuclear Track Detector). Detailed investigations have been carried out, including systematic effects such as the shape or volume of container, mass and preparation method of the sample, using a large number of rock, soil and building material samples (more than 800) collected in France and Nepal. Preliminary results will be given based on this data set. With such a large sample, some effects of intrinsic and external factors on the measurement technique and on the obtained results could also be accurately studied: the effect of atmospheric pressure, of the ambient temperature, or of the water content of the sample. ECRa measurements appear to be particularly useful for human health hazards study on a considered natural site, as well as for other applications

  5. Environmental technology verification report: Passive soil gas sampler. W. L. Gore and Associates, Inc. Gore-Sorber screening survey

    SciTech Connect

    1998-08-01

    This document summarizes the results of a demonstration of the WL Gore and Associates, GORE-SORBER{reg_sign} screening survey passive soil gas sampling system. The performance of this system was compared to the reference sampling method, active soil gas sampling (which provides a snapshot of the soil gas environment at the time the sample was collected). The comparison addressed three parameters VOC detection and quantitation; sample retrieval time, and cost. Data quality indicators for precision, accuracy, representativeness, completeness and comparability were also assessed against project-specific QA objectives to ensure usefulness of the data. A complete description of the demonstration, including a data summary and discussion of results is available in this report.

  6. Using soil gas radon and geology to estimate regional radon potential

    USGS Publications Warehouse

    Reimer, G.M.

    1992-01-01

    Two important parameters have been identified in order to estimate the radon potential of a region. They are the soil gas radon concentration and the geological rock type from which soils are derived. A simple soil gas collection and analytical technique has been developed to provide information on soil gas radon concentrations. The application of these techniques has demonstrated a clear relationship between the estimate of the radon potential and indoor radon measurements. This information is particularly important when evaluating the radon potential of areas that will be subject to population expansion in the future. Other factors, such as gamma radiation measurements and soil permeability can be included to improve the estimate of radon potential, but geology and soil gas measurements are the most important factors. Although this approach is useful for regional estimates, it can also be used for site-specific evaluations.

  7. Radon as an Anthropogenic Indoor Air Pollutant

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Crockett, Robin

    2016-04-01

    Radon is generally regarded as a naturally occurring radiological hazard but we report here measurements of significant, hazardous radon concentrations that arise from man-made sources, including granite ornaments/artefacts, uranium glass and glazed objects as well radium dial watches. This presentation concerns an examination and assessment of health risks from radium and uranium found in historical artefacts, many of which were once viewed as everyday items, and the radon that emanates from them. Such objects were very popular in industrialised countries such as the USA, UK and European countries) particularly between and including the two World Wars but are still readily available. A watch collection examined gave rise to a hazardous radon concentration of 13.24 kBq•m-3 approximately 67 times the Domestic Action Level of 200 Bq•m-3.The results for an aircraft altimeter are comparable to those of the watches, indicating radon activity equivalent to several watches, and also indicate an equilibrium concentration in the 16.3 m3 room ca. 33 times the UK domestic Action Level. Results from a granite block indicate a radon emanation of 19.7 Bq•kg-1, but the indicated equilibrium concentration in the 16.3 m3 room is only ca. 1.7% of the UK domestic Action Level. Uranium-glazed crockery and green uranium glass were scoped for radon activity. The former yielded a radon concentration of ca. 44 Bq•m-3 in a small (7 L) sealed container. The latter yielded a lower radon concentration in a larger (125 L) sealed container of ca. 6 Bq•m-3. This is barely above the background radon concentration in the laboratory, which was typically ca. 1-2 Bq•m-3. Individual items then are capable of giving rise to radon concentrations in excess of the UK Domestic Action Level in rooms in houses, particularly if poorly ventilated. We highlight the gap in the remediation protocols, which are focused on preventing radon entering buildings from outside, with regard to internally

  8. Estimated risks of radon-induced lung cancer for different exposure profiles based on the new EPA model.

    PubMed

    Chen, Jing

    2005-04-01

    Radon is a naturally occurring radioactive gas. When inhaled, radon can cause mutations that lead to lung cancer. Some new epidemiologic studies indicate that indoor radon is a public health problem. The BEIR VI report outlined its preferred two risk models for the combined effects of smoking and exposure to radon progeny, and listed the estimated risk to ever-smokers and never-smokers of both sexes due to lifetime exposure. However, exposures for shorter periods of time are of practical interest since exposure to elevated levels of radon may occur and end at any age. This study aims to produce practical tables of lifetime relative risks for exposures between any two age intervals from 0 to 110, and for various radon concentrations found in homes from 100 to 1,000 Bq m(-3). The calculations are based on the risk model developed recently by U.S. Environmental Protection Agency. The EPA's risk model is a single model that gives risk values midway between those obtained from the two BEIR VI preferred models. The detailed tables provide a clearer view of the age groups at higher risk and the effect of exposure duration. The results will help radiation protection practitioners to better communicate indoor radon risk to members of the public.

  9. A statistical evaluation of the influence of housing characteristics and geogenic radon potential on indoor radon concentrations in France.

    PubMed

    Demoury, C; Ielsch, G; Hemon, D; Laurent, O; Laurier, D; Clavel, J; Guillevic, J

    2013-12-01

    Radon-222 is a radioactive natural gas produced by the decay of radium-226, known to be the main contributor to natural background radiation exposure. Effective risk management needs to determine the areas in which the density of buildings with high radon levels is likely to be highest. Predicting radon exposure from the location and characteristics of a dwelling could also contribute to epidemiological studies. Beginning in the nineteen-eighties, a national radon survey consisting in more than 10,000 measurements of indoor radon concentrations was conducted in French dwellings by the Institute for Radiological Protection and Nuclear Safety (IRSN). Housing characteristics, which may influence radon accumulation in dwellings, were also collected. More recently, the IRSN generated a French geogenic radon potential map based on the interpretation of geological features. The present study analyzed the two datasets to investigate the factors influencing indoor radon concentrations using statistical modeling and to determine the optimum use of the information on geogenic radon potential that showed the best statistical association with indoor radon concentration. The results showed that the variables associated with indoor radon concentrations were geogenic radon potential, building material, year of construction, foundation type, building type and floor level. The model, which included the surrounding geogenic radon potential (i.e. the average geogenic radon potential within a disc of radius 20 km centered on the indoor radon measurement point) and variables describing house-specific factors and lifestyle explained about 20% of the overall variability of the logarithm of radon concentration. The surrounding geogenic radon potential was fairly closely associated with the local average indoor radon concentration. The prevalence of exposure to radon above specific thresholds and the average exposures to radon clearly increased with increasing classes of geogenic radon

  10. Variation of radon concentrations in soil and groundwater and its correlation with radon exhalation rate from soil in Budhakedar, Garhwal Himalaya

    NASA Astrophysics Data System (ADS)

    Prasad, Ganesh; Prasad, Yogesh; Gusain, G. S.; Badoni, Manjari; Rana, J. M. S.; Ramola, R. C.

    2009-06-01

    Radon was measured in soil-gas and groundwater in the Budhakedar area of Tehri Garhwal, India in summer and winter to obtain the seasonal variation and its correlation with radon exhalation rate. The environmental surface gamma dose rate was also measured in the same area. The radon exhalation rate in the soil sample collected from different geological unit of Budhakedar area was measured using plastic track detector (LR-115 type II) technique. The variation in the radon concentration in soil-gas was found to vary from 1098 to 31,776 Bq.m-3 with an average of 7456 Bq.m-3 in summer season and 3501 to 42883 Bq.m-3 with an average of 17148 Bq.m-3 in winter season. In groundwater, it was found to vary from 8 to 3047 Bq.l-1 with an average value 510 Bq.l-1 in summer and 26 to 2311 Bq.l-1 with an average value 433 Bq.L-1 in winter. Surface gamma dose rate in the study area varied from 32.4 to 83.6 μR.h-1 with an overall mean of 58.7 μ-R.h-1 in summer and 34.6 to 79.3 μR.h-1 with an average value 58.2 μR.h-1 in winter. Radon exhalation rate from collected soil samples was found to vary from 0.1 × 10-5 to 5.7 × 10-5 Bq.kg-1.h-1 with an average of 1.5 × 10-5 Bq.kg-1.h-1 in summer season and 1.7 × 10-5 to 9.6 × 10-5 Bq.kg-1.h-1 with an average of 5.5 × 10-5 Bq.kg-1.h-1. A weak negative correlation was observed between radon exhalation rate from soil and radon concentration in the soil. Radon exhalation rate from the soil was also not found to be correlated with the gamma dose rate, while it shows a positive correlation with radon concentration in water in summer season. Inter-correlations among various parameters are discussed in detail.

  11. Hidden Hazards of Radon: Scanning the Country for Problem Locations.

    ERIC Educational Resources Information Center

    Gundersen, Linda C. S.

    1992-01-01

    Describes the geology of the radon problem in the United States and suggests how homeowners can cope with the radio active gas. Vignettes illustrate how and where radon is produced beneath the earth's surface, testing sites and procedures for radon in houses, and locations for potential radon problems across the United States. (MCO)

  12. SITE-SPECIFIC MEASUREMENTS OF RESIDENTIAL RADON PROTECTION CATEGORY

    EPA Science Inventory

    The report describes a series of benchmark measurements of soil radon potential at seven Florida sites and compares the measurements with regional estimates of radon potential from the Florida radon protection map. The measurements and map were developed under the Florida Radon R...

  13. Hidden Hazards of Radon: Scanning the Country for Problem Locations.

    ERIC Educational Resources Information Center

    Gundersen, Linda C. S.

    1992-01-01

    Describes the geology of the radon problem in the United States and suggests how homeowners can cope with the radio active gas. Vignettes illustrate how and where radon is produced beneath the earth's surface, testing sites and procedures for radon in houses, and locations for potential radon problems across the United States. (MCO)

  14. Find a Radon Test Kit or Measurement and Mitigation Professional

    EPA Pesticide Factsheets

    Find a qualified radon service professional to fix or mitigate your home. If you have questions about a radon, you should contact your state radon contact and/or contact one or both of the two privately-run National Radon Proficiency Programs

  15. SITE-SPECIFIC MEASUREMENTS OF RESIDENTIAL RADON PROTECTION CATEGORY

    EPA Science Inventory

    The report describes a series of benchmark measurements of soil radon potential at seven Florida sites and compares the measurements with regional estimates of radon potential from the Florida radon protection map. The measurements and map were developed under the Florida Radon R...

  16. TEST CELL STUDIES OF RADON ENTRY

    EPA Science Inventory

    The report gives results of a study to contrast the effectiveness of slab-in-stem wall (SSW) with floating slab (FS) construction practices, to measure radon transport and entry for model testing, to develop protocols relevant to depressurized radon measurements, and to determine...

  17. TEST CELL STUDIES OF RADON ENTRY

    EPA Science Inventory

    The report gives results of a study to contrast the effectiveness of slab-in-stem wall (SSW) with floating slab (FS) construction practices, to measure radon transport and entry for model testing, to develop protocols relevant to depressurized radon measurements, and to determine...

  18. Characterization of radon levels in indoor air

    SciTech Connect

    George, A.C.

    1982-01-01

    The purpose is to describe the different types of monitoring and sampling techniques that can determine the radiation burden of the general public from radon and its decay products. This is accomplished by measuring the range and distribution of radon and radon decay products through broad surveys using simple and convenient integrating monitoring instruments. For in-depth studies of the behavior of radon decay products and calculation of the radiation dose to the lung, fewer and more intensive and complex measurements of the particle size distribution and respiratory deposition of the radon decay products are required. For diagnostic purposes, the paper describes measurement techniques of the sources and exhalation rate of radon and the air exchange inside buildings. Measurement results form several studies conducted in ordinary buildings in different geographical areas of the United States, using the described monitoring techniques, indicate that the occupants of these buildings are exposed to radon and radon decay product concentrations, varying by as much as a factor of 20.

  19. Decadal radon cycles in a hot spring.

    PubMed

    Yan, Rui; Woith, Heiko; Wang, Rongjiang; Wang, Guangcai

    2017-09-21

    A high-fidelity record covering nearly 40 years of water-dissolved radon from the hot spring site of BangLazhang (BLZ), Southwestern China is presented to study multi-year periodicities of radon. Ancillary observational data, i.e., water temperature, spring discharge rate, barometric pressure, combined with regional rainfall, galactic cosmic rays (GCR flux is modulated by solar wind and thus a proxy for solar activity) and regional seismicity from the same period are considered to identify potentially influencing factors controlling the changes in radon. Variations in radon concentration and ancillary observational data are studied using continuous Wavelet Power Spectrum (WPS), Wavelet Coherence (WTC), and Partial Wavelet Coherence (PWC). The results show that the long-period radon concentration is characterized by a quasi-decadal (8-11 years) cycle, matching well with the concurrent periodicity in water temperature, spring discharge rates and GCR. PWCs of radon, discharge rate and water temperature suggest that water temperature variations explain most of the coherent variability of radon and the discharge rate. We tentatively conclude that radon variations are mainly explained by variations in water temperature and spring discharge, which are modified and modulated by earthquakes and quasi-decadal variations of an unidentified process. The influence of solar activity on the decadal periodicity is discussed.

  20. Radon Risk Communication Strategies: A Regional Story.

    PubMed

    Cheng, Winnie

    2016-01-01

    Risk communication on the health effects of radon encounters many challenges and requires a variety of risk communication strategies and approaches. The concern over radon exposure and its health effects may vary according to people's level of knowledge and receptivity. Homeowners in radon-prone areas are usually more informed and have greater concern over those not living in radon-prone areas. The latter group is often found to be resistant to testing. In British Columbia as well as many other parts of the country, some homes have been lying outside of the radon-prone areas have radon levels above the Canadian guideline, which is the reason Health Canada recommends that all homes should be tested. Over the last five years, the Environment Health Program (EHP) of Health Canada in the British Columbia region has been using a variety of different approaches in their radon risk communications through social media, workshops, webinars, public forums, poster contests, radon distribution maps, public inquiries, tradeshows and conference events, and partnership with different jurisdictions and nongovernmental organizations. The valuable lessons learned from these approaches are discussed in this special report.