Egidi, Giovanna; Caramazza, Alfonso
2016-10-01
This research studies the neural systems underlying two integration processes that take place during natural discourse comprehension: consistency evaluation and passive comprehension. Evaluation was operationalized with a consistency judgment task and passive comprehension with a passive listening task. Using fMRI, the experiment examined the integration of incoming sentences with more recent, local context and with more distal, global context in these two tasks. The stimuli were stories in which we manipulated the consistency of the endings with the local context and the relevance of the global context for the integration of the endings. A whole-brain analysis revealed several differences between the two tasks. Two networks previously associated with semantic processing and attention orienting showed more activation during the judgment than the passive listening task. A network previously associated with episodic memory retrieval and construction of mental scenes showed greater activity when global context was relevant, but only during the judgment task. This suggests that evaluation, more than passive listening, triggers the reinstantiation of global context and the construction of a rich mental model for the story. Finally, a network previously linked to fluent updating of a knowledge base showed greater activity for locally consistent endings than inconsistent ones, but only during passive listening, suggesting a mode of comprehension that relies on a local scope approach to language processing. Taken together, these results show that consistency evaluation and passive comprehension weigh differently on distal and local information and are implemented, in part, by different brain networks.
Processing implicit control: evidence from reading times
McCourt, Michael; Green, Jeffrey J.; Lau, Ellen; Williams, Alexander
2015-01-01
Sentences such as “The ship was sunk to collect the insurance” exhibit an unusual form of anaphora, implicit control, where neither anaphor nor antecedent is audible. The non-finite reason clause has an understood subject, PRO, that is anaphoric; here it may be understood as naming the agent of the event of the host clause. Yet since the host is a short passive, this agent is realized by no audible dependent. The putative antecedent to PRO is therefore implicit, which it normally cannot be. What sorts of representations subserve the comprehension of this dependency? Here we present four self-paced reading time studies directed at this question. Previous work showed no processing cost for implicit vs. explicit control, and took this to support the view that PRO is linked syntactically to a silent argument in the passive. We challenge this conclusion by reporting that we also find no processing cost for remote implicit control, as in: “The ship was sunk. The reason was to collect the insurance.” Here the dependency crosses two independent sentences, and so cannot, we argue, be mediated by syntax. Our Experiments 1–4 examined the processing of both implicit (short passive) and explicit (active or long passive) control in both local and remote configurations. Experiments 3 and 4 added either “3 days ago” or “just in order” to the local conditions, to control for the distance between the passive and infinitival verbs, and for the predictability of the reason clause, respectively. We replicate the finding that implicit control does not impose an additional processing cost. But critically we show that remote control does not impose a processing cost either. Reading times at the reason clause were never slower when control was remote. In fact they were always faster. Thus, efficient processing of local implicit control cannot show that implicit control is mediated by syntax; nor, in turn, that there is a silent but grammatically active argument in passives. PMID:26579016
The multi-faceted role of allergen exposure to the local airway mucosa.
Golebski, K; Röschmann, K I L; Toppila-Salmi, S; Hammad, H; Lambrecht, B N; Renkonen, R; Fokkens, W J; van Drunen, C M
2013-02-01
Airway epithelial cells are the first to encounter aeroallergens and therefore have recently become an interesting target of many studies investigating their involvement in the modulation of allergic inflammatory responses. Disruption of a passive structural barrier composed of epithelial cells by intrinsic proteolytic activity of allergens may facilitate allergen penetration into local tissues and additionally affect chronic and ongoing inflammatory processes in respiratory tissues. Furthermore, the ability of rhinoviruses to disrupt and interfere with epithelial tight junctions may alter the barrier integrity and enable a passive passage of inhaled allergens through the airway epithelium. On the other hand, epithelial cells are no longer considered to act only as a physical barrier toward inhaled allergens, but also to actively contribute to airway inflammation by detecting and responding to environmental factors. Epithelial cells can produce mediators, which may affect the recruitment and activation of more specialized immune cells to the local tissue and also create a microenvironment in which these activated immune cells may function and propagate the inflammatory processes. This review presents the dual role of epithelium acting as a passive and active barrier when encountering an inhaled allergen and how this double role contributes to the start of local immune responses. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Laser doping of boron-doped Si paste for high-efficiency silicon solar cells
NASA Astrophysics Data System (ADS)
Tomizawa, Yuka; Imamura, Tetsuya; Soeda, Masaya; Ikeda, Yoshinori; Shiro, Takashi
2015-08-01
Boron laser doping (LD) is a promising technology for high-efficiency solar cells such as p-type passivated locally diffused solar cells and n-type Si-wafer-based solar cells. We produced a printable phosphorus- or boron-doped Si paste (NanoGram® Si paste/ink) for use as a diffuser in the LD process. We used the boron LD process to fabricate high-efficiency passivated emitter and rear locally diffused (PERL) solar cells. PERL solar cells on Czochralski Si (Cz-Si) wafers yielded a maximum efficiency of 19.7%, whereas the efficiency of a reference cell was 18.5%. Fill factors above 79% and open circuit voltages above 655 mV were measured. We found that the boron-doped area effectively performs as a local boron back surface field (BSF). The characteristics of the solar cell formed using NanoGram® Si paste/ink were better than those of the reference cell.
Cross-coherent vector sensor processing for spatially distributed glider networks.
Nichols, Brendan; Sabra, Karim G
2015-09-01
Autonomous underwater gliders fitted with vector sensors can be used as a spatially distributed sensor array to passively locate underwater sources. However, to date, the positional accuracy required for robust array processing (especially coherent processing) is not achievable using dead-reckoning while the gliders remain submerged. To obtain such accuracy, the gliders can be temporarily surfaced to allow for global positioning system contact, but the acoustically active sea surface introduces locally additional sensor noise. This letter demonstrates that cross-coherent array processing, which inherently mitigates the effects of local noise, outperforms traditional incoherent processing source localization methods for this spatially distributed vector sensor network.
ERIC Educational Resources Information Center
Imaniriho, Dan
2015-01-01
Over the past three decades, perceptions about the role of local population in policy development process have deeply changed. This change is related to the idea promoted by international institutions that the development actions cannot succeed without a strong local ownership and a broad approach that guarantee active participation of local…
43 CFR 2806.43 - How does BLM calculate rent for passive reflectors and local exchange networks?
Code of Federal Regulations, 2011 CFR
2011-10-01
... reflectors and local exchange networks? 2806.43 Section 2806.43 Public Lands: Interior Regulations Relating...-Of-Way § 2806.43 How does BLM calculate rent for passive reflectors and local exchange networks? (a) BLM calculates rent for passive reflectors and local exchange networks by using the same rent...
Molecular dynamics study of solid-liquid heat transfer and passive liquid flow
NASA Astrophysics Data System (ADS)
Yesudasan Daisy, Sumith
High heat flux removal is a challenging problem in boilers, electronics cooling, concentrated photovoltaic and other power conversion devices. Heat transfer by phase change is one of the most efficient mechanisms for removing heat from a solid surface. Futuristic electronic devices are expected to generate more than 1000 W/cm2 of heat. Despite the advancements in microscale and nanoscale manufacturing, the maximum passive heat flux removal has been 300 W/cm2 in pool boiling. Such limitations can be overcome by developing nanoscale thin-film evaporation based devices, which however require a better understanding of surface interactions and liquid vapor phase change process. Evaporation based passive flow is an inspiration from the transpiration process that happens in trees. If we can mimic this process and develop heat removal devices, then we can develop efficient cooling devices. The existing passive flow based cooling devices still needs improvement to meet the future demands. To improve the efficiency and capacity of these devices, we need to explore and quantify the passive flow happening at nanoscales. Experimental techniques have not advanced enough to study these fundamental phenomena at the nanoscale, an alternative method is to perform theoretical study at nanoscales. Molecular dynamics (MD) simulation is a widely accepted powerful tool for studying a range of fundamental and engineering problems. MD simulations can be utilized to study the passive flow mechanism and heat transfer due to it. To study passive flow using MD, apart from the conventional methods available in MD, we need to have methods to simulate the heat transfer between solid and liquid, local pressure, surface tension, density, temperature calculation methods, realistic boundary conditions, etc. Heat transfer between solid and fluids has been a challenging area in MD simulations, and has only been minimally explored (especially for a practical fluid like water). Conventionally, an equilibrium canonical ensemble (NVT) is simulated using thermostat algorithms. For research in heat transfer involving solid liquid interaction, we need to perform non equilibrium MD (NEMD) simulations. In such NEMD simulations, the methods used for simulating heating from a surface is very important and must capture proper physics and thermodynamic properties. Development of MD simulation techniques to simulate solid-liquid heating and the study of fundamental mechanism of passive flow is the main focus of this thesis. An accurate surface-heating algorithm was developed for water which can now allow the study of a whole new set of fundamental heat transfer problems at the nanoscale like surface heating/cooling of droplets, thin-films, etc. The developed algorithm is implemented in the in-house developed C++ MD code. A direct two dimensional local pressure estimation algorithm is also formulated and implemented in the code. With this algorithm, local pressure of argon and platinum interaction is studied. Also, the surface tension of platinum-argon (solid-liquid) was estimated directly from the MD simulations for the first time. Contact angle estimation studies of water on platinum, and argon on platinum were also performed. A thin film of argon is kept above platinum plate and heated in the middle region, leading to the evaporation and pressure reduction thus creating a strong passive flow in the near surface region. This observed passive liquid flow is characterized by estimating the pressure, density, velocity and surface tension using Eulerian mapping method. Using these simulation, we have demonstrated the fundamental nature and origin of surface-driven passive flow. Heat flux removed from the surface is also estimated from the results, which shows a significant improvement can be achieved in thermal management of electronic devices by taking advantage of surface-driven strong passive liquid flow. Further, the local pressure of water on silicon di-oxide surface is estimated using the LAMMPS atomic to continuum (ATC) package towards the goal of simulating the passive flow in water.
NASA Astrophysics Data System (ADS)
Garrison, M. L.
1982-06-01
Acceptance of passive solar technologies has been slow within the conventional building trades in Texas because it is a common misconception that solar is expensive, and data on local applications is severely limited or nonexistent. It is the purpose of this solar development to move passive solar design into the mainstream of public acceptance by helping to overcome and eliminate these barriers. Specifically, the goal is to develop a set of regional climatic building standards to help guide the conventional building trade toward the utilization of soft energy systems which will reduce overall consumption at a price and convenience most Texans can afford. To meet this objective, eight sample passive design structures are presented. These designs represent state of the art regional applications of passive solar space conditioning. The methodology used in the passive solar design process included: analysis of regional climatic data; analysis of historical regional building prototypes; determination of regional climatic design priorities and assets; prototypical design models for the discretionary housing market; quantitative thermal analysis of prototypical designs; and construction drawings of building prototypes.
Marine Mammals and Active Sonar
2005-10-01
Stafford , K. M., C. G. Fox, and D. S. Clark. 1998 . Long - range acoustic detection , localization of blue whale calls in the northeast...signal processing generated by other projects. The current effort on detection , classification, and localization of northern right whales as well as a...causal mechanisms of sonar-related beaked whale strandings. ONR is funding various research projects including passive acoustic detection
NASA Astrophysics Data System (ADS)
Huang, Yunfei; Luan, Huiqin; Sun, Lianwen; Bi, Jingfang; Wang, Ying; Fan, Yubo
2017-08-01
Spaceflight induced bone loss is seriously affecting astronauts. Mechanical stimulation from exercise has been shown to restrain bone resorption as well as improve bone formation. Current exercise countermeasures in space cannot prevent it completely. Active exercise may convert to passive exercise in some ways because of the loss of gravity stimulus and inertia of exercise equipment. The aim of this study was to compare the efficacy of passive exercise or/and local vibration on counteracting the deterioration of the musculoskeletal system, including bone, muscle and tendons in tail-suspended rats. We hypothesized that local vibration could enhance the efficacy of passive exercise on countering bone loss. 40 Sprague Dawley rats were randomly distributed into five groups (n = 8, each): tail-suspension (TS), TS+35 Hz vibration (TSV), TS + passive exercise (TSP), TS + passive exercise coupled with 35 Hz vibration (TSPV) and control (CON). Passive exercise or/and local vibration was performed for 21 days. On day 0 and 21, bone mineral density (BMD) was observed by dual energy X-ray absorptiometry (DXA), and trabecular microstructure was evaluated by microcomputer tomography (μCT) analysis in vivo. Mechanical properties of tibia and tendon were determined by a mechanical testing system. Soleus and bone ash weight was tested by an electronic balance. Results showed that the passive exercise could not prevent the decrease of trabecular BMD, microstructure and bone ash weight induced by TS, whereas vibration and passive exercise coupled with local vibration (PV) could. Biomechanical properties of the tibia and tendon in TSPV group significantly increased compared with TS group. In summary, PV in this study was the best method in preventing weightlessness-induced bone loss. Consistent with our hypothesis, local vibration partly enhanced the effect of passive exercise. Furthermore, this study will be useful in improving countermeasure for astronauts, but also for the rehabilitation of disused or aged osteoporosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Roy, Surajit; Hirt, Evelyn H.
2014-09-12
This report describes research results to date in support of the integration and demonstration of diagnostics technologies for prototypical AdvSMR passive components (to establish condition indices for monitoring) with model-based prognostics methods. The focus of the PHM methodology and algorithm development in this study is at the localized scale. Multiple localized measurements of material condition (using advanced nondestructive measurement methods), along with available measurements of the stressor environment, enhance the performance of localized diagnostics and prognostics of passive AdvSMR components and systems.
NASA Astrophysics Data System (ADS)
Tarakina, M. V.; Turtikova, O. V.; Nemirovskaya, T. L.; Kokontcev, A. A.; Shenkman, B. S.
Skeletal muscle work hypertrophy is usually connected with muscle progenitor satellite cells (SC) activation with subsequent incorporation of their nuclei into myofibers. Passive stretch of unloaded muscle was earlier established to prevent atrophic processes and is accompanied by enhanced protein synthesis. We hypothesized that elimination of SC proliferation capacity by γ-irradiation would partly avert stretched muscle fiber capability to maintain their size under the conditions of gravitational unloading. To assess the role of muscle progenitor (satellite) cells in development of passive stretch preventive effect SC proliferation was suppressed by local exposing to ionized radiation (2500 rad), subsequent hindlimb suspension or hindlimb suspension with concomitant passive stretch were carried out. Reduction of myofiber cross-sectional area and decrease in myonuclei number accompanying unloaded muscle atrophy were completely abolished by passive stretch both in irradiated and sham-treated animals. We conclude that SC did not make essential contribution to passive stretch preventive action under the conditions of simulated weightlessness.
Environmental quenching of low-mass field galaxies
NASA Astrophysics Data System (ADS)
Fillingham, Sean P.; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea; Wheeler, Coral
2018-07-01
In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (M⋆ ˜ 105.5-8 M⊙). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction - due solely to environmental effects - of ˜0.52 ± 0.26 within 1 < R/Rvir < 2 of the Milky Way and M31. This is in good agreement with current observations of the Local Volume and suggests that the majority of the passive field systems observed at these distances are quenched via environmental mechanisms. Beyond 2Rvir, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.
Environmental Quenching of Low-Mass Field Galaxies
NASA Astrophysics Data System (ADS)
Fillingham, Sean P.; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea; Wheeler, Coral
2018-04-01
In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (M⋆ ˜ 105.5 - 8 M⊙). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations (ELVIS) suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction - due solely to environmental effects - of ˜0.52 ± 0.26 within 1 < R/Rvir < 2 of the Milky Way and M31. This is in good agreement with current observations of the Local Volume and suggests that the majority of the passive field systems observed at these distances are quenched via environmental mechanisms. Beyond 2 Rvir, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.
Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array.
Wang, Qi; Wang, Yingmin; Zhu, Guolei
2016-12-30
The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective.
Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array
Wang, Qi; Wang, Yingmin; Zhu, Guolei
2016-01-01
The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective. PMID:28042828
NASA Astrophysics Data System (ADS)
Bermundo, Juan Paolo; Ishikawa, Yasuaki; Fujii, Mami N.; Nonaka, Toshiaki; Ishihara, Ryoichi; Ikenoue, Hiroshi; Uraoka, Yukiharu
2016-01-01
We demonstrate the use of excimer laser annealing (ELA) as a low temperature annealing alternative to anneal amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) passivated by a solution-processed hybrid passivation layer. Usually, a-IGZO is annealed using thermal annealing at high temperatures of up to 400 °C. As an alternative to high temperature thermal annealing, two types of ELA, XeCl (308 nm) and KrF (248 nm) ELA, are introduced. Both ELA types enhanced the electrical characteristics of a-IGZO TFTs leading to a mobility improvement of ~13 cm2 V-1 s-1 and small threshold voltage which varied from ~0-3 V. Furthermore, two-dimensional heat simulation using COMSOL Multiphysics was used to identify possible degradation sites, analyse laser heat localization, and confirm that the substrate temperature is below 50 °C. The two-dimensional heat simulation showed that the substrate temperature remained at very low temperatures, less than 30 °C, during ELA. This implies that any flexible material can be used as the substrate. These results demonstrate the large potential of ELA as a low temperature annealing alternative for already-passivated a-IGZO TFTs.
Passive sampler for PM10-2.5 aerosol.
Leith, David; Sommerlatt, Darrell; Boundy, Maryanne G
2007-03-01
This study investigates the use of a small passive sampler for aerosol particles to determine particulate matter (PM)10-2.5 concentrations in outdoor air. The passive sampler collects particles by gravity, diffusion, and convective diffusion onto a glass coverslip that is then examined with an optical microscope; digital images are processed with free software and the resultant PM10-2.5 concentrations determined. Both the samplers and the analyses are relatively inexpensive. Passive samplers were collocated with Federal Reference Method (FRM) samplers in Chapel Hill, NC; Phoenix, AZ; and Birmingham, AL; for periods from 5 to 15 days. Particles consisted primarily of inorganic dusts at some sites and a mix of industrial and inorganic materials at other sites. Measured concentrations ranged from < 10 microg/m3 to approximately 40 microg/m3. Overall, PM10-2.5 concentrations measured with the passive samplers were within approximately 1 standard deviation of concentrations measured with the FRM samplers. Concentrations determined with passive samplers depend on assumptions about particle density and shape factors and may also depend somewhat on local wind speed and turbulence; accurate values for these parameters may not be known. The degree of agreement between passive and FRM concentrations measured here suggests that passive measurements may not be overly dependent on accurate knowledge of these parameters.
Delivery of video-on-demand services using local storages within passive optical networks.
Abeywickrama, Sandu; Wong, Elaine
2013-01-28
At present, distributed storage systems have been widely studied to alleviate Internet traffic build-up caused by high-bandwidth, on-demand applications. Distributed storage arrays located locally within the passive optical network were previously proposed to deliver Video-on-Demand services. As an added feature, a popularity-aware caching algorithm was also proposed to dynamically maintain the most popular videos in the storage arrays of such local storages. In this paper, we present a new dynamic bandwidth allocation algorithm to improve Video-on-Demand services over passive optical networks using local storages. The algorithm exploits the use of standard control packets to reduce the time taken for the initial request communication between the customer and the central office, and to maintain the set of popular movies in the local storage. We conduct packet level simulations to perform a comparative analysis of the Quality-of-Service attributes between two passive optical networks, namely the conventional passive optical network and one that is equipped with a local storage. Results from our analysis highlight that strategic placement of a local storage inside the network enables the services to be delivered with improved Quality-of-Service to the customer. We further formulate power consumption models of both architectures to examine the trade-off between enhanced Quality-of-Service performance versus the increased power requirement from implementing a local storage within the network.
Passive perception system for day/night autonomous off-road navigation
NASA Astrophysics Data System (ADS)
Rankin, Arturo L.; Bergh, Charles F.; Goldberg, Steven B.; Bellutta, Paolo; Huertas, Andres; Matthies, Larry H.
2005-05-01
Passive perception of terrain features is a vital requirement for military related unmanned autonomous vehicle operations, especially under electromagnetic signature management conditions. As a member of Team Raptor, the Jet Propulsion Laboratory developed a self-contained passive perception system under the DARPA funded PerceptOR program. An environmentally protected forward-looking sensor head was designed and fabricated in-house to straddle an off-the-shelf pan-tilt unit. The sensor head contained three color cameras for multi-baseline daytime stereo ranging, a pair of cooled mid-wave infrared cameras for nighttime stereo ranging, and supporting electronics to synchronize captured imagery. Narrow-baseline stereo provided improved range data density in cluttered terrain, while wide-baseline stereo provided more accurate ranging for operation at higher speeds in relatively open areas. The passive perception system processed stereo images and outputted over a local area network terrain maps containing elevation, terrain type, and detected hazards. A novel software architecture was designed and implemented to distribute the data processing on a 533MHz quad 7410 PowerPC single board computer under the VxWorks real-time operating system. This architecture, which is general enough to operate on N processors, has been subsequently tested on Pentium-based processors under Windows and Linux, and a Sparc based-processor under Unix. The passive perception system was operated during FY04 PerceptOR program evaluations at Fort A. P. Hill, Virginia, and Yuma Proving Ground, Arizona. This paper discusses the Team Raptor passive perception system hardware and software design, implementation, and performance, and describes a road map to faster and improved passive perception.
Room-Temperature-Processed Flexible Amorphous InGaZnO Thin Film Transistor.
Xiao, Xiang; Zhang, Letao; Shao, Yang; Zhou, Xiaoliang; He, Hongyu; Zhang, Shengdong
2017-12-13
A room-temperature flexible amorphous indium-gallium-zinc oxide thin film transistor (a-IGZO TFT) technology is developed on plastic substrates, in which both the gate dielectric and passivation layers of the TFTs are formed by an anodic oxidation (anodization) technique. While the gate dielectric Al 2 O 3 is grown with a conventional anodization on an Al:Nd gate electrode, the channel passivation layer Al 2 O 3 is formed using a localized anodization technique. The anodized Al 2 O 3 passivation layer shows a superior passivation effect to that of PECVD SiO 2 . The room-temperature-processed flexible a-IGZO TFT exhibits a field-effect mobility of 7.5 cm 2 /V·s, a subthreshold swing of 0.44 V/dec, an on-off ratio of 3.1 × 10 8 , and an acceptable gate-bias stability with threshold voltage shifts of 2.65 and -1.09 V under positive gate-bias stress and negative gate-bias stress, respectively. Bending and fatigue tests confirm that the flexible a-IGZO TFT also has a good mechanical reliability, with electrical performances remaining consistent up to a strain of 0.76% as well as after 1200 cycles of fatigue testing.
NASA Astrophysics Data System (ADS)
Shi, Yunzhu; Collins, Liam; Balke, Nina; Liaw, Peter K.; Yang, Bin
2018-05-01
In-situ electrochemical (EC)-AFM is employed to investigate the localized corrosion of the AlxCoCrFeNi high-entropy alloys (HEAs). Surface topography changes on the micro/sub-micro scale are monitored at different applied anodizing potentials in a 3.5 wt% NaCl solution. The microstructural evolutions with the increased Al content in the alloys are characterized by SEM, TEM, EDS and EBSD. The results show that by increasing the Al content, the microstructure changes from single solid-solution to multi-phases, leading to the segregations of elements. Due to the microstructural variations in the AlxCoCrFeNi HEAs, localized corrosion processes in different ways after the breakdown of the passive film, which changes from pitting to phase boundary corrosion. The XPS results indicate that an increased Al content in the alloys/phases corresponds to a decreased corrosion resistance of the surface passive film.
NASA Astrophysics Data System (ADS)
Spitoni, E.; Vincenzo, F.; Matteucci, F.
2017-03-01
Context. Analytical models of chemical evolution, including inflow and outflow of gas, are important tools for studying how the metal content in galaxies evolves as a function of time. Aims: We present new analytical solutions for the evolution of the gas mass, total mass, and metallicity of a galactic system when a decaying exponential infall rate of gas and galactic winds are assumed. We apply our model to characterize a sample of local star-forming and passive galaxies from the Sloan Digital Sky Survey data, with the aim of reproducing their observed mass-metallicity relation. Methods: We derived how the two populations of star-forming and passive galaxies differ in their particular distribution of ages, formation timescales, infall masses, and mass loading factors. Results: We find that the local passive galaxies are, on average, older and assembled on shorter typical timescales than the local star-forming galaxies; on the other hand, the star-forming galaxies with higher masses generally show older ages and longer typical formation timescales compared than star-forming galaxies with lower masses. The local star-forming galaxies experience stronger galactic winds than the passive galaxy population. Exploring the effect of assuming different initial mass functions in our model, we show that to reproduce the observed mass-metallicity relation, stronger winds are requested if the initial mass function is top-heavy. Finally, our analytical models predict the assumed sample of local galaxies to lie on a tight surface in the 3D space defined by stellar metallicity, star formation rate, and stellar mass, in agreement with the well-known fundamental relation from adopting gas-phase metallicity. Conclusions: By using a new analytical model of chemical evolution, we characterize an ensemble of SDSS galaxies in terms of their infall timescales, infall masses, and mass loading factors. Local passive galaxies are, on average, older and assembled on shorter typical timescales than the local star-forming galaxies. Moreover, the local star-forming galaxies show stronger galactic winds than the passive galaxy population. Finally, we find that the fundamental relation between metallicity, mass, and star formation rate for these local galaxies is still valid when adopting the average galaxy stellar metallicity.
Lee, Jonghwan; Park, Cheolmin; Dao, Vinh Ai; Lee, Youn-Jung; Ryu, Kyungyul; Choi, Gyuho; Kim, Bonggi; Ju, Minkyu; Jeong, Chaehwan; Yi, Junsin
2013-11-01
In this paper, we present a detailed study on the local back contact (LBC) formation of rear-surface-passivated silicon solar cells, where both the LBC opening and metallization are realized by one-step alloying of a dot of fine pattern screen-printed aluminum paste with the silicon substrate. Based on energy dispersive spectrometer (EDS) and scanning electron microscopy (SEM) characterizations, we suggest that the aluminum distribution and the silicon concentration determine the local-back-surface-field (Al-p+) layer thickness, resistivity of the Al-p+ and hence the quality of the Al-p+ formation. The highest penetration of silicon concentration of 78.17% in aluminum resulted in the formation of a 5 microm-deep Al-p+ layer, and the minimum LBC resistivity of 0.92 x 10-6 omega cm2. The degradation of the rear-surface passivation due to high temperature of the LBC formation process can be fully recovered by forming gas annealing (FGA) at temperature and hydrogen content of 450 degrees C and 15%, respectively. The application of the optimized LBC of rear-surface-passivated by a dot of fine pattern screen(-) printed aluminum paste resulted in efficiency of up to 19.98% for the p-type czochralski (CZ) silicon wafers with 10.24 cm2 cell size at 649 mV open circuit voltage. By FGA for rear-surface passivation recovery, efficiencies up to 20.35% with a V(OC) of 662 mV, FF of 82%, and J(SC) of 37.5 mA/cm2 were demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagraev, N. T., E-mail: Bagraev@mail.ioffe.ru; Chaikina, E. I.; Danilovskii, E. Yu.
The sulfur passivation of the semi-insulating GaAs bulk (SI GaAs) grown in an excess phase of arsenic is used to observe the transition from the Coulomb blockade to the weak localization regime at room temperature. The I–V characteristics of the SI GaAs device reveal nonlinear behavior that appears to be evidence of the Coulomb blockade process as well as the Coulomb oscillations. The sulfur passivation of the SI GaAs device surface results in enormous transformation of the I–V characteristics that demonstrate the strong increase of the resistance and Coulomb blockade regime is replaced by the electron tunneling processes. The resultsmore » obtained are analyzed within frameworks of disordering SI GaAs surface that is caused by inhomogeneous distribution of the donor and acceptor anti-site defects which affects the conditions of quantum- mechanical tunneling. Weak localization processes caused by the preservation of the Fermi level pinning are demonstrated by measuring the negative magnetoresistance in weak magnetic fields at room temperature. Finally, the studies of the magnetoresistance at higher magnetic fields reveal the h/2e Aharonov–Altshuler–Spivak oscillations with the complicated behavior due to possible statistical mismatch of the interference paths in the presence of different microdefects.« less
NASA Astrophysics Data System (ADS)
Davies, L. J. M.; Robotham, A. S. G.; Driver, S. P.; Alpaslan, M.; Baldry, I. K.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cluver, M. E.; Holwerda, B. W.; Hopkins, A. M.; Lara-López, M. A.; Mahajan, S.; Moffett, A. J.; Owers, M. S.; Phillipps, S.
2016-02-01
Both theoretical predictions and observations of the very nearby Universe suggest that low-mass galaxies(log10[M*/M⊙] < 9.5) are likely to remain star-forming unless they are affected by their local environment. To test this premise, we compare and contrast the local environment of both passive and star-forming galaxies as a function of stellar mass, using the Galaxy and Mass Assembly survey. We find that passive fractions are higher in both interacting pair and group galaxies than the field at all stellar masses, and that this effect is most apparent in the lowest mass galaxies. We also find that essentially all passive log10[M*/M⊙] < 8.5 galaxies are found in pair/group environments, suggesting that local interactions with a more massive neighbour cause them to cease forming new stars. We find that the effects of immediate environment (local galaxy-galaxy interactions) in forming passive systems increase with decreasing stellar mass, and highlight that this is potentially due to increasing interaction time-scales giving sufficient time for the galaxy to become passive via starvation. We then present a simplistic model to test this premise, and show that given our speculative assumptions, it is consistent with our observed results.
ESAC RFI Survey in the SMOS 1400-1427MHz Passive Band
NASA Astrophysics Data System (ADS)
Castillo-Fraile, Manuel; Uranga, Ekhi
2016-08-01
The SMOS (Soil Moisture and Ocean Salinity) satellite was launched on 2 November 2009, and it is the ESA second Earth Explorer Opportunity mission. After 6 years of successful Operations, the status of the SMOS mission is excellent, and it is providing very reliable acquisition, nominal and NRT data processing, archiving, and dissemination services of Level 1 and Level 2 processed data around the entire Planet. However, SMOS observations are significantly affected by RF interferences in several World areas. In this context, a new RFI detection and monitoring tool has been implemented at ESAC to provide to the national radiofrequency authorities with a proper detection and localization method of the illegal ground emitters in order to ensure the protection of the SMOS 1400- 1427MHz Passive Band for scientific applications.
Cui, Yong; Liu, Shuming; Smith, Kate; Yu, Kanghua; Hu, Hongying; Jiang, Wei; Li, Yuhong
2016-01-01
To reveal corrosion behavior of stainless steel delivery pipe used in reclaimed water treatment, this research focused on the morphological, mineralogical and chemical characteristics of stainless steel corrosion scale and corroded passive film. Corrosion scale and coupon samples were taken from a type 304 pipe delivering reclaimed water to a clear well in service for more than 12 years. Stainless steel corrosion scales and four representative pipe coupons were investigated using mineralogy and material science research methods. The results showed corrosion scale was predominantly composed of goethite, lepidocrocite, hematite, magnetite, ferrous oxide, siderite, chrome green and chromite, the same as that of corroded pipe coupons. Hence, corrosion scale can be identified as podiform chromite deposit. The loss of chromium in passive film is a critical phenomenon when stainless steel passive film is damaged by localized corrosion. This may provide key insights toward improving a better comprehension of the formation of stainless steel corrosion scale and the process of localized corrosion. The localized corrosion behavior of stainless steel is directly connected with reclaimed water quality parameters such as residual chlorine, DO, Cl(-) and SO4(2-). In particular, when a certain amount of residual chlorine in reclaimed water is present as an oxidant, ferric iron is the main chemical state of iron minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experimental studies of high-accuracy RFID localization with channel impairments
NASA Astrophysics Data System (ADS)
Pauls, Eric; Zhang, Yimin D.
2015-05-01
Radio frequency identification (RFID) systems present an incredibly cost-effective and easy-to-implement solution to close-range localization. One of the important applications of a passive RFID system is to determine the reader position through multilateration based on the estimated distances between the reader and multiple distributed reference tags obtained from, e.g., the received signal strength indicator (RSSI) readings. In practice, the achievable accuracy of passive RFID reader localization suffers from many factors, such as the distorted RSSI reading due to channel impairments in terms of the susceptibility to reader antenna patterns and multipath propagation. Previous studies have shown that the accuracy of passive RFID localization can be significantly improved by properly modeling and compensating for such channel impairments. The objective of this paper is to report experimental study results that validate the effectiveness of such approaches for high-accuracy RFID localization. We also examine a number of practical issues arising in the underlying problem that limit the accuracy of reader-tag distance measurements and, therefore, the estimated reader localization. These issues include the variations in tag radiation characteristics for similar tags, effects of tag orientations, and reader RSS quantization and measurement errors. As such, this paper reveals valuable insights of the issues and solutions toward achieving high-accuracy passive RFID localization.
NASA Astrophysics Data System (ADS)
Pagliarini, G.; Vocale, P.; Mocerino, A.; Rainieri, S.
2017-01-01
Passive convective heat transfer enhancement techniques are well known and widespread tool for increasing the efficiency of heat transfer equipment. In spite of the ability of the first principle approach to forecast the macroscopic effects of the passive techniques for heat transfer enhancement, namely the increase of both the overall heat exchanged and the head losses, a first principle analysis based on energy, momentum and mass local conservation equations is hardly able to give a comprehensive explanation of how local modifications in the boundary layers contribute to the overall effect. A deeper insight on the heat transfer enhancement mechanisms can be instead obtained within a second principle approach, through the analysis of the local exergy dissipation phenomena which are related to heat transfer and fluid flow. To this aim, the analysis based on the second principle approach implemented through a careful consideration of the local entropy generation rate seems the most suitable, since it allows to identify more precisely the cause of the loss of efficiency in the heat transfer process, thus providing a useful guide in the choice of the most suitable heat transfer enhancement techniques.
Oskooei, Ali; Kaigala, Govind V
2017-06-01
We present a method for nonintrusive localization and reagent delivery on immersed biological samples with topographical variation on the order of hundreds of micrometers. Our technique, which we refer to as the deep-reaching hydrodynamic flow confinement (DR-HFC), is simple and passive: it relies on a deep-reaching hydrodynamic confinement delivered through a simple microfluidic probe design to perform localized microscale alterations on substrates as deep as 600 μm. Designed to scan centimeter-scale areas of biological substrates, our method passively prevents sample intrusion by maintaining a large gap between the probe and the substrate. The gap prevents collision of the probe and the substrate and reduces the shear stress experienced by the sample. We present two probe designs: linear and annular DR-HFC. Both designs comprise a reagent-injection aperture and aspiration apertures that serve to confine the reagent. We identify the design parameters affecting reagent localization and depth by DR-HFC and study their individual influence on the operation of DR-HFC numerically. Using DR-HFC, we demonstrate localized binding of antihuman immunoglobulin G (IgG) onto an activated substrate at various depths from 50 to 600 μm. DR-HFC provides a readily implementable approach for noninvasive processing of biological samples applicable to the next generation of diagnostic and bioanalytical devices.
Jiao, Yang; Xu, Liang; Gao, Min-Guang; Feng, Ming-Chun; Jin, Ling; Tong, Jing-Jing; Li, Sheng
2012-07-01
Passive remote sensing by Fourier-transform infrared (FTIR) spectrometry allows detection of air pollution. However, for the localization of a leak and a complete assessment of the situation in the case of the release of a hazardous cloud, information about the position and the distribution of a cloud is essential. Therefore, an imaging passive remote sensing system comprising an interferometer, a data acquisition and processing software, scan system, a video system, and a personal computer has been developed. The remote sensing of SF6 was done. The column densities of all directions in which a target compound has been identified may be retrieved by a nonlinear least squares fitting algorithm and algorithm of radiation transfer, and a false color image is displayed. The results were visualized by a video image, overlaid by false color concentration distribution image. The system has a high selectivity, and allows visualization and quantification of pollutant clouds.
Duecker, Daniel-André; Geist, A. René; Hengeler, Michael; Kreuzer, Edwin; Pick, Marc-André; Rausch, Viktor; Solowjow, Eugen
2017-01-01
Self-localization is one of the most challenging problems for deploying micro autonomous underwater vehicles (μAUV) in confined underwater environments. This paper extends a recently-developed self-localization method that is based on the attenuation of electro-magnetic waves, to the μAUV domain. We demonstrate a compact, low-cost architecture that is able to perform all signal processing steps present in the original method. The system is passive with one-way signal transmission and scales to possibly large μAUV fleets. It is based on the spherical localization concept. We present results from static and dynamic position estimation experiments and discuss the tradeoffs of the system. PMID:28445419
Duecker, Daniel-André; Geist, A René; Hengeler, Michael; Kreuzer, Edwin; Pick, Marc-André; Rausch, Viktor; Solowjow, Eugen
2017-04-26
Self-localization is one of the most challenging problems for deploying micro autonomous underwater vehicles ( μ AUV) in confined underwater environments. This paper extends a recently-developed self-localization method that is based on the attenuation of electro-magnetic waves, to the μ AUV domain. We demonstrate a compact, low-cost architecture that is able to perform all signal processing steps present in the original method. The system is passive with one-way signal transmission and scales to possibly large μ AUV fleets. It is based on the spherical localization concept. We present results from static and dynamic position estimation experiments and discuss the tradeoffs of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebser, J., E-mail: Jan.Ebser@uni-konstanz.de; Sommer, D.; Fritz, S.
Local rear contacts for silicon passivated emitter and rear contact solar cells can be established by point-wise treating an Al layer with laser radiation and thereby establishing an electrical contact between Al and Si bulk through the dielectric passivation layer. In this laser fired contacts (LFC) process, Al can establish a few μm thick p{sup +}-doped Si region below the metal/Si interface and forms in this way a local back surface field which reduces carrier recombination at the contacts. In this work, the applicability of Kelvin probe force microscopy (KPFM) to the investigation of LFCs considering the p{sup +}-doping distributionmore » is demonstrated. The method is based on atomic force microscopy and enables the evaluation of the lateral 2D Fermi-level characteristics at sub-micrometer resolution. The distribution of the electrical potential and therefore the local hole concentration in and around the laser fired region can be measured. KPFM is performed on mechanically polished cross-sections of p{sup +}-doped Si regions formed by the LFC process. The sample preparation is of great importance because the KPFM signal is very surface sensitive. Furthermore, the measurement is responsive to sample illumination and the height of the applied voltage between tip and sample. With other measurement techniques like micro-Raman spectroscopy, electrochemical capacitance-voltage, and energy dispersive X-ray analysis, a high local hole concentration in the range of 10{sup 19 }cm{sup −3} is demonstrated in the laser fired region. This provides, in combination with the high spatial resolution of the doping distribution measured by KPFM, a promising approach for microscopic understanding and further optimization of the LFC process.« less
Tamura, Yukie; Ogawa, Hiroshi; Kapeller, Christoph; Prueckl, Robert; Takeuchi, Fumiya; Anei, Ryogo; Ritaccio, Anthony; Guger, Christoph; Kamada, Kyousuke
2016-12-01
OBJECTIVE Electrocortical stimulation (ECS) is the gold standard for functional brain mapping; however, precise functional mapping is still difficult in patients with language deficits. High gamma activity (HGA) between 80 and 140 Hz on electrocorticography is assumed to reflect localized cortical processing, whereas the cortico-cortical evoked potential (CCEP) can reflect bidirectional responses evoked by monophasic pulse stimuli to the language cortices when there is no patient cooperation. The authors propose the use of "passive" mapping by combining HGA mapping and CCEP recording without active tasks during conscious resections of brain tumors. METHODS Five patients, each with an intraaxial tumor in their dominant hemisphere, underwent conscious resection of their lesion with passive mapping. The authors performed functional localization for the receptive language area, using real-time HGA mapping, by listening passively to linguistic sounds. Furthermore, single electrical pulses were delivered to the identified receptive temporal language area to detect CCEPs in the frontal lobe. All mapping results were validated by ECS, and the sensitivity and specificity were evaluated. RESULTS Linguistic HGA mapping quickly identified the language area in the temporal lobe. Electrical stimulation by linguistic HGA mapping to the identified temporal receptive language area evoked CCEPs on the frontal lobe. The combination of linguistic HGA and frontal CCEPs needed no patient cooperation or effort. In this small case series, the sensitivity and specificity were 93.8% and 89%, respectively. CONCLUSIONS The described technique allows for simple and quick functional brain mapping with higher sensitivity and specificity than ECS mapping. The authors believe that this could improve the reliability of functional brain mapping and facilitate rational and objective operations. Passive mapping also sheds light on the underlying physiological mechanisms of language in the human brain.
Controlling the Local Electronic Properties of Si(553)-Au through Hydrogen Doping
NASA Astrophysics Data System (ADS)
Hogan, C.; Speiser, E.; Chandola, S.; Suchkova, S.; Aulbach, J.; Schäfer, J.; Meyer, S.; Claessen, R.; Esser, N.
2018-04-01
We propose a quantitative and reversible method for tuning the charge localization of Au-stabilized stepped Si surfaces by site-specific hydrogenation. This is demonstrated for Si(553)-Au as a model system by combining density functional theory simulations and reflectance anisotropy spectroscopy experiments. We find that controlled H passivation is a two-step process: step-edge adsorption drives excess charge into the conducting metal chain "reservoir" and renders it insulating, while surplus H recovers metallic behavior. Our approach illustrates a route towards microscopic manipulation of the local surface charge distribution and establishes a reversible switch of site-specific chemical reactivity and magnetic properties on vicinal surfaces.
Data Assimilation of SMAP Observations and the Impact on Weather Forecasts and Heat Stress
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley; Case, Jonathan; Blankenship, Clay; Crosson, William; White, Khristopher
2014-01-01
SPoRT produces real-time LIS soil moisture products for situational awareness and local numerical weather prediction over CONUS, Mesoamerica, and East Africa ?Currently interact/collaborate with operational partners on evaluation of soil moisture products ?Drought/fire ?Extreme heat ?Convective initiation ?Flood and water borne diseases ?Initial efforts to assimilate L2 soil moisture observations from SMOS (as a precursor for SMAP) have been successful ?Active/passive blended product from SMAP will be assimilated similarly and higher spatial resolution should improve on local-scale processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huet, F.; Keddam, M.; Takenouti, H.
1993-07-01
By conferring frequency and time resolution on the rotating rink-disk electrode technique, original information can be obtained on the mechanism of corrosion processes involving the formation of intermediate, passive, or corrosion product layers. The methodology that allows the measurement of the actual flux of chemical species generated by a localized corrosion site is described which takes into account the usual parameters of the RRDE and the location of the active spot on the disk surface. Application to pitting corrosion of iron by Cl[sup [minus
Atomic level characterization in corrosion studies
NASA Astrophysics Data System (ADS)
Marcus, Philippe; Maurice, Vincent
2017-06-01
Atomic level characterization brings fundamental insight into the mechanisms of self-protection against corrosion of metals and alloys by oxide passive films and into how localized corrosion is initiated on passivated metal surfaces. This is illustrated in this overview with selected data obtained at the subnanometre, i.e. atomic or molecular, scale and also at the nanometre scale on single-crystal copper, nickel, chromium and stainless steel surfaces passivated in well-controlled conditions and analysed in situ and/or ex situ by scanning tunnelling microscopy/spectroscopy and atomic force microscopy. A selected example of corrosion modelling by ab initio density functional theory is also presented. The discussed aspects include the surface reconstruction induced by hydroxide adsorption and formation of two-dimensional (hydr)oxide precursors, the atomic structure, orientation and surface hydroxylation of three-dimensional ultrathin oxide passive films, the effect of grain boundaries in polycrystalline passive films acting as preferential sites of passivity breakdown, the differences in local electronic properties measured at grain boundaries of passive films and the role of step edges at the exposed surface of oxide grains on the dissolution of the passive film. This article is part of the themed issue 'The challenges of hydrogen and metals'.
The structure of turbulent channel flow with passive scalar transport
NASA Technical Reports Server (NTRS)
Guezennec, Y.; Stretch, D.; Kim, J.
1990-01-01
The simulation of turbulent channel flow, with various passive markers, was examined to investigate the local mechanisms of passive scalar transport. We found significant differences between the local transport of heat and momentum, even when the molecular and turbulent Prandtl numbers are of order one. These discrepancies can be attributed to the role of the pressure. We also found that the heat is a poor marker of the vorticity field outside of the near wall region and that scalar transport over significant distances results from the aggregate effect of many turbulent eddies.
Turtle embryos move to optimal thermal environments within the egg.
Zhao, Bo; Li, Teng; Shine, Richard; Du, Wei-Guo
2013-08-23
A recent study demonstrated that the embryos of soft-shelled turtles can reposition themselves within their eggs to exploit locally warm conditions. In this paper, we ask whether turtle embryos actively seek out optimal thermal environments for their development, as do post-hatching individuals. Specifically, (i) do reptile embryos move away from dangerously high temperatures as well as towards warm temperatures? and (ii) is such embryonic movement due to active thermoregulation, or (more simply) to passive embryonic repositioning caused by local heat-induced changes in viscosity of fluids within the egg? Our experiments with an emydid turtle (Chinemys reevesii) show that embryos avoid dangerously high temperatures by moving to cooler regions of the egg. The repositioning of embryos is an active rather than passive process: live embryos move towards a heat source, whereas dead ones do not. Overall, our results suggest that behavioural thermoregulation by turtle embryos is genuinely analogous to the thermoregulatory behaviour exhibited by post-hatching ectotherms.
Electrochemical de-alloying in two dimensions: role of the local atomic environment
NASA Astrophysics Data System (ADS)
Damian, A.; Maroun, F.; Allongue, P.
2016-07-01
We investigate by in situ scanning tunnelling microscopy (STM) the potential dependence of the electrochemical dealloying of NiPd monoatomic layers electrodeposited on Au(111). The dealloying process is achieved by Ni selective dissolution and was studied as a function of NiPd composition: for an alloy with a Ni content >=70%, quasi-complete Ni dissolution is achieved at a potential of -0.9 VMSE whereas for a Ni content <70%, Ni dissolution at the same potential drastically slows down after the removal of small amounts of Ni. The alloy morphology at this ``passivation state'' is characterized by the presence of holes in the alloy monolayer with evidence for the Pd enrichment at the hole edges. These findings are confirmed by Monte Carlo simulations. Further Ni dissolution at passivation was achieved by applying more positive potentials which depend on the alloy composition. These results allowed us to determine the correlation between the Ni dissolution onset potential and the local Pd content.
Turtle embryos move to optimal thermal environments within the egg
Zhao, Bo; Li, Teng; Shine, Richard; Du, Wei-Guo
2013-01-01
A recent study demonstrated that the embryos of soft-shelled turtles can reposition themselves within their eggs to exploit locally warm conditions. In this paper, we ask whether turtle embryos actively seek out optimal thermal environments for their development, as do post-hatching individuals. Specifically, (i) do reptile embryos move away from dangerously high temperatures as well as towards warm temperatures? and (ii) is such embryonic movement due to active thermoregulation, or (more simply) to passive embryonic repositioning caused by local heat-induced changes in viscosity of fluids within the egg? Our experiments with an emydid turtle (Chinemys reevesii) show that embryos avoid dangerously high temperatures by moving to cooler regions of the egg. The repositioning of embryos is an active rather than passive process: live embryos move towards a heat source, whereas dead ones do not. Overall, our results suggest that behavioural thermoregulation by turtle embryos is genuinely analogous to the thermoregulatory behaviour exhibited by post-hatching ectotherms. PMID:23760168
Sazou, Dimitra; Pavlidou, Maria; Pagitsas, Michael
2009-10-21
This work analyses the nature of temporal patterning of the anodic potential induced by chlorides during polarization of iron under current-controlled conditions in acid solutions. It is shown that potential oscillations emerged as a result of the local chloride attack of a thin oxide layer, which covers the iron surface in its passive state. The mechanism by which both the local oxide breakdown and the subsequent localized active dissolution (pitting) occur is explained by considering a point defect model (PDM) developed to describe the oxide growth and breakdown. According to the PDM, chlorides occupy oxygen vacancies resulting in the inhibition of oxide growth and autocatalytic generation of cation vacancies that destabilize the oxide layer. Simultaneous transformation of the outer surface of the inner oxide layer to non-adherent ferrous chloride or oxo-chloride species leads to a further thinning of the oxide layer and its lifting-on from the iron surface. The process repeats again yielding sustained oscillations of the anodic potential. Analysis of the oscillatory response obtained under current-controlled conditions as a function of either the current or the time allows the suggestion of a set of alternate diagnostic criteria, which might be used to characterize localized corrosion of iron in acid solutions.
Sound localization with communications headsets: comparison of passive and active systems.
Abel, Sharon M; Tsang, Suzanne; Boyne, Stephen
2007-01-01
Studies have demonstrated that conventional hearing protectors interfere with sound localization. This research examines possible benefits from advanced communications devices. Horizontal plane sound localization was compared in normal-hearing males with the ears unoccluded and fitted with Peltor H10A passive attenuation earmuffs, Racal Slimgard II communications muffs in active noise reduction (ANR) and talk-through-circuitry (TTC) modes and Nacre QUIETPRO TM communications earplugs in off (passive attenuation) and push-to-talk (PTT) modes. Localization was assessed using an array of eight loudspeakers, two in each spatial quadrant. The stimulus was 75 dB SPL, 300-ms broadband noise. One block of 120 forced-choice loudspeaker identification trials was presented in each condition. Subjects responded using a laptop response box with a set of eight microswitches in the same configuration as the speaker array. A repeated measures ANOVA was applied to the dataset. The results reveal that the overall percent correct response was highest in the unoccluded condition (94%). A significant reduction of 24% was observed for the communications devices in TTC and PTT modes and a reduction of 49% for the passive muff and plug and muff with ANR. Disruption in performance was due to an increase in front-back reversal errors for mirror image spatial positions. The results support the conclusion that communications devices with advanced technologies are less detrimental to directional hearing than conventional, passive, limited amplification and ANR devices.
Interventional MR: vascular applications.
Smits, H F; Bos, C; van der Weide, R; Bakker, C J
1999-01-01
Three strategies for visualisation of MR-dedicated guidewires and catheters have been proposed, namely active tracking, the technique of locally induced field inhomogeneity and passive susceptibility-based tracking. In this article the pros and cons of these techniques are discussed, including the development of MR-dedicated guidewires and catheters, scan techniques, post-processing tools, and display facilities for MR tracking. Finally, some of the results obtained with MR tracking are discussed.
Obermair, Christian; Kress, Marina; Wagner, Andreas; Schimmel, Thomas
2012-01-01
We recently introduced a method that allows the controlled deposition of nanoscale metallic patterns at defined locations using the tip of an atomic force microscope (AFM) as a "mechano-electrochemical pen", locally activating a passivated substrate surface for site-selective electrochemical deposition. Here, we demonstrate the reversibility of this process and study the long-term stability of the resulting metallic structures. The remarkable stability for more than 1.5 years under ambient air without any observable changes can be attributed to self-passivation. After AFM-activated electrochemical deposition of copper nanostructures on a polycrystalline gold film and subsequent AFM imaging, the copper nanostructures could be dissolved by reversing the electrochemical potential. Subsequent AFM-tip-activated deposition of different copper nanostructures at the same location where the previous structures were deleted, shows that there is no observable memory effect, i.e., no effect of the previous writing process on the subsequent writing process. Thus, the four processes required for reversible information storage, "write", "read", "delete" and "re-write", were successfully demonstrated on the nanometer scale.
Kress, Marina; Wagner, Andreas; Schimmel, Thomas
2012-01-01
Summary We recently introduced a method that allows the controlled deposition of nanoscale metallic patterns at defined locations using the tip of an atomic force microscope (AFM) as a “mechano-electrochemical pen”, locally activating a passivated substrate surface for site-selective electrochemical deposition. Here, we demonstrate the reversibility of this process and study the long-term stability of the resulting metallic structures. The remarkable stability for more than 1.5 years under ambient air without any observable changes can be attributed to self-passivation. After AFM-activated electrochemical deposition of copper nanostructures on a polycrystalline gold film and subsequent AFM imaging, the copper nanostructures could be dissolved by reversing the electrochemical potential. Subsequent AFM-tip-activated deposition of different copper nanostructures at the same location where the previous structures were deleted, shows that there is no observable memory effect, i.e., no effect of the previous writing process on the subsequent writing process. Thus, the four processes required for reversible information storage, “write”, “read”, “delete” and “re-write”, were successfully demonstrated on the nanometer scale. PMID:23365795
Local Fine Structural Insight into Mechanism of Electrochemical Passivation of Titanium.
Wang, Lu; Yu, Hongying; Wang, Ke; Xu, Haisong; Wang, Shaoyang; Sun, Dongbai
2016-07-20
Electrochemically formed passive film on titanium in 1.0 M H2SO4 solution and its thickness, composition, chemical state, and local fine structure are examined by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure. AES analysis reveals that the thickness and composition of oxide film are proportional to the reciprocal of current density in potentiodynamic polarization. XPS depth profiles of the chemical states of titanium exhibit the coexistence of various valences cations in the surface. Quantitative X-ray absorption near edge structure analysis of the local electronic structure of the topmost surface (∼5.0 nm) shows that the ratio of [TiO2]/[Ti2O3] is consistent with that of passivation/dissolution of electrochemical activity. Theoretical calculation and analysis of extended X-ray absorption fine structure spectra at Ti K-edge indicate that both the structures of passivation and dissolution are distorted caused by the appearance of two different sites of Ti-O and Ti-Ti. And the bound water in the topmost surface plays a vital role in structural disorder confirmed by XPS. Overall, the increase of average Ti-O coordination causes the electrochemical passivation, and the dissolution is due to the decrease of average Ti-Ti coordination. The structural variations of passivation in coordination number and interatomic distance are in good agreement with the prediction of point defect model.
Improvements to Passive Acoustic Tracking Methods for Marine Mammal Monitoring
2016-05-02
individual animals . 15. SUBJECT TERMS Marine mammal; Passive acoustic monitoring ; Localization; Tracking ; Multiple source ; Sparse array 16. SECURITY...al. 2004; Thode 2005; Nosal 2007] to localize animals in situations where straight-line propagation assumptions made by conventional marine mammal...Objective 1: Inveti for sound speed profiles. hydrophone position and hydrophone timing offset in addition to animal position Almost all marine mammal
High sensitivity broadband 360GHz passive receiver for TeraSCREEN
NASA Astrophysics Data System (ADS)
Wang, Hui; Oldfield, Matthew; Maestrojuán, Itziar; Platt, Duncan; Brewster, Nick; Viegas, Colin; Alderman, Byron; Ellison, Brian N.
2016-05-01
TeraSCREEN is an EU FP7 Security project aimed at developing a combined active, with frequency channel centered at 360 GHz, and passive, with frequency channels centered at 94, 220 and 360 GHz, imaging system for border controls in airport and commercial ferry ports. The system will include automatic threat detection and classification and has been designed with a strong focus on the ethical, legal and practical aspects of operating in these environments and with the potential threats in mind. Furthermore, both the passive and active systems are based on array receivers with the active system consisting of a 16 element MIMO FMCW radar centered at 360 GHz with a bandwidth of 30 GHz utilizing a custom made direct digital synthesizer. The 16 element passive receiver system at 360 GHz uses commercial Gunn diode oscillators at 90 GHz followed by custom made 90 to 180 GHz frequency doublers supplying the local oscillator for 360 GHz sub-harmonic mixers. This paper describes the development of the passive antenna module, local oscillator chain, frequency mixers and detectors used in the passive receiver array of this system. The complete passive receiver chain is characterized in this paper.
NASA Technical Reports Server (NTRS)
Folta, David; Kraft, Lauri
1992-01-01
The mean local time (MLT) of equatorial crossing of a sun-synchronous Earth-observing spacecraft orbit drifts with inclination; therefore, in order to maintain the MLT, the inclination must be controlled. Inclination may be maintained actively by costly out-of-plane maneuvers or passively by using the perturbing forces due to the sun and moon. This paper examines the passive control approach using the Earth Observing System (EOS) as a basis for the discussion. Applications to Landsat and National Oceanic and Atmospheric Administration (NOAA) spacecraft are presented for comparison. This technique is especially beneficial to spacecraft lacking propulsion systems. The results indicate that passive inclination control appears to be the preferable maintenance method when spacecraft weight restrictions, operational considerations, and scientific requirements apply.
Antireflection/Passivation Step For Silicon Cell
NASA Technical Reports Server (NTRS)
Crotty, Gerald T.; Kachare, Akaram H.; Daud, Taher
1988-01-01
New process excludes usual silicon oxide passivation. Changes in principal electrical parameters during two kinds of processing suggest antireflection treatment almost as effective as oxide treatment in passivating cells. Does so without disadvantages of SiOx passivation.
Imam, Neena; Barhen, Jacob
2009-01-01
For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot bemore » readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.« less
Improvements to Passive Acoustic Tracking Methods for Marine Mammal Monitoring
2016-05-02
separate and associate calls from individual animals . Marine mammal; Passive acoustic monitoring; Localization; Tracking; Multiple source; Sparse array...position and hydrophone timing offset in addition to animal position Almost all marine mammal tracking methods treat animal position as the only unknown...Workshop on Detection, Classification and Localization (DCL) of Marine Mammals). The animals were expected to be relatively close to the surface
Joint inversion of active and passive seismic data in Central Java
NASA Astrophysics Data System (ADS)
Wagner, Diana; Koulakov, I.; Rabbel, W.; Luehr, B.-G.; Wittwer, A.; Kopp, H.; Bohm, M.; Asch, G.
2007-08-01
Seismic and volcanic activities in Central Java, Indonesia, the area of interest of this study, are directly or indirectly related to the subduction of the Indo-Australian plate. In the framework of the MERapi AMphibious EXperiments (MERAMEX), a network consisting of about 130 seismographic stations was installed onshore and offshore in Central Java and operated for more than 150 days. In addition, 3-D active seismic experiments were carried out offshore. In this paper, we present the results of processing combined active and passive seismic data, which contain traveltimes from 292 local earthquakes and additional airgun shots along three offshore profiles. The inversion was performed using the updated LOTOS-06 code that allows processing for active and passive source data. The joint inversion of the active and passive data set considerably improves the resolution of the upper crust, especially in the offshore area in comparison to only passive data. The inversion results are verified using a series of synthetic tests. The resulting images show an exceptionally strong low-velocity anomaly (-30 per cent) in the backarc crust northward of the active volcanoes. In the upper mantle beneath the volcanoes, we observe a low-velocity anomaly inclined towards the slab, which probably reflects the paths of fluids and partially melted materials in the mantle wedge. The crust in the forearc appears to be strongly heterogeneous. The onshore part consists of two high-velocity blocks separated by a narrow low-velocity anomaly, which can be interpreted as a weakened contact zone between two rigid crustal bodies. The recent Java Mw = 6.3 earthquake (2006/05/26-UTC) occurred at the lower edge of this zone. Its focal strike slip mechanism is consistent with the orientation of this contact.
Lai, Bo; Zhou, Yuexi; Wang, Juling; Zhang, Yunhong; Chen, Zhiqiang
2014-01-01
This study provides mechanistic insights into the passivation of the packing particles during the treatment of acrylonitrile-butadiene-styrene (ABS) resin wastewater by the Fe0/GAC system. The granular-activated carbon (GAC) and iron chippings (Fe0) were mixed together with a volumetric ratio of 1:1. GAC has a mean particle size of approximately 3-5 mm, a specific surface of 748 m2 g(-1), a total pore volume of 0.48 mL g(-1) and a bulk density of 0.49 g cm(-3). The iron chippings have a compact and non-porous surface morphology. The results show that the packing particles in the Fe0/GAC system would lose their activity because the removal of TOC and PO4(3-) for ABS resin wastewater could not carried out by the Fe0/GAC system after 40 days continuous running. Meanwhile, the availability of O2 and intrinsic reactivity of Fe0 play a key role on the form of passive film with different iron oxidation states. The passive film on the surface of iron chippings was formed by two phases: (a) local corrosion phase (0-20 d) and (b) co-precipitation phase (20-40 d), while that of GAC was mainly formed by the co-precipitation of corrosion products with SO4(2-) and PO4(3-) because SO4(2-) and PO4(3-) would not easily reach the Fe0 surface. Therefore, in order to avoid the occurrence of filler passivation, high concentrations of SO4(2-) and PO4(3-) in wastewater should be removed before the treatment process of the Fe/GAC system.
Phloem Loading through Plasmodesmata: A Biophysical Analysis1[OPEN
2017-01-01
In many species, Suc en route out of the leaf migrates from photosynthetically active mesophyll cells into the phloem down its concentration gradient via plasmodesmata, i.e. symplastically. In some of these plants, the process is entirely passive, but in others phloem Suc is actively converted into larger sugars, raffinose and stachyose, and segregated (trapped), thus raising total phloem sugar concentration to a level higher than in the mesophyll. Questions remain regarding the mechanisms and selective advantages conferred by both of these symplastic-loading processes. Here, we present an integrated model—including local and global transport and kinetics of polymerization—for passive and active symplastic loading. We also propose a physical model of transport through the plasmodesmata. With these models, we predict that (1) relative to passive loading, polymerization of Suc in the phloem, even in the absence of segregation, lowers the sugar content in the leaf required to achieve a given export rate and accelerates export for a given concentration of Suc in the mesophyll and (2) segregation of oligomers and the inverted gradient of total sugar content can be achieved for physiologically reasonable parameter values, but even higher export rates can be accessed in scenarios in which polymers are allowed to diffuse back into the mesophyll. We discuss these predictions in relation to further studies aimed at the clarification of loading mechanisms, fitness of active and passive symplastic loading, and potential targets for engineering improved rates of export. PMID:28794259
Electrochemical model of local corrosion at the tip of a loaded crack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreikiv, O.E.; Tym`yak, N.I.
1994-07-01
A model of electrochemical processes near a crack tip in a stressed metal subjected to corrosion with hydrogen depolarization is suggested. It is shown that, in order to describe the kinetics of hydrogenation of the prefracture area, it is necessary to take into account the type of passivation layer on the newly formed metal surface near the crack tip and the mechanism of its formation.
Advanced Demonstration of Motion Correction for Ship-to-Ship Passive Inspections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziock, Klaus-Peter; Boehnen, Chris Bensing; Ernst, Joseph
2013-09-30
Passive radiation detection is a key tool for detecting illicit nuclear materials. In maritime applications it is most effective against small vessels where attenuation is of less concern. Passive imaging provides: discrimination between localized (threat) and distributed (non-threat) sources, removal of background fluctuations due to nearby shorelines and structures, source localization to an individual craft in crowded waters, and background subtracted spectra. Unfortunately, imaging methods cannot be easily applied in ship-to-ship inspections because relative motion of the vessels blurs the results over many pixels, significantly reducing sensitivity. This is particularly true for the smaller water craft where passive inspections aremore » most valuable. In this project we performed tests and improved the performance of an instrument (developed earlier under, “Motion Correction for Ship-to-Ship Passive Inspections”) that uses automated tracking of a target vessel in visible-light images to generate a 3D radiation map of the target vessel from data obtained using a gamma-ray imager.« less
Justen, Christoph; Herbert, Cornelia
2016-01-01
So far, neurophysiological studies have investigated implicit and explicit self-related processing particularly for self-related stimuli such as the own face or name. The present study extends previous research to the implicit processing of self-related movement sounds and explores their spatio-temporal dynamics. Event-related potentials (ERPs) were assessed while participants (N = 12 healthy subjects) listened passively to previously recorded self- and other-related finger snapping sounds, presented either as deviants or standards during an oddball paradigm. Passive listening to low (500 Hz) and high (1000 Hz) pure tones served as additional control. For self- vs. other-related finger snapping sounds, analysis of ERPs revealed significant differences in the time windows of the N2a/MMN and P3. An subsequent source localization analysis with standardized low-resolution brain electromagnetic tomography (sLORETA) revealed increased cortical activation in distinct motor areas such as the supplementary motor area (SMA) in the N2a/mismatch negativity (MMN) as well as the P3 time window during processing of self- and other-related finger snapping sounds. In contrast, brain regions associated with self-related processing [e.g., right anterior/posterior cingulate cortex (ACC/PPC)] as well as the right inferior parietal lobule (IPL) showed increased activation particularly during processing of self- vs. other-related finger snapping sounds in the time windows of the N2a/MMN (ACC/PCC) or the P3 (IPL). None of these brain regions showed enhanced activation while listening passively to low (500 Hz) and high (1000 Hz) pure tones. Taken together, the current results indicate (1) a specific role of motor regions such as SMA during auditory processing of movement-related information, regardless of whether this information is self- or other-related, (2) activation of neural sources such as the ACC/PCC and the IPL during implicit processing of self-related movement stimuli, and (3) their differential temporal activation during deviance (N2a/MMN – ACC/PCC) and target detection (P3 – IPL) of self- vs. other-related movement sounds. PMID:27777557
Scale-free networks as an epiphenomenon of memory
NASA Astrophysics Data System (ADS)
Caravelli, F.; Hamma, A.; Di Ventra, M.
2015-01-01
Many realistic networks are scale free, with small characteristic path lengths, high clustering, and power law in their degree distribution. They can be obtained by dynamical networks in which a preferential attachment process takes place. However, this mechanism is non-local, in the sense that it requires knowledge of the whole graph in order for the graph to be updated. Instead, if preferential attachment and realistic networks occur in physical systems, these features need to emerge from a local model. In this paper, we propose a local model and show that a possible ingredient (which is often underrated) for obtaining scale-free networks with local rules is memory. Such a model can be realised in solid-state circuits, using non-linear passive elements with memory such as memristors, and thus can be tested experimentally.
Consequences of atomic layer etching on wafer scale uniformity in inductively coupled plasmas
NASA Astrophysics Data System (ADS)
Huard, Chad M.; Lanham, Steven J.; Kushner, Mark J.
2018-04-01
Atomic layer etching (ALE) typically divides the etching process into two self-limited reactions. One reaction passivates a single layer of material while the second preferentially removes the passivated layer. As such, under ideal conditions the wafer scale uniformity of ALE should be independent of the uniformity of the reactant fluxes onto the wafers, provided all surface reactions are saturated. The passivation and etch steps should individually asymptotically saturate after a characteristic fluence of reactants has been delivered to each site. In this paper, results from a computational investigation are discussed regarding the uniformity of ALE of Si in Cl2 containing inductively coupled plasmas when the reactant fluxes are both non-uniform and non-ideal. In the parameter space investigated for inductively coupled plasmas, the local etch rate for continuous processing was proportional to the ion flux. When operated with saturated conditions (that is, both ALE steps are allowed to self-terminate), the ALE process is less sensitive to non-uniformities in the incoming ion flux than continuous etching. Operating ALE in a sub-saturation regime resulted in less uniform etching. It was also found that ALE processing with saturated steps requires a larger total ion fluence than continuous etching to achieve the same etch depth. This condition may result in increased resist erosion and/or damage to stopping layers using ALE. While these results demonstrate that ALE provides increased etch depth uniformity, they do not show an improved critical dimension uniformity in all cases. These possible limitations to ALE processing, as well as increased processing time, will be part of the process optimization that includes the benefits of atomic resolution and improved uniformity.
McDermott, Suzanne; Ruttenber, Margaret; Mann, Joshua; Smith, Michael G; Royer, Julie; Valdez, Rodolfo
2016-01-01
Background Owing to their low prevalence, single rare conditions are difficult to monitor through current state passive and active case ascertainment systems. However, such monitoring is important because, as a group, rare conditions have great impact on the health of affected individuals and the well-being of their caregivers. A viable approach could be to conduct passive and active case ascertainment of several rare conditions simultaneously. This is a report about the feasibility of such an approach. Objective To test the feasibility of a case ascertainment system with passive and active components aimed at monitoring 3 rare conditions simultaneously in 3 states of the United States (Colorado, Kansas, and South Carolina). The 3 conditions are spina bifida, muscular dystrophy, and fragile X syndrome. Methods Teams from each state evaluated the possibility of using current or modified versions of their local passive and active case ascertainment systems and datasets to monitor the 3 conditions. Together, these teams established the case definitions and selected the variables and the abstraction tools for the active case ascertainment approach. After testing the ability of their local passive and active case ascertainment system to capture all 3 conditions, the next steps were to report the number of cases detected actively and passively for each condition, to list the local barriers against the combined passive and active case ascertainment system, and to describe the experiences in trying to overcome these barriers. Results During the test period, the team from South Carolina was able to collect data on all 3 conditions simultaneously for all ages. The Colorado team was also able to collect data on all 3 conditions but, because of age restrictions in its passive and active case ascertainment system, it was able to report few cases of fragile X syndrome. The team from Kansas was able to collect data only on spina bifida. For all states, the implementation of an active component of the ascertainment system was problematic. The passive component appears viable with minor modifications. Conclusions Despite evident barriers, the joint passive and active case ascertainment of rare disorders using modified existing surveillance systems and datasets seems feasible, especially for systems that rely on passive case ascertainment. PMID:27574026
Onion, C W; Bartzokas, C A
1998-04-01
When attempting to implement evidence-based medicine, such as through clinical guidelines, we often rely on passive educational tactics, for example didactic lectures and bulletins. These methods involve the recipient in relatively superficial processing of information, and any consequent attitude changes can be expected to be short-lived. However, active methods, such as practice-based discussion, should involve recipients in deep processing, with more enduring attitude changes. In this experiment, the aim was to assess the efficacy of an active strategy at promoting deep processing and its effectiveness, relative to a typical passive method, at changing attitudes between groups of GPs over 12 months across an English Health District. All 191 GPs operating from 69 practices in the Wirral Health District of Northwest England were assigned, with minimization of known confounding variables, to three experimental groups: active, passive and control. The groups were shown to have similar learning styles. The objective of the study was to impart knowledge of best management of infections as captured in a series of locally developed clinical guidelines. The passive group GPs were given a copy of the guidelines and were invited to an hour-long lecture event. The GPs in the deep group were given a copy of the guidelines and were invited to engage in an hour-long discussion about the guideline content at their own premises. The control group received neither the guidelines nor any educational contact regarding them. Three months before and 12 months after the interventions, all GPs were sent a postal questionnaire on their preferred empirical antibiotic for 10 common bacterial infections. The responses were compared in order to ascertain whether increased knowledge of best clinical practice was evident in each group. Seventy-five per cent (144/191) of GPs responded to the pre-intervention questionnaire, 62 % (119/191) post-intervention. Thirty-four per cent (22/64) of GPs in the passive group attended the lecture; 91% (60/66) of the active group engaged in discussion at meetings with the authors. A significantly higher proportion of the active group participants' speaking time, during a sample of four visits, was devoted to verbal indicators of active processing than the passive group lecture attenders (difference = 55%, Fisher's exact test P = 0.002, OR = 11.5, 95% CI 2.1-113.4). Inter-observer agreement on the classification of the verbal evidence was highly statistically significant for all classes (Pearson's product moment correlation, P < 0.0005, r = +0.893 to +0.999) except repetition (P > 0.05, r = +0.407). Median compliance of responses with the guidelines improved by 2.5% within the control group and 4% within the passive, but by 23% within the active. The difference between the changes in the active and control groups was highly statistically significant at 17.5% (Mann-Whitney test, P = 0.004, 95% CI 6-29%). However, for the 10 infections, the median difference between the changes in the passive and control groups was not significant at 3% (P = 0.75, 95% CI -8 to +12. The median difference between changes in the active and passive groups was significant at 17% (P = 0.015, 95% CI 7-24%) in favour of the active. An active educational strategy attracted more participation and was more effective at generating deep cognitive processing than a passive strategy. A large improvement, lasting for at least 12 months, in attitude-compliance with guidelines on the optimal treatment of infections was imparted by the active processing method. A typical passive method was much less popular and had an insignificant impact on attitudes. The findings suggest that initiatives aiming to implement evidence-based guidelines must employ active educational strategies if enduring changes in attitude are to result.
Tiitinen, Hannu; Salminen, Nelli H; Palomäki, Kalle J; Mäkinen, Ville T; Alku, Paavo; May, Patrick J C
2006-03-20
In an attempt to delineate the assumed 'what' and 'where' processing streams, we studied the processing of spatial sound in the human cortex by using magnetoencephalography in the passive and active recording conditions and two kinds of spatial stimuli: individually constructed, highly realistic spatial (3D) stimuli and stimuli containing interaural time difference (ITD) cues only. The auditory P1m, N1m, and P2m responses of the event-related field were found to be sensitive to the direction of sound source in the azimuthal plane. In general, the right-hemispheric responses to spatial sounds were more prominent than the left-hemispheric ones. The right-hemispheric P1m and N1m responses peaked earlier for sound sources in the contralateral than for sources in the ipsilateral hemifield and the peak amplitudes of all responses reached their maxima for contralateral sound sources. The amplitude of the right-hemispheric P2m response reflected the degree of spatiality of sound, being twice as large for the 3D than ITD stimuli. The results indicate that the right hemisphere is specialized in the processing of spatial cues in the passive recording condition. Minimum current estimate (MCE) localization revealed that temporal areas were activated both in the active and passive condition. This initial activation, taking place at around 100 ms, was followed by parietal and frontal activity at 180 and 200 ms, respectively. The latter activations, however, were specific to attentional engagement and motor responding. This suggests that parietal activation reflects active responding to a spatial sound rather than auditory spatial processing as such.
Timing of mafic magmatism VS localization of the deformation: the Ivrea Zone (Italian Alps)
NASA Astrophysics Data System (ADS)
Bidault, M.; Geoffroy, L.; Arbaret, L.; Aubourg, C. T.
2017-12-01
Mafic magma emplacement is a common feature of continental extension systems, represented at initial stage by volcanic rifts and at more mature stage by volcanic passive margins. In those contexts, lithospheric extension is not isovolumic, magma being notably added to the crust while it is tectonically stretched and thinned. Crystal-scale power-law mechanisms responsible for the continuous flow of the lower crust during extension are composition- and temperature-dependent and additionally, very slow processes. However magma emplacement is a very rapid process. Its effect on the lower crust rheology is dual depending upon the time-scale of the processes: thermal weakening, when newly-formed hot intrusions emplace and heat their surrounding, and rheological chemical hardening when mafic intrusions are cold. Consequently, the localization and type of ductile deformation affecting the lower crust depend on the emplacement rate, volume and spatial organization of the mafic system. The Ivrea Zone is a well-known variscan continental crust section that underwent extension through first gravitational collapse in the Carboniferous and then lithospheric extension until the Permian. From the Late Carboniferous to the Permian, extension in the Ivrea Zone was associated with large volumes of magma intrusion within the lower crust. This volcanic rift stage predated the development of a non-volcanic passive margin during the Jurassic. The entire system was tilted 90° eastward during the Alpine orogeny but remained unaffected by significant metamorphism or pervasive strain. We combine new field observations, Anisotropy of Magnetic Susceptibility data and trace-element geochemistry to investigate the timing, tectonic-setting and consequences of magma emplacement in the in-extension Ivrea lower crust. We propose a new tectonic history, highlighting time-dependent strain transfer and localization in the lower crust, in connection with mafic magma intrusion.
NASA Astrophysics Data System (ADS)
Jarvis, Susan; Moretti, David; Morrissey, Ronald; Dimarzio, Nancy
2003-10-01
The Marine Mammal Monitoring on Navy Ranges (M3R) project has developed a toolset for passive detection and localization of marine mammals using the existing infrastructure of Navy's undersea ranges. The Office of Naval Research funded the M3R project as part of the Navy's effort to determine the effects of acoustic and other emissions on marine mammals and threatened/endangered species. A necessary first step in this effort is the creation of a baseline of behavior, which requires long-term monitoring of marine mammals. Such monitoring, in turn, requires the ability to detect and localize the animals. This paper will present the passive acoustic monitoring and localization tools developed under M3R. It will also present results of the deployment of the M3R tools at the Atlantic Undersea Test and Evaluation Center (AUTEC), Andros Island, Bahamas from June through November 2003. Finally, it will discuss current work to improve automated species classification.
2015-09-30
together the research community working on marine mammal acoustics to discuss detection, classification, localization and density estimation methods...and Density Estimation of Marine Mammals Using Passive Acoustics - 2015 John A. Hildebrand Scripps Institution of Oceanography UCSD La Jolla...dclde LONG-TERM GOALS The goal of this project was to bring together the community of researchers working on methods for detection
Southern Mariana OBS Experiment and Preliminary Results of Passive-Source Investigations
NASA Astrophysics Data System (ADS)
Le, B. M.; Lin, J.; Yang, T.; Shiyan 3, S. P. O. R.
2017-12-01
The Southern Mariana OBS Experiment (SMOE) was one of the first seismic experiments targeting the deepest part of Earth's surface. During the Phase I experiment in December 2016, an array of OBS instruments were deployed across the Challenger Deep that recorded both active-source and passive-source data. During the Phase II experiment in December 2016-June 2017, passive-source data were recorded. We have retrieved earthquake signals and processed the waveforms from the recorded global, regional and local events, respectively, during the Phase I experiment. Most of the waveforms recorded by the OBS array have fairly good quality with discernible main phases. Rayleigh waves from many earthquakes were analyzed using the frequency-time analysis and their group velocities at different periods were obtained. The dispersion curves from different Rayleigh wave propagating paths would be valuable for inverting the structure of the subducting Pacific and overriding Philippine Sea plates. Furthermore, we applied the ambient noise cross-correlation method and retrieved high-quality coherence surface wave waveforms. With its relatively high frequencies, the surface waves can be used to study the crustal structure of the region. Together with the Phase II data, we expect that this seismic experiment will provide unprecedented constraints on the structure and geodynamic processes of the southern Mariana trench.
NASA Astrophysics Data System (ADS)
Reichel, Christian; Müller, Ralph; Feldmann, Frank; Richter, Armin; Hermle, Martin; Glunz, Stefan W.
2017-11-01
Passivating contacts based on thin tunneling oxides (SiOx) and n- and p-type semi-crystalline or polycrystalline silicon (poly-Si) enable high passivation quality and low contact resistivity, but the integration of these p+/n emitter and n+/n back surface field junctions into interdigitated back contact silicon solar cells poses a challenge due to high recombination at the transition region from p-type to n-type poly-Si. Here, the transition region was created in different configurations—(a) p+ and n+ poly-Si regions are in direct contact with each other ("pn-junction"), using a local overcompensation (counterdoping) as a self-aligning process, (b) undoped (intrinsic) poly-Si remains between the p+ and n+ poly-Si regions ("pin-junction"), and (c) etched trenches separate the p+ and n+ poly-Si regions ("trench")—in order to investigate the recombination characteristics and the reverse breakdown behavior of these solar cells. Illumination- and injection-dependent quasi-steady state photoluminescence (suns-PL) and open-circuit voltage (suns-Voc) measurements revealed that non-ideal recombination in the space charge regions with high local ideality factors as well as recombination in shunted regions strongly limited the performance of solar cells without a trench. In contrast, solar cells with a trench allowed for open-circuit voltage (Voc) of 720 mV, fill factor of 79.6%, short-circuit current (Jsc) of 41.3 mA/cm2, and a conversion efficiencies (η) of 23.7%, showing that a lowly conducting and highly passivating intermediate layer between the p+ and n+ poly-Si regions is mandatory. Independent of the configuration, no hysteresis was observed upon multiple stresses in reverse direction, indicating a controlled and homogeneously distributed breakdown, but with different breakdown characteristics.
Mijele, Domnic; Obanda, Vincent; Omondi, Patrick; Soriguer, Ramón C; Gakuya, Francis; Otiende, Moses; Hongo, Peter; Alasaad, Samer
2013-01-01
Very few studies have ever focused on the elephants that are wounded or killed as local communities attempt to scare these animals away from their settlements and farms, or on the cases in which local people take revenge after elephants have killed or injured humans. On the other hand, local communities live in close proximity to elephants and hence can play a positive role in elephant conservation by informing the authorities of the presence of injured elephants. Between 2007 and 2011, 129 elephants were monitored in Masai Mara (Kenya), of which 54 had various types of active (intentionally caused) or passive (non-intentionally caused) injuries. Also studied were 75 random control samples of apparently unaffected animals. The observed active injuries were as expected biased by age, with adults suffering more harm; on the other hand, no such bias was observed in the case of passive injuries. Bias was also observed in elephant sex since more males than females were passively and actively injured. Cases of passive and active injuries in elephants were negatively related to the proximity to roads and farms; the distribution of injured elephants was not affected by the presence of either human settlements or water sources. Overall more elephants were actively injured during the dry season than the wet season as expected. Local communities play a positive role by informing KWS authorities of the presence of injured elephants and reported 43% of all cases of injured elephants. Our results suggest that the negative effect of local communities on elephants could be predicted by elephant proximity to farms and roads. In addition, local communities may be able to play a more positive role in elephant conservation given that they are key informants in the early detection of injured elephants.
Signal processing in local neuronal circuits based on activity-dependent noise and competition
NASA Astrophysics Data System (ADS)
Volman, Vladislav; Levine, Herbert
2009-09-01
We study the characteristics of weak signal detection by a recurrent neuronal network with plastic synaptic coupling. It is shown that in the presence of an asynchronous component in synaptic transmission, the network acquires selectivity with respect to the frequency of weak periodic stimuli. For nonperiodic frequency-modulated stimuli, the response is quantified by the mutual information between input (signal) and output (network's activity) and is optimized by synaptic depression. Introducing correlations in signal structure resulted in the decrease in input-output mutual information. Our results suggest that in neural systems with plastic connectivity, information is not merely carried passively by the signal; rather, the information content of the signal itself might determine the mode of its processing by a local neuronal circuit.
A passive solar residence using native and recycled materials, Bee Cave, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holder, L.M. III; King, L.H.
The Booth Residence at Bee Cave, Texas is a Passive Solar residence in a hot humid climate and a good example of both passive solar and renewable features. The design, operation, materials, and furnishings give the structure a regional and rustic character. Passive solar strategies employed include solar orientation, solar shading, natural ventilation, induced ventilation, night flushing, direct gain clearstory, high mass floors, daylighting, radiant barrier, and a double ventilated roof system. The project is in contrast to the existing compound which includes three identical buildings each rotated 120 degrees and intended to be energy efficient, but actual operation hasmore » pointed out some deficiencies in the design. Additional features include extensive use of natural, recycled, and materials reused from other buildings. The Boothe Residence is an example of building in harmony with the local climate, the use of locally available materials, craftsman, artists, manpower, and reuse of trim and furnishings.« less
Perspective—Localized Corrosion: Passive Film Breakdown vs Pit Growth Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frankel, G. S.; Li, Tianshu; Scully, J. R.
2017-02-24
A debate about the critical step in localized corrosion has raged for decades. Some researchers focus on the composition and structure of the passive film associated with the initial breakdown of the film, whereas others consider that the susceptibility to pitting is controlled by the pit growth kinetics and the stabilization of pit growth. The basis for a unified theory of pitting is presented here in which pit stability considerations are controlling under aggressive conditions (harsh electrolytes and extreme environments and/or susceptible microstructures) and the passive film properties and protectiveness are the critical factors in less extreme environments and/or formore » less susceptible alloys.« less
A shear localization mechanism for lubricity of amorphous carbon materials
Ma, Tian-Bao; Wang, Lin-Feng; Hu, Yuan-Zhong; Li, Xin; Wang, Hui
2014-01-01
Amorphous carbon is one of the most lubricious materials known, but the mechanism is not well understood. It is counterintuitive that such a strong covalent solid could exhibit exceptional lubricity. A prevailing view is that lubricity of amorphous carbon results from chemical passivation of dangling bonds on surfaces. Here we show instead that lubricity arises from shear induced strain localization, which, instead of homogeneous deformation, dominates the shearing process. Shear localization is characterized by covalent bond reorientation, phase transformation and structural ordering preferentially in a localized region, namely tribolayer, resulting in shear weakening. We further demonstrate an anomalous pressure induced transition from stick-slip friction to continuous sliding with ultralow friction, due to gradual clustering and layering of graphitic sheets in the tribolayer. The proposed shear localization mechanism sheds light on the mechanism of superlubricity, and would enrich our understanding of lubrication mechanism of a wide variety of amorphous materials. PMID:24412998
Zhu, Zhengfei; Liu, Wei; Gillin, Michael; Gomez, Daniel R; Komaki, Ritsuko; Cox, James D; Mohan, Radhe; Chang, Joe Y
2014-05-06
We assessed the robustness of passive scattering proton therapy (PSPT) plans for patients in a phase II trial of PSPT for stage III non-small cell lung cancer (NSCLC) by using the worst-case scenario method, and compared the worst-case dose distributions with the appearance of locally recurrent lesions. Worst-case dose distributions were generated for each of 9 patients who experienced recurrence after concurrent chemotherapy and PSPT to 74 Gy(RBE) for stage III NSCLC by simulating and incorporating uncertainties associated with set-up, respiration-induced organ motion, and proton range in the planning process. The worst-case CT scans were then fused with the positron emission tomography (PET) scans to locate the recurrence. Although the volumes enclosed by the prescription isodose lines in the worst-case dose distributions were consistently smaller than enclosed volumes in the nominal plans, the target dose coverage was not significantly affected: only one patient had a recurrence outside the prescription isodose lines in the worst-case plan. PSPT is a relatively robust technique. Local recurrence was not associated with target underdosage resulting from estimated uncertainties in 8 of 9 cases.
Source mechanics for monochromatic icequakes produced during iceberg calving at Columbia Glacier, AK
O'Neel, Shad; Pfeffer, W.T.
2007-01-01
Seismograms recorded during iceberg calving contain information pertaining to source processes during calving events. However, locally variable material properties may cause signal distortions, known as site and path effects, which must be eliminated prior to commenting on source mechanics. We applied the technique of horizontal/vertical spectral ratios to passive seismic data collected at Columbia Glacier, AK, and found no dominant site or path effects. Rather, monochromatic waveforms generated by calving appear to result from source processes. We hypothesize that a fluid-filled crack source model offers a potential mechanism for observed seismograms produced by calving, and fracture-processes preceding calving.
NASA Astrophysics Data System (ADS)
Yoshida, Naofumi; Bermundo, Juan Paolo; Ishikawa, Yasuaki; Nonaka, Toshiaki; Taniguchi, Katsuto; Uraoka, Yukiharu
2018-03-01
We investigated a fluorine-containing polysiloxane (Poly-SX) passivation layer fabricated by solution process for amorphous InGaZnO (a-IGZO) thin-film transistors (TFT). This passivation layer greatly improved the stability of the a-IGZO device even after being subjected to positive bias stress (PBS) and negative bias stress (NBS). The mobility (µ) of TFTs passivated by fluorine-containing Poly-SX increased by 31%-56% (10.50-12.54 cm2 V-1 s-1) compared with TFTs passivated by non-fluorinated Poly-SX (8.04 cm2 V-1 s-1). Increasing the amount of fluorine additives led to a higher µ in passivated TFTs. Aside from enhancing the performance, these passivation layers could increase the reliability of a-IGZO TFTs under PBS and NBS with a minimal threshold voltage shift (ΔV th) of up to +0.2 V and -0.1 V, respectively. Additionally, all TFTs passivated by the fluorinated passivation materials did not exhibit a hump effect after NBS. We also showed that fluorinated photosensitive Poly-SX, which can be fabricated without any dry etching process, had an effective passivation property. In this report, we demonstrated the photolithography of Poly-SX, and electrical properties of Poly-SX passivated TFTs, and analyzed the state of the a-IGZO layer to show the large potential of Poly-SX as an effective solution-processed passivation material.
RF performances of inductors integrated on localized p+-type porous silicon regions
2012-01-01
To study the influence of localized porous silicon regions on radiofrequency performances of passive devices, inductors were integrated on localized porous silicon regions, full porous silicon sheet, bulk silicon and glass substrates. In this work, a novel strong, resistant fluoropolymer mask is introduced to localize the porous silicon on the silicon wafer. Then, the quality factors and resonant frequencies obtained with the different substrates are presented. A first comparison is done between the performances of inductors integrated on same-thickness localized and full porous silicon sheet layers. The effect of the silicon regions in the decrease of performances of localized porous silicon is discussed. Then, the study shows that the localized porous silicon substrate significantly reduces losses in comparison with high-resistivity silicon or highly doped silicon bulks. These results are promising for the integration of both passive and active devices on the same silicon/porous silicon hybrid substrate. PMID:23009746
Comanns, Philipp; Buchberger, Gerda; Buchsbaum, Andreas; Baumgartner, Richard; Kogler, Alexander; Bauer, Siegfried; Baumgartner, Werner
2015-01-01
Moisture-harvesting lizards such as the Texas horned lizard (Iguanidae: Phrynosoma cornutum) live in arid regions. Special skin adaptations enable them to access water sources such as moist sand and dew: their skin is capable of collecting and transporting water directionally by means of a capillary system between the scales. This fluid transport is passive, i.e. requires no external energy, and directs water preferentially towards the lizard's snout. We show that this phenomenon is based on geometric principles, namely on a periodic pattern of interconnected half-open capillary channels that narrow and widen. Following a biomimetic approach, we used these principles to develop a technical prototype design. Building upon the Young–Laplace equation, we derived a theoretical model for the local behaviour of the liquid in such capillaries. We present a global model for the penetration velocity validated by experimental data. Artificial surfaces designed in accordance with this model prevent liquid flow in one direction while sustaining it in the other. Such passive directional liquid transport could lead to process improvements and reduction of resources in many technical applications. PMID:26202685
Passive film growth on titanium alloys: physicochemical and biologic considerations.
Eliades, T
1997-01-01
The role of reactive oxygen derivatives (hydroxy peroxide, hydroxyl radical, and singlet oxygen) on the precipitation of inorganic and organic complexes onto the surface of titanium implant alloys is discussed in this review. In addition, the effect of possible implication of several biologic entities surrounding the implant on the implant-tissue interface constituents is described. Evidence from relevant studies suggests that local microenvironmental byproducts and factors associated with the inflammatory response resulting from the implant-induced tissue insult may enhance the expressivity of the inherent, clinically important property of titanium to form oxides. Growth of titanium oxide may be explained through several processes derived from biologic, thermodynamic, and electrochemical approaches. The models proposed to interpret this phenomenon are often contradictory, demonstrating inward or outward from the bulk material passive film growth, with increasing or self-limiting levels of oxide formation as a function of time. However, in vivo observations are consistent with aging-induced thickening of the complexes precipitated on the implant material surface. This review attempts to clarify several critical issues pertaining to passive film formation and kinetics on titanium-alloy surfaces.
Crake, Calum; Owen, Joshua; Smart, Sean; Coviello, Christian; Coussios, Constantin-C; Carlisle, Robert; Stride, Eleanor
2016-12-01
Previous work has indicated the potential of magnetically functionalized microbubbles to localize and enhance cavitation activity under focused ultrasound exposure in vitro. The aim of this study was to investigate magnetic targeting of microbubbles for promotion of cavitation in vivo. Fluorescently labelled magnetic microbubbles were administered intravenously in a murine xenograft model. Cavitation was induced using a 0.5-MHz focused ultrasound transducer at peak negative focal pressures of 1.2-2.0 MPa and monitored in real-time using B-mode imaging and passive acoustic mapping. Magnetic targeting was found to increase the amplitude of the cavitation signal by approximately 50% compared with untargeted bubbles. Post-exposure magnetic resonance imaging indicated deposition of magnetic nanoparticles in tumours. Magnetic targeting was similarly associated with increased fluorescence intensity in the tumours after the experiments. These results suggest that magnetic targeting could potentially be used to improve delivery of cavitation-mediated therapy and that passive acoustic mapping could be used for real-time monitoring of this process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
The Precedence of Global Features in the Perception of Map Symbols
1988-06-01
be continually updated. The present study evaluated the feasibility of a serial model of visual processing. By comparing performance between a symbol...symbols, is based on a " filter - ing" procedure, consisting of a series of passive-to-active or global- to-local stages. Navon (1977, 1981a) has proposed a...packages or segments. This advances the earlier, static feature aggregation ap- proaches to comprise a "figure." According to the global precedence model
2013-08-01
of ANR is in headphones, such as those marketed to frequent fliers for listening to music on airplanes. ANR is much better at reducing low...1966; Butler, 1987; Hofman and Van Opstal, 2003; Hofman et al., 1998; Javer and Schwarz, 1995; Musicant and Butler, 1980; Van Wanrooij and Van Opstal...improvements in performance over time; further, training sped up the process of learning. Other investigators have demonstrated similar effects with passive
Energy conservation in housing design using solar energy, mechanical system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakir, N.M.W.
1985-01-01
This paper presents the first experimental full-scale house built by the Solar Energy Research Center of Baghdad to be heated and cooled by solar energy. The various architectural and environmental considerations which entered into the design process are discussed, as well as the range of passive techniques examined for their compatibility with the local climate and their ability to optimize the energy efficiency of the house. The mechanical systems which were ultimately implemented are described.
Design of short-range terahertz wave passive detecting system
NASA Astrophysics Data System (ADS)
Zhang, Chao; Lou, Guowei; Zhu, Li; Qian, Songsong; Li, Ting
2016-09-01
Based on the study of radiation and transmission characteristics on THz waveband, a short-range passive detecting system is designed. The scheme originated from microwave passive detecting system. A prototype was developed following the design of key components including antennas and a harmonic mixer. The system operated at 0.36 THz. A dual-beam Cassegrain antenna was adopted for receiving signals which radiated by object and background. Local oscillator signal was generated by frequency multiplication. Harmonic mixing is adopted for reducing local oscillator signal frequency required by half. Superheterodyne technology is employed for signal acquisition. The system implemented easily. Tests and measurements were taken, which showed that the scheme was feasible and the performance of the prototype system met the design requirements.
A simultaneous deep micromachining and surface passivation method suitable for silicon-based devices
NASA Astrophysics Data System (ADS)
Babaei, E.; Gharooni, M.; Mohajerzadeh, S.; Soleimani, E. A.
2018-07-01
Three novel methods for simultaneous micromachining and surface passivation of silicon are reported. A thin passivation layer is achieved using continuous and sequential plasma processes based on SF6, H2 and O2 gases. Reducing the recombination by surface passivation is crucial for the realization of high-performance nanosized optoelectronic devices. The passivation of the surface as an important step, is feasible by plasma processing based on hydrogen pulses in proper time-slots or using a mixture of H2 and O2, and SF6 gases. The passivation layer which is formed in situ during the micromachining process obviates a separate passivation step needed in conventional methods. By adjusting the plasma parameters such as power, duration, and flows of gases, the process can be controlled for the best results and acceptable under-etching at the same time. Moreover, the pseudo-oxide layer which is formed during the micromachining processes will also improve the electrical characteristics of the surface, which can be used as an add-on for micro and nanowire applications. To quantify the effect of surface passivation in our method, ellipsometry, lifetime measurements, x-ray photoelectron spectroscopy, current–voltage and capacitance–voltage measurements and solar cell testing have been employed.
CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells
NASA Astrophysics Data System (ADS)
Swanson, Drew E.; Reich, Carey; Abbas, Ali; Shimpi, Tushar; Liu, Hanxiao; Ponce, Fernando A.; Walls, John M.; Zhang, Yong-Hang; Metzger, Wyatt K.; Sampath, W. S.; Holman, Zachary C.
2018-05-01
As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extending Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.
NASA Astrophysics Data System (ADS)
Luan, Huiqin; Huang, Yunfei; Li, Jian; Sun, Lianwen; Fan, Yubo
2018-04-01
Astronauts are severely affected by spaceflight-induced bone loss. Mechanical stimulation through exercise inhibits bone resorption and improves bone formation. Exercise and vibration can prevent the degeneration of the musculoskeletal system in tail-suspended rats, and long-term exercise stress will affect endocrine and immune systems that are prone to fatigue. However, the mechanisms through which exercise and vibration affect the endocrine system remain unknown. This study mainly aimed to investigate the changes in the contents of endocrine axis-related hormones and the effects of local vibration and passive exercise on hypothalamic-pituitary-adrenal (HPA) axis-related hormones in tail-suspended rats. A total of 32 Sprague-Dawley rats were randomly distributed into four groups (n = 8 per group): tail suspension (TS), TS + 35Hz vibration, TS + passive exercise, and control. The rats were placed on a passive exercise and local vibration regimen for 21 days. On day 22 of the experiment, the contents of corticotrophin-releasing hormone, adrenocorticotropic hormone, cortisol, and 5-hydroxytryptamine in the rats were quantified with kits in accordance with the manufacturer's instructions. Histomorphometry was applied to evaluate histological changes in the hypothalamus. Results showed that 35Hz local vibration cannot cause rats to remain in a stressed state and that it might not inhibit the function of the HPA axis. Therefore, we speculate that this local vibration intensity can protect the function of the HPA axis and helps tail-suspended rats to transition from stressed to adaptive state.
On the Vertical Distribution of Local and Remote Sources of Water for Precipitation
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.
2001-01-01
The vertical distribution of local and remote sources of water for precipitation and total column water over the United States are evaluated in a general circulation model simulation. The Goddard Earth Observing System (GEOS) general circulation model (GCM) includes passive constituent tracers to determine the geographical sources of the water in the column. Results show that the local percentage of precipitable water and local percentage of precipitation can be very different. The transport of water vapor from remote oceanic sources at mid and upper levels is important to the total water in the column over the central United States, while the access of locally evaporated water in convective precipitation processes is important to the local precipitation ratio. This result resembles the conceptual formulation of the convective parameterization. However, the formulations of simple models of precipitation recycling include the assumption that the ratio of the local water in the column is equal to the ratio of the local precipitation. The present results demonstrate the uncertainty in that assumption, as locally evaporated water is more concentrated near the surface.
ERIC Educational Resources Information Center
Messenger, Katherine; Branigan, Holly P.; McLean, Janet F.
2012-01-01
We report a syntactic priming experiment that examined whether children's acquisition of the passive is a staged process, with acquisition of constituent structure preceding acquisition of thematic role mappings. Six-year-olds and nine-year-olds described transitive actions after hearing active and passive prime descriptions involving the same or…
Cost of tobacco-related diseases, including passive smoking, in Hong Kong.
McGhee, S M; Ho, L M; Lapsley, H M; Chau, J; Cheung, W L; Ho, S Y; Pow, M; Lam, T H; Hedley, A J
2006-04-01
Costs of tobacco-related disease can be useful evidence to support tobacco control. In Hong Kong we now have locally derived data on the risks of smoking, including passive smoking. To estimate the health-related costs of tobacco from both active and passive smoking. Using local data, we estimated active and passive smoking-attributable mortality, hospital admissions, outpatient, emergency and general practitioner visits for adults and children, use of nursing homes and domestic help, time lost from work due to illness and premature mortality in the productive years. Morbidity risk data were used where possible but otherwise estimates based on mortality risks were used. Utilisation was valued at unit costs or from survey data. Work time lost was valued at the median wage and an additional costing included a value of USD 1.3 million for a life lost. In the Hong Kong population of 6.5 million in 1998, the annual value of direct medical costs, long term care and productivity loss was USD 532 million for active smoking and USD 156 million for passive smoking; passive smoking accounted for 23% of the total costs. Adding the value of attributable lives lost brought the annual cost to USD 9.4 billion. The health costs of tobacco use are high and represent a net loss to society. Passive smoking increases these costs by at least a quarter. This quantification of the costs of tobacco provides strong motivation for legislative action on smoke-free areas in the Asia Pacific Region and elsewhere.
Broadband continuous wave source localization via pair-wise, cochleagram processing
NASA Astrophysics Data System (ADS)
Nosal, Eva-Marie; Frazer, L. Neil
2005-04-01
A pair-wise processor has been developed for the passive localization of broadband continuous-wave underwater sources. The algorithm uses sparse hydrophone arrays and does not require previous knowledge of the source signature. It is applicable in multiple source situations. A spectrogram/cochleagram version of the algorithm has been developed in order to utilize higher frequencies at longer ranges where signal incoherence, and limited computational resources, preclude the use of full waveforms. Simulations demonstrating the robustness of the algorithm with respect to noise and environmental mismatch will be presented, together with initial results from the analysis of humpback whale song recorded at the Pacific Missile Range Facility off Kauai. [Work supported by MHPCC and ONR.
Mijele, Domnic; Obanda, Vincent; Omondi, Patrick; Soriguer, Ramón C.; Gakuya, Francis; Otiende, Moses; Hongo, Peter; Alasaad, Samer
2013-01-01
Background Very few studies have ever focused on the elephants that are wounded or killed as local communities attempt to scare these animals away from their settlements and farms, or on the cases in which local people take revenge after elephants have killed or injured humans. On the other hand, local communities live in close proximity to elephants and hence can play a positive role in elephant conservation by informing the authorities of the presence of injured elephants. Methodology/Principal Findings Between 2007 and 2011, 129 elephants were monitored in Masai Mara (Kenya), of which 54 had various types of active (intentionally caused) or passive (non-intentionally caused) injuries. Also studied were 75 random control samples of apparently unaffected animals. The observed active injuries were as expected biased by age, with adults suffering more harm; on the other hand, no such bias was observed in the case of passive injuries. Bias was also observed in elephant sex since more males than females were passively and actively injured. Cases of passive and active injuries in elephants were negatively related to the proximity to roads and farms; the distribution of injured elephants was not affected by the presence of either human settlements or water sources. Overall more elephants were actively injured during the dry season than the wet season as expected. Local communities play a positive role by informing KWS authorities of the presence of injured elephants and reported 43% of all cases of injured elephants. Conclusions Our results suggest that the negative effect of local communities on elephants could be predicted by elephant proximity to farms and roads. In addition, local communities may be able to play a more positive role in elephant conservation given that they are key informants in the early detection of injured elephants. PMID:23936262
Interpretation of Passive Microwave Imagery of Surface Snow and Ice: Harding Lake, Alaska
1991-06-01
Circle conditions in microwave imagery depends on the char- (Fig. 1). The lake is roughly circular in shape and has a acteristics of the sensor system...local oscillator frequency 33.6 0Hz IF bandwidth Greaterthan 500 MHz cracks in the ice sheet. The incursion process is de - video bandwidth 1.7 kHz...using pas- surface snow had oct.urred on these similarly sized sive microwave sensors . IEEE/Transactions on Geo- lakes. Additional field verifications
Coupling of active motion and advection shapes intracellular cargo transport.
Khuc Trong, Philipp; Guck, Jochen; Goldstein, Raymond E
2012-07-13
Intracellular cargo transport can arise from passive diffusion, active motor-driven transport along cytoskeletal filament networks, and passive advection by fluid flows entrained by such cargo-motor motion. Active and advective transport are thus intrinsically coupled as related, yet different representations of the same underlying network structure. A reaction-advection-diffusion system is used here to show that this coupling affects the transport and localization of a passive tracer in a confined geometry. For sufficiently low diffusion, cargo localization to a target zone is optimized either by low reaction kinetics and decoupling of bound and unbound states, or by a mostly disordered cytoskeletal network with only weak directional bias. These generic results may help to rationalize subtle features of cytoskeletal networks, for example as observed for microtubules in fly oocytes.
The Role of Organ of Corti Mass in Passive Cochlear Tuning
de La Rochefoucauld, Ombeline; Olson, Elizabeth S.
2007-01-01
The mechanism for passive cochlear tuning remains unsettled. Early models considered the organ of Corti complex (OCC) as a succession of spring-mass resonators. Later, traveling wave models showed that passive tuning could arise through the interaction of cochlear fluid mass and OCC stiffness without local resonators. However, including enough OCC mass to produce local resonance enhanced the tuning by slowing and thereby growing the traveling wave as it approached its resonant segment. To decide whether the OCC mass plays a role in tuning, the frequency variation of the wavenumber of the cochlear traveling wave was measured (in vivo, passive cochleae) and compared to theoretical predictions. The experimental wavenumber was found by taking the phase difference of basilar membrane motion between two longitudinally spaced locations and dividing by the distance between them. The theoretical wavenumber was a solution of the dispersion relation of a three-dimensional cochlear model with OCC mass and stiffness as the free parameters. The experimental data were only well fit by a model that included OCC mass. However, as the measurement position moved from a best-frequency place of 40 to 12 kHz, the role of mass was diminished. The notion of local resonance seems to only apply in the very high-frequency region of the cochlea. PMID:17905841
Preliminary results of the Source China Sea passive source OBS array experiment
NASA Astrophysics Data System (ADS)
Yang, T.; Liu, C.; Pei, Y.; Xia, S.
2013-12-01
The Scarborough, or Huangyan, Seamount chain in South China Sea (SCS) represents an extreme case of the global mid-ocean ridge system where the magmatism continues for many million years after the cessation of spreading. To understand this unique process, the South China Sea Deep (SCSD) program funded an experiment deploying a passive source OBS array to image the lithospheric structure beneath the extinct ridge. In April 2012, 18 passive source OBSs, including 15 Guralp CMG-40T OBS and 3 I-4C OBS, were deployed around the Huangyan Island for one year. 11 OBSs were successfully recovered this April, and their data are being processed. Here we present some preliminary results from analyses of this dataset, including the general quality of three-component seismograms, characteristics of seafloor ambient noise spectra, determining the OBS orientation from the Rayleigh wave polarization, and the dispersion analysis of Rayleigh waves. We found that, for most stations, seismograms from teleseismic, regional and local events are generally good with the horizontal records being comparable with vertical component. The noise levels in these seafloor stations are much higher than land-based stations, especially in shorter periods, likely suggesting the direct and stronger impact from the tempestuous SCS. Applications of more sophisticated seismic techniques such as surface wave tomography, seismic anisotropy, receiver function and ambient noise cross-correlation are underway. In addition to the low recovery rate, there are other lessons learned from this experiment. For example, at least two stations have detectable timing problems; Airgun shots should have been used to constrain the timings and orientations in both deployment and recovery. It is still challenging and costly to carry out long-term passive source seismic observations in deep sea.
NASA Astrophysics Data System (ADS)
Tirone, Massimiliano
2018-03-01
In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.
Passive acoustic source localization using sources of opportunity.
Verlinden, Christopher M A; Sarkar, J; Hodgkiss, W S; Kuperman, W A; Sabra, K G
2015-07-01
The feasibility of using data derived replicas from ships of opportunity for implementing matched field processing is demonstrated. The Automatic Identification System (AIS) is used to provide the library coordinates for the replica library and a correlation based processing procedure is used to overcome the impediment that the replica library is constructed from sources with different spectra and will further be used to locate another source with its own unique spectral structure. The method is illustrated with simulation and then verified using acoustic data from a 2009 experiment for which AIS information was retrieved from the United States Coast Guard Navigation Center Nationwide AIS database.
CdCl2 Passivation of Polycrystalline CdMgTe and CdZnTe Absorbers for Tandem Photovoltaic Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, Wyatt K; Swanson, Drew; Reich, Carey
As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extendingmore » Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.« less
Passive Thermal Management for a Fuel Cell Reforming Process
2006-06-01
American Institute of Aeronautics and Astronautics 1 PASSIVE THERMAL MANAGEMENT FOR A FUEL CELL REFORMING PROCESS David B. Sarraf * and...REPORT DATE JUN 2006 2. REPORT TYPE 3. DATES COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE Passive Thermal Management for a Fuel Cell
NASA Astrophysics Data System (ADS)
Eguchi, T.; Matsubara, K.; Ishida, M.
2001-12-01
To unveil dynamic process associated with three-dimensional unsteady mantle convection, we carried out numerical simulation on passively exerted flows by simplified local hot sources just above the CMB and large-scale cool masses beneath smoothed subduction zones. During the study, we used our individual code developed with the finite difference method. The basic three equations are for the continuity, the motion with the Boussinesq (incompressible) approximation, and the (thermal) energy conservation. The viscosity of our model is sensitive to temperature. To get time integration with high precision, we used the Newton method. In detail, the size and thermal energy of the hot or cool sources are not uniform along the latitude, because we could not select uniform local volumes assigned for the sources within the finite difference grids throughout the mantle. Our results, thus, accompany some latitude dependence. First, we treated the case of the hotspots, neglecting the contribution of the subduction zones. The local hot sources below the currently active hotspots were settled as dynamic driving forces included in the initial condition. Before starting the calculation, we assumed that the mantle was statically layered with zero velocity component. The thermal anomalies inserted instantaneously in the initial condition do excite dynamically passive flows. The type of the initial hot sources was not 'plume' but 'thermal.' The simulation results represent that local upwelling flows which were directly excited over the initial heat sources reached the upper mantle by approximately 30 My during the calculation. Each of the direct upwellings above the hotspots has its own dynamic potential to exert concentric down- and up-welling flows, alternately, at large distances. Simultaneously, the direct upwellings interact mutually within the spherical mantle. As an interesting feature, we numerically observed secondary upwellings somewhere in a wide region covering east Eurasia to the Bering Sea where no hot sources were initially input. It seems that the detailed location of the secondary upwellings depends partly on the numerical parameters such as the radial profile of mantle viscosity especially at the D" layer, etc., because the secondary flows are provoked by dynamic interaction among the distributed direct upwellings just above the CMB. Our results suggest that if we assume not only non-zero time delays during the input of the local hot sources but also parameters related with the difference of their historical surface flux rates, the pattern of the passively excited flows will be different from that obtained with the simultaneously settled hot sources stated above. Second, we simultaneously incorporated simplified thermal anomaly models associated with both the distributed local hotspots and the global subduction zones, as dynamic origins in the initial condition for the static layered mantle. In this case, the simulation result represents that the pattern of secondary radial flows, being different from those in the earlier case, is sensitive to the relative strength between the positive dynamic buoyancy integrated over all of the local hot sources below the hotspots and the total negative buoyancy beneath the subduction zones.
NASA Astrophysics Data System (ADS)
Díaz-Moreno, A.; Barberi, G.; Cocina, O.; Koulakov, I.; Scarfì, L.; Zuccarello, L.; Prudencio, J.; García-Yeguas, A.; Álvarez, I.; García, L.; Ibáñez, J. M.
2018-01-01
In the Central Mediterranean region, the production of chemically diverse volcanic products (e.g., those from Mt. Etna and the Aeolian Islands archipelago) testifies to the complexity of the tectonic and geodynamic setting. Despite the large number of studies that have focused on this area, the relationships among volcanism, tectonics, magma ascent, and geodynamic processes remain poorly understood. We present a tomographic inversion of P-wave velocity using active and passive sources. Seismic signals were recorded using both temporary on-land and ocean bottom seismometers and data from a permanent local seismic network consisting of 267 seismic stations. Active seismic signals were generated using air gun shots mounted on the Spanish Oceanographic Vessel `Sarmiento de Gamboa'. Passive seismic sources were obtained from 452 local earthquakes recorded over a 4-month period. In total, 184,797 active P-phase and 11,802 passive P-phase first arrivals were inverted to provide three different velocity models. Our results include the first crustal seismic active tomography for the northern Sicily area, including the Peloritan-southern Calabria region and both the Mt. Etna and Aeolian volcanic environments. The tomographic images provide a detailed and complete regional seismotectonic framework and highlight a spatially heterogeneous tectonic regime, which is consistent with and extends the findings of previous models. One of our most significant results was a tomographic map extending to 14 km depth showing a discontinuity striking roughly NW-SE, extending from the Gulf of Patti to the Ionian Sea, south-east of Capo Taormina, corresponding to the Aeolian-Tindari-Letojanni fault system, a regional deformation belt. Moreover, for the first time, we observed a high-velocity anomaly located in the south-eastern sector of the Mt. Etna region, offshore of the Timpe area, which is compatible with the plumbing system of an ancient shield volcano located offshore of Mt. Etna.
On the growth and form of shoots
Chelakkot, Raghunath
2017-01-01
Growing plant stems and shoots exhibit a variety of shapes that embody growth in response to various stimuli. Building on experimental observations, we provide a quantitative biophysical theory for these shapes by accounting for the inherent observed passive and active effects: (i) the active controllable growth response of the shoot in response to its orientation relative to gravity, (ii) proprioception, the shoot's growth response to its own observable current shape, and (iii) the passive elastic deflection of the shoot due to its own weight, which determines the current shape of the shoot. Our theory separates the sensed and actuated variables in a growing shoot and results in a morphospace diagram in terms of two dimensionless parameters representing a scaled local active gravitropic sensitivity, and a scaled passive elastic sag. Our computational results allow us to explain the variety of observed transient and steady morphologies with effective positive, negative and even oscillatory gravitropic behaviours, without the need for ad hoc complex spatio-temporal control strategies in terms of these parameters. More broadly, our theory is applicable to the growth of soft, floppy organs where sensing and actuation are dynamically coupled through growth processes via shape. PMID:28330990
Ramisse, F; Deramoudt, F X; Szatanik, M; Bianchi, A; Binder, P; Hannoun, C; Alonso, J M
1998-03-01
The effectiveness of polyvalent plasma-derived human immunoglobulins (IVIG) in passive immunotherapy of influenza virus pneumonia was assessed, using the Strain Scotland (A/Scotland/74 (H3N2)) adapted to BALB/c mice by repeated lung passages. Haemagglutinin antibodies in two batches of IVIG at 10 mg/ml had a titre of 1/16. Intravenous injection of 1000-5000 microg of IVIG, 3 h after infection, gave 60-70% protection, whereas intranasal injection of 25-50 microg protected 90% of mice infected with a lethal dose of influenza virus. F(ab')2 fragments were at least as protective as intact IVIG, suggesting that complement or Fcgamma receptor-bearing cells were not required. Topical passive immunotherapy with IVIG or F(ab')2 gave protection up to 8 h after infection, but not at 24 h, suggesting that anti-influenza A antibodies in IVIG, delivered locally, are only effective at early stages of the infectious process. The potential value of topical administration of IVIG or F(ab')2 fragments for influenza A pneumonia prophylaxis was further demonstrated by the protective effects of their intranasal administration 24 h before challenge.
Comanns, Philipp; Buchberger, Gerda; Buchsbaum, Andreas; Baumgartner, Richard; Kogler, Alexander; Bauer, Siegfried; Baumgartner, Werner
2015-08-06
Moisture-harvesting lizards such as the Texas horned lizard (Iguanidae: Phrynosoma cornutum) live in arid regions. Special skin adaptations enable them to access water sources such as moist sand and dew: their skin is capable of collecting and transporting water directionally by means of a capillary system between the scales. This fluid transport is passive, i.e. requires no external energy, and directs water preferentially towards the lizard's snout. We show that this phenomenon is based on geometric principles, namely on a periodic pattern of interconnected half-open capillary channels that narrow and widen. Following a biomimetic approach, we used these principles to develop a technical prototype design. Building upon the Young-Laplace equation, we derived a theoretical model for the local behaviour of the liquid in such capillaries. We present a global model for the penetration velocity validated by experimental data. Artificial surfaces designed in accordance with this model prevent liquid flow in one direction while sustaining it in the other. Such passive directional liquid transport could lead to process improvements and reduction of resources in many technical applications. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Rodil, Iván F; Lucena-Moya, Paloma; Jokinen, Henri; Ollus, Victoria; Wennhage, Håkan; Villnäs, Anna; Norkko, Alf
2017-01-01
Metacommunity ecology recognizes the interplay between local and regional patterns in contributing to spatial variation in community structure. In aquatic systems, the relative importance of such patterns depends mainly on the potential connectivity of the specific system. Thus, connectivity is expected to increase in relation to the degree of water movement, and to depend on the specific traits of the study organism. We examined the role of environmental and spatial factors in structuring benthic communities from a highly connected shallow beach network using a metacommunity approach. Both factors contributed to a varying degree to the structure of the local communities suggesting that environmental filters and dispersal-related mechanisms played key roles in determining abundance patterns. We categorized benthic taxa according to their dispersal mode (passive vs. active) and habitat specialization (generalist vs. specialist) to understand the relative importance of environment and dispersal related processes for shallow beach metacommunities. Passive dispersers were predicted by a combination of environmental and spatial factors, whereas active dispersers were not spatially structured and responded only to local environmental factors. Generalists were predicted primarily by spatial factors, while specialists were only predicted by local environmental factors. The results suggest that the role of the spatial component in metacommunity organization is greater in open coastal waters, such as shallow beaches, compared to less-connected environmentally controlled aquatic systems. Our results also reveal a strong environmental role in structuring the benthic metacommunity of shallow beaches. Specifically, we highlight the sensitivity of shallow beach macrofauna to environmental factors related to eutrophication proxies.
Lucena-Moya, Paloma; Jokinen, Henri; Ollus, Victoria; Wennhage, Håkan; Villnäs, Anna; Norkko, Alf
2017-01-01
Metacommunity ecology recognizes the interplay between local and regional patterns in contributing to spatial variation in community structure. In aquatic systems, the relative importance of such patterns depends mainly on the potential connectivity of the specific system. Thus, connectivity is expected to increase in relation to the degree of water movement, and to depend on the specific traits of the study organism. We examined the role of environmental and spatial factors in structuring benthic communities from a highly connected shallow beach network using a metacommunity approach. Both factors contributed to a varying degree to the structure of the local communities suggesting that environmental filters and dispersal-related mechanisms played key roles in determining abundance patterns. We categorized benthic taxa according to their dispersal mode (passive vs. active) and habitat specialization (generalist vs. specialist) to understand the relative importance of environment and dispersal related processes for shallow beach metacommunities. Passive dispersers were predicted by a combination of environmental and spatial factors, whereas active dispersers were not spatially structured and responded only to local environmental factors. Generalists were predicted primarily by spatial factors, while specialists were only predicted by local environmental factors. The results suggest that the role of the spatial component in metacommunity organization is greater in open coastal waters, such as shallow beaches, compared to less-connected environmentally controlled aquatic systems. Our results also reveal a strong environmental role in structuring the benthic metacommunity of shallow beaches. Specifically, we highlight the sensitivity of shallow beach macrofauna to environmental factors related to eutrophication proxies. PMID:28196112
NASA Astrophysics Data System (ADS)
Rittgers, J. B.; Revil, A.; Planes, T.; Mooney, M. A.; Koelewijn, A. R.
2015-02-01
New methods are required to combine the information contained in the passive electrical and seismic signals to detect, localize and monitor hydromechanical disturbances in porous media. We propose a field experiment showing how passive seismic and electrical data can be combined together to detect a preferential flow path associated with internal erosion in a Earth dam. Continuous passive seismic and electrical (self-potential) monitoring data were recorded during a 7-d full-scale levee (earthen embankment) failure test, conducted in Booneschans, Netherlands in 2012. Spatially coherent acoustic emissions events and the development of a self-potential anomaly, associated with induced concentrated seepage and internal erosion phenomena, were identified and imaged near the downstream toe of the embankment, in an area that subsequently developed a series of concentrated water flows and sand boils, and where liquefaction of the embankment toe eventually developed. We present a new 4-D grid-search algorithm for acoustic emissions localization in both time and space, and the application of the localization results to add spatially varying constraints to time-lapse 3-D modelling of self-potential data in the terms of source current localization. Seismic signal localization results are utilized to build a set of time-invariant yet spatially varying model weights used for the inversion of the self-potential data. Results from the combination of these two passive techniques show results that are more consistent in terms of focused ground water flow with respect to visual observation on the embankment. This approach to geophysical monitoring of earthen embankments provides an improved approach for early detection and imaging of the development of embankment defects associated with concentrated seepage and internal erosion phenomena. The same approach can be used to detect various types of hydromechanical disturbances at larger scales.
Yang, Yang; Wu, Fuyun; Zhou, Xiaolin
2015-01-01
The syntax-first model and the parallel/interactive models make different predictions regarding whether syntactic category processing has a temporal and functional primacy over semantic processing. To further resolve this issue, an event-related potential experiment was conducted on 24 Chinese speakers reading Chinese passive sentences with the passive marker BEI (NP1 + BEI + NP2 + Verb). This construction was selected because it is the most-commonly used Chinese passive and very much resembles German passives, upon which the syntax-first hypothesis was primarily based. We manipulated semantic consistency (consistent vs. inconsistent) and syntactic category (noun vs. verb) of the critical verb, yielding four conditions: CORRECT (correct sentences), SEMANTIC (semantic anomaly), SYNTACTIC (syntactic category anomaly), and COMBINED (combined anomalies). Results showed both N400 and P600 effects for sentences with semantic anomaly, with syntactic category anomaly, or with combined anomalies. Converging with recent findings of Chinese ERP studies on various constructions, our study provides further evidence that syntactic category processing does not precede semantic processing in reading Chinese.
Zhao, Chao; Ng, Tien Khee; Prabaswara, Aditya; Conroy, Michele; Jahangir, Shafat; Frost, Thomas; O'Connell, John; Holmes, Justin D; Parbrook, Peter J; Bhattacharya, Pallab; Ooi, Boon S
2015-10-28
We present a detailed study of the effects of dangling bond passivation and the comparison of different sulfide passivation processes on the properties of InGaN/GaN quantum-disk (Qdisk)-in-nanowire based light emitting diodes (NW-LEDs). Our results demonstrated the first organic sulfide passivation process for nitride nanowires (NWs). The results from Raman spectroscopy, photoluminescence (PL) measurements, and X-ray photoelectron spectroscopy (XPS) showed that octadecylthiol (ODT) effectively passivated the surface states, and altered the surface dynamic charge, and thereby recovered the band-edge emission. The effectiveness of the process with passivation duration was also studied. Moreover, we also compared the electro-optical performance of NW-LEDs emitting at green wavelength before and after ODT passivation. We have shown that the Shockley-Read-Hall (SRH) non-radiative recombination of NW-LEDs can be greatly reduced after passivation by ODT, which led to a much faster increasing trend of quantum efficiency and higher peak efficiency. Our results highlighted the possibility of employing this technique to further design and produce high performance NW-LEDs and NW-lasers.
ERIC Educational Resources Information Center
Street, James A.; Dabrowska, Ewa
2014-01-01
This article provides experimental evidence for the role of lexically specific representations in the processing of passive sentences and considerable education-related differences in comprehension of the passive construction. The experiment measured response time and decision accuracy of participants with high and low academic attainment using an…
2D Geodynamic models of Microcontinent Formation
NASA Astrophysics Data System (ADS)
Tetreault, Joya; Buiter, Susanne
2013-04-01
Continental fragments (microcontinents and continental ribbons) are rifted-off blocks of relatively unthinned continental crust situated among the severely thinned crust of passive margins. The existence of these large crustal blocks would suggest that the passive margin containing them either underwent simultaneous differential rifting or multi-stage rifting in order to produce continental breakup and seafloor spreading in more than one location in the span of approximately 100 km. Also, because continental fragments do not occur on every passive margin, there must be something particular about the crust and/or lithosphere that led to the production of these features. Some proposed mechanisms for microcontinent and continental ribbon formation include (1) structural inheritance, (2) strain localization by serpentinized mantle or magmatic underplating, and (3) plume interaction with an active rift. Pre-existing weakness and inherited structural fabrics in typical continental crust from past tectonic events, such as varying rheology of accreted terranes and collisional suture zones, could be reactivated and serve as foci for deformation. The second theory is that strain is localized in certain regions by large amounts of weakened material that are either serpentinized mantle or mafic bodies underplating the thinned crust. Another possible process that could lead to continental fragment formation is magmatic influence of hot plume material that focuses in various regions, producing rifts in separate areas. The Jan Mayen and Seychelles microcontinents both have geological and plate reconstruction evidence to support the plume interaction theory. We use 2-D geodynamic experiments to assess the importance of structural inheritance, strain localization by regions of weakened mantle material, and contributions to rifting from plume material on producing crustal blocks surrounded by seafloor or thinned/hyperextended crust. Our preliminary results suggest that each of these three mechanisms, working alone, cannot produce concurrent or multi-stage differential thinning and continental break-up. We infer that multistage extension produced by a combination of these mechanisms could be necessary to produce microcontinents and continental ribbons.
Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation.
Hwang, Insung; Jeong, Inyoung; Lee, Jinwoo; Ko, Min Jae; Yong, Kijung
2015-08-12
In this study, a novel and facile passivation process for a perovskite solar cell is reported. Poor stability in ambient atmosphere, which is the most critical demerit of a perovskite solar cell, is overcome by a simple passivation process using a hydrophobic polymer layer. Teflon, the hydrophobic polymer, is deposited on the top of a perovskite solar cell by a spin-coating method. With the hydrophobic passivation, the perovskite solar cell shows negligible degradation after a 30 day storage in ambient atmosphere. Suppressed degradation of the perovskite film is proved in various ways: X-ray diffraction, light absorption spectrum, and quartz crystal microbalance. This simple but effective passivation process suggests new kind of approach to enhance stability of perovskite solar cells to moisture.
Jepsen, H; Gaehtgens, P
1993-09-01
Laser-Doppler (LD) fluxmetry was performed in the palmar finger skin of healthy subjects to study the mechanisms contributing to the postural vascular response. Local transmural pressure in the skin blood vessels of the region studied was altered for 1 min in two experimental series either by passive movement of the arm to different vertical hand positions relative to heart level or by application of external pressure (-120-180 mmHg) to the finger. Heart and respiratory rate, arterial blood pressure, and LD flux in the contralateral finger (kept at heart level) were measured. The measurements suggest a compound reaction of local (myogenic) and systemic (neurogenic) mechanisms: the local regulatory component appears as a graded active vascular response elicited by passive vessel distension or compression. A systemic component, associated with a single deep inspiration, is frequently observed during the actual movement of the arm. In addition, prolonged holding of the test hand in a given vertical position also elicits a delayed vascular response in the control hand at heart level, which may be generated by volume receptors in the intrathoracic low-pressure system.
Lepper, Paul A; D'Spain, Gerald L
2007-08-01
The performance of traditional techniques of passive localization in ocean acoustics such as time-of-arrival (phase differences) and amplitude ratios measured by multiple receivers may be degraded when the receivers are placed on an underwater vehicle due to effects of scattering. However, knowledge of the interference pattern caused by scattering provides a potential enhancement to traditional source localization techniques. Results based on a study using data from a multi-element receiving array mounted on the inner shroud of an autonomous underwater vehicle show that scattering causes the localization ambiguities (side lobes) to decrease in overall level and to move closer to the true source location, thereby improving localization performance, for signals in the frequency band 2-8 kHz. These measurements are compared with numerical modeling results from a two-dimensional time domain finite difference scheme for scattering from two fluid-loaded cylindrical shells. Measured and numerically modeled results are presented for multiple source aspect angles and frequencies. Matched field processing techniques quantify the source localization capabilities for both measurements and numerical modeling output.
Cowan, A E; Myles, D G; Koppel, D E
1991-03-01
The redistribution of membrane proteins on the surface of cells is a prevalent feature of differentiation in a variety of cells. In most cases the mechanism responsible for such redistribution is poorly understood. Two potential mechanisms for the redistribution of surface proteins are: (1) passive diffusion coupled with trapping, and (2) active translocation. We have studied the process of membrane protein redistribution for the PH-20 protein of guinea pig sperm, a surface protein required for sperm binding to the egg zona pellucida (P. Primakoff, H. Hyatt, and D. G. Myles (1985). J. Cell Biol. 101, 2239-2244). PH-20 protein is localized to the posterior head plasma menbrane of the mature sperm cell. Following the exocytotic acrosome reaction, PH-20 protein moves into the newly incorporated inner acrosomal membrane (IAM), placing it in a position favorable for a role in binding sperm to the egg zona pellucida (D. G. Myles, and P. Primakoff (1984), J. Cell Biol. 99, 1634-1641). To analyze the mechanistic basis for this protein migration, we have used fluorescence microscopy and digital image processing to characterize PH-20 protein migration in individual cells. PH-20 protein was observed to move against a concentration gradient in the posterior head plasma membrane. This result argues strongly against a model of passive diffusion followed by trapping in the IAM, and instead suggests that an active process serves to concentrate PH-20 protein toward the boundary separating the posterior head and IAM regions. A transient gradient of PH-20 concentration observed in the IAM suggests that once PH-20 protein reaches the IAM, it is freely diffusing. Additionally, we observed that migration of PH-20 protein was calcium dependent.
A new fun and robust version of an fMRI localizer for the frontotemporal language system.
Scott, Terri L; Gallée, Jeanne; Fedorenko, Evelina
2017-07-01
A set of brain regions in the frontal, temporal, and parietal lobes supports high-level linguistic processing. These regions can be reliably identified in individual subjects using fMRI, by contrasting neural responses to meaningful and structured language stimuli vs. stimuli matched for low-level properties but lacking meaning and/or structure. We here present a novel version of a language 'localizer,' which should be suitable for diverse populations including children and/or clinical populations who may have difficulty with reading or cognitively demanding tasks. In particular, we contrast responses to auditorily presented excerpts from engaging interviews or stories, and acoustically degraded versions of these materials. This language localizer is appealing because it uses (a) naturalistic and engaging linguistic materials, (b) auditory presentation, (c) a passive listening task, and can be easily adapted to new stimulus materials enabling comparisons of language activation in children and speakers of diverse languages.
High-throughput countercurrent microextraction in passive mode.
Xie, Tingliang; Xu, Cong
2018-05-15
Although microextraction is much more efficient than conventional macroextraction, its practical application has been limited by low throughputs and difficulties in constructing robust countercurrent microextraction (CCME) systems. In this work, a robust CCME process was established based on a novel passive microextractor with four units without any moving parts. The passive microextractor has internal recirculation and can efficiently mix two immiscible liquids. The hydraulic characteristics as well as the extraction and back-extraction performance of the passive CCME were investigated experimentally. The recovery efficiencies of the passive CCME were 1.43-1.68 times larger than the best values achieved using cocurrent extraction. Furthermore, the total throughput of the passive CCME developed in this work was about one to three orders of magnitude higher than that of other passive CCME systems reported in the literature. Therefore, a robust CCME process with high throughputs has been successfully constructed, which may promote the application of passive CCME in a wide variety of fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiar, Jeffery A.; Young, David; Lee, Benjamin
2016-11-21
The key attributes for achieving high efficiency crystalline silicon solar cells include class leading developments in the ability to approach the theoretical limits of silicon solar technology (29.4% efficiency). The push for high efficiency devices is further compounded with the clear need for passivation to reduce recombination at the metal contacts. At the same time there is stringent requirement to retain the same material device quality, surface passivation, and performance characteristics following subsequent processing. The development of passivated silicon cell structures that retain active front and rear surface passivation and overall material cell quality is therefore a relevant and activemore » area of development. To address the potential outcomes of metallization on passivated silicon stack, we report on some common microstructural features of degradation due to metallization for a series of silicon device stacks. A fundamental materials understanding of the metallization process on retaining high-efficiency passivated Si devices is therefore gained over these series of results.« less
NASA Technical Reports Server (NTRS)
Stacey, J. M.
1984-01-01
Detection of metal objects on or near the Earth's surface was investigated using existing, passive, microwave sensors operating from Earth orbit. The range equations are derived from basic microwave principles and theories and the expressions are given explicitly to estimate the signal to noise ratio for detecting metal targets operating as bistatic scatterers. Actual measurements are made on a range of metal objects observed from orbit using existing passive microwave receiving systems. The details of the measurements and the results are tabulated and discussed. The advantages of a passive microwave sensor as it is applied to surveillance of metal objects as viewed from aerial platforms or from orbit, are examined.
BOREAS HYD-4 Areal Snow Course Data
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Knapp, David E. (Editor); Metcalfe, John R.; Goodison, Barry E.; Walker, Anne; Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-4 team focused on collecting data during the 1994 winter focused field campaign (FFCW) to improve the understanding of winter processes within the boreal forest. Knowledge of snow cover and its variability in the boreal forest is fundamental if BOREAS is to achieve its goals of understanding the processes and states involved in the exchange of energy and water. The development and validation of remote sensing algorithms will provide the means to extend the knowledge of these processes and states from the local to the regional scale. A specific thrust of the hydrology research is the development and validation of snow cover algorithms from airborne passive microwave measurements. Airborne remote sensing data (gamma, passive microwave) were acquired along a series of flight lines established in the vicinity of the BOREAS study areas. Ground snow surveys were conducted along selected sections of these aircraft flight lines. These calibration segments were typically 10-20 km in length, and ground data were collected at one to two kilometer intervals. The data are provided in tabular ASCII files. The HYD-04 areal snow course data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
2009-09-13
University of Singapore) Olivier Adam (NAMC, Univ. of Paris , France) Len Thomas (Univ St Andrews, Scotland; convenor of the DE workshop...Hervé, Paris Sébastien 90 3 - The Continuous Development for Passive Acoustic Monitoring in Offshore Commercial Industry A. Cucknell and N. Clark...encourage researchers to work on a common dataset, to focus on the same problems, to find original solutions, and to present and compare them at the
Passive fire building protection system evaluation (case study: millennium ict centre)
NASA Astrophysics Data System (ADS)
Rahman, Vinky; Stephanie
2018-03-01
Passive fire protection system is a system that refers to the building design, both regarding of architecture and structure. This system usually consists of structural protection that protects the structure of the building and prevents the spread of fire and facilitate the evacuation process in case of fire. Millennium ICT Center is the largest electronic shopping center in Medan, Indonesia. As a public building that accommodates the crowd, this building needs a fire protection system by the standards. Therefore, the purpose of this study is to evaluate passive fire protection system of Millennium ICT Center building. The study was conducted to describe the facts of the building as well as direct observation to the research location. The collected data is then processed using the AHP (Analytical Hierarchy Process) method in its weighting process to obtain the reliability value of passive fire protection fire system. The results showed that there are some components of passive fire protection system in the building, but some are still unqualified. The first section in your paper
Localized electrical fine tuning of passive microwave and radio frequency devices
Findikoglu, Alp T.
2001-04-10
A method and apparatus for the localized electrical fine tuning of passive multiple element microwave or RF devices in which a nonlinear dielectric material is deposited onto predetermined areas of a substrate containing the device. An appropriate electrically conductive material is deposited over predetermined areas of the nonlinear dielectric and the signal line of the device for providing electrical contact with the nonlinear dielectric. Individual, adjustable bias voltages are applied to the electrically conductive material allowing localized electrical fine tuning of the devices. The method of the present invention can be applied to manufactured devices, or can be incorporated into the design of the devices so that it is applied at the time the devices are manufactured. The invention can be configured to provide localized fine tuning for devices including but not limited to coplanar waveguides, slotline devices, stripline devices, and microstrip devices.
Simulations and observations of cloudtop processes
NASA Technical Reports Server (NTRS)
Siems, S. T.; Bretherton, C. S.; Baker, M. B.
1990-01-01
Turbulent entrainment at zero mean shear stratified interfaces has been studied extensively in the laboratory and theoretically for the classical situation in which density is a passive tracer of the mixing and the turbulent motions producing the entrainment are directed toward the interface. It is the purpose of the numerical simulations and data analysis to investigate these processes and, specifically, to focus on the following questions: (1) Can local cooling below cloudtop play an important role in setting up convective circulations within the cloud, and bringing about entrainment; (2) Can Cloudtop Entrainment Instability (CEI) alone lead to runaway entrainment under geophysically realistic conditions; and (3) What are the important mechanisms of entrainment at cloudtop under zero or low mean shear conditions.
LWIR passive perception system for stealthy unmanned ground vehicle night operations
NASA Astrophysics Data System (ADS)
Lee, Daren; Rankin, Arturo; Huertas, Andres; Nash, Jeremy; Ahuja, Gaurav; Matthies, Larry
2016-05-01
Resupplying forward-deployed units in rugged terrain in the presence of hostile forces creates a high threat to manned air and ground vehicles. An autonomous unmanned ground vehicle (UGV) capable of navigating stealthily at night in off-road and on-road terrain could significantly increase the safety and success rate of such resupply missions for warfighters. Passive night-time perception of terrain and obstacle features is a vital requirement for such missions. As part of the ONR 30 Autonomy Team, the Jet Propulsion Laboratory developed a passive, low-cost night-time perception system under the ONR Expeditionary Maneuver Warfare and Combating Terrorism Applied Research program. Using a stereo pair of forward looking LWIR uncooled microbolometer cameras, the perception system generates disparity maps using a local window-based stereo correlator to achieve real-time performance while maintaining low power consumption. To overcome the lower signal-to-noise ratio and spatial resolution of LWIR thermal imaging technologies, a series of pre-filters were applied to the input images to increase the image contrast and stereo correlator enhancements were applied to increase the disparity density. To overcome false positives generated by mixed pixels, noisy disparities from repeated textures, and uncertainty in far range measurements, a series of consistency, multi-resolution, and temporal based post-filters were employed to improve the fidelity of the output range measurements. The stereo processing leverages multi-core processors and runs under the Robot Operating System (ROS). The night-time passive perception system was tested and evaluated on fully autonomous testbed ground vehicles at SPAWAR Systems Center Pacific (SSC Pacific) and Marine Corps Base Camp Pendleton, California. This paper describes the challenges, techniques, and experimental results of developing a passive, low-cost perception system for night-time autonomous navigation.
Electrical image of passive mantle upwelling beneath the northern East Pacific Rise.
Key, Kerry; Constable, Steven; Liu, Lijun; Pommier, Anne
2013-03-28
Melt generated by mantle upwelling is fundamental to the production of new oceanic crust at mid-ocean ridges, yet the forces controlling this process are debated. Passive-flow models predict symmetric upwelling due to viscous drag from the diverging tectonic plates, but have been challenged by geophysical observations of asymmetric upwelling that suggest anomalous mantle pressure and temperature gradients, and by observations of concentrated upwelling centres consistent with active models where buoyancy forces give rise to focused convective flow. Here we use sea-floor magnetotelluric soundings at the fast-spreading northern East Pacific Rise to image mantle electrical structure to a depth of about 160 kilometres. Our data reveal a symmetric, high-conductivity region at depths of 20-90 kilometres that is consistent with partial melting of passively upwelling mantle. The triangular region of conductive partial melt matches passive-flow predictions, suggesting that melt focusing to the ridge occurs in the porous melting region rather than along the shallower base of the thermal lithosphere. A deeper conductor observed east of the ridge at a depth of more than 100 kilometres is explained by asymmetric upwelling due to viscous coupling across two nearby transform faults. Significant electrical anisotropy occurs only in the shallowest mantle east of the ridge axis, where high vertical conductivity at depths of 10-20 kilometres indicates localized porous conduits. This suggests that a coincident seismic-velocity anomaly is evidence of shallow magma transport channels rather than deeper off-axis upwelling. We interpret the mantle electrical structure as evidence that plate-driven passive upwelling dominates this ridge segment, with dynamic forces being negligible.
Running Memory for Clinical Handoffs: A Look at Active and Passive Processing.
Anderson-Montoya, Brittany L; Scerbo, Mark W; Ramirez, Dana E; Hubbard, Thomas W
2017-05-01
The goal of the present study was to examine the effects of domain-relevant expertise on running memory and the ability to process handoffs of information. In addition, the role of active or passive processing was examined. Currently, there is little research that addresses how individuals with different levels of expertise process information in running memory when the information is needed to perform a real-world task. Three groups of participants differing in their level of clinical expertise (novice, intermediate, and expert) performed an abstract running memory span task and two tasks resembling real-world activities, a clinical handoff task and an air traffic control (ATC) handoff task. For all tasks, list length and the amount of information to be recalled were manipulated. Regarding processing strategy, all participants used passive processing for the running memory span and ATC tasks. The novices also used passive processing for the clinical task. The experts, however, appeared to use more active processing, and the intermediates fell in between. Overall, the results indicated that individuals with clinical expertise and a developed mental model rely more on active processing of incoming information for the clinical task while individuals with little or no knowledge rely on passive processing. The results have implications about how training should be developed to aid less experienced personnel identify what information should be included in a handoff and what should not.
Tracking marine mammals using passive acoustics
NASA Astrophysics Data System (ADS)
Nosal, Eva-Marie
2007-12-01
It is difficult to study the behavior and physiology of marine mammals or to understand and mitigate human impact on them because much of their lives are spent underwater. Since sound propagates for long distances in the ocean and since many cetaceans are vocal, passive acoustics is a valuable tool for studying and monitoring their behavior. After a brief introduction to and review of passive acoustic tracking methods, this dissertation develops and applies two new methods. Both methods use widely-spaced (tens of kilometers) bottom-mounted hydrophone arrays, as well as propagation models that account for depth-dependent sound speed profiles. The first passive acoustic tracking method relies on arrival times of direct and surface-reflected paths. It is used to track a sperm whale using 5 at the Atlantic Undersea Test and Evaluation Center (AUTEC) and gives position estimates that are accurate to within 10 meters. With such accuracy, the whale's pitch and yaw are estimated by assuming that its main axis (which points from the tail to the rostrum) is parallel to its velocity. Roll is found by fitting the details of the pulses within each sperm whale click to the so-called bent horn model of sperm whale sound production. Finally, given the position and orientation of the whale, its beam pattern is reconstructed and found to be highly directional with an intense forward directed component. Pair-wise spectrogram (PWS) processing is the second passive acoustic tracking method developed in this dissertation. Although it is computationally more intensive, PWS has several advantages over arrival-time tracking methods, especially in shallow water environments, for long duration calls, and for multiple-animal datasets, as is the case for humpback whales on Hawaiian breeding grounds. Results of simulations with realistic noise conditions and environmental mismatch are given and compared to other passive localization techniques. When applied to the AUTEC sperm whale dataset, PWS position estimates are within meters of those obtained using the time-of-arrival method.
NASA Astrophysics Data System (ADS)
Corre, B.; Boulvais, P.; Boiron, M. C.; Lagabrielle, Y.; Marasi, L.; Clerc, C.
2018-02-01
Sub-continental lithospheric mantle rocks are exhumed in the distal part of magma-poor passive margins. Remnants of the North Iberian paleo-passive margin are now exposed in the North-Pyrenean Zone (NPZ) and offers a field analogue to study the processes of continental crust thinning, subcontinental mantle exhumation and associated fluid circulations. The Saraillé Massif which belongs to the `Chaînons Béarnais' range (Western Pyrenees), displays field, petrographic and stable isotopic evidence of syn-kinematic fluid circulations. Using electron probe micro-analyses on minerals, O, C, Sr isotopes compositions and micro thermometry/Raman spectrometry of fluid inclusions, we investigate the history of fluid circulations along and in the surroundings of the Saraillé detachment fault. The tectonic interface between the pre-rift Mesozoic sedimentary cover and the mantle rocks is marked by a metasomatic talc-chlorite layer. This layer formed through the infiltration of a fluid enriched in chemical elements like Cr leached from the exhuming serpentinized mantle rocks. In the overlying sediments (dolomitic and calcitic marbles of Jurassic to Aptian age), a network of calcitic veins, locally with quartz, formed as a consequence of the infiltration of aqueous saline fluids (salinities up to 34 wt% NaCl are recorded in quartz-hosted fluid inclusions) at moderate temperatures ( 220 °C). These brines likely derived from the dissolution of the local Triassic evaporites. In the upper part of the metasomatic system, upward movement of fluids is limited by the Albian metasediments, which likely acted as an impermeable layer. The model of fluid circulation in the Saraillé Massif sheds light onto other synchronous metasomatic systems in the Pyrenean realm.
Mechanical catalysis on the centimetre scale
Miyashita, Shuhei; Audretsch, Christof; Nagy, Zoltán; Füchslin, Rudolf M.; Pfeifer, Rolf
2015-01-01
Enzymes play important roles in catalysing biochemical transaction paths, acting as logical machines through the morphology of the processes. A key challenge in elucidating the nature of these systems, and for engineering manufacturing methods inspired by biochemical reactions, is to attain a comprehensive understanding of the stereochemical ground rules of enzymatic reactions. Here, we present a model of catalysis that can be performed magnetically by centimetre-sized passive floating units. The designed system, which is equipped with permanent magnets only, passively obeys the local causalities imposed by magnetic interactions, albeit it shows a spatial behaviour and an energy profile analogous to those of biochemical enzymes. In this process, the enzyme units trigger physical conformation changes of the target by levelling out the magnetic potential barrier (activation potential) to a funnel type and, thus, induce cascading conformation changes of the targeted substrate units reacting in parallel. The inhibitor units, conversely, suppress such changes by increasing the potential. Because the model is purely mechanical and established on a physics basis in the absence of turbulence, each performance can be explained by the morphology of the unit, extending the definition of catalysis to systems of alternative scales. PMID:25652461
Mechanical catalysis on the centimetre scale.
Miyashita, Shuhei; Audretsch, Christof; Nagy, Zoltán; Füchslin, Rudolf M; Pfeifer, Rolf
2015-03-06
Enzymes play important roles in catalysing biochemical transaction paths, acting as logical machines through the morphology of the processes. A key challenge in elucidating the nature of these systems, and for engineering manufacturing methods inspired by biochemical reactions, is to attain a comprehensive understanding of the stereochemical ground rules of enzymatic reactions. Here, we present a model of catalysis that can be performed magnetically by centimetre-sized passive floating units. The designed system, which is equipped with permanent magnets only, passively obeys the local causalities imposed by magnetic interactions, albeit it shows a spatial behaviour and an energy profile analogous to those of biochemical enzymes. In this process, the enzyme units trigger physical conformation changes of the target by levelling out the magnetic potential barrier (activation potential) to a funnel type and, thus, induce cascading conformation changes of the targeted substrate units reacting in parallel. The inhibitor units, conversely, suppress such changes by increasing the potential. Because the model is purely mechanical and established on a physics basis in the absence of turbulence, each performance can be explained by the morphology of the unit, extending the definition of catalysis to systems of alternative scales.
Adaptive behaviors in multi-agent source localization using passive sensing.
Shaukat, Mansoor; Chitre, Mandar
2016-12-01
In this paper, the role of adaptive group cohesion in a cooperative multi-agent source localization problem is investigated. A distributed source localization algorithm is presented for a homogeneous team of simple agents. An agent uses a single sensor to sense the gradient and two sensors to sense its neighbors. The algorithm is a set of individualistic and social behaviors where the individualistic behavior is as simple as an agent keeping its previous heading and is not self-sufficient in localizing the source. Source localization is achieved as an emergent property through agent's adaptive interactions with the neighbors and the environment. Given a single agent is incapable of localizing the source, maintaining team connectivity at all times is crucial. Two simple temporal sampling behaviors, intensity-based-adaptation and connectivity-based-adaptation, ensure an efficient localization strategy with minimal agent breakaways. The agent behaviors are simultaneously optimized using a two phase evolutionary optimization process. The optimized behaviors are estimated with analytical models and the resulting collective behavior is validated against the agent's sensor and actuator noise, strong multi-path interference due to environment variability, initialization distance sensitivity and loss of source signal.
Producing Quantum Dots by Spray Pyrolysis
NASA Technical Reports Server (NTRS)
Banger, Kulbinder; Jin, Michael H.; Hepp, Aloysius
2006-01-01
An improved process for making nanocrystallites, commonly denoted quantum dots (QDs), is based on spray pyrolysis. Unlike the process used heretofore, the improved process is amenable to mass production of either passivated or non-passivated QDs, with computer control to ensure near uniformity of size.
The synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor
Palanisamy, Barath; Paul, Brian; Chang, Chih -hung
2015-01-21
A continuous flow sonochemical reactor was developed capable of producing metastable cadmium sulfide (CdS) nanoplatelets with thicknesses at or below 10 nm. The continuous flow sonochemical reactor included the passive in-line micromixing of reagents prior to sonochemical reaction. Synthesis results were compared with those from reactors involving batch conventional heating and batch ultrasound-induced heating. The continuous sonochemical synthesis was found to result in high aspect ratio hexagonal platelets of CdS possessing cubic crystal structures with thicknesses well below 10 nm. The unique shape and crystal structure of the nanoplatelets are suggestive of high localized temperatures within the sonochemical process. Asmore » a result, the particle size uniformity and product throughput are much higher for the continuous sonochemical process in comparison to the batch sonochemical process and conventional synthesis processes.« less
Surface passivation process of compound semiconductor material using UV photosulfidation
Ashby, Carol I. H.
1995-01-01
A method for passivating compound semiconductor surfaces by photolytically disrupting molecular sulfur vapor with ultraviolet radiation to form reactive sulfur which then reacts with and passivates the surface of compound semiconductors.
Datasets of Odontocete Sounds Annotated for Developing Automatic Detection Methods
2010-12-01
Passive acoustic detection of Minke whales (Balaenoptera acutorostrata) off the West Coast of Kauai, HI. Book of abstracts, Fourth International...Workshop on Detection , Classification and Localization of Marine Mammals using Passive Acoustics , Pavia, Italy, Sept. 10- 13, 2009, p. 57. Roch, M., Y...Mellinger, and D. Gillespie. 2010. Comparison of beaked whale detection algorithms. Applied Acoustics 71:1043-1049. 8 References
Ozone monitoring in the Krakow Province, southern Poland
Barbara Godzik
1998-01-01
From June to mid-October in 1995, the concentration of tropospheric ozone in 18 localities in the Krakow Province of southern Poland was measured by using ultraviolet monitors and Ogawa passive samplers. At three active monitoring stations, tropospheric ozone was recorded in the downtown and western part of Krakow and in Szarow, 30 km to the east. The passive method...
Passive Seismic Monitoring for Rockfall at Yucca Mountain: Concept Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, J; Twilley, K; Murvosh, H
2003-03-03
For the purpose of proof-testing a system intended to remotely monitor rockfall inside a potential radioactive waste repository at Yucca Mountain, a system of seismic sub-arrays will be deployed and tested on the surface of the mountain. The goal is to identify and locate rockfall events remotely using automated data collecting and processing techniques. We install seismometers on the ground surface, generate seismic energy to simulate rockfall in underground space beneath the array, and interpret the surface response to discriminate and locate the event. Data will be analyzed using matched-field processing, a generalized beam forming method for localizing discrete signals.more » Software is being developed to facilitate the processing. To date, a three-component sub-array has been installed and successfully tested.« less
Plante, Craig J; Fleer, Virginia; Jones, Martin L
2016-10-01
Benthic microalgae (BMA) provide vital food resources for heterotrophs and stabilize sediments with their extracellular secretions. A central goal in ecology is to understand how processes such as species interactions and dispersal, contribute to observed patterns of species abundance and distribution. Our objectives were to assess the effects of sediment resuspension on microalgal community structure. We tested whether taxa-abundance distributions could be predicted using neutral community models (NCMs) and also specific hypotheses about passive migration: (i) As migration decreases in sediment patches, BMA α-diversity will decrease, and (ii) As migration decreases, BMA community dissimilarity (β-diversity) will increase. Co-occurrence indices (checkerboard score and variance ratio) were also computed to test for deterministic factors, such as competition and niche differentiation, in shaping communities. Two intertidal sites (mudflat and sand bar) differing in resuspension regime were sampled throughout the tidal cycle. Fluorometry and denaturing gradient gel electrophoresis were utilized to investigate diatom community structure. Observed taxa-abundances fit those predicted from NCMs reasonably well (R 2 of 0.68-0.93), although comparisons of observed local communities to artificial randomly assembled communities rejected the null hypothesis that diatom communities were assembled solely by stochastic processes. No co-occurrence tests indicated a significant role for competitive exclusion or niche partitioning in microalgal community assembly. In general, predictions about relationships between migration and species diversity were supported for local community dynamics. BMA at low tide (lowest migration) exhibited reduced α-diversity as compared to periods of immersion at both mudflat and sand bar sites. β-diversity was higher during low tide emersion on the mudflat, but did not differ temporally at the sand bar site. In between-site metacommunity comparisons, low- and high-resuspension sites exhibited distinct community compositions while the low-energy mudflats contained higher microalgal biomass and greater α-diversity. To our knowledge this is the first study to test the relevance of neutral processes in structuring marine microalgal communities. Our results demonstrate a prominent role for stochastic factors in structuring local BMA community assembly, although unidentified nonrandom processes also appear to play some role. High passive migration, in particular, appears to help maintain species diversity and structure communities in both sand and muddy habitats. © 2016 Phycological Society of America.
ERIC Educational Resources Information Center
van den Broek, Paul; Helder, Anne
2017-01-01
As readers move through a text, they engage in various types of processes that, if all goes well, result in a mental representation that captures their interpretation of the text. With each new text segment the reader engages in passive and, at times, reader-initiated processes. These processes are strongly influenced by the readers'…
NASA Astrophysics Data System (ADS)
Hand, K. P.; Bartlett, D. H.; Fryer, P.
2012-12-01
During a March 2012 expedition we recovered sediments from two locales within the Marina Trench - Middle Pond and Sirena Deep. Samples were recovered from a Niskin bottle deployed on a passive lander platform that released an arm after touching down on the seafloor. The impact of the arm holding the Niskin bottle caused sediments to enter the bottle; this process was seen in images and on video captured by the lander. The combination of imagery and preliminary analyses of the sediments indicates that the Sirena Deep locale is a region of serpentinization and active microbial communities. Images show several outcrops consistent with serpentinization, some of which are coated with filamentous microbial mats. Results and analyses of these samples will be presented.
Spatial Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite.
Chen, Sheng; Wen, Xiaoming; Yun, Jae S; Huang, Shujuan; Green, Martin; Jeon, Nam Joong; Yang, Woon Seok; Noh, Jun Hong; Seo, Jangwon; Seok, Sang Il; Ho-Baillie, Anita
2017-02-22
We identify nanoscale spatial distribution of PbI 2 on the (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 perovskite thin film and investigate the local passivation effect using confocal based optical microscopy of steady state and time-resolved photoluminescence (PL). Different from a typical scanning electron microscope (SEM) morphology study, confocal based PL spectroscopy and microscopy allow researchers to map the morphologies of both perovskite and PbI 2 grains simultaneously, by selectively detecting their characteristic fluorescent bands using band-pass filters. In this work, we compare the perovskite samples without and with excess PbI 2 incorporation and unambiguously reveal PbI 2 distribution for the PbI 2 -rich sample. In addition, using the nanoscale time-resolved PL technique we show that the PbI 2 -rich regions exhibit longer lifetime due to suppressed defect trapping, compared to the PbI 2 -poor regions. The measurement on the PbI 2 -rich sample indicates that the passivation effect of PbI 2 in perovskite film is effective, especially in localized regions. Hence, this finding is important for further improvement of the solar cells by considering the strategy of excess PbI 2 incorporation.
Low temperature cured poly-siloxane passivation for highly reliable a-InGaZnO thin-film transistors
NASA Astrophysics Data System (ADS)
Yoshida, Naofumi; Bermundo, Juan Paolo; Ishikawa, Yasuaki; Nonaka, Toshiaki; Taniguchi, Katsuto; Uraoka, Yukiharu
2018-05-01
Low temperature processable passivation materials are necessary to fabricate highly reliable amorphous InGaZnO (a-IGZO) thin-film transistors (TFT) on organic substrates for flexible device applications. We investigated 3 types of poly-siloxane (Poly-SX) passivation layers fabricated by a solution process and cured at low temperatures (180 °C) for a-IGZO TFTs. This passivation layer greatly improves the stability of the a-IGZO device even after being subjected to positive (PBS) and negative bias stress (NBS). The field effect mobility (μ) of MePhQ504010 passivated on the TFT reached 8.34 cm2/Vs and had a small threshold voltage shift of 0.9 V after PBS, -0.8 V after NBS without the hump phenomenon. Furthermore, we analyzed the hydrogen and hydroxide states in the a-IGZO layer by secondary ion mass spectrometry and X-ray photoelectron spectroscopy to determine the cause of excellent electrical properties despite the curing performed at a low temperature. These results show the potential of the solution processed Poly-SX passivation layer for flexible devices.
NASA Astrophysics Data System (ADS)
Fattah-alhosseini, Arash; Imantalab, Omid
2016-01-01
In this study, passivation behavior of ultrafine-grained (UFG) pure copper fabricated by ARB process in 0.01 M borax solution has been investigated. Before any electrochemical measurements, evaluation of microstructure was obtained by transmission electron microscopy (TEM). TEM observations revealed that with increasing the number of ARB passes, the grain size of specimens decrease. Also, TEM images showed that UFGs with average size of below 100 nm appeared after 7 passes of ARB. To investigate the passivation behavior of the specimens, electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis was carried out. For this purpose, three potentials within the passive region were chosen for potentiostatic passive film growth. EIS results showed that both passive film and charge-transfer resistance increases with increasing the number of ARB passes. Moreover, Mott-Schottky analysis revealed that with increasing the number of ARB passes, the acceptor density of the passive films decreased. In conclusion, increasing the number of ARB passes offers better conditions for forming the passive films with higher protection behavior, due to the growth of a much thicker and less defective films.
Mesozoic to Recent, regional tectonic controls on subsidence patterns in the Gulf of Mexico basin
NASA Astrophysics Data System (ADS)
Almatrood, M.; Mann, P.; Bugti, M. N.
2016-12-01
We have produced subsidence plots for 26 deep wells into the deeper-water areas of the Gulf of Mexico (GOM) in order to identify regional tectonic controls and propose tectonic phases. Our results show three sub-regions of the GOM basin that have distinctive and correlative subsidence patterns: 1) Northern GOM from offshore Texas to central Florida (9 wells) - this area is characterized by a deeply buried, Triassic-early Jurassic rift event that is not represented by our wells that penetrate only the post-rift Cretaceous to recent passive margin phase. The sole complexity in the passive margin phase of this sub-region is the acceleration of prograding clastic margins including the Mississippi fan in Miocene time; 2) Southeastern GOM in the Straits of Florida and Cuba area (5 wells) - this area shows that the Cretaceous passive margin overlying the rift phase is abruptly drowned in late Cretaceous as this part of the passive margin of North America that is flexed and partially subducted beneath the Caribbean arc as it encroaches from the southwest to eventually collide with the North American passive margin in the Paleogene; 3) Western GOM along the length of the eastern continental margin of Mexico (12 wells) - this is the most complex of the three areas in that shares the Mesozic rifting and passive margin phase but is unique with a slightly younger collisional event and foreland basin phase associated with the Laramide orogeny in Mexico extending from the KT boundary to the Oligocene. Following this orogenic event there is a re-emergence of the passive margin phase during the Neogene along locally affected by extensional and convergent deformation associated with passive margin fold belts. In summary, the GOM basin exhibits evidence for widespread rifting and passive margin formation associated with the breakup of Pangea in Mesozoic times that was locally superimposed and deformed during the late Cretaceous-Paleogene period by: 1) Caribbean subduction and collision along its southeastern edge; and 2) Laramide collision along its western edge in Mexico.
NASA Astrophysics Data System (ADS)
Eicken, H.; Kapsch, M.; Johnson, M. A.; Weyapuk, W. U., Jr.
2009-12-01
Sea ice plays an important, complicated role in Arctic coastal sediment dynamics. It helps protect the shoreline from wave action and constrains coastal permafrost thaw; at the same time, sea ice is a highly effective sediment erosion and transport agent. For the coastline of (sub-)Arctic Alaska we have examined key processes that govern the role of sea ice as a geologic agent. Based on passive microwave satellite data for the time period 1979 to 2008 and augmented by field measurements and observations conducted by local sea-ice experts in coastal communities from 2006 onwards, we determined the onset of coastal ice spring break-up and fall freeze-up. These two events define the start and end of the open-water season during which the coast is rendered most vulnerable to thermal and dynamic processes promoting erosion. Satellite data show significant trends toward later fall freeze-up in many locations and moreover provide a picture of the statistical significance and variability of such trends in great spatio-temporal detail. Coastal ice observations suggest that important sea-ice processes (such as formation of ice berms) that precede freeze-up as detected by passive microwave data need to be taken into consideration in evaluating the vulnerability of the coastline and the specific threat of individual storms. Field observations, satellite data and local knowledge also highlight the substantial change in winter sea-ice regimes over the past two decades, with a much more mobile ice cover enhancing winter sediment transport. Ultimately, the shorter sea-ice season and the greater mobility and the lack of stability of winter coastal sea ice work in concert to increase the vulnerability of the coastline to erosion and flooding. At the same time, these changes provide a mechanism for effective redistribution and cross-shelf transport of sediments that prepares the stage for further erosive action in subsequent seasons.
Passive drainage and biofiltration of landfill gas: Australian field trial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dever, S.A.; Swarbrick, G.E.; Stuetz, R.M.
2007-07-01
In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane,more » and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Thomas J.; Deng, Zhiqun; Myers, Joshua R.
2011-09-30
The Marine Animal Alert System (MAAS) in development by the Pacific Northwest National Laboratory is focused on providing elements of compliance monitoring to support deployment of marine hydrokinetic energy devices. An initial focus is prototype tidal turbines to be deployed in Puget Sound in Washington State. The MAAS will help manage the risk of injury or mortality to marine animals from blade strike or contact with tidal turbines. In particular, development has focused on detection, classification, and localization of listed Southern Resident killer whales within 200 m of prototype turbines using both active and passive acoustic approaches. At the closemore » of FY 2011, a passive acoustic system consisting of a pair of four-element star arrays and parallel processing of eight channels of acoustic receptions has been designed and built. Field tests of the prototype system are scheduled for the fourth quarter of calendar year 2011. Field deployment and testing of the passive acoustic prototype is scheduled for the first quarter of FY 2012. The design of an active acoustic system that could be built using commercially available off-the-shelf components from active acoustic system vendors is also in the final stages of design and specification.« less
Ibrahim Elmi, Omar; Cristini-Robbe, Odile; Chen, Minyu; Wei, Bin; Bernard, Rémy; Okada, Etienne; Yarekha, Dmitri A; Ouendi, Saliha; Portier, Xavier; Gourbilleau, Fabrice; Xu, Tao; Stievenard, Didier
2018-04-26
This paper describes an original design leading to the field effect passivation of Si n+-p junctions. Ordered Ag nanoparticle (Ag-NP) arrays with optimal size and coverage fabricated by means of nanosphere lithography and thermal evaporation, were embedded in ultrathin-Al2O3/SiNx:H stacks on the top of implanted Si n+-p junctions, to achieve effective surface passivation. One way to characterize surface passivation is to use photocurrent, sensitive to recombination centers. We evidenced an improvement of photocurrent by a factor of 5 with the presence of Ag nanoparticles. Finite-difference time-domain (FDTD) simulations combining with semi-quantitative calculations demonstrated that such gain was mainly due to the enhanced field effect passivation through the depleted region associated with the Ag-NPs/Si Schottky contacts. © 2018 IOP Publishing Ltd.
Hondroulis, Evangelia; Movila, Alexandru; Sabhachandani, Pooja; Sarkar, Saheli; Cohen, Noa; Kawai, Toshihisa; Konry, Tania
2017-03-01
Microfluidic droplets are used to isolate cell pairs and prevent crosstalk with neighboring cells, while permitting free motility and interaction within the confined space. Dynamic analysis of cellular heterogeneity in droplets has provided insights in various biological processes. Droplet manipulation methods such as fusion and fission make it possible to precisely regulate the localized environment of a cell in a droplet and deliver reagents as required. Droplet fusion strategies achieved by passive mechanisms preserve cell viability and are easier to fabricate and operate. Here, we present a simple and effective method for the co-encapsulation of polarized M1 and M2 macrophages with Escherichia coli (E. coli) by passive merging in an integrated droplet generation, merging, and docking platform. This approach facilitated live cell profiling of effector immune functions in situ and quantitative functional analysis of macrophage heterogeneity. Biotechnol. Bioeng. 2017;114: 705-709. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Park, Kyue-Nam; Kwon, Oh-Yun; Weon, Jong-Hyuck; Choung, Sung-Dae; Kim, Si-Hyun
2014-01-01
The objective was to compare the immediate effects of local cryotherapy (LC) and passive cross-body stretch on the extensibility of the posterior shoulder muscle in individuals with posterior shoulder tightness. Eighty-seven healthy subjects with a between-shoulder difference in internal rotation (IR) range of motion (ROM) greater than 10° were randomly divided into three groups: LC group, stretching group, and control group (n = 29 in each group). Subjects in the LC group received LC on infraspinatus and posterior deltoid muscles and subjects in the stretching group performed passive cross-body stretch. Stretch sensation was measured at the end range of passive IR and horizontal adduction (HA) using numerical rating scale, and the pressure pain threshold (PPT) at the infraspinatus and posterior deltoid muscles was measured using pressure algometry. Passive and active ROM of IR and HA of the glenohumeral joint were measured using an inclinometer. All measurements were performed at pre-intervention, post- intervention, and 10-min follow-up. Stretch sensation was significantly decreased and PPT was significantly increased in the LC and stretching groups at post-intervention, and these effects were maintained at 10-min follow-up, compared to the control group. Both the LC group and stretching group had a significantly greater increase in passive and active ROM of IR and HA, compared to the control group at post-intervention and 10-min follow-up. However, there were no significant differences in stretch sensation, PPT, or ROM of IR and HA between the LC group and stretching group. LC can be used to decrease the stretch sensation and increase PPT and ROM of IR and HA as much as a stretching exercise. LC could be an alternative method for increasing the restricted ROM of glenohumeral IR and HA for individuals with posterior shoulder tightness, especially for patients and sports players who have severe stretching discomfort. Key PointsLocal cryotherapy (LC) decreased the uncomfortable stretch sensation, and increased the pressure pain threshold (PPT) of infraspinatus and posterior deltoid muscles in subjects with posterior shoulder tightness.Decreased stretch sensation by LC without passive stretching could improve the passive and active ROM of internal rotation and horizontal adduction in subjects with posterior shoulder tightness, similar to cross-body stretch.LC can be an alternative method to increase extensibility when individuals with posterior shoulder tightness have high stretch sensitivity and low PPT in the infraspinatus and posterior deltoid muscles.
Park, Kyue-nam; Kwon, Oh-yun; Weon, Jong-hyuck; Choung, Sung-dae; Kim, Si-hyun
2014-01-01
The objective was to compare the immediate effects of local cryotherapy (LC) and passive cross-body stretch on the extensibility of the posterior shoulder muscle in individuals with posterior shoulder tightness. Eighty-seven healthy subjects with a between-shoulder difference in internal rotation (IR) range of motion (ROM) greater than 10° were randomly divided into three groups: LC group, stretching group, and control group (n = 29 in each group). Subjects in the LC group received LC on infraspinatus and posterior deltoid muscles and subjects in the stretching group performed passive cross-body stretch. Stretch sensation was measured at the end range of passive IR and horizontal adduction (HA) using numerical rating scale, and the pressure pain threshold (PPT) at the infraspinatus and posterior deltoid muscles was measured using pressure algometry. Passive and active ROM of IR and HA of the glenohumeral joint were measured using an inclinometer. All measurements were performed at pre-intervention, post- intervention, and 10-min follow-up. Stretch sensation was significantly decreased and PPT was significantly increased in the LC and stretching groups at post-intervention, and these effects were maintained at 10-min follow-up, compared to the control group. Both the LC group and stretching group had a significantly greater increase in passive and active ROM of IR and HA, compared to the control group at post-intervention and 10-min follow-up. However, there were no significant differences in stretch sensation, PPT, or ROM of IR and HA between the LC group and stretching group. LC can be used to decrease the stretch sensation and increase PPT and ROM of IR and HA as much as a stretching exercise. LC could be an alternative method for increasing the restricted ROM of glenohumeral IR and HA for individuals with posterior shoulder tightness, especially for patients and sports players who have severe stretching discomfort. Key Points Local cryotherapy (LC) decreased the uncomfortable stretch sensation, and increased the pressure pain threshold (PPT) of infraspinatus and posterior deltoid muscles in subjects with posterior shoulder tightness. Decreased stretch sensation by LC without passive stretching could improve the passive and active ROM of internal rotation and horizontal adduction in subjects with posterior shoulder tightness, similar to cross-body stretch. LC can be an alternative method to increase extensibility when individuals with posterior shoulder tightness have high stretch sensitivity and low PPT in the infraspinatus and posterior deltoid muscles. PMID:24570610
NASA Astrophysics Data System (ADS)
Escosa, Frederic O.; Roca, Eduard; Ferrer, Oriol
2018-04-01
Detailed geologic mapping combined with well and seismic data from the Eastern Prebetic Zone (SE Iberia) reveal extensional and contractional structures that permit characterization of passive margin development and its incorporation into a thin-skinned fold-and-thrust belt. The study area is represented by NW-directed, ENE-trending folds and thrusts faults locally disrupted by the NW-trending Matamoros Basin and the active Jumilla and La Rosa diapirs. These structures resulted from the thin-skinned inversion of the proximal part of the Eastern South Iberian passive margin containing prerift salt. Here, Upper Jurassic to Santonian thick-skinned extension controlled the accumulation of sediment over mobile prerift salt. This in turn defined the style of salt tectonics characterized by monoclinal drape folds, suprasalt extensional faults and diapirs. The structural and sedimentological analysis suggests that during extension, salt localizes strain thus decoupling sub- and suprasalt deformation. Thick-skinned extension controls suprasalt deformation as well as its location and distribution which changes over time. Salt also localizes strain during inversion. The preexisting salt structures, weaker than adjacent areas, preferentially absorb the contractional deformation. In addition, the stepped subsalt geometry that results from thick-skinned extension also controls the shortening propagation. Therefore, the degree of strain localization depends on the thickness of the suprasalt cover and on the dip of subsalt faults relative to the thin-skinned transport direction.
OmegaWINGS: The First Complete Census of Post-starburst Galaxies in Clusters in the Local Universe
NASA Astrophysics Data System (ADS)
Paccagnella, A.; Vulcani, B.; Poggianti, B. M.; Fritz, J.; Fasano, G.; Moretti, A.; Jaffé, Yara L.; Biviano, A.; Gullieuszik, M.; Bettoni, D.; Cava, A.; Couch, W.; D'Onofrio, M.
2017-04-01
Galaxies that abruptly interrupt their star formation in < 1.5 {Gyr} present recognizable features in their spectra (no emission and Hδ in absorption) and are called post-starburst (PSB) galaxies. By studying their stellar population properties and their location within the clusters, we obtain valuable insights on the physical processes responsible for star formation quenching. We present the first complete characterization of PSB galaxies in clusters at 0.04< z< 0.07, based on WINGS and OmegaWINGS data, and contrast their properties to those of passive (PAS) and emission-line (EML) galaxies. For V< 20, PSBs represent 7.2 ± 0.2% of cluster galaxies within 1.2 virial radii. Their incidence slightly increases from the outskirts toward the cluster center and from the least toward the most luminous and massive clusters, defined in terms of X-ray luminosity and velocity dispersion. The phase-space analysis and velocity-dispersion profile suggest that PSBs represent a combination of galaxies with different accretion histories. Moreover, PSBs with the strongest Hδ are consistent with being recently accreted. PSBs have stellar masses, magnitudes, colors, and morphologies intermediate between PAS and EML galaxies, typical of a population in transition from being star-forming to passive. Comparing the fraction of PSBs to the fraction of galaxies in transition on longer timescales, we estimate that the short-timescale star formation quenching channel contributes two times more than the long timescale one to the growth of the passive population. Processes like ram-pressure stripping and galaxy-galaxy interactions are more efficient than strangulation in affecting star formation.
Where is your arm? Variations in proprioception across space and tasks.
Fuentes, Christina T; Bastian, Amy J
2010-01-01
The sense of limb position is crucial for movement control and environmental interactions. Our understanding of this fundamental proprioceptive process, however, is limited. For example, little is known about the accuracy of arm proprioception: Does it vary with changes in arm configuration, since some peripheral receptors are engaged only when joints move toward extreme angles? Are these variations consistent across different tasks? Does proprioceptive ability change depending on what we try to localize (e.g., fingertip position vs. elbow angle)? We used a robot exoskeleton to study proprioception in 14 arm configurations across three tasks, asking healthy subjects to 1) match a pointer to elbow angles after passive movements, 2) match a pointer to fingertip positions after passive movements, and 3) actively match their elbow angle to a pointer. Across all three tasks, subjects overestimated more extreme joint positions; this may be due to peripheral sensory signals biasing estimates as a safety mechanism to prevent injury. We also found that elbow angle estimates were more precise when used to judge fingertip position versus directly reported, suggesting that the brain has better access to limb endpoint position than joint angles. Finally, precision of elbow angle estimates improved in active versus passive movements, corroborating work showing that efference copies of motor commands and alpha-gamma motor neuron coactivation contribute to proprioceptive estimates. In sum, we have uncovered fundamental aspects of normal proprioceptive processing, demonstrating not only predictable biases that are dependent on joint configuration and independent of task but also improved precision when integrating information across joints.
Small Business Innovation Research (SBIR) Program. FY 1991 Program Solicitation 91.2
1991-07-01
Based Robotic Control Systems Technology A91-034 Passive Sensor Self- Interference Cancellation A91-035 High Performance Propelling Charges A91-036...laboratory tests. A91-034 TITLE: Passive Sensor Self- Interference Cancellation CATEGORY: Exploratory Development OBJECTIVE: Develop practical and effective...acoustic sensor to detect, classify, identify, and locate targets is ARMY 19 degraded by own-platform noise and local interference . Elementary
Coexistence of passive and carrier-mediated processes in drug transport.
Sugano, Kiyohiko; Kansy, Manfred; Artursson, Per; Avdeef, Alex; Bendels, Stefanie; Di, Li; Ecker, Gerhard F; Faller, Bernard; Fischer, Holger; Gerebtzoff, Grégori; Lennernaes, Hans; Senner, Frank
2010-08-01
The permeability of biological membranes is one of the most important determinants of the pharmacokinetic processes of a drug. Although it is often accepted that many drug substances are transported across biological membranes by passive transcellular diffusion, a recent hypothesis speculated that carrier-mediated mechanisms might account for the majority of membrane drug transport processes in biological systems. Based on evidence of the physicochemical characteristics and of in vitro and in vivo findings for marketed drugs, as well as results from real-life discovery and development projects, we present the view that both passive transcellular processes and carrier-mediated processes coexist and contribute to drug transport activities across biological membranes.
Dreyer, Felix R; Pulvermüller, Friedemann
2018-03-01
Previous research showed that modality-preferential sensorimotor areas are relevant for processing concrete words used to speak about actions. However, whether modality-preferential areas also play a role for abstract words is still under debate. Whereas recent functional magnetic resonance imaging (fMRI) studies suggest an involvement of motor cortex in processing the meaning of abstract emotion words as, for example, 'love', other non-emotional abstract words, in particular 'mental words', such as 'thought' or 'logic', are believed to engage 'amodal' semantic systems only. In the present event-related fMRI experiment, subjects passively read abstract emotional and mental nouns along with concrete action related words. Contrary to expectation, the results indicate a specific involvement of face motor areas in the processing of mental nouns, resembling that seen for face related action words. This result was confirmed when subject-specific regions of interest (ROIs) defined by motor localizers were used. We conclude that a role of motor systems in semantic processing is not restricted to concrete words but extends to at least some abstract mental symbols previously thought to be entirely 'disembodied' and divorced from semantically related sensorimotor processing. Implications for neurocognitive theories of semantics and clinical applications will be highlighted, paying specific attention to the role of brain activations as indexes of cognitive processes and their relationships to 'causal' studies addressing lesion and transcranial magnetic stimulation (TMS) effects. Possible implications for clinical practice, in particular speech language therapy, are discussed in closing. Copyright © 2017. Published by Elsevier Ltd.
A Comparison of Five FMRI Protocols for Mapping Speech Comprehension Systems
Binder, Jeffrey R.; Swanson, Sara J.; Hammeke, Thomas A.; Sabsevitz, David S.
2008-01-01
Aims Many fMRI protocols for localizing speech comprehension have been described, but there has been little quantitative comparison of these methods. We compared five such protocols in terms of areas activated, extent of activation, and lateralization. Methods FMRI BOLD signals were measured in 26 healthy adults during passive listening and active tasks using words and tones. Contrasts were designed to identify speech perception and semantic processing systems. Activation extent and lateralization were quantified by counting activated voxels in each hemisphere for each participant. Results Passive listening to words produced bilateral superior temporal activation. After controlling for pre-linguistic auditory processing, only a small area in the left superior temporal sulcus responded selectively to speech. Active tasks engaged an extensive, bilateral attention and executive processing network. Optimal results (consistent activation and strongly lateralized pattern) were obtained by contrasting an active semantic decision task with a tone decision task. There was striking similarity between the network of brain regions activated by the semantic task and the network of brain regions that showed task-induced deactivation, suggesting that semantic processing occurs during the resting state. Conclusions FMRI protocols for mapping speech comprehension systems differ dramatically in pattern, extent, and lateralization of activation. Brain regions involved in semantic processing were identified only when an active, non-linguistic task was used as a baseline, supporting the notion that semantic processing occurs whenever attentional resources are not controlled. Identification of these lexical-semantic regions is particularly important for predicting language outcome in patients undergoing temporal lobe surgery. PMID:18513352
Marechal, Luc; Shaohui Foong; Zhenglong Sun; Wood, Kristin L
2015-08-01
Motivated by the need for developing a neuronavigation system to improve efficacy of intracranial surgical procedures, a localization system using passive magnetic fields for real-time monitoring of the insertion process of an external ventricular drain (EVD) catheter is conceived and developed. This system operates on the principle of measuring the static magnetic field of a magnetic marker using an array of magnetic sensors. An artificial neural network (ANN) is directly used for solving the inverse problem of magnetic dipole localization for improved efficiency and precision. As the accuracy of localization system is highly dependent on the sensor spatial location, an optimization framework, based on understanding and classification of experimental sensor characteristics as well as prior knowledge of the general trajectory of the localization pathway, for design of such sensing assemblies is described and investigated in this paper. Both optimized and non-optimized sensor configurations were experimentally evaluated and results show superior performance from the optimized configuration. While the approach presented here utilizes ventriculostomy as an illustrative platform, it can be extended to other medical applications that require localization inside the body.
Local invariants in non-ideal flows of neutral fluids and two-fluid plasmas
NASA Astrophysics Data System (ADS)
Zhu, Jian-Zhou
2018-03-01
The main objective is the locally invariant geometric object of any (magneto-)fluid dynamics with forcing and damping (nonideal), while more attention is paid to the untouched dynamical properties of two-fluid fashion. Specifically, local structures, beyond the well-known "frozen-in" to the barotropic flows of the generalized vorticities, of the two-fluid model of plasma flows are presented. More general non-barotropic situations are also considered. A modified Euler equation [T. Tao, "Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation," Ann. PDE 2, 9 (2016)] is also accordingly analyzed and remarked from the angle of view of the two-fluid model, with emphasis on the local structures. The local constraints of high-order differential forms such as helicity, among others, find simple formulation for possible practices in modeling the dynamics. Thus, the Cauchy invariants equation [N. Besse and U. Frisch, "Geometric formulation of the Cauchy invariants for incompressible Euler flow in flat and curved spaces," J. Fluid Mech. 825, 412 (2017)] may be enabled to find applications in non-ideal flows. Some formal examples are offered to demonstrate the calculations, and particularly interestingly the two-dimensional-three-component (2D3C) or the 2D passive scalar problem presents that a locally invariant Θ = 2θζ, with θ and ζ being, respectively, the scalar value of the "vertical velocity" (or the passive scalar) and the "vertical vorticity," may be used as if it were the spatial density of the globally invariant helicity, providing a Lagrangian prescription to control the latter in some situations of studying its physical effects in rapidly rotating flows (ubiquitous in atmosphere of astrophysical objects) with marked 2D3C vortical modes or in purely 2D passive scalars.
New opportunities for quality enhancing of images captured by passive THz camera
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Trofimov, Vladislav V.
2014-10-01
As it is well-known, the passive THz camera allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. Obviously, efficiency of using the passive THz camera depends on its temperature resolution. This characteristic specifies possibilities of the detection for concealed object: minimal size of the object; maximal distance of the detection; image quality. Computer processing of the THz image may lead to many times improving of the image quality without any additional engineering efforts. Therefore, developing of modern computer code for its application to THz images is urgent problem. Using appropriate new methods one may expect such temperature resolution which will allow to see banknote in pocket of a person without any real contact. Modern algorithms for computer processing of THz images allow also to see object inside the human body using a temperature trace on the human skin. This circumstance enhances essentially opportunity of passive THz camera applications for counterterrorism problems. We demonstrate opportunities, achieved at present time, for the detection both of concealed objects and of clothes components due to using of computer processing of images captured by passive THz cameras, manufactured by various companies. Another important result discussed in the paper consists in observation of both THz radiation emitted by incandescent lamp and image reflected from ceramic floorplate. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp., and Capital Normal University (Beijing, China). All algorithms for computer processing of the THz images under consideration in this paper were developed by Russian part of author list. Keywords: THz wave, passive imaging camera, computer processing, security screening, concealed and forbidden objects, reflected image, hand seeing, banknote seeing, ceramic floorplate, incandescent lamp.
NASA Astrophysics Data System (ADS)
Jacobsen, Timothy R.; Milutinovic, James D.; Miller, James R.
1990-11-01
Physical processes are important in determining benthic recruitment success in estuarine ecosystems. We have conducted two field studies with passive surface drifters to examine the large-scale advection and local dispersion in the region of the oyster seed beds in Delaware Bay. The two studies show that the wind is critical in determining the final location of the drifters and that axial fronts in the bay may play an important role in reducing cross-bay particle dispersion and may keep particles in the nearshore oyster beds. Simulations of particle trajectories from a three-dimensional numerical model of Delaware Bay were also analyzed to determine the sensitivity of particle trajectories to varying wind conditions and different assumptions about larval vertical migration.
Passivation layer breakdown during laser-fired contact formation for photovoltaic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghavan, A.; DebRoy, T.; Palmer, T. A.
2014-07-14
Low resistance laser-fired ohmic contacts (LFCs) can be formed on the backside of Si-based solar cells using microsecond pulses. However, the impact of these longer pulse durations on the dielectric passivation layer is not clear. Retention of the passivation layer during processing is critical to ensure low recombination rates of electron-hole pairs at the rear surface of the device. In this work, advanced characterization tools are used to demonstrate that although the SiO{sub 2} passivation layer melts directly below the laser, it is well preserved outside the immediate LFC region over a wide range of processing parameters. As a result,more » low recombination rates at the passivation layer/wafer interface can be expected despite higher energy densities associated with these pulse durations.« less
Citric Acid Passivation of Stainless Steel
NASA Technical Reports Server (NTRS)
Yasensky, David; Reali, John; Larson, Chris; Carl, Chad
2009-01-01
Passivation is a process for cleaning and providing corrosion protection for stainless steel. Currently, on Kennedy Space Center (KSC), only parts passivated with nitric acid are acceptable for use. KSC disposes of approximately 125gal of concentrated nitric acid per year, and receives many parts from vendors who must also dispose of used nitric acid. Unfortunately, nitric acid presents health and environmental hazards. As a result, several recent industry studies have examined citric acid as an alternative. Implementing a citric acid-based passivation procedure would improve the health and environmental safety aspects of passivation process. However although there is a lack of published studies that conclusively prove citric acid is a technically sound passivation agent. In 2007, NASA's KSC Materials Advisory Working Group requested the evaluation of citric acid in place of nitric acid for passivation of parts at KSC. United Space Alliance Materials & Processes engineers have developed a three-phase test plan to evaluate citric acid as an alternative to nitric acid on three stainless steels commonly used at KSC: UNS S30400, S41000, and S17400. Phases 1 and 2 will produce an optimized citric acid treatment based on results from atmospheric exposure at NASA's Beach Corrosion Facility. Phase 3 will compare the optimized solution(s) with nitric acid treatments. If the results indicate that citric acid passivates as well or better than nitric acid, NASA intends to approve this method for parts used at the Kennedy Space Center.
Passive solar design strategies: Remodeling guidelines for conserving energy at home
NASA Astrophysics Data System (ADS)
The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler's typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house's need for purchased heating (and in some cases, cooling) energy - but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical, and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive Solar Design Strategies: Remodeling Guidelines For Conserving Energy At Home is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: the guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; the worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; and the worked example demonstrates how to complete the worksheets for a typical residence.
Ott, N; Beni, A; Ulrich, A; Ludwig, C; Schmutz, P
2014-03-01
Al-Cr-Fe complex metallic alloys are new intermetallic phases with low surface energy, low friction, and high corrosion resistance down to very low pH values (0-2). Flow microcapillary plasma mass spectrometry under potentiostatic control was used to characterize the dynamic aspect of passivation of an Al-Cr-Fe gamma phase in acidic electrolytes, allowing a better insight on the parameters inducing chemical stability at the oxyhydroxide-solution interface. In sulfuric acid pH 0, low element dissolution rates (in the µg cm(-2) range after 60 min) evidenced the passive state of the Al-Cr-Fe gamma phase with a preferential over-stoichiometric dissolution of Al and Fe cations. Longer air-aging was found to be beneficial for stabilizing the passive film. In chloride-containing electrolytes, ten times higher Al dissolution rates were detected at open-circuit potential (OCP), indicating that the spontaneously formed passive film becomes unstable. However, electrochemical polarization at low passive potentials induces electrical field generated oxide film modification, increasing chemical stability at the oxyhydroxide-solution interface. In the high potential passive region, localized attack is initiated with subsequent active metal dissolution. © 2013 Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Fu, Chen; Lin, Zhaojun; Liu, Yan; Cui, Peng; Lv, Yuanjie; Zhou, Yang; Dai, Gang; Luan, Chongbiao
2017-11-01
A method to determine the strain distribution of the AlGaN barrier layer after the device fabrication and the passivation process has been presented. By fitting the calculated parasitic source access resistance with the measured ones for the AlGaN/AlN/GaN HFETs and using the polarization Coulomb field scattering theory, the strain variation of the AlGaN barrier layer after the passivation process has been quantitatively studied. The results show that the tensile strain in the access regions of the AlGaN barrier layer has been increased by 4.62% for the 250 nm-Si3N4 passivated device, and has been decreased by 2.0% for the 400 nm-Si3N4 passivated device, compared to that of before the passivation, respectively. For the gate region of the two devices, the tensile strain has been decreased by 60.77% and increased by 3.60% after the passivation of different thicknesses, oppositely.
Parallel Processing Systems for Passive Ranging During Helicopter Flight
NASA Technical Reports Server (NTRS)
Sridhar, Bavavar; Suorsa, Raymond E.; Showman, Robert D. (Technical Monitor)
1994-01-01
The complexity of rotorcraft missions involving operations close to the ground result in high pilot workload. In order to allow a pilot time to perform mission-oriented tasks, sensor-aiding and automation of some of the guidance and control functions are highly desirable. Images from an electro-optical sensor provide a covert way of detecting objects in the flight path of a low-flying helicopter. Passive ranging consists of processing a sequence of images using techniques based on optical low computation and recursive estimation. The passive ranging algorithm has to extract obstacle information from imagery at rates varying from five to thirty or more frames per second depending on the helicopter speed. We have implemented and tested the passive ranging algorithm off-line using helicopter-collected images. However, the real-time data and computation requirements of the algorithm are beyond the capability of any off-the-shelf microprocessor or digital signal processor. This paper describes the computational requirements of the algorithm and uses parallel processing technology to meet these requirements. Various issues in the selection of a parallel processing architecture are discussed and four different computer architectures are evaluated regarding their suitability to process the algorithm in real-time. Based on this evaluation, we conclude that real-time passive ranging is a realistic goal and can be achieved with a short time.
Passive Acoustic Methods for Tracking Marine Mammals Using Widely-Spaced Bottom-Mounted Hydrophones
2011-10-26
standard time-of-arrival (TOA) tracking methods fail. Clicks and long duration calls (whistles or baleen whale calls) were both considered. Methods...Evaluation Center (AUTEC) and the Pacific Missile Range Facility (PMRF). Beaked whales , minke whales , humpback whales , and sperm whales were the main species...of interest. io. auBJEUi i Lmvia Passive acoustic monitoring, localization, tracking, minke whale , beaked whale , sperm whale , humpback whale
The Development of Advanced Passive Acoustic Monitoring Systems Using microMARS Technology
2015-09-30
localization that will be available in a number of configurations for deep and shallow water environments alike. OBJECTIVES The project has two...through two test series, first targeting the GPS synchronized shallow water and then the self-synchronized deep water configurations. The project will...main objectives: 1. Development of all the components of a compact passive acoustic monitoring system suitable both for shallow water moored
Stratagems of popular homes in the desertic climate…now, in the process of perdition
NASA Astrophysics Data System (ADS)
Benslimane, Nawal; Biara, Ratiba Wided
2017-02-01
The built environment of man has never been and is still not controlled by specialists (architect, planner, etc.). This environment was the result of a popular architecture, which is the product of mass culture nourished by everydayness, the environment and local engineering. This habitat expresses the relationship between environmental constraints and local values, because it reasons in terms of ecosystems and environmental constraints. But, these days in a climate that is increasingly changing, the genius of the physical environment (from city to home) fades. The city, the home succumb simultaneously to an environmental crisis, man at the center of concerns is undermined, subject to climatic discomfort. This paper aims to show the ingenuity of the ancestral production in the most difficult environments to live, facing the passivity of contemporary production in relation to climate and climatic change..
Extreme concentration fluctuations due to local reversibility of mixing in turbulent flows
NASA Astrophysics Data System (ADS)
Xia, Hua; Francois, Nicolas; Punzmann, Horst; Szewc, Kamil; Shats, Michael
2018-05-01
Mixing of a passive scalar in a fluid (e.g. a radioactive spill in the ocean) is the irreversible process towards homogeneous distribution of a substance. In a moving fluid, due to the chaotic advection [H. Aref, J. Fluid Mech. 143 (1984) 1; J. M. Ottino, The Kinematics of Mixing: Stretching,Chaos and Transport (Cambridge University Press, Cambridge, 1989)] mixing is much faster than if driven by molecular diffusion only. Turbulence is known as the most efficient mixing flow [B. I. Shraiman and E. D. Siggia, Nature 405 (2000) 639]. We show that in contrast to spatially periodic flows, two-dimensional turbulence exhibits local reversibility in mixing, which leads to the generation of unpredictable strong fluctuations in the scalar concentration. These fluctuations can also be detected from the analysis of the fluid particle trajectories of the underlying flow.
Lin, Yu-Chun; Phua, Siew Cheng; Lin, Benjamin; Inoue, Takanari
2013-01-01
Diffusion barriers are universal solutions for cells to achieve distinct organizations, compositions, and activities within a limited space. The influence of diffusion barriers on the spatiotemporal dynamics of signaling molecules often determines cellular physiology and functions. Over the years, the passive permeability barriers in various subcellular locales have been characterized using elaborate analytical techniques. In this review, we will summarize the current state of knowledge on the various passive permeability barriers present in mammalian cells. We will conclude with a description of several conventional techniques and one new approach based on chemically-inducible diffusion trap (C-IDT) for probing permeable barriers. PMID:23731778
Alternative to Nitric Acid for Passivation of Stainless Steel Alloys
NASA Technical Reports Server (NTRS)
Lewis, Pattie L.; Kolody, Mark; Curran, Jerry
2013-01-01
Corrosion is an extensive problem that affects the Department of Defense (DoD) and National Aeronautics and Space Administration (NASA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. The DoD and NASA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and reduced operational cost. DoD and NASA agreed to collaborate to validate citric acid as an acceptable passivating agent for stainless steel. This paper details our investigation of prior work developing the citric acid passivation process, development of the test plan, optimization of the process for specific stainless steel alloys, ongoing and planned testing to elucidate the process' resistance to corrosion in comparison to nitric acid, and preliminary results.
First microwave map of the Moon with Chang'E-1 data: The role of local time in global imaging
NASA Astrophysics Data System (ADS)
Zheng, Y. C.; Tsang, K. T.; Chan, K. L.; Zou, Y. L.; Zhang, F.; Ouyang, Z. Y.
2012-05-01
Among recent lunar orbiters, only the Chinese Chang'E-1 (CE-1) was equipped with a passive microwave radiometer (MRM) to measure the natural microwave emission from the lunar surface. The microwave emission, characterized by a frequency-dependent brightness temperature (TB), is related to the physical temperature and dielectric properties of the lunar surface. By measuring the brightness temperature at different frequencies, detailed thermal behavior and properties of the lunar surface can be retrieved. Using CE-1's microwave data, we present here a set of microwave maps of the Moon constructed through a rescaling of TB to noontime or midnight. The adopted processing technique helps to reduce the effect of mixing up the temporal and spatial variations introduced by the satellite's localized measurements which cover different locations of the globe at different lunar local times. The resulting maps show fine structures unseen in previous microwave maps that disregarded the local time effect. We discussed the new features revealed and their possible connections with the lunar geology.
Voices of the poor from the margins of Bengal: structural inequities and health.
Dutta, Mohan J; Dutta, Uttaran
2013-01-01
In opposition to the traditional approaches to health communication that treat the subaltern sectors as passive recipients of messages of enlightenment configured in top-down interventions, the culture-centered approach foregrounds the importance of listening to subaltern communities at the margins through dialogue. We build on earlier culture-centered projects in rural communities of West Bengal, India, to develop participatory research strategies for understanding the local processes through which the structural marginalization of the poor plays out in rural Bengal. Study results point toward the marginalization of the poor both communicatively and economically, attending to the ways in which communicative marginalization lies at the heart of economic oppressions. Through locally articulated concepts of "health as shortage" and "communication as shortage," community members put forth alternative rationalities of health that highlight structural resources at the heart of health. These local articulations of shortage offer an alternative rationality for organizing health promotion efforts in the rural margins of Bengal through the foregrounding of discourses of shortage.
NASA Astrophysics Data System (ADS)
Ma, H. R.; Li, J. W.; Chang, C. T.; Wang, X. M.; Li, R. W.
2017-12-01
Corrosion resistance and passivation behavior of Fe63Cr8Mo3.5Ni5P10B4C4Si2.5 amorphous coatings prepared by the activated combustion high-velocity air fuel (AC-HVAF) and high-velocity oxygen fuel (HVOF) processes have been studied in detail by cyclic potentiodynamic polarization, electrochemical impedance spectroscopy, cathodic polarization and Mott-Schottky approach. The AC-HVAF coating shows higher corrosion resistance than the HVOF coating in 3.5 wt.% NaCl solution, as evidenced by its lower corrosion current density and passive current density. It is found that the superior corrosion resistance of the AC-HVAF coating is attributed to the enhanced formation of a dense passive film with less defective structure, higher pitting resistance and passivity stability, as well as stronger repassivity.
Transfer of Training and Processing Instruction: From Input to Output
ERIC Educational Resources Information Center
VanPatten, Bill; Uludag, Onur
2011-01-01
In this paper we report the findings of an experiment to test whether training via processing instruction transfers to output tasks. Two groups of Turkish L1-English L2 learners participated: one that received processing instruction on passive structures and a control group that did not receive any instruction on passives. A pre-test/multiple…
Simultaneous 3D tracking of passive tracers and microtubule bundles in an active gel
NASA Astrophysics Data System (ADS)
Fan, Yi; Breuer, Kenneth S.; Fluids Team
Kinesin-driven microtubule bundles generate a spontaneous flow in unconfined geometries. They exhibit properties of active matter, including the emergence of collective motion, reduction of apparent viscosity and consumption of local energy. Here we present results from 3D tracking of passive tracers (using Airy rings and 3D scanning) synchronized with 3D measurement of the microtubule bundles motion. This technique is applied to measure viscosity variation and collective flow in a confined geometry with particular attention paid to the self-pumping system recently reported by Wu et al. (2016). Results show that the viscosity in an equilibrium microtubule network is around half that of the isotropic unbundled microtubule solution. Cross-correlations of the active microtubule network and passive tracers define a neighborhood around microtubule bundles in which passive tracers are effectively transported. MRSEC NSF.
NASA Astrophysics Data System (ADS)
Gratier, Jean-Pierre; Noiriel, Catherine; Renard, Francois
2015-04-01
Natural deformation of rocks is often associated with stress-driven differentiation processes leading to irreversible transformations of their microstructures. The development mechanisms of such processes during diagenesis, tectonic, metamorphism or fault differentiation are poorly known as they are difficult to reproduce experimentally due to the very slow kinetics of stress-driven chemical processes. Here, we show that experimental compaction with development of differentiated layering, similar to what happens in natural deformation, can be obtained by indenter techniques in laboratory conditions. Samples of plaster mixed with clay and of diatomite loosely interbedded with volcanic dust were loaded in presence of their saturated aqueous solutions during several months at 40°C and 150°C, respectively. High-resolution X-ray microtomography and scanning electron microscopy observations show that the layering development is a pressure solution self-organized process. Stress-driven dissolution of the soluble minerals (either gypsum or silica) is initiated in the areas initially richer in insoluble minerals (clays or volcanic dust) because the kinetics of diffusive mass transfer along the soluble/insoluble mineral interfaces is much faster than along the healed boundaries of the soluble minerals. The passive concentration of insoluble minerals amplifies the localization of dissolution along some layers oriented perpendicular to the maximum compressive stress. Conversely, in the areas with initial low content in insoluble minerals and clustered soluble minerals, dissolution is slower. Consequently, these areas are less deformed, they host the re-deposition of the soluble species and they act as rigid objects that concentrate the dissolution near their boundaries thus amplifying the differentiation. A crucial parameter required for self-organized process of pressure solution is the presence of a fluid that is a good solvent of at least some of the rock-forming minerals. Another general requirement for the development of such differentiated layering is the heterogeneous mixing of variously soluble and insoluble species. From a general point of view, the development of diagenetic or tectonic layering has crucial consequences in geological processes. The main one is to modify the composition and microstructure of rocks by dissolution of the most soluble species, passive concentration of the insoluble species and re-deposition of the dissolved species at a distance that depends on the transport efficiency (diffusion or advection). Consequently, layering development modifies both the rheological and the transfer properties of rocks. It is the most common strain localization process in the upper crust when a reactive fluid phase is present, complementary to other strain localization processes in the lithosphere. A specific effect is the development of anisotropic properties that may favor local sliding on weak surfaces. This is particularly important in fault zones where pressure solution processes are at work. Modeling of differentiated layering during natural deformation must be rooted in the stress-driven dissolution and transport properties of the various minerals forming the rocks, and on the evolution of their rheological properties. The strength evolution can be taken into account through a weakening factor in the zone of dissolution and a strengthening factor in the zone of deposition. The kinetics evolution is controlled by the critical parameters of pressure solution.
Asif, Muhammad; Guo, Xiangzhou; Zhang, Jing; Miao, Jungang
2018-04-17
Digital cross-correlation is central to many applications including but not limited to Digital Image Processing, Satellite Navigation and Remote Sensing. With recent advancements in digital technology, the computational demands of such applications have increased enormously. In this paper we are presenting a high throughput digital cross correlator, capable of processing 1-bit digitized stream, at the rate of up to 2 GHz, simultaneously on 64 channels i.e., approximately 4 Trillion correlation and accumulation operations per second. In order to achieve higher throughput, we have focused on frequency based partitioning of our design and tried to minimize and localize high frequency operations. This correlator is designed for a Passive Millimeter Wave Imager intended for the detection of contraband items concealed on human body. The goals are to increase the system bandwidth, achieve video rate imaging, improve sensitivity and reduce the size. Design methodology is detailed in subsequent sections, elaborating the techniques enabling high throughput. The design is verified for Xilinx Kintex UltraScale device in simulation and the implementation results are given in terms of device utilization and power consumption estimates. Our results show considerable improvements in throughput as compared to our baseline design, while the correlator successfully meets the functional requirements.
Tax Reform Implications for Rural Communities and Farmers.
ERIC Educational Resources Information Center
Durst, Ron L.; Reeder, Richard J.
1987-01-01
Discusses indirect and long-term rural implications of tax reform: elimination of local sales tax deduction, limits on local bond issues. Summarizes major tax changes affecting agriculture: individual income taxes, corporate tax rates, tax treatment of capital, capital gains, land deductions, cash accounting, development costs, passive losses and…
CVD-Based Valence-Mending Passivation for Crystalline-Si Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Meng
2015-03-01
The objective of this project is to investigate a new surface passivation technique, valence-mending passivation, for its applications in crystalline-Si solar cells to achieve significant efficiency improvement and cost reduction. As the enabling technique, the project includes the development of chemical vapor deposition recipes to passivate textured Si(100) and multicrystalline-Si surfaces by sulfur and the characterization of the passivated Si surfaces, including thermal stability, Schottky barrier height, contact resistance and surface recombination. One important application is to replace the Ag finger electrode in Si cells with Al to reduce cost, by ~$0.1/Wp, and allow terawatt-scale deployment of crystalline-Si solar cells.more » These all-Al Si cells require a low-temperature metallization process for the Al electrode, to be compatible with valence-mending passivation and to prevent Al diffusion into n-type Si. Another application is to explore valence-mending passivation of grain boundaries in multicrystalline Si by diffusing sulfur into grain boundaries, to reduce the efficiency gas between monocrystalline-Si solar cells and multicrystalline-Si cells. The major accomplishments of this project include: 1) Demonstration of chemical vapor deposition processes for valence-mending passivation of both monocrystalline Si(100) and multicrystalline Si surfaces. Record Schottky barriers have been demonstrated, with the new record-low barrier of less than 0.08 eV between Al and sulfur-passivated n-type Si(100) and the new record-high barrier of 1.14 eV between Al and sulfur-passivated p-type Si(100). On the textured p-type monocrystalline Si(100) surface, the highest barrier with Al is 0.85 eV by valence-mending passivation. 2) Demonstration of a low-temperature metallization process for Al in crystalline-Si solar cells. The new metallization process is based on electroplating of Al in a room-temperature ionic liquid. The resistivity of the electroplated Al is ~7×10–6 ohm-cm, similar to that of screen-printed Ag. 3) Demonstration of two all-Al, Ag-free Si solar cells, with an electroplated Al front electrode and a screen-printed Al back electrode. One cell is an industrial p-type front-emitter cell, and the other is an n-type back-emitter cell. The efficiency of the p-type cell is close to 15%. This is an industrial cell and its efficiency is capped at ~18%. 4) Demonstration of grain boundary passivation by both hydrogen and sulfur using hydrogen sulfide (H2S). When the new grain boundary passivation is combined with Al2O3 surface passivation and post-annealing, the minority carrier lifetime in the p-type multicrystalline Si samples shows a significant improvement up to 68 fold. 5) In a side project, a simple green process is developed which is capable of recycling over 90% of the Si material in end-of-life crystalline-Si solar cells. The recycled Si meets the specifications for solar-grade Si and can be used as a new poly-Si feedstock for ingot growth.« less
Superacid Passivation of Crystalline Silicon Surfaces.
Bullock, James; Kiriya, Daisuke; Grant, Nicholas; Azcatl, Angelica; Hettick, Mark; Kho, Teng; Phang, Pheng; Sio, Hang C; Yan, Di; Macdonald, Daniel; Quevedo-Lopez, Manuel A; Wallace, Robert M; Cuevas, Andres; Javey, Ali
2016-09-14
The reduction of parasitic recombination processes commonly occurring within the silicon crystal and at its surfaces is of primary importance in crystalline silicon devices, particularly in photovoltaics. Here we explore a simple, room temperature treatment, involving a nonaqueous solution of the superacid bis(trifluoromethane)sulfonimide, to temporarily deactivate recombination centers at the surface. We show that this treatment leads to a significant enhancement in optoelectronic properties of the silicon wafer, attaining a level of surface passivation in line with state-of-the-art dielectric passivation films. Finally, we demonstrate its advantage as a bulk lifetime and process cleanliness monitor, establishing its compatibility with large area photoluminescence imaging in the process.
NASA Astrophysics Data System (ADS)
Spilker, Justin; Bezanson, Rachel; Barišić, Ivana; Bell, Eric; Lagos, Claudia del P.; Maseda, Michael; Muzzin, Adam; Pacifici, Camilla; Sobral, David; Straatman, Caroline; van der Wel, Arjen; van Dokkum, Pieter; Weiner, Benjamin; Whitaker, Katherine; Williams, Christina C.; Wu, Po-Feng
2018-06-01
A decade of study has established that the molecular gas properties of star-forming galaxies follow coherent scaling relations out to z ∼ 3, suggesting remarkable regularity of the interplay between molecular gas, star formation, and stellar growth. Passive galaxies, however, are expected to be gas-poor and therefore faint, and thus little is known about molecular gas in passive galaxies beyond the local universe. Here we present deep Atacama Large Millimeter/submillimeter Array observations of CO(2–1) emission in eight massive (M star ∼ 1011 M ⊙) galaxies at z ∼ 0.7 selected to lie a factor of 3–10 below the star-forming sequence at this redshift, drawn from the Large Early Galaxy Astrophysics Census survey. We significantly detect half the sample, finding molecular gas fractions ≲0.1. We show that the molecular and stellar rotational axes are broadly consistent, arguing that the molecular gas was not accreted after the galaxies became quiescent. We find that scaling relations extrapolated from the star-forming population overpredict both the gas fraction and gas depletion time for passive objects, suggesting the existence of either a break or large increase in scatter in these relations at low specific star formation rate. Finally, we show that the gas fractions of the passive galaxies we have observed at intermediate redshifts are naturally consistent with evolution into local, massive early-type galaxies by continued low-level star formation, with no need for further gas accretion or dynamical stabilization of the gas reservoirs in the intervening 6 billion years.
Passive sampling for the isotopic fingerprinting of atmospheric mercury
NASA Astrophysics Data System (ADS)
Bergquist, B. A.; MacLagan, D.; Spoznar, N.; Kaplan, R.; Chandan, P.; Stupple, G.; Zimmerman, L.; Wania, F.; Mitchell, C. P. J.; Steffen, A.; Monaci, F.; Derry, L. A.
2017-12-01
Recent studies show that there are variations in the mercury (Hg) isotopic signature of atmospheric Hg, which demonstrates the potential for source tracing and improved understanding of atmospheric cycling of Hg. However, current methods for both measuring atmospheric Hg and collecting enough atmospheric Hg for isotopic analyses require expensive instruments that need power and expertise. Additionally, methods for collecting enough atmospheric Hg for isotopic analysis require pumping air through traps for long periods (weeks and longer). Combining a new passive atmospheric sampler for mercury (Hg) with novel Hg isotopic analyses will allow for the application of stable Hg isotopes to atmospheric studies of Hg. Our group has been testing a new passive sampler for gaseous Hg that relies on the diffusion of Hg through a diffusive barrier and adsorption onto a sulphur-impregnated activated carbon sorbent. The benefit of this passive sampler is that it is low cost, requires no power, and collects gaseous Hg for up to one year with linear, well-defined uptake, which allows for reproducible and accurate measurements of atmospheric gaseous Hg concentrations ( 8% uncertainty). As little as one month of sampling is often adequate to collect sufficient Hg for isotopic analysis at typical background concentrations. Experiments comparing the isotopic Hg signature in activated carbon samples using different approaches (i.e. by passive diffusion, by passive diffusion through diffusive barriers of different thickness, by active pumping) and at different temperatures confirm that the sampling process itself does not impose mass-independent fractionation (MIF). However, sampling does result in a consistent and thus correctable mass-dependent fractionation (MDF) effect. Therefore, the sampler preserves Hg MIF with very high accuracy and precision, which is necessary for atmospheric source tracing, and reasonable MDF can be estimated with some increase in error. In addition to experimental work, initial field data will be presented including a transect of increasing distance from a known strong source of Hg (Mt. Amiata mine, Italy), downwind of Kilauea volcano in Hawaii, and several other locales including the Arctic station Alert and various sites across Ontario, Canada.
Potential of bias correction for downscaling passive microwave and soil moisture data
USDA-ARS?s Scientific Manuscript database
Passive microwave satellites such as SMOS (Soil Moisture and Ocean Salinity) or SMAP (Soil Moisture Active Passive) observe brightness temperature (TB) and retrieve soil moisture at a spatial resolution greater than most hydrological processes. Bias correction is proposed as a simple method to disag...
Expanded opportunities of THz passive camera for the detection of concealed objects
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.
2013-10-01
Among the security problems, the detection of object implanted into either the human body or animal body is the urgent problem. At the present time the main tool for the detection of such object is X-raying only. However, X-ray is the ionized radiation and therefore can not be used often. Other way for the problem solving is passive THz imaging using. In our opinion, using of the passive THz camera may help to detect the object implanted into the human body under certain conditions. The physical reason of such possibility arises from temperature trace on the human skin as a result of the difference in temperature between object and parts of human body. Modern passive THz cameras have not enough resolution in temperature to see this difference. That is why, we use computer processing to enhance the passive THz camera resolution for this application. After computer processing of images captured by passive THz camera TS4, developed by ThruVision Systems Ltd., we may see the pronounced temperature trace on the human body skin from the water, which is drunk by person, or other food eaten by person. Nevertheless, there are many difficulties on the way of full soution of this problem. We illustrate also an improvement of quality of the image captured by comercially available passive THz cameras using computer processing. In some cases, one can fully supress a noise on the image without loss of its quality. Using computer processing of the THz image of objects concealed on the human body, one may improve it many times. Consequently, the instrumental resolution of such device may be increased without any additional engineering efforts.
Modeling cytoskeletal traffic: an interplay between passive diffusion and active transport.
Neri, Izaak; Kern, Norbert; Parmeggiani, Andrea
2013-03-01
We introduce the totally asymmetric simple exclusion process with Langmuir kinetics on a network as a microscopic model for active motor protein transport on the cytoskeleton, immersed in the diffusive cytoplasm. We discuss how the interplay between active transport along a network and infinite diffusion in a bulk reservoir leads to a heterogeneous matter distribution on various scales: we find three regimes for steady state transport, corresponding to the scale of the network, of individual segments, or local to sites. At low exchange rates strong density heterogeneities develop between different segments in the network. In this regime one has to consider the topological complexity of the whole network to describe transport. In contrast, at moderate exchange rates the transport through the network decouples, and the physics is determined by single segments and the local topology. At last, for very high exchange rates the homogeneous Langmuir process dominates the stationary state. We introduce effective rate diagrams for the network to identify these different regimes. Based on this method we develop an intuitive but generic picture of how the stationary state of excluded volume processes on complex networks can be understood in terms of the single-segment phase diagram.
Investigation of passive films on nickel Alloy 690 in lead-containing environments
NASA Astrophysics Data System (ADS)
Peng, B.; Lu, B. T.; Luo, J. L.; Lu, Y. C.; Ma, H. Y.
2008-09-01
Passive films formed on Alloy UNS N06690 were investigated in simulated crevice chemistries. It was found the role of lead in corrosion processes is strongly dependent on the pH value of the testing solutions. At pH 1.5 the effect of lead is narrowly noticeable; while at pH 12.7, lead has a significant influence on the electrochemical performance of alloy UNS N06690. The lead alters the surface morphologies at both pH and account for higher hydroxide content in the surface film at pH 12.7. The lead incorporation hinders the formation of spinel oxides during the passivation in alkaline solution. Nanoindentation tests indicate a significant lead-induced degradation in the mechanical properties of passive films. The passivation degradation is attributed to detrimental effects of lead via interrupting the dehydration process and hindering the formation of protective layers on the alloy surface.
A Non-invasive Real-time Localization System for Enhanced Efficacy in Nasogastric Intubation.
Sun, Zhenglong; Foong, Shaohui; Maréchal, Luc; Tan, U-Xuan; Teo, Tee Hui; Shabbir, Asim
2015-12-01
Nasogastric (NG) intubation is one of the most commonly performed clinical procedures. Real-time localization and tracking of the NG tube passage at the larynx region into the esophagus is crucial for safety, but is lacking in current practice. In this paper, we present the design, analysis and evaluation of a non-invasive real-time localization system using passive magnetic tracking techniques to improve efficacy of the clinical NG intubation process. By embedding a small permanent magnet at the insertion tip of the NG tube, a wearable system containing embedded sensors around the neck can determine the absolute position of the NG tube inside the body in real-time to assist in insertion. In order to validate the feasibility of the proposed system in detecting erroneous tube placement, typical reference intubation trajectories are first analyzed using anatomically correct models and localization accuracy of the system are evaluated using a precise robotic platform. It is found that the root-mean-squared tracking accuracy is within 5.3 mm for both the esophagus and trachea intubation pathways. Experiments were also designed and performed to demonstrate that the system is capable of tracking the NG tube accurately in biological environments even in presence of stationary ferromagnetic objects (such as clinical instruments). With minimal physical modification to the NG tube and clinical process, this system allows accurate and efficient localization and confirmation of correct NG tube placement without supplemental radiographic methods which is considered the current clinical standard.
The Mechanism of Isotonic Water Transport
Diamond, Jared M.
1964-01-01
The mechanism by which active solute transport causes water transport in isotonic proportions across epithelial membranes has been investigated. The principle of the experiments was to measure the osmolarity of the transported fluid when the osmolarity of the bathing solution was varied over an eightfold range by varying the NaCl concentration or by adding impermeant non-electrolytes. An in vitro preparation of rabbit gall bladder was suspended in moist oxygen without an outer bathing solution, and the pure transported fluid was collected as it dripped off the serosal surface. Under all conditions the transported fluid was found to approximate an NaCl solution isotonic to whatever bathing solution used. This finding means that the mechanism of isotonic water transport in the gall bladder is neither the double membrane effect nor co-diffusion but rather local osmosis. In other words, active NaCl transport maintains a locally high concentration of solute in some restricted space in the vicinity of the cell membrane, and water follows NaCl in response to this local osmotic gradient. An equation has been derived enabling one to calculate whether the passive water permeability of an organ is high enough to account for complete osmotic equilibration of actively transported solute. By application of this equation, water transport associated with active NaCl transport in the gall bladder cannot go through the channels for water flow under passive conditions, since these channels are grossly too impermeable. Furthermore, solute-linked water transport fails to produce the streaming potentials expected for water flow through these passive channels. Hence solute-linked water transport does not occur in the passive channels but instead involves special structures in the cell membrane, which remain to be identified. PMID:14212146
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2016-01-01
National Aeronautics and Space Administration (NASA) Headquarters chartered the Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objectives of NASA TEERM are to: Reduce or eliminate the use of hazardous materials or hazardous processes at manufacturing, remanufacturing, and sustainment locations. Avoid duplication of effort in actions required to reduce or eliminate hazardous materials through joint center cooperation and technology sharing. Corrosion is an extensive problem that affects the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). The damaging effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. NASA and ESA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Passivation is defined by The American Heritage Dictionary of the English Language as to treat or coat (a metal) in order to reduce the chemical reactivity of its surface. Passivation works by forming a shielding outer (metal oxide) layer that reduces the impact of destructive environmental factors such as air or water. Consequently, this process necessitates a final product that is very clean and free of iron and other contaminants. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid is an alternative to nitric acid for the passivation of stainless steels. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and reduced operational cost. The primary objective of this effort is to qualify citric acid as an environmentally-preferable alternative to nitric acid for the passivation of stainless steel alloys. While citric acid use has become more prominent in industry, there is little evidence that citric acid is a technically sound passivation agent, especially for the unique and critical applications encountered by NASA and ESA.
Structures and Intermittency in a Passive Scalar Model
NASA Astrophysics Data System (ADS)
Vergassola, M.; Mazzino, A.
1997-09-01
Perturbative expansions for intermittency scaling exponents in the Kraichnan passive scalar model [Phys. Rev. Lett. 72, 1016 (1994)] are investigated. A one-dimensional compressible model is considered for this purpose. High resolution Monte Carlo simulations using an Ito approach adapted to an advecting velocity field with a very short correlation time are performed and lead to clean scaling behavior for passive scalar structure functions. Perturbative predictions for the scaling exponents around the Gaussian limit of the model are derived as in the Kraichnan model. Their comparison with the simulations indicates that the scale-invariant perturbative scheme correctly captures the inertial range intermittency corrections associated with the intense localized structures observed in the dynamics.
Lin, Yu-Chun; Phua, Siew Cheng; Lin, Benjamin; Inoue, Takanari
2013-08-01
Diffusion barriers are universal solutions for cells to achieve distinct organizations, compositions, and activities within a limited space. The influence of diffusion barriers on the spatiotemporal dynamics of signaling molecules often determines cellular physiology and functions. Over the years, the passive permeability barriers in various subcellular locales have been characterized using elaborate analytical techniques. In this review, we will summarize the current state of knowledge on the various passive permeability barriers present in mammalian cells. We will conclude with a description of several conventional techniques and one new approach based on chemically inducible diffusion trap (CIDT) for probing permeable barriers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Turbulent transport measurements in a model of GT-combustor
NASA Astrophysics Data System (ADS)
Chikishev, L. M.; Gobyzov, O. A.; Sharaborin, D. K.; Lobasov, A. S.; Dulin, V. M.; Markovich, D. M.; Tsatiashvili, V. V.
2016-10-01
To reduce NOx formation modern industrial power gas-turbines utilizes lean premixed combustion of natural gas. The uniform distribution of local fuel/air ratio in the combustion chamber plays one of the key roles in the field of lean combustion to prevent thermo-acoustic pulsations. Present paper reports on simultaneous Particle Image Velocimetry and acetone Planar Laser Induced Fluorescence measurements in a cold model of GT-combustor to investigate mixing processes which are relevant to the organization of lean premixed combustion. Velocity and passive admixture pulsations correlations were measured to verify gradient closer model, which is often used in Reynolds-Averaged Navier-Stokes (RANS) simulation of turbulent mixing.
Four-channel optically pumped atomic magnetometer for magnetoencephalography
Colombo, Anthony P.; Carter, Tony R.; Borna, Amir; Jau, Yuan-Yu; Johnson, Cort N.; Dagel, Amber L.; Schwindt, Peter D. D.
2016-01-01
We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. This module will serve as a building block of an array for magnetic source localization. PMID:27410816
Four-channel optically pumped atomic magnetometer for magnetoencephalography
Colombo, Anthony P.; Carter, Tony R.; Borna, Amir; ...
2016-06-29
We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz 1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. As a result, this module will serve as a building block of an array for magnetic source localization.
Measurements and mechanisms of localized aqueous corrosion in aluminum-lithium alloys
NASA Technical Reports Server (NTRS)
Buchheit, Rudolph G., Jr.; Stoner, Glenn E.
1990-01-01
Like most heat treatable aluminum alloys, localized corrosion and stress corrosion of Al-Li-Cu alloys is strongly dependent on the nature and distribution of second phase particles. To develop a mechanistic understanding of the role of localized corrosion in the stress corrosion process, bulk samples of T(sub 1) (Al2CuLi) and a range of Al-Cu-Fe impurity phases were prepared for electrochemical experiments. Potentiodynamic polarization and galvanic couple experiments were performed in standard 0.6 M NaCl and in simulated crevice solutions to assess corrosion behavior of these particles with respect to the alpha-Al matrix. A comparison of time to failure versus applied potential using a constant load, smooth bar SCC test technique in Cl(-), Cl(-)/CrO4(2-), and Cl(-)/CO3(2-) environments shows that rapid failures are to be expected when applied potentials are more positive than the breakaway potential (E sub br) of T(sub 1) (crack tip) but less than E(sub br) of alpha-Al (crack walls). It is shown that this criterion is not satisfied in aerated Cl(-) solutions. Accordingly, SCC resistance is good. This criterion is satisfied, however, in an alkaline isolated fissure exposed to a CO2 containing atmosphere. Rapid failure induced by these fissures was recently termed preexposure embrittlement. Anodic polarization shows that the corrosion behavior of T(sub 1) is relatively unaffected in alkaline CO3(2-) environments but the alpha-Al phase is rapidly passivated. X ray diffraction of crevice walls from artificial crevices suggests that passivation of alpha-Al occurs as hydrotalcite-type compound (LiAl2(OH)6)2(+) - CO3(2-) - nH2O.
Kim, Dae-Hee; Choi, Jae-Hun; Lim, Myung-Eun; Park, Soo-Jun
2008-01-01
This paper suggests the method of correcting distance between an ambient intelligence display and a user based on linear regression and smoothing method, by which distance information of a user who approaches to the display can he accurately output even in an unanticipated condition using a passive infrared VIR) sensor and an ultrasonic device. The developed system consists of an ambient intelligence display and an ultrasonic transmitter, and a sensor gateway. Each module communicates with each other through RF (Radio frequency) communication. The ambient intelligence display includes an ultrasonic receiver and a PIR sensor for motion detection. In particular, this system selects and processes algorithms such as smoothing or linear regression for current input data processing dynamically through judgment process that is determined using the previous reliable data stored in a queue. In addition, we implemented GUI software with JAVA for real time location tracking and an ambient intelligence display.
Haefliger, D; Stemmer, A
2003-03-01
A simple, one-step process to fabricate high-quality apertures for scanning near-field optical microscope probes based on aluminium-coated silicon nitride cantilevers is presented. A thin evanescent optical field at a glass-water interface was used to heat the aluminium at the tip apex due to light absorption. The heat induced a breakdown of the passivating oxide layer and local corrosion of the metal, which selectively exposed the front-most part of the probe tip from the aluminium. Apertures with a protruding silicon nitride tip up to 72 nm in height were fabricated. The height of the protrusion was controlled by the extent of the evanescent field, whereas the diameter depended on the geometry of the probe substrate. The corrosion process proved to be self-terminating, yielding highly reproducible tip heights. Near-field optical resolution in a transmission mode of 85 nm was demonstrated.
Effect of load deflection on corrosion behavior of NiTi wire.
Liu, I H; Lee, T M; Chang, C Y; Liu, C K
2007-06-01
For dental orthodontic applications, NiTi wires are used under bending conditions in the oral environment for a long period. The purpose of this study was to investigate the effect of bending stress on the corrosion of NiTi wires using potentiodynamic and potentiostatic tests in artificial saliva. The results indicated that bending stress induces a higher corrosion rate of NiTi wires in passive regions. It is suggested that the passive oxide film of specimens would be damaged under bending conditions. Auger electron spectroscopic analysis showed a lower thickness of passive films on stressed NiTi wires compared with unstressed specimens in the passive region. By scanning electron microscopy, localized corrosion was observed on stressed Sentalloy specimens after a potentiodynamic test at pH 2. In conclusion, this study indicated that bending stress changed the corrosion properties and surface characteristics of NiTi wires in a simulated intra-oral environment.
Hydrodynamic collective effects of active protein machines in solution and lipid bilayers
Mikhailov, Alexander S.; Kapral, Raymond
2015-01-01
The cytoplasm and biomembranes in biological cells contain large numbers of proteins that cyclically change their shapes. They are molecular machines that can function as molecular motors or carry out various other tasks in the cell. Many enzymes also undergo conformational changes within their turnover cycles. We analyze the advection effects that nonthermal fluctuating hydrodynamic flows induced by active proteins have on other passive molecules in solution or membranes. We show that the diffusion constants of passive particles are enhanced substantially. Furthermore, when gradients of active proteins are present, a chemotaxis-like drift of passive particles takes place. In lipid bilayers, the effects are strongly nonlocal, so that active inclusions in the entire membrane contribute to local diffusion enhancement and the drift. All active proteins in a biological cell or in a membrane contribute to such effects and all passive particles, and the proteins themselves, will be subject to them. PMID:26124140
A photometrically and spectroscopically confirmed population of passive spiral galaxies
NASA Astrophysics Data System (ADS)
Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin A.; Dolley, Tim; Crossett, Jacob P.; Bonne, Nicolas J.
2016-10-01
We have identified a population of passive spiral galaxies from photometry and integral field spectroscopy. We selected z < 0.035 spiral galaxies that have WISE colours consistent with little mid-infrared emission from warm dust. Matched aperture photometry of 51 spiral galaxies in ultraviolet, optical and mid-infrared show these galaxies have colours consistent with passive galaxies. Six galaxies form a spectroscopic pilot study and were observed using the Wide-Field Spectrograph to check for signs of nebular emission from star formation. We see no evidence of substantial nebular emission found in previous red spiral samples. These six galaxies possess absorption-line spectra with 4000 Å breaks consistent with an average luminosity-weighted age of 2.3 Gyr. Our photometric and integral field spectroscopic observations confirm the existence of a population of local passive spiral galaxies, implying that transformation into early-type morphologies is not required for the quenching of star formation.
Constructing Learning Spaces? Videoconferencing at Local Learning Centres in Sweden
ERIC Educational Resources Information Center
Logdlund, Ulrik
2010-01-01
This article explores videoconferencing in the context of local learning centres in Sweden. The practice is described as a "learning space" in which adult learners construct socio-spatial relations. The study goes beyond a sociological apprehension of actors and opposes the idea of the material as neutral, passive and conformed by…
Passive Impact Damage Detection of Fiber Glass Composite Panels
2013-12-19
PASSIVE IMPACT DAMAGE DETECTION OF FIBER GLASS COMPOSITE PANELS. By BRUNO ZAMORANO-SENDEROS A dissertation...COVERED 04-11-2012 to 10-12-2013 4. TITLE AND SUBTITLE PASSIVE IMPACT DAMAGE DETECTION OF FIBER GLASS COMPOSITE PANELS 5a. CONTRACT NUMBER 5b...process. .................................... 31 Figure 3-8 Sensor attached to the fiber glass fabric
Passive Sensor Integration for Vehicle Self-Localization in Urban Traffic Environment †
Gu, Yanlei; Hsu, Li-Ta; Kamijo, Shunsuke
2015-01-01
This research proposes an accurate vehicular positioning system which can achieve lane-level performance in urban canyons. Multiple passive sensors, which include Global Navigation Satellite System (GNSS) receivers, onboard cameras and inertial sensors, are integrated in the proposed system. As the main source for the localization, the GNSS technique suffers from Non-Line-Of-Sight (NLOS) propagation and multipath effects in urban canyons. This paper proposes to employ a novel GNSS positioning technique in the integration. The employed GNSS technique reduces the multipath and NLOS effects by using the 3D building map. In addition, the inertial sensor can describe the vehicle motion, but has a drift problem as time increases. This paper develops vision-based lane detection, which is firstly used for controlling the drift of the inertial sensor. Moreover, the lane keeping and changing behaviors are extracted from the lane detection function, and further reduce the lateral positioning error in the proposed localization system. We evaluate the integrated localization system in the challenging city urban scenario. The experiments demonstrate the proposed method has sub-meter accuracy with respect to mean positioning error. PMID:26633420
A large-aperture low-cost hydrophone array for tracking whales from small boats.
Miller, B; Dawson, S
2009-11-01
A passive sonar array designed for tracking diving sperm whales in three dimensions from a single small vessel is presented, and the advantages and limitations of operating this array from a 6 m boat are described. The system consists of four free floating buoys, each with a hydrophone, built-in recorder, and global positioning system receiver (GPS), and one vertical stereo hydrophone array deployed from the boat. Array recordings are post-processed onshore to obtain diving profiles of vocalizing sperm whales. Recordings are synchronized using a GPS timing pulse recorded onto each track. Sensitivity analysis based on hyperbolic localization methods is used to obtain probability distributions for the whale's three-dimensional location for vocalizations received by at least four hydrophones. These localizations are compared to those obtained via isodiachronic sequential bound estimation. Results from deployment of the system around a sperm whale in the Kaikoura Canyon in New Zealand are shown.
Upgraded metallurgical-grade silicon solar cells with efficiency above 20%
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, P.; Rougieux, F. E.; Samundsett, C.
We present solar cells fabricated with n-type Czochralski–silicon wafers grown with strongly compensated 100% upgraded metallurgical-grade feedstock, with efficiencies above 20%. The cells have a passivated boron-diffused front surface, and a rear locally phosphorus-diffused structure fabricated using an etch-back process. The local heavy phosphorus diffusion on the rear helps to maintain a high bulk lifetime in the substrates via phosphorus gettering, whilst also reducing recombination under the rear-side metal contacts. The independently measured results yield a peak efficiency of 20.9% for the best upgraded metallurgical-grade silicon cell and 21.9% for a control device made with electronic-grade float-zone silicon. The presencemore » of boron-oxygen related defects in the cells is also investigated, and we confirm that these defects can be partially deactivated permanently by annealing under illumination.« less
NASA Technical Reports Server (NTRS)
Ebmeier, S.K.; Sayer, Andrew M.; Grainger, R. G.; Mather, T. A.; Carboni, E.
2014-01-01
The impact of volcanic emissions, especially from passive degassing and minor explosions, is a source of uncertainty in estimations of aerosol indirect effects. Observations of the impact of volcanic aerosol on clouds contribute to our understanding of both present-day atmospheric properties and of the pre-industrial baseline necessary to assess aerosol radiative forcing. We present systematic measurements over several years at multiple active and inactive volcanic islands in regions of low present-day aerosol burden. The timeaveraged indirect aerosol effects within 200 kilometers downwind of island volcanoes are observed using Moderate Resolution Imaging Spectroradiometer (MODIS, 2002-2013) and Advanced Along-Track Scanning Radiometer (AATSR, 2002- 2008) data. Retrievals of aerosol and cloud properties at Kilauea (Hawaii), Yasur (Vanuatu) and Piton de la Fournaise (la Reunion) are rotated about the volcanic vent to be parallel to wind direction, so that upwind and downwind retrievals can be compared. The emissions from all three volcanoes - including those from passive degassing, Strombolian activity and minor explosions - lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference ranging from 2 - 8 micrometers at the different volcanoes in different seasons. Estimations of the difference in Top of Atmosphere upward Short Wave flux upwind and downwind of the active volcanoes from NASA's Clouds and the Earth's Radiant Energy System (CERES) suggest a downwind elevation of between 10 and 45 Watts per square meter at distances of 150 - 400 kilometers from the volcano, with much greater local (less than 80 kilometers) effects. Comparison of these observations with cloud properties at isolated islands without degassing or erupting volcanoes suggests that these patterns are not purely orographic in origin. Our observations of unpolluted, isolated marine settings may capture processes similar to those in the pre-industrial marine atmosphere.
Opto-acoustic microscopy reveals adhesion mechanics of single cells
NASA Astrophysics Data System (ADS)
Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand
2018-01-01
Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Zc, as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZc reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, Km, that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, Sr/St. We show that Km can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while Sr/St is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.
Opto-acoustic microscopy reveals adhesion mechanics of single cells.
Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand
2018-01-01
Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Z c , as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZ c reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, K m , that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, S r /S t . We show that K m can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while S r /S t is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.
Woo Choi, Jin; Woo, Hee Chul; Huang, Xiaoguang; Jung, Wan-Gil; Kim, Bong-Joong; Jeon, Sie-Wook; Yim, Sang-Youp; Lee, Jae-Suk; Lee, Chang-Lyoul
2018-05-22
The photoluminescence quantum yield (PLQY) and charge carrier mobility of organic-inorganic perovskite QDs were enhanced by the optimization of crystallinity and surface passivation as well as solid-state ligand exchange. The crystallinity of perovskite QDs was determined by the Effective solvent field (Esol) of various solvents for precipitation. The solvent with high Esol could more quickly countervail the localized field generated by the polar solvent, and it causes fast crystallization of the dissolved precursor, which results in poor crystallinity. The post-ligand adding process (PLAP) and post-ligand exchange process (PLEP) increase the PLQY of perovskite QDs by reducing non-radiative recombination and the density of surface defect states through surface passivation. Particularly, the post ligand exchange process (PLEP) in the solid-state improved the charge carrier mobility of perovskite QDs in addition to the PLQY enhancement. The ligand exchange with short alkyl chain length ligands could improve the packing density of perovskite QDs in films by reducing the inter-particle distance between perovskite QDs. The maximum hole mobility of 6.2 × 10-3 cm2 V-1 s-1, one order higher than that of pristine QDs without the PLEP, is obtained at perovskite QDs with hexyl ligands. By using PLEP treatment, compared to the pristine device, a 2.5 times higher current efficiency in perovskite QD-LEDs was achieved due to the improved charge carrier mobility and PLQY.
NASA Astrophysics Data System (ADS)
Sharp, G.; Mount, G.
2017-12-01
Acid mine drainage pollutes over 3000 miles of streams and ground water in Pennsylvania alone, and in response many solutions have been developed to counteract the effects of acidic mine drainage. It is estimated by USGS that restoring these watersheds would cost 5 billion-15 billion in total. As economic conditions place limits on expenditures, cost effective means of remediation will be of critical importance. One such method is passive bioremediation, and in the case of metal contamination, self-sustaining oxygenation. Our location of interest is the Tanoma Acid Mine Drainage engineered wetland near Tanoma, Pennsylvania. It is estimated that up to 5,000 gallons per minute is currently being discharged into the site. While most local remediation sites are acidic (pH <4), the Tanoma wetland allows for the study of bioremediation in more neutral pH setting (pH of 5.5-7.5). In this study, we look to further understand biologic, chemical, and hydrologic controls that contribute to the efficiency of the wetland. Our research will focus on the spatial and temporal distribution of biomass through the wetland system as well as changes in water and soil chemistry. Local biofilm (Leptothrix discophora ) are an important part of the remediation process, using iron from the water as an energy source. The bacteria reduce the iron content of the water, precipitating it onto the pond bed as Terraced Iron Formations (TIF). Terraces iron formations (TIF's) are correlated with localized biofilm-archaea densities where archaea thrive in iron rich sediments. By determining bacteria densities in the wetland through gram stain analysis, we can further understand their role in terraced iron formation creation, find localized TIF's that occur, and correlate methane production due to archaea in that location. Mapping TIF locations and identifying bacteria densities will help determine the bioremediation effects on the overall efficiency of iron reduction throughout the Tanoma AMD passive remediation system.
Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves.
Shera, Christopher A
2003-07-01
Mammalian spontaneous otoacoustic emissions (SOAEs) have been suggested to arise by three different mechanisms. The local-oscillator model, dating back to the work of Thomas Gold, supposes that SOAEs arise through the local, autonomous oscillation of some cellular constituent of the organ of Corti (e.g., the "active process" underlying the cochlear amplifier). Two other models, by contrast, both suppose that SOAEs are a global collective phenomenon--cochlear standing waves created by multiple internal reflection--but differ on the nature of the proposed power source: Whereas the "passive" standing-wave model supposes that SOAEs are biological noise, passively amplified by cochlear standing-wave resonances acting as narrow-band nonlinear filters, the "active" standing-wave model supposes that standing-wave amplitudes are actively maintained by coherent wave amplification within the cochlea. Quantitative tests of key predictions that distinguish the local-oscillator and global standing-wave models are presented and shown to support the global standing-wave model. In addition to predicting the existence of multiple emissions with a characteristic minimum frequency spacing, the global standing-wave model accurately predicts the mean value of this spacing, its standard deviation, and its power-law dependence on SOAE frequency. Furthermore, the global standing-wave model accounts for the magnitude, sign, and frequency dependence of changes in SOAE frequency that result from modulations in middle-ear stiffness. Although some of these SOAE characteristics may be replicable through artful ad hoc adjustment of local-oscillator models, they all arise quite naturally in the standing-wave framework. Finally, the statistics of SOAE time waveforms demonstrate that SOAEs are coherent, amplitude-stabilized signals, as predicted by the active standing-wave model. Taken together, the results imply that SOAEs are amplitude-stabilized standing waves produced by the cochlea acting as a biological, hydromechanical analog of a laser oscillator. Contrary to recent claims, spontaneous emission of sound from the ear does not require the autonomous mechanical oscillation of its cellular constituents.
NASA Astrophysics Data System (ADS)
Roundtree, Russell
A controlled hydraulic fracture experiment was performed on two medium sized (11" x 11" x 15") synthetic layered blocks of low permeability, low porosity Lyons sandstone sandwiched between cement. The purpose of the research was to better understand and characterize the fracture evolution as the fracture tip impinged upon the layer boundaries between the well bonded layers. It is also one of the first documented uses of passive microseismic used in a laboratory environment to characterize hydraulic fracturing. A relatively low viscosity fluid of 1000 centipoise, compared to properly scaled previous work (Casas 2005, and Athavale 2007), was pumped at a constant rate of 10 mL/minute through a steel cased hole landed and isolated in the sandstone layer. Efforts were made to contain the hydraulic fracture within the confines of the rock specimen to retain the created hydraulic fracture geometry. Two identical samples and treatment schedules were created and differed only in the monitoring system used to characterize the microseismic activity during the fracture treatment. The first block had eight embedded P-wave transducers placed in the sandstone layer to record the passive microseismic emissions and localize the location and time of the acoustic event. The second block had six compressional wave transducers and twelve shear wave transducers embedded in the sandstone layer of the block. The intention was to record and process the seismic data using conventional P-wave to S-wave difference timing techniques well known in industry. While this goal ultimately not possible due to the geometry of the receiver placements and the limitations of the Vallene acquisition processing software, the data received and the events localized from the 18 transducer test were of much higher numbers and quality than on the eight transducer test. This experiment proved conclusively that passive seismic emission recording can yield positive results in the laboratory. Just as in the field, this provides one of the best far field (away from the well bore) measurements to assess hydraulic fracture behavior. It also provides a calibration tool to extend laboratory results to field scale endeavors. The identification of strong microseismic activity at stress states far below fracture initiation confirms that rocks are critically stressed meta-stable materials and that microseismicity is caused by stress changes, not fractures directly. Advancements are necessary to fully exploit the potential of the microseismic method in laboratory sized samples. Both processing and visualization enhancements are necessary to realize the full benefits of this promising technology in the laboratory environment.
Rasch measurement: the Arm Activity measure (ArmA) passive function sub-scale.
Ashford, Stephen; Siegert, Richard J; Alexandrescu, Roxana
2016-01-01
To evaluate the conformity of the Arm Activity measure (ArmA) passive function sub-scale to the Rasch model. A consecutive cohort of patients (n = 92) undergoing rehabilitation, including upper limb rehabilitation and spasticity management, at two specialist rehabilitation units were included. Rasch analysis was used to examine scaling and conformity to the model. Responses were analysed using Rasch unidimensional measurement models (RUMM 2030). The following aspects were considered: overall model and individual item fit statistics and fit residuals, internal reliability, item response threshold ordering, item bias, local dependency and unidimensionality. ArmA contains both active and passive function sub-scales, but in this analysis only the passive function sub-scale was considered. Four of the seven items in the ArmA passive function sub-scale initially had disordered thresholds. These items were rescored to four response options, which resulted in ordered thresholds for all items. Once the items with disordered thresholds had been rescored, item bias was not identified for age, global disability level or diagnosis, but with a small difference in difficulty between males and females for one item of the scale. Local dependency was not observed and the unidimensionality of the sub-scale was supported and good fit to the Rasch model was identified. The person separation index (PSI) was 0.95 indicating that the scale is able to reliably differentiate at least two groups of patients. The ArmA passive function sub-scale was shown in this evaluation to conform to the Rasch model once disordered thresholds had been addressed. Using the logit scores produced by the Rasch model it was possible to convert this back to the original scale range. Implications for Rehabilitation The ArmA passive function sub-scale was shown, in this evaluation, to conform to the Rasch model once disordered thresholds had been addressed and therefore to be a clinically applicable and potentially useful hierarchical measure. Using Rasch logit scores it has be possible to convert back to the original ordinal scale range and provide an indication of real change to enable evaluation of clinical outcome of importance to patients and clinicians.
Wang, Lei; Yan, Danhua; Shaffer, David W.; ...
2017-12-27
Solution-processable organic semiconductors have potentials as visible photoelectrochemical (PEC) water splitting photoelectrodes due to their tunable small band gap and electronic energy levels, but they are typically limited by poor stability and photocatalytic activity. In this study, we demonstrate the direct visible PEC water oxidation on solution-processed organic semiconductor thin films with improved stability and performance by ultrathin metal oxide passivation layers. N-type fullerene-derivative thin films passivated by sub-2 nm ZnO via atomic layer deposition enabled the visible PEC water oxidation at wavelengths longer than 600 nm in harsh alkaline electrolyte environments with up to 30 μA/cm 2 photocurrents atmore » the thermodynamic water-oxidation equilibrium potential and the photoanode half-lifetime extended to ~1000 s. The systematic investigation reveals the enhanced water oxidation catalytic activity afforded by ZnO passivation and the charge tunneling governing the hole transfer through passivation layers. Further enhanced PEC performances were realized by improving the bottom ohmic contact to the organic semiconductor, achieving ~60 μA/cm 2 water oxidation photocurrent at the equilibrium potential, the highest values reported for organic semiconductor thin films to our knowledge. The improved stability and performance of passivated organic photoelectrodes and discovered design rationales provide useful guidelines for realizing the stable visible solar PEC water splitting based on organic semiconductor thin films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei; Yan, Danhua; Shaffer, David W.
Solution-processable organic semiconductors have potentials as visible photoelectrochemical (PEC) water splitting photoelectrodes due to their tunable small band gap and electronic energy levels, but they are typically limited by poor stability and photocatalytic activity. In this study, we demonstrate the direct visible PEC water oxidation on solution-processed organic semiconductor thin films with improved stability and performance by ultrathin metal oxide passivation layers. N-type fullerene-derivative thin films passivated by sub-2 nm ZnO via atomic layer deposition enabled the visible PEC water oxidation at wavelengths longer than 600 nm in harsh alkaline electrolyte environments with up to 30 μA/cm 2 photocurrents atmore » the thermodynamic water-oxidation equilibrium potential and the photoanode half-lifetime extended to ~1000 s. The systematic investigation reveals the enhanced water oxidation catalytic activity afforded by ZnO passivation and the charge tunneling governing the hole transfer through passivation layers. Further enhanced PEC performances were realized by improving the bottom ohmic contact to the organic semiconductor, achieving ~60 μA/cm 2 water oxidation photocurrent at the equilibrium potential, the highest values reported for organic semiconductor thin films to our knowledge. The improved stability and performance of passivated organic photoelectrodes and discovered design rationales provide useful guidelines for realizing the stable visible solar PEC water splitting based on organic semiconductor thin films.« less
Plasticity in neuromagnetic cortical responses suggests enhanced auditory object representation
2013-01-01
Background Auditory perceptual learning persistently modifies neural networks in the central nervous system. Central auditory processing comprises a hierarchy of sound analysis and integration, which transforms an acoustical signal into a meaningful object for perception. Based on latencies and source locations of auditory evoked responses, we investigated which stage of central processing undergoes neuroplastic changes when gaining auditory experience during passive listening and active perceptual training. Young healthy volunteers participated in a five-day training program to identify two pre-voiced versions of the stop-consonant syllable ‘ba’, which is an unusual speech sound to English listeners. Magnetoencephalographic (MEG) brain responses were recorded during two pre-training and one post-training sessions. Underlying cortical sources were localized, and the temporal dynamics of auditory evoked responses were analyzed. Results After both passive listening and active training, the amplitude of the P2m wave with latency of 200 ms increased considerably. By this latency, the integration of stimulus features into an auditory object for further conscious perception is considered to be complete. Therefore the P2m changes were discussed in the light of auditory object representation. Moreover, P2m sources were localized in anterior auditory association cortex, which is part of the antero-ventral pathway for object identification. The amplitude of the earlier N1m wave, which is related to processing of sensory information, did not change over the time course of the study. Conclusion The P2m amplitude increase and its persistence over time constitute a neuroplastic change. The P2m gain likely reflects enhanced object representation after stimulus experience and training, which enables listeners to improve their ability for scrutinizing fine differences in pre-voicing time. Different trajectories of brain and behaviour changes suggest that the preceding effect of a P2m increase relates to brain processes, which are necessary precursors of perceptual learning. Cautious discussion is required when interpreting the finding of a P2 amplitude increase between recordings before and after training and learning. PMID:24314010
Internal passivation of Al-based microchannel devices by electrochemical anodization
NASA Astrophysics Data System (ADS)
Hymel, Paul J.; Guan, D. S.; Mu, Yang; Meng, W. J.; Meng, Andrew C.
2015-02-01
Metal-based microchannel devices have wide-ranging applications. We report here a method to electrochemically anodize the internal surfaces of Al microchannels, with the purpose of forming a uniform and dense anodic aluminum oxide (AAO) layer on microchannel internal surfaces for chemical passivation and corrosion resistance. A pulsed electrolyte flow was utilized to emulate conventional anodization processes while replenishing depleted ionic species within Al microtubes and microchannels. After anodization, the AAO film was sealed in hot water to close the nanopores. Focused ion beam (FIB) sectioning, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were utilized to characterize the AAO morphology and composition. Potentiodynamic polarization corrosion testing of anodized Al microtube half-sections in a NaCl solution showed an order of magnitude decrease in anodic corrosion current when compared to an unanodized tube. The surface passivation process was repeated for Al-based microchannel heat exchangers. A corrosion testing method based on the anodization process showed higher resistance to ion transport through the anodized specimens than unanodized specimens, thus verifying the internal anodization and sealing process as a viable method for surface passivation of Al microchannel devices.
Petrology of exhumed mantle rocks at passive margins: ancient lithosphere and rejuvenation processes
NASA Astrophysics Data System (ADS)
Müntener, Othmar; McCarthy, Anders; Picazo, Suzanne
2014-05-01
Mantle peridotites from ocean-continent transition zones (OCT's) and ultraslow spreading ridges question the commonly held assumption of a simple link between mantle melting and MORB. 'Ancient' and partly refertilized mantle in rifts and ridges illustrates the distribution of the scale of chemical and isotopic upper mantle heterogeneity even on a local scale. Field data and petrology demonstrates that ancient, thermally undisturbed, pyroxenite-veined subcontinental mantle blobs formed parts of the ocean floor next to thinned continental crust. These heterogeneities might comprise an (ancient?) subduction component. Upwelling of partial melts that enter the conductive lithospheric mantle inevitably leads to freezing of the melt and refertilization of the lithosphere and this process might well be at the origin of the difference between magma-poor and volcanic margins. Similar heterogeneity might be created in the oceanic lithosphere, in particular at slow to ultra-slow spreading ridges where the thermal boundary layer (TBM) is thick and may be veined with metasomatic assemblages that might be recycled in subduction zones. In this presentation, we provide a summary of mantle compositions from the European realm to show that inherited mantle signatures from previous orogenies play a key role on the evolution of rift systems and on the chemical diversity of peridotites exposed along passive margins and ultra-slow spreading ridges. Particularly striking is the abundance of plagioclase peridotites in the Alpine ophiolites that are interpreted as recorders of refertilization processes related to thinning and exhumation of mantle lithosphere. Another important result over the last 20 years was the discovery of extremely refractory Nd-isotopic compositions with highly radiogenic 147Sm/144Nd which indicates that partial melting processes and Jurassic magmatism in the Western Thetys are decoupled. Although the isotopic variability might be explained by mantle heterogeneities, an alternative is that these depleted domains represent snapshots of melting processes that are related to Permian and/or even older crust forming processes. The findings of the these refractory mantle rocks over the entire Western Alpine arc and the similarity in model ages of depletion suggests a connection to the Early Permian magmatic activity. Shallow and deep crustal magmatism in the Permian is widespread over Western Europe and the distribution of these mafic rocks are likely to pre-determine the future areas of crustal thinning and exhumation during formation of the Thethyan passive margins.
Chang, Franklin; Rowland, Caroline; Ferguson, Heather; Pine, Julian
2017-01-01
We used eye-tracking to investigate if and when children show an incremental bias to assume that the first noun phrase in a sentence is the agent (first-NP-as-agent bias) while processing the meaning of English active and passive transitive sentences. We also investigated whether children can override this bias to successfully distinguish active from passive sentences, after processing the remainder of the sentence frame. For this second question we used eye-tracking (Study 1) and forced-choice pointing (Study 2). For both studies, we used a paradigm in which participants simultaneously saw two novel actions with reversed agent-patient relations while listening to active and passive sentences. We compared English-speaking 25-month-olds and 41-month-olds in between-subjects sentence structure conditions (Active Transitive Condition vs. Passive Condition). A permutation analysis found that both age groups showed a bias to incrementally map the first noun in a sentence onto an agent role. Regarding the second question, 25-month-olds showed some evidence of distinguishing the two structures in the eye-tracking study. However, the 25-month-olds did not distinguish active from passive sentences in the forced choice pointing task. In contrast, the 41-month-old children did reanalyse their initial first-NP-as-agent bias to the extent that they clearly distinguished between active and passive sentences both in the eye-tracking data and in the pointing task. The results are discussed in relation to the development of syntactic (re)parsing. PMID:29049390
Lei, Yuming; Bao, Shancheng; Wang, Jinsung
2016-09-07
Sensorimotor adaptation can be induced by action observation, and also by passive training. Here, we investigated the effect of a protocol that combined action observation and passive training on visuomotor adaptation, by comparing it with the effect of action observation or passive training alone. Subjects were divided into five conditions during the training session: (1) action observation, in which the subjects watched a video of a model who adapted to a novel visuomotor rotation; (2) proprioceptive training, in which the subject's arm was moved passively to target locations that were associated with desired trajectories; (3) combined training, in which the subjects watched the video of a model during a half of the session and experienced passive movements during the other half; (4) active training, in which the subjects adapted actively to the rotation; and (5) a control condition, in which the subjects did not perform any task. Following that session, all subjects adapted to the same visuomotor rotation. Results showed that the subjects in the combined training condition adapted to the rotation significantly better than those in the observation or proprioceptive training condition, although their performance was not as good as that of those who adapted actively. These findings suggest that although a protocol that combines action observation and passive training consists of all the processes involved in active training (error detection and correction, effector-specific and proprioceptively based reaching movements), these processes in that protocol may work differently as compared to a protocol in which the same processes are engaged actively. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Geophysical Inversion with Adaptive Array Processing of Ambient Noise
NASA Astrophysics Data System (ADS)
Traer, James
2011-12-01
Land-based seismic observations of microseisms generated during Tropical Storms Ernesto and Florence are dominated by signals in the 0.15--0.5Hz band. Data from seafloor hydrophones in shallow water (70m depth, 130 km off the New Jersey coast) show dominant signals in the gravity-wave frequency band, 0.02--0.18Hz and low amplitudes from 0.18--0.3Hz, suggesting significant opposing wave components necessary for DF microseism generation were negligible at the site. Both storms produced similar spectra, despite differing sizes, suggesting near-coastal shallow water as the dominant region for observed microseism generation. A mathematical explanation for a sign-inversion induced to the passive fathometer response by minimum variance distortionless response (MVDR) beamforming is presented. This shows that, in the region containing the bottom reflection, the MVDR fathometer response is identical to that obtained with conventional processing multiplied by a negative factor. A model is presented for the complete passive fathometer response to ocean surface noise, interfering discrete noise sources, and locally uncorrelated noise in an ideal waveguide. The leading order term of the ocean surface noise produces the cross-correlation of vertical multipaths and yields the depth of sub-bottom reflectors. Discrete noise incident on the array via multipaths give multiple peaks in the fathometer response. These peaks may obscure the sub-bottom reflections but can be attenuated with use of Minimum Variance Distortionless Response (MVDR) steering vectors. A theory is presented for the Signal-to-Noise-Ratio (SNR) for the seabed reflection peak in the passive fathometer response as a function of seabed depth, seabed reflection coefficient, averaging time, bandwidth and spatial directivity of the noise field. The passive fathometer algorithm was applied to data from two drifting array experiments in the Mediterranean, Boundary 2003 and 2004, with 0.34s of averaging time. In the 2004 experiment, the response showed the array depth varied periodically with an amplitude of 1 m and a period of 7 s consistent with wave driven motion of the array. This introduced a destructive interference which prevents the SNR growing with averaging time, unless the motion is removed by use of a peak tracker.
2016-01-01
Passive content fingerprinting is widely used for video content identification and monitoring. However, many challenges remain unsolved especially for partial-copies detection. The main challenge is to find the right balance between the computational cost of fingerprint extraction and fingerprint dimension, without compromising detection performance against various attacks (robustness). Fast video detection performance is desirable in several modern applications, for instance, in those where video detection involves the use of large video databases or in applications requiring real-time video detection of partial copies, a process whose difficulty increases when videos suffer severe transformations. In this context, conventional fingerprinting methods are not fully suitable to cope with the attacks and transformations mentioned before, either because the robustness of these methods is not enough or because their execution time is very high, where the time bottleneck is commonly found in the fingerprint extraction and matching operations. Motivated by these issues, in this work we propose a content fingerprinting method based on the extraction of a set of independent binary global and local fingerprints. Although these features are robust against common video transformations, their combination is more discriminant against severe video transformations such as signal processing attacks, geometric transformations and temporal and spatial desynchronization. Additionally, we use an efficient multilevel filtering system accelerating the processes of fingerprint extraction and matching. This multilevel filtering system helps to rapidly identify potential similar video copies upon which the fingerprint process is carried out only, thus saving computational time. We tested with datasets of real copied videos, and the results show how our method outperforms state-of-the-art methods regarding detection scores. Furthermore, the granularity of our method makes it suitable for partial-copy detection; that is, by processing only short segments of 1 second length. PMID:27861492
Hydrogen passivation of polycrystalline silicon thin films
NASA Astrophysics Data System (ADS)
Scheller, L.-P.; Weizman, M.; Simon, P.; Fehr, M.; Nickel, N. H.
2012-09-01
The influence of post-hydrogenation on the electrical and optical properties of solid phase crystallized polycrystalline silicon (poly-Si) was examined. The passivation of grain-boundary defects was measured as a function of the passivation time. The silicon dangling-bond concentration decreases with increasing passivation time due to the formation of Si-H complexes. In addition, large H-stabilized platelet-like clusters are generated. The influence of H on the electrical properties was investigated using temperature dependent conductivity and Hall-effect measurements. For poly-Si on Corning glass, the dark conductivity decreases upon hydrogenation, while it increases when the samples are fabricated on silicon-nitride covered Borofloat glass. Hall-effect measurements reveal that for poly-Si on Corning glass the hole concentration and the mobility decrease upon post-hydrogenation, while a pronounced increase is observed for poly-Si on silicon-nitride covered Borofloat glass. This indicates the formation of localized states in the band gap, which is supported by sub band-gap absorption measurments. The results are discussed in terms of hydrogen-induced defect passivation and generation mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spirn, A W; Santos, A N; Johnson, D A
1981-04-01
The potential of vegetation for cooling small, detached residential and commercial structures in temperate, humid climates is discussed. The results of the research are documented, a critical review of the literature is given, and a brief review of energy transfer processes is presented. A checklist of design objectives for passive cooling, a demonstration of design applications, and a palette of selected plant species suitable for passive cooling are included.
Stable quantum systems in anti-de Sitter space: Causality, independence, and spectral properties
NASA Astrophysics Data System (ADS)
Buchholz, Detlev; Summers, Stephen J.
2004-12-01
If a state is passive for uniformly accelerated observers in n-dimensional (n⩾2) anti-de Sitter (Ads) space-time (i.e., cannot be used by them to operate a perpetuum mobile), they will (a) register a universal value of the Unruh temperature, (b) discover a PCT symmetry, and (c) find that observables in complementary wedge-shaped regions necessarily commute with each other in this state. The stability properties of such a passive state induce a "geodesic causal structure" on AdS and concommitant locality relations. It is shown that observables in these complementary wedge-shaped regions fulfill strong additional independence conditions. In two-dimensional AdS these even suffice to enable the derivation of a nontrivial, local, covariant net indexed by bounded space-time regions. All these results are model-independent and hold in any theory which is compatible with a weak notion of space-time localization. Examples are provided of models satisfying the hypotheses of these theorems.
NASA Technical Reports Server (NTRS)
Evans, Laura J.; Beheim, Glenn M.
2006-01-01
High aspect ratio silicon carbide (SiC) microstructures are needed for microengines and other harsh environment micro-electro-mechanical systems (MEMS). Previously, deep reactive ion etching (DRIE) of low aspect ratio (AR less than or = 1) deep (greater than 100 micron) trenches in SiC has been reported. However, existing DRIE processes for SiC are not well-suited for definition of high aspect ratio features because such simple etch-only processes provide insufficient control over sidewall roughness and slope. Therefore, we have investigated the use of a time-multiplexed etch-passivate (TMEP) process, which alternates etching with polymer passivation of the etch sidewalls. An optimized TMEP process was used to etch high aspect ratio (AR greater than 5) deep (less than 100 micron) trenches in 6H-SiC. Power MEMS structures (micro turbine blades) in 6H-SiC were also fabricated.
A field evaluation of a SO 2 passive sampler in tropical industrial and urban air
NASA Astrophysics Data System (ADS)
Cruz, Lícia P. S.; Campos, Vânia P.; Silva, Adriana M. C.; Tavares, Tania M.
Passive samplers have been widely used for over 30 years in the measurement of personal exposure to vapours and gases in the workplace. These samplers have just recently been applied in the monitoring of ambient air, which presents concentrations that are normally much smaller than those found in occupational environments. The locally constructed passive sampler was based on gas molecular diffusion through static air layer. The design used minimizes particle interference and turbulent diffusion. After exposure, the SO 2 trapped in impregnated filters with Na 2CO 3 was extracted by means of an ultrasonic bath, for 15 min, using 1.0×10 -2 mol L -1 H 2O 2. It was determined as SO 4-2 by ion chromatography. The performance of the passive sampler was evaluated at different exposure periods, being applied in industrial and urban areas. Method precision as relative standard deviation for three simultaneously applied passive samplers was within 10%. Passive sampling, when compared to active monitoring methods under real conditions, used in urban and industrial areas, showed an overall accuracy of 15%. A statistical comparison with an active method was performed to demonstrate the validity of the passive method. Sampler capacity varied between 98 and 421 μg SO 2 m -3 for exposure periods of one month and one week, respectively, which allows its use in highly polluted areas.
NASA Astrophysics Data System (ADS)
Maamoun, Khaled Mohamed
Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman's Problem (CPP) solution and an adapted version of the Traveling Salesman's Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of solutions for m-trail design problem of these models are proposed. The comparison between these models uses the expected survivability function which proved that these models are liable to be implemented in the new and existing PON/ RoF-PON systems. This dissertation is followed by recommendation of possible directions for future research in this area.
Vandana; Batra, Neha; Gope, Jhuma; Singh, Rajbir; Panigrahi, Jagannath; Tyagi, Sanjay; Pathi, P; Srivastava, S K; Rauthan, C M S; Singh, P K
2014-10-21
Thermal ALD deposited Al2O3 films on silicon show a marked difference in surface passivation quality as a function of annealing time (using a rapid thermal process). An effective and quality passivation is realized in short anneal duration (∼100 s) in nitrogen ambient which is reflected in the low surface recombination velocity (SRV <10 cm s(-1)). The deduced values are close to the best reported SRV obtained by the high thermal budget process (with annealing time between 10-30 min), conventionally used for improved surface passivation. Both as-deposited and low thermal budget annealed films show the presence of positive fixed charges and this is never been reported in the literature before. The role of field and chemical passivation is investigated in terms of fixed charge and interface defect densities. Further, the importance of the annealing step sequence in the MIS structure fabrication protocol is also investigated from the view point of its effect on the nature of fixed charges.
An all-silicon passive optical diode.
Fan, Li; Wang, Jian; Varghese, Leo T; Shen, Hao; Niu, Ben; Xuan, Yi; Weiner, Andrew M; Qi, Minghao
2012-01-27
A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input power is higher than the forward input. The silicon optical diode is ultracompact and is compatible with current complementary metal-oxide semiconductor processing.
Semiconductor/dielectric interface engineering and characterization
NASA Astrophysics Data System (ADS)
Lucero, Antonio T.
The focus of this dissertation is the application and characterization of several, novel interface passivation techniques for III-V semiconductors, and the development of an in-situ electrical characterization. Two different interface passivation techniques were evaluated. The first is interface nitridation using a nitrogen radical plasma source. The nitrogen radical plasma generator is a unique system which is capable of producing a large flux of N-radicals free of energetic ions. This was applied to Si and the surface was studied using x-ray photoelectron spectroscopy (XPS). Ultra-thin nitride layers could be formed from 200-400° C. Metal-oxide-semiconductor capacitors (MOSCAPs) were fabricated using this passivation technique. Interface nitridation was able to reduce leakage current and improve the equivalent oxide thickness of the devices. The second passivation technique studied is the atomic layer deposition (ALD) diethylzinc (DEZ)/water treatment of sulfur treated InGaAs and GaSb. On InGaAs this passivation technique is able to chemically reduce higher oxidation states on the surface, and the process results in the deposition of a ZnS/ZnO interface passivation layer, as determined by XPS. Capacitance-voltage (C-V) measurements of MOSCAPs made on p-InGaAs reveal a large reduction in accumulation dispersion and a reduction in the density of interfacial traps. The same technique was applied to GaSb and the process was studied in an in-situ half-cycle XPS experiment. DEZ/H2O is able to remove all Sb-S from the surface, forming a stable ZnS passivation layer. This passivation layer is resistant to further reoxidation during dielectric deposition. The final part of this dissertation is the design and construction of an ultra-high vacuum cluster tool for in-situ electrical characterization. The system consists of three deposition chambers coupled to an electrical probe station. With this setup, devices can be processed and subsequently electrically characterized without exposing the sample to air. This is the first time that such a system has been reported. A special air-gap C-V probe will allow top gated measurements to be made, allowing semiconductor-dielectric interfaces to be studied during device processing.
Enhanced Passive and Active Processing of Syllables in Musician Children
ERIC Educational Resources Information Center
Chobert, Julie; Marie, Celine; Francois, Clement; Schon, Daniele; Besson, Mireille
2011-01-01
The aim of this study was to examine the influence of musical expertise in 9-year-old children on passive (as reflected by MMN) and active (as reflected by discrimination accuracy) processing of speech sounds. Musician and nonmusician children were presented with a sequence of syllables that included standards and deviants in vowel frequency,…
Assessment of Spacecraft Operational Status Using Electro-Optical Predictive Techniques
2010-09-01
panel appendages, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical sensors...observing and characterizing key spacecraft features. The simulation results are based on electro-optical signatures apparent to nonimaging sensors, along...and communication equipment, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical
Jurčišinová, E; Jurčišin, M
2017-05-01
The influence of the uniaxial small-scale anisotropy on the kinematic magnetohydrodynamic turbulence is investigated by using the field theoretic renormalization group technique in the one-loop approximation of a perturbation theory. The infrared stable fixed point of the renormalization group equations, which drives the scaling properties of the model in the inertial range, is investigated as the function of the anisotropy parameters and it is shown that, at least at the one-loop level of approximation, the diffusion processes of the weak passive magnetic field in the anisotropically driven kinematic magnetohydrodynamic turbulence are completely equivalent to the corresponding diffusion processes of passively advected scalar fields in the anisotropic Navier-Stokes turbulent environments.
Pupil measures of alertness and mental load
NASA Technical Reports Server (NTRS)
Backs, Richard W.; Walrath, Larry C.
1988-01-01
A study of eight adults given active and passive search tasks showed that evoked pupillary response was sensitive to information processing demands. In particular, large pupillary diameter was observed in the active search condition where subjects were actively processing information relevant to task performance, as opposed to the passive search (control) condition where subjects passively viewed the displays. However, subjects may have simply been more aroused in the active search task. Of greater importance was that larger pupillary diameter, corresponding to longer search time, was observed for noncoded than for color-coded displays in active search. In the control condition, pupil diameter was larger with the color displays. The data indicate potential usefulness of pupillary responses in evaluating the information processing requirements of visual displays.
Word Order and Linguistic Factors in the Second Language Processing of Spanish Passive Sentences
ERIC Educational Resources Information Center
Lee, James F.
2017-01-01
The present study examines how second language learners (L2) assign the thematic roles of agent/patient in Spanish passive sentences with "ser" (often referred to as the true passive) when it is their initial exposure to this structure. The target sentences were preceded by a contextual sentence. After hearing the two sentences,…
Novel Approach to Front Contact Passivation for CdTe Photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kephart, Jason M.
2018-02-18
The goal of this project was to study the use of sputter-deposited oxide materials for interface passivation of CdTe-based photovoltaics. Several candidate materials were chosen based on their promise in passivating the CdTe and CdSeTe semiconductor interface, chemical and thermal stability to device processing, and ability to be deposited by sputter deposition.
Cocucci, E; Kim, J Y; Bai, Y; Pabla, N
2017-01-01
Intracellular drug accumulation is thought to be dictated by two major processes, passive diffusion through the lipid membrane or membrane transporters. The relative role played by these distinct processes remains actively debated. Moreover, the role of membrane-trafficking in drug transport remains underappreciated and unexplored. Here we discuss the distinct processes involved in cellular drug distribution and propose that better experimental models are required to elucidate the differential contributions of various processes in intracellular drug accumulation. © 2016 American Society for Clinical Pharmacology and Therapeutics.
Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu
2017-01-01
Abstract Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlOx), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers. PMID:28634499
Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu
2017-01-01
Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlO[Formula: see text]), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers.
Indications for laser therapy in diverse models of periodontitis
NASA Astrophysics Data System (ADS)
Kunin, Anatoly A.; Erina, Stanislava V.; Sokolova, Irina A.; Pankova, Svetlana N.; Ippolitov, Yu. A.; Lepechina, L. I.; Malinovskaya, L. A.; Chitrina, L. L.
1996-11-01
Parodontal diseases have an immunological pathogenic mechanism leading to various manifestations and can not be referred to as a common inflammation. The home and foreign research points at active and immunological reaction with the following distraction surrounding tissues of the tooth. Histochemical and biochemical examinations show metabolic disturbances of parodontal tissues. A total sample size of 604 people suffering from average height of chronic generalized parodontitis was examined in the survey. Immunological and histochemical tests were taken before and after a course of laser therapy with the use of helium-neon laser 'YAGODA', an inhibitory and stimulating dosage irradiations and anti-inflammatory dosage irradiations with infrared laser 'UZOR'. We selected a group of patients with the decreased local immunological status on the ground of immunological tests. Histochemical tests shaped the next group with the passive and active forms of parodontitis pathology. The tests data resulted in a method of laser therapy. The investigations confirm that the chronic generalized parodontitis has a shift in tissue immunity of the oral cavity and cell-bound metabolic disturbance of gum epithelium. It is expedient to use the anti-inflammatory dosage irradiations with infrared laser 'UZOR' to correct immunity, and in case of and active process to realize the DNA and RNA synthesis by means of increasing the irradiation with the apparatus 'YAGODA'. The irradiation decreases in case of a passive process.
NASA Astrophysics Data System (ADS)
McNeeley, Kathleen M.; Annapragada, Ananth; Bellamkonda, Ravi V.
2007-09-01
Liposomal and other nanocarrier based drug delivery vehicles can localize to tumours through passive and/or active targeting. Passively targeted liposomal nanocarriers accumulate in tumours via 'leaky' vasculature through the enhanced permeability and retention (EPR) effect. Passive accumulation depends upon the circulation time and the degree of tumour vessel 'leakiness'. After extravasation, actively targeted liposomal nanocarriers efficiently deliver their payload by receptor-mediated uptake. However, incorporation of targeting moieties can compromise circulation time in the blood due to recognition and clearance by the reticuloendothelial system, decreasing passive accumulation. Here, we compare the efficacy of passively targeted doxorubicin-loaded PEGylated liposomal nanocarriers to that of actively targeted liposomal nanocarriers in a rat 9L brain tumour model. Although folate receptor (FR)-targeted liposomal nanocarriers had significantly reduced blood circulation time compared to PEGylated liposomal nanocarriers; intratumoural drug concentrations both at 20 and 50 h after administration were equal for both treatments. Both treatments significantly increased tumour inoculated animal survival by 60-80% compared to non-treated controls, but no difference in survival was observed between FR-targeted and passively targeted nanocarriers. Therefore, alternate approaches allowing for active targeting without compromising circulation time may be important for fully realizing the benefits of receptor-mediated active targeting of gliomas.
Van Hoogmoed, A H; Nadel, L; Spanò, G; Edgin, J O
2016-02-01
Event related potentials (ERPs) can help to determine the cognitive and neural processes underlying memory functions and are often used to study populations with severe memory impairment. In healthy adults, memory is typically assessed with active tasks, while in patient studies passive memory paradigms are generally used. In this study we examined whether active and passive continuous object recognition tasks measure the same underlying memory process in typically developing (TD) adults and in individuals with Down syndrome (DS), a population with known hippocampal impairment. We further explored how ERPs in these tasks relate to behavioral measures of memory. Data-driven analysis techniques revealed large differences in old-new effects in the active versus passive task in TD adults, but no difference between these tasks in DS. The group with DS required additional processing in the active task in comparison to the TD group in two ways. First, the old-new effect started 150 ms later. Second, more repetitions were required to show the old-new effect. In the group with DS, performance on a behavioral measure of object-location memory was related to ERP measures across both tasks. In total, our results suggest that active and passive ERP memory measures do not differ in DS and likely reflect the use of implicit memory, but not explicit processing, on both tasks. Our findings highlight the need for a greater understanding of the comparison between active and passive ERP paradigms before they are inferred to measure similar functions across populations (e.g., infants or intellectual disability). Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Adamczyk, Krzysztof; Søndenâ, Rune; Stokkan, Gaute; Looney, Erin; Jensen, Mallory; Lai, Barry; Rinio, Markus; Di Sabatino, Marisa
2018-02-01
In this work, we applied internal quantum efficiency mapping to study the recombination activity of grain boundaries in High Performance Multicrystalline Silicon under different processing conditions. Wafers were divided into groups and underwent different thermal processing, consisting of phosphorus diffusion gettering and surface passivation with hydrogen rich layers. After these thermal treatments, wafers were processed into heterojunction with intrinsic thin layer solar cells. Light Beam Induced Current and Electron Backscatter Diffraction were applied to analyse the influence of thermal treatment during standard solar cell processing on different types of grain boundaries. The results show that after cell processing, most random-angle grain boundaries in the material are well passivated, but small-angle grain boundaries are not well passivated. Special cases of coincidence site lattice grain boundaries with high recombination activity are also found. Based on micro-X-ray fluorescence measurements, a change in the contamination level is suggested as the reason behind their increased activity.
VerifEYE: a real-time meat inspection system for the beef processing industry
NASA Astrophysics Data System (ADS)
Kocak, Donna M.; Caimi, Frank M.; Flick, Rick L.; Elharti, Abdelmoula
2003-02-01
Described is a real-time meat inspection system developed for the beef processing industry by eMerge Interactive. Designed to detect and localize trace amounts of contamination on cattle carcasses in the packing process, the system affords the beef industry an accurate, high speed, passive optical method of inspection. Using a method patented by United States Department of Agriculture and Iowa State University, the system takes advantage of fluorescing chlorophyll found in the animal's diet and therefore the digestive track to allow detection and imaging of contaminated areas that may harbor potentially dangerous microbial pathogens. Featuring real-time image processing and documentation of performance, the system can be easily integrated into a processing facility's Hazard Analysis and Critical Control Point quality assurance program. This paper describes the VerifEYE carcass inspection and removal verification system. Results indicating the feasibility of the method, as well as field data collected using a prototype system during four university trials conducted in 2001 are presented. Two successful demonstrations using the prototype system were held at a major U.S. meat processing facility in early 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir
2015-06-15
The effect of deposition temperature (T{sub dep}) and subsequent annealing time (t{sub anl}) of atomic layer deposited aluminum oxide (Al{sub 2}O3) films on silicon surface passivation (in terms of surface recombination velocity, SRV) is investigated. The pristine samples (as-deposited) show presence of positive fixed charges, Q{sub F}. The interface defect density (D{sub it}) decreases with increase in T{sub dep} which further decreases with t{sub anl} up to 100s. An effective surface passivation (SRV<8 cm/s) is realized for T{sub dep} ≥ 200 °C. The present investigation suggests that low thermal budget processing provides the same quality of passivation as realized bymore » high thermal budget process (t{sub anl} between 10 to 30 min)« less
Yao, Yao; Meng, Xiang-Zhou; Wu, Chen-Chou; Bao, Lian-Jun; Wang, Feng; Wu, Feng-Chang; Zeng, Eddy Y
2016-06-01
Freely dissolved polycyclic aromatic hydrocarbons (PAHs) were monitored in seven inland lakes of Antarctica by a polyethylene (PE)-based passive sampling technique, with the objective of tracking human footprints. The measured concentrations of PAHs were in the range of 14-360 ng L(-1) with the highest values concentrated around the Russian Progress II Station, indicating the significance of human activities to the loading of PAHs in Antarctica. The concentrations of PAHs in the inland lakes were in the upper part of the PAHs levels in aquatic environments from remote and background regions across the globe. The composition profiles of PAHs indicated that PAHs in the inland lakes were derived mainly from local oil spills, which was corroborated by a large number of fuel spillage reports from ship and plane crash incidents in Antarctica during recent years. Clearly, local human activities, rather than long-range transport, are the dominant sources of PAH contamination to the inland lakes. Finally, the present study demonstrates the efficacy of PE-based passive samplers for investigating PAHs in the aquatic environment of Antarctica under complex field conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Real-time computer treatment of THz passive device images with the high image quality
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Trofimov, Vladislav V.
2012-06-01
We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.
Passive acoustic mapping of magnetic microbubbles for cavitation enhancement and localization.
Crake, Calum; Victor, Marie de Saint; Owen, Joshua; Coviello, Christian; Collin, Jamie; Coussios, Constantin-C; Stride, Eleanor
2015-01-21
Magnetic targeting of microbubbles functionalized with superparamagnetic nanoparticles has been demonstrated previously for diagnostic (B-mode) ultrasound imaging and shown to enhance gene delivery in vitro and in vivo. In the present work, passive acoustic mapping (PAM) was used to investigate the potential of magnetic microbubbles for localizing and enhancing cavitation activity under focused ultrasound. Suspensions of magnetic microbubbles consisting of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), air and 10 nm diameter iron oxide nanoparticles were injected into a tissue mimicking phantom at different flow velocities (from 0 to 50 mm s(-1)) with or without an applied magnetic field. Microbubbles were excited using a 500 kHz single element focused transducer at peak negative focal pressures of 0.1-1.0 MPa, while a 64 channel imaging array passively recorded their acoustic emissions. Magnetic localization of microbubble-induced cavitation activity was successfully achieved and could be resolved using PAM as a shift in the spatial distribution and increases in the intensity and sustainability of cavitation activity under the influence of a magnetic field. Under flow conditions at shear rates of up to 100 s(-1) targeting efficacy was maintained. Application of a magnetic field was shown to consistently increase the energy of cavitation emissions by a factor of 2-5 times over the duration of exposures compared to the case without targeting, which was approximately equivalent to doubling the injected microbubble dose. These results suggest that magnetic targeting could be used to localize and increase the concentration of microbubbles and hence cavitation activity for a given systemic dose of microbubbles or ultrasound intensity.
van Duijl, Marjolein; Kleijn, Wim; de Jong, Joop
2013-09-01
As in many cultures, spirit possession is a common idiom of distress in Uganda. The DSM-IV contains experimental research criteria for dissociative and possession trance disorder (DTD and PTD), which are under review for the DSM-5. In the current proposed categories of the DSM-5, PTD is subsumed under dissociative identity disorder (DID) and DTD under dissociative disorders not elsewhere classified. Evaluation of these criteria is currently urgently required. This study explores the match between local symptoms of spirit possession in Uganda and experimental research criteria for PTD in the DSM-IV and proposed criteria for DID in the DSM-5. A mixed-method approach was used combining qualitative and quantitative research methods. Local symptoms were explored of 119 spirit possessed patients, using illness narratives and a cultural dissociative symptoms' checklist. Possible meaningful clusters of symptoms were inventoried through multiple correspondence analysis. Finally, local symptoms were compared with experimental criteria for PTD in the DSM-IV and proposed criteria for DID in the DSM-5. Illness narratives revealed different phases of spirit possession, with passive-influence experiences preceding the actual possession states. Multiple correspondence analysis of symptoms revealed two dimensions: 'passive' and 'active' symptoms. Local symptoms, such as changes in consciousness, shaking movements, and talking in a voice attributed to spirits, match with DSM-IV-PTD and DSM-5-DID criteria. Passive-influence experiences, such as feeling influenced or held by powers from outside, strange dreams, and hearing voices, deserve to be more explicitly described in the proposed criteria for DID in the DSM-5. The suggested incorporation of PTD in DID in the DSM-5 and the envisioned separation of DTD and PTD in two distinctive categories have disputable aspects.
Chembath, Manju; Balaraju, J N; Sujata, M
2015-11-01
The surface of NiTi alloy was chemically modified using acidified ferric chloride solution and the characteristics of the alloy surface were studied from the view point of application as a bioimplant. Chemically treated NiTi was also subjected to post treatments by annealing at 400°C and passivation in nitric acid. The surface of NiTi alloy after chemical treatment developed a nanogrid structure with a combination of one dimensional channel and two dimensional network-like patterns. From SEM studies, it was found that the undulations formed after chemical treatment remained unaffected after annealing, while after passivation process the undulated surface was filled with oxides of titanium. XPS analysis revealed that the surface of passivated sample was enriched with oxides of titanium, predominantly TiO2. The influence of post treatment on the corrosion resistance of chemically treated NiTi alloy was monitored using Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) in Phosphate Buffered Saline (PBS) solution. In the chemically treated condition, NiTi alloy exhibited poor corrosion resistance due to the instability of the surface. On the other hand, the breakdown potential (0.8V) obtained was highest for the passivated samples compared to other surface treated samples. During anodic polarization, chemically treated samples displayed dissolution phenomenon which was predominantly activation controlled. But after annealing and passivation processes, the behavior of anodic polarization was typical of a diffusion controlled process which confirmed the enhanced passivity of the post treated surfaces. The total resistance, including the porous and barrier layer, was in the range of mega ohms for passivated surfaces, which could be attributed to the decrease in surface nickel content and formation of compact titanium oxide. The passivated sample displayed good bioactivity in terms of hydroxyapatite growth, noticed after 14days immersion in Hanks' solution. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.
2014-06-01
As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. We demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. We discuss some physical experiments, in which a person drinks hot, and warm, and cold water and he eats. After computer processing of images captured by passive THz camera TS4 we may see the pronounced temperature trace on skin of the human body. For proof of validity of our statement we make the similar physical experiment using the IR camera. Our investigation allows to increase field of the passive THz camera using for the detection of objects concealed in the human body because the difference in temperature between object and parts of human body will be reflected on the human skin. However, modern passive THz cameras have not enough resolution in a temperature to see this difference. That is why, we use computer processing to enhance the camera resolution for this application. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp.
Front surface passivation of silicon solar cells with antireflection coating
NASA Technical Reports Server (NTRS)
Crotty, G.; Daud, T.; Kachare, R.
1987-01-01
It is demonstrated that the deposition and postdeposition sintering of an antireflection (AR) coating in hydrogen acts to passivate silicon solar cells. Cells with and without an SiO2 passivating layer, coated with a TiO(x)/Al2O3 AR coating, showed comparable enhancements in short-wavelength spectral response and in open-circuit voltage Voc after sintering at 400 C for 5 min in a hydrogen ambient. The improvement in Voc of cells without SiO2 is attributed to front-surface passivation by the AR coating during processing.
Miniaci, M; Gliozzi, A S; Morvan, B; Krushynska, A; Bosia, F; Scalerandi, M; Pugno, N M
2017-05-26
The appearance of nonlinear effects in elastic wave propagation is one of the most reliable and sensitive indicators of the onset of material damage. However, these effects are usually very small and can be detected only using cumbersome digital signal processing techniques. Here, we propose and experimentally validate an alternative approach, using the filtering and focusing properties of phononic crystals to naturally select and reflect the higher harmonics generated by nonlinear effects, enabling the realization of time-reversal procedures for nonlinear elastic source detection. The proposed device demonstrates its potential as an efficient, compact, portable, passive apparatus for nonlinear elastic wave sensing and damage detection.
Electron drag in ferromagnetic structures separated by an insulating interface
NASA Astrophysics Data System (ADS)
Kozub, V. I.; Muradov, M. I.; Galperin, Y. M.
2018-06-01
We consider electron drag in a system of two ferromagnetic layers separated by an insulating interface. The source of it is expected to be magnon-electron interactions. Namely, we assume that the external voltage is applied to the "active" layer stimulating electric current through this layer. In its turn, the scattering of the current-carrying electrons by magnons leads to a magnon drag current within this layer. The 3-magnons interactions between magnons in the two layers (being of non-local nature) lead to magnon drag within the "passive" layer which, correspondingly, produce electron drag current via processes of magnon-electron scattering. We estimate the drag current and compare it to the phonon-induced one.
NASA Astrophysics Data System (ADS)
Bermundo, Juan Paolo; Ishikawa, Yasuaki; Yamazaki, Haruka; Nonaka, Toshiaki; Fujii, Mami N.; Uraoka, Yukiharu
2015-07-01
We report the fabrication of a photosensitive hybrid passivation material on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) that greatly enhance its stability and improve its electrical characteristics. The hybrid passivation based on polysilsesquioxane is transparent and fabricated using a simple solution process. Because the passivation is photosensitive, dry etching was never performed during TFT fabrication. TFTs passivated with this material had a small threshold voltage shift of 0.5 V during positive bias stress, 0.5 V during negative bias stress, and -2.5 V during negative bias illumination stress. Furthermore, TFTs passivated by this layer were stable after being subjected to high relative humidity stress — confirming the superb barrier ability of the passivation. Analysis of secondary ion mass spectrometry showed that a large amount of hydrogen, carbon, and fluorine can be found in the channel region. We show that both hydrogen and fluorine reduced oxygen vacancies and that fluorine stabilized weak oxygen and hydroxide bonds. These results demonstrate the large potential of photosensitive hybrid passivation layers as effective passivation materials.
Is Broca's Area Involved in the Processing of Passive Sentences? An Event-Related fMRI Study
ERIC Educational Resources Information Center
Yokoyama, Satoru; Watanabe, Jobu; Iwata, Kazuki; Ikuta, Naho; Haji, Tomoki; Usui, Nobuo; Taira, Masato; Miyamoto, Tadao; Nakamura, Wataru; Sato, Shigeru; Horie, Kaoru; Kawashima, Ryuta
2007-01-01
We used functional magnetic resonance imaging (fMRI) to investigate whether activation in Broca's area is greater during the processing of passive versus active sentences in the brains of healthy subjects. Twenty Japanese native speakers performed a visual sentence comprehension task in which they were asked to read a visually presented sentence…
ERIC Educational Resources Information Center
Qin, Jingjing
2008-01-01
This study was intended to compare processing instruction (VanPatten, 1993, 1996, 2000), an input-based focus on form technique, to dictogloss tasks, an output-oriented focus-on-form type of instruction to assess their effects in helping beginning-EFL (English as a Foreign Language) learners acquire the simple English passive voice. Two intact…
Mi, Jian; Takahashi, Yasutake
2016-01-01
Radio frequency identification (RFID) technology has already been explored for efficient self-localization of indoor mobile robots. A mobile robot equipped with RFID readers detects passive RFID tags installed on the floor in order to locate itself. The Monte-Carlo localization (MCL) method enables the localization of a mobile robot equipped with an RFID system with reasonable accuracy, sufficient robustness and low computational cost. The arrangements of RFID readers and tags and the size of antennas are important design parameters for realizing accurate and robust self-localization using a low-cost RFID system. The design of a likelihood model of RFID tag detection is also crucial for the accurate self-localization. This paper presents a novel design and arrangement of RFID readers and tags for indoor mobile robot self-localization. First, by considering small-sized and large-sized antennas of an RFID reader, we show how the design of the likelihood model affects the accuracy of self-localization. We also design a novel likelihood model by taking into consideration the characteristics of the communication range of an RFID system with a large antenna. Second, we propose a novel arrangement of RFID tags with eight RFID readers, which results in the RFID system configuration requiring much fewer readers and tags while retaining reasonable accuracy of self-localization. We verify the performances of MCL-based self-localization realized using the high-frequency (HF)-band RFID system with eight RFID readers and a lower density of RFID tags installed on the floor based on MCL in simulated and real environments. The results of simulations and real environment experiments demonstrate that our proposed low-cost HF-band RFID system realizes accurate and robust self-localization of an indoor mobile robot. PMID:27483279
Mi, Jian; Takahashi, Yasutake
2016-07-29
Radio frequency identification (RFID) technology has already been explored for efficient self-localization of indoor mobile robots. A mobile robot equipped with RFID readers detects passive RFID tags installed on the floor in order to locate itself. The Monte-Carlo localization (MCL) method enables the localization of a mobile robot equipped with an RFID system with reasonable accuracy, sufficient robustness and low computational cost. The arrangements of RFID readers and tags and the size of antennas are important design parameters for realizing accurate and robust self-localization using a low-cost RFID system. The design of a likelihood model of RFID tag detection is also crucial for the accurate self-localization. This paper presents a novel design and arrangement of RFID readers and tags for indoor mobile robot self-localization. First, by considering small-sized and large-sized antennas of an RFID reader, we show how the design of the likelihood model affects the accuracy of self-localization. We also design a novel likelihood model by taking into consideration the characteristics of the communication range of an RFID system with a large antenna. Second, we propose a novel arrangement of RFID tags with eight RFID readers, which results in the RFID system configuration requiring much fewer readers and tags while retaining reasonable accuracy of self-localization. We verify the performances of MCL-based self-localization realized using the high-frequency (HF)-band RFID system with eight RFID readers and a lower density of RFID tags installed on the floor based on MCL in simulated and real environments. The results of simulations and real environment experiments demonstrate that our proposed low-cost HF-band RFID system realizes accurate and robust self-localization of an indoor mobile robot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Sungjin; Mativenga, Mallory; Kim, Youngoo
2014-08-04
We demonstrate back channel improvement of back-channel-etch amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors by using solution-processed yttrium oxide (Y{sub 2}O{sub 3}) passivation. Two different solvents, which are acetonitrile (35%) + ethylene glycol (65%), solvent A and deionized water, solvent B are investigated for the spin-on process of the Y{sub 2}O{sub 3} passivation—performed after patterning source/drain (S/D) Mo electrodes by a conventional HNO{sub 3}-based wet-etch process. Both solvents yield devices with good performance but those passivated by using solvent B exhibit better light and bias stability. Presence of yttrium at the a-IGZO back interface, where it occupies metal vacancy sites, is confirmed by X-ray photoelectronmore » spectroscopy. The passivation effect of yttrium is more significant when solvent A is used because of the existence of more metal vacancies, given that the alcohol (65% ethylene glycol) in solvent A may dissolve the metal oxide (a-IGZO) through the formation of alkoxides and water.« less
Heterodyne systems and technology, part 1. [conferences
NASA Technical Reports Server (NTRS)
1980-01-01
Various aspects of optical heterodyning are considered. Topics covered heterodyning throughout the electromagnetic spectrum including detectors, local oscillators, tunable diode lasers, astronomical systems, and environmental sensors, with both active and passive systems represented.
Marine Bioacoustics: Back to the Future
2013-09-30
aspects of zooplankton and fish ecology and passive acoustic methods for studying humpback whale ecology. During summer courses, we provided students...Kohala Coast in which three Wave Gliders were deployed with hydrophones to localize and track vocalizing humpback whales . Over the five years of...Glider’s capability for collecting multi-frequency acoustic data. 4. Successful demonstration that individual humpback whales can be localized and
NASA Astrophysics Data System (ADS)
Wong, Elaine; Nadarajah, Nishaanthan; Chae, Chang-Joon; Nirmalathas, Ampalavanapillai; Attygalle, Sanjeewa M.
2006-01-01
We describe two optical layer schemes which simultaneously facilitate local area network emulation and automatic protection switching against distribution fiber breaks in passive optical networks. One scheme employs a narrowband fiber Bragg grating placed close to the star coupler in the feeder fiber of the passive optical network, while the other uses an additional short length distribution fiber from the star coupler to each customer for the redirection of the customer traffic. Both schemes use RF subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office at baseband. Failure detection and automatic protection switching are performed independently by each optical network unit that is located at the customer premises in a distributed manner. The restoration of traffic transported between the central office and an optical network unit in the event of the distribution fiber break is performed by interconnecting adjacent optical network units and carrying out signal transmissions via an independent but interconnected optical network unit. Such a protection mechanism enables multiple adjacent optical network units to be simultaneously protected by a single optical network unit utilizing its maximum available bandwidth. We experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the central office and 155 Mb/s local area network data transmission on a RF subcarrier frequency. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme.
Systems approach to walk-off problems for dish-type solar thermal power systems
NASA Technical Reports Server (NTRS)
Jaffe, L. D.; Levin, R. R.; Moynihan, P. I.; Nesmith, B. J.; Owen, W. A.; Roschke, E. J.; Starkey, D. J.; Thostesen, T. O.
1983-01-01
'Walk-off' in a dish-type solar thermal power system is a failure situation in which the concentrator remains fixed while the spot of concentrated sunlight slowly moves across the face of the receiver. The intense local heating may damage the receiver and nearby equipment. Passive protection has advantages in minimizing damage, but in a fully passive design the receiver must be able to withstand full solar input with no forced fluid circulation during the walk-off. An active walk-off emergency subsystem may include an emergency detrack or defocus mechanism or sun-blocking device, emergency power, sensors and logic to detect the emergency and initiate protective action, and cooling or passive protection of emergency and non-emergency components. Each of these elements is discussed and evaluated in the paper.
Kriel, Yuri; Kerhervé, Hugo A; Askew, Christopher D; Solomon, Colin
High intensity interval training (HIIT) has been proposed as a time-efficient format of exercise to reduce the chronic disease burden associated with sedentary behaviour. Changes in oxygen utilisation at the local tissue level during an acute session of HIIT could be the primary stimulus for the health benefits associated with this format of exercise. The recovery periods of HIIT effect the physiological responses that occur during the session. It was hypothesised that in sedentary individuals, local and systemic oxygen utilisation would be higher during HIIT interspersed with active recovery periods, when compared to passive recovery periods. Twelve sedentary males (mean ± SD; age 23 ± 3 yr) completed three conditions on a cycle ergometer: 1) HIIT with passive recovery periods between four bouts (HIITPASS) 2) HIIT with active recovery periods between four bouts (HIITACT) 3) HIITACT with four HIIT bouts replaced with passive periods (REC). Deoxygenated haemoglobin (HHb) in the vastus lateralis (VL) and gastrocnemius (GN) muscles and the pre-frontal cortex (FH), oxygen consumption (VO2), power output and heart rate (HR) were measured continuously during the three conditions. There was a significant increase in HHb at VL during bouts 2 (p = 0.017), 3 (p = 0.035) and 4 (p = 0.035) in HIITACT, compared to HIITPASS. Mean power output was significantly lower in HIITACT, compared to HIITPASS (p < 0.001). There was a significant main effect for site in both HIITPASS (p = 0.029) and HIITACT (p = 0.005). There were no significant differences in VO2 and HR between HIITPASS and HIITACT. The increase in HHb at VL and the lower mean power output during HIITACT could indicate that a higher level of deoxygenation contributes to decreased mechanical power in sedentary participants. The significant differences in HHb between sites indicates the specificity of oxygen utilisation.
Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der; Hung, Bohr-Ran
2015-04-13
This study proposes a two-photomask process for fabricating amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) that exhibit a self-aligned structure. The fabricated TFTs, which lack etching-stop (ES) layers, have undamaged a-IGZO active layers that facilitate superior performance. In addition, we demonstrate a bilayer passivation method that uses a polytetrafluoroethylene (Teflon) and SiO₂ combination layer for improving the electrical reliability of the fabricated TFTs. Teflon was deposited as a buffer layer through thermal evaporation. The Teflon layer exhibited favorable compatibility with the underlying IGZO channel layer and effectively protected the a-IGZO TFTs from plasma damage during SiO₂ deposition, resulting in a negligible initial performance drop in the a-IGZO TFTs. Compared with passivation-free a-IGZO TFTs, passivated TFTs exhibited superior stability even after 168 h of aging under ambient air at 95% relative humidity.
Stable surface passivation process for compound semiconductors
Ashby, Carol I. H.
2001-01-01
A passivation process for a previously sulfided, selenided or tellurated III-V compound semiconductor surface. The concentration of undesired mid-gap surface states on a compound semiconductor surface is reduced by the formation of a near-monolayer of metal-(sulfur and/or selenium and/or tellurium)-semiconductor that is effective for long term passivation of the underlying semiconductor surface. Starting with the III-V compound semiconductor surface, any oxidation present thereon is substantially removed and the surface is then treated with sulfur, selenium or tellurium to form a near-monolayer of chalcogen-semiconductor of the surface in an oxygen-free atmosphere. This chalcogenated surface is then contacted with a solution of a metal that will form a low solubility chalcogenide to form a near-monolayer of metal-chalcogen-semiconductor. The resulting passivating layer provides long term protection for the underlying surface at or above the level achieved by a freshly chalcogenated compound semiconductor surface in an oxygen free atmosphere.
Two-step simulation of velocity and passive scalar mixing at high Schmidt number in turbulent jets
NASA Astrophysics Data System (ADS)
Rah, K. Jeff; Blanquart, Guillaume
2016-11-01
Simulation of passive scalar in the high Schmidt number turbulent mixing process requires higher computational cost than that of velocity fields, because the scalar is associated with smaller length scales than velocity. Thus, full simulation of both velocity and passive scalar with high Sc for a practical configuration is difficult to perform. In this work, a new approach to simulate velocity and passive scalar mixing at high Sc is suggested to reduce the computational cost. First, the velocity fields are resolved by Large Eddy Simulation (LES). Then, by extracting the velocity information from LES, the scalar inside a moving fluid blob is simulated by Direct Numerical Simulation (DNS). This two-step simulation method is applied to a turbulent jet and provides a new way to examine a scalar mixing process in a practical application with smaller computational cost. NSF, Samsung Scholarship.
Lan, Xinzheng; Voznyy, Oleksandr; García de Arquer, F Pelayo; Liu, Mengxia; Xu, Jixian; Proppe, Andrew H; Walters, Grant; Fan, Fengjia; Tan, Hairen; Liu, Min; Yang, Zhenyu; Hoogland, Sjoerd; Sargent, Edward H
2016-07-13
Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics.
Sun, Yiling; Gao, Pingqi; He, Jian; Zhou, Suqiong; Ying, Zhiqin; Yang, Xi; Xiang, Yong; Ye, Jichun
2016-12-01
Silicon/organic hybrid solar cells have recently attracted great attention because they combine the advantages of silicon (Si) and the organic cells. In this study, we added a patterned passivation layer of silicon nitride (SiNx:H) onto the rear surface of the Si substrate in a Si/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) hybrid solar cell, enabling an improvement of 0.6 % in the power conversion efficiency (PCE). The addition of the SiNx:H layer boosted the open circuit voltage (V oc) from 0.523 to 0.557 V, suggesting the well-passivation property of the patterned SiNx:H thin layer that was created by plasma-enhanced chemical vapor deposition and lithography processes. The passivation properties that stemmed from front PSS, rear-SiNx:H, front PSS/rear-SiNx:H, etc. are thoroughly investigated, in consideration of the process-related variations.
Automated Detection of a Crossing Contact Based on Its Doppler Shift
2009-03-01
contacts in passive sonar systems. A common approach is the application of high- gain processing followed by successive classification criteria. Most...contacts in passive sonar systems. A common approach is the application of high-gain processing followed by successive classification criteria...RESEARCH MOTIVATION The trade-off between the false alarm and detection probability is fundamental in radar and sonar . (Chevalier, 2002) A common
ERIC Educational Resources Information Center
Uludag, Onur; Vanpatten, Bill
2012-01-01
The current study presents the results of an experiment investigating the effects of processing instruction (PI) and dictogloss (DG) on the acquisition of the English passive voice. Sixty speakers of Turkish studying English at university level were assigned to three groups: one receiving PI, the other receiving DG and the third serving as a…
Chouinard, Philippe A; Meena, Deiter K; Whitwell, Robert L; Hilchey, Matthew D; Goodale, Melvyn A
2017-05-01
We used TMS to assess the causal roles of the lateral occipital (LO) and caudal intraparietal sulcus (cIPS) areas in the perceptual discrimination of object features. All participants underwent fMRI to localize these areas using a protocol in which they passively viewed images of objects that varied in both form and orientation. fMRI identified six significant brain regions: LO, cIPS, and the fusiform gyrus, bilaterally. In a separate experimental session, we applied TMS to LO or cIPS while the same participants performed match-to-sample form or orientation discrimination tasks. Compared with sham stimulation, TMS to either the left or right LO increased RTs for form but not orientation discrimination, supporting a critical role for LO in form processing for perception- and judgment-based tasks. In contrast, we did not observe any effects when we applied TMS to cIPS. Thus, despite the clear functional evidence of engagement for both LO and cIPS during the passive viewing of objects in the fMRI experiment, the TMS experiment revealed that cIPS is not critical for making perceptual judgments about their form or orientation.
Got Point Clouds: Characterizing Canopy Structure With Active and Passive Sensors
NASA Astrophysics Data System (ADS)
Popescu, S. C.; Malambo, L.; Sheridan, R.; Putman, E.; Murray, S.; Rooney, W.; Rajan, N.
2016-12-01
Unmanned Aerial Systems (UAS) provide the means to acquire highly customized aerial data at local scale with a multitude of sensors. UAS allow us to obtain affordably repeated observations of canopy structure for agricultural and natural resources applications by using passive optical sensors, such as cameras and photogrammetric techniques, and active sensors, such as lidar (Light Detection and Ranging). The objectives of this presentation are to: (1) offer a brief overview of UAS used for agriculture and natural resources studies, (2) describe experiences in conducting agriculture phenotyping and forest vegetation measurements, and (3) give details on the methodology developed for image and lidar data processing for characterizing the three dimensional structure of plant canopies. The UAS types used for this purpose included rotary platforms, such as quadcopters, hexacopters, and octocopters, with a payload capacity of up to 19 lbs. The sensors that collected data over two crop seasons include multispectral cameras in the visible color spectrum and near infrared, and UAS-lidar. For ground reference data we used terrestrial lidar scanners and field measurements. Results comparing UAS and terrestrial measurements show high correlation and open new areas of scientific investigation of crop canopies previously not possible with affordable techniques.
Development of low postural tone compensatory patterns in children - theoretical basis.
Gogola, Anna; Saulicz, Edward; Kuszewski, Michał; Matyja, Małgorzata; Myśliwiec, Andrzej
2014-01-01
Neurological literature indicates the existence of children with low postural tone without association with central nervous system damage. This fact induces to think about mechanisms, which allow these children to maintain upright posture. There is a suspicion that compensatory mechanism included in this process, enables to achieve upright posture, but at expense of body posture quality. Observations of children's developmental stages caused determination of some postural tone area, which comprise both children with normotonia and with low postural tone without characteristics of central nervous system (CNS) damage. Set of specific qualities allows determination of two types of low postural tone: spastoidal and atetoidal type. Spastoidal type is characterized by deep trunk muscles (local) low postural tone compensated by excessive tension of superficial muscles (global). Atetoidal type includes children with low postural tone in both deep and superficial muscles. At inefficient active subsystem, verticalization proceeds at excessive use of passive subsystem qualities, that is meniscus, ligament, bone shape, and muscles passive features. From neurodevelopmental point of view compensatory mechanisms can be used in children with low postural tone in order to achieve upright posture, but at expense of body posture quality.
Array processing for RFID tag localization exploiting multi-frequency signals
NASA Astrophysics Data System (ADS)
Zhang, Yimin; Li, Xin; Amin, Moeness G.
2009-05-01
RFID is an increasingly valuable business and technology tool for electronically identifying, locating, and tracking products, assets, and personnel. As a result, precise positioning and tracking of RFID tags and readers have received considerable attention from both academic and industrial communities. Finding the position of RFID tags is considered an important task in various real-time locating systems (RTLS). As such, numerous RFID localization products have been developed for various applications. The majority of RFID positioning systems is based on the fusion of pieces of relevant information, such as the range and the direction-of-arrival (DOA). For example, trilateration can determine the tag position by using the range information of the tag estimated from three or more spatially separated reader antennas. Triangulation is another method to locate RFID tags that use the direction-of-arrival (DOA) information estimated at multiple spatially separated locations. The RFID tag positions can also be determined through hybrid techniques that combine the range and DOA information. The focus of this paper to study the design and performance of the localization of passive RFID tags using array processing techniques in a multipath environment, and exploiting multi-frequency CW signals. The latter are used to decorrelate the coherent multipath signals for effective DOA estimation and for the purpose of accurate range estimation. Accordingly, the spatial and frequency dimensionalities are fully utilized for robust and accurate positioning of RFID tags.
Rissel, C; McMaugh, K; O'Connor, D; Balafas, A; Ward, J
1999-02-01
In response to inquiries regarding the processes of developing a Tobacco Control Plan (TCP) for the Central Sydney Area Health Service (which in 1997 allocated dedicated funding of $ 800,000 over 2 1/2 years to implement the plan), this article describes the strengths and weaknesses of the TCP and outlines the process which contributed to its funding. Consistent with national and state priorities, the TCP recommended strategies based on best available evidence in the four action areas: reducing sales of cigarettes to minors, marketing, passive smoking and smoking cessation. Funding of this amount for a single public health issue at a local level represents a unique achievement in the application of an evidence-based approach to population health. Key elements of our advocacy methods included the involvement of all key primary health care and clinical stakeholders; comprehensive background research to identify evidence-based strategies; careful attention to budget options; strategic lobbying of senior staff and decision makers; the proposal for a multidisciplinary management structure for the TCP and specifications for funding allocation and evaluation. Early achievements and other reflections are discussed.
Performance variances of galvanized steel in mortar and concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hime, W.G.; Machin, M.
Mild steel is used as reinforcement in concrete structures because it is passivated by the highly alkaline cement paste system, preventing typical corrosion. Two processes can corrode the initially passivated steel: air carbonation and chloride (Cl[sup [minus
Di Cesare, Annalisa; Giombini, Arrigo; Dragoni, Stefano; Agnello, Luciano; Ripani, Maurizio; Saraceni, Vincenzo Maria; Maffulli, Nicola
2008-01-01
To report the effects of local microwave diathermy (hyperthermia) at 434 Mhz on calcific tendinopathy of the shoulder in two middle aged patients. Two middle-aged women with calcific tendinopathy of the shoulder were treated with local microwave diathermy (hyperthermia) at 434 Mhz three times a week for four weeks. Plain radiographs and ultrasonography demonstrated calcific deposits in the area of infraspinatus or supraspinatus. Shoulder Pain and Disability Index (SPADI) and passive Range of Motion (ROM) were used to assess the response to treatment. At the end of the treatment period, the improvement as measured by the SPADI score was respectively 30% for the first patient and 40% for the second patient with an improvement of the shoulder passive ROM for both patients. The calcific deposits seen on the initial radiographs and ultrasonography were no longer visible. At 1 year follow-up, both patients continued to be symptom free. Hyperthermia is a safe option in the management of calcific tendinopathy of the shoulder. Prospective randomized controlled studies with long term assessment are needed to further document its therapeutic efficacy.
Yang, Dan; Xu, Bin; Rao, Kaiyou; Sheng, Weihua
2018-01-24
Indoor occupants' positions are significant for smart home service systems, which usually consist of robot service(s), appliance control and other intelligent applications. In this paper, an innovative localization method is proposed for tracking humans' position in indoor environments based on passive infrared (PIR) sensors using an accessibility map and an A-star algorithm, aiming at providing intelligent services. First the accessibility map reflecting the visiting habits of the occupants is established through the integral training with indoor environments and other prior knowledge. Then the PIR sensors, which placement depends on the training results in the accessibility map, get the rough location information. For more precise positioning, the A-start algorithm is used to refine the localization, fused with the accessibility map and the PIR sensor data. Experiments were conducted in a mock apartment testbed. The ground truth data was obtained from an Opti-track system. The results demonstrate that the proposed method is able to track persons in a smart home environment and provide a solution for home robot localization.
Yang, Dan; Xu, Bin; Rao, Kaiyou; Sheng, Weihua
2018-01-01
Indoor occupants’ positions are significant for smart home service systems, which usually consist of robot service(s), appliance control and other intelligent applications. In this paper, an innovative localization method is proposed for tracking humans’ position in indoor environments based on passive infrared (PIR) sensors using an accessibility map and an A-star algorithm, aiming at providing intelligent services. First the accessibility map reflecting the visiting habits of the occupants is established through the integral training with indoor environments and other prior knowledge. Then the PIR sensors, which placement depends on the training results in the accessibility map, get the rough location information. For more precise positioning, the A-start algorithm is used to refine the localization, fused with the accessibility map and the PIR sensor data. Experiments were conducted in a mock apartment testbed. The ground truth data was obtained from an Opti-track system. The results demonstrate that the proposed method is able to track persons in a smart home environment and provide a solution for home robot localization. PMID:29364188
Strangulation as the primary mechanism for shutting down star formation in galaxies.
Peng, Y; Maiolino, R; Cochrane, R
2015-05-14
Local galaxies are broadly divided into two main classes, star-forming (gas-rich) and quiescent (passive and gas-poor). The primary mechanism responsible for quenching star formation in galaxies and transforming them into quiescent and passive systems is still unclear. Sudden removal of gas through outflows or stripping is one of the mechanisms often proposed. An alternative mechanism is so-called "strangulation", in which the supply of cold gas to the galaxy is halted. Here we report an analysis of the stellar metallicity (the fraction of elements heavier than helium in stellar atmospheres) in local galaxies, from 26,000 spectra, that clearly reveals that strangulation is the primary mechanism responsible for quenching star formation, with a typical timescale of four billion years, at least for local galaxies with a stellar mass less than 10(11) solar masses. This result is further supported independently by the stellar age difference between quiescent and star-forming galaxies, which indicates that quiescent galaxies of less than 10(11) solar masses are on average observed four billion years after quenching due to strangulation.
Local oscillator induced degradation of medium-term stability in passive atomic frequency standards
NASA Technical Reports Server (NTRS)
Dick, G. John; Prestage, John D.; Greenhall, Charles A.; Maleki, Lute
1990-01-01
As the performance of passive atomic frequency standards improves, a new limitation is encountered due to frequency fluctuations in an ancillary local oscillator (L.O.). The effect is due to time variation in the gain of the feedback which compensates L.O. frequency fluctuations. The high performance promised by new microwave and optical trapped ion standards may be severely compromised by this effect. Researchers present an analysis of this performance limitation for the case of sequentially interrogated standards. The time dependence of the sensitivity of the interrogation process to L.O. frequency fluctuations is evaluated for single-pulse and double-pulse Ramsey RF interrogation and for amplitude modulated pulses. The effect of these various time dependencies on performance of the standard is calculated for an L.O. with frequency fluctuations showing a typical 1/f spectral density. A limiting 1/sq. root gamma dependent deviation of frequency fluctuations is calculated as a function of pulse lengths, dead time, and pulse overlap. Researchers also present conceptual and hardware-oriented solutions to this problem which achieve a much more nearly constant sensitivity to L.O. fluctuations. Solutions involve use of double-pulse interrogation; alternate interrogation of multiple traps so that the dead time of one trap can be covered by operation of the other; and the use of double-pulse interrogation for two traps, so that during the time of the RF pulses, the increasing sensitivity of one trap tends to compensate for the decreasing sensitivity of the other. A solution making use of amplified-modulated pulses is also presented which shows nominally zero time variation.
Functional Connectivity in Frequency-Tagged Cortical Networks During Active Harm Avoidance
Miskovic, Vladimir; Príncipe, José C.; Keil, Andreas
2015-01-01
Abstract Many behavioral and cognitive processes are grounded in widespread and dynamic communication between brain regions. Thus, the quantification of functional connectivity with high temporal resolution is highly desirable for capturing in vivo brain function. However, many of the commonly used measures of functional connectivity capture only linear signal dependence and are based entirely on relatively simple quantitative measures such as mean and variance. In this study, the authors used a recently developed algorithm, the generalized measure of association (GMA), to quantify dynamic changes in cortical connectivity using steady-state visual evoked potentials (ssVEPs) measured in the context of a conditioned behavioral avoidance task. GMA uses a nonparametric estimator of statistical dependence based on ranks that are efficient and capable of providing temporal precision roughly corresponding to the timing of cognitive acts (∼100–200 msec). Participants viewed simple gratings predicting the presence/absence of an aversive loud noise, co-occurring with peripheral cues indicating whether the loud noise could be avoided by means of a key press (active) or not (passive). For active compared with passive trials, heightened connectivity between visual and central areas was observed in time segments preceding and surrounding the avoidance cue. Viewing of the threat stimuli also led to greater initial connectivity between occipital and central regions, followed by heightened local coupling among visual regions surrounding the motor response. Local neural coupling within extended visual regions was sustained throughout major parts of the viewing epoch. These findings are discussed in a framework of flexible synchronization between cortical networks as a function of experience and active sensorimotor coupling. PMID:25557925
Field intercomparison of ammonia passive samplers: results and lessons learned.
NASA Astrophysics Data System (ADS)
Stephens, Amy; Leeson, Sarah; Jones, Matthew; van Dijk, Netty; Kentisbeer, John; Twigg, Marsailidh; Simmons, Ivan; Braban, Christine; Martin, Nick; Poskitt, Janet; Ferm, Martin; Seitler, Eva; Sacco, Paolo; Gates, Linda; Stolk, Ariën; Stoll, Jean-Marc; Tang, Sim
2017-04-01
Ammonia pollution contributes significantly to eutrophication and acidification of ecosystems with resultant losses of biodiversity and ecosystem changes. Monitoring of ambient ammonia over a wide spatial and long temporal scales is primarily done with low-cost diffusive samplers. Less frequently, surface flux measurements of ammonia can be made using passive samplers at plot scale. This paper will present a field intercomparison conducted within the MetNH3 project to assess the performance of passive samplers for ambient measurements of ammonia. Eight different designs of commercial passive samplers housed in shelters provided by the manufacturer/laboratory were exposed over an 8-week period at the Whim experimental field site in Scotland between August and October 2016. Whim Bog has a facility in place for controlled releases of ammonia (http://www.whimbog.ceh.ac.uk/). Automated conditional release from the line source occurs when the wind direction in the preceding minute is from the northeast (wind sector 180-215°) and wind speed is > 5 m s-1. The passive samplers were exposed at different distances from the release source (16, 32 and 60 m) and also at a background location. Most were exposed for 2 x 4-week long periods and some for 4 x 2-week long periods. At the 32 m position, an active denuder method, the CEH DELTA sampler and a continuous high temporal resolution wet chemistry ammonia instrument (AiRRmonia, Mechatronics, NL.) were also deployed alongside the passive samplers to provide reference measurements of ammonia. Results are presented within the context of the MetNH3 CATFAC controlled laboratory exposure assessments. The results are discussed in terms of typical deployments of passive samplers and quality control. Measurement for policy evidence for both local and regional studies using passive samplers are discussed.
Gallagher, J; Gill, L W; McNabola, A
2013-08-01
This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. Copyright © 2013 Elsevier B.V. All rights reserved.
Bowers, Andrew; Saltuklaroglu, Tim; Harkrider, Ashley; Cuellar, Megan
2013-01-01
Background Constructivist theories propose that articulatory hypotheses about incoming phonetic targets may function to enhance perception by limiting the possibilities for sensory analysis. To provide evidence for this proposal, it is necessary to map ongoing, high-temporal resolution changes in sensorimotor activity (i.e., the sensorimotor μ rhythm) to accurate speech and non-speech discrimination performance (i.e., correct trials.) Methods Sixteen participants (15 female and 1 male) were asked to passively listen to or actively identify speech and tone-sweeps in a two-force choice discrimination task while the electroencephalograph (EEG) was recorded from 32 channels. The stimuli were presented at signal-to-noise ratios (SNRs) in which discrimination accuracy was high (i.e., 80–100%) and low SNRs producing discrimination performance at chance. EEG data were decomposed using independent component analysis and clustered across participants using principle component methods in EEGLAB. Results ICA revealed left and right sensorimotor µ components for 14/16 and 13/16 participants respectively that were identified on the basis of scalp topography, spectral peaks, and localization to the precentral and postcentral gyri. Time-frequency analysis of left and right lateralized µ component clusters revealed significant (pFDR<.05) suppression in the traditional beta frequency range (13–30 Hz) prior to, during, and following syllable discrimination trials. No significant differences from baseline were found for passive tasks. Tone conditions produced right µ beta suppression following stimulus onset only. For the left µ, significant differences in the magnitude of beta suppression were found for correct speech discrimination trials relative to chance trials following stimulus offset. Conclusions Findings are consistent with constructivist, internal model theories proposing that early forward motor models generate predictions about likely phonemic units that are then synthesized with incoming sensory cues during active as opposed to passive processing. Future directions and possible translational value for clinical populations in which sensorimotor integration may play a functional role are discussed. PMID:23991030
Bowers, Andrew; Saltuklaroglu, Tim; Harkrider, Ashley; Cuellar, Megan
2013-01-01
Constructivist theories propose that articulatory hypotheses about incoming phonetic targets may function to enhance perception by limiting the possibilities for sensory analysis. To provide evidence for this proposal, it is necessary to map ongoing, high-temporal resolution changes in sensorimotor activity (i.e., the sensorimotor μ rhythm) to accurate speech and non-speech discrimination performance (i.e., correct trials.). Sixteen participants (15 female and 1 male) were asked to passively listen to or actively identify speech and tone-sweeps in a two-force choice discrimination task while the electroencephalograph (EEG) was recorded from 32 channels. The stimuli were presented at signal-to-noise ratios (SNRs) in which discrimination accuracy was high (i.e., 80-100%) and low SNRs producing discrimination performance at chance. EEG data were decomposed using independent component analysis and clustered across participants using principle component methods in EEGLAB. ICA revealed left and right sensorimotor µ components for 14/16 and 13/16 participants respectively that were identified on the basis of scalp topography, spectral peaks, and localization to the precentral and postcentral gyri. Time-frequency analysis of left and right lateralized µ component clusters revealed significant (pFDR<.05) suppression in the traditional beta frequency range (13-30 Hz) prior to, during, and following syllable discrimination trials. No significant differences from baseline were found for passive tasks. Tone conditions produced right µ beta suppression following stimulus onset only. For the left µ, significant differences in the magnitude of beta suppression were found for correct speech discrimination trials relative to chance trials following stimulus offset. Findings are consistent with constructivist, internal model theories proposing that early forward motor models generate predictions about likely phonemic units that are then synthesized with incoming sensory cues during active as opposed to passive processing. Future directions and possible translational value for clinical populations in which sensorimotor integration may play a functional role are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Yuguo; Upadhyaya, Vijaykumar; Chen, Chia-Wei
This paper reports on the implementation of carrier-selective tunnel oxide passivated rear contact for high-efficiency screen-printed large area n-type front junction crystalline Si solar cells. It is shown that the tunnel oxide grown in nitric acid at room temperature (25°C) and capped with n+ polysilicon layer provides excellent rear contact passivation with implied open-circuit voltage iVoc of 714mV and saturation current density J0b of 10.3 fA/cm2 for the back surface field region. The durability of this passivation scheme is also investigated for a back-end high temperature process. In combination with an ion-implanted Al2O3-passivated boron emitter and screen-printed front metal grids,more » this passivated rear contact enabled 21.2% efficient front junction Si solar cells on 239 cm2 commercial grade n-type Czochralski wafers.« less
Cloud and Radiation Mission with Active and Passive Sensing from the Space Station
NASA Technical Reports Server (NTRS)
Spinhirne, James D.
1998-01-01
A cloud and aerosol radiative forcing and physical process study involving active laser and radar profiling with a combination of passive radiometric sounders and imagers would use the space station as an observation platform. The objectives are to observe the full three dimensional cloud and aerosol structure and the associated physical parameters leading to a complete measurement of radiation forcing processes. The instruments would include specialized radar and lidar for cloud and aerosol profiling, visible, infrared and microwave imaging radiometers with comprehensive channels for cloud and aerosol observation and specialized sounders. The low altitude,. available power and servicing capability of the space station are significant advantages for the active sensors and multiple passive instruments.
Myneni, Ganapati Rao [Yorktown, VA; Hjorvarsson, Bjorgvin [Lagga Arby, SE; Ciovati, Gianluigi [Newport News, VA
2006-12-19
A niobium cavity exhibiting high quality factors at high gradients is provided by treating a niobium cavity through a process comprising: 1) removing surface oxides by plasma etching or a similar process; 2) removing hydrogen or other gases absorbed in the bulk niobium by high temperature treatment of the cavity under ultra high vacuum to achieve hydrogen outgassing; and 3) assuring the long term chemical stability of the niobium cavity by applying a passivating layer of a superconducting material having a superconducting transition temperature higher than niobium thereby reducing losses from electron (cooper pair) scattering in the near surface region of the interior of the niobium cavity. According to a preferred embodiment, the passivating layer comprises niobium nitride (NbN) applied by reactive sputtering.
Harmonic reduction by using single-tuned passive filter in plastic processing industry
NASA Astrophysics Data System (ADS)
Fahmi, M. I.; Baafai, U.; Hazmi, A.; Nasution, T. H.
2018-02-01
The using of non-linear loads generated by industrial machines may result inconsistent harmonics that do not reach the IEEE 519 - 1992 standards. This study discusses the use of single-tuned passive filters in reducing harmonics in the plastics processing industry. The system modeling using matlab / simulink simulation resulted in total harmonic distortion (THD) of 15.55%, can be reduced to 4.77% harmonics in accordance with IEEE 519 - 1992 standards. From the simulation results also seen that single-tuned passive filter can reduce the harmonics of the current 82.23% harmonic that wants to be reduced and also can reduce other orders harmonics between 7% to 8%.
Fabrication process for polymer PLC platforms with V-grooves for passive alignment
NASA Astrophysics Data System (ADS)
Park, Suntak; Lee, Jong-Moo; Ahn, Joon Tae; Baek, Yong-Soon
2005-12-01
A method for polymer planar lightwave circuit (PLC) devices fabricated on a substrate with V-grooves is developed for passive alignment of an optical fiber to a polymer waveguide. In order to minimize thickness nonuniformity of polymer layers caused by the V-grooves, dry film resist (DFR) is used. The V-grooves are covered with the DFR before the polymer layers are spin-coated on the substrate. The DFR prevents the polymer from being filled in the V-grooves as well as from being spin-coated nonuniformly on the substrate. This process provides a simple and cost-effective fabrication method of polymer PLCs or platforms for passive alignment.
Demonstration of Passive Fuel Cell Thermal Management Technology
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William
2012-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia
2015-04-26
Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), amore » systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.« less
Fu, Yue; Zhang, Quan; Zhang, Jing; Zhang, Yun Ting
2015-01-01
To compare the effects of active and passive movements on brain activation in patients with cerebral infarction using fMRI. Twenty-four hemiplegic patients with cerebral infarction were evaluated using fMRI. All patients performed active and passive finger opposition movements. Patients were instructed to perform the finger opposition movement for the active movement task. For the passive movement task, the subject's fingers were moved by the examiner to perform the finger opposition movement. Statistical parametric mapping software was used for statistical analyses and to process all data. In the affected hemisphere, sensorimotor cortex (SMC) activation intensity and range were significantly stronger during the passive movement of the affected fingers compared to the active movement of the affected fingers (p < 0.05). However, there were no significant differences between active and passive movements of unaffected fingers in SMC activation intensity and range in the unaffected hemisphere (p > 0.05). In addition, the passive movement activated many other regions of the brain. The brain regions activated by passive movements of the affected fingers tended to center toward the contralateral SMC. Our findings suggest that passive movements induce cortical reorganization in patients with cerebral infarction. Therefore, passive movement is likely beneficial for motor function recovery in patients with cerebral infarction.
LT-STM/STS studies of clean armchair edge
NASA Astrophysics Data System (ADS)
Ju, Zheng; Zhang, Wenhan; Wu, Weida; Weida Wu Team
It was predicted and observed that the passivated zigzag edges of graphene host highly localized edge state. This edge state is predicted to be spin-polarized, which is appealing for spintronic applications. In contrast, no edge state was expected at passivated armchair graphene edge. Here we report low temperature scanning tunneling microscopy and spectroscopy (STM/STS) studies of electronic properties of clean monoatomic step edges on cleaved surface of HOPG. Most of step edges are armchair edges, in agreement with previous STM results. We observed only (√{ 3} ×√{ 3}) R30° superstructure near armchair edges, which has been reported in previous STM studies. On the other hand, no honeycomb superstructure was observed in our STM data. In addition, our STM results reveal an intriguing localized electronic state at clean armchair edges. Spectroscopic and spatial evolution of this edge state will be presented. This work is supported by NSF DMR-1506618.
RANS modeling of scalar dispersion from localized sources within a simplified urban-area model
NASA Astrophysics Data System (ADS)
Rossi, Riccardo; Capra, Stefano; Iaccarino, Gianluca
2011-11-01
The dispersion of a passive scalar downstream a localized source within a simplified urban-like geometry is examined by means of RANS scalar flux models. The computations are conducted under conditions of neutral stability and for three different incoming wind directions (0°, 45°, 90°) at a roughness Reynolds number of Ret = 391. A Reynolds stress transport model is used to close the flow governing equations whereas both the standard eddy-diffusivity closure and algebraic flux models are employed to close the transport equation for the passive scalar. The comparison with a DNS database shows improved reliability from algebraic scalar flux models towards predicting both the mean concentration and the plume structure. Since algebraic flux models do not increase substantially the computational effort, the results indicate that the use of tensorial-diffusivity can be promising tool for dispersion simulations for the urban environment.
El-Khouly, Fatma E.; van Vuurden, Dannis G.; Stroink, Thom; Hulleman, Esther; Kaspers, Gertjan J. L.; Hendrikse, N. Harry; Veldhuijzen van Zanten, Sophie E. M.
2017-01-01
Despite decades of clinical trials for diffuse intrinsic pontine glioma (DIPG), patient survival does not exceed 10% at two years post-diagnosis. Lack of benefit from systemic chemotherapy may be attributed to an intact bloodbrain barrier (BBB). We aim to develop a theoretical model including relevant physicochemical properties in order to review whether applied chemotherapeutics are suitable for passive diffusion through an intact BBB or whether local administration via convection-enhanced delivery (CED) may increase their therapeutic potential. Physicochemical properties (lipophilicity, molecular weight, and charge in physiological environment) of anticancer drugs historically and currently administered to DIPG patients, that affect passive diffusion over the BBB, were included in the model. Subsequently, the likelihood of BBB passage of these drugs was ascertained, as well as their potential for intratumoral administration via CED. As only non-molecularly charged, lipophilic, and relatively small sized drugs are likely to passively diffuse through the BBB, out of 51 drugs modeled, only 8 (15%)—carmustine, lomustine, erlotinib, vismodegib, lenalomide, thalidomide, vorinostat, and mebendazole—are theoretically qualified for systemic administration in DIPG. Local administration via CED might create more therapeutic options, excluding only positively charged drugs and drugs that are either prodrugs and/or only available as oral formulation. A wide variety of drugs have been administered systemically to DIPG patients. Our model shows that only few are likely to penetrate the BBB via passive diffusion, which may partly explain the lack of efficacy. Drug distribution via CED is less dependent on physicochemical properties and may increase the therapeutic options for DIPG. PMID:29164054
Detection of a dynamic topography signal in last interglacial sea-level records
Austermann, Jacqueline; Mitrovica, Jerry X.; Huybers, Peter; Rovere, Alessio
2017-01-01
Estimating minimum ice volume during the last interglacial based on local sea-level indicators requires that these indicators are corrected for processes that alter local sea level relative to the global average. Although glacial isostatic adjustment is generally accounted for, global scale dynamic changes in topography driven by convective mantle flow are generally not considered. We use numerical models of mantle flow to quantify vertical deflections caused by dynamic topography and compare predictions at passive margins to a globally distributed set of last interglacial sea-level markers. The deflections predicted as a result of dynamic topography are significantly correlated with marker elevations (>95% probability) and are consistent with construction and preservation attributes across marker types. We conclude that a dynamic topography signal is present in the elevation of last interglacial sea-level records and that the signal must be accounted for in any effort to determine peak global mean sea level during the last interglacial to within an accuracy of several meters. PMID:28695210
NASA Astrophysics Data System (ADS)
Masey, Nicola; Gillespie, Jonathan; Heal, Mathew R.; Hamilton, Scott; Beverland, Iain J.
2017-07-01
We assessed the precision and accuracy of nitrogen dioxide (NO2) concentrations over 2-day, 3-day and 7-day exposure periods measured with the following types of passive diffusion samplers: standard (open) Palmes tubes; standard Ogawa samplers with commercially-prepared Ogawa absorbent pads (Ogawa[S]); and modified Ogawa samplers with absorbent-impregnated stainless steel meshes normally used in Palmes tubes (Ogawa[P]). We deployed these passive samplers close to the inlet of a chemiluminescence NO2 analyser at an urban background site in Glasgow, UK over 32 discrete measurement periods. Duplicate relative standard deviation was <7% for all passive samplers. The Ogawa[P], Ogawa[S] and Palmes samplers explained 93%, 87% and 58% of temporal variation in analyser concentrations respectively. Uptake rates for Palmes and Ogawa[S] samplers were positively and linearly associated with wind-speed (P < 0.01 and P < 0.05 respectively). Computation of adjusted uptake rates using average wind-speed observed during each sampling period increased the variation in analyser concentrations explained by Palmes and Ogawa[S] estimates to 90% and 92% respectively, suggesting that measurements can be corrected for shortening of diffusion path lengths due to wind-speed to improve the accuracy of estimates of short-term NO2 exposure. Monitoring situations where it is difficult to reliably estimate wind-speed variations, e.g. across multiple sites with different unknown exposures to local winds, and personal exposure monitoring, are likely to benefit from protection of these sampling devices from the effects of wind, for example by use of a mesh or membrane across the open end. The uptake rate of Ogawa[P] samplers was not associated with wind-speed resulting in a high correlation between estimated concentrations and observed analyser concentrations. The use of Palmes meshes in Ogawa[P] samplers reduced the cost of sampler preparation and removed uncertainty associated with the unknown manufacturing process for the commercially-prepared collection pads.
Min, Kyoung Ah; Talattof, Arjang; Tsume, Yasuhiro; Stringer, Kathleen A; Yu, Jing-Yu; Lim, Dong Hyun; Rosania, Gus R
2013-08-01
We sought to identify key variables in cellular architecture and physiology that might explain observed differences in the passive transport properties of small molecule drugs across different airway epithelial cell types. Propranolol (PR) was selected as a weakly basic, model compound to compare the transport properties of primary (NHBE) vs. tumor-derived (Calu-3) cells. Differentiated on Transwell™ inserts, the architecture of pure vs. mixed cell co-cultures was studied with confocal microscopy followed by quantitative morphometric analysis. Cellular pharmacokinetic modeling was used to identify parameters that differentially affect PR uptake and transport across these two cell types. Pure Calu-3 and NHBE cells possessed different structural and functional properties. Nevertheless, mixed Calu-3 and NHBE cell co-cultures differentiated as stable cell monolayers. After measuring the total mass of PR, the fractional areas covered by Calu-3 and NHBE cells allowed deconvoluting the transport properties of each cell type. Based on the apparent thickness of the unstirred, cell surface aqueous layer, local differences in the extracellular microenvironment explained the measured variations in passive PR uptake and permeation between Calu-3 and NHBE cells. Mixed cell co-cultures can be used to compare the local effects of the extracellular microenvironment on drug uptake and transport across two epithelial cell types.
Wang, Qin; Zhou, Xing-Yu; Guo, Guang-Can
2016-01-01
In this paper, we put forward a new approach towards realizing measurement-device-independent quantum key distribution with passive heralded single-photon sources. In this approach, both Alice and Bob prepare the parametric down-conversion source, where the heralding photons are labeled according to different types of clicks from the local detectors, and the heralded ones can correspondingly be marked with different tags at the receiver’s side. Then one can obtain four sets of data through using only one-intensity of pump light by observing different kinds of clicks of local detectors. By employing the newest formulae to do parameter estimation, we could achieve very precise prediction for the two-single-photon pulse contribution. Furthermore, by carrying out corresponding numerical simulations, we compare the new method with other practical schemes of measurement-device-independent quantum key distribution. We demonstrate that our new proposed passive scheme can exhibit remarkable improvement over the conventional three-intensity decoy-state measurement-device-independent quantum key distribution with either heralded single-photon sources or weak coherent sources. Besides, it does not need intensity modulation and can thus diminish source-error defects existing in several other active decoy-state methods. Therefore, if taking intensity modulating errors into account, our new method will show even more brilliant performance. PMID:27759085
Min, Kyoung Ah; Talattof, Arjang; Tsume, Yasuhiro; Stringer, Kathleen A.; Yu, Jing-yu; Lim, Dong Hyun; Rosania, Gus R.
2013-01-01
Purpose We sought to identify key variables in cellular architecture and physiology that might explain observed differences in the passive transport properties of small molecule drugs across different airway epithelial cell types. Methods Propranolol (PR) was selected as a weakly basic, model compound to compare the transport properties of primary (NHBE) vs. tumor-derived (Calu-3) cells. Differentiated on Transwell™ inserts, the architecture of pure vs. mixed cell co-cultures was studied with confocal microscopy followed by quantitative morphometric analysis. Cellular pharmacokinetic modeling was used to identify parameters that differentially affect PR uptake and transport across these two cell types. Results Pure Calu-3 and NHBE cells possessed different structural and functional properties. Nevertheless, mixed Calu-3 and NHBE cell co-cultures differentiated as stable cell monolayers. After measuring the total mass of PR, the fractional areas covered by Calu-3 and NHBE cells allowed deconvoluting the transport properties of each cell type. Based on the apparent thickness of the unstirred, cell surface aqueous layer, local differences in extracellular microenvironment explained the measured variations in passive PR uptake and permeation between Calu-3 and NHBE cells. Conclusion Mixed cell co-cultures can be used to compare the local effects of the extracellular microenvironment on drug uptake and transport across two epithelial cell types. PMID:23708857
Cassini RADAR End of Mission Calibration and Preliminary Ring Results
NASA Astrophysics Data System (ADS)
West, R. D.; Janssen, M.; Zhang, Z.; Cuzzi, J. N.; Anderson, Y.; Hamilton, G.
2017-12-01
The Cassini mission is in the midst of its last year of observations. Part of the mission plan includes orbits that bring the spacecraft close to Saturn's rings prior to deorbiting into Saturn's atmosphere. First, a series of F-ring orbits crossed the ring plane just outside of the F-ring, and then a series of Proximal orbits crossed the ring plane inside of the D-ring - just above the cloud tops. The Cassini RADAR instrument collected active and passive data of the rings in 5 observations, of Saturn in one observation, and passive only data in an additional 4 observations. These observations provided a unique opportunity to obtain backscatter measurements and relatively high-resolution brightness temperature measurements from Saturn and the rings. Such measurements were never before possible from the spacecraft or the Earth due to high range. Before the F-ring orbits began, and again during the last rings scan, the radar collected calibration data to aid calibration of the rings measurements and to provide an updated timeline of the radar calibration over the whole mission. This presentation will cover preliminary processing results from the radar rings scans and from the calibration data sets. Ultimately, these ring scan measurements will provide a 1-D profile of backscatter obtained at 2.2 cm wavelength that will complement similar passive profiles obtained at optical, infrared, and microwave wavelengths. Such measurements will further constrain and inform models of the ring particle composition and structure, and the local vertical structure of the rings. This work is supported by the NASA Cassini Program at JPL - CalTech.
NASA Technical Reports Server (NTRS)
Ebmeier, S. K.; Sayer, A. M.; Grainger, R. G.; Mather, T. A.; Carboni, E.
2014-01-01
The impact of volcanic emissions is a significant source of uncertainty in estimations of aerosol indirect radiative forcing, especially with respect to emissions from passive de-gassing and minor explosions. Understanding the impact of volcanic emissions on indirect radiative forcing is important assessing present day atmospheric properties and also to define the pre-industrial baseline to assess anthropogenic perturbations. We present observations of the time-averaged indirect aerosol effect within 200 km downwind of isolated island volcanoes in regions of low present-day aerosol burden using MODIS and AATSR data. Retrievals of aerosol and cloud properties at Kilauea (Hawaii), Yasur (Vanuatu) and Piton de la Fournaise (Reunion) are rotated about the volcanic vent according to wind direction, so that retrievals downwind of the volcano can be averaged to improve signal to noise ratio. The emissions from all three volcanoes, including those from passive degassing, strombolian activity and minor explosions lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference in effective radius ranging from 48 microns at the different volcanoes. A comparison of these observations with cloud properties at isolated islands with no significant source of aerosol suggests that these patterns are not purely orographic in origin. This approach sets out a first step for the systematic measurement of the effects of present day low altitude volcanic emissions on cloud properties, and our observations of unpolluted, isolated marine settings may capture processes similar to those in the preindustrial marine atmosphere.
Understanding the synthesis, performance, and passivation of metal oxide photocathodes
NASA Astrophysics Data System (ADS)
Flynn, Cory James
Metal oxides are ubiquitous in semiconductor technologies for their ease of synthesis, chemical stability, and tunable optical/electronic properties. These properties are especially important to fabricating efficient photoelectrodes for solar-energy applications. To counter inherent problems in these materials, new strategies were developed and successfully implemented on the widely-utilized p-type semiconductor, NiO. As the size of semiconductor materials shrink, the surface-to-volume ratio increases and surface defects dominate the performance of the materials. Surface defects can alter the optical and electronic characteristics of materials by changing the Fermi level, charge-carrier mobility, and surface reactivity. We first present a strategy to increase the electrical mobility of mesoporous metal oxide electrode materials by optimizing shape morphology. Transitioning from nanospheres to hexagonal nanoplatelets increased the charge-carrier mobility by one order of magnitude. We then employed this improved material with a new vapor-phase deposition method termed targeted atomic deposition (TAD) to selectively passivate defect sites in semiconductor nanomaterials. We demonstrated the capabilities of this passivation method by applying a TAD of aluminum onto NiO. By exploiting a temperature-dependent deposition process, we selectively passivated the highly reactive sites in NiO: oxygen dangling bonds associated with Ni vacancies. The TAD treatment completely passivated all measurable surface defects, optically bleached the material, and significantly improved all photovoltaic performance metrics in dye-sensitized solar cells. The technique was proven to be generic to numerous forms of NiO. While the implementation of TAD of Al was successful, the process involved pulsing two precursors to passivate the material. Ideally, the TAD process should require only a single precursor and continuous exposure. We utilized a continuous flow of diborane to perform a TAD of B onto NiO. The TAD process was successfully implemented in a simplified manner. The treatment moderately increased DSSC performance and proved viability with a different vapor-phase precursor.
NASA Astrophysics Data System (ADS)
Pharkya, Pallavi
Alloy 22, a Ni-Cr-Mo-W alloy, and SAM1651, an Fe-Cr-Mo-B-Y-C bulk metallic glass are highly corrosion-resistant alloys. The high corrosion resistance of these alloys is due to the formation of tenacious oxide films on their surfaces. This study examines the reformation behavior of the passive films as a function of the corrosion resistance of the alloys and the corrosivity of the environment. The main tasks of this study were (i) to determine the chemical durability of passive films on these highly corrosion-resistant alloys in aggressive environments, (ii) to investigate the durability after mechanically damaging the passive films either locally or over the entire surface area and to study the reformation kinetics, (iii) to compare the durability of the passive films of the aforementioned highly corrosion resistant alloys with an alloy of intermediate corrosion resistance, AL6XN, and an alloy of less corrosion resistance, 316L SS, (iv) to examine the evolution of the electronic properties of the passive films on alloy 22 and SAM1651 under different environmental conditions such as concentrated chloride solution, acidic solution, temperature, potential and oxyanions, and (v) to develop an understanding of the relationship between the passive films' composition, electronic and electrochemical properties and the performance. A combination of techniques was utilized to meet the above mentioned objectives. Cyclic potentiodynamic polarization (CPP) was used to determine the electrochemical parameters such as freely corroding, breakdown and repassivation potentials. Electrochemical impedance spectroscopy (EIS) was used to determine the electronic properties such as impedance, thickness and capacitance of the passive films. Mott-Schottky (M-S) analysis was used to determine the type and the density of the defects in the passive films. The mechanical durability and reformation kinetics of the passive films was investigated using a scratch-repassivation method. The quality and the protectiveness of the reformed passive films after scribing were examined using EIS, M-S analysis, and AES. The results show that the passive films on alloy 22 and SAM1651 possess high chemical and mechanical durability. The reformed passive films acquired the same electronic and elemental properties as the passive films which were undamaged. The passive films on SAM1651 and alloy 22 showed better corrosion resistance and durability than did the passive films on AL6XN and 316L SS. The results also showed that the passive film behavior depends on the inherent corrosion resistance of an alloy and the corrosivity of the environment. The inherent corrosion resistance depends on the concentration of the passivity-providing elements such as Cr and Mo in the bulk composition of the alloy (and passive film), and the corrosivity of the environment which is influenced by chloride concentration, oxyanions, temperature, pH, and oxidizing potential.
Clancy, Kevin; Ding, Mingzhou; Bernat, Edward; Schmidt, Norman B; Li, Wen
2017-07-01
Post-traumatic stress disorder is characterized by exaggerated threat response, and theoretical accounts to date have focused on impaired threat processing and dysregulated prefrontal-cortex-amygdala circuitry. Nevertheless, evidence is accruing for broad, threat-neutral sensory hyperactivity in post-traumatic stress disorder. As low-level, sensory processing impacts higher-order operations, such sensory anomalies can contribute to widespread dysfunctions, presenting an additional aetiological mechanism for post-traumatic stress disorder. To elucidate a sensory pathology of post-traumatic stress disorder, we examined intrinsic visual cortical activity (based on posterior alpha oscillations) and bottom-up sensory-driven causal connectivity (Granger causality in the alpha band) during a resting state (eyes open) and a passive, serial picture viewing state. Compared to patients with generalized anxiety disorder (n = 24) and healthy control subjects (n = 20), patients with post-traumatic stress disorder (n = 25) demonstrated intrinsic sensory hyperactivity (suppressed posterior alpha power, source-localized to the visual cortex-cuneus and precuneus) and bottom-up inhibition deficits (reduced posterior→frontal Granger causality). As sensory input increased from resting to passive picture viewing, patients with post-traumatic stress disorder failed to demonstrate alpha adaptation, highlighting a rigid, set mode of sensory hyperactivity. Interestingly, patients with post-traumatic stress disorder also showed heightened frontal processing (augmented frontal gamma power, source-localized to the superior frontal gyrus and dorsal cingulate cortex), accompanied by attenuated top-down inhibition (reduced frontal→posterior causality). Importantly, not only did suppressed alpha power and bottom-up causality correlate with heightened frontal gamma power, they also correlated with increased severity of sensory and executive dysfunctions (i.e. hypervigilance and impulse control deficits, respectively). Therefore, sensory aberrations help construct a vicious cycle in post-traumatic stress disorder that is in action even at rest, implicating dysregulated triangular sensory-prefrontal-cortex-amygdala circuitry: intrinsic sensory hyperactivity and disinhibition give rise to frontal overload and disrupt executive control, fuelling and perpetuating post-traumatic stress disorder symptoms. Absent in generalized anxiety disorder, these aberrations highlight a unique sensory pathology of post-traumatic stress disorder (ruling out effects merely reflecting anxious hyperarousal), motivating new interventions targeting sensory processing and the sensory brain in these patients. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Beets, Iseult A. M.; Macé, Marc; Meesen, Raf L. J.; Cuypers, Koen; Levin, Oron; Swinnen, Stephan P.
2012-01-01
Perceptual processes play an important role in motor learning. While it is evident that visual information greatly contributes to learning new movements, much less is known about provision of prescriptive proprioceptive information. Here, we investigated whether passive (proprioceptively-based) movement training was comparable to active training for learning a new bimanual task. Three groups practiced a bimanual coordination pattern with a 1∶2 frequency ratio and a 90° phase offset between both wrists with Lissajous feedback over the course of four days: 1) passive training; 2) active training; 3) no training (control). Retention findings revealed that passive as compared to active training resulted in equally successful acquisition of the frequency ratio but active training was more effective for acquisition of the new relative phasing between the limbs in the presence of augmented visual feedback. However, when this feedback was removed, performance of the new relative phase deteriorated in both groups whereas the frequency ratio was better preserved. The superiority of active over passive training in the presence of augmented feedback is hypothesized to result from active involvement in processes of error detection/correction and planning. PMID:22666379
STRIPPING PROCESS FOR PLUTONIUM
Kolodney, M.
1959-10-01
A method for removing silver, nickel, cadmium, zinc, and indium coatings from plutonium objects while simultaneously rendering the plutonium object passive is described. The coated plutonium object is immersed as the anode in an electrolyte in which the plutonium is passive and the coating metal is not passive, using as a cathode a metal which does not dissolve rapidly in the electrolyte. and passing an electrical current through the electrolyte until the coating metal is removed from the plutonium body.
Numerical simulation of the control of the three-dimensional transition process in boundary layers
NASA Technical Reports Server (NTRS)
Kral, L. D.; Fasel, H. F.
1990-01-01
Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.
2012-01-01
14]. The detector material was processed into a variable area diode array (VADA) of square and circular mesa diodes with the size of diode mesa sides...processed as single element detectors with 410 lm 410 lm square mesas having circular apertures ranging in diameter from 25 to 300 lm. The processing was...passivations schemes with perimeter-to-area ratio (P/A) of 1600 cm1 ( mesa side size is 25 lm). Fig. 3. Inverse of the dynamic resistance area product (RdA
Passivated aluminum nanohole arrays for label-free biosensing applications.
Canalejas-Tejero, Víctor; Herranz, Sonia; Bellingham, Alyssa; Moreno-Bondi, María Cruz; Barrios, Carlos Angulo
2014-01-22
We report the fabrication and performance of a surface plasmon resonance aluminum nanohole array refractometric biosensor. An aluminum surface passivation treatment based on oxygen plasma is developed in order to circumvent the undesired effects of oxidation and corrosion usually found in aluminum-based biosensors. Immersion tests in deionized water and device simulations are used to evaluate the effectiveness of the passivation process. A label-free bioassay based on biotin analysis through biotin-functionalized dextran-lipase conjugates immobilized on the biosensor-passivated surface in aqueous media is performed as a proof of concept to demonstrate the suitability of these nanostructured aluminum films for biosensing.
Most energetic passive states.
Perarnau-Llobet, Martí; Hovhannisyan, Karen V; Huber, Marcus; Skrzypczyk, Paul; Tura, Jordi; Acín, Antonio
2015-10-01
Passive states are defined as those states that do not allow for work extraction in a cyclic (unitary) process. Within the set of passive states, thermal states are the most stable ones: they maximize the entropy for a given energy, and similarly they minimize the energy for a given entropy. Here we find the passive states lying in the other extreme, i.e., those that maximize the energy for a given entropy, which we show also minimize the entropy when the energy is fixed. These extremal properties make these states useful to obtain fundamental bounds for the thermodynamics of finite-dimensional quantum systems, which we show in several scenarios.
NASA Astrophysics Data System (ADS)
Nguyen, K. L.; Gabov, V. V.; Zadkov, D. A.; Le, T. B.
2018-03-01
This paper analyzes the processes of removing coal from the area of its dislodging and loading the disintegrated mass onto face conveyors by auger heads of shearer-loader machines. The loading process is assumed to consist of four subprocesses: dislodging coal, removal of the disintegrated mass by auger blades from the crushing area, passive transportation of the disintegrated mass, and forming the load flow on the bearing surface of a face conveyor. Each of the considered subprocesses is different in its physical nature, the number of factors influencing it, and can be complex or multifactor. Possibilities of improving the efficiency of loading coal onto a face conveyor are addressed. The selected criteria of loading efficiency are load rate, specific energy consumption, and coal size reduction. Efficiency is improved by reducing the resistance to movement of the disintegrated mass during loading by increasing the area of the loading window section and the volume of the loading area on the conveyor, as well as by coordination of intensity of flows related to the considered processes in local areas.
Simulation and measurement of a Ka-band HTS MMIC Josephson junction mixer
NASA Astrophysics Data System (ADS)
Zhang, Ting; Pegrum, Colin; Du, Jia; Guo, Yingjie Jay
2017-01-01
We report modeling and simulation results for a Ka band high-temperature superconducting (HTS) monolithic microwave integrated circuit (MMIC) Josephson junction mixer. A Verilog-A model of a Josephson junction is established and imported into the system simulator to realize a full HTS MMIC circuit simulation containing the HTS passive circuit models. Impedance matching optimization between the junction and passive devices is investigated. Junction DC I-V characteristics, current and local oscillator bias conditions and mixing performance are simulated and compared with the experimental results. Good agreement is obtained between the simulation and measurement results.
Electromigration-induced plastic deformation in passivated metal lines
NASA Astrophysics Data System (ADS)
Valek, B. C.; Bravman, J. C.; Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Spolenak, R.; Brown, W. L.; Batterman, B. W.; Patel, J. R.
2002-11-01
We have used scanning white beam x-ray microdiffraction to study microstructural evolution during an in situ electromigration experiment on a passivated Al(Cu) test line. The data show plastic deformation and grain rotations occurring under the influence of electromigration, seen as broadening, movement, and splitting of reflections diffracted from individual metal grains. We believe this deformation is due to localized shear stresses that arise due to the inhomogeneous transfer of metal along the line. Deviatoric stress measurements show changes in the components of stress within the line, including relaxation of stress when current is removed.
Pulsed excimer laser processing for cost-effective solar cells
NASA Technical Reports Server (NTRS)
Wong, David C.
1985-01-01
The application of excimer laser in the fabrication of photovoltaic devices was investigated extensively. Processes included junction formation, laser assisted chemical vapor deposition metallization, and laser assisted chemical vapor deposition surface passivation. Results demonstrated that implementation of junction formation by laser annealing in production is feasible because of excellent control in junction depth and quality. Both metallization and surface passivation, however, were found impractical to be considered for manufacturing at this stage.
Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Zahidur R., E-mail: zr.chowdhury@utoronto.ca; Kherani, Nazir P., E-mail: kherani@ecf.utoronto.ca
2014-12-29
This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparentmore » passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.« less
Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces
Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.
2014-09-09
A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).
Forming high-efficiency silicon solar cells using density-graded anti-reflection surfaces
Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.
2015-07-07
A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).
Azim, Riyasat; Li, Fangxing; Xue, Yaosuo; ...
2017-07-14
Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azim, Riyasat; Li, Fangxing; Xue, Yaosuo
Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less
NASA Astrophysics Data System (ADS)
Popa, Monica; Calderon Moreno, Jose Maria; Vasilescu, Cora; Drob, Silviu Iulian; Neacsu, Elena Ionela; Coer, Andrej; Hmeljak, Julija; Zerjav, Gregor; Milošev, Ingrid
2014-06-01
This article analyses the microstructure, electrochemical behavior, and biocompatibility of a novel Ti-20Nb-10Zr-5Ta alloy with low Young's modulus (59 GPa) much closer to that of bone, between 10 and 30 GPa, than Ti and other Ti alloys used as implant biomaterial. XRD and SEM measurements revealed a near β crystalline microstructure containing β phase matrix and secondary α phase, with a typical grain size of around 200 μm. The corrosion behavior in neutral Ringer solution evidenced: self-passivation behavior characterizing a very resistant passive film; an easy passivation as a result of favorable influence of the alloying elements Nb, Zr, and Ta that participate with their passive oxides to the formation of the alloy passive film; low corrosion and ion release rates corresponding with very low toxicity. In MEM solution, the novel alloy demonstrated very high corrosion resistance and no susceptibility to localized corrosion. Biocompatibility was evaluated on in vitro human osteoblast-like and human immortalized pulmonary fibroblast cell (Wi-38) lines and the new Ti-20Nb-10Zr-5Ta alloy exhibited no cytotoxicity. The new Ti-20Nb-10Zr5Ta alloy is a promising material for implants due to combined properties of low elastic modulus, very low corrosion rate, and good biocompatibility.
NASA Astrophysics Data System (ADS)
Hu, Cheng-Yu; Hashizume, Tamotsu
2012-04-01
For AlGaN/GaN heterojunction field-effect transistors, on-state-bias-stress (on-stress)-induced trapping effects were observed across the entire drain access region, not only at the gate edge. However, during the application of on-stress, the highest electric field was only localized at the drain side of the gate edge. Using the location of the highest electric field as a reference, the trapping effects at the gate edge and at the more distant access region were referred to as localized and non-localized trapping effect, respectively. Using two-dimensional-electron-gas sensing-bar (2DEG-sensing-bar) and dual-gate structures, the non-localized trapping effects were investigated and the trap density was measured to be ˜1.3 × 1012 cm-2. The effect of passivation was also discussed. It was found that both surface leakage currents and hot electrons are responsible for the non-localized trapping effects with hot electrons having the dominant effect. Since hot electrons are generated from the 2DEG channel, it is highly likely that the involved traps are mainly in the GaN buffer layer. Using monochromatic irradiation (1.24-2.81 eV), the trap levels responsible for the non-localized trapping effects were found to be located at 0.6-1.6 eV from the valence band of GaN. Both trap-assisted impact ionization and direct channel electron injection are proposed as the possible mechanisms of the hot-electron-related non-localized trapping effect. Finally, using the 2DEG-sensing-bar structure, we directly confirmed that blocking gate injected electrons is an important mechanism of Al2O3 passivation.
Nanoscale imaging of photocurrent and efficiency in CdTe solar cells
Leite, Marina S.; National Inst. of Standards and Technology; Abashin, Maxim; ...
2014-10-15
The local collection characteristics of grain interiors and grain boundaries in thin film CdTe polycrystalline solar cells are investigated using scanning photocurrent microscopy. The carriers are locally generated by light injected through a small aperture (50-300 nm) of a near-field scanning optical microscope in an illumination mode. Possible influence of rough surface topography on light coupling is examined and eliminated by sculpting smooth wedges on the granular CdTe surface. By varying the wavelength of light, nanoscale spatial variations in external quantum efficiency are mapped. We find that the grain boundaries (GBs) are better current collectors than the grain interiors (GIs).more » The increased collection efficiency is caused by two distinct effects associated with the material composition of GBs. First, GBs are charged, and the corresponding built-in field facilitates the separation and the extraction of the photogenerated carriers. Second, the GB regions generate more photocurrent at long wavelength corresponding to the band edge, which can be caused by a smaller local band gap. As a result, resolving carrier collection with nanoscale resolution in solar cell materials is crucial for optimizing the polycrystalline device performance through appropriate thermal processing and passivation of defect and surfaces.« less
Berweger, Samuel; MacDonald, Gordon A.; Yang, Mengjin; ...
2017-02-02
We perform scanning microwave microscopy (SMM) to study the spatially varying electronic properties and related morphology of pristine and degraded methylammonium lead-halide (MAPI) perovskite films fabricated under different ambient humidity. Here, we find that higher processing humidity leads to the emergence of increased conductivity at the grain boundaries but also correlates with the appearance of resistive grains that contain PbI 2. Deteriorated films show larger and increasingly insulating grain boundaries as well as spatially localized regions of reduced conductivity within grains. These results suggest that while humidity during film fabrication primarily benefits device properties due to the passivation of trapsmore » at the grain boundaries and self-doping, it also results in the emergence of PbI 2-containing grains. We further establish that MAPI film deterioration under ambient conditions proceeds via the spatially localized breakdown of film conductivity, both at grain boundaries and within grains, due to local variations in susceptibility to deterioration. These results confirm that PbI 2 has both beneficial and adverse effects on device performance and provide new means for device optimization by revealing spatial variations in sample conductivity as well as morphological differences in resistance to sample deterioration.« less
Submerged passively-safe power plant
Herring, J. Stephen
1993-01-01
The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process.
Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der; Hung, Bohr-Ran
2015-01-01
This study proposes a two-photomask process for fabricating amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) that exhibit a self-aligned structure. The fabricated TFTs, which lack etching-stop (ES) layers, have undamaged a-IGZO active layers that facilitate superior performance. In addition, we demonstrate a bilayer passivation method that uses a polytetrafluoroethylene (Teflon) and SiO2 combination layer for improving the electrical reliability of the fabricated TFTs. Teflon was deposited as a buffer layer through thermal evaporation. The Teflon layer exhibited favorable compatibility with the underlying IGZO channel layer and effectively protected the a-IGZO TFTs from plasma damage during SiO2 deposition, resulting in a negligible initial performance drop in the a-IGZO TFTs. Compared with passivation-free a-IGZO TFTs, passivated TFTs exhibited superior stability even after 168 h of aging under ambient air at 95% relative humidity. PMID:28788026
Hong, Seonghwan; Park, Sung Pyo; Kim, Yeong-Gyu; Kang, Byung Ha; Na, Jae Won; Kim, Hyun Jae
2017-11-24
We report low-temperature solution processing of hafnium oxide (HfO 2 ) passivation layers for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). At 150 °C, the hafnium chloride (HfCl 4 ) precursor readily hydrolyzed in deionized (DI) water and transformed into an HfO 2 film. The fabricated HfO 2 passivation layer prevented any interaction between the back surface of an a-IGZO TFT and ambient gas. Moreover, diffused Hf 4+ in the back-channel layer of the a-IGZO TFT reduced the oxygen vacancy, which is the origin of the electrical instability in a-IGZO TFTs. Consequently, the a-IGZO TFT with the HfO 2 passivation layer exhibited improved stability, showing a decrease in the threshold voltage shift from 4.83 to 1.68 V under a positive bias stress test conducted over 10,000 s.
NASA Astrophysics Data System (ADS)
Li, Yang; Yao, Zhao; Fu, Xiao-Qian; Li, Zhi-Ming; Shan, Fu-Kai; Wang, Cong
2017-05-01
Recently, integrated passive devices have become increasingly popular; inductor realization, in particular, offers interesting high performance for RF modules and systems. In this paper, a development of differential inductor fabricated by integrated passive devices technology using a double air-bridge structure is presented. A study of the model development of the differential inductor is first demonstrated. In this model section, a segment box analysis method is applied to provide a clear presentation of the differential inductor. Compared with other work that only shows a brief description of the process, the integrated passive devices process used to fabricate the inductor in this study is elaborated on. Finally, a characterization of differential inductors with different physical layout parameters is illustrated based on inductance and quality factors, which provides a valuable reference for realizing high performance. The proposed work provides a good solution for the design, fabrication and practical application of RF modules and systems.
Novel Passivating/Antireflective Coatings for Space Solar Cells
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria; Bailey, S. G.; Flood, D. J.; Faur, H. M.; Mateescu, C. G.; Alterovitz, S. A.; Scheiman, D.; Jenkins, P. P.; Brinker, D. J.
2005-01-01
We are developing a novel process to grow passivating/antireflective (AR) coatings for terrestrial and space solar cells. Our approach involves a Room Temperature Wet Chemical Growth (RTWCG) process, which was pioneered, and is under development at SPECMAT, Inc., under a Reimbursable Space Act Agreement with NASA Glenn Research Center. The RTWCG passivating/AR coatings with graded index of refraction are applied in one easy step on finished (bare) cells. The RTWCG coatings grown on planar, textured and porous Si, as well as on poly-Si, CuInSe2, and III-V substrates, show excellent uniformity irrespective of surface topography, crystal orientation, size and shape. In this paper we present some preliminary results of the RTWCG coatings on Si and III-V substrates that show very good potential for use as a passivation/AR coating for space solar cell applications. Compared to coatings grown using conventional techniques, the RTWCG coatings have the potential to reduce reflection losses and improve current collection near the illuminated surface of space solar cells, while reducing the fabrication costs.
Dual Electrolytic Plasma Processing for Steel Surface Cleaning and Passivation
NASA Astrophysics Data System (ADS)
Yang, L.; Zhang, P.; Shi, J.; Liang, J.; Tian, W. B.; Zhang, Y. M.; Sun, Z. M.
2017-10-01
To remove the rust on rebars and passivate the fresh surfaces, electrodes reversing electrolytic plasma processing (EPP) was proposed and conducted in a 10 wt.% Na2CO3 aqueous solution. The morphology and the composition of the surface were investigated by SEM and XPS. Experimental results show that the rust on the surface was removed effectively by cathode EPP, and a passive film containing Cr2O3 was achieved by the succeeding anode EPP treatment, by a simple operation of reversing the bias. The corrosion resistance was evaluated in a 3.5 wt.% NaCl aqueous solution using an electrochemical workstation. In comparison, the corrosion resistance was improved by the succeeding anode EPP treatment, which is evidenced by a positive shift of the open-circuit potential, an increase in the electrochemical impedance representing the inner layer by 76.8% and the decrease in the corrosion current density by 49.6%. This is an effective and environment-friendly technique to clean and passivate rebars and similar steel materials.
Rapid mitigation of carrier-induced degradation in commercial silicon solar cells
NASA Astrophysics Data System (ADS)
Hallam, Brett J.; Chan, Catherine E.; Chen, Ran; Wang, Sisi; Ji, Jingjia; Mai, Ly; Abbott, Malcolm D.; Payne, David N. R.; Kim, Moonyong; Chen, Daniel; Chong, CheeMun; Wenham, Stuart R.
2017-08-01
We report on the progress for the understanding of carrier-induced degradation (CID) in p-type mono and multi-crystalline silicon (mc-Si) solar cells, and methods of mitigation. Defect formation is a key aspect to mitigating CID. Illuminated annealing can be used for both mono and mc-Si solar cells to reduce CID. The latest results of an 8-s UNSW advanced hydrogenation process applied to industrial p-type Czochralski PERC solar cells are shown with average efficiency enhancements of 1.1% absolute from eight different solar cell manufacturers. Results from three new industrial CID mitigation tools are presented, reducing CID to 0.8-1.1% relative, compared to 4.2% relative on control cells. Similar advanced hydrogenation processes can also be applied to multi-crystalline silicon passivated emitter with rear local contact (PERC) cells, however to date, the processes take longer and are less effective. Modifications to the firing processes can also suppress CID in multi-crystalline cells during subsequent illumination. The most stable results are achieved with a multi-stage process consisting of a second firing process at a reduced firing temperature, followed by extended illuminated annealing.
Large Exciton Energy Shifts by Reversible Surface Exchange in 2D II-VI Nanocrystals.
Zhou, Yang; Wang, Fudong; Buhro, William E
2015-12-09
Reaction of n-octylamine-passivated {CdSe[n-octylamine](0.53±0.06)} quantum belts with anhydrous metal carboxylates M(oleate)2 (M = Cd, Zn) results in a rapid exchange of the L-type amine passivation for Z-type M(oleate)2 passivation. The cadmium-carboxylate derivative is determined to have the composition {CdSe[Cd(oleate)2](0.19±0.02)}. The morphologies and crystal structures of the quantum belts are largely unaffected by the exchange processes. Addition of n-octylamine or oleylamine to the M(oleate)2-passivated quantum belts removes M(oleate)2 and restores the L-type amine passivation. Analogous, reversible surface exchanges are also demonstrated for CdS quantum platelets. The absorption and emission spectra of the quantum belts and platelets are reversibly shifted to lower energy by M(oleate)2 passivation vs amine passivation. The largest shift of 140 meV is observed for the Cd(oleate)2-passivated CdSe quantum belts. These shifts are attributed entirely to changes in the strain states in the Zn(oleate)2-passivated nanocrystals, whereas changes in strain states and confinement dimensions contribute roughly equally to the shifts in the Cd(oleate)2-passivated nanocrystals. Addition of Cd(oleate)2, which electronically couples to the nanocrystal lattices, increases the effective thickness of the belts and platelets by approximately a half of a monolayer, thus increasing the confinement dimension.
NASA Astrophysics Data System (ADS)
Henry, Nathan C.; Knorr, Daniel B.; Williams, Kristen S.; Baril, Neil; Nallon, Eric; Lenhart, Joseph L.; Andzelm, Jan W.; Pellegrino, Joseph; Tidrow, Meimei; Cleveland, Erin; Bandara, Sumith
2015-05-01
The efficacy of solution deposition of thiolated self-assembled monolayers (SAMs) has been explored for the purpose of passivating III-V type II superlattice (T2SL) photodetectors, more specifically a p-type heterojunction device. Sulfur passivation has previously been achieved on T2SL devices. However, degradation over time, temperature sensitivity and inconsistent reproducibility necessitate a physical encapsulate that can chemically bond to the chemical passivant. Thus, this research investigates two passivation methods, surface passivation with a thiol monolayer and passivation with a polymer encapsulant with a view toward future combination of these techniques. Analysis of the physical and chemical condition of the surface prior to deposition assisted in the development of ideal processes for optimized film quality. Successful deposition was facilitated by in situ oxide removal. Various commercially available functional (cysteamine) and non-functional (alkane) thiolated monolayers were investigated. Dark current was reduced by 3 orders of magnitude and achieved negligible surface leakage at low bias levels. The lowest dark current result, 7.69 × 10-6 A/cm2 at 50 mV, was achieved through passivation with cysteamine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallam, Brett, E-mail: brett.hallam@unsw.edu.au; Abbott, Malcolm; Nampalli, Nitin
2016-02-14
A three-state model is used to explore the influence of defect formation- and passivation rates of carrier-induced degradation related to boron-oxygen complexes in boron-doped p-type silicon solar cells within a hydrogen-based model. The model highlights that the inability to effectively mitigate carrier-induced degradation at elevated temperatures in previous studies is due to the limited availability of defects for hydrogen passivation, rather than being limited by the defect passivation rate. An acceleration of the defect formation rate is also observed to increase both the effectiveness and speed of carrier-induced degradation mitigation, whereas increases in the passivation rate do not lead tomore » a substantial acceleration of the hydrogen passivation process. For high-throughput mitigation of such carrier-induced degradation on finished solar cell devices, two key factors were found to be required, high-injection conditions (such as by using high intensity illumination) to enable an acceleration of defect formation whilst simultaneously enabling a rapid passivation of the formed defects, and a high temperature to accelerate both defect formation and defect passivation whilst still ensuring an effective mitigation of carrier-induced degradation.« less
Characterization of Semiconductor Nanocrystal Assemblies as Components of Optoelectronic Devices
NASA Astrophysics Data System (ADS)
Malfavon-Ochoa, Mario
This dissertation presents new insight into the ability of small molecule passivated NCs to achieve intimate approach distances, despite being well passivated, while developing guiding principles in the area of ligand mediated microstructure control and the resulting macroscopic optical and electronic properties that close packing of high quality NCs enables. NC ligand coverage will be characterized quantitatively through thermogravimetric analysis (TGA), and qualitatively by photoluminescence and electroluminescence, in the case of functional devices; illustrating the importance of practitioner dependent control of ligand coverage through variations in the dispersion precipitation purification procedure. A unique examination of the relative contribution of energy and charge transfer in NC LEDs will demonstrate the ability to achieve charge transfer, at a level competitive with energy transfer, to well passivated NCs at various wt% loading in a polymer matrix. The observation of potential dependent recombination zones within an active layer further suggest novel, NC surface passivation mediated control of blend microstructure during solution processing towards the development of a bi-continuous network. Next, NC self-assembly and resulting microstructure dependent optical and electronic properties will be examined through electroluminescence and high-resolution transmission electron microscopy (TEM) micrographs of functional NC/polymer bulk heterojunction LEDs. The joint characterization of NC optical properties, and self-assembly microstructure provide a deeper understanding of the significant and inseparable effects of minimal changes in NC surface passivation on structure and function, and emphasize the potential to rely on strongly passivating ligands to control physical properties and processing parameters concurrently towards higher efficiency devices via low cost processing. Finally, micro-contact printing of blazed transmission gratings, using stable dispersions of core and core/shell NCs will be shown to produce close packed assemblies of NCs forming near-wavelength luminescent superstructures separated in space. We show the dominant contribution of a two-monolayer thick sharp interface CdS shell to the diffraction efficiency, and necessarily the refractive index, of the NCs, independent of core size. Utilization of these gratings as in-coupling elements at various positions within a device architecture are also examined. These new observations were achieved by unprecedented control of NC architecture during dispersion processing, while maintaining high luminescence, made possible by optimized NC surface passivation. These studies enable the formation of new LED architectures, and new optoelectronic devices based on angle resolved, monochromatic fluorescence from diffraction gratings prepared from simple solution processing approaches. Further, the novel observation of angle amplified interfering fluorescence from these features is argued to be a result of long range radiative coupling and superradiance enabled by the monodispersity and high-quality NC surface passivation described herein.
43 CFR 2806.43 - How does BLM calculate rent for passive reflectors and local exchange networks?
Code of Federal Regulations, 2013 CFR
2013-10-01
... MANAGEMENT (2000) RIGHTS-OF-WAY UNDER THE FEDERAL LAND POLICY MANAGEMENT ACT Rents Communication Site Rights... used to bend or ricochet electronic signals between active relay stations or between an active relay...
43 CFR 2806.43 - How does BLM calculate rent for passive reflectors and local exchange networks?
Code of Federal Regulations, 2012 CFR
2012-10-01
... MANAGEMENT (2000) RIGHTS-OF-WAY UNDER THE FEDERAL LAND POLICY MANAGEMENT ACT Rents Communication Site Rights... used to bend or ricochet electronic signals between active relay stations or between an active relay...
43 CFR 2806.43 - How does BLM calculate rent for passive reflectors and local exchange networks?
Code of Federal Regulations, 2014 CFR
2014-10-01
... MANAGEMENT (2000) RIGHTS-OF-WAY UNDER THE FEDERAL LAND POLICY MANAGEMENT ACT Rents Communication Site Rights... used to bend or ricochet electronic signals between active relay stations or between an active relay...
2006-09-30
IEEE OES Student Poster Program Oceans ’05 Europe, Brest, France, June 20-23, 2005. Sponsored by Thales Underwater Systems. Student Engagement Award to E.-M. Nosal – Maui High Performance Computing Center (2005-2006).
Deficient "sensory" beta synchronization in Parkinson's disease.
Degardin, A; Houdayer, E; Bourriez, J-L; Destée, A; Defebvre, L; Derambure, P; Devos, D
2009-03-01
Beta rhythm movement-related synchronization (beta synchronization) reflects motor cortex deactivation and sensory afference processing. In Parkinson's disease (PD), decreased beta synchronization after active movement reflects abnormal motor cortex idling and may be involved in the pathophysiology of akinesia. The objectives of the present study were to (i) compare event-related synchronization after active and passive movement and electrical nerve stimulation in PD patients and healthy, age-matched volunteers and (ii) evaluate the effect of levodopa. Using a 128-electrode EEG system, we studied beta synchronization after active and passive index finger movement and electrical median nerve stimulation in 13 patients and 12 control subjects. Patients were recorded before and after 150% of their usual morning dose of levodopa. The peak beta synchronization magnitude in the contralateral primary sensorimotor (PSM) cortex was significantly lower in PD patients after active movement, passive movement and electrical median nerve stimulation, compared with controls. Levodopa partially reversed the drop in beta synchronization after active movement but not after passive movement or electrical median nerve stimulation. If one considers that beta synchronization reflects sensory processing, our results suggest that integration of somaesthetic afferences in the PSM cortex is abnormal in PD during active and passive movement execution and after simple electrical median nerve stimulation. Better understanding of the mechanisms involved in the deficient beta synchronization observed here could prompt the development of new therapeutic approaches aimed at strengthening defective processes. The lack of full beta synchronization restoration by levodopa might be related to the involvement of non-dopaminergic pathways.
Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors
NASA Astrophysics Data System (ADS)
Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li
2016-09-01
The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.
Surface Passivation for 3-5 Semiconductor Processing: Stable Gallium Sulphide Films by MOCVD
NASA Technical Reports Server (NTRS)
Macinnes, Andrew N.; Jenkins, Phillip P.; Power, Michael B.; Kang, Soon; Barron, Andrew R.; Hepp, Aloysius F.; Tabib-Azar, Massood
1994-01-01
Gallium sulphide (GaS) has been deposited on GaAs to form stable, insulating, passivating layers. Spectrally resolved photoluminescence and surface recombination velocity measurements indicate that the GaS itself can contribute a significant fraction of the photoluminescence in GaS/GaAs structures. Determination of surface recombination velocity by photoluminescence is therefore difficult. By using C-V analysis of metal-insulator-semiconductor structures, passivation of the GaAs with GaS films is quantified.
Jung, Su Min; Kang, Han Lim; Won, Jong Kook; Kim, JaeHyun; Hwang, ChaHwan; Ahn, KyungHan; Chung, In; Ju, Byeong-Kwon; Kim, Myung-Gil; Park, Sung Kyu
2018-01-31
The recent development of high-performance colloidal quantum dot (QD) thin-film transistors (TFTs) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high-performance solution-processed CdSe QD-TFTs with an optimized surface functionalization and robust defect passivation via hydrazine-free metal chalcogenide (MCC) ligands. The underlying mechanism of the ligand effects on CdSe QDs has been studied with hydrazine-free ex situ reaction derived MCC ligands, such as Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- , to allow benign solution-process available. Furthermore, the defect passivation and remote n-type doping effects have been investigated by incorporating indium nanoparticles over the QD layer. Strong electronic coupling and solid defect passivation of QDs could be achieved by introducing electronically active MCC capping and thermal diffusion of the indium nanoparticles, respectively. It is also noteworthy that the diffused indium nanoparticles facilitate charge injection not only inter-QDs but also between source/drain electrodes and the QD semiconductors, significantly reducing contact resistance. With benign organic solvents, the Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- ligand based QD-TFTs exhibited field-effect mobilities exceeding 4.8, 12.0, and 44.2 cm 2 /(V s), respectively. The results reported here imply that the incorporation of MCC ligands and appropriate dopants provide a general route to high-performance, extremely stable solution-processed QD-based electronic devices with marginal toxicity, offering compatibility with standard complementary metal oxide semiconductor processing and large-scale on-chip device applications.
Bohnhoff, Marco; Dresen, Georg; Ellsworth, William L.; Ito, Hisao; Cloetingh, Sierd; Negendank, Jörg
2010-01-01
An important discovery in crustal mechanics has been that the Earth’s crust is commonly stressed close to failure, even in tectonically quiet areas. As a result, small natural or man-made perturbations to the local stress field may trigger earthquakes. To understand these processes, Passive Seismic Monitoring (PSM) with seismometer arrays is a widely used technique that has been successfully applied to study seismicity at different magnitude levels ranging from acoustic emissions generated in the laboratory under controlled conditions, to seismicity induced by hydraulic stimulations in geological reservoirs, and up to great earthquakes occurring along plate boundaries. In all these environments the appropriate deployment of seismic sensors, i.e., directly on the rock sample, at the earth’s surface or in boreholes close to the seismic sources allows for the detection and location of brittle failure processes at sufficiently low magnitude-detection threshold and with adequate spatial resolution for further analysis. One principal aim is to develop an improved understanding of the physical processes occurring at the seismic source and their relationship to the host geologic environment. In this paper we review selected case studies and future directions of PSM efforts across a wide range of scales and environments. These include induced failure within small rock samples, hydrocarbon reservoirs, and natural seismicity at convergent and transform plate boundaries. Each example represents a milestone with regard to bridging the gap between laboratory-scale experiments under controlled boundary conditions and large-scale field studies. The common motivation for all studies is to refine the understanding of how earthquakes nucleate, how they proceed and how they interact in space and time. This is of special relevance at the larger end of the magnitude scale, i.e., for large devastating earthquakes due to their severe socio-economic impact.
Submerged passively-safe power plant
Herring, J.S.
1993-09-21
The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process. 8 figures.
42 CFR 423.32 - Enrollment process.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the following occurs: (i) The individual successfully enrolls in another PDP or MA-PD plan; (ii) The... as of January 1, 2006, and receive Part D benefits offered by that plan until one of the conditions... implement passive enrollment procedures. (1) Passive enrollment procedures. Individuals will be considered...
42 CFR 423.32 - Enrollment process.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the following occurs: (i) The individual successfully enrolls in another PDP or MA-PD plan; (ii) The... as of January 1, 2006, and receive Part D benefits offered by that plan until one of the conditions... implement passive enrollment procedures. (1) Passive enrollment procedures. Individuals will be considered...
42 CFR 423.32 - Enrollment process.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the following occurs: (i) The individual successfully enrolls in another PDP or MA-PD plan; (ii) The... as of January 1, 2006, and receive Part D benefits offered by that plan until one of the conditions... implement passive enrollment procedures. (1) Passive enrollment procedures. Individuals will be considered...
NASA Astrophysics Data System (ADS)
Whiteside, Vincent R.; Fukuda, Miwa; Estes, Nicholas J.; Wang, Bin; Brown, Collin R.; Hossain, Khalid; Golding, Terry D.; Leroux, Mathieu; Al Khalfioui, Mohamed; Tischler, Joseph G.; Ellis, Chase T.; Glaser, Evan R.; Sellers, Ian R.
2017-04-01
A significant improvement in the quality of dilute nitrides has recently led to the ability to reveal depletion widths in excess of 1 μm at 1 eV [1]. The real viability of dilute nitrides for PV has been recently demonstrated with the reporting of a record efficiency of 43.5% from a 4J MJSC including GaInNAs(Sb) [2]. Despite the progress made, these materials remain poorly understood and work continues to improve their lifetime and reproducibility. We have investigated the possibility of improving the functionality of GaInNAs using hydrogenation to selectively passivate mid-gap defects, while preserving the substitutional nitrogen. Temperature dependent photoluminescence measurements of the intrinsic region of a GaInNAs p-i-n solar cell show a classic "s-shape" associated with localization prior to hydrogenation. No sign of this "s-shape" is evident after hydrogenation, despite the retention of substitutional nitrogen as evidenced by the band absorption of 1 eV. The absence of an "s-shape" at low-temperature in hydrogenated GaInNAs is rather curious since, even in high quality nitrides this behavior is due to the emission of isoelectronic centers created via N-As substitution [3]. The potential origins of this behavior will be discussed. The promise of this process for GaInNAs solar cells was demonstrated by a three-fold improvement in the performance of a hydrogenated device with respect to an as-grown reference [4]. [1] "Wide-depletion width GaInNAs solar cells by thermal annealing," I. R. Sellers, W-S. Tan, K. Smith, S. Hooper, S. Day and M. Kauer, Applied Physics Letters 99, 151111 (2011) [2] "43.5% efficient lattice matched solar cells," M. Wiemer, V. Sabnis, and H. Yuen, Proc. SPIE 8108, 810804 (2011) [3]"Probing the nature of carrier localization in GaInNAs, epilayers using optical methods," T. Ysai, B. Barman, T. Scarce, G. Lindberg, M. Fukuda, V. R. Whiteside, J. C. Keay, M. B. Johnson, I. R. Sellers, M. Al Khalfioui, M. Leroux, B. A. Weinstein and A. Petrou. Applied Physics Letters 103, 012104 (2013) [4] "Improved performance in GaInNAs solar cells by hydrogen passivation by hydrogen passivation," M. Fukuda, V. R. Whiteside, J. C. Keay, A. Meleco, I. R. Sellers, K. Hossain, T. D. Golding, M. Leroux, and M. Al Khalfioui, Applied Physics Letters 106, 141904 (2015)
Corrosion resistance tests on NiTi shape memory alloy.
Rondelli, G
1996-10-01
The corrosion performances of NiTi shape memory alloys (SMA) in human body simulating fluids were evaluated in comparison with other implant materials. As for the passivity current in potentiostatic conditions, taken as an index of ion release, the values are about three times higher for NiTi than for Ti6Al4V and austenitic stainless steels. Regarding the localized corrosion, while plain potentiodynamic scans indicated for NiTi alloy good resistance to pitting attack similar to Ti6Al4V, tests in which the passive film is abruptly damaged (i.e. potentiostatic scratch test and modified ASTM F746) pointed out that the characteristics of the passive film formed on NiTi alloy (whose strength can be related to the alloy's biocompatibility) are not as good as those on Ti6Al4V but are comparable or inferior to those on austenitic stainless steels.
Multistage WDM access architecture employing cascaded AWGs
NASA Astrophysics Data System (ADS)
El-Nahal, F. I.; Mears, R. J.
2009-03-01
Here we propose passive/active arrayed waveguide gratings (AWGs) with enhanced performance for system applications mainly in novel access architectures employing cascaded AWG technology. Two technologies were considered to achieve space wavelength switching in these networks. Firstly, a passive AWG with semiconductor optical amplifiers array, and secondly, an active AWG. Active AWG is an AWG with an array of phase modulators on its arrayed-waveguides section, where a programmable linear phase-profile or a phase hologram is applied across the arrayed-waveguide section. This results in a wavelength shift at the output section of the AWG. These architectures can address up to 6912 customers employing only 24 wavelengths, coarsely separated by 1.6 nm. Simulation results obtained here demonstrate that cascaded AWGs access architectures have a great potential in future local area networks. Furthermore, they indicate for the first time that active AWGs architectures are more efficient in routing signals to the destination optical network units than passive AWG architectures.
The growth and form of plant shoots
NASA Astrophysics Data System (ADS)
Chelakkot, Raghunath; Mahadevan, L.
2015-03-01
Growing plant stems and shoots exhibit a variety of shapes that embody growth in response to various stimuli. We provide a quantitative biophysical theory for these shapes by accounting for the inherent observed passive and active effects: (i) the passive elastic deflection of the shoot due to its own weight, and (ii) the active controllable growth response of the shoot in response to its orientation relative to gravity, and (iii) proprioception, the shoot's growth response to its own observable shape, which is itself determined by its elasticity and weight. A morphospace diagram in terms of two dimensionless parameters representing a scaled local active gravitropic sensitivity, and a scaled passive elastic sag shows how a variety of observed transient and steady morphologies with effective positive, negative and even oscillatory gravitropic behaviors arise in a sentient growing filament naturally, without the need for ad-hoc complex spatio-temporal control strategies.
Isostatic and dynamic support of high topography on a North Atlantic passive margin
NASA Astrophysics Data System (ADS)
Pedersen, Vivi K.; Huismans, Ritske S.; Moucha, Robert
2016-07-01
Substantial controversy surrounds the origin of high topography along passive continental margins. Here we focus on the well-documented elevated passive margin in southwestern Scandinavia, and quantify the relative contributions of crustal isostasy and dynamic topography in controlling the present topography. We find that majority of the topography is compensated by the crustal structure, suggesting a topographic age that is in accord with the 400 Myr old Caledonian orogenesis. In addition, we propose that dynamic uplift of ∼300 m has rejuvenated existing topography locally in the coastal region over the last 10 Myr. Such uplift, combined with a general sea level fall, can help explain a variety of observations that have traditionally been interpreted in favor of a peneplain uplift model. We conclude that high topography along the Scandinavian margin cannot represent remnants of a peneplain uplifted within the last 20 Myr. The topography must have been high since the Caledonian orogeny.
Surface electrical properties of stainless steel fibres: An AFM-based study
NASA Astrophysics Data System (ADS)
Yin, Jun; D'Haese, Cécile; Nysten, Bernard
2015-03-01
Atomic force microscopy (AFM) electrical modes were used to study the surface electrical properties of stainless steel fibres. The surface electrical conductivity was studied by current sensing AFM and I-V spectroscopy. Kelvin probe force microscopy was used to measure the surface contact potential. The oxide film, known as passivation layer, covering the fibre surface gives rise to the observation of an apparently semiconducting behaviour. The passivation layer generally exhibits a p-type semiconducting behaviour, which is attributed to the predominant formation of chromium oxide on the surface of the stainless steel fibres. At the nanoscale, different behaviours are observed from points to points, which may be attributed to local variations of the chemical composition and/or thickness of the passivation layer. I-V curves are well fitted with an electron tunnelling model, indicating that electron tunnelling may be the predominant mechanism for electron transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilking, S., E-mail: Svenja.Wilking@uni-konstanz.de; Ebert, S.; Herguth, A.
The degradation effect boron doped and oxygen-rich crystalline silicon materials suffer from under illumination can be neutralized in hydrogenated silicon by the application of a regeneration process consisting of a combination of slightly elevated temperature and carrier injection. In this paper, the influence of variations in short high temperature steps on the kinetics of the regeneration process is investigated. It is found that hotter and longer firing steps allowing an effective hydrogenation from a hydrogen-rich silicon nitride passivation layer result in an acceleration of the regeneration process. Additionally, a fast cool down from high temperature to around 550 °C seems tomore » be crucial for a fast regeneration process. It is suggested that high cooling rates suppress hydrogen effusion from the silicon bulk in a temperature range where the hydrogenated passivation layer cannot release hydrogen in considerable amounts. Thus, the hydrogen content of the silicon bulk after the complete high temperature step can be increased resulting in a faster regeneration process. Hence, the data presented here back up the theory that the regeneration process might be a hydrogen passivation of boron-oxygen related defects.« less
ERIC Educational Resources Information Center
Chang, Xin; Wang, Pei
2016-01-01
To investigate the influence of L2 proficiency and syntactic similarity on English passive sentence processing, the present ERP study asked 40 late Chinese-English bilinguals (27 females and 13 males, mean age = 23.88) with high or intermediate L2 proficiency to read the sentences carefully and to indicate for each sentence whether or not it was…
Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition.
Lin, Yuan-Yu; Hsu, Che-Chen; Tseng, Ming-Hung; Shyue, Jing-Jong; Tsai, Feng-Yu
2015-10-14
Passivation is a challenging issue for the oxide thin-film transistor (TFT) technologies because it requires prolonged high-temperature annealing treatments to remedy defects produced in the process, which greatly limits its manufacturability as well as its compatibility with temperature-sensitive materials such as flexible plastic substrates. This study investigates the defect-formation mechanisms incurred by atomic layer deposition (ALD) passivation processes on ZnO TFTs, based on which we demonstrate for the first time degradation-free passivation of ZnO TFTs by a TiO2/Al2O3 nanolaminated (TAO) film deposited by a low-temperature (110 °C) ALD process. By combining the TAO passivation film with ALD dielectric and channel layers into an integrated low-temperature ALD process, we successfully fabricate flexible ZnO TFTs on plastics. Thanks to the exceptional gas-barrier property of the TAO film (water vapor transmission rate (WVTR)<10(-6) g m(-2) day(-1)) as well as the defect-free nature of the ALD dielectric and ZnO channel layers, the TFTs exhibit excellent device performance with high stability and flexibility: field-effect mobility>20 cm2 V(-1) s(-1), subthreshold swing<0.4 V decade(-1) after extended bias-stressing (>10,000 s), air-storage (>1200 h), and bending (1.3 cm radius for 1000 times).
Municipal waste stabilization in a reactor with an integrated active and passive aeration system.
Kasinski, Slawomir; Slota, Monika; Markowski, Michal; Kaminska, Anna
2016-04-01
To test whether an integrated passive and active aeration system could be an effective solution for aerobic decomposition of municipal waste in technical conditions, a full-scale composting reactor was designed. The waste was actively aerated for 5d, passively aerated for 35 d, and then actively aerated for 5d, and the entire composting process was monitored. During the 45-day observation period, changes in the fractional, morphological and physico-chemical characteristics of the waste at the top of the reactor differed from those in the center of the reactor. The fractional and morphological analysis made during the entire process of stabilization, showed the total reduction of organic matter measured of 82 wt% and 86 wt% at the respective depths. The reduction of organic matter calculated using the results of Lost of Ignition (LOI) and Total Organic Carbon (TOC) showed, respectively, 40.51-46.62% organic matter loss at the top and 45.33-53.39% in the center of the reactor. At the end of the process, moisture content, LOI and TOC at the top were 3.29%, 6.10% and 4.13% higher, respectively, than in the center. The results showed that application of passive aeration in larger scale simultaneously allows the thermophilic levels to be maintained during municipal solid waste composting process while not inhibiting microbial activity in the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kodek, Timotej; Munih, Marko
2003-01-01
The goal of this study was an assessment of the shoulder and elbow joint passive moments in the sagittal plane for six healthy individuals. Either the shoulder or elbow joints were moved at a constant speed, very slowly throughout a large portion of their range by means of an industrial robot. During the whole process the arm was held fully passively, while the end point force data and the shoulder, elbow and wrist angle data were collected. The presented method unequivocally reveals a large passive moment adjacent angle dependency in the central angular range, where most everyday actions are performed. It is expected to prove useful in the future work when examining subjects with neuromuscular disorders. Their passive moments may show a fully different pattern than the ones obtained in this study.
Neuronal correlates of a virtual-reality-based passive sensory P300 network.
Chen, Chun-Chuan; Syue, Kai-Syun; Li, Kai-Chiun; Yeh, Shih-Ching
2014-01-01
P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person's intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients' analytic results with this study. For example, the task presented here is not applicable to incommunicative patients.
Neuronal Correlates of a Virtual-Reality-Based Passive Sensory P300 Network
Chen, Chun-Chuan; Syue, Kai-Syun; Li, Kai-Chiun; Yeh, Shih-Ching
2014-01-01
P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person’s intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients’ analytic results with this study. For example, the task presented here is not applicable to incommunicative patients. PMID:25401520
Carrier characteristics influence the kinetics of passive drug loading into lipid nanoemulsions.
Göke, Katrin; Bunjes, Heike
2018-05-01
Passive loading as a novel screening approach is a material-saving tool for the efficient selection of a suitable colloidal lipid carrier system for poorly water soluble drug candidates. This method comprises incubation of preformed carrier systems with drug powder and subsequent determination of the resulting drug load of the carrier particles after removal of excess drug. For reliable routine use and to obtain meaningful loading results, information on the kinetics of the process is required. Passive loading proceeds via a dissolution-diffusion-based mechanism, where drug surface area and drug water solubility are key parameters for fast passive loading. While the influence of the drug characteristics is mostly understood, the influence of the carrier characteristics remains unknown. The aim of this study was to examine how the lipid nanocarriers' characteristics, i.e. the type of lipid, the lipid content and the particle size, influence the kinetics of passive loading. Fenofibrate was used as model drug and the loading progress was analyzed by UV spectroscopy. The saturation solubility in the nanocarrier particles, i.e. the lipid type, did not influence the passive loading rate constant. Low lipid content in the nanocarrier and a small nanocarrier particle size both increased passive loading speed. Both variations increase the diffusivity of the nanocarrier particles, which is the primary cause for fast loading at these conditions: The quicker the carrier particles diffuse, the higher is the speed of passive loading. The influence of the diffusivity of the lipid nanocarriers and the effect of drug dissolution rate were included in an overall mechanistic model developed for similar processes (A. Balakrishnan, B.D. Rege, G.L. Amidon, J.E. Polli, Surfactant-mediated dissolution: contributions of solubility enhancement and relatively low micelle diffusivity, J. Pharm. Sci. 93 (2004) 2064-2075). The resulting mechanistic model gave a good estimate of the speed of passive loading in nanoemulsions. Whilst the drug's characteristics - apart from drug surface area - are basically fixed, the lipid nanocarriers can be customized to improve passive loading speed, e.g. by using small nanocarrier particles. The knowledge of the loading mechanism now allows the use of passive loading for the straightforward, material-saving selection of suitable lipid drug nanocarriers. Copyright © 2017 Elsevier B.V. All rights reserved.
Suarez, Ralph O; Taimouri, Vahid; Boyer, Katrina; Vega, Clemente; Rotenberg, Alexander; Madsen, Joseph R; Loddenkemper, Tobias; Duffy, Frank H; Prabhu, Sanjay P; Warfield, Simon K
2014-12-01
In this study we validate passive language fMRI protocols designed for clinical application in pediatric epilepsy surgical planning as they do not require overt participation from patients. We introduced a set of quality checks that assess reliability of noninvasive fMRI mappings utilized for clinical purposes. We initially compared two fMRI language mapping paradigms, one active in nature (requiring participation from the patient) and the other passive in nature (requiring no participation from the patient). Group-level analysis in a healthy control cohort demonstrated similar activation of the putative language centers of the brain in the inferior frontal (IFG) and temporoparietal (TPG) regions. Additionally, we showed that passive language fMRI produced more left-lateralized activation in TPG (LI=+0.45) compared to the active task; with similarly robust left-lateralized IFG (LI=+0.24) activations using the passive task. We validated our recommended fMRI mapping protocols in a cohort of 15 pediatric epilepsy patients by direct comparison against the invasive clinical gold-standards. We found that language-specific TPG activation by fMRI agreed to within 9.2mm to subdural localizations by invasive functional mapping in the same patients, and language dominance by fMRI agreed with Wada test results at 80% congruency in TPG and 73% congruency in IFG. Lastly, we tested the recommended passive language fMRI protocols in a cohort of very young patients and confirmed reliable language-specific activation patterns in that challenging cohort. We concluded that language activation maps can be reliably achieved using the passive language fMRI protocols we proposed even in very young (average 7.5 years old) or sedated pediatric epilepsy patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Forghani-Arani, Farnoush; Behura, Jyoti; Haines, Seth S.; Batzle, Mike
2013-01-01
In studies on heavy oil, shale reservoirs, tight gas and enhanced geothermal systems, the use of surface passive seismic data to monitor induced microseismicity due to the fluid flow in the subsurface is becoming more common. However, in most studies passive seismic records contain days and months of data and manually analysing the data can be expensive and inaccurate. Moreover, in the presence of noise, detecting the arrival of weak microseismic events becomes challenging. Hence, the use of an automated, accurate and computationally fast technique for event detection in passive seismic data is essential. The conventional automatic event identification algorithm computes a running-window energy ratio of the short-term average to the long-term average of the passive seismic data for each trace. We show that for the common case of a low signal-to-noise ratio in surface passive records, the conventional method is not sufficiently effective at event identification. Here, we extend the conventional algorithm by introducing a technique that is based on the cross-correlation of the energy ratios computed by the conventional method. With our technique we can measure the similarities amongst the computed energy ratios at different traces. Our approach is successful at improving the detectability of events with a low signal-to-noise ratio that are not detectable with the conventional algorithm. Also, our algorithm has the advantage to identify if an event is common to all stations (a regional event) or to a limited number of stations (a local event). We provide examples of applying our technique to synthetic data and a field surface passive data set recorded at a geothermal site.
NASA Astrophysics Data System (ADS)
Wang, Dongqing; Liu, Yu; Jiang, Jin; Pang, Wei; Lau, Woon Ming; Mei, Jun
2017-05-01
In the design of nuclear power plants, various natural circulation passive cooling systems are considered to remove residual heat from the reactor core in the event of a power loss and maintain the plant's safety. These passive systems rely on gravity differences of fluids, resulting from density differentials, rather than using an external power-driven system. Unfortunately, a major drawback of such systems is their weak driving force, which can negatively impact safety. In such systems, there is a temperature difference between the heat source and the heat sink, which potentially offers a natural platform for thermoelectric generator (TEG) applications. While a previous study designed and analyzed a TEG-based passive core cooling system, this paper considers TEG applications in other passive cooling systems of nuclear power plants, after which the concept of a TEG-based passive cooling system is proposed. In such a system, electricity is produced using the system's temperature differences through the TEG, and this electricity is used to further enhance the cooling process.
Measure Guideline: Passive Vents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, David; Neri, Robin
2016-02-05
This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated sourcemore » of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.« less
NASA Astrophysics Data System (ADS)
Joo, So-Yeong; Park, Hyun-Su; Kim, Do-yeon; Kim, Bum-Sung; Lee, Chan Gi; Kim, Woo-Byoung
2018-01-01
In this study, we have developed an effective amino passivation process for quantum dots (QDs) at room temperature and have investigated a passivation mechanism using a photo-assisted chemical method. As a result of the reverse reaction of the H2O molecules, the etching kinetics of the photo-assisted chemical method increased upon increasing the 3-amino-1-propanol (APOL)/H2O ratio of the etching solution. Photon-excited electron-hole pairs lead to strong bonding between the organic and surface atoms of the QDs, and results in an increase of the quantum yield (QY%). This passivation method is also applicable to CdSe/ZnSe core/shell structures of QDs, due to the passivation of mid-gap defects states at the interface. The QY% of the as-synthesized CdSe QDs is dramatically enhanced by the amino passivation from 37% to 75% and the QY% of the CdSe/ZnSe core/shell QDs is also improved by ˜28%.
NASA Astrophysics Data System (ADS)
Miranda, Leonardo; Thiel, Martin
2008-10-01
Many boring isopods inhabit positively buoyant substrata (wood and algae), which float after detachment, permitting passive migration of inhabitants. Based on observations from previous studies, it was hypothesized that juvenile, subadult and male isopods migrate actively, and will rapidly abandon substrata after detachment. In contrast, reproductive females and small offspring were predicted to remain in floating substrata and thus have a high probability to disperse passively via rafting. In order to test this hypothesis, a colonization and an emigration experiment were conducted with giant kelp ( Macrocystis integrifolia), the holdfasts of which are inhabited by boring isopods from the genus Limnoria. A survey of benthic substrata in the kelp forest confirmed that limnoriids inhabited the holdfasts and did not occur in holdfast-free samples. Results of the colonization experiment showed that all life history stages of the boring isopods immigrated into young, largely uncolonized holdfasts, and after 16 weeks all holdfasts were densely colonized. In the emigration experiment, all life history stages of the isopods rapidly abandoned the detached holdfasts — already 5 min after detachment only few individuals remained in the floating holdfasts. After this initial rapid emigration of isopods, little changes in isopod abundance occurred during the following 24 h, and at the end of the experiment some individuals of all life history stages still remained in the holdfasts. These results indicate that all life history stages of Limnoria participate in both active migration and passive dispersal. It is discussed that storm-related dynamics within kelp forests may contribute to intense mixing of local populations of these burrow-dwelling isopods, and that most immigrants to young holdfasts probably are individuals emigrating from old holdfasts detached during storm events. The fact that some individuals of all life history stages and both sexes remain in floating holdfasts suggests that limnoriids could successfully reproduce during rafting journeys in floating kelp, facilitating long-distance dispersal. We propose that the coexistence of different modes of dispersal (short distance local migrations and long-distance regional dispersal) within these kelp-dwelling isopods might be advantageous in an environment where unpredictable El Niño events can cause extinction of local kelp forests.
Closing the energy gap through passive energy expenditure
USDA-ARS?s Scientific Manuscript database
Development of obesity is a gradual process occurring when daily energy intake persistently exceeds energy expenditure (EE). Typical daily weight gain is attributed to an energy gap or excess of stored energy of 15 to 50 kcal/day. Sedentary jobs likely promote weight gain. Standing may be a passive ...
Choi, Seungbeom; Jo, Jeong-Wan; Kim, Jaeyoung; Song, Seungho; Kim, Jaekyun; Park, Sung Kyu; Kim, Yong-Hoon
2017-08-09
Here, we report static and dynamic water motion-induced instability in indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) and its effective suppression with the use of a simple, solution-processed low-k (ε ∼ 1.9) fluoroplastic resin (FPR) passivation layer. The liquid-contact electrification effect, in which an undesirable drain current modulation is induced by a dynamic motion of a charged liquid such as water, can cause a significant instability in IGZO TFTs. It was found that by adopting a thin (∼44 nm) FPR passivation layer for IGZO TFTs, the current modulation induced by the water-contact electrification was greatly reduced in both off- and on-states of the device. In addition, the FPR-passivated IGZO TFTs exhibited an excellent stability to static water exposure (a threshold voltage shift of +0.8 V upon 3600 s of water soaking), which is attributed to the hydrophobicity of the FPR passivation layer. Here, we discuss the origin of the current instability caused by the liquid-contact electrification as well as various static and dynamic stability tests for IGZO TFTs. On the basis of our findings, we believe that the use of a thin, solution-processed FPR passivation layer is effective in suppressing the static and dynamic water motion-induced instabilities, which may enable the realization of high-performance and environment-stable oxide TFTs for emerging wearable and skin-like electronics.
Li, Yuzhang; Li, Yanbin; Sun, Yongming; Butz, Benjamin; Yan, Kai; Koh, Ai Leen; Zhao, Jie; Pei, Allen; Cui, Yi
2017-08-09
Lithium (Li) metal is a high-capacity anode material (3860 mAh g -1 ) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O 2 ), nitrogen (N 2 ), and water vapor (H 2 O). We find that while dry O 2 and N 2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N 2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.
On the origin of the photocurrent of electrochemically passivated p-InP(100) photoelectrodes.
Goryachev, Andrey; Gao, Lu; van Veldhoven, René P J; Haverkort, Jos E M; Hofmann, Jan P; Hensen, Emiel J M
2018-05-15
III-V semiconductors such as InP are highly efficient light absorbers for photoelectrochemical (PEC) water splitting devices. Yet, their cathodic stability is limited due to photocorrosion and the measured photocurrents do not necessarily originate from H2 evolution only. We evaluated the PEC stability and activation of model p-InP(100) photocathodes upon photoelectrochemical passivation (i.e. repeated surface oxidation/reduction). The electrode was subjected to a sequence of linear potential scans with or without intermittent passivation steps (repeated passivation and continuous reduction, respectively). The evolution of H2 and PH3 gases was monitored by online electrochemical mass spectrometry (OLEMS) and the Faradaic efficiencies of these processes were determined. Repeated passivation led to an increase of the photocurrent in 0.5 M H2SO4, while continuous reduction did not affect the photocurrent of p-InP(100). Neither H2 nor PH3 formation increased to the same extent as the photocurrent during the repeated passivation treatment. Surface analysis of the spent electrodes revealed substantial roughening of the electrode surface by repeated passivation, while continuous reduction left the surface unaltered. On the other hand, photocathodic conditioning performed in 0.5 M HCl led to the expected correlation between photocurrent increase and H2 formation. Ultimately, the H2 evolution rates of the photoelectrodes in H2SO4 and HCl are comparable. The much higher photocurrent in H2SO4 is due to competing side-reactions. The results emphasize the need for a detailed evaluation of the Faradaic efficiencies of all the involved processes using a chemical-specific technique like OLEMS. Photo-OLEMS can be beneficial in the study of photoelectrochemical reactions enabling the instantaneous detection of small amounts of reaction by-products.
Rylska, Dorota; Sokołowski, Grzegorz; Sokołowski, Jerzy; Łukomska-Szymańska, Monika
2017-01-01
The purpose of the study was to evaluate corrosion resistance of Wirobond C® alloy after chemical passivation treatment. The alloy surface undergone chemical passivation treatment in four different media. Corrosion studies were carried out by means of electrochemical methods in saline solution. Corrosion effects were determined using SEM. The greatest increase in the alloy polarization resistance was observed for passive layer produced in Na2SO4 solution with graphite. The same layer caused the highest increase in corrosion current. Generally speaking, the alloy passivation in Na2SO4 solution with graphite caused a substantial improvement of the corrosion resistance. The sample after passivation in Na2SO4 solution without graphite, contrary to others, lost its protective properties along with successive anodic polarization cycles. The alloy passivation in Na3PO4 solution with graphite was the only one that caused a decrease in the alloy corrosion properties. The SEM studies of all samples after chemical passivation revealed no pit corrosion - in contrast to the sample without any modification. Every successive polarization cycle in anodic direction of pure Wirobond C® alloy enhances corrosion resistance shifting corrosion potential in the positive direction and decreasing corrosion current value. The chemical passivation in solutions with low pH values decreases susceptibility to electrochemical corrosion of Co-Cr dental alloy. The best protection against corrosion was obtained after chemical passivation of Wirobond C® in Na2SO4 solution with graphite. Passivation with Na2SO4 in solution of high pH does not cause an increase in corrosion resistance of WIROBOND C. Passivation process increases alloy resistance to pit corrosion.
The Transport of Salt and Water across Isolated Rat Ileum
Clarkson, T. W.
1967-01-01
The flows of sodium, potassium, and chloride under electrical and chemical gradients and of salt and water in the presence of osmotic pressure gradients are described by phenomenological equations based on the thermodynamics of irreversible processes. The aim was to give the simplest possible description, that is to postulate the least number of active transport processes and the least number of separate pathways across the intestine. On this basis, the results were consistent with the following picture of the intestine: Two channels exist across this tissue, one allowing only passive transport of ions and the other only active. In the passive channel, the predominant resistance to ion flow is friction with the water in the channel. The electroosmotic flow indicates that the passive channel is lined with negative fixed charged groups having a surface charge density of 3000 esu cm-2. The values of the ion-water frictional coefficients, and the relationship between ionic concentrations and flows indicate that the passive channel is extracellular. The active channel behaves as two membranes in series, the first membrane being semipermeable but allowing active transport of sodium, and the second membrane being similar to the passive channel. Friction with the ions in the second "membrane" is the predominant resistance to water flow. PMID:11526854
Alternating SiCl4/O2 passivation steps with SF6 etch steps for silicon deep etching
NASA Astrophysics Data System (ADS)
Duluard, C. Y.; Ranson, P.; Pichon, L. E.; Pereira, J.; Oubensaid, E. H.; Lefaucheux, P.; Puech, M.; Dussart, R.
2011-06-01
Deep etching of silicon has been investigated in an inductively coupled plasma etch reactor using short SiCl4/O2 plasma steps to passivate the sidewalls of the etched structures. A study was first carried out to define the appropriate parameters to create, at a substrate temperature of -20 °C, a passivation layer by SiCl4/O2 plasma that resists lateral chemical etching in SF6 plasma. The most efficient passivation layer was obtained for a SiCl4/O2 gas flow ratio of 2:1, a pressure of 1 Pa and a source power of 1000 W. Ex situ analyses on a film deposited with these parameters show that it is very rich in oxygen. Silicon etching processes that alternate SF6 plasma etch steps with SiCl4/O2 plasma passivation steps were then developed. Preliminary tests in pulsed-mode conditions have enabled etch rates greater than 2 µm min-1 with selectivities higher than 220. These results show that it is possible to develop a silicon deep etching process at substrate temperatures around -20 °C that uses low SiCl4 and O2 gas flows instead of conventional fluorocarbon gases for sidewall protection.
Monitoring and localization of buried plastic natural gas pipes using passive RF tags
NASA Astrophysics Data System (ADS)
Mondal, Saikat; Kumar, Deepak; Ghazali, Mohd. Ifwat; Chahal, Prem; Udpa, Lalita; Deng, Yiming
2018-04-01
A passive harmonic radio frequency (RF) tag on the pipe with added sensing capabilities is proposed in this paper. Radio frequency identification (RFID) based tagging has already emerged as a potential solution for chemical sensing, location detection, animal tagging, etc. Harmonic transponders are already quite popular compared to conventional RFIDs due to their improved signal to noise ratio (SNR). However, the operating frequency, transmitted power and tag efficiency become critical issues for underground RFIDs. In this paper, a comprehensive on-tag sensing, power budget and frequency analyses is performed for buried harmonic tag design. Accurate tracking of infrastructure burial depth is proposed to reduce the probability of failure of underground pipelines. Burial depth is estimated using phase information of received signals at different frequencies calculated using genetic algorithm (GA) based optimization for post processing. Suitable frequency range is determined for a variety of soil with different moisture content for small tag-antenna size. Different types of harmonic tags such as 1) Schottky diode, 2) Non-linear Transmission Line (NLTL) were compared for underground applications. In this study, the power, frequency and tag design have been optimized to achieve small antenna size, minimum signal loss and simple reader circuit for underground detection at up to 5 feet depth in different soil medium and moisture contents.
Characterization and prediction of carbon steel corrosion in diluted seawater containing pentaborate
NASA Astrophysics Data System (ADS)
Fukaya, Yuichi; Watanabe, Yutaka
2018-01-01
This study addresses the influence of Na2B10O16, which may be used for criticality control of fuel debris in the Fukushima Daiichi Nuclear Power Station, on the corrosion behavior of carbon steel in diluted artificial seawater. The corrosion forms of carbon steel were categorized as uniform corrosion, localized corrosion, and passivity based on the balance between the dilution ratio of artificial seawater and the concentration of Na2B10O16. The changes in corrosion forms were arranged on a water quality region map. Passivity was maintained by adding 3.7 × 10-2 M or more of Na2B10O16 to artificial seawater with a dilution ratio of 100-fold or more. The criticality control of the fuel debris and corrosion mitigation of the carbon steel components may be achieved simultaneously in the water quality. The prediction of the corrosion form of carbon steel was attempted by the extended Larson-Skold Index (LSI) = ([Cl-] + 2[SO42-])/([HCO3-] + 2[B10O162-]). However, because the passivating action of B10O162- was remarkably stronger than that of HCO3-, the prediction was difficult under the simple addition of equivalent concentrations. The localized corrosion of carbon steel under the addition of Na2B10O16 preferentially occurred from the crevices of the test specimens, as was the case in stainless steel.
Wang, Lei; Liu, Chang-sheng; Shi, Lei; An, Cheng-qiang
2015-02-01
A composite silanes-V-Zr passive film was overlayed on hot-dip galvanized steel. Attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometer (XPS) and radio frequency glow discharge optical emission spectrometry (rf-GD-OES) were used to characterize the molecular structure of the silanes-V-Zr passive film. The mechanism of film formation was discussed: The results show that the silane molecules are crosslinked as the main film former and inorganic inhibitor is even distributed in the film. The fitting peak of 100.7 eV in XPS single Si2p energy range spectra of the composite silanes-V-Zr passive film and the widening and strengthening of the Si--O infrared absorption peak at 1100 cm(-1) indicate that the silanes were adsorbed on the surface of zinc with chemical bond of Si--O--Zn, and the silane molecules were connected with each other by bond of Si--O--Si. Two characteristic absorption peaks of amide at 1650 and 1560 cm(-1) appear in the infrared spectroscopy of the composite silanes-V-Zr passive film, and a characteristic absorption peak of epoxy groups at 910 cm(-1) disappears in the infrared spectroscopy of the passive film. The results indicate that gamma-APT can be prepared through nucleophilic ring-opening of ethylene oxide in gamma-GPT molecule to form C--N covalent bonds. The rf-GD-OES results indicate that there is a oxygen enriched layer in 0.3 microm depth of the composite silanes-V-Zr passive film. Moreover, ZrF4, ZrO2 and some inorganic matter obtained by the reaction during the forming processof the composite silanes-V-Zr passive film are distributed evenly throughout the film. According to the film composition, the physical processes and chemical reactions during the film forming process were studied by using ATR-FTIR. Based on this, the film forming mechanism was proposed.
Okamoto, Isaku; Tokashiki, Ryoji; Hiramatsu, Hiroyuki; Motohashi, Ray; Suzuki, Mamoru
2012-02-01
In a previous study of patients with unilateral vocal-fold paralysis (UVFP), three-dimensional computed tomography (3DCT) revealed passive movement during phonation, with the arytenoid cartilage on the paralyzed side pushed to the unaffected side and deviated upwards. The present work compares the 3DCT findings with those obtained by 2-dimensional endoscopy to visualize the vertical passive movement of the arytenoid cartilage. The study population consisted of 23 patients with UVFP and two with laryngeal deviation but normal movement of the vocal folds. Two endoscopic findings represented cranial deviation during phonation: posterior deviation of the arytenoid hump and lateral deviation of the muscular process. These two findings were classified into four grades, ranging from 0 (normal) to 3 (severe). Cranial displacement detected by 3DCT was also classified into four grades. Significant correlations were found between the 3DCT-determined grade of cranial displacement of the arytenoid cartilage and the grade assigned based on the two endoscopic findings. Moreover, lateral deviation of the muscular process was more significantly correlated with 3DCT grade than with endoscopic grade. Thus, endoscopic findings may be useful in the diagnosis of vocal-fold paralysis, and passive lateral deviation of the muscular process as an indicator of UVFP.
Xu, Weifeng; Wolff, Brian S.
2014-01-01
Low-intensity alternating electric fields applied to the scalp are capable of modulating cortical activity and brain functions, but the underlying mechanisms remain largely unknown. Here, we report two distinct components of voltage-sensitive dye signals induced by low-intensity, alternating electric fields in rodent cortical slices: a “passive component,” which corresponds to membrane potential changes directly induced by the electric field; and an “active component,” which is a widespread depolarization that is dependent on excitatory synaptic transmission. The passive component is stationary, with amplitude and phase accurately reflecting the cortical cytoarchitecture. In contrast, the active component is initiated from a local “hot spot” of activity and spreads to a large population as a propagating wave with rich local dynamics. The propagation of the active component may play a role in modulating large-scale cortical activity by spreading a low level of excitation from a small initiation point to a vast neuronal population. PMID:25122710
NASA Astrophysics Data System (ADS)
Naim, Nani Fadzlina; Bakar, A. Ashrif A.; Ab-Rahman, Mohammad Syuhaimi
2018-01-01
This paper presents a centralized and fault localization technique for Ethernet Passive Optical Access Network. This technique employs L-band Amplified Spontaneous Emission (ASE) as the monitoring source and various fiber Bragg Gratings (FBGs) as the fiber's identifier. An FBG with a unique combination of Bragg wavelength, reflectivity and bandwidth is inserted at each distribution fiber. The FBG reflection spectrum will be analyzed using an optical spectrum analyzer (OSA) to monitor the condition of the distribution fiber. Various FBGs reflection spectra is employed to optimize the limited bandwidth of monitoring source, thus allows more fibers to be monitored. Basically, one Bragg wavelength is shared by two distinct FBGs with different reflectivity and bandwidth. The experimental result shows that the system is capable to monitor up to 32 customers with OSNR value of ∼1.2 dB and monitoring power received of -24 dBm. This centralized and simple monitoring technique demonstrates a low power, cost efficient and low bandwidth requirement system.
Singh, Aman P; Maass, Katie F; Betts, Alison M; Wittrup, K Dane; Kulkarni, Chethana; King, Lindsay E; Khot, Antari; Shah, Dhaval K
2016-07-01
A mathematical model capable of accurately characterizing intracellular disposition of ADCs is essential for a priori predicting unconjugated drug concentrations inside the tumor. Towards this goal, the objectives of this manuscript were to: (1) evolve previously published cellular disposition model of ADC with more intracellular details to characterize the disposition of T-DM1 in different HER2 expressing cell lines, (2) integrate the improved cellular model with the ADC tumor disposition model to a priori predict DM1 concentrations in a preclinical tumor model, and (3) identify prominent pathways and sensitive parameters associated with intracellular activation of ADCs. The cellular disposition model was augmented by incorporating intracellular ADC degradation and passive diffusion of unconjugated drug across tumor cells. Different biomeasures and chemomeasures for T-DM1, quantified in the companion manuscript, were incorporated into the modified model of ADC to characterize in vitro pharmacokinetics of T-DM1 in three HER2+ cell lines. When the cellular model was integrated with the tumor disposition model, the model was able to a priori predict tumor DM1 concentrations in xenograft mice. Pathway analysis suggested different contribution of antigen-mediated and passive diffusion pathways for intracellular unconjugated drug exposure between in vitro and in vivo systems. Global and local sensitivity analyses revealed that non-specific deconjugation and passive diffusion of the drug across tumor cell membrane are key parameters for drug exposure inside a cell. Finally, a systems pharmacokinetic model for intracellular processing of ADCs has been proposed to highlight our current understanding about the determinants of ADC activation inside a cell.
NASA Astrophysics Data System (ADS)
Cruciani, Francesco; Barchi, Massimiliano R.
2016-03-01
In recent decades, advances in seismic processing and acquisition of new data sets have revealed the presence of many deepwater fold-and-thrust belts (DW-FTBs), often developing along continental passive margins. These kinds of tectonic features have been intensively studied, due to their substantial interest. This work presents a regional-scale study of the poorly explored Lamu Basin DW-FTB, a margin-scale, gravity-driven system extending for more than 450 km along the continental passive margin of Kenya and southern Somalia (East Africa). A 2-D seismic data set was analyzed, consisting of both recently acquired high-quality data and old reprocessed seismic profiles, for the first detailed structural and stratigraphic interpretation of this DW-FTB. The system originated over an Early to mid-Cretaceous shale detachment due to a mainly gravity-spreading mechanism. Analysis of synkinematic strata indicates that the DW-FTB was active from the Late Cretaceous to the Early Miocene, but almost all of the deformation occurred before the Late Paleocene. The fold-and-thrust system displays a marked N-S variation in width, the northern portion being more than 150 km wide and the southern portion only a few dozen kilometers wide; this along-strike variation is thought to be related to the complex tectonosedimentary evolution of the continental margin at the Somalia-Kenya boundary, also reflected in the present-day bathymetry. Locally, a series of volcanic edifices stopped the basinward propagation of the DW-FTB. A landward change in the dominant structural style, from asymmetric imbricate thrust sheets to pseudo-symmetric detachment folds, is generally observed, related to the landward thickening of the detached shales.
Passive and semi-active heave compensator: Project design methodology and control strategies.
Cuellar Sanchez, William Humberto; Linhares, Tássio Melo; Neto, André Benine; Fortaleza, Eugênio Libório Feitosa
2017-01-01
Heave compensator is a system that mitigates transmission of heave movement from vessels to the equipment in the vessel. In drilling industry, a heave compensator enables drilling in offshore environments. Heave compensator attenuates movement transmitted from the vessel to the drill string and drill bit ensuring security and efficiency of the offshore drilling process. Common types of heave compensators are passive, active and semi-active compensators. This article presents 4 main points. First, a bulk modulus analysis obtains a simple condition to determine if the bulk modulus can be neglected in the design of hydropneumatic passive heave compensator. Second, the methodology to design passive heave compensators with the desired frequency response. Third, four control methodologies for semi-active heave compensator are tested and compared numerically. Lastly, we show experimental results obtained from a prototype with the methodology developed to design passive heave compensator.
Passivity of the bars manufactured using current technologies: laser-sintering, casting, and milling
NASA Astrophysics Data System (ADS)
Popescu, Diana; Popescu, Sabin; Pop, Daniel; Jivanescu, Anca; Todea, Carmen
2014-01-01
Implant overdentures are often selected as therapeutic options for the treatment of edentulous mandibles. "Passive-fit" between the mesostructures and the implants plays an important role in the longevity of the implant-prosthetic assembly in the oral cavity. "Mis-fit" can cause mechanical or biological complications. The purpose of this test was to investigate the passive adaptation of the bars manufactured through different technologies, and in this respect two bars (short and long) were fabricated by each process: laser-sintering, milling, casting. The tensions induced by tightening the connection screw between the bars and the underlying implants were recorded using strain gauges and used as measuring and comparing tool in testing the bars' "passivity". The results of the test showed that the milled bars had the best "passive-fit", followed by laser-sintered bars, while cast bars had the lowest adaptation level.
Passive and semi-active heave compensator: Project design methodology and control strategies
Cuellar Sanchez, William Humberto; Neto, André Benine; Fortaleza, Eugênio Libório Feitosa
2017-01-01
Heave compensator is a system that mitigates transmission of heave movement from vessels to the equipment in the vessel. In drilling industry, a heave compensator enables drilling in offshore environments. Heave compensator attenuates movement transmitted from the vessel to the drill string and drill bit ensuring security and efficiency of the offshore drilling process. Common types of heave compensators are passive, active and semi-active compensators. This article presents 4 main points. First, a bulk modulus analysis obtains a simple condition to determine if the bulk modulus can be neglected in the design of hydropneumatic passive heave compensator. Second, the methodology to design passive heave compensators with the desired frequency response. Third, four control methodologies for semi-active heave compensator are tested and compared numerically. Lastly, we show experimental results obtained from a prototype with the methodology developed to design passive heave compensator. PMID:28813494
Amphipathic amines affect membrane excitability in paramecium: role for bilayer couple.
Browning, J L; Nelson, D L
1976-01-01
Amphipathic amines and local anesthetics stimulated reversal of the ciliary beating direction in wild-type Paramecium. Ca++ influx across the surface membrane and the consequent increase in internal Ca++ causes ciliary reversal and backward swimming. Mutant cells of the "Pawn" class, which lack a "gating" mechanism for regulating Ca++ influx, did not swim backwards in the presence of local anesthetics. Local anesthetics stimulated the passive efflux of K+ but had no effect on the active transport of K+ or Ca++. Apparently passive influx of Ca++ also was stimulated by local anesthetics as evidenced by their effects on swimming direction. These data can be interpreted in terms of the "bilayer couple" hypothesis of Sheetz and Singer [(1974) Proc. Nat. Acad. Sci. USA 71, 4457-4461]: amphipathic drugs affect cells by asymmetric insertion into one face of the lipid bilayer. As predicted by this hypothesis, the drugs' effects were seen only after a short time lag, and quaternary amines were less effective than tertiary amines. The effect on behavior was caused by any of several amphipathic cations, and the relative potency was a function of their hydrophobicity. Amphipathic anions, which according to the hypothesis would insert into the opposite face of the lipid bilayer, had little effect on ciliary reversal. Asymmetric perturbation of the lipid bilayer with amphipathic cations may trigger the opening of the Ca++ gate. Images PMID:1061147
"Reliability Of Fiber Optic Lans"
NASA Astrophysics Data System (ADS)
Code n, Michael; Scholl, Frederick; Hatfield, W. Bryan
1987-02-01
Fiber optic Local Area Network Systems are being used to interconnect increasing numbers of nodes. These nodes may include office computer peripherals and terminals, PBX switches, process control equipment and sensors, automated machine tools and robots, and military telemetry and communications equipment. The extensive shared base of capital resources in each system requires that the fiber optic LAN meet stringent reliability and maintainability requirements. These requirements are met by proper system design and by suitable manufacturing and quality procedures at all levels of a vertically integrated manufacturing operation. We will describe the reliability and maintainability of Codenoll's passive star based systems. These include LAN systems compatible with Ethernet (IEEE 802.3) and MAP (IEEE 802.4), and software compatible with IBM Token Ring (IEEE 802.5). No single point of failure exists in this system architecture.
Separation anxiety: Stress, tension and cytokinesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohan, Krithika; Iglesias, Pablo A., E-mail: pi@jhu.edu; Robinson, Douglas N., E-mail: dnr@jhmi.edu
Cytokinesis, the physical separation of a mother cell into two daughter cells, progresses through a series of well-defined changes in morphology. These changes involve distinct biochemical and mechanical processes. Here, we review the mechanical features of cells during cytokinesis, discussing both the material properties as well as sources of stresses, both active and passive, which lead to the observed changes in morphology. We also describe a mechanosensory feedback control system that regulates protein localization and shape progression during cytokinesis. -- Highlights: Black-Right-Pointing-Pointer Cytokinesis progresses through three distinct mechanical phases. Black-Right-Pointing-Pointer Cortical tension initially resists deformation of mother cell. Black-Right-Pointing-Pointer Latemore » in cytokinesis, cortical tension provides stress, enabling furrow ingression. Black-Right-Pointing-Pointer A mechanosensory feedback control system regulates cytokinesis.« less
Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.; Munhall, Kevin G.; Cusack, Rhodri; Johnsrude, Ingrid S.
2013-01-01
The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multi-voxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was employed to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared to during passive listening. One network of regions appears to encode an ‘error signal’ irrespective of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a fronto-temporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Taken together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems. PMID:23467350
Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer.
Black, L E; Cavalli, A; Verheijen, M A; Haverkort, J E M; Bakkers, E P A M; Kessels, W M M
2017-10-11
III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a PO x layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since PO x is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al 2 O 3 capping layer to form a PO x /Al 2 O 3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm -2 ), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and solar cells.
Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer
2017-01-01
III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a POx layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since POx is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al2O3 capping layer to form a POx/Al2O3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm–2), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and solar cells. PMID:28885032
Proceedings of the technical exchange meeting on passive radon monnitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duray, J.R.; Langner, H. Jr.; Martz, D.E.
1987-09-01
The purpose of the meeting was to bring together a number of scientists active in the development and use of passive radon monitoring instrumentation, primarily activated charcoal detectors and alpha track detectors. Many of those present expressed a desire to receive copies of the viewgraphs and other materials presented. Most have supplied extended abstracts or complete reports. These materials are reproduced here as a Technical Measurements Center Report for the benefit of those attending the meeting and for others interested in passive radon monitoring. Individual papers were processed separately for the data base.
Shah, Js; Goyal, Rk
2011-04-01
To investigate the neuropsychopharmacological effect of a polyherbal formulation (PHF) on the learning and memory processes in rats. PHF contains Withania somnifera (Ashwagandha), Nardostachys jatamansi (Jatamansi), Rauwolfia serpentina (Sarpagandha), Evolvulus alsinoides (Shankhpushpi), Asparagus racemosus (Shatavari), Emblica officinalis (Amalki), Mucuna pruriens (Kauch bij extract), Hyoscyamus niger (Khurasani Ajmo), Mineral resin (Shilajit), Pearl (Mukta Shukhti Pishti), and coral calcium (Praval pishti). Its effect (500 mg / kg, p.o.) on the learning and memory processes was tested. The activity of PHF on memory acquisition and retention was studied using passive avoidance learning and elevated plus maze model (EPM) in rats. The animals treated with PHF showed a significant decrease in transfer latency as compared to the control group in EPM. PHF also produced significant improvement in passive avoidance acquisition and memory retrieval, as compared to the controls and reduced the latency to reach the shock free zone (SFZ) after 24 hours. The PHF produces significant improvement in passive avoidance acquisition and memory retrieval in rats, which needs further investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, W.D.
Passive solar heating was used in a still in which a packed column packed with popped popcorn separates the alcohol and water vapors. The still's performance was not satisfactory, and it is concluded that passive solar heating could have been better used to preheat makeup water for the fermentation process and to maintain proper fermentation temperatures during the winter. (LEW)
Teaching to Think: Applying the Socratic Method outside the Law School Setting
ERIC Educational Resources Information Center
Peterson, Evan
2009-01-01
An active learning process has the potential to provide educational benefits above-and-beyond what they might receive from more traditional, passive approaches. The Socratic Method is a unique approach to passive learning that facilitates critical thinking, open-mindedness, and teamwork. By imposing a series of guided questions to students, an…
From Passive Acceptance to Active Commitment: A Model of Feminist Identity Development for Women.
ERIC Educational Resources Information Center
Downing, Nancy E.; Roush, Kristin L.
1985-01-01
Presents a model of feminist identity development for women, derived, in part, from Cross's (1971) theory of Black identity development. The stages in this process include passive acceptance, revelation, embeddedness-emanation, synthesis, and active commitment. Implications of the model are outlined for women, nonsexist and feminist…
Evidence Integration in Natural Acoustic Textures during Active and Passive Listening
Rupp, Andre; Celikel, Tansu
2018-01-01
Abstract Many natural sounds can be well described on a statistical level, for example, wind, rain, or applause. Even though the spectro-temporal profile of these acoustic textures is highly dynamic, changes in their statistics are indicative of relevant changes in the environment. Here, we investigated the neural representation of change detection in natural textures in humans, and specifically addressed whether active task engagement is required for the neural representation of this change in statistics. Subjects listened to natural textures whose spectro-temporal statistics were modified at variable times by a variable amount. Subjects were instructed to either report the detection of changes (active) or to passively listen to the stimuli. A subset of passive subjects had performed the active task before (passive-aware vs passive-naive). Psychophysically, longer exposure to pre-change statistics was correlated with faster reaction times and better discrimination performance. EEG recordings revealed that the build-up rate and size of parieto-occipital (PO) potentials reflected change size and change time. Reduced effects were observed in the passive conditions. While P2 responses were comparable across conditions, slope and height of PO potentials scaled with task involvement. Neural source localization identified a parietal source as the main contributor of change-specific potentials, in addition to more limited contributions from auditory and frontal sources. In summary, the detection of statistical changes in natural acoustic textures is predominantly reflected in parietal locations both on the skull and source level. The scaling in magnitude across different levels of task involvement suggests a context-dependent degree of evidence integration. PMID:29662943
Evidence Integration in Natural Acoustic Textures during Active and Passive Listening.
Górska, Urszula; Rupp, Andre; Boubenec, Yves; Celikel, Tansu; Englitz, Bernhard
2018-01-01
Many natural sounds can be well described on a statistical level, for example, wind, rain, or applause. Even though the spectro-temporal profile of these acoustic textures is highly dynamic, changes in their statistics are indicative of relevant changes in the environment. Here, we investigated the neural representation of change detection in natural textures in humans, and specifically addressed whether active task engagement is required for the neural representation of this change in statistics. Subjects listened to natural textures whose spectro-temporal statistics were modified at variable times by a variable amount. Subjects were instructed to either report the detection of changes (active) or to passively listen to the stimuli. A subset of passive subjects had performed the active task before (passive-aware vs passive-naive). Psychophysically, longer exposure to pre-change statistics was correlated with faster reaction times and better discrimination performance. EEG recordings revealed that the build-up rate and size of parieto-occipital (PO) potentials reflected change size and change time. Reduced effects were observed in the passive conditions. While P2 responses were comparable across conditions, slope and height of PO potentials scaled with task involvement. Neural source localization identified a parietal source as the main contributor of change-specific potentials, in addition to more limited contributions from auditory and frontal sources. In summary, the detection of statistical changes in natural acoustic textures is predominantly reflected in parietal locations both on the skull and source level. The scaling in magnitude across different levels of task involvement suggests a context-dependent degree of evidence integration.
Beitel, Ralph E.; Schreiner, Christoph E.; Leake, Patricia A.
2016-01-01
In profoundly deaf cats, behavioral training with intracochlear electric stimulation (ICES) can improve temporal processing in the primary auditory cortex (AI). To investigate whether similar effects are manifest in the auditory midbrain, ICES was initiated in neonatally deafened cats either during development after short durations of deafness (8 wk of age) or in adulthood after long durations of deafness (≥3.5 yr). All of these animals received behaviorally meaningless, “passive” ICES. Some animals also received behavioral training with ICES. Two long-deaf cats received no ICES prior to acute electrophysiological recording. After several months of passive ICES and behavioral training, animals were anesthetized, and neuronal responses to pulse trains of increasing rates were recorded in the central (ICC) and external (ICX) nuclei of the inferior colliculus. Neuronal temporal response patterns (repetition rate coding, minimum latencies, response precision) were compared with results from recordings made in the AI of the same animals (Beitel RE, Vollmer M, Raggio MW, Schreiner CE. J Neurophysiol 106: 944–959, 2011; Vollmer M, Beitel RE. J Neurophysiol 106: 2423–2436, 2011). Passive ICES in long-deaf cats remediated severely degraded temporal processing in the ICC and had no effects in the ICX. In contrast to observations in the AI, behaviorally relevant ICES had no effects on temporal processing in the ICC or ICX, with the single exception of shorter latencies in the ICC in short-deaf cats. The results suggest that independent of deafness duration passive stimulation and behavioral training differentially transform temporal processing in auditory midbrain and cortex, and primary auditory cortex emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf cat. NEW & NOTEWORTHY Behaviorally relevant vs. passive electric stimulation of the auditory nerve differentially affects neuronal temporal processing in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (AI) in profoundly short-deaf and long-deaf cats. Temporal plasticity in the ICC depends on a critical amount of electric stimulation, independent of its behavioral relevance. In contrast, the AI emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf auditory system. PMID:27733594
Liu, Lihong; Fang, Wei-Hai; Long, Run; Prezhdo, Oleg V
2018-03-01
Nonradiative electron-hole recombination plays a key role in determining photon conversion efficiencies in solar cells. Experiments demonstrate significant reduction in the recombination rate upon passivation of methylammonium lead iodide perovskite with Lewis base molecules. Using nonadiabatic molecular dynamics combined with time-domain density functional theory, we find that the nonradiative charge recombination is decelerated by an order of magnitude upon adsorption of the molecules. Thiophene acts by the traditional passivation mechanism, forcing electron density away from the surface. In contrast, pyridine localizes the electron at the surface while leaving it energetically near the conduction band edge. This is because pyridine creates a stronger coordinative bond with a lead atom of the perovskite and has a lower energy unoccupied orbital compared with thiophene due to the more electronegative nitrogen atom relative to thiophene's sulfur. Both molecules reduce two-fold the nonadiabatic coupling and electronic coherence time. A broad range of vibrational modes couple to the electronic subsystem, arising from inorganic and organic components. The simulations reveal the atomistic mechanisms underlying the enhancement of the excited-state lifetime achieved by the perovskite passivation, rationalize the experimental results, and advance our understanding of charge-phonon dynamics in perovskite solar cells.
NASA Astrophysics Data System (ADS)
Fu, Chen; Lin, Zhaojun; Cui, Peng; Lv, Yuanjie; Zhou, Yang; Dai, Gang; Luan, Chongbiao; Liu, Huan; Cheng, Aijie
2018-01-01
A new method to determine the two-dimensional electron gas (2DEG) density distribution of the AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) after the Si3N4 passivation process has been presented. Detailed device characteristics were investigated and better transport properties have been observed for the passivated devices. The strain variation and the influence of the surface trapping states were analyzed. By using the polarization Coulomb field (PCF) scattering theory, the 2DEG density after passivation was both quantitively and qualitatively determined, which has been increased by 45% under the access regions and decreased by 2% under the gate region.
Process and design considerations for high-efficiency solar cells
NASA Technical Reports Server (NTRS)
Rohati, A.; Rai-Choudhury, P.
1985-01-01
This paper shows that oxide surface passivation coupled with optimum multilayer anti-reflective coating can provide approx. 3% (absolute) improvement in solar cell efficiency. Use of single-layer AR coating, without passivation, gives cell efficiencies in the range of 15 to 15.5% on high-quality, 4 ohm-cm as well as 0.1 to 0.2 ohm-cm float-zone silicon. Oxide surface passivation alone raises the cell efficiency to or = 17%. An optimum double-layer AR coating on oxide-passivated cells provides an additional approx. 5 to 10% improvement over a single-layer AR-coated cell, resulting in cell efficiencies in excess of 18%. Experimentally observed improvements are supported by model calculations and an approach to or = 20% efficient cells is discussed.
The life cycle of continental rifting as a focus for U.S.-African scientific collaboration
NASA Astrophysics Data System (ADS)
Abdelsalam, Mohamed G.; Atekwana, Estella A.; Keller, G. Randy; Klemperer, Simon L.
2004-11-01
The East African Rift System (EARS) provides the unique opportunity found nowhere else on Earth, to investigate extensional processes from incipient rifting in the Okavango Delta, Botswana, to continental breakup and creation of proto-oceanic basins 3000 km to the north in the Afar Depression in Ethiopia, Eritrea, and Djibouti.The study of continental rifts is of great interest because they represent the initial stages of continental breakup and passive margin development, they are sites for large-scale sediment accumulation, and their geomorphology may have controlled human evolution in the past and localizes geologic hazards in the present. But there is little research that provides insights into the linkage between broad geodynamic processes and the life cycle of continental rifts: We do not know why some rifts evolve into mid-ocean ridges whereas others abort their evolution to become aulacogens. Numerous studies of the EARS and other continental rifts have significantly increased our understanding of rifting processes, but we particularly lack studies of the embryonic stages of rift creation and the last stages of extension when continental breakup occurs.
Microfabrication of passive electronic components with printed graphene-oxide deposition
NASA Astrophysics Data System (ADS)
Sinar, Dogan; Knopf, George K.; Nikumb, Suwas
2014-03-01
Flexible electronic circuitry is an emerging technology that will significantly impact the future of healthcare and medicine, food safety inspection, environmental monitoring, and public security. Recent advances in drop-on-demand printing technology and electrically conductive inks have enabled simple electronic circuits to be fabricated on mechanically flexible polymers, paper, and bioresorbable silk. Research has shown that graphene, and its derivative formulations, can be used to create low-cost electrically conductive inks. Graphene is a one atom thick two-dimensional layer composed of carbon atoms arranged in a hexagonal lattice forming a material with very high fracture strength, high Young's Modulus, and low electrical resistance. Non-conductive graphene-oxide (GO) inks can also be synthesized from inexpensive graphite powders. Once deposited on the flexible substrate the electrical conductivity of the printed GO microcircuit traces can be restored through thermal reduction. In this paper, a femtosecond laser with a wavelength of 775nm and pulse width of 120fs is used to transform the non-conductive printed GO film into electrically conductive oxygen reduced graphene-oxide (rGO) passive electronic components by the process of laser assisted thermal reduction. The heat affected zone produced during the process was minimized because of the femtosecond pulsed laser. The degree of conductivity exhibited by the microstructure is directly related to the laser power level and exposure time. Although rGO films have higher resistances than pristine graphene, the ability to inkjet print capacitive elements and modify local resistive properties provides for a new method of fabricating sensor microcircuits on a variety of substrate surfaces.
Ling, Yu-Chen; Bush, Richard; Grice, Kliti; Tulipani, Svenja; Berwick, Lyndon; Moreau, John W
2015-01-01
Coastal acid sulfate soils (CASS) constitute a serious and global environmental problem. Oxidation of iron sulfide minerals exposed to air generates sulfuric acid with consequently negative impacts on coastal and estuarine ecosystems. Tidal inundation represents one current treatment strategy for CASS, with the aim of neutralizing acidity by triggering microbial iron- and sulfate-reduction and inducing the precipitation of iron-sulfides. Although well-known functional guilds of bacteria drive these processes, their distributions within CASS environments, as well as their relationships to tidal cycling and the availability of nutrients and electron acceptors, are poorly understood. These factors will determine the long-term efficacy of "passive" CASS remediation strategies. Here we studied microbial community structure and functional guild distribution in sediment cores obtained from 10 depths ranging from 0 to 20 cm in three sites located in the supra-, inter- and sub-tidal segments, respectively, of a CASS-affected salt marsh (East Trinity, Cairns, Australia). Whole community 16S rRNA gene diversity within each site was assessed by 454 pyrotag sequencing and bioinformatic analyses in the context of local hydrological, geochemical, and lithological factors. The results illustrate spatial overlap, or close association, of iron-, and sulfate-reducing bacteria (SRB) in an environment rich in organic matter and controlled by parameters such as acidity, redox potential, degree of water saturation, and mineralization. The observed spatial distribution implies the need for empirical understanding of the timing, relative to tidal cycling, of various terminal electron-accepting processes that control acid generation and biogeochemical iron and sulfur cycling.
NASA Astrophysics Data System (ADS)
Crake, Calum; Brinker, Spencer T.; Coviello, Christian M.; Livingstone, Margaret S.; McDannold, Nathan J.
2018-03-01
Previous work has demonstrated that passive acoustic imaging may be used alongside MRI for monitoring of focused ultrasound therapy. However, past implementations have generally made use of either linear arrays originally designed for diagnostic imaging or custom narrowband arrays specific to in-house therapeutic transducer designs, neither of which is fully compatible with clinical MR-guided focused ultrasound (MRgFUS) devices. Here we have designed an array which is suitable for use within an FDA-approved MR-guided transcranial focused ultrasound device, within the bore of a 3 Tesla clinical MRI scanner. The array is constructed from 5 × 0.4 mm piezoceramic disc elements arranged in pseudorandom fashion on a low-profile laser-cut acrylic frame designed to fit between the therapeutic elements of a 230 kHz InSightec ExAblate 4000 transducer. By exploiting thickness and radial resonance modes of the piezo discs the array is capable of both B-mode imaging at 5 MHz for skull localization, as well as passive reception at the second harmonic of the therapy array for detection of cavitation and 3D passive acoustic imaging. In active mode, the array was able to perform B-mode imaging of a human skull, showing the outer skull surface with good qualitative agreement with MR imaging. Extension to 3D showed the array was able to locate the skull within ±2 mm/2° of reference points derived from MRI, which could potentially allow registration of a patient to the therapy system without the expense of real-time MRI. In passive mode, the array was able to resolve a point source in 3D within a ±10 mm region about each axis from the focus, detect cavitation (SNR ~ 12 dB) at burst lengths from 10 cycles to continuous wave, and produce 3D acoustic maps in a flow phantom. Finally, the array was used to detect and map cavitation associated with microbubble activity in the brain in nonhuman primates.
The RIACS Intelligent Auditing and Categorizing System
NASA Technical Reports Server (NTRS)
Bishop, Matt
1988-01-01
The organization of the RIACS auditing package is described along with how to installation instructions and how to interpret the output. How to set up both local and remote file system auditing is given. Logging is done on a time driven basis, and auditing in a passive mode.
NASA Astrophysics Data System (ADS)
Quirin, Sean Albert
The joint application of tailored optical Point Spread Functions (PSF) and estimation methods is an important tool for designing quantitative imaging and sensing solutions. By enhancing the information transfer encoded by the optical waves into an image, matched post-processing algorithms are able to complete tasks with improved performance relative to conventional designs. In this thesis, new engineered PSF solutions with image processing algorithms are introduced and demonstrated for quantitative imaging using information-efficient signal processing tools and/or optical-efficient experimental implementations. The use of a 3D engineered PSF, the Double-Helix (DH-PSF), is applied as one solution for three-dimensional, super-resolution fluorescence microscopy. The DH-PSF is a tailored PSF which was engineered to have enhanced information transfer for the task of localizing point sources in three dimensions. Both an information- and optical-efficient implementation of the DH-PSF microscope are demonstrated here for the first time. This microscope is applied to image single-molecules and micro-tubules located within a biological sample. A joint imaging/axial-ranging modality is demonstrated for application to quantifying sources of extended transverse and axial extent. The proposed implementation has improved optical-efficiency relative to prior designs due to the use of serialized cycling through select engineered PSFs. This system is demonstrated for passive-ranging, extended Depth-of-Field imaging and digital refocusing of random objects under broadband illumination. Although the serialized engineered PSF solution is an improvement over prior designs for the joint imaging/passive-ranging modality, it requires the use of multiple PSFs---a potentially significant constraint. Therefore an alternative design is proposed, the Single-Helix PSF, where only one engineered PSF is necessary and the chromatic behavior of objects under broadband illumination provides the necessary information transfer. The matched estimation algorithms are introduced along with an optically-efficient experimental system to image and passively estimate the distance to a test object. An engineered PSF solution is proposed for improving the sensitivity of optical wave-front sensing using a Shack-Hartmann Wave-front Sensor (SHWFS). The performance limits of the classical SHWFS design are evaluated and the engineered PSF system design is demonstrated to enhance performance. This system is fabricated and the mechanism for additional information transfer is identified.
NASA Astrophysics Data System (ADS)
ZUO, Xuran; CHAN, Lung
2015-04-01
The southern South China Block is characterized by a widespread magmatic belt, prominent NE-striking fault zones and numerous rifted basins filled by Cretaceous-Eocene sediments. The geology denotes a transition from an active to a passive margin, which led to rapid modifications of crustal stress configuration and reactivation of older faults in this area. In this study, we used zircon fission-track dating (ZFT) and numerical modeling to examine the timing and kinematics of the active-passive margin transition. Our ZFT results on granitic plutons in the SW Cathaysia Block show two episodes of exhumation of the granitic plutons. The first episode, occurring during 170 Ma - 120 Ma, affected local parts of the Nanling Range. The second episode, a more regional exhumation event, occurred during 115 Ma - 70 Ma. Numerical geodynamic modeling was conducted to simulate the subduction between the paleo-Pacific plate and the South China Block. The modeling results could explain the observation based on ZFT data that exhumation of the granite-dominant Nanling Range occurred at an earlier time than the gneiss-dominant Yunkai Terrane. In addition to the difference in geology between Yunkai and Nanling, the heating from Jurassic-Early Cretaceous magmatism in the Nanling Range may have softened the upper crust, causing the area to exhume more readily. Numerical modeling results also indicate that (1) high slab dip angle, high geothermal gradient of lithosphere and low convergence velocity favor the subduction process and the reversal of crustal stress state from compression to extension in the upper plate; (2) the late Mesozoic magmatism in South China was probably caused by a slab roll-back; and (3) crustal extension could have occurred prior to the cessation of plate subduction. The inversion of stress regime in the continental crust from compression to crustal extension has shed light on the geological condition producing the red bed basins during Late Cretaceous-early Paleogene in South China. It appears that the red bed basins could have formed during the late stage of the subduction process, accounting for the observations why concurrent volcanic rocks could be found in some sedimentary basin formation. We propose that the extensional events started as early as the Late Cretaceous, probably before the cessation of subduction process. (Funding from Total Company and matching support from UGC are gratefully acknowledged).
Species-specific calls evoke asymmetric activity in the monkey's temporal poles.
Poremba, Amy; Malloy, Megan; Saunders, Richard C; Carson, Richard E; Herscovitch, Peter; Mishkin, Mortimer
2004-01-29
It has often been proposed that the vocal calls of monkeys are precursors of human speech, in part because they provide critical information to other members of the species who rely on them for survival and social interactions. Both behavioural and lesion studies suggest that monkeys, like humans, use the auditory system of the left hemisphere preferentially to process vocalizations. To investigate the pattern of neural activity that might underlie this particular form of functional asymmetry in monkeys, we measured local cerebral metabolic activity while the animals listened passively to species-specific calls compared with a variety of other classes of sound. Within the superior temporal gyrus, significantly greater metabolic activity occurred on the left side than on the right, only in the region of the temporal pole and only in response to monkey calls. This functional asymmetry was absent when these regions were separated by forebrain commissurotomy, suggesting that the perception of vocalizations elicits concurrent interhemispheric interactions that focus the auditory processing within a specialized area of one hemisphere.
Sarcomeric Pattern Formation by Actin Cluster Coalescence
Friedrich, Benjamin M.; Fischer-Friedrich, Elisabeth; Gov, Nir S.; Safran, Samuel A.
2012-01-01
Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells. PMID:22685394
Escape from harm: linking affective vision and motor responses during active avoidance
Keil, Andreas
2014-01-01
When organisms confront unpleasant objects in their natural environments, they engage in behaviors that allow them to avoid aversive outcomes. Here, we linked visual processing of threat to its behavioral consequences by including a motor response that terminated exposure to an aversive event. Dense-array steady-state visual evoked potentials were recorded in response to conditioned threat and safety signals viewed in active or passive behavioral contexts. The amplitude of neuronal responses in visual cortex increased additively, as a function of emotional value and action relevance. The gain in local cortical population activity for threat relative to safety cues persisted when aversive reinforcement was behaviorally terminated, suggesting a lingering emotionally based response amplification within the visual system. Distinct patterns of long-range neural synchrony emerged between the visual cortex and extravisual regions. Increased coupling between visual and higher-order structures was observed specifically during active perception of threat, consistent with a reorganization of neuronal populations involved in linking sensory processing to action preparation. PMID:24493849
Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins
Spite, Matthew; Serhan, Charles N.
2010-01-01
The resolution of acute inflammation is a process that allows for inflamed tissues to return to homeostasis. Resolution was held to be a passive process, a concept now overturned with new evidence demonstrating that resolution is actively orchestrated by distinct cellular events and endogenous chemical mediators. Among these, lipid mediators, such as the lipoxins, resolvins, protectins and newly identified maresins, have emerged as a novel genus of potent and stereoselective players that counter-regulate excessive acute inflammation and stimulate molecular and cellular events that define resolution. Given that uncontrolled, chronic inflammation is associated with many cardiovascular pathologies, an appreciation of the endogenous pathways and mediators that control timely resolution can open new terrain for therapeutic approaches targeted at stimulating resolution of local inflammation, as well as correcting the impact of chronic inflammation in cardiovascular disorders. Here, we overview and update the biosynthesis and actions of pro-resolving lipid mediators, highlighting their diverse protective roles relevant to vascular systems and their relation to aspirin and statin therapies. PMID:21071715
Spatial Statistics of atmospheric particulate matter in China
NASA Astrophysics Data System (ADS)
Huang, Yongxiang; Wang, Yangjun; Liu, Yulu
2017-04-01
In this work, the spatial dynamics of the atmospheric particulate matters (resp. PM10 and PM2.5) are studied using turbulence methodologies. The hourly concentrations of particulate matter were released by the Chinese government (http://www.cnemc.cn). We first processed these data into daily average concentrations. Totally, there are 305 monitor stations with an observations period of 425 days. It is found experimentally that the spatial correlation function ρ(r) shows a log-law on the mesoscale range, i.e., 50 ≤ r ≤ 500 km, with an experimental scaling exponent β = 0.45. The spatial structure function shows a power-law behavior on the mesoscale range 90 ≤ r ≤ 500 km. The experimental scaling exponent ζ(q) is convex, showing that the intermittent correction is relevant in characterizing the spatial dynamics of particulate matter. The measured singularity spectrum f(α) also shows its multifractal nature. Experimentally, the particulate matter is more intermittent than the passive scalar, which could be partially due to the mesoscale movements of the atmosphere, and also due to local sources, such as local industry activities.
Self-passivation Rule and the Effect of Post-treatment in GBs of Solar Cell Materials
NASA Astrophysics Data System (ADS)
Liu, Chengyan; Chen, Shiyou; Xiang, Hongjun; Gong, Xingao
Grain boundaries (GBs) existing in polycrystalline semiconductors alloys inducing a great deal of deep defect levels are usually harmful to cells' photovoltaic performance. Experimental and theoretical investigations verified that these defect levels come from the GBs' dangling bonds. We find that, the defect levels in anion core of GB can be passivated by its cations, called by self-passivation. For instance, the post-treated by CdCl2, Cd can eliminate the defect levels by saturating Te dangling bonds in the grain boundary of CdTe. We verify that the idea of self-passivation rule can perfectly explain the benign GBs of CISe and CZTS by sodium treatment. The present work reveals a general mechanism about how dopants in GBs eliminate the defect states through passivating the dangling bonds in covalent polycrystalline semiconductors, and sheds light on how to passivate dangling bonds in GBs with alterative processes. National Science Foundation of China, international collaboration project of MOST, Pujiang plan, Program for Professor of Special Appointment (Eastern Scholar), and Shanghai Rising-star program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-02-01
This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated sourcemore » of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thi, Trinh Cham, E-mail: s1240009@jaist.ac.jp; Koyama, Koichi; Ohdaira, Keisuke
We improve the passivation property of n-type crystalline silicon (c-Si) surface passivated with a catalytic chemical vapor deposited (Cat-CVD) Si nitride (SiN{sub x}) film by inserting a phosphorous (P)-doped layer formed by exposing c-Si surface to P radicals generated by the catalytic cracking of PH{sub 3} molecules (Cat-doping). An extremely low surface recombination velocity (SRV) of 2 cm/s can be achieved for 2.5 Ω cm n-type (100) floating-zone Si wafers passivated with SiN{sub x}/P Cat-doped layers, both prepared in Cat-CVD systems. Compared with the case of only SiN{sub x} passivated layers, SRV decreases from 5 cm/s to 2 cm/s. The decrease in SRVmore » is the result of field effect created by activated P atoms (donors) in a shallow P Cat-doped layer. Annealing process plays an important role in improving the passivation quality of SiN{sub x} films. The outstanding results obtained imply that SiN{sub x}/P Cat-doped layers can be used as promising passivation layers in high-efficiency n-type c-Si solar cells.« less
Mesoscale Elucidation of Surface Passivation in the Li-Sulfur Battery Cathode.
Liu, Zhixiao; Mukherjee, Partha P
2017-02-15
The cathode surface passivation caused by Li 2 S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2 S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2 S film on carbon cathode surface. Li 2 S film growth experiences nucleation, isolated Li 2 S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Li 2 S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2 S nucleation seeds form in such an operating temperature range, thereby facilitating heterogeneous growth and potentially inhibiting the lateral growth of the Li 2 S film, which may ultimately result in reduced surface passivation. The high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.
Surface Defect Passivation and Reaction of c-Si in H2S.
Liu, Hsiang-Yu; Das, Ujjwal K; Birkmire, Robert W
2017-12-26
A unique passivation process of Si surface dangling bonds through reaction with hydrogen sulfide (H 2 S) is demonstrated in this paper. A high-level passivation quality with an effective minority carrier lifetime (τ eff ) of >2000 μs corresponding to a surface recombination velocity of <3 cm/s is achieved at a temperature range of 550-650 °C. X-ray photoelectron spectroscopy (XPS) confirmed the bonding states of Si and S and provides insights into the reaction pathway of Si with H 2 S and other impurity elements both during and after the reaction. Quantitative analysis of XPS spectra showed that the τ eff increases with an increase in the surface S content up to ∼3.5% and stabilizes thereafter, indicative of surface passivation by monolayer coverage of S on the Si surface. However, S passivation of the Si surface is highly unstable because of thermodynamically favorable reaction with atmospheric H 2 O and O 2 . This instability can be eliminated by capping the S-passivated Si surface with a protective thin film such as low-temperature-deposited amorphous silicon nitride.
NASA Technical Reports Server (NTRS)
McCrea, R. A.; Gdowski, G. T.; Boyle, R.; Belton, T.; Peterson, B. W. (Principal Investigator)
1999-01-01
The firing behavior of 51 non-eye movement related central vestibular neurons that were sensitive to passive head rotation in the plane of the horizontal semicircular canal was studied in three squirrel monkeys whose heads were free to move in the horizontal plane. Unit sensitivity to active head movements during spontaneous gaze saccades was compared with sensitivity to passive head rotation. Most units (29/35 tested) were activated at monosynaptic latencies following electrical stimulation of the ipsilateral vestibular nerve. Nine were vestibulo-spinal units that were antidromically activated following electrical stimulation of the ventromedial funiculi of the spinal cord at C1. All of the units were less sensitive to active head movements than to passive whole body rotation. In the majority of cells (37/51, 73%), including all nine identified vestibulo-spinal units, the vestibular signals related to active head movements were canceled. The remaining units (n = 14, 27%) were sensitive to active head movements, but their responses were attenuated by 20-75%. Most units were nearly as sensitive to passive head-on-trunk rotation as they were to whole body rotation; this suggests that vestibular signals related to active head movements were cancelled primarily by subtraction of a head movement efference copy signal. The sensitivity of most units to passive whole body rotation was unchanged during gaze saccades. A fundamental feature of sensory processing is the ability to distinguish between self-generated and externally induced sensory events. Our observations suggest that the distinction is made at an early stage of processing in the vestibular system.
NASA Astrophysics Data System (ADS)
Yeom, Seokwon
2013-05-01
Millimeter waves imaging draws increasing attention in security applications for weapon detection under clothing. In this paper, concealed object segmentation and three-dimensional localization schemes are reviewed. A concealed object is segmented by the k-means algorithm. A feature-based stereo-matching method estimates the longitudinal distance of the concealed object. The distance is estimated by the discrepancy between the corresponding centers of the segmented objects. Experimental results are provided with the analysis of the depth resolution.
Akrami, Haleh; Moghimi, Sahar
2017-01-01
We investigated the role of culture in processing hierarchical syntactic structures in music. We examined whether violation of non-local dependencies manifest in event related potentials (ERP) for Western and Iranian excerpts by recording EEG while participants passively listened to sequences of modified/original excerpts. We also investigated oscillatory and synchronization properties of brain responses during processing of hierarchical structures. For the Western excerpt, subjective ratings of conclusiveness were marginally significant and the difference in the ERP components fell short of significance. However, ERP and behavioral results showed that while listening to culturally familiar music, subjects comprehended whether or not the hierarchical syntactic structure was fulfilled. Irregularities in the hierarchical structures of the Iranian excerpt elicited an early negativity in the central regions bilaterally, followed by two later negativities from 450-700 to 750-950 ms. The latter manifested throughout the scalp. Moreover, violations of hierarchical structure in the Iranian excerpt were associated with (i) an early decrease in the long range alpha phase synchronization, (ii) an early increase in the oscillatory activity in the beta band over the central areas, and (iii) a late decrease in the theta band phase synchrony between left anterior and right posterior regions. Results suggest that rhythmic structures and melodic fragments, representative of Iranian music, created a familiar context in which recognition of complex non-local syntactic structures was feasible for Iranian listeners. Processing of neural responses to the Iranian excerpt indicated neural mechanisms for processing of hierarchical syntactic structures in music at different levels of cortical integration.
Beyond public perceptions of gene technology: community participation in public policy in Australia.
Dietrich, Heather; Schibeci, Renato
2003-10-01
Public policy assumptions, which view "the public" as passive consumers, are deeply flawed. "The public" are, in fact, active citizens, who constitute the innovation end of the seamless web of relationships, running from research and development laboratory to shop, hospital or farm, or local neighborhood. "The public" do not receive the impact of technology; they are the impact, in that they determine with gene technology (GT) developers and sellers what happens to the technology in our society. In doing so, they, or more rightly we, exercise particular, contextual knowledges and actions. We suggest that it is the ignorance of this aspect of innovation in policy processes that produces the distrust and resentment that we found in our interviews with "publics" interested in gene technology. This is consistent with Beck's description of the deep structural states of risk and fear in modern advanced societies with respect to new technologies, such as gene technology. Only policy processes that recognize the particular, local and contextual knowledges of "the public", which co-construct innovation, can achieve deep, social structural consideration of gene technology. And only such a deep consideration can avoid the polarized attitudes and deep suspicions that we have seen arise in places such as Britain. Such consideration needs the type of processes that involve active consultation and inclusion of "the public" in government and commercial innovation, the so-called deliberative and inclusionary processes (DIPs), such as consensus conferences and citizen juries. We suggest some measures that could be tried in Australia, which would take us further down the path of participation toward technological citizenship.
Method for Biochar Passivation Using Low Percent Oxygen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kristin; Dupuis, Dan; Wilcox, Esther
2016-06-06
The thermochemical process development unit may be configured for pyrolysis or gasification. The pyrolysis unit operations include: feed transport system; entrained flow reactor; solids removal and collection; and liquid scrubbing, collection, and filtration. Char accumulates in the collection drums at a rate of ~1.5 kg/hr and must be passivated before it is stored or transported.
Advances in satellite oceanography
NASA Technical Reports Server (NTRS)
Brown, O. B.; Cheney, R. E.
1983-01-01
Technical advances and recent applications of active and passive satellite remote sensing techniques to the study of oceanic processes are summarized. The general themes include infrared and visible radiometry, active and passive microwave sensors, and buoy location systems. The surface parameters of sea surface temperature, windstream, sea state, altimetry, color, and ice are treated as applicable under each of the general methods.
On the energetics of the walking gait of a human operator using a passive exoskeleton apparatus
NASA Astrophysics Data System (ADS)
Lavrovskii, E. K.
2015-01-01
We study the energy expenditures and the peak values of control torques which a human operator must apply in the process of exoskeleton displacement for various types of regular, plane, and single-support gaits. The obtained results allow us to estimate the performance of the passive exoskeleton apparatus.
NASA Technical Reports Server (NTRS)
Bradley, Damon; Brambora, Cliff; Wong, Mark Englin; Miles, Lynn; Durachka, David; Farmer, Brian; Mohammed, Priscilla; Piepmier, Jeff; Medeiros, Jim; Martin Neil;
2010-01-01
The presence of anthropogenic RFI is expected to adversely impact soil moisture measurement by NASA s Soil Moisture Active Passive mission. The digital signal processing approach and preliminary design for detecting and mitigating this RFI is presented in this paper. This approach is largely based upon the work of Johnson and Ruf.
Fabricating solar cells with silicon nanoparticles
Loscutoff, Paul; Molesa, Steve; Kim, Taeseok
2014-09-02
A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.
Long-term surveillance of zinc implant in murine artery: Surprisingly steady biocorrosion rate.
Drelich, Adam J; Zhao, Shan; Guillory, Roger J; Drelich, Jaroslaw W; Goldman, Jeremy
2017-08-01
Metallic zinc implanted into the abdominal aorta of rats out to 6months has been demonstrated to degrade while avoiding responses commonly associated with the restenosis of vascular implants. However, major questions remain regarding whether a zinc implant would ultimately passivate through the production of stable corrosion products or via a cell mediated fibrous encapsulation process that prevents the diffusion of critical reactants and products at the metal surface. Here, we have conducted clinically relevant long term in vivo studies in order to characterize late stage zinc implant biocorrosion behavior and products to address these critical questions. We found that zinc wires implanted in the murine artery exhibit steady corrosion without local toxicity for up to at least 20months post-implantation, despite a steady buildup of passivating corrosion products and intense fibrous encapsulation of the wire. Although fibrous encapsulation was not able to prevent continued implant corrosion, it may be related to the reduced chronic inflammation observed between 10 and 20months post-implantation. X-ray elemental and infrared spectroscopy analyses confirmed zinc oxide, zinc carbonate, and zinc phosphate as the main components of corrosion products surrounding the Zn implant. These products coincide with stable phases concluded from Pourbaix diagrams of a physiological solution and in vitro electrochemical impedance tests. The results support earlier predictions that zinc stents could become successfully bio-integrated into the arterial environment and safely degrade within a time frame of approximately 1-2years. Previous studies have shown zinc to be a promising candidate material for bioresorbable endovascular stenting applications. An outstanding question, however, is whether a zinc implant would ultimately passivate through the production of stable corrosion products or via a cell mediated tissue encapsulation process that prevented the diffusion of critical reactants and products at the metal surface. We found that zinc wires implanted in the murine artery exhibit steady corrosion for up to at least 20months post-implantation. The results confirm earlier predictions that zinc stents could safely degrade within a time frame of approximately 1-2years. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Deep geothermal: The ‘Moon Landing’ mission in the unconventional energy and minerals space
Regenauer-Lieb, Klaus; Bunger, Andrew; Chua, Hui Tong; ...
2015-01-30
Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stressmore » or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new paradigm for reservoir stimulation by reactivating pre-existing faults at reservoir scale in a reservoir scale aseismic, ductile manner. A side effect of the new “soft” stimulation method is that owing to the design specification of a macroscopic ductile response, the proposed method offers the potential of a safer control over the stimulation process compared to conventional stimulation protocols such as currently employed in shale gas reservoirs.« less
Pre-stimulus EEG oscillations correlate with perceptual alternation of speech forms.
Barraza, Paulo; Jaume-Guazzini, Francisco; Rodríguez, Eugenio
2016-05-27
Speech perception is often seen as a passive process guided by physical stimulus properties. However, ongoing brain dynamics could influence the subsequent perceptual organization of the speech, to an as yet unknown extent. To elucidate this issue, we analyzed EEG oscillatory activity before and immediately after the repetitive auditory presentation of words inducing the so-called verbal transformation effect (VTE), or spontaneous alternation of meanings due to its rapid repetition. Subjects indicated whether the meaning of the bistable word changed or not. For the Reversal more than for the Stable condition, results show a pre-stimulus local alpha desynchronization (300-50ms), followed by an early post-stimulus increase of local beta synchrony (0-80ms), and then a late increase and decrease of local alpha (200-340ms) and beta (360-440ms) synchrony respectively. Additionally, the ERPs showed that reversal positivity (RP) and reversal negativity components (RN), along with a late positivity complex (LPC) correlate with switching between verbal forms. Our results show how the ongoing dynamics brain is actively involved in the perceptual organization of the speech, destabilizing verbal perceptual states, and facilitating the perceptual regrouping of the elements composing the linguistic auditory stimulus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio
2016-04-01
Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous passive seismic monitoring at the site, from October 2013 to present, systematically highlighted clear energy peaks in the spectral content of seismic noise on the unstable sector, interpreted as resonant frequencies of the investigated volume. Both spectral analysis and cross-correlation of seismic noise showed seasonal reversible variation trends related to air temperature fluctuations. No irreversible changes, resulting from serious damage processes within the rock mass, were detected so far. Modal analysis and geomechanical modeling of the unstable cliff are currently under investigation to better understand the vibration modes that could explain the measured amplitude and orientation of ground motion at the first resonant frequencies. Classification and location of microseismic events still remains the most challenging task, due to the complex structural and morphological setting of the site.
NASA Astrophysics Data System (ADS)
Ghods, Pouria
The multi-scale investigation presented in this thesis was carried out to understand better the mechanisms of passivation and chloride-induced depassivation of carbon steel reinforcement in concrete. The study consisted of electrochemical experiments (electrochemical impedance spectroscopy, linear polarization resistance, free corrosion potential, anodic polarization), microscopic examinations (scanning electron microscopy, transmission electron microscopy, selected area diffraction, convergent beam electron diffraction), numerical modeling (finite element method), and spectroscopic studies (x-ray photoelectron, energy dispersed x-ray, electron energy loss). Electrochemical and microscopic studies showed that the composition of the pore solution and the surface conditions of the rebar affect the passivity and depassivation of carbon steel in concrete. It was demonstrated that crevices between mill scale and steel may become potential sites for depassivation and pit nucleation. The numerical investigation that was carried out to test this hypothesis confirmed that the ratio of chloride to hydroxide concentrations, Cl-/OH-, in crevices increased to levels higher than that of the bulk pore solution, making crevices more vulnerable to depassivation. Therefore, it was concluded that the variability associated with reported chloride thresholds might be attributed, at least in part, to the variability in mill scale properties resulting from the variability in manufacturing. The nano-scale microscopic and spectroscopic studies indicated the formation of 4-10 nm-thick passive oxide films on carbon steel in simulated concrete pore solutions, and these films consisted of two layers separated with an indistinct border. The inner layer was mainly composed of protective Fe2+-rich oxides that are in epitaxial relationship with the underlying steel surface; while the outer layer mostly consisted of (possibly porous) Fe3+-rich oxides, through which chlorides can penetrate. It was proposed that, in the presence of chlorides, Fe+2-rich oxides in the inner layer transform into Fe+3-rich oxides and potentially become un-protective. Although how this transformation occurs is still subject of future research, there are evidences showing that the process most likely leads to the formation of local anodic and cathodic sites on the steel surface.
MacDonald, J K; Boase, J; Stewart, L K; Alexander, E R; Solomon, S L; Cordell, R L
1997-12-01
The purpose of this study was to develop and evaluate models for public health surveillance of illnesses among children in out-of-home child care facilities. Between July 1992 and March 1994, 200 Seattle-King County child care facilities participated in active or enhanced passive surveillance, or both. Reporting was based on easily recognized signs, symptoms, and sentinel events. Published criteria were used in evaluating surveillance effectiveness, and notifiable disease reporting of participating and nonparticipating facilities was compared. Neither surveillance model was well accepted by child care providers. Enhanced passive and active surveillance had comparable sensitivity. Reporting delays and the large amount of time needed for data entry led to problems with timeliness, especially in terms of written reporting during active surveillance. Widespread active public health surveillance in child care facilities is not feasible for most local health departments. Improvements in public health surveillance in child care settings will depend on acceptability to providers.
Guo, J.; Tsang, L.; Josberger, E.G.; Wood, A.W.; Hwang, J.-N.; Lettenmaier, D.P.
2003-01-01
This paper presents an algorithm that estimates the spatial distribution and temporal evolution of snow water equivalent and snow depth based on passive remote sensing measurements. It combines the inversion of passive microwave remote sensing measurements via dense media radiative transfer modeling results with snow accumulation and melt model predictions to yield improved estimates of snow depth and snow water equivalent, at a pixel resolution of 5 arc-min. In the inversion, snow grain size evolution is constrained based on pattern matching by using the local snow temperature history. This algorithm is applied to produce spatial snow maps of Upper Rio Grande River basin in Colorado. The simulation results are compared with that of the snow accumulation and melt model and a linear regression method. The quantitative comparison with the ground truth measurements from four Snowpack Telemetry (SNOTEL) sites in the basin shows that this algorithm is able to improve the estimation of snow parameters.
Pan, Jun; Shang, Yuequn; Yin, Jun; De Bastiani, Michele; Peng, Wei; Dursun, Ibrahim; Sinatra, Lutfan; El-Zohry, Ahmed M; Hedhili, Mohamed N; Emwas, Abdul-Hamid; Mohammed, Omar F; Ning, Zhijun; Bakr, Osman M
2018-01-17
Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a postsynthesis passivation process for CsPbI 3 NCs by using a bidentate ligand, namely 2,2'-iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m 2 luminance, surpassing by far LEDs made from the nonpassivated NCs.
Alvarez, R; Ordóñez, A; Loredo, J; Younger, P L
2013-10-01
Gold extraction operations generate a variety of wastes requiring responsible disposal in compliance with current environmental regulations. During recent decades, increased emphasis has been placed on effluent control and treatment, in order to avoid the threat to the environment posed by toxic constituents. In many modern gold mining and ore processing operations, cyanide species are of most immediate concern. Given that natural degradation processes are known to reduce the toxicity of cyanide over time, trials have been made at laboratory and field scales into the feasibility of using wetland-based passive systems as low-cost and environmentally friendly methods for long-term treatment of leachates from closed gold mine tailing disposal facilities. Laboratory experiments on discrete aerobic and anaerobic treatment units supported the development of design parameters for the construction of a field-scale passive system at a gold mine site in northern Spain. An in situ pilot-scale wetland treatment system was designed, constructed and monitored over a nine-month period. Overall, the results suggest that compost-based constructed wetlands are capable of detoxifying cyanidation effluents, removing about 21.6% of dissolved cyanide and 98% of Cu, as well as nitrite and nitrate. Wetland-based passive systems can therefore be considered as a viable technology for removal of residual concentrations of cyanide from leachates emanating from closed gold mine tailing disposal facilities.
Passive Polarimetric Information Processing for Target Classification
NASA Astrophysics Data System (ADS)
Sadjadi, Firooz; Sadjadi, Farzad
Polarimetric sensing is an area of active research in a variety of applications. In particular, the use of polarization diversity has been shown to improve performance in automatic target detection and recognition. Within the diverse scope of polarimetric sensing, the field of passive polarimetric sensing is of particular interest. This chapter presents several new methods for gathering in formation using such passive techniques. One method extracts three-dimensional (3D) information and surface properties using one or more sensors. Another method extracts scene-specific algebraic expressions that remain unchanged under polariza tion transformations (such as along the transmission path to the sensor).
NASA Technical Reports Server (NTRS)
Badler, N. I.
1985-01-01
Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.
A Review of International Space Station Habitable Element Equipment Offgassing Characteristics
NASA Technical Reports Server (NTRS)
Perry, Jay L.
2010-01-01
Crewed spacecraft trace contaminant control employs both passive and active methods to achieve acceptable cabin atmospheric quality. Passive methods include carefully selecting materials of construction, employing clean manufacturing practices, and minimizing systems and payload operational impacts to the cabin environment. Materials selection and manufacturing processes constitute the first level of equipment offgassing control. An element-level equipment offgassing test provides preflight verification that passive controls have been successful. Offgassing test results from multiple International Space Station (ISS) habitable elements and cargo vehicles are summarized and implications for active contamination control equipment design are discussed
Method and apparatus for guiding ablative therapy of abnormal biological electrical excitation
NASA Technical Reports Server (NTRS)
Armoundas, Antonis A. (Inventor); Feldman, Andrew B. (Inventor); Sherman, Derin A. (Inventor); Cohen, Richard J. (Inventor)
2001-01-01
This invention involves method and apparatus for guiding ablative therapy of abnormal biological electrical excitation. In particular, it is designed for treatment of cardiac arrhythmias. In the method of this invention electrical signals are acquired from passive electrodes, and an inverse dipole method is used to identify the site of origin of an arrhytmia. The location of the tip of the ablation catheter is similarly localized from signals acquired from the passive electrodes while electrical energy is delivered to the tip of the catheter. The catheter tip is then guided to the site of origin of the arrhythmia, and ablative radio frequency energy is delivered to its tip to ablate the site.
Multigrid techniques for the solution of the passive scalar advection-diffusion equation
NASA Technical Reports Server (NTRS)
Phillips, R. E.; Schmidt, F. W.
1985-01-01
The solution of elliptic passive scalar advection-diffusion equations is required in the analysis of many turbulent flow and convective heat transfer problems. The accuracy of the solution may be affected by the presence of regions containing large gradients of the dependent variables. The multigrid concept of local grid refinement is a method for improving the accuracy of the calculations in these problems. In combination with the multilevel acceleration techniques, an accurate and efficient computational procedure is developed. In addition, a robust implementation of the QUICK finite-difference scheme is described. Calculations of a test problem are presented to quantitatively demonstrate the advantages of the multilevel-multigrid method.
Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G
2010-11-01
Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.
Dynamics of temporally localized states in passively mode-locked semiconductor lasers
NASA Astrophysics Data System (ADS)
Schelte, C.; Javaloyes, J.; Gurevich, S. V.
2018-05-01
We study the emergence and the stability of temporally localized structures in the output of a semiconductor laser passively mode locked by a saturable absorber in the long-cavity regime. For large yet realistic values of the linewidth enhancement factor, we disclose the existence of secondary dynamical instabilities where the pulses develop regular and subsequent irregular temporal oscillations. By a detailed bifurcation analysis we show that additional solution branches that consist of multipulse (molecules) solutions exist. We demonstrate that the various solution curves for the single and multipeak pulses can splice and intersect each other via transcritical bifurcations, leading to a complex web of solutions. Our analysis is based on a generic model of mode locking that consists of a time-delayed dynamical system, but also on a much more numerically efficient, yet approximate, partial differential equation. We compare the results of the bifurcation analysis of both models in order to assess up to which point the two approaches are equivalent. We conclude our analysis by the study of the influence of group velocity dispersion, which is only possible in the framework of the partial differential equation model, and we show that it may have a profound impact on the dynamics of the localized states.
NASA Astrophysics Data System (ADS)
Sathyaseelan, V. S.; Rufus, A. L.; Chandramohan, P.; Subramanian, H.; Velmurugan, S.
2015-12-01
Full system decontamination of Primary Heat Transport (PHT) system of Pressurised Heavy Water Reactors (PHWRs) resulted in low decontamination factors (DF) on stainless steel (SS) surfaces. Hence, studies were carried out with 403 SS and 410 SS that are the material of construction of "End-Fitting body" and "End-Fitting Liner tubes". Three formulations were evaluated for the dissolution of passive films formed over these alloys viz., i) Two-step process consisting of oxidation and reduction reactions, ii) Dilute Chemical Decontamination (DCD) and iii) High Temperature Process. The two-step and high temperature processes could dissolve the oxide completely while the DCD process could remove only 60%. Various techniques like XRD, Raman spectroscopy and SEM-EDX were used for assessing the dissolution process. The two-step process is time consuming, laborious while the high temperature process is less time consuming and is recommended for SS decontamination.
Controlling under-actuated robot arms using a high speed dynamics process
NASA Technical Reports Server (NTRS)
Jain, Abhinandan (Inventor); Rodriguez, Guillermo (Inventor)
1994-01-01
The invention controls an under-actuated manipulator by first obtaining predetermined active joint accelerations of the active joints and the passive joint friction forces of the passive joints, then computing articulated body qualities for each of the joints from the current positions of the links, and finally computing from the articulated body qualities and from the active joint accelerations and the passive joint forces, active joint forces of the active joints. Ultimately, the invention transmits servo commands to the active joint forces thus computed to the respective ones of the joint servos. The computation of the active joint forces is accomplished using a recursive dynamics algorithm. In this computation, an inward recursion is first carried out for each link, beginning with the outermost link in order to compute the residual link force of each link from the active joint acceleration if the corresponding joint is active, or from the known passive joint force if the corresponding joint is passive. Then, an outward recursion is carried out for each link in which the active joint force is computed from the residual link force if the corresponding joint is active or the passive joint acceleration is computed from the residual link force if the corresponding joint is passive.
Role of bond adaptability in the passivation of colloidal quantum dot solids.
Thon, Susanna M; Ip, Alexander H; Voznyy, Oleksandr; Levina, Larissa; Kemp, Kyle W; Carey, Graham H; Masala, Silvia; Sargent, Edward H
2013-09-24
Colloidal quantum dot (CQD) solids are attractive materials for photovoltaic devices due to their low-cost solution-phase processing, high absorption cross sections, and their band gap tunability via the quantum size effect. Recent advances in CQD solar cell performance have relied on new surface passivation strategies. Specifically, cadmium cation passivation of surface chalcogen sites in PbS CQDs has been shown to contribute to lowered trap state densities and improved photovoltaic performance. Here we deploy a generalized solution-phase passivation strategy as a means to improving CQD surface management. We connect the effects of the choice of metal cation on solution-phase surface passivation, film-phase trap density of states, minority carrier mobility, and photovoltaic power conversion efficiency. We show that trap passivation and midgap density of states determine photovoltaic device performance and are strongly influenced by the choice of metal cation. Supported by density functional theory simulations, we propose a model for the role of cations, a picture wherein metals offering the shallowest electron affinities and the greatest adaptability in surface bonding configurations eliminate both deep and shallow traps effectively even in submonolayer amounts. This work illustrates the importance of materials choice in designing a flexible passivation strategy for optimum CQD device performance.
Local earthquake interferometry of the IRIS Community Wavefield Experiment, Grant County, Oklahoma
NASA Astrophysics Data System (ADS)
Eddy, A. C.; Harder, S. H.
2017-12-01
The IRIS Community Wavefield Experiment was deployed in Grant County, located in north central Oklahoma, from June 21 to July 27, 2016. Data from all nodes were recorded at 250 samples per second between June 21 and July 20 along three lines. The main line was 12.5 km long oriented east-west and consisted of 129 nodes. The other two lines were 5.5 km long north-south oriented with 49 nodes each. During this time, approximately 150 earthquakes of magnitude 1.0 to 4.4 were recorded in the surrounding counties of Oklahoma and Kansas. Ideally, sources for local earthquake interferometry should be near surface events that produce high frequency body waves. Unlike ambient noise seismic interferometry (ANSI), which uses days, weeks, or even months of continuously recorded seismic data, local earthquake interferometry uses only short segments ( 2 min.) of data. Interferometry in this case is based on the cross-correlation of body wave surface multiples where the event source is translated to a reference station in the array, which acts as a virtual source. Multiples recorded between the reference station and all other stations can be cross-correlated to produce a clear seismic trace. This process will be repeated with every node acting as the reference station for all events. The resulting shot gather will then be processed and analyzed for quality and accuracy. Successful application of local earthquake interferometry will produce a crustal image with identifiable sedimentary and basement reflectors and possibly a Moho reflection. Economically, local earthquake interferometry could lower the time and resource cost of active and passive seismic surveys while improving subsurface image quality in urban settings or areas of limited access. The applications of this method can potentially be expanded with the inclusion of seismic events with a magnitude of 1.0 or lower.
[Stimulation of D1-receptors improves passive avoidance learning of female rats during ovary cycle].
Fedotova, Iu O; Sapronov, N S
2012-01-01
The involvement of D1-receptors in learning/memory processes during ovary cycle was assessed in the adult female rats. SKF-38393 (0,1 mg/kg, i.p.), D1-receptor agonist and SCH-23390 (0,1 mg/kg, i.p.), D1-receptor antagonist were injected chronically to adult female rats. Learning of these animals was assessed in different models: passive avoidance performance and Morris water maze. Chronic SKF-3839 administration to females resulted in the appearance of the passive avoidance performance in proestrous and estrous, as distinct from the control animals, but failed to change the dynamics of spatial learning in Morris water maze. Chronic SCH-23390 administration similarly impaired non-spatial and spatial learning in females during all phases of ovary cycle. The results of the study suggest modulating role of D1-receptors in learning/memory processes during ovary cycle in the adult female rats.
[Stimulation of D2-receptors improves passive avoidance learning in female rats].
Fedotova, Iu O
2012-01-01
The involvement of D2-receptors in learning/memory processes during ovary cycle was assessed in the adult female rats. Quinperole (0,1 mg/kg, i.p.), D2-receptor agonist and sulpiride (10,0 mg/kg, i.p.), D2-receptor antagonist were injected chronically to adult female rats. Learning of these animals was assessed in different models: passive avoidance performance and Morris water maze. Chronic quinperole administration to females resulted in the appearance of the passive avoidance performance in proestrous and estrous, as distinct from the control animals. Also, quinperole improved spatial learning in proestrous and stimulated it in estrous in Morris water maze. Chronic sulpiride administration similarly impaired non-spatial and spatial learning in females during all phases of ovary cycle. The results of the study suggest modulating role of D2-receptors in learning/memory processes during ovary cycle in the adult female rats.
Effects of secular evolution on the star formation history of galaxies
NASA Astrophysics Data System (ADS)
Lorenzo, M. Fernández; Sulentic, J.; Verdes-Montenegro, L.; Argudo-Fernández, M.; Ruiz, J. E.; Sabater, J.; Sánchez-Expósito, S.
2015-03-01
We report the study performed as part of the AMIGA (Analysis of the interstellar Medium of Isolated GAlaxies; http://www.amiga.iaa.es) project, focused on the SDSS (g-r) colors of the sample. Assuming that color is an indicator of star formation history, this work better records the signature of passive star formation via pure secular evolution. Median values for each morphological type in AMIGA were compared with equivalent measures for galaxies in denser environments. We found a tendency for AMIGA spiral galaxies to be redder than galaxies in close pairs, but no clear difference when we compare with galaxies in other (e.g. group) environments. The (g-r) color of isolated galaxies presents a Gaussian distribution, as indicative of pure secular evolution, and a smaller median absolute deviation (almost half) compared to both wide and close pairs. This redder color and lower color dispersion of AMIGA spirals compared with close pairs is likely due to a more passive star formation in very isolated galaxies. In Fig. 1, we represent the size versus stellar mass for early and late-type galaxies of our sample, compared with the local relations of Shen et al. (2003). The late-type isolated galaxies are ~1.2 times larger or have less stellar mass than local spirals in other environments. The latter would be in agreement with the passive star formation found in the previous part. We acknowledge Grant AYA2011-30491-C02-01, P08-FQM-4205 and TIC-114.
Vannest, Jennifer J.; Karunanayaka, Prasanna R.; Altaye, Mekibib; Schmithorst, Vincent J.; Plante, Elena M.; Eaton, Kenneth J.; Rasmussen, Jerod M.; Holland, Scott K.
2009-01-01
Purpose To use functional MRI methods to visualize a network of auditory and language-processing brain regions associated with processing an aurally-presented story. We compare a passive listening (PL) story paradigm to an active-response (AR) version including on-line performance monitoring and a sparse acquisition technique. Materials/Methods Twenty children (ages 11−13) completed PL and AR story processing tasks. The PL version presented alternating 30-second blocks of stories and tones; the AR version presented story segments, comprehension questions, and 5s tone sequences, with fMRI acquisitions between stimuli. fMRI data was analyzed using a general linear model approach and paired t-test identifying significant group activation. Results Both tasks activated in primary auditory cortex, superior temporal gyrus bilaterally, left inferior frontal gyrus. The AR task demonstrated more extensive activation, including dorsolateral prefrontal cortex and anterior/posterior cingulate cortex. Comparison of effect size in each paradigm showed a larger effect for the AR paradigm in a left inferior frontal ROI. Conclusion Activation patterns for story processing in children are similar in passive listening and active-response tasks. Increases in extent and magnitude of activation in the AR task are likely associated with memory and attention resources engaged across acquisition intervals. PMID:19306445
NASA Astrophysics Data System (ADS)
Fu, Chen; Lin, Zhaojun; Cui, Peng; Lv, Yuanjie; Zhou, Yang; Dai, Gang; Luan, Chongbiao; Liu, Huan; Cheng, Aijie
2018-04-01
In this paper, the detailed device characteristics were investigated both before and after the Si3N4 passivation grown by plasma-enhanced chemical vapor deposition (PECVD). Better transport properties have been observed for the passivated devices compared with the same ones before passivation. The strain variation and the influence of the scattering mechanisms were analyzed and studied. The calculated results show that the non-uniform distribution of the additional polarization charges at the AlGaN/AlN/GaN interfaces has been weakened by the deposition of the Si3N4 layer. The numerical rise of the two-dimensional electron gas (2DEG) electron mobility and the decrease of the measured R on- A values were in a good consistency, and the weakening of the polarization Coulomb field (PCF) scattering after the passivation process is considered to be the main cause of these phenomena.
NASA Astrophysics Data System (ADS)
Tate, C. G.; Moersch, J.; Mitrofanov, I.; Litvak, M.; Bellutta, P.; Boynton, W. V.; Drake, D.; Ehresmann, B.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Hassler, D. M.; Jun, I.; Kozyrev, A. S.; Lisov, D.; Malakhov, A.; Ming, D. W.; Mischna, M.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Starr, R.; Vostrukhin, A.; Zeitlin, C.
2018-01-01
The Mars Science Laboratory (Curiosity rover) Dynamic Albedo of Neutrons (DAN) experiment detects neutrons for the purpose of searching for hydrogen in the shallow subsurface of Mars. DAN has two modes of operation, active and passive. In passive mode, the instrument detects neutrons produced by Galactic Cosmic Ray interactions in the atmosphere and regolith and by the rover's Multi-Mission Radioisotope Thermoelectric Generator. DAN passive data from Yellowknife Bay to Amargosa Valley (sols 201 through 753) are presented and analyzed here. Water equivalent hydrogen (WEH) estimates from this portion of Curiosity's traverse range from 0.0 wt. % up to 15.3 wt. %. Typical uncertainties on these WEH estimates are ∼0.5 wt. % but in some cases can be as high as ∼4.0 wt. % depending on the specific circumstances of a given measurement. Here we also present a new way of reporting results from the passive mode of the experiment, the DAN passive geochemical index (DPGI). This index is sensitive to some key geochemical variations, but it does not require assumptions about the abundances of high thermal neutron absorption cross section elements, which are needed to estimate WEH. DPGI variations in this section of the traverse indicate that the shallow regolith composition is changing on both the local (∼meters) and regional (∼100 s of meters) scales. This variability is thought to be representative of the diverse composition of source regions for sediments within the crater floor. Kolmogorov-Smirnov Tests on the populations of WEH estimates and DPGI values demonstrate there are statistically significant differences between nearly all of the geologic units investigated along the rover's traverse. We also present updated previous DAN passive results from Bradbury Landing to John Klein that make use of revised DAN active mode results for calibration, however, no qualitative changes in the interpretations made in Tate et al. (2015b) are incurred.
Pittaccio, Simone; Garavaglia, Lorenzo; Molteni, Erika; Guanziroli, Eleonora; Zappasodi, Filippo; Beretta, Elena; Strazzer, Sandra; Molteni, Franco; Villa, Elena; Passaretti, Francesca
2013-01-01
Lower limb rehabilitation is a fundamental part of post-acute care in neurological disease. Early commencement of active workout is often prevented by paresis, thus physical treatment may be delayed until patients regain some voluntary command of their muscles. Passive mobilization of the affected joints is mostly delivered in order to safeguard tissue properties and shun circulatory problems. The present paper investigates the potential role of early passive motion in stimulating cortical areas of the brain devoted to the control of the lower limb. An electro-mechanical mobilizer for the ankle joint (Toe-Up!) was implemented utilizing specially-designed shape-memory-alloy-based actuators. This device was constructed to be usable by bedridden subjects. Besides, the slowness and gentleness of the imparted motion, make it suitable for patients in a very early stage of their recovery. The mobilizer underwent technical checks to confirm reliability and passed the required safety tests for electric biomedical devices. Four healthy volunteers took part in the pre-clinical phase of the study. The protocol consisted in measuring of brain activity by EEG and NIRS in four different conditions: rest, active dorsiflexion of the ankle, passive mobilization of the ankle, and assisted motion of the same joint. The acquired data were processed to obtain maps of cortical activation, which were then compared. The measurements collected so far show that there is a similar pattern of activity between active and passive/assisted particularly in the contralateral premotor areas. This result, albeit based on very few observations, might suggest that passive motion provides somatosensory afferences that are processed in a similar manner as for voluntary control. Should this evidence be confirmed by further trials on healthy individuals and neurological patients, it could form a basis for a clinical use of early passive exercise in supporting central functional recovery.
Dry etching, surface passivation and capping processes for antimonide based photodetectors
NASA Astrophysics Data System (ADS)
Dutta, Partha; Langer, Jeffery; Bhagwat, Vinay; Juneja, Jasbir
2005-05-01
III-V antimonide based devices suffer from leakage currents. Surface passivation and subsequent capping of the surfaces are absolutely essential for any practical applicability of antimonide based devices. The quest for a suitable surface passivation technology is still on. In this paper, we will present some of the promising recent developments in this area based on dry etching of GaSb based homojunction photodiodes structures followed by various passivation and capping schemes. We have developed a damage-free, universal dry etching recipe based on unique ratios of Cl2/BCl3/CH4/Ar/H2 in ECR plasma. This novel dry plasma process etches all III-V compounds at different rates with minimal damage to the side walls. In GaSb based photodiodes, an order of magnitude lower leakage current, improved ideality factor and higher responsivity has been demonstrated using this recipe compared to widely used Cl2/Ar and wet chemical etch recipes. The dynamic zero bias resistance-area product of the Cl2/BCl3/CH4/Ar/H2 etched diodes (830 Ω cm2) is higher than the Cl2/Ar (300 Ω cm2) and wet etched (330 Ω cm2) diodes. Ammonium sulfide has been known to passivate surfaces of III-V compounds. In GaSb photodiodes, the leakage current density reduces by a factor of 3 upon sulfur passivation using ammonium sulfide. However, device performance degrades over a period of time in the absence of any capping or protective layer. Silicon Nitride has been used as a cap layer by various researchers. We have found that by using silicon nitride caps, the devices exhibit higher leakage than unpassivated devices probably due to plasma damage during SiNx deposition. We have experimented with various polymers for capping material. It has been observed that ammonium sulfide passivation when combined with parylene capping layer (150 Å), devices retain their improved performance for over 4 months.
1993-12-01
the Device ........................ 13 2.3.1 Silicon Nitride Passivation ................. 13 2.3.2 Polyimide Passivation ................... 14 2.4...Coating .......... ... 49 5.4 Applying the Polyimide ........................ 50 5.4.1 Application of the Polyimide ............ ... 52 5.4.2 Negative...Photo-resist Process ............... 52 5.4.3 Polyimide Etch ........................ 53 5.4.4 Final Cure ............................ 54 5.4.5
ERIC Educational Resources Information Center
Baeken, Chris; Van Schuerbeek, Peter; De Raedt, Rudi; Vanderhasselt, Marie-Anne; De Mey, Johan; Bossuyt, Axel; Luypaert, Robert
2012-01-01
The amygdalae are key players in the processing of a variety of emotional stimuli. Especially aversive visual stimuli have been reported to attract attention and activate the amygdalae. However, as it has been argued that passively viewing withdrawal-related images could attenuate instead of activate amygdalae neuronal responses, its role under…
An Isotope Study of Hydrogenation of poly-Si/SiOx Passivated Contacts for Si Solar Cells: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnabel, Manuel; Nemeth, William; van de Loo, Bas, W.H.
2017-06-26
For many years, the record Si solar cell efficiency stood at 25.0%. Only recently have several companies and institutes managed to produce more efficient cells, using passivated contacts of made doped poly-Si or a-Si:H and a passivating intrinsic interlayer in all cases. Common to these designs is the need to passivate the layer stack with hydrogen. In this contribution, we perform a systematic study of passivated contact passivation by hydrogen, using poly-Si/SiOx passivated contacts on n-Cz-Si, and ALD Al2O3 followed by a forming gas anneal (FGA) as the hydrogen source. We study p-type and n-type passivated contacts with implied Vocmore » exceeding 690 and 720 mV, respectively, and perform either the ALD step or the FGA with deuterium instead of hydrogen in order to separate the two processes via SIMS. By examining the deuterium concentration at the SiOx in both types of samples, we demonstrate that the FGA supplies negligible hydrogen species to the SiOx, regardless of whether the FGA is hydrogenated or deuterated. Instead, it supplies the thermal energy needed for hydrogen species in the Al2O3 to diffuse there. Furthermore, the concentration of hydrogen species at the SiOx can saturate while implied Voc continues to increase, showing that the energy from the FGA is also required for hydrogen species already at the SiOx to find recombination-active defects to passivate.« less
Saxby, Dyani J.; Matthews, Gerald; Warm, Joel S.; Hitchcock, Edward M.; Neubauer, Catherine
2015-01-01
Despite the known dangers of driver fatigue, it is a difficult construct to study empirically. Different forms of task-induced fatigue may differ in their effects on driver performance and safety. Desmond and Hancock (2001) defined active and passive fatigue states that reflect different styles of workload regulation. In 2 driving simulator studies we investigated the multidimensional subjective states and safety outcomes associated with active and passive fatigue. Wind gusts were used to induce active fatigue, and full vehicle automation to induce passive fatigue. Drive duration was independently manipulated to track the development of fatigue states over time. Participants were undergraduate students. Study 1 (N = 108) focused on subjective response and associated cognitive stress processes, while Study 2 (N = 168) tested fatigue effects on vehicle control and alertness. In both studies the 2 fatigue manipulations produced different patterns of subjective response reflecting different styles of workload regulation, appraisal, and coping. Active fatigue was associated with distress, overload, and heightened coping efforts, whereas passive fatigue corresponded to large-magnitude declines in task engagement, cognitive underload, and reduced challenge appraisal. Study 2 showed that only passive fatigue reduced alertness, operationalized as speed of braking and steering responses to an emergency event. Passive fatigue also increased crash probability, but did not affect a measure of vehicle control. Findings support theories that see fatigue as an outcome of strategies for managing workload. The distinction between active and passive fatigue is important for assessment of fatigue and for evaluating automated driving systems which may induce dangerous levels of passive fatigue. PMID:24041288
Differential effects of cognitive load on emotion: Emotion maintenance versus passive experience.
DeFraine, William C
2016-06-01
Two separate lines of research have examined the effects of cognitive load on emotional processing with similar tasks but seemingly contradictory results. Some research has shown that the emotions elicited by passive viewing of emotional images are reduced by subsequent cognitive load. Other research has shown that such emotions are not reduced by cognitive load if the emotions are actively maintained. The present study sought to compare and resolve these 2 lines of research. Participants either passively viewed negative emotional images or maintained the emotions elicited by the images, and after a delay rated the intensity of the emotion they were feeling. Half of trials included a math task during the delay to induce cognitive load, and the other half did not. Results showed that cognitive load reduced the intensity of negative emotions during passive-viewing of emotional images but not during emotion maintenance. The present study replicates the findings of both lines of research, and shows that the key factor is whether or not emotions are actively maintained. Also, in the context of previous emotion maintenance research, the present results support the theoretical idea of a separable emotion maintenance process. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Hybrid microfluidics combined with active and passive approaches for continuous cell separation.
Yan, Sheng; Zhang, Jun; Yuan, Dan; Li, Weihua
2017-01-01
Microfluidics, which is classified as either active or passive, is capable of separating cells of interest from a complex and heterogeneous sample. Active methods utilise external fields such as electric, magnetic, acoustic, and optical to drive cells for separation, while passive methods utilise channel structures, intrinsic hydrodynamic forces, and steric hindrances to manipulate cells. However, when processing complex biological samples such as whole blood with rare cells, separation with a single module microfluidic device is difficult. Hybrid microfluidics is an emerging technique, which utilises active and passive methods whilst fulfilling higher requirements for stable performance, versatility, and convenience, including (i) the ability to process multi-target cells, (ii) enhanced ability for multiplexed separation, (iii) higher sensitivity, and (iv) tunability for a wider operational range. This review introduces the fundamental physics and typical formats for subclasses of hybrid microfluidic devices based on their different physical fields; presents current examples of cell sorting to highlight the advantage and usefulness of hybrid microfluidics on biomedicine, and then discusses the challenges and perspective of future development and the promising direction of research in this field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Imantalab, O.; Fattah-alhosseini, A.
2015-07-01
In the present work, electrochemical and passive behaviors of pure copper fabricated by accumulative roll-bonding (ARB) process in 0.01 M borax solution (pH = 9.1) have been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by Vickers microhardness, x-ray diffraction (XRD), and transmission electron microscopy. The results of microhardness tests revealed that microhardness values increased with the increasing number of ARB cycles. Also a sharp increase was seen in microhardness after the first ARB cycle, whereas mediocre additional increases were observed afterward up to the seven cycles. Moreover, XRD patterns showed that the mean crystallite size values decrease with the increasing number of ARB cycles. To investigate the electrochemical and passive behaviors of the samples, the potentiodynamic polarization, Mott-Schottky analysis and electrochemical impedance spectroscopy (EIS) were carried out. Polarization plots revealed that as a result of ARB, the corrosion behavior of the specimens improves compared with the annealed pure copper. Also, the Mott-Schottky analysis and EIS measurements showed that the increasing number of ARB cycles offer better conditions for forming the passive films with higher protection behavior, due to the growth of less-defective films.
The Onset Time of the Ownership Sensation in the Moving Rubber Hand Illusion.
Kalckert, Andreas; Ehrsson, H H
2017-01-01
The rubber hand illusion (RHI) is a perceptual illusion whereby a model hand is perceived as part of one's own body. This illusion has been extensively studied, but little is known about the temporal evolution of this perceptual phenomenon, i.e., how long it takes until participants start to experience ownership over the model hand. In the present study, we investigated a version of the rubber hand experiment based on finger movements and measured the average onset time in active and passive movement conditions. This comparison enabled us to further explore the possible role of intentions and motor control processes that are only present in the active movement condition. The results from a large group of healthy participants ( n = 117) showed that the illusion of ownership took approximately 23 s to emerge (active: 22.8; passive: 23.2). The 90th percentile occurs in both conditions within approximately 50 s (active: 50; passive: 50.6); therefore, most participants experience the illusion within the first minute. We found indirect evidence of a facilitatory effect of active movements compared to passive movements, and we discuss these results in the context of our current understanding of the processes underlying the moving RHI.
Kim, Hyungjin; Lien, Der-Hsien; Amani, Matin; Ager, Joel W; Javey, Ali
2017-05-23
Recently, there has been considerable research interest in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) for future optoelectronic applications. It has been shown that surface passivation with the organic nonoxidizing superacid bis(trifluoromethane)sulfonamide (TFSI) produces MoS 2 and WS 2 monolayers whose recombination is at the radiative limit, with a photoluminescence (PL) quantum yield (QY) of ∼100%. While the surface passivation persists under ambient conditions, exposure to conditions such as water, solvents, and low pressure found in typical semiconductor processing degrades the PL QY. Here, an encapsulation/passivation approach is demonstrated that yields near-unity PL QY in MoS 2 and WS 2 monolayers which are highly stable against postprocessing. The approach consists of two simple steps: encapsulation of the monolayers with an amorphous fluoropolymer and a subsequent TFSI treatment. The TFSI molecules are able to diffuse through the encapsulation layer and passivate the defect states of the monolayers. Additionally, we demonstrate that the encapsulation layer can be patterned by lithography and is compatible with subsequent fabrication processes. Therefore, our work presents a feasible route for future fabrication of highly efficient optoelectronic devices based on TMDCs.
Apparatus and process for water treatment
Phifer, Mark A.; Nichols, Ralph L.
2001-01-01
An apparatus is disclosed utilizing permeable treatment media for treatment of contaminated water, along with a method for enhanced passive flow of contaminated water through the treatment media. The apparatus includes a treatment cell including a permeable structure that encloses the treatment media, the treatment cell may be located inside a water collection well, exterior to a water collection well, or placed in situ within the pathway of contaminated groundwater. The passive flow of contaminated water through the treatment media is maintained by a hydraulic connection between a collecting point of greater water pressure head, and a discharge point of lower water pressure head. The apparatus and process for passive flow and groundwater treatment utilizes a permeable treatment media made up of granular metal, bimetallics, granular cast iron, activated carbon, cation exchange resins, and/or additional treatment materials. An enclosing container may have an outer permeable wall for passive flow of water into the container and through the enclosed treatment media to an effluent point. Flow of contaminated water is attained without active pumping of water through the treatment media. Remediation of chlorinated hydrocarbons and other water contaminants to acceptable regulatory concentration levels is accomplished without the costs of pumping, pump maintenance, and constant oversight by personnel.
NASA Astrophysics Data System (ADS)
Jiang, Hao
A method is developed for modeling, detecting, and locating material damage in homogeneous thin metallic sheets and sandwich panels. Analytical and numerical models are used along with non-contact, passive acoustic transmission measurements. It is shown that global and local damage mechanisms characterized by both material and geometrical changes in structural components can be detected using passive acoustic transmission measurements. Theoretical models of a flat sheet and sandwich panel are developed to describe the effects of global material damage due to density, modulus, or thickness changes on backplane radiated sound pressure level distributions. To describe the effects of local material damage, a three-segment stepped beam model and finite element beam, plate, and sandwich panel models are developed and analyzed using the acoustic transmission approach. It is shown that increases or decreases in transmitted sound energy occur behind a damaged material component that exhibits changes in thickness or other geometric or material properties. The damage due to thickness and density changes can be detected from the acoustic transmission, but modulus changes cannot. If the damage is located at an anti-node of a certain forced vibration pattern, the damage can be more readily observed in the data. Higher excitation frequencies within the operating spectrum are preferred to lower frequencies for damage detection. With the finite element beam, plate, and sandwich panel models, local damage detection has been performed in simulations. Experiments on a baffled homogeneous sheet and sandwich panel subjected to broadband acoustic energy show that transmitted intensity measurements with non-contact probes can be used to identify and locate material defects in the sheet and sandwich panel. Material damage is most readily identified where the changes in transmitted sound intensity are largest in the resonant frequency range of the panel. The three main contributions of this research are: (1) the use of non-contact sensing to detect global and localized damage in structural components; (2) the analytical and numerical modeling of material and geometrical damage mechanisms in structural components; and, (3) the experimental verification of acoustic transmission measurements for detecting both material and geometric damage mechanisms.
Process for producing cadmium sulfide on a cadmium telluride surface
Levi, Dean H.; Nelson, Art J.; Ahrenkiel, Richard K.
1996-01-01
A process for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness.
Process for producing cadmium sulfide on a cadmium telluride surface
Levi, D.H.; Nelson, A.J.; Ahrenkiel, R.K.
1996-07-30
A process is described for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness. 12 figs.
Apparatus and process for passivating an SRF cavity
Myneni, Ganapati Rao; Wallace, John P
2014-12-02
An apparatus and process for the production of a niobium cavity exhibiting high quality factors at high gradients is provided. The apparatus comprises a first chamber positioned within a second chamber, an RF generator and vacuum pumping systems. The process comprises placing the niobium cavity in a first chamber of the apparatus; thermally treating the cavity by high temperature in the first chamber while maintaining high vacuum in the first and second chambers; and applying a passivating thin film layer to a surface of the cavity in the presence of a gaseous mixture and an RF field. Further a niobium cavity exhibiting high quality factors at high gradients produced by the method of the invention is provided.
Passive coherent location system simulation and evaluation
NASA Astrophysics Data System (ADS)
Slezák, Libor; Kvasnička, Michael; Pelant, Martin; Vávra, Jiř; Plšek, Radek
2006-02-01
Passive Coherent Location (PCL) is going to be important and perspective system of passive location of non cooperative and stealth targets. It works with the sources of irradiation of opportunity. PCL is intended to be a part of mobile Air Command and Control System (ACCS) as a Deployable ACCS Component (DAC). The company ERA works on PCL system parameters verification program by complete PCL simulator development since the year 2003. The Czech DoD takes financial participation on this program. The moving targets scenario, the RCS calculation by method of moment, ground clutter scattering and signal processing method (the bottle neck of the PCL) are available up to now in simulator tool. The digital signal (DSP) processing algorithms are performed both on simulated data and on real data measured at NATO C3 Agency in their Haag experiment. The Institute of Information Theory and Automation of the Academy of Sciences of the Czech Republic takes part on the implementation of the DSP algorithms in FPGA. The paper describes the simulator and signal processing structure and results both on simulated and measured data.
NASA Astrophysics Data System (ADS)
Guo, Yingnan; Ong, Thiam Min Brian; Levchenko, I.; Xu, Shuyan
2018-01-01
A comparative study on the application of two quite different plasma-based techniques to the preparation of amorphous/crystalline silicon (a-Si:H/c-Si) interfaces for solar cells is presented. The interfaces were fabricated and processed by hydrogen plasma treatment using the conventional plasma-enhanced chemical vacuum deposition (PECVD) and inductively coupled plasma chemical vapour deposition (ICP-CVD) methods The influence of processing temperature, radio-frequency power, treatment duration and other parameters on interface properties and degree of surface passivation were studied. It was found that passivation could be improved by post-deposition treatment using both ICP-CVD and PECVD, but PECVD treatment is more efficient for the improvement on passivation quality, whereas the minority carrier lifetime increased from 1.65 × 10-4 to 2.25 × 10-4 and 3.35 × 10-4 s after the hydrogen plasma treatment by ICP-CVD and PECVD, respectively. In addition to the improvement of carrier lifetimes at low temperatures, low RF powers and short processing times, both techniques are efficient in band gap adjustment at sophisticated interfaces.
Passive Sensors for Long Duration Internet of Things Networks.
Pereira, Felisberto; Correia, Ricardo; Carvalho, Nuno Borges
2017-10-03
In this work, three different concepts are used to develop a fully passive sensor that is capable of measuring different types of data. The sensor was supplied by Wireless Power Transmission (WPT). Communication between the sensor and reader is established by a backscatter, and to ensure minimum energy consumption, low power techniques are used. In a simplistic way, the process starts by the transmission of two different waves by the reader to the sensor, one of which is used in power transmission and the other of which is used to communicate. Once the sensor is powered, the monitoring process starts. From the monitoring state, results from after processing are used to modulate the incoming wave, which is the information that is sent back from the reader to the tag. This new combination of technologies enables the possibility of using sensors without any cables or batteries to operate 340 cm from the reader. The developed prototype measures acceleration and temperature. However, it is scalable. This system enables a new generation of passive Internet of Things (IoT) devices.
Passive Sensors for Long Duration Internet of Things Networks
Correia, Ricardo; Carvalho, Nuno Borges
2017-01-01
In this work, three different concepts are used to develop a fully passive sensor that is capable of measuring different types of data. The sensor was supplied by Wireless Power Transmission (WPT). Communication between the sensor and reader is established by a backscatter, and to ensure minimum energy consumption, low power techniques are used. In a simplistic way, the process starts by the transmission of two different waves by the reader to the sensor, one of which is used in power transmission and the other of which is used to communicate. Once the sensor is powered, the monitoring process starts. From the monitoring state, results from after processing are used to modulate the incoming wave, which is the information that is sent back from the reader to the tag. This new combination of technologies enables the possibility of using sensors without any cables or batteries to operate 340 cm from the reader. The developed prototype measures acceleration and temperature. However, it is scalable. This system enables a new generation of passive Internet of Things (IoT) devices. PMID:28972554
Shah, JS; Goyal, RK
2011-01-01
Objective: To investigate the neuropsychopharmacological effect of a polyherbal formulation (PHF) on the learning and memory processes in rats. Materials and Methods: PHF contains Withania somnifera (Ashwagandha), Nardostachys jatamansi (Jatamansi), Rauwolfia serpentina (Sarpagandha), Evolvulus alsinoides (Shankhpushpi), Asparagus racemosus (Shatavari), Emblica officinalis (Amalki), Mucuna pruriens (Kauch bij extract), Hyoscyamus niger (Khurasani Ajmo), Mineral resin (Shilajit), Pearl (Mukta Shukhti Pishti), and coral calcium (Praval pishti). Its effect (500 mg / kg, p.o.) on the learning and memory processes was tested. The activity of PHF on memory acquisition and retention was studied using passive avoidance learning and elevated plus maze model (EPM) in rats. Results: The animals treated with PHF showed a significant decrease in transfer latency as compared to the control group in EPM. PHF also produced significant improvement in passive avoidance acquisition and memory retrieval, as compared to the controls and reduced the latency to reach the shock free zone (SFZ) after 24 hours. Conclusion: The PHF produces significant improvement in passive avoidance acquisition and memory retrieval in rats, which needs further investigation. PMID:21731356
Numerical study on interaction of local air cooler with stratified hydrogen cloud in a large vessel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Z.; Andreani, M.
2012-07-01
Within the framework of the ERCOSAM project, planning calculations are performed to examine sensitivity parameters that can affect the break-up (erosion) of a helium layer by mitigation devices (i.e., cooler, spray, or Passive Autocatalytic Recombiner - PAR). This paper reports the GOTHIC analysis results for the cooler tests to be performed in the PANDA facility. The cooler elevation and geometry, helium layer thickness, steam distribution in the vessel, and the vessel geometry (inter-connected multi-compartments versus a single volume) on the erosion process as well as the cooling capacity are studied. This analysis is valuable because only a limited number ofmore » conditions will be examined in the planned experiments. The study provides a useful understanding of the interaction of a cooler with a stratified atmosphere. (authors)« less
Cellular complexity in subcortical white matter: a distributed control circuit?
Colombo, Jorge A
2018-03-01
The subcortical white matter (SWM) has been traditionally considered as a site for passive-neutral-information transfer through cerebral cortex association and projection fibers. Yet, the presence of subcortical neuronal and glial "interstitial" cells expressing immunolabelled neurotransmitters/neuromodulators and synaptic vesicular proteins, and recent immunohistochemical and electrophysiological observations on the rat visual cortex as well as interactive regulation of myelinating processes support the possibility that SWM nests subcortical, regionally variable, distributed neuronal-glial circuits, that could influence information transfer. Their hypothetical involvement in regulating the timing and signal transfer probability at the SWM axonal components ought to be considered and experimentally analysed. Thus, the "interstitial" neuronal cells-associated with local glial cells-traditionally considered to be vestigial and functionally inert under normal conditions, they may well turn to be critical in regulating information transfer at the SWM.
Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows
NASA Astrophysics Data System (ADS)
Ohkitani, Koji
2002-04-01
The nonlinear vortex stretching in incompressible Navier-Stokes turbulence is compared with a linear stretching process of passive vectors (PVs). In particular, we pay special attention to the difference of these processes under long and short time evolutions. For finite time evolution, we confirm our previous finding that the stretching effect of vorticity is weaker than that of general passive vectors for a majority of the initial conditions with the same energy spectra. The above difference can be explained qualitatively by examining the Biot-Savart formula. In order to see to what extent infinitesimal time development explains the above difference, we examine the probability density functions (PDFs) of the stretching rates of the passive vectors in the vicinity of a solution of Navier-Stokes equations. It is found that the PDFs are found to have a Gaussian distribution, suggesting that there are equally many PVs that stretched less and more than the vorticity. This suggests the importance of the vorticity-strain correlation built up over finite time in turbulence. We also discuss the case of Euler equations, where the dynamics of the Jacobian matrix relating the physical and material coordinates is examined numerically. A kind of alignment problem associated with the Cauchy-Green tensor is proposed and studied using the results of numerical simulations. It is found that vorticity tends to align itself with the most compressing eigenvector of the Cauchy-Green tensor. A two-dimensional counterpart of active-passive comparison is briefly studied. There is no essential difference between stretching of vorticity gradients and that of passive scalar gradients and a physical interpretation is given to it.
NASA Astrophysics Data System (ADS)
Tate, C. G.; Moersch, J.; Jun, I.; Ming, D. W.; Mitrofanov, I.; Litvak, M.; Behar, A.; Boynton, W. V.; Deflores, L.; Drake, D.; Ehresmann, B.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Hassler, D. M.; Kozyrev, A. S.; Kuzmin, R.; Lisov, D.; Malakhov, A.; Milliken, R.; Mischna, M.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Starr, R.; Varenikov, A.; Vostrukhin, A.; Zeitlin, C.
2015-12-01
The Dynamic Albedo of Neutrons (DAN) experiment on the Mars Science Laboratory (MSL) rover Curiosity is designed to detect neutrons to determine hydrogen abundance within the subsurface of Mars (Mitrofanov, I.G. et al. [2012]. Space Sci. Rev. 170, 559-582. http://dx.doi.org/10.1007/s11214-012-9924-y; Litvak, M.L. et al. [2008]. Astrobiology 8, 605-613. http://dx.doi.org/10.1089/ast.2007.0157). While DAN has a pulsed neutron generator for active measurements, in passive mode it only measures the leakage spectrum of neutrons produced by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Galactic Cosmic Rays (GCR). DAN passive measurements provide better spatial coverage than the active measurements because they can be acquired while the rover is moving. Here we compare DAN passive-mode data to models of the instrument's response to compositional differences in a homogeneous regolith in order to estimate the water equivalent hydrogen (WEH) content along the first 200 sols of Curiosity's traverse in Gale Crater, Mars. WEH content is shown to vary greatly along the traverse. These estimates range from 0.5 ± 0.1 wt.% to 3.9 ± 0.2 wt.% for fixed locations (usually overnight stops) investigated by the rover and 0.6 ± 0.2 wt.% to 7.6 ± 1.3 wt.% for areas that the rover has traversed while continuously acquiring DAN passive data between fixed locations. Estimates of WEH abundances at fixed locations based on passive mode data are in broad agreement with those estimated at the same locations using active mode data. Localized (meter-scale) anomalies in estimated WEH values from traverse measurements have no particular surface expression observable in co-located images. However at a much larger scale, the hummocky plains and bedded fractured units are shown to be distinct compositional units based on the hydrogen content derived from DAN passive measurements. DAN passive WEH estimates are also shown to be consistent with geologic models inferred from other MSL instruments, which indicate that fluvial/lacustrine activity occurred at certain locations (e.g., Yellowknife Bay).
NASA Astrophysics Data System (ADS)
Hardman, M.; Brodzik, M. J.; Long, D. G.
2017-12-01
Since 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Up until recently, the available global gridded passive microwave data sets have not been produced consistently. Various projections (equal-area, polar stereographic), a number of different gridding techniques were used, along with various temporal sampling as well as a mix of Level 2 source data versions. In addition, not all data from all sensors have been processed completely and they have not been processed in any one consistent way. Furthermore, the original gridding techniques were relatively primitive and were produced on 25 km grids using the original EASE-Grid definition that is not easily accommodated in modern software packages. As part of NASA MEaSUREs, we have re-processed all data from SMMR, all SSM/I-SSMIS and AMSR-E instruments, using the most mature Level 2 data. The Calibrated, Enhanced-Resolution Brightness Temperature (CETB) Earth System Data Record (ESDR) gridded data are now available from the NSIDC DAAC. The data are distributed as netCDF files that comply with CF-1.6 and ACDD-1.3 conventions. The data have been produced on EASE 2.0 projections at smoothed, 25 kilometer resolution and spatially-enhanced resolutions, up to 3.125 km depending on channel frequency, using the radiometer version of the Scatterometer Image Reconstruction (rSIR) method. We expect this newly produced data set to enable scientists to better analyze trends in coastal regions, marginal ice zones and in mountainous terrain that were not possible with the previous gridded passive microwave data. The use of the EASE-Grid 2.0 definition and netCDF-CF formatting allows users to extract compliant geotiff images and provides for easy importing and correct reprojection interoperability in many standard packages. As a consistently-processed, high-quality satellite passive microwave ESDR, we expect this data set to replace earlier gridded passive microwave data sets, and to pave the way for new insights from higher-resolution derived geophysical products.
Yingram, Manop; Premrudeepreechacharn, Suttichai
2015-01-01
The mainly used local islanding detection methods may be classified as active and passive methods. Passive methods do not perturb the system but they have larger nondetection zones, whereas active methods have smaller nondetection zones but they perturb the system. In this paper, a new hybrid method is proposed to solve this problem. An over/undervoltage (passive method) has been used to initiate an undervoltage shift (active method), which changes the undervoltage shift of inverter, when the passive method cannot have a clear discrimination between islanding and other events in the system. Simulation results on MATLAB/SIMULINK show that over/undervoltage and undervoltage shifts of hybrid islanding detection method are very effective because they can determine anti-islanding condition very fast. ΔP/P > 38.41% could determine anti-islanding condition within 0.04 s; ΔP/P < -24.39% could determine anti-islanding condition within 0.04 s; -24.39% ≤ ΔP/P ≤ 38.41% could determine anti-islanding condition within 0.08 s. This method perturbed the system, only in the case of -24.39% ≤ ΔP/P ≤ 38.41% at which the control system of inverter injected a signal of undervoltage shift as necessary to check if the occurrence condition was an islanding condition or not.
Arsenault, Jessica S; Buchsbaum, Bradley R
2016-08-01
The motor theory of speech perception has experienced a recent revival due to a number of studies implicating the motor system during speech perception. In a key study, Pulvermüller et al. (2006) showed that premotor/motor cortex differentially responds to the passive auditory perception of lip and tongue speech sounds. However, no study has yet attempted to replicate this important finding from nearly a decade ago. The objective of the current study was to replicate the principal finding of Pulvermüller et al. (2006) and generalize it to a larger set of speech tokens while applying a more powerful statistical approach using multivariate pattern analysis (MVPA). Participants performed an articulatory localizer as well as a speech perception task where they passively listened to a set of eight syllables while undergoing fMRI. Both univariate and multivariate analyses failed to find evidence for somatotopic coding in motor or premotor cortex during speech perception. Positive evidence for the null hypothesis was further confirmed by Bayesian analyses. Results consistently show that while the lip and tongue areas of the motor cortex are sensitive to movements of the articulators, they do not appear to preferentially respond to labial and alveolar speech sounds during passive speech perception.
Analysis Thermal Comfort Condition in Complex Residential Building, Case Study: Chiangmai, Thailand
NASA Astrophysics Data System (ADS)
Juangjandee, Warangkana
2017-10-01
Due to the increasing need for complex residential buildings, it appears that people migrate into the high-density urban areas because the infrastructural facilities can be easily found in the modern metropolitan areas. Such rapid growth of urbanization creates congested residential buildings obstructing solar radiation and wind flow, whereas most urban residents spend 80-90% of their time indoor. Furthermore, the buildings were mostly built with average materials and construction detail. This causes high humidity condition for tenants that could promote mould growth. This study aims to analyse thermal comfort condition in complex residential building, Thailand for finding the passive solution to improve indoor air quality and respond to local conditions. The research methodology will be in two folds: 1) surveying on case study 2) analysis for finding the passive solution of reducing humidity indoor air The result of the survey indicated that the building need to find passive solution for solving humidity problem, that can be divided into two ways which raising ventilation and indoor temperature including increasing wind-flow ventilation and adjusting thermal temperature, for example; improving building design and stack driven ventilation. For raising indoor temperature or increasing mean radiant temperature, daylight can be passive solution for complex residential design for reducing humidity and enhance illumination indoor space simultaneous.