Dóci, Edina; Stouten, Jeroen; Hofmans, Joeri
2015-01-01
In the present paper, we propose a cognitive-behavioral understanding of active and passive leadership. Building on core evaluations theory, we offer a model that explains the emergence of leaders’ active and passive behaviors, thereby predicting stable, inter-individual, as well as variable, intra-individual differences in both types of leadership behavior. We explain leaders’ stable behavioral tendencies by their fundamental beliefs about themselves, others, and the world (core evaluations), while their variable, momentary behaviors are explained by the leaders’ momentary appraisals of themselves, others, and the world (specific evaluations). By introducing interactions between the situation the leader enters, the leader’s beliefs, appraisals, and behavior, we propose a comprehensive system of cognitive mechanisms that underlie active and passive leadership behavior. PMID:26441721
NASA Astrophysics Data System (ADS)
Sousa, Vagner Candido de; Silva, Tarcísio Marinelli Pereira; De Marqui Junior, Carlos
2017-10-01
In this paper, the combined effects of semi-passive control using shunted piezoelectric material and passive pseudoelastic hysteresis of shape memory springs on the aerolastic behavior of a typical section is investigated. An aeroelastic model that accounts for the presence of both smart materials employed as mechanical energy dissipation devices is presented. The Brinson model is used to simulate the shape memory material. New expressions for the modeling of the synchronized switch damping on inductor technique (developed for enhanced piezoelectric damping) are presented, resulting in better agreement with experimental data. The individual effects of each nonlinear mechanism on the aeroelastic behavior of the typical section are first verified. Later, the combined effects of semi-passive piezoelectric control and passive shape memory alloy springs on the post-critical behavior of the system are discussed in details. The range of post-flutter airflow speeds with stable limit cycle oscillations is significantly increased due to the combined effects of both sources of energy dissipation, providing an effective and autonomous way to modify the behavior of aeroelastic systems using smart materials.
Beck, Ariane L.; Lakkaraju, Kiran; Rai, Varun; ...
2017-01-18
The wealth of information available on seemingly every topic creates a considerable challenge both for information providers trying to rise above the noise and discerning individuals trying to find relevant, trustworthy information. We approach this information problem by investigating how passive versus interactive information interventions can impact the antecedents of behavior change using the context of solar energy adoption, where persistent information gaps are known to reduce market potential. We use two experiments to investigate the impact of both passive and interactive approaches to information delivery on the antecedents (attitudes, subjective norms, and perceived behavioral control in the Theory ofmore » Planned Behavior) of intentions and behavior, as well as their effect on intentions and behavior directly. The passive information randomized control trial delivered via Amazon Mechanical Turk tests the effectiveness of delivering the same content in a single message versus multiple shorter messages. The interactive information delivery uses an online (mobile and PC) trivia-style gamification platform. Both experiments use the same content and are carried out over a two-week time period. Lastly, our findings suggest that interactive, gamified information has greater impact than passive information, and that shorter multiple messages of passive information are more effective than a single passive message.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Ariane L.; Lakkaraju, Kiran; Rai, Varun
The wealth of information available on seemingly every topic creates a considerable challenge both for information providers trying to rise above the noise and discerning individuals trying to find relevant, trustworthy information. We approach this information problem by investigating how passive versus interactive information interventions can impact the antecedents of behavior change using the context of solar energy adoption, where persistent information gaps are known to reduce market potential. We use two experiments to investigate the impact of both passive and interactive approaches to information delivery on the antecedents (attitudes, subjective norms, and perceived behavioral control in the Theory ofmore » Planned Behavior) of intentions and behavior, as well as their effect on intentions and behavior directly. The passive information randomized control trial delivered via Amazon Mechanical Turk tests the effectiveness of delivering the same content in a single message versus multiple shorter messages. The interactive information delivery uses an online (mobile and PC) trivia-style gamification platform. Both experiments use the same content and are carried out over a two-week time period. Lastly, our findings suggest that interactive, gamified information has greater impact than passive information, and that shorter multiple messages of passive information are more effective than a single passive message.« less
Beck, Ariane L; Lakkaraju, Kiran; Rai, Varun
2017-01-01
The wealth of information available on seemingly every topic creates a considerable challenge both for information providers trying to rise above the noise and discerning individuals trying to find relevant, trustworthy information. We approach this information problem by investigating how passive versus interactive information interventions can impact the antecedents of behavior change using the context of solar energy adoption, where persistent information gaps are known to reduce market potential. We use two experiments to investigate the impact of both passive and interactive approaches to information delivery on the antecedents (attitudes, subjective norms, and perceived behavioral control in the Theory of Planned Behavior) of intentions and behavior, as well as their effect on intentions and behavior directly. The passive information randomized control trial delivered via Amazon Mechanical Turk tests the effectiveness of delivering the same content in a single message versus multiple shorter messages. The interactive information delivery uses an online (mobile and PC) trivia-style gamification platform. Both experiments use the same content and are carried out over a two-week time period. Our findings suggest that interactive, gamified information has greater impact than passive information, and that shorter multiple messages of passive information are more effective than a single passive message.
2017-01-01
The wealth of information available on seemingly every topic creates a considerable challenge both for information providers trying to rise above the noise and discerning individuals trying to find relevant, trustworthy information. We approach this information problem by investigating how passive versus interactive information interventions can impact the antecedents of behavior change using the context of solar energy adoption, where persistent information gaps are known to reduce market potential. We use two experiments to investigate the impact of both passive and interactive approaches to information delivery on the antecedents (attitudes, subjective norms, and perceived behavioral control in the Theory of Planned Behavior) of intentions and behavior, as well as their effect on intentions and behavior directly. The passive information randomized control trial delivered via Amazon Mechanical Turk tests the effectiveness of delivering the same content in a single message versus multiple shorter messages. The interactive information delivery uses an online (mobile and PC) trivia-style gamification platform. Both experiments use the same content and are carried out over a two-week time period. Our findings suggest that interactive, gamified information has greater impact than passive information, and that shorter multiple messages of passive information are more effective than a single passive message. PMID:28099478
Effect of interleukin-1beta on the behavior of rats during mild stress in the open-field test.
Pertsov, S S; Koplik, E V; Simbirtsev, A S; Kalinichenko, L S
2009-11-01
We studied the effect of interleukin-1beta on the behavior of rats with different individual typological characteristics during mild stress in the open-field test. Intraperitoneal injection of interleukin-1beta (5 microg/kg, 108 U/mg) was followed by a decrease in orientation and exploratory activity of passive and, particularly, of active animals in the open field. As differentiated from rats receiving physiological saline, the initial differences in behavioral characteristics of active and passive animals were not revealed in the repeated test after injection of interleukin-1beta. We conclude that interleukin-1beta abolishes the behavioral differences between active and passive specimens in the open field. These data suggest that administration of interleukin-1beta to rats leads to reorganization of the mechanisms for emotional evaluation of adverse emotiogenic factors under conditions of mild stress in the open-field test.
Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik
2017-01-01
Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance. PMID:28773067
Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik
2017-06-27
Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance.
Outsourcing neural active control to passive composite mechanics: a tissue engineered cyborg ray
NASA Astrophysics Data System (ADS)
Gazzola, Mattia; Park, Sung Jin; Park, Kyung Soo; Park, Shirley; di Santo, Valentina; Deisseroth, Karl; Lauder, George V.; Mahadevan, L.; Parker, Kevin Kit
2016-11-01
Translating the blueprint that stingrays and skates provide, we create a cyborg swimming ray capable of orchestrating adaptive maneuvering and phototactic navigation. The impossibility of replicating the neural system of batoids fish is bypassed by outsourcing algorithmic functionalities to the body composite mechanics, hence casting the active control problem into a design, passive one. We present a first step in engineering multilevel "brain-body-flow" systems that couple sensory information to motor coordination and movement, leading to behavior. This work paves the way for the development of autonomous and adaptive artificial creatures able to process multiple sensory inputs and produce complex behaviors in distributed systems and may represent a path toward soft-robotic "embodied cognition".
NASA Astrophysics Data System (ADS)
Pharkya, Pallavi
Alloy 22, a Ni-Cr-Mo-W alloy, and SAM1651, an Fe-Cr-Mo-B-Y-C bulk metallic glass are highly corrosion-resistant alloys. The high corrosion resistance of these alloys is due to the formation of tenacious oxide films on their surfaces. This study examines the reformation behavior of the passive films as a function of the corrosion resistance of the alloys and the corrosivity of the environment. The main tasks of this study were (i) to determine the chemical durability of passive films on these highly corrosion-resistant alloys in aggressive environments, (ii) to investigate the durability after mechanically damaging the passive films either locally or over the entire surface area and to study the reformation kinetics, (iii) to compare the durability of the passive films of the aforementioned highly corrosion resistant alloys with an alloy of intermediate corrosion resistance, AL6XN, and an alloy of less corrosion resistance, 316L SS, (iv) to examine the evolution of the electronic properties of the passive films on alloy 22 and SAM1651 under different environmental conditions such as concentrated chloride solution, acidic solution, temperature, potential and oxyanions, and (v) to develop an understanding of the relationship between the passive films' composition, electronic and electrochemical properties and the performance. A combination of techniques was utilized to meet the above mentioned objectives. Cyclic potentiodynamic polarization (CPP) was used to determine the electrochemical parameters such as freely corroding, breakdown and repassivation potentials. Electrochemical impedance spectroscopy (EIS) was used to determine the electronic properties such as impedance, thickness and capacitance of the passive films. Mott-Schottky (M-S) analysis was used to determine the type and the density of the defects in the passive films. The mechanical durability and reformation kinetics of the passive films was investigated using a scratch-repassivation method. The quality and the protectiveness of the reformed passive films after scribing were examined using EIS, M-S analysis, and AES. The results show that the passive films on alloy 22 and SAM1651 possess high chemical and mechanical durability. The reformed passive films acquired the same electronic and elemental properties as the passive films which were undamaged. The passive films on SAM1651 and alloy 22 showed better corrosion resistance and durability than did the passive films on AL6XN and 316L SS. The results also showed that the passive film behavior depends on the inherent corrosion resistance of an alloy and the corrosivity of the environment. The inherent corrosion resistance depends on the concentration of the passivity-providing elements such as Cr and Mo in the bulk composition of the alloy (and passive film), and the corrosivity of the environment which is influenced by chloride concentration, oxyanions, temperature, pH, and oxidizing potential.
Trapping behavior of Shockley-Read-Hall recombination centers in silicon solar cells
NASA Astrophysics Data System (ADS)
Gogolin, R.; Harder, N. P.
2013-08-01
We investigate the correlation between increased apparent carrier lifetime in photoconductance-based lifetime measurements and actually reduced recombination lifetime as measured by photoluminescence measurements. These findings are further reconfirmed by I-V curve measurements of solar cells. In particular, we show experimental results for lifetime samples and solar cells with and without hydrogen passivation. In the samples and solar cells without hydrogen passivation, we find both a stronger trapping behavior and a lower recombination lifetime. Our model provides a consistent description of the observation of both, the increased apparent lifetime from carrier trapping and the decreasing recombination lifetime. In our model, both are caused by a single physical mechanism; i.e., by Recombination-Active-Trap (RAT) states. Upon fitting the experimental lifetime data, we find that the RAT-defect parameters for the hydrogen-passivated and non-hydrogen-passivated lifetime samples and solar cells are identical except for the defect concentration: hydrogen-passivation reduced the defect density by 50% in both, the lifetime samples and solar cells. We conclude that trapping should be considered as an indication for hidden, yet potentially strongly increased, low injection recombination activity.
Constitutive modeling of the passive inflation-extension behavior of the swine colon.
Patel, Bhavesh; Chen, Huan; Ahuja, Aashish; Krieger, Joshua F; Noblet, Jillian; Chambers, Sean; Kassab, Ghassan S
2018-01-01
In the present work, we propose the first structural constitutive model of the passive mechanical behavior of the swine colon that is validated against physiological inflation-extension tests, and accounts for residual strains. Sections from the spiral colon and the descending colon were considered to investigate potential regional variability. We found that the proposed constitutive model accurately captures the passive inflation-extension behavior of both regions of the swine colon (coefficient of determination R 2 =0.94±0.02). The model revealed that the circumferential muscle layer does not provide significant mechanical support under passive conditions and the circumferential load is actually carried by the submucosa layer. The stress analysis permitted by the model showed that the colon tissue can distend up to 30% radially without significant increase in the wall stresses suggesting a highly compliant behavior of the tissue. This is in-line with the requirement for the tissue to easily accommodate variable quantities of fecal matter. The analysis also showed that the descending colon is significantly more compliant than the spiral colon, which is relevant to the storage function of the descending colon. Histological analysis showed that the swine colon possesses a four-layer structure similar to the human colon, where the longitudinal muscle layer is organized into bands called taeniae, a typical feature of the human colon. The model and the estimated parameters can be used in a Finite Element framework to conduct simulations with realistic geometry of the swine colon. The resulting computational model will provide a foundation for virtual assessment of safe and effective devices for the treatment of colonic diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Experience-dependent olfactory behaviors of the parasitic nematode Heligmosomoides polygyrus
Castelletto, Michelle L.; Gang, Spencer S.
2017-01-01
Parasitic nematodes of humans and livestock cause extensive disease and economic loss worldwide. Many parasitic nematodes infect hosts as third-stage larvae, called iL3s. iL3s vary in their infection route: some infect by skin penetration, others by passive ingestion. Skin-penetrating iL3s actively search for hosts using host-emitted olfactory cues, but the extent to which passively ingested iL3s respond to olfactory cues was largely unknown. Here, we examined the olfactory behaviors of the passively ingested murine gastrointestinal parasite Heligmosomoides polygyrus. H. polygyrus iL3s were thought to reside primarily on mouse feces, and infect when mice consume feces containing iL3s. However, iL3s can also adhere to mouse fur and infect orally during grooming. Here, we show that H. polygyrus iL3s are highly active and show robust attraction to host feces. Despite their attraction to feces, many iL3s migrate off feces to engage in environmental navigation. In addition, H. polygyrus iL3s are attracted to mammalian skin odorants, suggesting that they migrate toward hosts. The olfactory preferences of H. polygyrus are flexible: some odorants are repulsive for iL3s maintained on feces but attractive for iL3s maintained off feces. Experience-dependent modulation of olfactory behavior occurs over the course of days and is mediated by environmental carbon dioxide (CO2) levels. Similar experience-dependent olfactory plasticity occurs in the passively ingested ruminant-parasitic nematode Haemonchus contortus, a major veterinary parasite. Our results suggest that passively ingested iL3s migrate off their original fecal source and actively navigate toward hosts or new host fecal sources using olfactory cues. Olfactory plasticity may be a mechanism that enables iL3s to switch from dispersal behavior to host-seeking behavior. Together, our results demonstrate that passively ingested nematodes do not remain inactive waiting to be swallowed, but rather display complex sensory-driven behaviors to position themselves for host ingestion. Disrupting these behaviors may be a new avenue for preventing infections. PMID:29190282
Marshall, Paul W M; Mannion, Jamie; Murphy, Bernadette A
2009-08-01
To examine the relationship between hamstring extensibility by use of the instrumented straight leg raise; mechanical components of muscle contraction, including muscle recruitment, passive torque measures of tissue stiffness, and eccentric strength; and self-reported measures of pain and disability. Cross-sectional study. University laboratory. Twenty-one individuals with chronic nonspecific axial lower back pain and 15 healthy control subjects. Instrumented straight leg raise, concentric and eccentric hamstring strength, self-reported measures of pain, disability, fear avoidance, general health and well-being Objective measures included hamstring extensibility, hamstring muscle stiffness, absolute and relative concentric/eccentric strength, concentric/eccentric strength ratios. Self-reported measures included Oswestry disability index, visual analog pain scale, fear avoidance beliefs, and general health and well being. Patients with lower back pain had lower range of motion, greater changes in muscle stiffness, and impaired concentric-to-eccentric strength levels. Stepwise regression identified measures of stiffness as significantly predicting hamstring extensibility (adjusted r(2) = 0.58, F = 23.76, P < .001). Self-reported measures were not associated with extensibility. Gender differences were noted for passive stiffness and absolute strength. For women, later onset of the medial hamstrings also was associated with greater hamstring extensibility. Decreased extensibility of the hamstrings was associated with increased passive stiffness during the common range of motion (20 to 50 degrees ). Impaired stretch tolerance is associated with actual mechanical restriction, not behavioral measures indicating increased pain or fear-avoidant behavior. With no relationship to actual disability and contradictory findings in the literature for the relationship of the hamstrings to the mechanics of the low back, it is unclear whether decreased hamstring extensibility should be targeted in rehabilitation programs for axial lower back pain.
NASA Astrophysics Data System (ADS)
Durand-Smet, P.; Gauquelin, E.; Chastrette, N.; Boudaoud, A.; Asnacios, A.
2017-10-01
While plant growth is well known to rely on turgor pressure, it is challenging to quantify the contribution of turgor pressure to plant cell rheology. Here we used a custom-made micro-rheometer to quantify the viscoelastic behavior of isolated plant cells while varying their internal turgor pressure. To get insight into how plant cells adapt their internal pressure to the osmolarity of their medium, we compared the mechanical behavior of single plant cells to that of a simple, passive, pressurized shell: a soccer ball. While both systems exhibited the same qualitative behavior, a simple mechanical model allowed us to quantify turgor pressure regulation at the single cell scale.
Mechanical properties of the passive sea urchin sperm flagellum.
Pelle, Dominic W; Brokaw, Charles J; Lesich, Kathleen A; Lindemann, Charles B
2009-09-01
In this study we used Triton X-100 extracted sea urchin spermatozoa to investigate the mechanical behavior of the basic 9+2 axoneme. The dynein motors were disabled by vanadate so that the flagellum is rendered a passive structure. We find that when a proximal portion of the flagellum is bent with a glass microprobe, the remainder of the flagellum distal to the probe exhibits a bend in the opposite direction (a counterbend). The counterbend can be understood from the prevailing sliding doublet model of axoneme mechanics, but does require the existence of elastic linkages between the outer doublets. Analysis of the shapes of counterbends provides a consensus value of 0.03-0.08/microm(2) for the ratio of the interdoublet shear resistance (E(S)) to the bending resistance (E(B)) and we find that the ratio E(S)/E(B) is relatively conserved for both passive flagella and transiently quiescent live flagella. This ratio expresses a fundamental mechanical property of the eukaryotic axoneme. It defines the contributions to total bending resistance derived from bending the microtubules and from stretching the interdoublet linkages, respectively. Using this ratio, and computer simulations of earlier experiments that measured the total stiffness of the flagellum, we obtain estimates of approximately 1 x 10(8) pN nm(2)/rad for E(B) and 6 pN/rad for E(S), assuming that both elasticities are linear. Our results indicate that the behavior of the flagellum is close to that predicted by a linear model for shear elasticity.
Chagas, Mauro H.; Magalhães, Fabrício A.; Peixoto, Gustavo H. C.; Pereira, Beatriz M.; Andrade, André G. P.; Menzel, Hans-Joachim K.
2016-01-01
ABSTRACT Background Stretching exercises are able to promote adaptations in the muscle-tendon unit (MTU), which can be tested through physiological and biomechanical variables. Identifying the key variables in MTU adaptations is crucial to improvements in training. Objective To perform an exploratory factor analysis (EFA) involving the variables often used to evaluate the response of the MTU to stretching exercises. Method Maximum joint range of motion (ROMMAX), ROM at first sensation of stretching (FSTROM), peak torque (torqueMAX), passive stiffness, normalized stiffness, passive energy, and normalized energy were investigated in 36 participants during passive knee extension on an isokinetic dynamometer. Stiffness and energy values were normalized by the muscle cross-sectional area and their passive mode assured by monitoring the EMG activity. Results EFA revealed two major factors that explained 89.68% of the total variance: 53.13% was explained by the variables torqueMAX, passive stiffness, normalized stiffness, passive energy, and normalized energy, whereas the remaining 36.55% was explained by the variables ROMMAX and FSTROM. Conclusion This result supports the literature wherein two main hypotheses (mechanical and sensory theories) have been suggested to describe the adaptations of the MTU to stretching exercises. Contrary to some studies, in the present investigation torqueMAX was significantly correlated with the variables of the mechanical theory rather than those of the sensory theory. Therefore, a new approach was proposed to explain the behavior of the torqueMAX during stretching exercises. PMID:27437715
Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanabusa, T.; Kusaka, K.; Nishida, M.
2008-03-17
In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermalmore » stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO{sub 2} passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness.« less
Constitutive response of passivated copper films to thermal cycling
NASA Astrophysics Data System (ADS)
Shen, Y.-L.; Ramamurty, U.
2003-02-01
The thermomechanical behavior of passivated thin copper films is studied. Stresses in copper films of thickness ranging from 125 to 1000 nm, deposited on quartz or silicon substrates and passivated with silicon oxide, were measured using the curvature method. The thermal cycling spans a temperature range from -196 to 600 °C. The measured mechanical behavior was found to be rate insensitive within the heating/cooling rate range of 5-25 °C/min. It was observed that the passivated films do not exhibit a significant stress relaxation at elevated temperatures that is normally found in unpassivated films. Furthermore, a significant strain hardening during the course of thermal loading was noted. Simple continuum plasticity analyses show that the experimentally measured stress-temperature response can only be rationalized with a kinematic hardening model. Analytical procedures for extracting the constitutive properties of the films that were developed on the basis of such a model are presented. The initial yield strength is higher and tends to be less temperature dependent in thinner films. The strain hardening rate is found to increase with decreasing film thickness.
Design and characterization of a biologically inspired quasi-passive prosthetic ankle-foot.
Mooney, Luke M; Lai, Cara H; Rouse, Elliott J
2014-01-01
By design, commonly worn energy storage and release (ESR) prosthetic feet cannot provide biologically realistic ankle joint torque and angle profiles during walking. Additionally, their anthropomorphic, cantilever architecture causes their mechanical stiffness to decrease throughout the stance phase of walking, opposing the known trend of the biological ankle. In this study, the design of a quasi-passive pneumatic ankle-foot prosthesis is detailed that is able to replicate the biological ankle's torque and angle profiles during walking. The prosthetic ankle is comprised of a pneumatic piston, bending spring and solenoid valve. The mechanical properties of the pneumatic ankle prosthesis are characterized using a materials testing machine and the properties are compared to those from a common, passive ESR prosthetic foot. The characterization spanned a range of ankle equilibrium pressures and testing locations beneath the foot, analogous to the location of center of pressure within the stance phase of walking. The pneumatic ankle prosthesis was shown to provide biologically appropriate trends and magnitudes of torque, angle and stiffness behavior, when compared to the passive ESR prosthetic foot. Future work will focus on the development of a control system for the quasi-passive device and clinical testing of the pneumatic ankle to demonstrate efficacy.
[Surface-enhanced raman spectra studies on roughened Zn electrode in alkaline solutions].
Shen, Xiao-ying; Liu, Guo-kun; Gu, Ren-ao; Tian, Zhong-qun
2005-09-01
Electrochemical oxidation-reduction method was employed to roughen Zn electrode for obtaining SERS, and potential dependent surface enhanced Raman spectra (SERS) of roughened Zn electrode in KOH solution of different concentration wereobserved. The spectra of Zn electrode in various solutions had obvious differences which indicated the concentration of OH- had a great effect on the dissolution and passivation of zinc. Based on our experimental results, the authors attempt to analyse the behavior of zinc in alkaline and give the mechanism of its passivation.
Reach, Gérard
2011-01-01
Objective To clarify the mechanisms of adherence. Methods A cross-sectional, multicenter French study using a self-questionnaire administered by 116 general practitioners to 782 obese type 2 diabetic patients. Results The analysis of 670 completed questionnaires revealed a strong association between the adherence to medication and the behavior of fastening the seatbelt when seated in the rear of a car. Multivariate analysis indicated that this behavior was an independent determinant of adherence to medication (odds ratio [OR] 2.3, 95% confidence interval [CI] 1.4–3.6, P < 0.001) with the same OR as the motivation to adhere to medical prescriptions (OR 2.2, 95% CI 1.3–3.6, P = 0.003) in a model with good accuracy (area under the receiver operating characteristic curve 0.774). A multiple correspondence analysis suggested that adherence to medication and seatbelt behavior are “homologous” behaviors, with homology between phenomena defined by the fact that they share a common etiology. Conclusion Adherence may have two dimensions: passive (obedience, the main determinant of seatbelt behavior) and active (motivation). This conclusion has theoretical and practical implications. Firstly, empowerment through patient education can be defined as a process that replaces the passive mechanism of adherence in patients’ minds with an active, conscious choice. Secondly, recognizing these two dimensions may help to establish a tailored patient-physician relationship to prevent nonadherence. PMID:22114466
Elastography Study of Hamstring Behaviors during Passive Stretching
Le Sant, Guillaume; Ates, Filiz; Brasseur, Jean-Louis; Nordez, Antoine
2015-01-01
Introduction The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography. Methods/Results The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion) on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%), semimembranosus (SM, CV: 10.3%-11.2%) and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%), but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%). Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh. Conclusion This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury. PMID:26418862
Stepanichev, Mikhail Yu; Tishkina, Anna O; Novikova, Margarita R; Levshina, Irina P; Freiman, Sofiya V; Onufriev, Mikhail V; Levchenko, Olga A; Lazareva, Natalia A; Gulyaeva, Natalia V
2016-01-01
Depression is the most common form of mental disability in the world. Depressive episodes may be precipitated by severe acute stressful events or by mild chronic stressors. Studies on the mechanisms of depression require both appropriate experimental models (most of them based on the exposure of animals to chronic stressors), and appropriate tests for assessment of depressive states. In this study male Wistar rats were exposed to two different chronic stress paradigms: an eight-week chronic unpredictable mild stress or a two-week combined chronic stress. The behavioral effects of stress were evaluated using sucrose preference, forced swim and open field tests. After the exposure to chronic unpredictable mild stress, anhedonia was developed, activity in the open field increased, while no changes in the duration of passive floating could be detected. After chronic combined stress, anhedonia was also evident, whereas behavior in the open field and forced swim test did not change. The levels of corticosterone in the blood and brain structures involved in stress-response did not differ from control in both experiments. The absence of significant changes in corticosterone levels and passive floating may be indicative of the adaptation of animals to chronic stress. Anhedonia appears to be a more sensitive indicator of depressive-like behavioral effects of chronic stress as compared to behavior in the forced swim or open field tests.
Influence of Aluminum Passivation on the Reaction Mechanism: Flame Propagation Studies
2009-01-01
synthesis and characterization of Al nanoparticles without an oxide shell is presented in refs 15- 18. In summary, SEM, thermogravimetric analysis (TGA) and...al.1 examined the oxidation behavior of ultrafine grain aluminum powder using Rutherford back- scattering spectrometry, thermogravimetric analysis , and...to opposite predictions in nanoparticle design. The diffusion mechanism suggests that the reduction Dr complete elimination of the oxide shell will
ERIC Educational Resources Information Center
Albarracin, Dolores; Gillette, Jeffrey C.; Earl, Allison N.; Glasman, Laura R.; Durantini, Marta R.; Ho, Moon-Ho
2005-01-01
This meta-analysis tested the major theoretical assumptions about behavior change by examining the outcomes and mediating mechanisms of different preventive strategies in a sample of 354 HIV-prevention interventions and 99 control groups, spanning the past 17 years. There were 2 main conclusions from this extensive review. First, the most…
NASA Astrophysics Data System (ADS)
Awasthi, Reena; Abraham, Geogy; Kumar, Santosh; Bhattacharyya, Kaustava; Keskar, Nachiket; Kushwaha, R. P.; Rao, Ramana; Tewari, R.; Srivastava, D.; Dey, G. K.
2017-06-01
In this study, corrosion characteristics of a nickel-based Ni-Mo-Cr-Si hardfacing alloy having 32Mo, 15Cr, and 3Si (wt pct) as alloying elements, deposited on stainless steel SS316L substrate by laser cladding, have been presented. Corrosion behavior of the laser clad layer was evaluated in reducing (0.1 M HCl) and oxidizing (0.5 M HNO3) environments, in comparison with the reference substrate SS316L, using electrochemical potentiodynamic technique at room temperature. The corrosion mechanisms have been evaluated on the basis of microstructural and microchemical analysis using scanning electron microscopy attached with energy-dispersive spectrometry. Passivity behavior of the laser clad layer was studied in 0.5 M H2SO4, using the potentiostatic technique and analyzing the passive layer by X-ray photoelectron spectroscopy. Laser clad layer of Ni-Mo-Cr-Si exhibited higher pitting corrosion resistance in chloride (reducing) environment, indicated by much higher breakdown potential ( 0.8 VSCE) and the absence of pitting as compared to substrate SS316L ( 0.3 VSCE). However, in oxidizing (0.5 M HNO3) environment, both the laser clad layer and substrate SS316L showed excellent and similar corrosion resistance exhibiting high breakdown potential ( 0.85 VSCE) and wide passivation range ( 0.8 VSCE) with low passive current density ( 4 to 7 × 10-6 A/cm2). The stable passive layer formed on laser clad layer of Ni-Mo-Cr-Si after exposure in 0.5 M H2SO4 solution at constant potential 0.6 VSCE (within the passive range), consisted oxides of Mo as Mo+4 (MoO2) and Mo+6 (MoO4)-2, Cr as Cr3+ (mixture of both Cr2O3 and Cr (OH)3), and Si as Si4+(SiO2), which have contributed to passivation and repassivation and therefore excellent corrosion behavior.
Bosch, Oliver J; Nair, Hemanth P; Ahern, Todd H; Neumann, Inga D; Young, Larry J
2009-05-01
Social relationships significantly influence physiology and behavior, including the hypothalamo-pituitary-adrenal axis, anxiety, and mental health. Disruption of social bonds through separation or death often results in profound grieving, depression, and physical illness. As the monogamous prairie vole forms enduring, selective pair bonds with the mating partner, they provide an animal model to study the physiological consequences of pair bonding and, thus, the loss of the bonded partner. Male prairie voles were paired with a novel female or male sibling. After 5 days, half of the males of each group were separated from the partner. Elevated plus-maze, forced swim, and tail suspension tests were used to assess anxiety-like and passive stress-coping behaviors indicative of depressive-like behavior. Following 4 days of separation from the female but not the male partner, experimental males displayed increased passive stress-coping. This effect was abolished by long-term intracerebroventricular infusion of a nonselective corticotropin-releasing factor (CRF) receptor antagonist without disrupting the bond itself. Both CRF type 1 and 2 receptors were involved in the emergence of passive stress-coping behavior. Furthermore, pairing with a female was associated with elevated CRF mRNA in the bed nucleus of the stria terminalis, and partner loss elicited a pronounced increase in circulating corticosteroid and adrenal weight. We speculate that the CRF system may mediate an aversive affect following separation from the female partner, which may facilitate proximity seeking between the pair-bonded individuals. Hence, the prairie vole model may provide insights into brain mechanisms involved in the psychopathological consequences of partner loss.
Assembly of bipolar microtubule structures by passive cross-linkers and molecular motors
NASA Astrophysics Data System (ADS)
Johann, D.; Goswami, D.; Kruse, K.
2016-06-01
During cell division, sister chromatids are segregated by the mitotic spindle, a bipolar assembly of interdigitating antiparallel polar filaments called microtubules. The spindle contains the midzone, a stable region of overlapping antiparallel microtubules, that is essential for maintaining bipolarity. Although a lot is known about the molecular players involved, the mechanism underlying midzone formation and maintenance is still poorly understood. We study the interaction of polar filaments that are cross-linked by molecular motors moving directionally and by passive cross-linkers diffusing along microtubules. Using a particle-based stochastic model, we find that the interplay of motors and passive cross-linkers can generate a stable finite overlap between a pair of antiparallel polar filaments. We develop a mean-field theory to study this mechanism in detail and investigate the influence of steric interactions between motors and passive cross-linkers on the overlap dynamics. In the presence of interspecies steric interactions, passive cross-linkers mimic the behavior of molecular motors and stable finite overlaps are generated even for non-cross-linking motors. Finally, we develop a mean-field theory for a bundle of aligned polar filaments and show that they can self-organize into a spindlelike pattern. Our work suggests possible ways as to how cells can generate spindle midzones and control their extensions.
NASA Astrophysics Data System (ADS)
Hachemi, Hania; Azzaz, Mohamed; Djeghlal, Mohamed Elamine
2016-10-01
The passivity behavior of a 2209 duplex stainless steel welded joint was investigated using potentiodynamic polarization, Mott-Schottky analysis and EIS measurements. In order to evaluate the contribution of temperature, chloride concentration and microstructure, a sequence of polarization tests were carried out in aerated NaCl solutions selected according to robust design of a three level-three factors Taguchi L9 orthogonal array. Analysis of signal-to-noise ratio and ANOVA were achieved on all measured data, and the contribution of every control factor was estimated. The results showed that the corrosion resistance of 2209 duplex stainless steel welded joint is related to the evolution of the passive film formed on the surface. It was found that the passive film on the welded zone possessed n- and p-type semiconductor characteristics. With the increase of solution temperature and chlorides concentration, the corrosion resistance of the passive film is more affected in the weldment than in the base metal.
NASA Astrophysics Data System (ADS)
Xin, Jia; Tang, Fenglin; Zheng, Xilai
2016-04-01
Application of microscale zero-valent iron (mZVI) is a promising technology for in-situ contaminated groundwater remediation. However, its longevity would be negatively impacted by surface passivation, especially in saline groundwater. In this study, the aging behaviors of mZVI particles were investigated in three media (milli-Q water, fresh groundwater and saline groundwater) using batch experiments to evaluate their potential corrosion and passivation performance in different field conditions. The results indicated that mZVI was reactive between 0-7 days exposure to water and then gradually lost reactivity over the next few hundred days. The patterns of kinetic curve were analogous among the three different media. In comparison, during the early phase (0-7 d), mZVI in saline groundwater showed a faster corrosion rate with a k value of 1.357, which was relatively higher than k values in milli-Q water and fresh groundwater. However, as the corrosion process further developed, the fastest corrosion rate was observed in milli-Q water followed with fresh groundwater and saline groundwater. These changes in reactivity provided evidence for different patterns and formation mechanisms of passive layers on mZVI in three media. The SEM-EDS analysis demonstrated that in the saline groundwater, a compact and even oxide film of carbonate green rust or Fe oxide (hydroxyl) species was formed immediately on the surface due to the high concentration and widely distributed bicarbonate and hardness, whereas in the fresh groundwater and milli-Q water, the passive layer was composed of loosely and unevenly distributed precipitates which much slowly formed as the iron corrosion proceeded. These findings provide insight into the molecular-scale mechanism of mZVI passivation by inorganic salts with particular implications in saline groundwater.
ERIC Educational Resources Information Center
Hardt, Janet
Passive-aggressive behavior in an emotionally disturbed child affects the child's progress and affects peer interactions in classroom settings. Passive-aggressive personalities are typically helpless, dependent, impulsive, overly anxious, poorly oriented to reality, and procrastinating. The characteristics of passive-aggressive children need to be…
Shih, Yen-Chen; Wang, Leeyih; Hsieh, Hsiao-Chi; Lin, King-Fu
2018-04-11
Ion accumulation of organometal halide perovskites (OHPs) induced by electrode polarization of perovskite solar cells (PSCs) under illumination has been intensely studied and associated with a widely observed current-voltage hysteresis behavior. This work is dedicated to the investigation of the behavior of charged species at the compact TiO 2 /OHP interface with respect to electrode polarization in PSC devices. By providing a comprehensive discussion of open-circuit voltage ( V OC ) buildup and V OC decay under illumination and in the dark for the PSCs modified with [6,6]-phenyl-C 61 butyric acid methyl ester (PCBM) at the TiO 2 /OHP interface and their corresponding electrochemical impedance spectroscopies (EISs), a justified mechanism is proposed attempting to elucidate the dynamics of interfacial species with respect to the time and frequency domains. Our results demonstrate that the retarded V OC buildup and decay observed in PSC devices are related to the formation of bound charges in TiO 2 , which is essential to neutralize the oppositely charged ions accumulating at the OHP side. Besides, inserting a thicker PCBM at the TiO 2 /OHP interface as a passivation layer can alleviate the electrode polarization more efficiently as verified by the low dielectric constant measured from EIS. Moreover, photoluminescence measurements indicate that PCBM at the TiO 2 /OHP interface is capable of passivating a trap state and improving charge transfer. However, with respect to the time scale investigated in this work, the reduction of the hysteresis behavior on a millisecond scale is more likely due to less bound charge formation at the interface rather than shallow trap-state passivation by PCBM. After all, this work comprehensively demonstrates the interfacial properties of PSCs associated with PCBM passivation and helps to further understand its impact on charging/discharging as well as device performance.
NASA Astrophysics Data System (ADS)
Fattah-alhosseini, Arash; Imantalab, Omid
2016-01-01
In this study, passivation behavior of ultrafine-grained (UFG) pure copper fabricated by ARB process in 0.01 M borax solution has been investigated. Before any electrochemical measurements, evaluation of microstructure was obtained by transmission electron microscopy (TEM). TEM observations revealed that with increasing the number of ARB passes, the grain size of specimens decrease. Also, TEM images showed that UFGs with average size of below 100 nm appeared after 7 passes of ARB. To investigate the passivation behavior of the specimens, electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis was carried out. For this purpose, three potentials within the passive region were chosen for potentiostatic passive film growth. EIS results showed that both passive film and charge-transfer resistance increases with increasing the number of ARB passes. Moreover, Mott-Schottky analysis revealed that with increasing the number of ARB passes, the acceptor density of the passive films decreased. In conclusion, increasing the number of ARB passes offers better conditions for forming the passive films with higher protection behavior, due to the growth of a much thicker and less defective films.
Gravitaxis of Euglena gracilis depends only partially on passive buoyancy
NASA Astrophysics Data System (ADS)
Richter, Peter R.; Schuster, Martin; Lebert, Michael; Streb, Christine; Häder, Donat-Peter
In darkness, the unicellular freshwater flagellate Euglena gracilis shows a pronounced negative gravitactic behavior, and the cells swim actively upward in the water column. Up to now it was unclear whether this behavior is based on a passive (physical) alignment mechanism (e.g., buoyancy due to a fore-aft asymmetry of the cell body) or on an active physiological mechanism. A sounding rocket experiment was performed in which the effect of sub-1g-accelerations (0.05, 0.08, 0.12, and 0.2g) on untreated living cells and immobilized (fixation with liquid nitrogen) cells was observed. By means of computerized image analysis the angles of the cells long axis with respect to the acceleration vector were analyzed in order to calculate and compare the reorientation kinetics of the immobilized cells versus that of the controls. In both groups, the reorientation kinetics depended on the dose, but the reorientation of the living cells was about five times faster than that of the immobilized cells. This indicates that in young cells gravitaxis can be explained by a physical mechanism only to a small extend. In older cultures, in which the cells often have a drop shaped cell body, the physical reorientation is considerably faster, and a more pronounced influence of passive alignment caused by fore/aft asymmetry (drag-gravity model) can not be excluded. In addition to these results, Euglena gracilis cells seem to respond very sensitively to small accelerations when they are applied after a longer microgravity period. The data indicate that gravitactic orientation occurred at an acceleration as low as 0.05g.
NASA Astrophysics Data System (ADS)
Bensabra, Hakim; Franczak, Agnieszka; Aaboubi, Omar; Azzouz, Noureddine; Chopart, Jean-Paul
2017-01-01
Several compounds tested as corrosion inhibitors have proven to possess good effectiveness in protection of steel rebar in concrete. However, most of them are considered as pollutant compounds, which limits their use. The aim of this work is to investigate the inhibitive effect of sodium molybdate, which is considered as a nonpollutant compound, against pitting corrosion of steel rebar in simulated concrete pore solution. Corrosion behaviors of steel in different solutions were studied by means of corrosion potential, potentiodynamic polarization, and electrochemical impedance spectroscopy. The results indicate that the addition of sodium molybdate to the chlorinated solution decreases significantly the corrosion rate of steel. Due to its passivating character, the sodium molybdate inhibitor promotes the formation of a stable passive layer on the surface of steel, acting as a physical barrier against chloride ions, on one hand, and consolidating the passivation mechanism of steel, on the other. The optimal inhibition rate is given by the concentration of molybdate ions, corresponding to a [MoO4 2-]/[Cl-] that is equal to 0.5.
Fluctuation Reduction in a Si Micromechanical Resonator Tuned to Nonlinear Internal Resonance
NASA Astrophysics Data System (ADS)
Strachan, B. Scott; Czaplewski, David; Chen, Changyao; Dykman, Mark; Lopez, Daniel; Shaw, Steven
2015-03-01
We describe experimental and theoretical results on an unusual behavior of fluctuations when the system exhibits internal resonance. We study the fundamental flexural mode (FFM) of a Si microbeam. The FFM is electrically actuated and detected. It is resonantly nonlinearly coupled to another mode, which is not directly accessible and has a frequency nearly three times the FFM frequency. Both the FFM and the passive mode have long lifetimes. We find that the passive mode can be a ``sink'' for fluctuations of the FFM. This explains the recently observed dramatic decrease of these fluctuations at nonlinear resonance. The re-distribution of the vibration amplitudes and the fluctuations is reminiscent of what happens at level anti-crossing in quantum mechanics. However, here it is different because of interplay of the dependence of the vibration frequency of the FFM on its amplitude due to internal nonlinearity and the nonlinear resonance with the passive mode. We study both the response of the system to external resonant driving and also the behavior of the system in the presence of a feedback loop. The experimental and theoretical results are in good agreement.
A theory for the phase behavior of mixtures of active particles.
Takatori, Sho C; Brady, John F
2015-10-28
Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kBT that quantifies the particles' kinetic energy and gauges how "hot" or "cold" the system is. For systems far from equilibrium, such as active matter, it is unclear whether the concept of a "temperature" exists and whether self-propelled entities are capable of thermally equilibrating like passive Brownian suspensions. Here we develop a simple mechanical theory to study the phase behavior and "temperature" of a mixture of self-propelled particles. A mixture of active swimmers and passive Brownian particles is an ideal system for discovery of the temperature of active matter and the quantities that get shared upon particle collisions. We derive an explicit equation of state for the active/passive mixture to compute a phase diagram and to generalize thermodynamic concepts like the chemical potential and free energy for a mixture of nonequilibrium species. We find that different stability criteria predict in general different phase boundaries, facilitating considerations in simulations and experiments about which ensemble of variables are held fixed and varied.
Tribocorrosion behavior of beta titanium biomedical alloys in phosphate buffer saline solution.
Pina, V Guiñón; Dalmau, A; Devesa, F; Amigó, V; Muñoz, A Igual
2015-06-01
The tribo-electrochemical behavior of different β titanium alloys for biomedical applications sintered by powder metallurgy has been investigated. Different mechanical, electrochemical and optical techniques were used to study the influence of the chemical composition, Sn content, and the electrochemical conditions on the tribocorrosion behavior of those alloys Ti30NbxSn alloys (where "x" is the weight percentage of Sn content, 2% and 4%). Sn content increases the active and passive dissolution rate of the titanium alloys, thus increasing the mechanically activated corrosion under tribocorrosion conditions. It also increases the mechanical wear of the alloy. Prevailing electrochemical conditions between -1 and 2V influences the wear accelerated corrosion by increasing it with the applied potential and slightly increases the mechanical wear of Ti30Nb4Sn. Wear accelerated corrosion can be predicted by existing models as a function of electrochemical and mechanical parameters of the titanium alloys. Copyright © 2015 Elsevier Ltd. All rights reserved.
Baskan, O; Speetjens, M F M; Metcalfe, G; Clercx, H J H
2015-10-01
Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.
Roux, A; Laporte, S; Lecompte, J; Gras, L-L; Iordanoff, I
2016-01-25
The muscle-tendon complex (MTC) is a multi-scale, anisotropic, non-homogeneous structure. It is composed of fascicles, gathered together in a conjunctive aponeurosis. Fibers are oriented into the MTC with a pennation angle. Many MTC models use the Finite Element Method (FEM) to simulate the behavior of the MTC as a hyper-viscoelastic material. The Discrete Element Method (DEM) could be adapted to model fibrous materials, such as the MTC. DEM could capture the complex behavior of a material with a simple discretization scheme and help in understanding the influence of the orientation of fibers on the MTC׳s behavior. The aims of this study were to model the MTC in DEM at the macroscopic scale and to obtain the force/displacement curve during a non-destructive passive tensile test. Another aim was to highlight the influence of the geometrical parameters of the MTC on the global mechanical behavior. A geometrical construction of the MTC was done using discrete element linked by springs. Young׳s modulus values of the MTC׳s components were retrieved from the literature to model the microscopic stiffness of each spring. Alignment and re-orientation of all of the muscle׳s fibers with the tensile axis were observed numerically. The hyper-elastic behavior of the MTC was pointed out. The structure׳s effects, added to the geometrical parameters, highlight the MTC׳s mechanical behavior. It is also highlighted by the heterogeneity of the strain of the MTC׳s components. DEM seems to be a promising method to model the hyper-elastic macroscopic behavior of the MTC with simple elastic microscopic elements. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Interventions on the exposure of non-smoking pregnant women to passive smoking].
Yao, Ting-ting; Chen, Xue-yun; Hu, De-wei; Mao, Zheng-zhong
2008-09-01
To investigate the extent of exposure of non-smoking pregnant women to passive smoking; to undertake interventions on the knowledge, attitudes and behaviors of those women toward passive smoking; and to evaluate the effectiveness of the interventions. A total of 128 non-smoking pregnant women participated in the survey. Their knowledge, attitudes and behaviors towards passive smoking were measured by a self-administered questionnaire. A sixteen-week intervention was undertaken. The knowledge and attitudes of the non-smoking pregnant women towards passive smoking improved significantly, as well as their attempts to avoid exposure to the passive smoking brought by their smoking husbands or other family members. Telephone counseling, booklets and doctors' advices were the most acceptable approaches of health education. The comprehensive interventions are effective for improving the knowledge, attitudes and behaviors of non-smoking women toward passive smoking.
Xin, Yunchang; Huo, Kaifu; Tao, Hu; Tang, Guoyi; Chu, Paul K
2008-11-01
Various electrochemical approaches, including potentiodynamic polarization, open circuit potential evolution and electrochemical impedance spectroscopy (EIS), are employed to investigate the degradation behavior of biomedical magnesium alloy under the influence of aggressive ions, such as chloride, phosphate, carbonate and sulfate, in a physiological environment. The synergetic effects and mutual influence of these ions on the degradation behavior of Mg are revealed. Our results demonstrate that chloride ions can induce porous pitting corrosion. In the presence of phosphates, the corrosion rate decreases and the formation of pitting corrosion is significantly delayed due to precipitation of magnesium phosphate. Hydrogen carbonate ions are observed to stimulate the corrosion of magnesium alloy during the early immersion stage but they can also induce rapid passivation on the surface. This surface passivation behavior mainly results from the fast precipitation of magnesium carbonate in the corrosion product layer that can subsequently inhibit pitting corrosion completely. Sulfate ions are also found to stimulate magnesium dissolution. These results improve our understanding on the degradation mechanism of surgical magnesium in the physiological environment.
NASA Astrophysics Data System (ADS)
Dalverny, O.; Alexis, J.
2018-02-01
This article deals with thermo-mechanical behavior of power electronic modules used in several transportation applications as railway, aeronautic or automotive systems. Due to a multi-layered structures, involving different materials with a large variation of coefficient of thermal expansion, temperature variations originated from active or passive cycling (respectively from die dissipation or environmental constraint) induces strain and stresses field variations, giving fatigue phenomenon of the system. The analysis of the behavior of these systems and their dimensioning require the implementation of complex modeling strategies by both the multi-physical and the multi-scale character of the power modules. In this paper we present some solutions for studying the thermomechanical behavior of brazed assemblies as well as taking into account the interfaces represented by the numerous metallizations involved in the process assembly.
D'Astolfo, Lisa; Rief, Winfried
2017-01-01
Modifying patients' expectations by exposing them to expectation violation situations (thus maximizing the difference between the expected and the actual situational outcome) is proposed to be a crucial mechanism for therapeutic success for a variety of different mental disorders. However, clinical observations suggest that patients often maintain their expectations regardless of experiences contradicting their expectations. It remains unclear which information processing mechanisms lead to modification or persistence of patients' expectations. Insight in the processing could be provided by Neuroimaging studies investigating prediction error (PE, i.e., neuronal reactions to non-expected stimuli). Two methods are often used to investigate the PE: (1) paradigms, in which participants passively observe PEs ("passive" paradigms) and (2) paradigms, which encourage a behavioral adaptation following a PE ("active" paradigms). These paradigms are similar to the methods used to induce expectation violations in clinical settings: (1) the confrontation with an expectation violation situation and (2) an enhanced confrontation in which the patient actively challenges his expectation. We used this similarity to gain insight in the different neuronal processing of the two PE paradigms. We performed a meta-analysis contrasting neuronal activity of PE paradigms encouraging a behavioral adaptation following a PE and paradigms enforcing passiveness following a PE. We found more neuronal activity in the striatum, the insula and the fusiform gyrus in studies encouraging behavioral adaptation following a PE. Due to the involvement of reward assessment and avoidance learning associated with the striatum and the insula we propose that the deliberate execution of action alternatives following a PE is associated with the integration of new information into previously existing expectations, therefore leading to an expectation change. While further research is needed to directly assess expectations of participants, this study provides new insights into the information processing mechanisms following an expectation violation.
Hardoüin, Jérôme; Sagués, Francesc
2018-01-01
The formation of emulsions from multiple immiscible fluids is governed by classical concepts such as surface tension, differential chemical affinity and viscosity, and the action of surface-active agents. Much less is known about emulsification when one of the components is active and thus inherently not constrained by the laws of thermodynamic equilibrium. We demonstrate one such realization consisting in the encapsulation of an active liquid crystal (LC)–like gel, based on microtubules and kinesin molecular motors, into a thermotropic LC. These active nematic emulsions exhibit a variety of dynamic behaviors that arise from the cross-talk between topological defects separately residing in the active and passive components. Using numerical simulations, we show a feedback mechanism by which active flows continuously drive the passive defects that, in response, resolve the otherwise degenerated trajectories of the active defects. Our experiments show that the choice of surfactant, which stabilizes the active/passive interface, allows tuning the regularity of the self-sustained dynamic events. The hybrid active-passive system demonstrated here provides new perspectives for dynamic self-assembly driven by an active material but regulated by the equilibrium properties of the passive component. PMID:29740605
Guillamat, Pau; Kos, Žiga; Hardoüin, Jérôme; Ignés-Mullol, Jordi; Ravnik, Miha; Sagués, Francesc
2018-04-01
The formation of emulsions from multiple immiscible fluids is governed by classical concepts such as surface tension, differential chemical affinity and viscosity, and the action of surface-active agents. Much less is known about emulsification when one of the components is active and thus inherently not constrained by the laws of thermodynamic equilibrium. We demonstrate one such realization consisting in the encapsulation of an active liquid crystal (LC)-like gel, based on microtubules and kinesin molecular motors, into a thermotropic LC. These active nematic emulsions exhibit a variety of dynamic behaviors that arise from the cross-talk between topological defects separately residing in the active and passive components. Using numerical simulations, we show a feedback mechanism by which active flows continuously drive the passive defects that, in response, resolve the otherwise degenerated trajectories of the active defects. Our experiments show that the choice of surfactant, which stabilizes the active/passive interface, allows tuning the regularity of the self-sustained dynamic events. The hybrid active-passive system demonstrated here provides new perspectives for dynamic self-assembly driven by an active material but regulated by the equilibrium properties of the passive component.
The effect of postoperative passive motion on rotator cuff healing in a rat model.
Peltz, Cathryn D; Dourte, Leann M; Kuntz, Andrew F; Sarver, Joseph J; Kim, Soung-Yon; Williams, Gerald R; Soslowsky, Louis J
2009-10-01
Surgical repairs of torn rotator cuff tendons frequently fail. Immobilization has been shown to improve tissue mechanical properties in an animal model of rotator cuff repair, and passive motion has been shown to improve joint mechanics in animal models of flexor tendon repair. Our objective was to determine if daily passive motion would improve joint mechanics in comparison with continuous immobilization in a rat rotator cuff repair model. We hypothesized that daily passive motion would result in improved passive shoulder joint mechanics in comparison with continuous immobilization initially and that there would be no differences in passive joint mechanics or insertion site mechanical properties after four weeks of remobilization. A supraspinatus injury was created and was surgically repaired in sixty-five Sprague-Dawley rats. Rats were separated into three postoperative groups (continuous immobilization, passive motion protocol 1, and passive motion protocol 2) for two weeks before all underwent a remobilization protocol for four weeks. Serial measurements of passive shoulder mechanics (internal and external range of motion and joint stiffness) were made before surgery and at two and six weeks after surgery. After the animals were killed, collagen organization and mechanical properties of the tendon-to-bone insertion site were determined. Total range of motion for both passive motion groups (49% and 45% of the pre-injury values) was less than that for the continuous immobilization group (59% of the pre-injury value) at two weeks and remained significantly less following four weeks of remobilization exercise. Joint stiffness at two weeks was increased for both passive motion groups in comparison with the continuous immobilization group. At both two and six weeks after repair, internal range of motion was significantly decreased whereas external range of motion was not. There were no differences between the groups in terms of collagen organization or mechanical properties. In this model, immediate postoperative passive motion was found to be detrimental to passive shoulder mechanics. We speculate that passive motion results in increased scar formation in the subacromial space, thereby resulting in decreased range of motion and increased joint stiffness. Passive motion had no effect on collagen organization or tendon mechanical properties measured six weeks after surgery.
U-937 Toxicity Testing of Lunar Dust Stimulant (JSC-1A-vf)
NASA Technical Reports Server (NTRS)
Bales, Kristyn; Hammond, Dianne; Wallace, William; Jeevarajan, Antony
2007-01-01
With NASA planning to extend the human presence to the moon by 2020, the dangers of the lunar environment must be assessed and appropriate countermeasures must be developed. Possible toxic effects of the lunar dust are of particular importance to human health because of the dust's chemical composition, reactivity, and small size. This project focuses on the toxicity of lunar dust stimulant (JSC-1A-vf), in both its active and passive forms, using U-937 human monocyte cells. Simulant was mechanically activated from its passive form by grinding, and its ability to produce hydroxyl radicals was determined. To test for toxicity, active and passivated simulant was diluted in media and applied to the cells for various time periods. Toxicity was then estimated using flow cytometry on the Guava Personal Cell Analysis system. Preliminary results suggest that passivated stimulant is slightly toxic, with an increase in toxicity for activated stimulant. Toxicity results may be affected by cell lysing behavior and quenching of hydroxyl radical production by the cell media.
Electrochemical and thermal grafting of alkyl grignard reagents onto (100) silicon surfaces.
Vegunta, Sri Sai S; Ngunjiri, Johnpeter N; Flake, John C
2009-11-03
Passivation of (100) silicon surfaces using alkyl Grignard reagents is explored via electrochemical and thermal grafting methods. The electrochemical behavior of silicon in methyl or ethyl Grignard reagents in tetrahydrofuran is investigated using cyclic voltammetry. Surface morphology and chemistry are investigated using atomic force microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that electrochemical pathways provide an efficient and more uniform passivation method relative to thermal methods, and XPS results demonstrate that electrografted terminations are effective at limiting native oxide formation for more than 55 days in ambient conditions. A two-electron per silicon mechanism is proposed for electrografting a single (1:1) alkyl group per (100) silicon atom. The mechanism includes oxidation of two Grignard species and subsequent hydrogen abstraction and alkylation reaction resulting in a covalent attachment of alkyl groups with silicon.
Bosch, Oliver J; Pohl, Tobias T; Neumann, Inga D; Young, Larry J
2018-04-02
When fathers leave the family, mothers are at increased risk of developing depression and anxiety disorders. In biparental, socially monogamous prairie voles (Microtus ochrogaster), sudden bond disruption increases passive stress-coping, indicative of depressive-like behavior, and acts as chronic stressor in both males and females. However, the consequences of separation in lactating prairie vole mothers are unknown. In the present study, following 18 days of cohousing, half of the prairie vole pairs were separated by removing the male. In early lactation, maternal care was unaffected by separation, whereas anxiety-related behavior and passive stress-coping were significantly elevated in separated mothers. Separation significantly increased corticotropin-releasing factor (CRF) mRNA expression in the paraventricular nucleus of the hypothalamus under basal conditions, similar to levels of paired females after acute exposure to forced swim stress. A second cohort of lactating prairie voles was infused intracerebroventricularly with either vehicle or the CRF receptor antagonist D-Phe just prior to behavioral testing. The brief restraining during acute infusion significantly decreased arched back nursing in vehicle-treated paired and separated groups, whereas in the D-Phe-treated separated group the behavior was not impaired. Furthermore, in the latter, anxiety-related behavior and passive stress-coping were normalized to levels similar to vehicle-treated paired mothers. In conclusion, maternal investment is robust enough to withstand loss of the partner, whereas the mother's emotionality is affected, which may be - at least partly - mediated by a CRF-dependent mechanism. This animal model has potential for mechanistic studies of behavioral and physiological consequences of partner loss in single mothers. Copyright © 2017 Elsevier B.V. All rights reserved.
Xin, Jia; Tang, Fenglin; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf; Lu, Xin
2016-09-01
Application of microscale zero-valent iron (mZVI) is a promising technology for in-situ contaminated groundwater remediation; however, its longevity is negatively impacted by surface passivation, especially in saline groundwater. In this study, the aging behavior of mZVI particles was investigated in three media (milli-Q water, fresh groundwater and saline groundwater) using batch experiments to evaluate their potential corrosion and passivation performance under different field conditions. The results indicated that mZVI was reactive for 0-7 days of exposure to water and then gradually lost H2-generating capacity over the next hundred days in all of the tested media. In comparison, mZVI in saline groundwater exhibited the fastest corrosion rate during the early phase (0-7 d), followed by the sharpest kinetic constant decline in the latter phases. The SEM-EDS and XPS analyses demonstrated that in the saline groundwater, a thin and compact oxide film was immediately formed on the surface and significantly shielded the iron reactive site. Nevertheless, in fresh groundwater and milli-Q water, a passive layer composed of loosely and unevenly distributed precipitates slowly formed, with abundant reactive sites available to support continuous iron corrosion. These findings provide insight into the molecular-scale mechanism that governs mZVI passivation and provide implications for long-term mZVI application in saline contaminated groundwater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spencer, Ricky-John; Janzen, Fredric J
2011-07-01
Incubation temperature plays a prominent role in shaping the phenotypes and fitness of embryos, including affecting developmental rates. In many taxa, including turtles, eggs are deposited in layers such that thermal gradients alter developmental rates within a nest. Despite this thermal effect, a nascent body of experimental work on environmentally cued hatching in turtles has revealed unexpected synchronicity in hatching behavior. This review discusses environmental cues for hatching, physiological mechanisms behind synchronous hatching, proximate and ultimate causes for this behavior, and future directions for research. Four freshwater turtle species have been investigated experimentally, with hatching in each species elicited by different environmental cues and responding via various physiological mechanisms. Hatching of groups of eggs in turtles apparently involves some level of embryo-embryo communication and thus is not a purely passive activity. Although turtles are not icons of complex social behavior, life-history theory predicts that the group environment of the nest can drive the evolution of environmentally cued hatching.
Parallel processing by cortical inhibition enables context-dependent behavior.
Kuchibhotla, Kishore V; Gill, Jonathan V; Lindsay, Grace W; Papadoyannis, Eleni S; Field, Rachel E; Sten, Tom A Hindmarsh; Miller, Kenneth D; Froemke, Robert C
2017-01-01
Physical features of sensory stimuli are fixed, but sensory perception is context dependent. The precise mechanisms that govern contextual modulation remain unknown. Here, we trained mice to switch between two contexts: passively listening to pure tones and performing a recognition task for the same stimuli. Two-photon imaging showed that many excitatory neurons in auditory cortex were suppressed during behavior, while some cells became more active. Whole-cell recordings showed that excitatory inputs were affected only modestly by context, but inhibition was more sensitive, with PV + , SOM + , and VIP + interneurons balancing inhibition and disinhibition within the network. Cholinergic modulation was involved in context switching, with cholinergic axons increasing activity during behavior and directly depolarizing inhibitory cells. Network modeling captured these findings, but only when modulation coincidently drove all three interneuron subtypes, ruling out either inhibition or disinhibition alone as sole mechanism for active engagement. Parallel processing of cholinergic modulation by cortical interneurons therefore enables context-dependent behavior.
Energetic Passivity of the Human Ankle Joint.
Lee, Hyunglae; Hogan, Neville
2016-12-01
Understanding the passive or nonpassive behavior of the neuromuscular system is important to design and control robots that physically interact with humans, since it provides quantitative information to secure coupled stability while maximizing performance. This has become more important than ever apace with the increasing demand for robotic technologies in neurorehabilitation. This paper presents a quantitative characterization of passive and nonpassive behavior of the ankle of young healthy subjects, which provides a baseline for future studies in persons with neurological impairments and information for future developments of rehabilitation robots, such as exoskeletal devices and powered prostheses. Measurements using a wearable ankle robot actuating 2 degrees-of-freedom of the ankle combined with curl analysis and passivity analysis enabled characterization of both quasi-static and steady-state dynamic behavior of the ankle, unavailable from single DOF studies. Despite active neuromuscular control over a wide range of muscle activation, in young healthy subjects passive or dissipative ankle behavior predominated.
NASA Astrophysics Data System (ADS)
Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.
2006-02-01
We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology
NASA Astrophysics Data System (ADS)
Attarzadeh, Farid Reza; Elmkhah, Hassan; Fattah-Alhosseini, Arash
2017-02-01
In this study, the electrochemical behaviors of pure titanium (Ti) and nanostructured (NS) Ti-coated AISI 304 stainless steel (SS) in strongly acidic solutions of H2SO4 were investigated and compared. A type of physical vapor deposition method, cathodic arc evaporation, was applied to deposit NS Ti on 304 SS. Scanning electron microscope and X-ray diffraction were used to characterize surface coating morphology. Potentiodynamic polarization, electrochemical impedance spectroscopy, and Mott-Schottky (M-S) analysis were used to evaluate the passive behavior of the samples. Electrochemical measurements revealed that the passive behavior of NS Ti coating was better than that of pure Ti in 0.1 and 0.01 M H2SO4 solutions. M-S analysis indicated that the passive films behaved as n-type semiconductors in H2SO4 solutions and the deposition method did not affect the semiconducting type of passive films formed on the coated samples. In addition, this analysis showed that the NS Ti coating had lower donor densities. Finally, all electrochemical tests showed that the passive behavior of the Ti-coated samples was superior, mainly due to the formation of thicker, yet less defective passive films.
1994-01-17
alartl.rdentifvb bjock nurrber) FtELD GROUP SUB-GROUP Appreveo for LUDic release; OSirlOUtion unllmilTe. Reproduction in whole or in part is pemitted for any...INSPECTED 5 0eeesson For Mr.c EAi 0 Justi fioaL fo p ,l INTRODUCTION Aluminum alloys are generally designed for improved mechanical properties which...during spraying. The specifications for these samples are given in Table 1. In this report, W concentrations used to denote samples refer to design
Evaluation of passive and active vibration control mechanisms in a microgravity environment
NASA Technical Reports Server (NTRS)
Ellison, J.; Ahmadi, G.; Grodsinsky, C.
1993-01-01
The behavior of equipment and their light secondary attachments in large space structures under orbital excitation is studied. The equipment is modeled as a shear beam and its secondary attachment is treated as a single-degree-of-freedom lumped mass system. Peak responses of the equipment and its secondary system for a variety of vibration control mechanisms are evaluated. A novel active friction control mechanism, by varying the normal force, is suggested. The device uses a magnetic field control to minimize the stick condition, thereby reducing the overall structural response. The results show that the use of the passive vibration control devices could reduce the peak equipment responses to a certain extent. However, major reduction of vibration levels could be achieved only by the use of active devices. Using active control of the interface normal force, the peak responses of the equipment and its attachment are reduced by a factor of 10 over the fixed-base equipment response.
Left Ventricular Diastolic and Systolic Material Property Estimation from Image Data
Krishnamurthy, Adarsh; Villongco, Christopher; Beck, Amanda; Omens, Jeffrey; McCulloch, Andrew
2015-01-01
Cardiovascular simulations using patient-specific geometries can help researchers understand the mechanical behavior of the heart under different loading or disease conditions. However, to replicate the regional mechanics of the heart accurately, both the nonlinear passive and active material properties must be estimated reliably. In this paper, automated methods were used to determine passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Two different approaches were used to model systole. In the first, a physiologically-based active contraction model [1] coupled to a hemodynamic three-element Windkessel model of the circulation was used to simulate ventricular ejection. In the second, developed active tension was directly adjusted to match ventricular volumes at end-systole while prescribing the known end-systolic pressure. These methods were tested in four normal dogs using the data provided for the LV mechanics challenge [2]. The resulting end-diastolic and end-systolic geometry from the simulation were compared with measured image data. PMID:25729778
Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high-k passivation.
Na, Junhong; Joo, Min-Kyu; Shin, Minju; Huh, Junghwan; Kim, Jae-Sung; Piao, Mingxing; Jin, Jun-Eon; Jang, Ho-Kyun; Choi, Hyung Jong; Shim, Joon Hyung; Kim, Gyu-Tae
2014-01-07
Diagnosing of the interface quality and the interactions between insulators and semiconductors is significant to achieve the high performance of nanodevices. Herein, low-frequency noise (LFN) in mechanically exfoliated multilayer molybdenum disulfide (MoS2) (~11.3 nm-thick) field-effect transistors with back-gate control was characterized with and without an Al2O3 high-k passivation layer. The carrier number fluctuation (CNF) model associated with trapping/detrapping the charge carriers at the interface nicely described the noise behavior in the strong accumulation regime both with and without the Al2O3 passivation layer. The interface trap density at the MoS2-SiO2 interface was extracted from the LFN analysis, and estimated to be Nit ~ 10(10) eV(-1) cm(-2) without and with the passivation layer. This suggested that the accumulation channel induced by the back-gate was not significantly influenced by the passivation layer. The Hooge mobility fluctuation (HMF) model implying the bulk conduction was found to describe the drain current fluctuations in the subthreshold regime, which is rarely observed in other nanodevices, attributed to those extremely thin channel sizes. In the case of the thick-MoS2 (~40 nm-thick) without the passivation, the HMF model was clearly observed all over the operation regime, ensuring the existence of the bulk conduction in multilayer MoS2. With the Al2O3 passivation layer, the change in the noise behavior was explained from the point of formation of the additional top channel in the MoS2 because of the fixed charges in the Al2O3. The interface trap density from the additional CNF model was Nit = 1.8 × 10(12) eV(-1) cm(-2) at the MoS2-Al2O3 interface.
Corrosion behavior of Ti-39Nb alloy for dentistry.
Fojt, Jaroslav; Joska, Ludek; Malek, Jaroslav; Sefl, Vaclav
2015-11-01
To increase an orthopedic implant's lifetime, researchers are now concerned on the development of new titanium alloys with suitable mechanical properties (low elastic modulus-high fatigue strength), corrosion resistance and good workability. Corrosion resistance of the newly developed titanium alloys should be comparable with that of pure titanium. The effect of medical preparations containing fluoride ions represents a specific problem related to the use of titanium based materials in dentistry. The aim of this study was to determine the corrosion behavior of β titanium alloy Ti-39Nb in physiological saline solution and in physiological solution containing fluoride ions. Corrosion behavior was studied using standard electrochemical techniques and X-ray photoelectron spectroscopy. It was found that corrosion properties of the studied alloy were comparable with the properties of titanium grade 2. The passive layer was based on the oxides of titanium and niobium in several oxidation states. Alloying with niobium, which was the important part of the alloy passive layer, resulted in no significant changes of corrosion behavior. In the presence of fluoride ions, the corrosion resistance was higher than the resistance of titanium. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baskan, O.; Clercx, H. J. H; Speetjens, M. F. M.
Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progressionmore » by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.« less
Knee joint laxity and passive stiffness in meniscectomized patients compared with healthy controls.
Thorlund, Jonas B; Creaby, Mark W; Wrigley, Tim V; Metcalf, Ben R; Bennell, Kim L
2014-10-01
Passive mechanical behavior of the knee in the frontal plane, measured as angular laxity and mechanical stiffness, may play an important role in the pathogenesis of knee osteoarthritis (OA). Little is known about knee laxity and stiffness prior to knee OA onset. We investigated knee joint angular laxity and passive stiffness in meniscectomized patients at high risk of knee OA compared with healthy controls. Sixty patients meniscectomized for a medial meniscal tear (52 men, 41.4 ± 5.5 years, 175.3 ± 7.9 cm, 83.6 ± 12.8 kg, mean ± SD) and 21 healthy controls (18 men, 42.0 ± 6.7 years, 176.8 ± 5.7 cm, 77.8 ± 13.4 kg) had their knee joint angular laxity and passive stiffness assessed twice ~2.3 years apart. Linear regression models including age, sex, height and body mass as covariates in the adjusted model were used to assess differences between groups. Greater knee joint varus (-10.1 vs. -7.3°, p<0.001), valgus (7.1 vs. 5.6°, p=0.001) and total (17.2 vs. 12.9°, p<0.001) angular laxity together with reduced midrange passive stiffness (1.71 vs. 2.36 Nm/°, p<0.001) were observed in patients vs. healthy controls. No differences were observed in change in stiffness over time between patients and controls, however a tendency towards increased laxity in patients was seen. Meniscectomized patients showed increased knee joint angular laxity and reduced passive stiffness ~3 months post surgery compared with controls. In addition, the results indicated that knee joint laxity may increase over time in meniscectomized patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Clemen, Christof B; Benderoth, Günther E K; Schmidt, Andreas; Hübner, Frank; Vogl, Thomas J; Silber, Gerhard
2017-01-01
In this study, useful methods for active human skeletal muscle material parameter determination are provided. First, a straightforward approach to the implementation of a transversely isotropic hyperelastic continuum mechanical material model in an invariant formulation is presented. This procedure is found to be feasible even if the strain energy is formulated in terms of invariants other than those predetermined by the software's requirements. Next, an appropriate experimental setup for the observation of activation-dependent material behavior, corresponding data acquisition, and evaluation is given. Geometry reconstruction based on magnetic resonance imaging of different deformation states is used to generate realistic, subject-specific finite element models of the upper arm. Using the deterministic SIMPLEX optimization strategy, a convenient quasi-static passive-elastic material characterization is pursued; the results of this approach used to characterize the behavior of human biceps in vivo indicate the feasibility of the illustrated methods to identify active material parameters comprising multiple loading modes. A comparison of a contact simulation incorporating the optimized parameters to a reconstructed deformed geometry of an indented upper arm shows the validity of the obtained results regarding deformation scenarios perpendicular to the effective direction of the nonactivated biceps. However, for a valid, activatable, general-purpose material characterization, the material model needs some modifications as well as a multicriteria optimization of the force-displacement data for different loading modes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Passive and active mechanical properties of biotemplated ceramics revisited.
Van Opdenbosch, Daniel; Fritz-Popovski, Gerhard; Plank, Johann; Zollfrank, Cordt; Paris, Oskar
2016-10-13
Living nature and human technology apply different principles to create hard, strong and tough materials. In this review, we compare and discuss prominent aspects of these alternative strategies, and demonstrate for selected examples that nanoscale-precision biotemplating is able to produce uncommon mechanical properties as well as actuating behavior, resembling to some extent the properties of the original natural templates. We present and discuss mechanical testing data showing for the first time that nanometer-precision biotemplating can lead to porous ceramic materials with deformation characteristics commonly associated with either biological or highly advanced technical materials. We also review recent findings on the relation between hierarchical structuring and humidity-induced directional motion. Finally, we discuss to which extent the observed behavior is in agreement with previous results and theories on the mechanical properties of multiscale hierarchical materials, as well as studies of highly disperse technical materials, together with an outlook for further lines of investigation.
Pozzoli, Tiziana; Gini, Gianluca
2010-08-01
This study examined the role of pro-victim attitudes, personal responsibility, coping responses to observations of bullying, and perceived peer normative pressure in explaining defending the victim and passive bystanding behavior in bullying. A total of 462 Italian early adolescents (mean age = 13.4 years, SD = 9 months) participated in the study. The behaviors were measured through two informants: each individual student and the teachers. The findings of a series of hierarchical regressions showed that, regardless of the informant, problem solving coping strategies and perceived peer normative pressure for intervention were positively associated with active help towards a bullied peer and negatively related to passivity. In contrast, distancing strategies were positively associated with passive bystanding, whereas they were negatively associated with teacher-reported defending behavior. Moreover, self-reported defending behavior was positively associated with personal responsibility for intervention, but only under conditions of low perceived peer pressure. Finally, the perception of peer pressure for intervention buffered the negative influence of distancing on passive bystanding tendencies. Future directions are discussed.
Spazzin, Aloísio Oro; Henriques, Guilherme Elias Pessanha; de Arruda Nóbilo, Mauro Antônio; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço; Mesquita, Marcelo Ferraz
2009-01-01
Objectives: This study evaluated the influence of prosthetic screw material on joint stability in implantsupported dentures at two levels of fit. Methods: Ten mandibular implant-supported dentures were fabricated. Twenty cast models were fabricated using these dentures. Four groups (n=10) were tested, according to the vertical fit of the dentures [passive and non-passive] and prosthetic screw materials [titanium (Ti) or gold (Au) alloy]. The one-screw test was performed to quantify the vertical misfits using an optic microscope. The loosening torque for the prosthetic screws was measured 24 hours after the tightening torque (10 Ncm) using a digital torque meter. Data were analyzed by two-way ANOVA and Tukey’s test (α=0.05). Results: Overall, dentures with passive fit and Ti screws resulted in significantly higher loosening torque of the prosthetic screws (p<0.05). No significant interaction was found between fit level and screw material (p=0.199). The prosthetic screw material and fit of implant-supported dentures have an influence on screw joint stability. Ti screws presented higher joint stability than Au screws and minimum of misfit should be found clinically to improve the mechanical behavior of the screw joint. PMID:20148135
NASA Astrophysics Data System (ADS)
Dou, Z.
2017-12-01
In this study, the influence of multi-scale roughness on transport behavior of the passive solute through the self-affine fracture was investigated. The single self-affine fracture was constructed by the successive random additions (SRA) and the fracture roughness was decomposed into two different scales (i.e. large-scale primary roughness and small-scale secondary roughness) by the Wavelet analysis technique. The fluid flow in fractures, which was characterized by the Forchheimer's law, showed the non-linear flow behaviors such as eddies and tortuous streamlines. The results indicated that the small-scale secondary roughness was primarily responsible for the non-linear flow behaviors. The direct simulations of asymptotic passive solute transport represented the Non-Fickian transport characteristics (i.e. early arrivals and long tails) in breakthrough curves (BTCs) and residence time distributions (RTDs) with and without consideration of the secondary roughness. Analysis of multiscale BTCs and RTDs showed that the small-scale secondary roughness played a significant role in enhancing the Non-Fickian transport characteristics. We found that removing small-scale secondary roughness led to the lengthening arrival and shortening tail. The peak concentration in BTCs decreased as the secondary roughness was removed, implying that the secondary could also enhance the solute dilution. The estimated BTCs by the Fickian advection-dispersion equation (ADE) yielded errors which decreased with the small-scale secondary roughness being removed. The mobile-immobile model (MIM) was alternatively implemented to characterize the Non-Fickian transport. We found that the MIM was more capable of estimating Non-Fickian BTCs. The small-scale secondary roughness resulted in the decreasing mobile domain fraction and the increasing mass exchange rate between immobile and mobile domains. The estimated parameters from the MIM could provide insight into the inherent mechanism of roughness-induced Non-Fickian transport behaviors.
From cells to tissue: A continuum model of epithelial mechanics
NASA Astrophysics Data System (ADS)
Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru
2017-08-01
A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.
Alcohol and behavioral control: cognitive and neural mechanisms.
Vogel-Sprott, M; Easdon, C; Fillmore, M; Finn, P; Justus, A
2001-01-01
This article represents the proceedings of a symposium at the 2000 RSA Meeting in Denver, Colorado. The organizer/chair was Muriel Vogel-Sprott. The presentations were (1) Alcohol-induced impairment of inhibitory control: Some commonalities with attention deficit hyperactivity disorder, by Mark Fillmore; (2) Neural interactions that underlie response inhibition under alcohol: A functional magnetic resonance imaging investigation, by Craig Easdon; (3) Intentional control of behavior under alcohol, by Muriel Vogel-Sprott; and (4) Working memory and the disinhibiting effects of alcohol on passive avoidance learning, by Alicia Justius and Peter Finn.
Postinjury biomechanics of Achilles tendon vary by sex and hormone status
Fryhofer, George W.; Freedman, Benjamin R.; Hillin, Cody D.; Salka, Nabeel S.; Pardes, Adam M.; Weiss, Stephanie N.; Farber, Daniel C.
2016-01-01
Achilles tendon ruptures are common injuries. Sex differences are present in mechanical properties of uninjured Achilles tendon, but it remains unknown if these differences extend to tendon healing. We hypothesized that ovariectomized females (OVX) and males would exhibit inferior postinjury tendon properties compared with females. Male, female, and OVX Sprague-Dawley rats (n = 32/group) underwent acclimation and treadmill training before blunt transection of the Achilles tendon midsubstance. Injured hindlimbs were immobilized for 1 wk, followed by gradual return to activity and assessment of active and passive hindlimb function. Animals were euthanized at 3 or 6 wk postinjury to assess tendon structure, mechanics, and composition. Passive ankle stiffness and range of motion were superior in females at 3 wk; however, by 6 wk, passive and active function were similar in males and females but remained inferior in OVX. At 6 wk, female tendons had greater normalized secant modulus, viscoelastic behavior, and laxity compared with males. Normalized secant modulus, cross-sectional area and tendon glycosaminoglycan composition were inferior in OVX compared with females at 6 wk. Total fatigue cycles until tendon failure were similar among groups. Postinjury muscle fiber size was better preserved in females compared with males, and females had greater collagen III at the tendon injury site compared with males at 6 wk. Despite male and female Achilles tendons withstanding similar durations of fatigue loading, early passive hindlimb function and tendon mechanical properties, including secant modulus, suggest superior healing in females. Ovarian hormone loss was associated with inferior Achilles tendon healing. PMID:27633741
Multiple mechanisms quench passive spiral galaxies
NASA Astrophysics Data System (ADS)
Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.
2018-02-01
We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ < 1 × 1010 M⊙) passive spiral galaxies are located in the rich Virgo cluster. This is in contrast to low-mass spiral galaxies with star formation, which inhabit a range of environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.
A piezoelectric brace for passive suppression of structural vibration and energy harvesting
NASA Astrophysics Data System (ADS)
Yang, Chuang-Sheng Walter; Lai, Yong-An; Kim, Jin-Yeon
2017-08-01
Power outage after an earthquake would cause an additional chaos to the existing aftermath, greatly aggravating the situation if the outage lasts for an extended period. This research aims at developing an innovative piezoelectric brace, which provides both passive energy-dissipating and energy-harvesting capabilities—a passive suppression of structural vibrations and conversion of vibration energy into reusable electricity. The piezoelectric brace has compression modules that exert compressive loads on the piezoelectric material regardless if the brace is in compression or in tension. The compression module consists of a piezoelectric stack and rubber pads. The rubber pads are used to limit the maximum strain in the piezoelectric material below the allowable operational strain. The electro-mechanical equations of motion are derived for a 1-story and a 3-story frame model with the piezoelectric braces. To evaluate the structural behavior and the energy harvesting performance, numerical simulations are executed for the two model buildings (in downtown Los Angeles) that are equipped with the piezoelectric braces. The effects of design parameters including the geometry of the piezoelectric stack and rubber pads and the electric resistance in the electro-mechanical conversion circuit on the performance are investigated. The numerical results indicate that the piezoelectric braces passively dissipate energy through inclined oval-shaped hysteretic loops. The harvested energy is up to approximately 40% of the input energy. The structural displacements are significantly reduced, as compared to the original frames without the piezoelectric braces. Finally, a design procedure for a frame with the proposed passive piezoelectric braces is also presented.
Lead effect on the corrosion and passivation behavior of Alloy 600
NASA Astrophysics Data System (ADS)
Zhou, Zhongquan
2005-07-01
Dissolved Pb is considered as the most aggressive chemical species involved in the initiation and growth of stress corrosion cracking (SCC) in a pressurized water reactor (PWR) power generating system. The results from laboratory studies indicate that Pb-induced SCC (PbSCC) covers a range of potential and pH which is the largest of all the submodes of SCC occurring in steam generators (SG) and it occurs at threshold concentrations as low as 0.1 ppm. It is hypothesized that PbSCC is caused by the incorporation of Pb into the passive film, which reduces the passivity of the film and enhances the selective dissolution of Ni from the base metal. This investigation is focused on studying the effect of Pb on the dissolution and passivation of Alloy 600 MA in order to provide information for understanding the PbSCC mechanism. The effect of Pb on Alloy 600 MA was investigated in the solutions containing 110ppm Cl- and different concentrations of Pb 2+ at 90°C with pH4.5. Potentiodynamic polarization scans, electrochemical impedance spectroscopy, Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were used to study the electrochemical behavior of Alloy 600 MA in the active and passive potential region in the solutions with/without Pb2+ in order to compare the effect of Pb on the dissolution and passivation of Alloy 600. The results indicated that the corrosion of Alloy 600 induced by Pb 2+ was ascribed to the enhanced dissolution of Ni by the reduction of Pb2+ at potentials slightly more cathodic than EPb2+/Pb0G Pb0=1 . The lower boundary of Pb2+ concentration for the occurrence of the displacement reaction is 2.5ppb according to thermodynamic calculations. The passivation of Alloy 600 was retarded by the Pb2+ and it was ascribed to the inhibited growth of NiO at passive potential and the increased conductivity of Cr2O3 by doping Pb 2+ in Cr2O3 lattice.
THE PASSIVE PROPERTIES OF MUSCLE FIBERS ARE VELOCITY DEPENDENT
Rehorn, Michael R.; Schroer, Alison K.; Blemker, Silvia S.
2014-01-01
The passive properties of skeletal muscle play an important role in muscle function. While the passive quasi-static elastic properties of muscle fibers have been well characterized, the dynamic visco-elastic passive behavior of fibers has garnered less attention. In particular, it is unclear how the visco-elastic properties are influenced by lengthening velocity, in particular for the range of physiologically relevant velocities. The goals of this work were to: (i) measure the effects of lengthening velocity on the peak stresses within single muscle fibers to determine how passive behavior changes over a range of physiologically relevant lengthening rates (0.1–10 Lo/s), and (ii) develop a mathematical model of fiber viscoelasticity based on these measurements. We found that passive properties depend on strain rate, in particular at the low loading rates (0.1–3 Lo/s), and that the measured behavior can be predicted across a range of loading rates and time histories with a quasi-linear viscoelastic model. In the future, these results can be used to determine the impact of viscoelastic behavior on intramuscular stresses and forces during a variety of dynamic movements. PMID:24360198
Williams, Leanne M; Pines, Adam; Goldstein-Piekarski, Andrea N; Rosas, Lisa G; Kullar, Monica; Sacchet, Matthew D; Gevaert, Olivier; Bailenson, Jeremy; Lavori, Philip W; Dagum, Paul; Wandell, Brian; Correa, Carlos; Greenleaf, Walter; Suppes, Trisha; Perry, L Michael; Smyth, Joshua M; Lewis, Megan A; Venditti, Elizabeth M; Snowden, Mark; Simmons, Janine M; Ma, Jun
2018-02-01
Precision medicine models for personalizing achieving sustained behavior change are largely outside of current clinical practice. Yet, changing self-regulatory behaviors is fundamental to the self-management of complex lifestyle-related chronic conditions such as depression and obesity - two top contributors to the global burden of disease and disability. To optimize treatments and address these burdens, behavior change and self-regulation must be better understood in relation to their neurobiological underpinnings. Here, we present the conceptual framework and protocol for a novel study, "Engaging self-regulation targets to understand the mechanisms of behavior change and improve mood and weight outcomes (ENGAGE)". The ENGAGE study integrates neuroscience with behavioral science to better understand the self-regulation related mechanisms of behavior change for improving mood and weight outcomes among adults with comorbid depression and obesity. We collect assays of three self-regulation targets (emotion, cognition, and self-reflection) in multiple settings: neuroimaging and behavioral lab-based measures, virtual reality, and passive smartphone sampling. By connecting human neuroscience and behavioral science in this manner within the ENGAGE study, we develop a prototype for elucidating the underlying self-regulation mechanisms of behavior change outcomes and their application in optimizing intervention strategies for multiple chronic diseases. Copyright © 2017. Published by Elsevier Ltd.
Ion Implantation of Perfluoropolyether-Lubricated Surfaces for Improved Tribological Performance
NASA Technical Reports Server (NTRS)
Shogrin, Brad
1998-01-01
For over 30 years, perfluoropolyethers (PFPE's) have been the liquid lubricants of choice for space applications because of their proven tribological performance and desirable properties, such as low vapor pressure and a wide liquid temperature range. These oils are used in such space mechanisms as gyroscopes, scanning mirrors, actuators, and filter wheels. In the past few years, there have been several incidents during which PFPE-lubricated space mechanisms have shown anomalous behavior. These anomalies are thought to be the result of PFPE degradation. Investigative research focused on understanding and modeling the degradation of PFPE lubricants has shown that PFPE's degrade and lose their desirable properties while under boundary-lubricated, sliding/rolling contacts and at elevated temperatures. These performance deficiencies are strongly dependent on the surface chemistry and reactivity of the lubricated contacts, which dictate the formation of harmful catalytic by-products. One way to inhibit tribo-induced degradation may be to use passivated surfaces that do not promote the formation of harmful by-products. Such a passivated surface would inhibit PFPE degradation and increase the lifetime of the lubricated mechanism. Ion implantation is one such passivation technique. This surface-treatment technique can modify the surface properties of materials without affecting either the properties or dimensions of the bulk material beneath the treated layer. By introducing a foreign species into a submicron surface layer, ion implantation can induce unique surface microstructures.
Narang, Yashraj S; Murthy Arelekatti, V N; Winter, Amos G
2016-12-01
Our research aims to design low-cost, high-performance, passive prosthetic knees for developing countries. In this study, we determine optimal stiffness, damping, and engagement parameters for a low-cost, passive prosthetic knee that consists of simple mechanical elements and may enable users to walk with the normative kinematics of able-bodied humans. Knee joint power was analyzed to divide gait into energy-based phases and select mechanical components for each phase. The behavior of each component was described with a polynomial function, and the coefficients and polynomial order of each function were optimized to reproduce the knee moments required for normative kinematics of able-bodied humans. Sensitivity of coefficients to prosthesis mass was also investigated. The knee moments required for prosthesis users to walk with able-bodied normative kinematics were accurately reproduced with a mechanical system consisting of a linear spring, two constant-friction dampers, and three clutches (R2=0.90 for a typical prosthetic leg). Alterations in upper leg, lower leg, and foot mass had a large influence on optimal coefficients, changing damping coefficients by up to 180%. Critical results are reported through parametric illustrations that can be used by designers of prostheses to select optimal components for a prosthetic knee based on the inertial properties of the amputee and his or her prosthetic leg.
Sil, Soumitri; Dahlquist, Lynnda M; Burns, Andrew J
2013-04-01
This single-subject design study evaluated the feasibility and efficacy of passive and interactive videogame distraction on behavioral distress for a preschool-aged child receiving repeated burn dressing changes. A 4-year-old girl underwent 3 baseline and 10 videogame distraction sessions (5 passive and 5 interactive) using a restricted alternating treatments design. Observed behavioral distress was coded, and parents and nurses rated the child's distress and cooperative behavior. Relative to baseline, behavioral distress decreased and cooperative behavior increased immediately after the onset of videogame distraction. Single Case Randomization Tests revealed significantly lower behavioral distress and greater cooperation during interactive videogame distraction relative to passive videogame distraction. Interactive videogame distraction appears to be a feasible and effective pain management strategy for a preschool-aged child undergoing repeated painful medical procedures.
NASA Astrophysics Data System (ADS)
Rizwan, M.; Ahmad, A.; Deen, K. M.; Haider, W.
2014-11-01
Titanium and its alloys are most widely used as implant materials due to their excellent biocompatibility, mechanical properties and chemical stability. In this study Nitrogen ions of known dosage were implanted over cp-Ti by Pelletron accelerator with beam energy of 0.25 MeV.The atomic force microscopy of bare and nitrogen implanted specimens confirmed increase in surface roughness with increase in nitrogen ions concentration. X-ray diffraction patterns of ions implanted surfaces validated the formation of TiN0.3 and Ti3N2-xnitride phases. The tendency to form passive film and electrochemical behavior of these surfaces in ringer lactate (RL) solution was evaluated by Potentiodynamic polarization and electrochemical impedance spectroscopy respectively. It is proved that nitrogen ions implantation was beneficial to reduce corrosion rate and stabilizing passive film by increasing charge transfer resistance in RL. It was concluded that morphology and proliferation of Mesenchymal Stem Cells on nitrogen ions implanted surfaces strongly depends on surface roughness and nitride phases.
Composting on Mars or the Moon: I. Comparative evaluation of process design alternatives
NASA Technical Reports Server (NTRS)
Finstein, M. S.; Strom, P. F.; Hogan, J. A.; Cowan, R. M.; Janes, H. W. (Principal Investigator)
1999-01-01
As a candidate technology for treating solid wastes and recovering resources in bioregenerative Advanced Life Support, composting potentially offers such advantages as compactness, low mass, near ambient reactor temperatures and pressures, reliability, flexibility, simplicity, and forgiveness of operational error or neglect. Importantly, the interactions among the physical, chemical, and biological factors that govern composting system behavior are well understood. This article comparatively evaluates five Generic Systems that describe the basic alternatives to composting facility design and control. These are: 1) passive aeration; 2) passive aeration abetted by mechanical agitation; 3) forced aeration--O2 feedback control; 4) forced aeration--temperature feedback control; 5) forced aeration--integrated O2 and temperature feedback control. Each of the five has a distinctive pattern of behavior and process performance characteristics. Only Systems 4 and 5 are judged to be viable candidates for ALS on alien worlds, though which is better suited in this application is yet to be determined.
Contact dynamic phenomena in rotating machines: Active/passive considerations
NASA Astrophysics Data System (ADS)
Keogh, Patrick S.
2012-05-01
There are machine operating regimes in which rotor/stator interactions may lead to problematic rotor dynamic behavior. For example, dynamic heat sources arising from seals, bearings and other rubbing stator components may cause rotor thermal bend instability. In active magnetic bearing (AMB) systems, the rotor may experience forward and backward whirl rubs with touchdown bearings (TDBs). In abnormal cases, rotor transient and bounce interactions with such bearings may involve highly localized and short duration contacts. This paper discusses certain contact phenomena that may occur in passive and active systems. For example, the rub induced spiral behavior arises from a combination of unbalance and a thermal input that moves slowly around the rotor, typically in passive rotor-bearing systems. However, the instability can be regarded as if arising from a closed-loop feedback system. Hence it is possible to analyze the phenomenon using techniques that have been developed for active control systems. Rotors levitated by AMBs are truly active, but there are fundamental issues that may arise when contact with TDBs occurs. AMB control and contact interactions are discussed together with the benefits for making the TDB an active element. The reason for this lies in the potential ability to control the contact dynamics and associated mechanical and thermal stresses. A prototype system is described.
Involvement of amygdalar extracellular zinc in rat behavior for passive avoidance.
Takeda, Atsushi; Minami, Akira; Yamaide, Rie; Oku, Naoto
2004-03-25
On the basis of the evidence that zinc is released from glutamatergic neuron terminals in the amygdala, the effect of chelation of amygdalar extracellular zinc on glutamate release from the neuron terminals was studied by using in vivo microdialysis. When the amygdala was perfused with 100 microM CaEDTA to chelate extracellular zinc, glutamate concentration in the perfusate was decreased significantly, whereas that tended to be increased by perfusion with 100 microM ZnEDTA as a control. The effect of CaEDTA on extracellular glutamate levels was different between the amygdala and hippocampus, implying that modulation of glutamate signaling by zinc is different between them. To evaluate chelation of zinc in rat behavior, perfusion of the amygdala with CaEDTA was started 40 min before behavioral test for passive avoidance. The behavior for passive avoidance was impaired during perfusion with CaEDTA. On the other hand, the behavior during perfusion with ZnEDTA was more rapidly developed than that with vehicle only. These results suggest that amygdalar extracellular zinc is involved in the behavior for passive avoidance.
NASA Astrophysics Data System (ADS)
Fattah-alhosseini, Arash; Imantalab, Omid; Attarzadeh, Farid Reza
2016-10-01
Electrochemical behavior of coarse- and nano-grained pure copper were modified and improved to a large extent by the application of cyclic potentiodynamic passivation. The efficacy of this method was evaluated on the basis of grain size which is of great importance in corrosion studies. In this study, the eight passes of accumulative roll bonding process at room temperature were successfully performed to produce nano-grained pure copper. Transmission electron microscopy image indicated that the average grain size reached below 100 nm after eight passes. On the basis of cyclic voltammetry and also the electrochemical tests performed after that, it was revealed that cyclic potentiodynamic passivation had a significant improving effect on the passive behavior of both coarse- and nano-grained samples. In addition, a superior behavior of nano-grained sample in comparison to coarse-grained one was distinguished by its smaller cyclic voltammogram loops, nobler free potentials, larger capacitive arcs in the Nyquist plots, and less charge carrier densities within the passive film.
Soft Modular Robotic Cubes: Toward Replicating Morphogenetic Movements of the Embryo
Mendoza-Garcia, Ricardo-Franco; Zagal, Juan Cristóbal
2017-01-01
In this paper we present a new type of simple, pneumatically actuated, soft modular robotic system that can reproduce fundamental cell behaviors observed during morphogenesis; the initial shaping stage of the living embryo. The fabrication method uses soft lithography for producing composite elastomeric hollow cubes and permanent magnets as passive docking mechanism. Actuation is achieved by controlling the internal pressurization of cubes with external micro air pumps. Our experiments show how simple soft robotic modules can serve to reproduce to great extend the overall mechanics of collective cell migration, delamination, invagination, involution, epiboly and even simple forms of self-reconfiguration. Instead of relying in complex rigid onboard docking hardware, we exploit the coordinated inflation/deflation of modules as a simple mechanism to detach/attach modules and even rearrange the spatial position of components. Our results suggest new avenues for producing inexpensive, yet functioning, synthetic morphogenetic systems and provide new tangible models of cell behavior. PMID:28060878
NASA Astrophysics Data System (ADS)
Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang
2017-04-01
In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.
Electrochemical Behavior and Surface Chemistry of Aluminum Alloys: Solute-Rich Interphase Model
1993-03-31
physical vapor deposition ( PVD ). Several different mechanisms have been proposed to explain the passivity of stainless aluminum alloys, including...flat-cell model K0235), which simplified the mounting of the specimens since no lead wire attachment or coating of the specimens were required. The...reasons. First, depending on when the particles were ejected and whether they were subsequently coated with the alloy, their presence could establish
The neural basis of understanding the expression of the emotions in man and animals
Ellsworth, Emily; Adolphs, Ralph
2017-01-01
Abstract Humans cannot help but attribute human emotions to non-human animals. Although such attributions are often regarded as gratuitous anthropomorphisms and held apart from the attributions humans make about each other’s internal states, they may be the product of a general mechanism for flexibly interpreting adaptive behavior. To examine this, we used functional magnetic resonance imaging (fMRI) in humans to compare the neural mechanisms associated with attributing emotions to humans and non-human animal behavior. Although undergoing fMRI, participants first passively observed the facial displays of human, non-human primate and domestic dogs, and subsequently judged the acceptability of emotional (e.g. ‘annoyed’) and facial descriptions (e.g. ‘baring teeth’) for the same images. For all targets, emotion attributions selectively activated regions in prefrontal and anterior temporal cortices associated with causal explanation in prior studies. These regions were similarly activated by both human and non-human targets even during the passive observation task; moreover, the degree of neural similarity was dependent on participants’ self-reported beliefs in the mental capacities of non-human animals. These results encourage a non-anthropocentric view of emotion understanding, one that treats the idea that animals have emotions as no more gratuitous than the idea that humans other than ourselves do. PMID:27803286
Sil, Soumitri; Burns, Andrew J.
2013-01-01
Objective This single-subject design study evaluated the feasibility and efficacy of passive and interactive videogame distraction on behavioral distress for a preschool-aged child receiving repeated burn dressing changes. Method A 4-year-old girl underwent 3 baseline and 10 videogame distraction sessions (5 passive and 5 interactive) using a restricted alternating treatments design. Observed behavioral distress was coded, and parents and nurses rated the child’s distress and cooperative behavior. Results Relative to baseline, behavioral distress decreased and cooperative behavior increased immediately after the onset of videogame distraction. Single Case Randomization Tests revealed significantly lower behavioral distress and greater cooperation during interactive videogame distraction relative to passive videogame distraction. Conclusions Interactive videogame distraction appears to be a feasible and effective pain management strategy for a preschool-aged child undergoing repeated painful medical procedures. PMID:23248343
Confronting passive behavior through outdoor experience: a TA approach to experiential learning
Frederick W. Medrick
1977-01-01
The concepts and techniques of transactional analysis (TA) can usefully be applied to outdoor challenge programs aimed at facilitating personal growth, developing responsibility, and teaching cooperative behavior. Passive behavior results from discounting of the self and others; four levels of it have been identified, and TA offers various means of preventing or...
NASA Astrophysics Data System (ADS)
Hasan, Mohammed Adnan; Rashmi, S.; Esther, A. Carmel Mary; Bhavanisankar, Prudhivi Yashwantkumar; Sherikar, Baburao N.; Sridhara, N.; Dey, Arjun
2018-03-01
The feasibility of utilizing commercially available silica aerogel-based flexible composite blankets as passive thermal control element in applications such as extraterrestrial environments is investigated. Differential scanning calorimetry showed that aerogel blanket was thermally stable over - 150 to 126 °C. The outgassing behavior, e.g., total mass loss, collected volatile condensable materials, water vapor regained and recovered mass loss, was within acceptable range recommended for the space applications. ASTM tension and tear tests confirmed the material's mechanical integrity. The thermo-optical properties remained nearly unaltered in simulated space environmental tests such as relative humidity, thermal cycling and thermo-vacuum tests and confirmed the space worthiness of the aerogel. Aluminized Kapton stitched or anchored to the blanket could be used to control the optical transparency of the aerogel. These outcomes highlight the potential of commercial aerogel composite blankets as passive thermal control element in spacecraft. Structural and chemical characterization of the material was also done using scanning electron microscopy, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy.
Printed Graphene Derivative Circuits as Passive Electrical Filters
Sinar, Dogan
2018-01-01
The objective of this study is to inkjet print resistor-capacitor (RC) low pass electrical filters, using a novel water-based cellulose graphene ink, and compare the voltage-frequency and transient behavior to equivalent circuits constructed from discrete passive components. The synthesized non-toxic graphene-carboxymethyl cellulose (G-CMC) ink is deposited on mechanically flexible polyimide substrates using a customized printer that dispenses functionalized aqueous solutions. The design of the printed first-order and second-order low-pass RC filters incorporate resistive traces and interdigitated capacitors. Low pass filter characteristics, such as time constant, cut-off frequency and roll-off rate, are determined for comparative analysis. Experiments demonstrate that for low frequency applications (<100 kHz) the printed graphene derivative circuits performed as well as the circuits constructed from discrete resistors and capacitors for both low pass filter and RC integrator applications. The impact of mechanical stress due to bending on the electrical performance of the flexible printed circuits is also investigated. PMID:29473890
Bio-inspired flexible joints with passive feathering for robotic fish pectoral fins.
Behbahani, Sanaz Bazaz; Tan, Xiaobo
2016-05-04
In this paper a novel flexible joint is proposed for robotic fish pectoral fins, which enables a swimming behavior emulating the fin motions of many aquatic animals. In particular, the pectoral fin operates primarily in the rowing mode, while undergoing passive feathering during the recovery stroke to reduce hydrodynamic drag on the fin. The latter enables effective locomotion even with symmetric base actuation during power and recovery strokes. A dynamic model is developed to facilitate the understanding and design of the joint, where blade element theory is used to calculate the hydrodynamic forces on the pectoral fins, and the joint is modeled as a paired torsion spring and damper. Experimental results on a robotic fish prototype are presented to illustrate the effectiveness of the joint mechanism, validate the proposed model, and indicate the utility of the proposed model for the optimal design of joint depth and stiffness in achieving the trade-off between swimming speed and mechanical efficiency.
Printed Graphene Derivative Circuits as Passive Electrical Filters.
Sinar, Dogan; Knopf, George K
2018-02-23
The objective of this study is to inkjet print resistor-capacitor ( RC ) low pass electrical filters, using a novel water-based cellulose graphene ink, and compare the voltage-frequency and transient behavior to equivalent circuits constructed from discrete passive components. The synthesized non-toxic graphene-carboxymethyl cellulose (G-CMC) ink is deposited on mechanically flexible polyimide substrates using a customized printer that dispenses functionalized aqueous solutions. The design of the printed first-order and second-order low-pass RC filters incorporate resistive traces and interdigitated capacitors. Low pass filter characteristics, such as time constant, cut-off frequency and roll-off rate, are determined for comparative analysis. Experiments demonstrate that for low frequency applications (<100 kHz) the printed graphene derivative circuits performed as well as the circuits constructed from discrete resistors and capacitors for both low pass filter and RC integrator applications. The impact of mechanical stress due to bending on the electrical performance of the flexible printed circuits is also investigated.
Passive Joint Forces Are Tuned to Limb Use in Insects and Drive Movements without Motor Activity
Ache, Jan M.; Matheson, Thomas
2013-01-01
Summary Background Limb movements are generally driven by active muscular contractions working with and against passive forces arising in muscles and other structures. In relatively heavy limbs, the effects of gravity and inertia predominate, whereas in lighter limbs, passive forces intrinsic to the limb are of greater consequence. The roles of passive forces generated by muscles and tendons are well understood, but there has been little recognition that forces originating within joints themselves may also be important, and less still that these joint forces may be adapted through evolution to complement active muscle forces acting at the same joint. Results We examined the roles of passive joint forces in insect legs with different arrangements of antagonist muscles. We first show that passive forces modify actively generated movements of a joint across its working range, and that they can be sufficiently strong to generate completely passive movements that are faster than active movements observed in natural behaviors. We further demonstrate that some of these forces originate within the joint itself. In legs of different species adapted to different uses (walking, jumping), these passive joint forces complement the balance of strength of the antagonist muscles acting on the joint. We show that passive joint forces are stronger where they assist the weaker of two antagonist muscles. Conclusions In limbs where the dictates of a key behavior produce asymmetry in muscle forces, passive joint forces can be coadapted to provide the balance needed for the effective generation of other behaviors. PMID:23871240
Hamilton, G F; Bucko, P J; Miller, D S; DeAngelis, R S; Krebs, C P; Rhodes, J S
2016-11-01
Prenatal alcohol exposure can produce permanent alterations in brain structure and profound behavioral deficits. Mouse models can help discover mechanisms and identify potentially useful interventions. This study examined long-term influences of either a single or repeated alcohol exposure during the third-trimester equivalent on survival of new neurons in the hippocampus, behavioral performance on the Passive avoidance and Rotarod tasks, and the potential role of exercise as a therapeutic intervention. C57BL/6J male mice received either saline or 5g/kg ethanol split into two s.c. injections, two hours apart, on postnatal day (PD)7 (Experiment 1) or on PD5, 7 and 9 (Experiment 2). All mice were weaned on PD21 and received either a running wheel or remained sedentary from PD35-PD80/81. From PD36-45, mice received i.p. injections of 50mg/kg bromodeoxyuridine (BrdU) to label dividing cells. Behavioral testing occurred between PD72-79. Number of surviving BrdU+ cells and immature neurons (doublecortin; DCX+) was measured at PD80-81. Alcohol did not affect number of BrdU+ or DCX+ cells in either experiment. Running significantly increased number of BrdU+ and DCX+ cells in both treatment groups. Alcohol-induced deficits on Rotarod performance and acquisition of the Passive avoidance task (Day 1) were evident only in Experiment 2 and running rescued these deficits. These data suggest neonatal alcohol exposure does not result in long-term impairments in adult hippocampal neurogenesis in the mouse model. Three doses of ethanol were necessary to induce behavioral deficits. Finally, the mechanisms by which exercise ameliorated the neonatal alcohol induced behavioral deficits remain unknown. Copyright © 2016 Elsevier B.V. All rights reserved.
Silva, M E T; Parente, M P L; Brandão, S; Mascarenhas, T; Natal Jorge, R M
2018-04-11
The mechanical characteristics of the female pelvic floor are relevant to understand pelvic floor dysfunctions (PFD), and how they are related with changes in their biomechanical behavior. Urinary incontinence (UI) and pelvic organ prolapse (POP) are the most common pathologies, which can be associated with changes in the mechanical properties of the supportive structures in the female pelvic cavity. PFD have been studied through different methods, from experimental tensile tests using tissues from fresh female cadavers or tissues collected at the time of a transvaginal hysterectomy procedure, or by applying imaging techniques. In this work, an inverse finite element analysis (FEA) was applied to understand the passive and active behavior of the pubovisceralis muscle (PVM) during Valsalva maneuver and muscle active contraction, respectively. Individual numerical models of women without pathology, with stress UI (SUI) and POP were built based on magnetic resonance images, including the PVM and surrounding structures. The passive and active material parameters obtained for a transversely isotropic hyperelastic constitutive model were estimated for the three groups. The values for the material constants were significantly higher for the women with POP when compared with the other two groups. The PVM of women with POP showed the highest stiffness. Additionally, the influence of these parameters was analyzed by evaluating their stress-strain, and force-displacements responses. The force produced by the PVM in women with POP was 47% and 82% higher when compared to women without pathology and with SUI, respectively. The inverse FEA allowed estimating the material parameters of the PVM using input information acquired non-invasively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Characteristics and Corrosion Behavior of Pure Titanium Subjected to Surface Mechanical Attrition
NASA Astrophysics Data System (ADS)
Fu, Tianlin; Wang, Xiao; Liu, Jianxiong; Li, Li; Yu, Xiaohua; Zhan, Zhaolin
2017-10-01
A stable passive film exhibiting good corrosion resistance in a 3.5 wt.% NaCl solution was formed on the surface of pure titanium (Ti) subjected to a surface mechanical attrition treatment (SMAT). The corrosion potential (-0.21 V) of the film was significantly higher than that (-0.92 V) of the untreated sample. Moreover, the corrosion current density was an order of magnitude lower than that of the untreated sample. SMAT resulted in a decrease in the vacancy condensation in the TiO2 film, thereby inhibiting the invasion and diffusion of Cl- in the film.
Insulated InP (100) semiconductor by nano nucleus generation in pure water
NASA Astrophysics Data System (ADS)
Ghorab, Farzaneh; Es'haghi, Zarrin
2018-01-01
Preparation of specified designs on optoelectronic devices such as Light-Emitting Diodes (LEDs) and Laser Diodes (LDs) by using insulated thin films is very important. InP as one of those semiconductors which is used as optoelectronic devices, have two different kinds of charge carriers as n-InP and p-InP in the microelectronic industry. The surface preparation of this kind of semiconductor can be accomplished with individually chemical, mechanical, chemo - mechanical and electrochemical methods. But electrochemical method can be suitably replaced instead of the other methods, like CMP (Chemical Mechanical Polishing), because of the simplicity. In this way, electrochemically formation of insulated thin films by nano nucleus generation on semiconductor (using constant current density of 0.07 mA /cm2) studied in this research. Insulated nano nucleus generation and their growth up to thin film formation on semiconductor single crystal (100), n-InP, inpure water (0.08 µs/cm,25°c) characterized by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Four-point probe and Styloprofilometer techniques. The SEM images show active and passive regions on the n-InP surface and not uniform area on p-InP surface by passing through the passive condition. So the passive regions were nonuniform, and only the active regions were uniform and clean. The various semiconducting behavior in electrochemical condition, studied and compared with structural specification of InP type group (III-V).
Chu, Angela Hsin Chun; Choi, Jin Nam
2005-06-01
Researchers and practitioners have long regarded procrastination as a self-handicapping and dysfunctional behavior. In the present study, the authors proposed that not all procrastination behaviors either are harmful or lead to negative consequences. Specifically, the authors differentiated two types of procrastinators: passive procrastinators versus active procrastinators. Passive procrastinators are procrastinators in the traditional sense. They are paralyzed by their indecision to act and fail to complete tasks on time. In contrast, active procrastinators are a "positive" type of procrastinator. They prefer to work under pressure, and they make deliberate decisions to procrastinate. The present results showed that although active procrastinators procrastinate to the same degree as passive procrastinators, they are more similar to nonprocrastinators than to passive procrastinators in terms of purposive use of time, control of time, self-efficacy belief, coping styles, and outcomes including academic performance. The present findings offer a more sophisticated understanding of procrastination behavior and indicate a need to reevaluate its implications for outcomes of individuals.
Lai, Ming-Cheng; Chou, Feng-Sha; Yang, Yann-Jy; Wang, Chih-Chien; Lee, Ming-Chang
2013-01-01
In this study, we conducted an empirical survey of the avoidance behaviors and risk perceptions of active and passive smoking pregnant smokers and recent quitters. We employed an online questionnaire survey by recruiting 166 voluntary participants from an online parenting community in Taiwan. The results of the empirical survey revealed that three-fourths of smokers quit smoking during pregnancy and one-fourth continued smoking. All pregnant women who continued smoking had partners or lived with relatives who smoked. Current smokers and quitters differed significantly in their risk perceptions and attitudes toward smoking during pregnancy. Most pregnant smokers and quitters adopted passive smoking avoidance behaviors at home and in public. Nevertheless, one-fifth of pregnant women chose not to avoid passive smoking. We concluded that most women stop smoking during pregnancy; however, most women continue to be exposed to passive-smoking environments. Perceived fetal health risks and attitudes toward smoking during pregnancy are critical predictors of the anti-smoking behaviors of pregnant women. PMID:24005830
Neural Substrates of Sexual Desire in Individuals with Problematic Hypersexual Behavior
Seok, Ji-Woo; Sohn, Jin-Hun
2015-01-01
Studies on the characteristics of individuals with hypersexual disorder have been accumulating due to increasing concerns about problematic hypersexual behavior (PHB). Currently, relatively little is known about the underlying behavioral and neural mechanisms of sexual desire. Our study aimed to investigate the neural correlates of sexual desire with event-related functional magnetic resonance imaging (fMRI). Twenty-three individuals with PHB and 22 age-matched healthy controls were scanned while they passively viewed sexual and nonsexual stimuli. The subjects' levels of sexual desire were assessed in response to each sexual stimulus. Relative to controls, individuals with PHB experienced more frequent and enhanced sexual desire during exposure to sexual stimuli. Greater activation was observed in the caudate nucleus, inferior parietal lobe, dorsal anterior cingulate gyrus, thalamus, and dorsolateral prefrontal cortex in the PHB group than in the control group. In addition, the hemodynamic patterns in the activated areas differed between the groups. Consistent with the findings of brain imaging studies of substance and behavior addiction, individuals with the behavioral characteristics of PHB and enhanced desire exhibited altered activation in the prefrontal cortex and subcortical regions. In conclusion, our results will help to characterize the behaviors and associated neural mechanisms of individuals with PHB. PMID:26648855
Li, Yuzhang; Li, Yanbin; Sun, Yongming; Butz, Benjamin; Yan, Kai; Koh, Ai Leen; Zhao, Jie; Pei, Allen; Cui, Yi
2017-08-09
Lithium (Li) metal is a high-capacity anode material (3860 mAh g -1 ) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O 2 ), nitrogen (N 2 ), and water vapor (H 2 O). We find that while dry O 2 and N 2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N 2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.
Hysteresis in the Active Oxidation of SiC
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Harder, Bryan J.; Myers, Dwight L.
2011-01-01
Si and SiC show both passive oxidation behavior where a protective film of SiO2 forms and active oxidation behavior where a volatile suboxide SiO(g) forms. The active-to-passive and passive-to-active oxidation transitions are explored for both Si and SiC. Si shows a dramatic difference between the P(O2) for the two transitions of 10-4 bar. The active-to-passive transition is controlled by the condition for SiO2/Si equilibrium and the passive-to-active transition is controlled by the decomposition of SiO2. In the case of SiC, the P(O2) for these transitions are much closer. The active-to-passive transition appears to be controlled by the condition for SiO2/SiC equilibrium. The passive-to-active transition appears to be controlled by the interfacial reaction of SiC and SiO2 and subsequent generation of gases at the interface which leads to scale breakdown.
The Impact of Teaching Presence on Online Engagement Behaviors
ERIC Educational Resources Information Center
Zhang, Huaihao; Lin, Lijia; Zhan, Yi; Ren, Youqun
2016-01-01
Guided by the Interactive-Constructive-Active-Passive framework, the purpose of the study was to investigate whether teaching presence would impact online learners' passive, active, constructive, and interactive engagement behaviors. A total of 218 middle-school English teachers participated in an online professional development course.…
Curious Case of Positive Current Collectors: Corrosion and Passivation at High Temperature.
Sayed, Farheen N; Rodrigues, Marco-Tulio F; Kalaga, Kaushik; Gullapalli, Hemtej; Ajayan, P M
2017-12-20
In the evaluation of compatibility of different components of cell for high-energy and extreme-conditions applications, the highly focused are positive and negative electrodes and their interaction with electrolyte. However, for high-temperature application, the other components are also of significant influence and contribute toward the total health of battery. In present study, we have investigated the behavior of aluminum, the most common current collector for positive electrode materials for its electrochemical and temperature stability. For electrochemical stability, different electrolytes, organic and room temperature ionic liquids with varying Li salts (LiTFSI, LiFSI), are investigated. The combination of electrochemical and spectroscopic investigations reflects the varying mechanism of passivation at room and high temperature, as different compositions of decomposed complexes are found at the surface of metals.
Experiments on a non-smoothly-forced oscillator
NASA Astrophysics Data System (ADS)
Virgin, Lawrence N.; George, Christopher; Kini, Ashwath
2015-12-01
This paper describes some typical behavior encountered in the response of a harmonically-excited mechanical system in which a severe nonlinearity occurs due to an impact. Although such systems have received considerable recent attention (most of it from a theoretical viewpoint), the system scrutinized in this paper also involves a discrete input of energy at the impact condition. That is, it is kicked when contact is made. One of the motivations for this work is related to a classic pinball machine in which a ball striking a bumper experiences a sudden impulse, introducing additional unpredictability to the motion of the ball. A one-dimensional analog of a pinball machine was the subject of a detailed mathematical study in Pring and Budd (2011), and the current paper details behavior obtained from a mechanical experiment and describes dynamics not observed in a conventional (passive) impact oscillator.
Sigma-1 receptor ligands control a switch between passive and active threat responses
Rennekamp, Andrew J.; Huang, Xi-Ping; Wang, You; Patel, Samir; Lorello, Paul J.; Cade, Lindsay; Gonzales, Andrew P. W.; Yeh, Jing-Ruey Joanna; Caldarone, Barbara J.; Roth, Bryan L.; Kokel, David; Peterson, Randall T.
2016-01-01
Humans and many animals exhibit freezing behavior in response to threatening stimuli. In humans, inappropriate threat responses are fundamental characteristics of several mental illnesses. To identify small molecules that modulate threat responses, we developed a high-throughput behavioral assay in zebrafish (Danio rerio) and characterized the effects of 10,000 compounds on freezing behavior. We found three classes of compounds that switch the threat response from freezing to escape-like behavior. We then screened these for binding activity across 45 candidate targets. Using target profile clustering we implicated the sigma-1 receptor in the mechanism of behavioral switching and confirmed that known sigma-1 ligands also disrupt freezing behavior. Furthermore, mutation of the sigma-1 gene prevented the behavioral effect of escape-inducing compounds. The compound ‘finazine’ potently bound mammalian sigma-1 and altered rodent threat response behavior. Thus, pharmacological and genetic interrogation of the freezing response revealed sigma-1 as a mediator of vertebrate threat responses. PMID:27239788
Multi-source micro-friction identification for a class of cable-driven robots with passive backbone
NASA Astrophysics Data System (ADS)
Tjahjowidodo, Tegoeh; Zhu, Ke; Dailey, Wayne; Burdet, Etienne; Campolo, Domenico
2016-12-01
This paper analyses the dynamics of cable-driven robots with a passive backbone and develops techniques for their dynamic identification, which are tested on the H-Man, a planar cabled differential transmission robot for haptic interaction. The mechanism is optimized for human-robot interaction by accounting for the cost-benefit-ratio of the system, specifically by eliminating the necessity of an external force sensor to reduce the overall cost. As a consequence, this requires an effective dynamic model for accurate force feedback applications which include friction behavior in the system. We first consider the significance of friction in both the actuator and backbone spaces. Subsequently, we study the required complexity of the stiction model for the application. Different models representing different levels of complexity are investigated, ranging from the conventional approach of Coulomb to an advanced model which includes hysteresis. The results demonstrate each model's ability to capture the dynamic behavior of the system. In general, it is concluded that there is a trade-off between model accuracy and the model cost.
Ansari, Ghazaleh; Fattah-Alhosseini, Arash
2017-06-01
The effects of sever plastic deformation through multi-pass accumulative roll bonding on the passive and semiconducting behavior of pure titanium is evaluated in Ringer's physiological solution at 37°C in the present paper. Produced results by polarization plots and electrochemical impedance spectroscopy measurements revealed a significant advance in the passive response of the nano-grained sample compared to that of the annealed pure titanium. Also, Mott-Schottky test results of the nano-grained pure titanium represented a lower donor density and reduced flat-band potential in the formed passive film in comparison with the annealed sample. Moreover, based on the Mott-Schottky analysis in conjunction with the point defect model, it was suggested that with increase in formation potential, the calculated donor density of both annealed and nano-grained samples decreases exponentially and the thickness of the passive film linearly increases. These observations were consistent with the point defect model predictions, considering that the point defects within the passive film are metal interstitials, oxygen vacancies, or both. From the viewpoint of passive and semiconducting behavior, nano-grained pure titanium appeared to be more suitable for implant applications in simulate human body environment compared to annealed pure titanium. Copyright © 2017 Elsevier B.V. All rights reserved.
Beaked Whale Group Deep Dive Behavior from Passive Acoustic Monitoring
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Beaked Whale Group Deep Dive Behavior from Passive...N000141512648 / N000141512649 LONG-TERM GOALS While a significant body of knowledge regarding individual beaked whale behavior at depth has been...established in the last decade, little is known about how beaked whales interact as a group at depth. This lack of information makes it difficult to
Beaked Whale Group Deep Dive Behavior from Passive Acoustic Monitoring
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Beaked Whale Group Deep Dive Behavior from Passive...N000141512649 LONG-TERM GOALS While a significant body of knowledge regarding individual beaked whale behavior at depth has been established in the...last decade, little is known about how beaked whales interact as a group at depth. This lack of information makes it difficult to interpret the
NASA Astrophysics Data System (ADS)
Imantalab, O.; Fattah-alhosseini, A.
2015-07-01
In the present work, electrochemical and passive behaviors of pure copper fabricated by accumulative roll-bonding (ARB) process in 0.01 M borax solution (pH = 9.1) have been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by Vickers microhardness, x-ray diffraction (XRD), and transmission electron microscopy. The results of microhardness tests revealed that microhardness values increased with the increasing number of ARB cycles. Also a sharp increase was seen in microhardness after the first ARB cycle, whereas mediocre additional increases were observed afterward up to the seven cycles. Moreover, XRD patterns showed that the mean crystallite size values decrease with the increasing number of ARB cycles. To investigate the electrochemical and passive behaviors of the samples, the potentiodynamic polarization, Mott-Schottky analysis and electrochemical impedance spectroscopy (EIS) were carried out. Polarization plots revealed that as a result of ARB, the corrosion behavior of the specimens improves compared with the annealed pure copper. Also, the Mott-Schottky analysis and EIS measurements showed that the increasing number of ARB cycles offer better conditions for forming the passive films with higher protection behavior, due to the growth of less-defective films.
Albarracín, Dolores; Gillette, Jeffrey C.; Earl, Allison N.; Glasman, Laura R.; Durantini, Marta R.; Ho, Moon-Ho
2009-01-01
This meta-analysis tested the major theoretical assumptions about behavior change by examining the outcomes and mediating mechanisms of different preventive strategies in a sample of 354 HIV-prevention interventions and 99 control groups, spanning the past 17 years. There were 2 main conclusions from this extensive review. First, the most effective interventions were those that contained attitudinal arguments, educational information, behavioral skills arguments, and behavioral skills training, whereas the least effective ones were those that attempted to induce fear of HIV. Second, the impact of the interventions and the different strategies behind them was contingent on the gender, age, ethnicity, risk group, and past condom use of the target audience in ways that illuminate the direction of future preventive efforts. PMID:16351327
NASA Astrophysics Data System (ADS)
Popa, Monica; Calderon Moreno, Jose Maria; Vasilescu, Cora; Drob, Silviu Iulian; Neacsu, Elena Ionela; Coer, Andrej; Hmeljak, Julija; Zerjav, Gregor; Milošev, Ingrid
2014-06-01
This article analyses the microstructure, electrochemical behavior, and biocompatibility of a novel Ti-20Nb-10Zr-5Ta alloy with low Young's modulus (59 GPa) much closer to that of bone, between 10 and 30 GPa, than Ti and other Ti alloys used as implant biomaterial. XRD and SEM measurements revealed a near β crystalline microstructure containing β phase matrix and secondary α phase, with a typical grain size of around 200 μm. The corrosion behavior in neutral Ringer solution evidenced: self-passivation behavior characterizing a very resistant passive film; an easy passivation as a result of favorable influence of the alloying elements Nb, Zr, and Ta that participate with their passive oxides to the formation of the alloy passive film; low corrosion and ion release rates corresponding with very low toxicity. In MEM solution, the novel alloy demonstrated very high corrosion resistance and no susceptibility to localized corrosion. Biocompatibility was evaluated on in vitro human osteoblast-like and human immortalized pulmonary fibroblast cell (Wi-38) lines and the new Ti-20Nb-10Zr-5Ta alloy exhibited no cytotoxicity. The new Ti-20Nb-10Zr5Ta alloy is a promising material for implants due to combined properties of low elastic modulus, very low corrosion rate, and good biocompatibility.
Wang, Qian; Huang, Hanyang; Wei, Kang; Zhao, Yi
2016-10-01
Mechanical stretching and topographical cues are both effective mechanical stimulations for regulating cell morphology, orientation, and behaviors. The competition of these two mechanical stimulations remains largely underexplored. Previous studies have suggested that a small cyclic mechanical strain is not able to reorient cells that have been pre-aligned by relatively large linear microstructures, but can reorient those pre-aligned by small linear micro/nanostructures if the characteristic dimension of these structures is below a certain threshold. Likewise, for micro/nanostructures with a given characteristic dimension, the strain must exceed a certain magnitude to overrule the topographic cues. There are however no in-depth investigations of such "thresholds" due to the lack of close examination of dynamic cell orientation during and shortly after the mechanical loading. In this study, the time-dependent combinatory effects of active and passive mechanical stimulations on cell orientation are investigated by developing a micromechanical stimulator. The results show that the cells pre-aligned by linear micro/nanostructures can be altered by cyclic in-plane strain, regardless of the structure size. During the loading, the micro/nanostructures can resist the reorientation effects by cyclic in-plane strain while the resistive capability (measured by the mean orientation angle change and the reorientation speed) increases with the increasing characteristic dimension. The micro/nanostructures also can recover the cell orientation after the cessation of cyclic in-plane strain, while the recovering capability increases with the characteristic dimension. The previously observed thresholds are largely dependent on the observation time points. In order to accurately evaluate the combinatory effects of the two mechanical stimulations, observations during the active loading with a short time interval or endpoint observations shortly after the loading are preferred. This study provides a microengineering solution to investigate the time-dependent combinatory effects of the active and passive mechanical stimulations and is expected to enhance our understanding of cell responses to complex mechanical environments. Biotechnol. Bioeng. 2016;113: 2191-2201. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Mechanical perturbation control of cardiac alternans
NASA Astrophysics Data System (ADS)
Hazim, Azzam; Belhamadia, Youssef; Dubljevic, Stevan
2018-05-01
Cardiac alternans is a disturbance in heart rhythm that is linked to the onset of lethal cardiac arrhythmias. Mechanical perturbation control has been recently used to suppress alternans in cardiac tissue of relevant size. In this control strategy, cardiac tissue mechanics are perturbed via active tension generated by the heart's electrical activity, which alters the tissue's electric wave profile through mechanoelectric coupling. We analyze the effects of mechanical perturbation on the dynamics of a map model that couples the membrane voltage and active tension systems at the cellular level. Therefore, a two-dimensional iterative map of the heart beat-to-beat dynamics is introduced, and a stability analysis of the system of coupled maps is performed in the presence of a mechanical perturbation algorithm. To this end, a bidirectional coupling between the membrane voltage and active tension systems in a single cardiac cell is provided, and a discrete form of the proposed control algorithm, that can be incorporated in the coupled maps, is derived. In addition, a realistic electromechanical model of cardiac tissue is employed to explore the feasibility of suppressing alternans at cellular and tissue levels. Electrical activity is represented in two detailed ionic models, the Luo-Rudy 1 and the Fox models, while two active contractile tension models, namely a smooth variant of the Nash-Panfilov model and the Niederer-Hunter-Smith model, are used to represent mechanical activity in the heart. The Mooney-Rivlin passive elasticity model is employed to describe passive mechanical behavior of the myocardium.
NASA Astrophysics Data System (ADS)
Ma, H. R.; Li, J. W.; Chang, C. T.; Wang, X. M.; Li, R. W.
2017-12-01
Corrosion resistance and passivation behavior of Fe63Cr8Mo3.5Ni5P10B4C4Si2.5 amorphous coatings prepared by the activated combustion high-velocity air fuel (AC-HVAF) and high-velocity oxygen fuel (HVOF) processes have been studied in detail by cyclic potentiodynamic polarization, electrochemical impedance spectroscopy, cathodic polarization and Mott-Schottky approach. The AC-HVAF coating shows higher corrosion resistance than the HVOF coating in 3.5 wt.% NaCl solution, as evidenced by its lower corrosion current density and passive current density. It is found that the superior corrosion resistance of the AC-HVAF coating is attributed to the enhanced formation of a dense passive film with less defective structure, higher pitting resistance and passivity stability, as well as stronger repassivity.
NASA Astrophysics Data System (ADS)
Liao, Baochen; Stangl, Rolf; Mueller, Thomas; Lin, Fen; Bhatia, Charanjit S.; Hoex, Bram
2013-01-01
The effect of light soaking of crystalline silicon wafer lifetime samples surface passivated by thermal atomic layer deposited (ALD) Al2O3 is investigated in this paper. Contrary to other passivation materials used in solar cell applications (i.e., SiO2, SiNx), using thermal ALD Al2O3, an increase in effective carrier lifetime after light soaking under standard testing conditions is observed for both p-type (˜45%) and n-type (˜60%) FZ c-Si lifetime samples. After light soaking and storing the samples in a dark and dry environment, the effective lifetime decreases again and practically returns to the value before light soaking. The rate of lifetime decrease after light soaking is significantly slower than the rate of lifetime increase by light soaking. To investigate the underlying mechanism, corona charge experiments are carried out on p-type c-Si samples before and after light soaking. The results indicate that the negative fixed charge density Qf present in the Al2O3 films increases due to the light soaking, which results in an improved field-effect passivation. Numerical calculations also confirm that the improved field-effect passivation is the main contributor for the increased effective lifetime after light soaking. To further understand the light soaking phenomenon, a kinetic model—a charge trapping/de-trapping model—is proposed to explain the time dependent behavior of the lifetime increase/decrease observed under/after light soaking. The trap model fits the experimental results very well. The observed light enhanced passivation for ALD Al2O3 passivated c-Si is of technological relevance, because solar cell devices operate under illumination, thus an increase in solar cell efficiency due to light soaking can be expected.
NASA Astrophysics Data System (ADS)
Imantalab, O.; Fattah-alhosseini, A.; Keshavarz, M. K.; Mazaheri, Y.
2016-02-01
In this work, electrochemical behavior of annealed (micro-) and nano-grained pure copper (fabricated by accumulative roll bonding process) in phosphate buffer solutions of various pH values ranging from 10.69 to 12.59 has been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by optical microscope and transmission electron microscopy. To investigate the electrochemical behavior of the samples, the potentiodynamic polarization, Mott-Schottky analysis, and electrochemical impedance spectroscopy (EIS) were carried out. Potentiodynamic polarization plots and EIS measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure copper. Also, Mott-Schottky analysis indicated that the passive films behaved as p-type semiconductors and grain refinement did not change the semiconductor type of passive films.
DEVELOPMENT OF HOME CAGE SOCIAL BEHAVIORS IN BALB/cJ vs. C57BL/6J MICE
Fairless, Andrew H.; Katz, Julia M.; Vijayvargiya, Neha; Dow, Holly C.; Kreibich, Arati Sadalge; Berrettini, Wade H.; Abel, Ted; Brodkin, Edward S.
2012-01-01
BALB/cJ and C57BL/6J inbred mouse strains have been proposed as useful models of low and high levels of sociability (tendency to seek social interaction), respectively, based primarily on behaviors of ~30-day-old mice in the Social Approach Test (SAT). In the SAT, approach and sniffing behaviors of a test mouse toward an unfamiliar stimulus mouse are measured in a novel environment. However, it is unclear whether such results generalize to a familiar environment with a familiar social partner, such as with a littermate in a home cage environment. We hypothesized that C57BL/6J mice would show higher levels of social behaviors than BALB/cJ mice in the home cage environment, particularly at 30 days-of-age. We measured active and passive social behaviors in home cages by pairs of BALB/cJ or C57BL/6J littermates at ages 30, 41, and 69 days. The strains did not differ robustly in their active social behaviors. C57BL/6J mice were more passively social than BALB/cJ mice at 30 days, and C57BL/6J levels of passive social behaviors declined to BALB/cJ levels by 69 days. The differences in passive social behaviors at 30 days-of-age were primarily attributable to differences in huddling. These results indicate that different test conditions (SAT conditions vs. home cage conditions) elicit strain differences in distinct types of behaviors (approach/sniffing vs. huddling behaviors, respectively). Assessment of the more naturalistic social interactions in the familiar home cage environment with a familiar littermate will provide a useful component of a comprehensive assessment of social behaviors in mouse models relevant to autism. PMID:22982070
Yang, Su-Jin; Kim, Jae-Min; Yoon, Jin-Sang
2010-05-01
This study was designed to assess the prevalence and correlates of disturbed eating attitudes and behaviors in South Korean students. In a cross-sectional survey, 2,226 fourth and seventh grade students filled out questionnaires on eating attitudes and behaviors (Eating Attitude Test -26, EAT-26), coping strategies, fear of being overweight, behavioral problems, anxiety, depression, and self-esteem. Disturbed eating attitudes and behaviors were found in 7 percent of students. In the multivariate analyses, disturbed eating attitudes and behaviors were associated with the passive coping strategies, fear of being overweight, total behavioral difficulties, fourth grade, and high socioeconomic status (SES). Differences in the associations were found between boys and girls. There were significant associations between elevated EAT-26 scores and passive coping strategies, desired underweight body mass index (BMI), and low SES in boys; and between elevated EAT-26 scores and passive coping strategies, fear of being overweight, behavioral problems, being in the fourth grade, and high and low SES in girls. In South Korean children, disturbed eating attitudes and behaviors were associated with various psychological and sociocultural factors; some gender-related differences are also evident.
Risk Factors Associated with Peer Victimization and Bystander Behaviors among Adolescent Students.
Huang, Zepeng; Liu, Zhenni; Liu, Xiangxiang; Lv, Laiwen; Zhang, Yan; Ou, Limin; Li, Liping
2016-07-27
Despite the prevalence of the phenomena of peer victimization and bystander behaviors, little data has generated to describe their relationships and risk factors. In this paper, a self-administered survey using a cross-sectional cluster-random sampling method in a sample of 5450 participants (2734 girls and 2716 boys) between 4th and 11th grades was conducted at six schools (two primary schools and four middle schools) located in Shantou, China. Self-reported peer victimization, bystander behaviors and information regarding parents' risky behaviors and individual behavioral factors were collected. Multinomial logistic regression analysis was applied to evaluate risk factors affecting peer victimization and bystander behaviors. The results indicated that urban participants were more likely to become bullying victims but less likely to become passive bystanders. Contrarily, bullying victimization was related to the increasing of passive bystander behaviors. Father drinking and mother smoking as independent factors were risk factors for peer victimization. Participants who were smoking or drinking had a tendency to be involved in both peer victimization and passive bystander behaviors. This study suggested that bystander behaviors, victims' and parents' educations play a more important role in peer victimization than previously thought.
NASA Astrophysics Data System (ADS)
Leers, Michael; Scholz, Christian; Boucke, Konstantin; Poprawe, Reinhart
2006-02-01
The lifetime of high-power diode lasers, which are cooled by standard copper heatsinks, is limited. The reasons are the aging of the indium solder normally employed as well as the mechanical stress caused by the mismatch between the copper heatsink (16 - 17ppm/K) and the GaAs diode laser bars (6 - 7.5 ppm/K). For micro - channel heatsinks corrosion and erosion of the micro channels limit the lifetime additionally. The different thermal behavior and the resulting stress cannot be compensated totally by the solder. Expansion matched heatsink materials like tungsten-copper or aluminum nitride reduce this stress. A further possible solution is a combination of copper and molybdenum layers, but all these materials have a high thermal resistance in common. For high-power electronic or low cost medical applications novel materials like copper/carbon compound, compound diamond or high-conductivity ceramics were developed during recent years. Based on these novel materials, passively cooled heatsinks are designed, and thermal and mechanical simulations are performed to check their properties. The expansion of the heatsink and the induced mechanical stress between laser bar and heatsink are the main tasks for the simulations. A comparison of the simulation with experimental results for different material combinations illustrates the advantages and disadvantages of the different approaches. Together with the boundary conditions the ideal applications for packaging with these materials are defined. The goal of the development of passively-cooled expansion-matched heatsinks has to be a long-term reliability of several 10.000h and a thermal resistance below 1 K/W.
Wada, Yumiko; Furuse, Tamio; Yamada, Ikuko; Masuya, Hiroshi; Kushida, Tomoko; Shibukawa, Yoko; Nakai, Yuji; Kobayashi, Kimio; Kaneda, Hideki; Gondo, Yoichi; Noda, Tetsuo; Shiroishi, Toshihiko; Wakana, Shigeharu
2010-01-01
To establish the cutoff values for screening ENU-induced behavioral mutations, normal variations in mouse behavioral data were examined in home-cage activity (HA), open-field (OF), and passive-avoidance (PA) tests. We defined the normal range as one that included more than 95% of the normal control values. The cutoffs were defined to identify outliers yielding values that deviated from the normal by less than 5% for C57BL/6J, DBA/2J, DBF(1), and N(2) (DXDB) progenies. Cutoff values for G1-phenodeviant (DBF(1)) identification were defined based on values over +/- 3.0 SD from the mean of DBF(1) for all parameters assessed in the HA and OF tests. For the PA test, the cutoff values were defined based on whether the mice met the learning criterion during the 2nd (at a shock intensity of 0.3 mA) or the 3rd (at a shock intensity of 0.15 mA) retention test. For several parameters, the lower outliers were undetectable as the calculated cutoffs were negative values. Based on the cutoff criteria, we identified 275 behavioral phenodeviants among 2,646 G1 progeny. Of these, 64 were crossed with wild-type DBA/2J individuals, and the phenotype transmission was examined in the G2 progeny using the cutoffs defined for N(2) mice. In the G2 mice, we identified 15 novel dominant mutants exhibiting behavioral abnormalities, including hyperactivity in the HA or OF tests, hypoactivity in the OF test, and PA deficits. Genetic and detailed behavioral analysis of these ENU-induced mutants will provide novel insights into the molecular mechanisms underlying behavior.
Xie, Kangning; Yan, Yili; Fang, Xiaolei; Gao, Shangkai; Hong, Bo
2012-04-25
Theta rhythms in the hippocampus are believed to be the "metric" relating to various behavior patterns for free roaming rats. In this study, the theta rhythms were studied while rats either walked or were passively translated by a toy car on a linear track (referred to as WALK and TRANS respectively). For the similar running speeds in WALK and TRANS conditions, theta frequency and amplitude were both reduced during TRANS. Theta modulation of pyramidal cells during TRANS was reduced compared to that during WALK. Theta frequency was positively correlated with translation speed during TRANS. Theta rhythm remained apparent during TRANS and WALK after large dose of atropine sulfate (blocking the cholinergic pathway) was injected compared to still states. The present study demonstrated the patterns of theta rhythm induced by passive translation in rats and suggested that the Type I theta rhythm could occur during non-voluntary locomotion. We further argued that the perception of actual self-motion may be the underlying mechanism that initiates and modulates type I theta. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Beitel, Ralph E.; Schreiner, Christoph E.; Leake, Patricia A.
2016-01-01
In profoundly deaf cats, behavioral training with intracochlear electric stimulation (ICES) can improve temporal processing in the primary auditory cortex (AI). To investigate whether similar effects are manifest in the auditory midbrain, ICES was initiated in neonatally deafened cats either during development after short durations of deafness (8 wk of age) or in adulthood after long durations of deafness (≥3.5 yr). All of these animals received behaviorally meaningless, “passive” ICES. Some animals also received behavioral training with ICES. Two long-deaf cats received no ICES prior to acute electrophysiological recording. After several months of passive ICES and behavioral training, animals were anesthetized, and neuronal responses to pulse trains of increasing rates were recorded in the central (ICC) and external (ICX) nuclei of the inferior colliculus. Neuronal temporal response patterns (repetition rate coding, minimum latencies, response precision) were compared with results from recordings made in the AI of the same animals (Beitel RE, Vollmer M, Raggio MW, Schreiner CE. J Neurophysiol 106: 944–959, 2011; Vollmer M, Beitel RE. J Neurophysiol 106: 2423–2436, 2011). Passive ICES in long-deaf cats remediated severely degraded temporal processing in the ICC and had no effects in the ICX. In contrast to observations in the AI, behaviorally relevant ICES had no effects on temporal processing in the ICC or ICX, with the single exception of shorter latencies in the ICC in short-deaf cats. The results suggest that independent of deafness duration passive stimulation and behavioral training differentially transform temporal processing in auditory midbrain and cortex, and primary auditory cortex emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf cat. NEW & NOTEWORTHY Behaviorally relevant vs. passive electric stimulation of the auditory nerve differentially affects neuronal temporal processing in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (AI) in profoundly short-deaf and long-deaf cats. Temporal plasticity in the ICC depends on a critical amount of electric stimulation, independent of its behavioral relevance. In contrast, the AI emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf auditory system. PMID:27733594
Aoi, Shinya; Tsuchiya, Kazuo; Kokubu, Hiroshi
2016-01-01
Passive dynamic walking is a useful model for investigating the mechanical functions of the body that produce energy-efficient walking. The basin of attraction is very small and thin, and it has a fractal-like shape; this explains the difficulty in producing stable passive dynamic walking. The underlying mechanism that produces these geometric characteristics was not known. In this paper, we consider this from the viewpoint of dynamical systems theory, and we use the simplest walking model to clarify the mechanism that forms the basin of attraction for passive dynamic walking. We show that the intrinsic saddle-type hyperbolicity of the upright equilibrium point in the governing dynamics plays an important role in the geometrical characteristics of the basin of attraction; this contributes to our understanding of the stability mechanism of bipedal walking. PMID:27436971
Numerical and experimental study of bistable plates for morphing structures
NASA Astrophysics Data System (ADS)
Nicassio, F.; Scarselli, G.; Avanzini, G.; Del Core, G.
2017-04-01
This study is concerned with the activation energy threshold of bistable composite plates in order to tailor a bistable system for specific aeronautical applications. The aim is to explore potential configurations of the bistable plates and their dynamic behavior for designing novel morphing structure suitable for aerodynamic surfaces and, as a possible further application, for power harvesters. Bistable laminates have two stable mechanical shapes that can withstand aerodynamic loads without additional constraint forces or locking mechanisms. This kind of structures, when properly loaded, snap-through from one stable configuration to another, causing large strains that can also be used for power harvesting scopes. The transition between the stable states of the composite laminate can be triggered, in principle, simply by aerodynamic loads (pilot, disturbance or passive inputs) without the need of servo-activated control systems. Both numerical simulations based on Finite Element models and experimental testing based on different activating forcing spectra are used to validate this concept. The results show that dynamic activation of bistable plates depend on different parameters that need to be carefully managed for their use as aircraft passive wing flaps.
NASA Astrophysics Data System (ADS)
Zhao, Tianliang; Liu, Zhiyong; Hu, Shanshan; Du, Cuiwei; Li, Xiaogang
2017-05-01
The effect of hydrogen charging on the stress corrosion cracking (SCC) behavior of 2205 duplex stainless steel (DSS) under 3.5 wt.% NaCl thin electrolyte layer was investigated on precharged samples through hydrogen determination, electrochemical measurement, and slow strain rate tensile test. Results show that hydrogen charging weakens the passive film without inducing any obvious trace of localized anodic dissolution. Therefore, hydrogen charging increases the SCC susceptibility of 2205 DSS mainly through mechanism of hydrogen embrittlement rather than mechanism of localized anodic dissolution. 2205 DSS shows a more susceptibility to hydrogen under the TEL when hydrogen charging current density (HCCD) is between 20 and 50 mA cm-2. The increasing trend is remarkable when hydrogen charging current density increases from 20 to 50 mA cm-2 and fades after 50 mA cm-2.
ERIC Educational Resources Information Center
Trautman, Carol Hamer; Rollins, Pamela Rosenthal
2006-01-01
This study investigates three aspects of social communication in 12-month-old infants and their caregivers: (a) caregiver conversational style, (b) caregiver gesture, and (c) infant engagement. Differences in caregiver behavior during passive joint engagement were associated with language outcomes. Although total mean duration of infant time in…
The corrosion behavior of technetium metal exposed to aqueous sulfate and chloride solutions
Kolman, David Gary; Goff, George Scott; Cisneros, Michael Ruben; ...
2017-04-19
Here, metal waste forms are being studied as possible disposal forms for technetium and other fission products from spent nuclear fuel. As an initial step in assessing the viability of waste forms, technetium corrosion and passivity behavior was assessed across a broad pH spectrum (pH –1 to pH 13). Measurements indicate that the open circuit potential falls into the region of Tc +7 stability, more noble than the region of presumed passivity. Potentiodynamic polarization tests indicate that the Tc samples are not passive. Both electrochemical results and visual inspection suggest the presence of a nonprotective film. The corrosion rate ismore » relatively independent of pH and low, as measured by linear polarization resistance. No evidence of passivity was observed in the Tc +4 region of the potential-pH diagram following in-situ abrasion, suggesting that Tc does not passivate, regardless of potential.« less
The corrosion behavior of technetium metal exposed to aqueous sulfate and chloride solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolman, David Gary; Goff, George Scott; Cisneros, Michael Ruben
Here, metal waste forms are being studied as possible disposal forms for technetium and other fission products from spent nuclear fuel. As an initial step in assessing the viability of waste forms, technetium corrosion and passivity behavior was assessed across a broad pH spectrum (pH –1 to pH 13). Measurements indicate that the open circuit potential falls into the region of Tc +7 stability, more noble than the region of presumed passivity. Potentiodynamic polarization tests indicate that the Tc samples are not passive. Both electrochemical results and visual inspection suggest the presence of a nonprotective film. The corrosion rate ismore » relatively independent of pH and low, as measured by linear polarization resistance. No evidence of passivity was observed in the Tc +4 region of the potential-pH diagram following in-situ abrasion, suggesting that Tc does not passivate, regardless of potential.« less
Guo, Caixia; Wang, Tianxing; Xia, Congxin; Liu, Yufang
2017-10-09
The electronic structures and transport properties of group IV atoms (C, Si, Ge)-doped armchair phosphorene nanoribbons (APNRs) are investigated using first-principles calculations, considering different edge passivation. The results show that the C, Si, Ge dopants can induce the transition occur from semiconductor to metal in the APNRs. The negative differential resistance (NDR) behavior in the doped APNR system is robust with respect to the doping concentration and edge passivation type. However, their current peak positions and peak-to-valley ratio (PVR) values are correlated with doping concentration and edge passivation type. In particular, for the C, Si-doped APNRs, the low bias NDR behavior with the PVR (10 5 -10 8 ) can be observed when doping concentration is low in the APNRs with the F and H edge passivation. These results may play an important role for the fabrication of future low power consumption nano-electronic devices.
Human hippocampus arbitrates approach-avoidance conflict.
Bach, Dominik R; Guitart-Masip, Marc; Packard, Pau A; Miró, Júlia; Falip, Mercè; Fuentemilla, Lluís; Dolan, Raymond J
2014-03-03
Animal models of human anxiety often invoke a conflict between approach and avoidance. In these, a key behavioral assay comprises passive avoidance of potential threat and inhibition, both thought to be controlled by ventral hippocampus. Efforts to translate these approaches to clinical contexts are hampered by the fact that it is not known whether humans manifest analogous approach-avoidance dispositions and, if so, whether they share a homologous neurobiological substrate. Here, we developed a paradigm to investigate the role of human hippocampus in arbitrating an approach-avoidance conflict under varying levels of potential threat. Across four experiments, subjects showed analogous behavior by adapting both passive avoidance behavior and behavioral inhibition to threat level. Using functional magnetic resonance imaging (fMRI), we observe that threat level engages the anterior hippocampus, the human homolog of rodent ventral hippocampus. Testing patients with selective hippocampal lesions, we demonstrate a causal role for the hippocampus with patients showing reduced passive avoidance behavior and inhibition across all threat levels. Our data provide the first human assay for approach-avoidance conflict akin to that of animal anxiety models. The findings bridge rodent and human research on passive avoidance and behavioral inhibition and furnish a framework for addressing the neuronal underpinnings of human anxiety disorders, where our data indicate a major role for the hippocampus. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
D’Astolfo, Lisa; Rief, Winfried
2017-01-01
Modifying patients’ expectations by exposing them to expectation violation situations (thus maximizing the difference between the expected and the actual situational outcome) is proposed to be a crucial mechanism for therapeutic success for a variety of different mental disorders. However, clinical observations suggest that patients often maintain their expectations regardless of experiences contradicting their expectations. It remains unclear which information processing mechanisms lead to modification or persistence of patients’ expectations. Insight in the processing could be provided by Neuroimaging studies investigating prediction error (PE, i.e., neuronal reactions to non-expected stimuli). Two methods are often used to investigate the PE: (1) paradigms, in which participants passively observe PEs (”passive” paradigms) and (2) paradigms, which encourage a behavioral adaptation following a PE (“active” paradigms). These paradigms are similar to the methods used to induce expectation violations in clinical settings: (1) the confrontation with an expectation violation situation and (2) an enhanced confrontation in which the patient actively challenges his expectation. We used this similarity to gain insight in the different neuronal processing of the two PE paradigms. We performed a meta-analysis contrasting neuronal activity of PE paradigms encouraging a behavioral adaptation following a PE and paradigms enforcing passiveness following a PE. We found more neuronal activity in the striatum, the insula and the fusiform gyrus in studies encouraging behavioral adaptation following a PE. Due to the involvement of reward assessment and avoidance learning associated with the striatum and the insula we propose that the deliberate execution of action alternatives following a PE is associated with the integration of new information into previously existing expectations, therefore leading to an expectation change. While further research is needed to directly assess expectations of participants, this study provides new insights into the information processing mechanisms following an expectation violation. PMID:28804467
NASA Astrophysics Data System (ADS)
Böttger, U.; Waser, R.
2017-07-01
The existence of non-ferroelectric regions in ferroelectric thin films evokes depolarization effects leading to a tilt of the P(E) hysteresis loop. The analysis of measured hysteresis of lead zirconate titanate (PZT) thin films is used to determine a depolarization factor which contains quantitative information about interfacial layers as well as ferroelectrically passive zones in the bulk. The derived interfacial capacitance is smaller than that estimated from conventional extrapolation techniques. In addition, the concept of depolarization is used for the investigation of fatigue behavior of PZT thin films indicating that the mechanism of seed inhibition, which is responsible for the effect, occurs in the entire film.
Separating Active and Passive Influences on Stomatal Control of Transpiration[OPEN
McAdam, Scott A.M.; Brodribb, Timothy J.
2014-01-01
Motivated by studies suggesting that the stomata of ferns and lycophytes do not conform to the standard active abscisic acid (ABA) -mediated stomatal control model, we examined stomatal behavior in a conifer species (Metasequoia glyptostroboides) that is phylogenetically midway between the fern and angiosperm clades. Similar to ferns, daytime stomatal closure in response to moderate water stress seemed to be a passive hydraulic process in M. glyptostroboides immediately alleviated by rehydrating excised shoots. Only after prolonged exposure to more extreme water stress did active ABA-mediated stomatal closure become important, because foliar ABA production was triggered after leaf turgor loss. The influence of foliar ABA on stomatal conductance and stomatal aperture was highly predictable and additive with the passive hydraulic influence. M. glyptostroboides thus occupies a stomatal behavior type intermediate between the passively controlled ferns and the characteristic ABA-dependent stomatal closure described in angiosperm herbs. These results highlight the importance of considering phylogeny as a major determinant of stomatal behavior. PMID:24488969
Separating active and passive influences on stomatal control of transpiration.
McAdam, Scott A M; Brodribb, Timothy J
2014-04-01
Motivated by studies suggesting that the stomata of ferns and lycophytes do not conform to the standard active abscisic acid (ABA) -mediated stomatal control model, we examined stomatal behavior in a conifer species (Metasequoia glyptostroboides) that is phylogenetically midway between the fern and angiosperm clades. Similar to ferns, daytime stomatal closure in response to moderate water stress seemed to be a passive hydraulic process in M. glyptostroboides immediately alleviated by rehydrating excised shoots. Only after prolonged exposure to more extreme water stress did active ABA-mediated stomatal closure become important, because foliar ABA production was triggered after leaf turgor loss. The influence of foliar ABA on stomatal conductance and stomatal aperture was highly predictable and additive with the passive hydraulic influence. M. glyptostroboides thus occupies a stomatal behavior type intermediate between the passively controlled ferns and the characteristic ABA-dependent stomatal closure described in angiosperm herbs. These results highlight the importance of considering phylogeny as a major determinant of stomatal behavior.
Gemelli-obturator complex in the deep gluteal space: an anatomic and dynamic study.
Balius, Ramon; Susín, Antonio; Morros, Carles; Pujol, Montse; Pérez-Cuenca, Dolores; Sala-Blanch, Xavier
2018-06-01
To investigate the behavior of the sciatic nerve during hip rotation at subgluteal space. Sonographic examination (high-resolution ultrasound machine at 5.0-14 MHZ) of the gemelli-obturator internus complex following two approaches: (1) a study on cadavers and (2) a study on healthy volunteers. The cadavers were examined in pronation, pelvis-fixed position by forcing internal and external rotations of the hip with the knee in 90° flexion. Healthy volunteers were examined during passive internal and external hip rotation (prone position; lumbar and pelvic regions fixed). Subjects with a history of major trauma, surgery or pathologies affecting the examined regions were excluded. The analysis included eight hemipelvis from six fresh cadavers and 31 healthy volunteers. The anatomical study revealed the presence of connective tissue attaching the sciatic nerve to the structures of the gemellus-obturator system at deep subgluteal space. The amplitude of the nerve curvature during rotating position was significantly greater than during resting position. During passive internal rotation, the sciatic nerve of both cadavers and healthy volunteers transformed from a straight structure to a curved structure tethered at two points as the tendon of the obturator internus contracted downwards. Conversely, external hip rotation caused the nerve to relax. Anatomically, the sciatic nerve is closely related to the gemelli-obturator internus complex. This relationship results in a reproducible dynamic behavior of the sciatic nerve during passive hip rotation, which may contribute to explain the pathological mechanisms of the obturator internal gemellus syndrome.
Aridan, Nadav; Mukamel, Roy
2016-11-01
Observing someone else perform a movement facilitates motor planning, execution, and motor memory formation. Rate, an important feature in the execution of repeated movements, has been shown to vary following movement observation although the underlying neural mechanisms are unclear. In the current study, we examined how the rate of self-paced index finger pressing is implicitly modified following passive observation of a similar action performed at a different rate. Fifty subjects performed a finger pressing sequence with their right hand at their own pace before and after passive observation of either a 1-min video depicting the task performed at 3 Hz by someone else or a black screen. An additional set of 15 subjects performed the task in an MRI scanner. Across all 50 subjects, the spontaneous execution rate prior to video observation had a bimodal distribution with modes around 2 and 4 Hz. Following video observation, the slower subjects performed the task at an increased rate. In the 15 subjects who performed the task in the MRI scanner, we found positive correlation between fMRI signal in the left primary motor strip during passive video observation and subsequent behavioral changes in task performance rate. We conclude that observing someone else perform an action at a higher rate implicitly increases the spontaneous rate of execution, and that this implicit induction is mediated by activity in the contralateral primary motor cortex.
NASA Astrophysics Data System (ADS)
Si, Jiajia; Wu, Yidong; Wang, Tan; Liu, Yanhui; Hui, Xidong
2018-07-01
Various corrosive environments in daily life and industry have put forward high requirement on corrosion resistance of metals, especially steels. Unlike the strict demand in Cr content of crystalline stainless steels, amorphous steels (ASs) with lower Cr content can be endowed with outstanding corrosion resistance, while the intrinsic mechanism is not fully understood. Herein, we present a novel Fe92-x-y-zCrxMoyZr8Bz (6 ≤ x ≤ 40, 0 ≤ y ≤ 22, and 12 ≤ z ≤ 18) bulk amorphous steel (BAS) forming system and reveal the synergistic effect of Cr and Mo in determining the chemical stability of oxide films. It has been found the Fe92-x-zCrxZr8Bz BASs with 1 mm in diameter display a Cr-controlling active-passive transition at the Cr threshold of ∼25% in 1 M hydrochloric acid. When adding minor Mo into the BASs, the Cr threshold can be remarkably reduced by forming favorable hexavalent Mo oxides. The generation of Mo6+ is facilitated by atomic selective dissolution at the interface and can promote the passivation. In contrast, when the Cr content of the Mo-doped glasses exceeds 25%, few Mo6+ oxides would produce as the prior formation of protective passive films inhibits the further oxidation of Mo. Therefore, manipulating the active-passive transition properly is crucial to designing ASs with high stainlessness.
The importance of structural softening for the evolution and architecture of passive margins
Duretz, T.; Petri, B.; Mohn, G.; Schmalholz, S. M.; Schenker, F. L.; Müntener, O.
2016-01-01
Lithospheric extension can generate passive margins that bound oceans worldwide. Detailed geological and geophysical studies in present and fossil passive margins have highlighted the complexity of their architecture and their multi-stage deformation history. Previous modeling studies have shown the significant impact of coarse mechanical layering of the lithosphere (2 to 4 layer crust and mantle) on passive margin formation. We built upon these studies and design high-resolution (~100–300 m) thermo-mechanical numerical models that incorporate finer mechanical layering (kilometer scale) mimicking tectonically inherited heterogeneities. During lithospheric extension a variety of extensional structures arises naturally due to (1) structural softening caused by necking of mechanically strong layers and (2) the establishment of a network of weak layers across the deforming multi-layered lithosphere. We argue that structural softening in a multi-layered lithosphere is the main cause for the observed multi-stage evolution and architecture of magma-poor passive margins. PMID:27929057
Fundamental studies on the metal chloride cathodes in sodium batteries
NASA Technical Reports Server (NTRS)
Ratnakumar, B. V.; Attia, A.; Halpert, G.
1990-01-01
The authors report studies of the passivation of the NiCl2 electrode during reduction, its effect on the electrochemical rate kinetics for the reduction, and its dependence on the state of charge of the electrode. NiCl2 exhibits passive behavior more readily at lower states of charge due to a decrease in the electrochemical area, resulting from NaCl deposited during reduction. The passive behavior is evident from the DC polarization curves as well as AC impedance plots at the same potentials, implying a correlation between them. The results of the studies are presented in detail.
ERIC Educational Resources Information Center
Pozzoli, Tiziana; Gini, Gianluca
2010-01-01
This study examined the role of pro-victim attitudes, personal responsibility, coping responses to observations of bullying, and perceived peer normative pressure in explaining defending the victim and passive bystanding behavior in bullying. A total of 462 Italian early adolescents (mean age = 13.4 years, SD = 9 months) participated in the study.…
Spiny lobsters detect conspecific blood-borne alarm cues exclusively through olfactory sensilla.
Shabani, Shkelzen; Kamio, Michiya; Derby, Charles D
2008-08-01
When attacked by predators, diverse animals actively or passively release molecules that evoke alarm and related anti-predatory behavior by nearby conspecifics. The actively released molecules are alarm pheromones, whereas the passively released molecules are alarm cues. For example, many insects have alarm-signaling systems that involve active release of alarm pheromones from specialized glands and detection of these signals using specific sensors. Many crustaceans passively release alarm cues, but the nature of the cues, sensors and responses is poorly characterized. Here we show in laboratory and field experiments that injured Caribbean spiny lobsters, Panulirus argus, passively release alarm cues via blood (hemolymph) that induce alarm responses in the form of avoidance and suppression of feeding. These cues are detected exclusively through specific olfactory chemosensors, the aesthetasc sensilla. The alarm cues for Caribbean spiny lobsters are not unique to the species but do show some phylogenetic specificity: P. argus responds primarily with alarm behavior to conspecific blood, but with mixed alarm and appetitive behaviors to blood from the congener Panulirus interruptus, or with appetitive behaviors to blood from the blue crab Callinectes sapidus. This study lays the foundation for future neuroethological studies of alarm cue systems in this and other decapod crustaceans.
An experimentally based nonlinear viscoelastic model of joint passive moment.
Esteki, A; Mansour, J M
1996-04-01
Previous investigations have not converged on a generally accepted model of the dissipative part of joint passive moment. To provide a basis for developing a model, a series of measurements were performed to characterize the passive moment at the metacarpophalangeal joint of the index finger. Two measurement procedures were used, one in moment relaxation over a range of fixed joint angles and the other at a series of constant joint velocities. Fung's quasi-linear viscoelastic theory motivated the development of the passive moment model. Using this approach, it was not necessary to make restrictive assumptions regarding the viscoelastic behavior of the passive moment. The generality of the formulation allowed specific functions to be chosen based on experimental data rather than finding coefficients which attempted to fit a preselected model of the data. It was shown that a nonlinear viscoelastic model described the passive stiffness. No significant frictional effects were found. Of particular importance was the nonlinear behavior of the dissipative part of the passive moment which was modeled by joint speed raised to a power less than one. This result could explain the differing findings among previous investigations, and may have important implications for control of limb movement.
Thacker, Bryan E.; Tomiya, Akihito; Hulst, Jonah B.; Suzuki, Kentaro P.; Bremner, Shannon N.; Gastwirt, Randy F.; Greaser, Marion L.; Lieber, Richard L.; Ward, Samuel R.
2011-01-01
Summary The effects of botulinum neurotoxin A on the passive mechanical properties of skeletal muscle have not been investigated, but may have significant impact in the treatment of neuromuscular disorders including spasticity. Single fiber and fiber bundle passive mechanical testing was performed on rat muscles treated with botulinum neurotoxin A. Myosin heavy chain and titin composition of single fibers was determined by gel electrophoresis. Muscle collagen content was determined using a hydroxyproline assay. Neurotoxin-treated single fiber passive elastic modulus was reduced compared to control fibers (53.00 kPa versus 63.43 kPa). Fiber stiffness and slack sarcomere length were also reduced compared to control fibers and myosin heavy chain composition shifted from faster to slower isoforms. Average titin molecular weight increased 1.77% after treatment. Fiber bundle passive elastic modulus increased following treatment (168.83 kPa versus 75.14 kPa). Bundle stiffness also increased while collagen content per mass of muscle tissue increased 38%. Injection of botulinum neurotoxin A produces an effect on the passive mechanical properties of normal muscle that is opposite to the changes observed in spastic muscles. PMID:21853457
Bio-inspired passive actuator simulating an abalone shell mechanism for structural control
NASA Astrophysics Data System (ADS)
Yang, Henry T. Y.; Lin, Chun-Hung; Bridges, Daniel; Randall, Connor J.; Hansma, Paul K.
2010-10-01
An energy dispersion mechanism called 'sacrificial bonds and hidden length', which is found in some biological systems, such as abalone shells and bones, is the inspiration for new strategies for structural control. Sacrificial bonds and hidden length can substantially increase the stiffness and enhance energy dissipation in the constituent molecules of abalone shells and bone. Having been inspired by the usefulness and effectiveness of such a mechanism, which has evolved over millions of years and countless cycles of evolutions, the authors employ the conceptual underpinnings of this mechanism to develop a bio-inspired passive actuator. This paper presents a fundamental method for optimally designing such bio-inspired passive actuators for structural control. To optimize the bio-inspired passive actuator, a simple method utilizing the force-displacement-velocity (FDV) plots based on LQR control is proposed. A linear regression approach is adopted in this research to find the initial values of the desired parameters for the bio-inspired passive actuator. The illustrative examples, conducted by numerical simulation with experimental validation, suggest that the bio-inspired passive actuator based on sacrificial bonds and hidden length may be comparable in performance to state-of-the-art semi-active actuators.
Thacker, Bryan E; Tomiya, Akihito; Hulst, Jonah B; Suzuki, Kentaro P; Bremner, Shannon N; Gastwirt, Randy F; Greaser, Marion L; Lieber, Richard L; Ward, Samuel R
2012-03-01
The effects of botulinum neurotoxin A on the passive mechanical properties of skeletal muscle have not been investigated, but may have significant impact in the treatment of neuromuscular disorders including spasticity. Single fiber and fiber bundle passive mechanical testing was performed on rat muscles treated with botulinum neurotoxin A. Myosin heavy chain and titin composition of single fibers was determined by gel electrophoresis. Muscle collagen content was determined using a hydroxyproline assay. Neurotoxin-treated single fiber passive elastic modulus was reduced compared to control fibers (53.00 kPa vs. 63.43 kPa). Fiber stiffness and slack sarcomere length were also reduced compared to control fibers and myosin heavy chain composition shifted from faster to slower isoforms. Average titin molecular weight increased 1.77% after treatment. Fiber bundle passive elastic modulus increased following treatment (168.83 kPa vs. 75.14 kPa). Bundle stiffness also increased while collagen content per mass of muscle tissue increased 38%. Injection of botulinum neurotoxin A produces an effect on the passive mechanical properties of normal muscle that is opposite to the changes observed in spastic muscles. Copyright © 2011 Orthopaedic Research Society.
Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends.
Zhang, Chunsun; Xing, Da; Li, Yuyuan
2007-01-01
This review surveys the advances of microvalves, micropumps, and micromixers within PCR microfluidic chips over the past ten years. First, the types of microvalves in PCR chips are discussed, including active and passive microvalves. The active microvalves are subdivided into mechanical (thermopneumatic and shape memory alloy), non-mechanical (hydrogel, sol-gel, paraffin, and ice), and external (modular built-in, pneumatic, and non-pneumatic) microvalves. The passive microvalves also include mechanical (in-line polymerized gel and passive plug) and non-mechanical (hydrophobic) microvalves. The review then discusses mechanical (piezoelectric, pneumatic, and thermopneumatic) and non-mechanical (electrokinetic, magnetohydrodynamic, electrochemical, acoustic-wave, surface tension and capillary, and ferrofluidic magnetic) micropumps in PCR chips. Next, different micromixers within PCR chips are presented, including passive (Y/T-type flow, recirculation flow, and drop) and active (electrokinetically-driven, acoustically-driven, magnetohydrodynamical-driven, microvalves/pumps) micromixers. Finally, general discussions on microvalves, micropumps, and micromixers for PCR chips are given. The microvalve/micropump/micromixers allow high levels of PCR chip integration and analytical throughput.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moraes, Paulo E.L., E-mail: pauloeduardo.leitedemoraes@gmail.com; Contieri, Rodrigo J., E-mail: contieri@fem.unicamp.br; Lopes, Eder S.N., E-mail: ederlopes@fem.unicamp.br
Ti and Ti alloys are widely used in restorative surgery because of their good biocompatibility, enhanced mechanical behavior and high corrosion resistance in physiological media. The corrosion resistance of Ti-based materials is due to the spontaneous formation of the TiO{sub 2} oxide film on their surface, which exhibits elevated stability in biological fluids. Ti–Nb alloys, depending on the composition and the processing routes to which the alloys are subjected, have high mechanical strength combined with low elastic modulus. The addition of Sn to Ti–Nb alloys allows the phase transformations to be controlled, particularly the precipitation of ω phase. The aimmore » of this study is to discuss the microstructure, mechanical properties and corrosion behavior of cast Ti–Nb alloys to which Sn has been added. Samples were centrifugally cast in a copper mold, and the microstructure was characterized using optical microscopy, scanning electron microscopy and X-ray diffractometry. Mechanical behavior evaluation was performed using Berkovich nanoindentation, Vickers hardness and compression tests. The corrosion behavior was evaluated in Ringer's solution at room temperature using electrochemical techniques. The results obtained suggested that the physical, mechanical and chemical behaviors of the Ti–Nb–Sn alloys are directly dependent on the Sn content. - Graphical abstract: Effects of Sn addition to the Ti–30Nb alloy on the elastic modulus. - Highlights: • Sn addition causes reduction of the ω phase precipitation. • Minimum Vickers hardness and elastic modulus occurred for 6 wt.% Sn content. • Addition of 6 wt.% Sn resulted in maximum ductility and minimum compression strength. • All Ti–30Nb–XSn (X = 0, 2, 4, 6, 8 and 10%) alloys are passive in Ringer's solution. • Highest corrosion resistance was observed for 6 wt.% Sn content.« less
Parameters influencing the course of passive drug loading into lipid nanoemulsions.
Göke, Katrin; Bunjes, Heike
2018-05-01
Passive drug loading can be used to effectively identify suitable colloidal lipid carrier systems for poorly water-soluble drugs. This method comprises incubation of preformed carrier systems with drug powder and subsequent determination of the resulting drug load of the carrier particles. Until now, the passive loading mechanism is unknown, which complicates reliable routine use. In this work, the influence of drug characteristics on the course of passive loading was investigated systematically varying drug surface area and drug solubility. Fenofibrate and flufenamic acid were used as model drugs; the carrier system was a trimyristin nanodispersion. Loading progress was analyzed by UV spectroscopy or by a novel method based on differential scanning calorimetry. While increasing drug solubility by micelle incorporation did not speed up passive loading, a large drug surface area and high water solubility were key parameters for fast loading. Since both factors are crucial in drug dissolution as described by the Noyes-Whitney equation, these findings point to a dissolution-diffusion-based passive loading mechanism. Accordingly, passive loading also occurred when drug and carrier particles were separated by a dialysis membrane. Knowledge of the loading mechanism allows optimizing the conditions for future passive loading studies and assessing the limitations of the method. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fattah-alhosseini, Arash; Asgari, Hamed
2018-05-01
In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.
Electronic properties and mechanical strength of β-phosphorene nano-ribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaroop, Ram; Bhatia, Pradeep; Kumar, Ashok, E-mail: ashok@cup.ac.in
We have performed first principles calculations to find out the effect of mechanical strain on the electronic properties of zig-zag edged nano ribbons of β-phosphorene. It is found that electronic band-gap get opened-up to 2.61 eV by passivation of the edges of ribbons. Similarly, the mechanical strength is found to be increase from 1.75 GPa to 2.65 GPa on going from unpassivated nano ribbons to passivated ones along with the 2% increase in ultimate tensile strain. The band-gap value of passivated ribbon gets decreased to 0.43 eV on applying strain up to which the ribbon does not break. These tunable properties ofmore » β-phospherene with passivation with H-atom and applying mechanical strain offer its use in tunable nano electronics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagraev, N. T., E-mail: Bagraev@mail.ioffe.ru; Chaikina, E. I.; Danilovskii, E. Yu.
The sulfur passivation of the semi-insulating GaAs bulk (SI GaAs) grown in an excess phase of arsenic is used to observe the transition from the Coulomb blockade to the weak localization regime at room temperature. The I–V characteristics of the SI GaAs device reveal nonlinear behavior that appears to be evidence of the Coulomb blockade process as well as the Coulomb oscillations. The sulfur passivation of the SI GaAs device surface results in enormous transformation of the I–V characteristics that demonstrate the strong increase of the resistance and Coulomb blockade regime is replaced by the electron tunneling processes. The resultsmore » obtained are analyzed within frameworks of disordering SI GaAs surface that is caused by inhomogeneous distribution of the donor and acceptor anti-site defects which affects the conditions of quantum- mechanical tunneling. Weak localization processes caused by the preservation of the Fermi level pinning are demonstrated by measuring the negative magnetoresistance in weak magnetic fields at room temperature. Finally, the studies of the magnetoresistance at higher magnetic fields reveal the h/2e Aharonov–Altshuler–Spivak oscillations with the complicated behavior due to possible statistical mismatch of the interference paths in the presence of different microdefects.« less
Behavior of an adaptive bio-inspired spider web
NASA Astrophysics Data System (ADS)
Zheng, Lingyue; Behrooz, Majid; Huie, Andrew; Hartman, Alex; Gordaninejad, Faramarz
2015-03-01
The goal of this study is to demonstrate the feasibility of an artificial adaptive spider web with comparable behavior to a real spider web. First, the natural frequency and energy absorption ability of a passive web is studied. Next, a control system that consists of stepper motors, load cells and an Arduino, is constructed to mimic a spider's ability to control the tension of radial strings in the web. The energy related characteristics in the artificial spider web is examined while the pre-tension of the radial strings are varied. Various mechanical properties of a damaged spider web are adjusted to study their effect on the behavior of the web. It is demonstrated that the pre-tension and stiffness of the web's radial strings can significantly affect the natural frequency and the total energy of the full and damaged webs.
Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different Conditions
NASA Astrophysics Data System (ADS)
Liu, Yong; Ma, Shengguo; Gao, Michael C.; Zhang, Chuan; Zhang, Teng; Yang, Huijun; Wang, Zhihua; Qiao, Junwei
2016-07-01
In order to understand the environmental effect on the mechanical behavior of high-entropy alloys, the tribological properties of AlCrCuFeNi2 are studied systematically in dry, simulated rainwater, and deionized water conditions against the Si3N4 ceramic ball at a series of different normal loads. The present study shows that both the friction and wear rate in simulated rainwater are the lowest. The simulated rainwater plays a significant role in the tribological behavior with the effect of forming passive film, lubricating, cooling, cleaning, and corrosion. The wear mechanism in simulated rainwater is mainly adhesive wear accompanied by abrasive wear as well as corrosive wear. In contrast, those in dry condition and deionized water are abrasive wear, adhesive wear, and surface plastic deformation. Oxidation contributes to the wear behavior in dry condition but is prevented in liquid condition. In addition, the phase diagram of Al x CrCuFeNi2 is predicted using CALPHAD modeling, which is in good agreement with the literature report and the present study.
NASA Astrophysics Data System (ADS)
Mulchrone, Kieran F.; Meere, Patrick A.
2015-09-01
Shape fabrics of elliptical objects in rocks are usually assumed to develop by passive behavior of inclusions with respect to the surrounding material leading to shape-based strain analysis methods belonging to the Rf/ϕ family. A probability density function is derived for the orientational characteristics of populations of rigid ellipses deforming in a pure shear 2D deformation with both no-slip and slip boundary conditions. Using maximum likelihood a numerical method is developed for estimating finite strain in natural populations deforming for both mechanisms. Application to a natural example indicates the importance of the slip mechanism in explaining clast shape fabrics in deformed sediments.
Model-Based Experimental Development of Passive Compliant Robot Legs from Fiberglass Composites
Lin, Shang-Chang; Hu, Chia-Jui; Lin, Pei-Chun
2015-01-01
We report on the methodology of developing compliant, half-circular, and composite robot legs with designable stiffness. First, force-displacement experiments on flat cantilever composites made by one or multifiberglass cloths are executed. By mapping the cantilever mechanics to the virtual spring model, the equivalent elastic moduli of the composites can be derived. Next, by using the model that links the curved beam mechanics back to the virtual spring, the resultant stiffness of the composite in a half-circular shape can be estimated without going through intensive experimental tryouts. The overall methodology has been experimentally validated, and the fabricated composites were used on a hexapod robot to perform walking and leaping behaviors. PMID:27065748
Passive appendages improve the maneuverability of fish-like robots
NASA Astrophysics Data System (ADS)
Pollard, Beau; Tallapragada, Phanindra
2017-11-01
It is known that the passive mechanics of fish appendages play a role in the high efficiency of their swimming. A well known example of this is the experimental demonstration that a dead fish could swim upstream. However little is known about the role if any of passive deformations of a fish-like body that could aid in its maneuverability. Part of the difficulty investigating this lies in clearly separating the role of actuated body deformations and passive deformations in response to the fluid structure interaction. In this paper we compare the maneuverability of several fish shaped robotic models that possess varying numbers of passive appendages with a fish shaped robot that has no appendages. All the robots are propelled by the oscillations of an internal momentum wheel thereby eliminating any active deformations of the body. Our experiments clearly reveal the significant improvement in maneuverability of robots with passive appendages. In the broader context of swimming robots our experiments show that passive mechanisms could be useful to provide mechanical feedback that can help maneuverability and obstacle avoidance along with propulsive efficiency. This work was partly supported by a Grant from the NSF CMMI 1563315.
Passive stiffness of rat skeletal muscle undernourished during fetal development
Toscano, Ana Elisa; Ferraz, Karla Mônica; de Castro, Raul Manhães; Canon, Francis
2010-01-01
OBJECTIVES: The aim of the study was to investigate the effect of fetal undernutrition on the passive mechanical properties of skeletal muscle of weaned and young adult rats. INTRODUCTION: A poor nutrition supply during fetal development affects physiological functions of the fetus. From a mechanical point of view, skeletal muscle can be also characterized by its resistance to passive stretch. METHODS: Male Wistar rats were divided into two groups according to their mother's diet during pregnancy: a control group (mothers fed a 17% protein diet) and an isocaloric low‐protein group (mothers fed a 7.8% protein diet). At birth, all mothers received a standardized meal ad libitum. At the age of 25 and 90 days, the soleus muscle and extensor digitorum longus (EDL) muscles were removed in order to test the passive mechanical properties. A first mechanical test consisted of an incremental stepwise extension test using fast velocity stretching (500 mm/s) enabling us to measure, for each extension stepwise, the dynamic stress (σd) and the steady stress (σs). A second test consisted of a slow velocity stretch in order to calculate normalized stiffness and tangent modulus from the stress–strain relationship. RESULTS: The results for the mechanical properties showed an important increase in passive stiffness in both the soleus and EDL muscles in weaned rat. In contrast, no modification was observed in young adult rats. CONCLUSIONS: The increase in passive stiffness in skeletal muscle of weaned rat submitted to intrauterine undernutrition it is most likely due to changes in muscle passive stiffness. PMID:21340228
Development of home cage social behaviors in BALB/cJ vs. C57BL/6J mice.
Fairless, Andrew H; Katz, Julia M; Vijayvargiya, Neha; Dow, Holly C; Kreibich, Arati Sadalge; Berrettini, Wade H; Abel, Ted; Brodkin, Edward S
2013-01-15
BALB/cJ and C57BL/6J inbred mouse strains have been proposed as useful models of low and high levels of sociability (tendency to seek social interaction), respectively, based primarily on behaviors of ∼30-day-old mice in the Social Approach Test (SAT). In the SAT, approach and sniffing behaviors of a test mouse toward an unfamiliar stimulus mouse are measured in a novel environment. However, it is unclear whether such results generalize to a familiar environment with a familiar social partner, such as with a littermate in a home cage environment. We hypothesized that C57BL/6J mice would show higher levels of social behaviors than BALB/cJ mice in the home cage environment, particularly at 30 days-of-age. We measured active and passive social behaviors in home cages by pairs of BALB/cJ or C57BL/6J littermates at ages 30, 41, and 69 days. The strains did not differ robustly in their active social behaviors. C57BL/6J mice were more passively social than BALB/cJ mice at 30 days, and C57BL/6J levels of passive social behaviors declined to BALB/cJ levels by 69 days. The differences in passive social behaviors at 30 days-of-age were primarily attributable to differences in huddling. These results indicate that different test conditions (SAT conditions vs. home cage conditions) elicit strain differences in distinct types of behaviors (approach/sniffing vs. huddling behaviors, respectively). Assessment of the more naturalistic social interactions in the familiar home cage environment with a familiar littermate will provide a useful component of a comprehensive assessment of social behaviors in mouse models relevant to autism. Copyright © 2012 Elsevier B.V. All rights reserved.
Noise characteristics of passive components for phased array applications
NASA Technical Reports Server (NTRS)
Sonmez, M. Kemal; Trew, Robert J.
1991-01-01
The results of a comparative study on noise characteristics of basic power combining/dividing and phase shifting schemes are presented. The theoretical basics of thermal noise in a passive linear multiport are discussed. A new formalism is presented to describe the noise behavior of the passive circuits, and it is shown that the fundamental results are conveniently achieved using this description. The results of analyses concerning the noise behavior of basic power combining/dividing structures (the Wilkinson combiner, 90 deg hybrid coupler, hybrid ring coupler, and the Lange coupler) are presented. Three types of PIN-diode switch phase shifters are analyzed in terms of noise performance.
NASA Astrophysics Data System (ADS)
Sun, Min; Xiao, Kui; Dong, Chaofang; Li, Xiaogang; Zhong, Ping
2013-10-01
Because Cr9Ni5MoCo14 is a new ultra-high-strength corrosion-resistant steel, it is important to study its corrosion behavior in sulfuric acid solution, which is used to simulate the aggressive environment. The effect of pH on the electrochemical and semiconducting properties of passive films formed on ultra-high-strength corrosion-resistant steel in sulfuric acid solution was investigated by means of the potentiodynamic polarization technique, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis, and X-ray photoelectron spectroscopy (XPS). The results indicated that Cr9Ni5MoCo14 steel showed a passive state in acid solutions. The corrosion behavior of this Cr9Ni5MoCo14 alloy was influenced by the passive film formed on the surface, including thickness, stability, and partitioning of elements of the passive film. The passive current density decreases with increasing pH, and the corrosion resistance was enhanced by the increasing thickness and depletion of the defects within the passive film. Moreover, an enrichment of chromium (primarily the oxides of Cr) and depletion of iron in the passive film led to improved corrosion resistance. These results can provide a theoretical basis for use of this alloy and further development of ultra-high-strength corrosion-resistant steel in today's society.
Passive avoidance is linked to impaired fear extinction in humans
Cornwell, Brian R.; Overstreet, Cassie; Krimsky, Marissa; Grillon, Christian
2013-01-01
Conventional wisdom dictates we must face our fears to conquer them. This idea is embodied in exposure-based treatments for anxiety disorders, where the intent of exposure is to reverse a history of avoidant behavior that is thought to fuel a patient’s irrational fears. We tested in humans the relationship between fear and avoidance by combining Pavlovian differential fear conditioning with a novel task for quantifying spontaneous passive avoidant behavior. During self-guided navigation in virtual reality following de novo fear conditioning, we observed participants keeping their distance from the feared object. At the individual level, passive avoidant behavior was highly associated with maladaptive fear expression (fear-potentiated startle) during late extinction training, indicating that extinction learning was impaired following a brief episode of avoidance. Avoidant behavior, however, was not related to initial acquired fear, raising doubt about a straightforward link between physiological fear and behavioral avoidance. We conclude that a deeper understanding of what motivates avoidance may offer a target for early intervention, before fears transition from the rational to the irrational. PMID:23427168
NASA Astrophysics Data System (ADS)
Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu
2013-10-01
Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.
Secondary emission conductivity of high purity silica fabric
NASA Technical Reports Server (NTRS)
Belanger, V. J.; Eagles, A. E.
1977-01-01
High purity silica fabrics were proposed for use as a material to control the effects of electrostatic charging of satellites at synchronous altitudes. These materials exhibited very quiet behavior when placed in simulated charging environments as opposed to other dielectrics used for passive thermal control which exhibit varying degrees of electrical arcing. Secondary emission conductivity is proposed as a mechanism for this superior behavior. Design of experiments to measure this phenomena and data taken on silica fabrics are discussed as they relate to electrostatic discharge (ESD) control on geosynchronous orbit spacecraft. Studies include the apparent change in resistivity of the material as a function of the electron beam energy, flux intensity, and the effect of varying electric fields impressed across the material under test.
NASA Astrophysics Data System (ADS)
Amjadian, Mohsen; Agrawal, Anil K.
2018-01-01
Friction is considered as one of the most reliable mechanisms of energy dissipation that has been utilized extensively in passive damping devices to mitigate vibration of civil engineering structures subjected to extreme natural hazards such as earthquakes and windstorms. However, passive friction dampers are well-known for having a highly nonlinear hysteretic behavior caused by stick-slip motion at low velocities, a phenomenon that is inherent in friction and increases the acceleration response of the structure under control unfavorably. The authors have recently proposed the theoretical concept of a new type of damping device termed as "Passive Electromagnetic Eddy Current Friction Damper" (PEMECFD) in which an eddy current damping mechanism was utilized not only to decrease the undesirable effects of stick-slip motion, but also to increase the energy dissipation capacity of the damping device as a whole. That study was focused on demonstration of the theoretical performance of the proposed damping device through numerical simulations. This paper further investigates the influence of eddy current damping on energy dissipation due to friction through modeling, design, and testing of a proof-of-concept prototype damper. The design of this damper has been improved over the design in the previous study. The normal force in this damper is produced by the repulsive magnetic force between two cuboidal permanent magnets (PMs) magnetized in the direction normal to the direction of the motion. The eddy current damping force is generated because of the motion of the two PMs and two additional PMs relative to a copper plate in their vicinity. The dynamic models for the force-displacement relationship of the prototype damper are based on LuGre friction model, electromagnetic theory, and inertial effects of the prototype damper. The parameters of the dynamic models have been identified through a series of characterization tests on the prototype damper under harmonic excitations of different frequencies in the laboratory. Finally, the identified dynamic models have been validated by subjecting the prototype damper to two different random excitations. The results indicate that the proposed dynamic models are capable of representing force-displacement behavior of the new type of passive damping device for a wide range of operating conditions.
ERIC Educational Resources Information Center
Pozzoli, Tiziana; Gini, Gianluca; Vieno, Alessio
2012-01-01
This study investigates possible individual and class correlates of defending and passive bystanding behavior in bullying, in a sample of 1,825 Italian primary school (mean age = 10 years 1 month) and middle school (mean age = 13 years 2 months) students. The findings of a series of multilevel regression models show that both individual (e.g.,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebak, R B; Hua, F H
2004-07-12
Intergranular attack (IGA) and intergranular stress corrosion cracking (IGSCC) of Alloy 600 in PWR steam generator environment has been extensively studied for over 30 years without rendering a clear understanding of the essential mechanisms. The lack of understanding of the IGSCC mechanism is due to a complex interaction of numerous variables such as microstructure, thermomechanical processing, strain rate, water chemistry and electrochemical potential. Hydrogen plays an important role in all these variables. The complexity, however, significantly hinders a clearer and more fundamental understanding of the mechanism of hydrogen in enhancing intergranular cracking via whatever mechanism. In this work, an attemptmore » is made to review the role of hydrogen based on the current understanding of grain boundary structure and chemistry and intergranular fracture of nickel alloys, effect of hydrogen on electrochemical behavior of Alloy 600 and Alloy 690 (e.g. the passive film stability, polarization behavior and open-circuit potential) and effect of hydrogen on PWSCC behavior of Alloy 600 and Alloy 690. Mechanistic studies on the PWSCC are briefly reviewed. It is concluded that further studies on the role of hydrogen on intergranular cracking in both inert and primary side environments are needed. These studies should focus on the correlation of the results obtained at different laboratories by different methods on materials with different metallurgical and chemical parameters.« less
NASA Astrophysics Data System (ADS)
Celli, Jonathan; Jones, Dustin; El-Hamidi, Hamid; Cramer, Gwendolyn; Hanna, William; Caide, Andrew; Jafari, Seyedehrojin
The rheological properties of the extracellular matrix (ECM) have been shown to play key roles in regulating tumor growth behavior through mechanotranduction pathways. The role of the mechanical microenvironment may be particularly important tumors of the pancreas, noted for an abundance of rigid fibrotic stroma, implicated in therapeutic resistance. At the same time, cancer cells and their stromal partners (e.g. tumor associated fibroblasts) continually alter the mechanical microenvironment in response to extracellular physical and biochemical cues as part of a two-way mechanoregulatory dialog. Here, we describe experimental studies using 3D pancreatic cell cultures with customized mechanical properties, combined with optical microrheology to provide insight into tumor-driven matrix remodeling. Quantitative microscopy provides measurements of phenotypic changes accompanying systematic variation of ECM composition in collagen and laminin-rich basement membrane admixtures, while analysis of the trajectories of passive tracer particles embedded in ECM report dynamic changes in heterogeneity, microstructure and local shear modulus accompanying both ECM stiffening (fibrosis) processes, and ECM degradation near invading cells. We gratefully acknowledge funding from the National Cancer Institute, R00CA155045 (PI: Celli).
Defense styles of pedophilic offenders.
Drapeau, Martin; Beretta, Véronique; de Roten, Yves; Koerner, Annett; Despland, Jean-Nicolas
2008-04-01
This pilot study investigated the defense styles of pedophile sexual offenders. Interviews with 20 pedophiles and 20 controls were scored using the Defense Mechanisms Rating Scales. Results showed that pedophiles had a significantly lower overall defensive functioning score than the controls. Pedophiles used significantly fewer obsessional-level defenses but more major image-distorting and action-level defenses. Results also suggested differences in the prevalence of individual defenses where pedophiles used more dissociation, displacement, denial, autistic fantasy, splitting of object, projective identification, acting out, and passive aggressive behavior but less intellectualization and rationalization.
Adaptive space warping to enhance passive haptics in an arthroscopy surgical simulator.
Spillmann, Jonas; Tuchschmid, Stefan; Harders, Matthias
2013-04-01
Passive haptics, also known as tactile augmentation, denotes the use of a physical counterpart to a virtual environment to provide tactile feedback. Employing passive haptics can result in more realistic touch sensations than those from active force feedback, especially for rigid contacts. However, changes in the virtual environment would necessitate modifications of the physical counterparts. In recent work space warping has been proposed as one solution to overcome this limitation. In this technique virtual space is distorted such that a variety of virtual models can be mapped onto one single physical object. In this paper, we propose as an extension adaptive space warping; we show how this technique can be employed in a mixed-reality surgical training simulator in order to map different virtual patients onto one physical anatomical model. We developed methods to warp different organ geometries onto one physical mock-up, to handle different mechanical behaviors of the virtual patients, and to allow interactive modifications of the virtual structures, while the physical counterparts remain unchanged. Various practical examples underline the wide applicability of our approach. To the best of our knowledge this is the first practical usage of such a technique in the specific context of interactive medical training.
Lee, Bo Kyung; Jung, An Na; Jung, Yi-Sook
2018-07-01
Rapid eye movement (REM) sleep has an essential role in the process of learning and memory in the hippocampus. It has been reported that linalool, a major component of Lavandula angustifolia , has antioxidant, anti-inflammatory, and neuroprotective effects, along with other effects. However, the effect of linalool on the cognitive impairment and behavioral alterations that are induced by REM-sleep deprivation has not yet been elucidated. Several studies have reported that REM-sleep deprivation-induced memory deficits provide a well-known model of behavioral alterations. In the present study, we examined whether linalool elicited an anti-stress effect, reversing the behavioral alterations observed following REM-sleep deprivation in mice. Furthermore, we investigated the underlying mechanism of the effect of linalool. Spatial memory and learning memory were assessed through Y maze and passive avoidance tests, respectively, and the forced swimming test was used to evaluate anti-stress activity. The mechanisms through which linalool improves memory loss and behavioral alterations in sleep-deprived mice appeared to be through an increase in the serotonin levels. Linalool significantly ameliorated the spatial and learning memory deficits, and stress activity observed in sleep-deprived animals. Moreover, linalool led to serotonin release, and cortisol level reduction. Our findings suggest that linalool has beneficial effects on the memory loss and behavioral alterations induced by REM-sleep deprivation through the regulation of serotonin levels.
Hieronymus, Tobin L
2016-11-01
Mechanisms for passively coordinating forelimb movements and flight feather abduction and adduction have been described separately from both in vivo and ex vivo studies. Skeletal coordination has been identified as a way for birds to simplify the neuromotor task of controlling flight stroke, but an understanding of the relationship between skeletal coordination and the coordination of the aerodynamic control surface (the flight feathers) has been slow to materialize. This break between the biomechanical and aerodynamic approaches - between skeletal kinematics and airfoil shape - has hindered the study of dynamic flight behaviors. Here I use dissection and histology to identify previously overlooked interconnections between musculoskeletal elements and flight feathers. Many of these structures are well-placed to directly link elements of the passive musculoskeletal coordination system with flight feather movements. Small bundles of smooth muscle form prominent connections between upper forearm coverts (deck feathers) and the ulna, as well as the majority of interconnections between major flight feathers of the hand. Abundant smooth muscle may play a role in efficient maintenance of folded wing posture, and may also provide an autonomically regulated means of tuning wing shape and aeroelastic behavior in flight. The pattern of muscular and ligamentous linkages of flight feathers to underlying muscle and bone may provide predictable passive guidance for the shape of the airfoil during flight stroke. The structures described here provide an anatomical touchstone for in vivo experimental tests of wing surface coordination in an extensively researched avian model species. © 2016 Anatomical Society.
Suzuki, Hideo; Lucas, Louis R.
2015-01-01
Social learning theory postulates that individuals learn to engage in aggressive behavior through observing an aggressive social model. Prior studies have shown that repeatedly observing aggression, also called “chronic passive exposure to aggression,” changes accumbal dopamine D2 receptor (D2R) and amygdaloid 5-HT1B receptor (5-HT1BR) densities in observers. But, the association between these outcomes remains unknown. Thus, our study used a rat paradigm to comprehensively examine the linkage between aggression, D2R density in the nucleus accumbens core (AcbC) and shell (AcbSh), and 5-HT1BR density in the medial (MeA), basomedial (BMA), and basolateral (BLA) amygdala following chronic passive exposure to aggression. Male Sprague-Dawley rats (N = 72) were passively exposed to either aggression or non-aggression acutely (1 day) or chronically (23 days). When observer rats were exposed to aggression chronically, they showed increased aggressive behavior and reduced D2R density in the bilateral AcbSh. On the other hand, exposure to aggression, regardless of exposure length, increased 5-HT1BR density in the bilateral BLA. Finally, low D2R in the AcbSh significantly interacted with high 5-HT1BR density in the BLA in predicting high levels of aggression in observer rats. Our results advance our understanding of the neurobiological mechanisms for observational learning of aggression, highlighting that dopamine-serotonin interaction, or AcbSh-BLA interaction, may contribute to a risk factor for aggression in observers who chronically witness aggressive interactions. PMID:25650085
Determinants of Cancer Early Detection Behaviors:Application of Protection Motivation Theory.
Rahaei, Zohreh; Ghofranipour, Fazlollah; Morowatisharifabad, Mohammad Ali; Mohammadi, Eesa
2015-01-01
Cancer is account for 13% of all deaths around the world and is the third cause of mortality in Iran. More than one third of these cases are pre-ventable and about 33% are curable with early detection. The aim of this study was to determine the predictors of cancer early detection (CED) behaviors applying Protection Motivation Theory (PMT). In this cross-sectional study, cluster sampling method was employed to recruit 260 individuals of above 20 years old in Yazd, Iran and a researcher designed questionnaire was completed through interviews for each of the respondents. PMT theoretical variables and CED behaviors were the basis of data collection procedure. Participants acquired 64.47% of the protection motivation, 30.97% of the passive and 45.64% of the active behaviors‟ possible scores. Theory constructs predicted 19.8%, 15.6% and 9.6% of the variations for protection motivation, passive and active behavior respectively. Protection motivation was responsible for 3.6% of passive and 8% of active behaviors‟ variations. Considering the scarceness of CED behaviors and the applicability of PMT in predicting these behaviors, utilization of the PMT‟s constructs in any interventional programs to accelerate CED behaviors could be an alternate methodological choice in the cancer control initiatives.
The basilar membrane acts as a passive support structure at the cochlear apex
NASA Astrophysics Data System (ADS)
Warren, Rebecca L.; Fridberger, Anders
2015-12-01
The precise mechanical behavior of the basilar membrane (BM) at low frequencies is still unknown. To address this issue we use an in vitro preparation of the guinea pig temporal bone to investigate the mechanical behaviour of the organ of Corti at the apex of the cochlea. Confocal laser interferometry is used to record the nanometre displacements of both Hensen's cells (HeC) and the BM in response to sound and electrical stimulation. We show that at low frequencies, the BM exhibits greatly reduced sound-evoked movement (˜35dB less) and no current-evoked movement, when compared to the HeC at the same position along the spiral. The BM best frequency is found to be an average of 52Hz (0.35 octave) higher than the HeC best frequency. In addition, we demonstrate that BM motion is not affected by inhibition of somatic electromotility or by blocking the mechanoelectrical transduction channels.We therefore propose that the BM primarily acts as a passive support structure at the cochlear apex. We suggest that the micromechanics of the cochlea that are vital to low-frequency amplification and frequency selectivity take place predominantly at the surface of the organ of Corti.
NASA Astrophysics Data System (ADS)
Wan, Yu; Jin, Kai; Ahmad, Talha J.; Black, Michael J.; Xu, Zhiping
2017-03-01
Fluidic environment is encountered for mechanical components in many circumstances, which not only damps the oscillation but also modulates their dynamical behaviors through hydrodynamic interactions. In this study, we examine energy transfer and motion synchronization between two mechanical micro-oscillators by performing thermal lattice-Boltzmann simulations. The coefficient of inter-oscillator energy transfer is measured to quantify the strength of microhydrodynamic coupling, which depends on their distance and fluid properties such as density and viscosity. Synchronized motion of the oscillators is observed in the simulations for typical parameter sets in relevant applications, with the formation and loss of stable anti-phase synchronization controlled by the oscillating frequency, amplitude, and hydrodynamic coupling strength. The critical ranges of key parameters to assure efficient energy transfer or highly synchronized motion are predicted. These findings could be used to advise mechanical design of passive and active devices that operate in fluid.
NASA Astrophysics Data System (ADS)
Rehfeldt, Florian; Schmidt, Christoph F.
2017-11-01
In the last two decades, it has become evident that the mechanical properties of the microenvironment of biological cells are as important as traditional biochemical cues for the control of cellular behavior and fate. The field of cell and matrix mechanics is quickly growing and so is the development of the experimental approaches used to study active and passive mechanical properties of cells and their surroundings. Within this topical review we will provide a brief overview, on the one hand, over how cellular mechanics can be probed physically, how different geometries allow access to different cellular properties, and, on the other hand, how forces are generated in cells and transmitted to the extracellular environment. We will describe the following experimental techniques: atomic force microscopy, traction force microscopy, magnetic tweezers, optical stretcher and optical tweezers pointing out both their advantages and limitations. Finally, we give an outlook on the future of the physical probing of cells.
Creaby, Mark W; Wrigley, Tim V; Lim, Boon-Whatt; Hinman, Rana S; Bryant, Adam L; Bennell, Kim L
2013-11-20
Self-reported knee joint instability compromises function in individuals with medial knee osteoarthritis and may be related to impaired joint mechanics. The purpose of this study was to evaluate the relationship between self-reported instability and the passive varus-valgus mechanical behaviour of the medial osteoarthritis knee. Passive varus-valgus angular laxity and stiffness were assessed using a modified isokinetic dynamometer in 73 participants with medial tibiofemoral osteoarthritis. All participants self-reported the absence or presence of knee instability symptoms and the degree to which instability affected daily activity on a 6-point likert scale. Forward linear regression modelling identified a significant inverse relationship between passive mid-range knee stiffness and symptoms of knee instability (r = 0.27; P < 0.05): reduced stiffness was indicative of more severe instability symptoms. Angular laxity and end-range stiffness were not related to instability symptoms (P > 0.05). Conceivably, a stiffer passive system may contribute toward greater joint stability during functional activities. Importantly however, net joint stiffness is influenced by both active and passive stiffness, and thus the active neuromuscular system may compensate for reduced passive stiffness in order to maintain joint stability. Future work is merited to examine the role of active stiffness in symptomatic joint stability.
2013-01-01
Background Self-reported knee joint instability compromises function in individuals with medial knee osteoarthritis and may be related to impaired joint mechanics. The purpose of this study was to evaluate the relationship between self-reported instability and the passive varus-valgus mechanical behaviour of the medial osteoarthritis knee. Methods Passive varus-valgus angular laxity and stiffness were assessed using a modified isokinetic dynamometer in 73 participants with medial tibiofemoral osteoarthritis. All participants self-reported the absence or presence of knee instability symptoms and the degree to which instability affected daily activity on a 6-point likert scale. Results Forward linear regression modelling identified a significant inverse relationship between passive mid-range knee stiffness and symptoms of knee instability (r = 0.27; P < 0.05): reduced stiffness was indicative of more severe instability symptoms. Angular laxity and end-range stiffness were not related to instability symptoms (P > 0.05). Conclusions Conceivably, a stiffer passive system may contribute toward greater joint stability during functional activities. Importantly however, net joint stiffness is influenced by both active and passive stiffness, and thus the active neuromuscular system may compensate for reduced passive stiffness in order to maintain joint stability. Future work is merited to examine the role of active stiffness in symptomatic joint stability. PMID:24252592
Impact of pregnancy and vaginal delivery on the passive and active mechanics of the rat vagina.
Feola, Andrew; Moalli, Pamela; Alperin, Marianna; Duerr, Robbie; Gandley, Robin E; Abramowitch, Steven
2011-01-01
Remodeling of vaginal extracellular matrix and smooth muscle likely plays a critical role in reducing the risk of maternal injury during vaginal delivery by altering the mechanical properties to increase distension and reduce stress. Long-Evans rats were divided into five groups to examine the passive mechanical and active contractile properties throughout pregnancy and postpartum: virgin (n=17), mid-pregnant (Day 14-16, n=12), late-pregnant (Day 20-22, n=14), immediate postpartum (0-2 h after delivery, n=14), and 4 week postpartum (n=15). Longitudinal sections of vaginal tissue were loaded to failure uniaxially for passive mechanical or active contractile properties were examined. For passive mechanics, the tangent modulus decreased 45% by mid-pregnancy and immediately postpartum (p<0.001). The ultimate strain continuously increased up to 43% higher than virgin animals (p=0.007) in the immediate postpartum group. For active mechanics, the maximal contractile force was 36-56% lower through immediate postpartum animals, and was significantly more sensitive to K+ throughout pregnancy and postpartum (p=0.003). The changes observed in the passive and active properties of the rat vagina are consistent with what would be expected from a tissue that is remodeling to maximize its ability to distend at the time of vaginal delivery to facilitate passage of the fetus with minimal injury.
Passive immunization of mice pups through oral immunization of dams with a plant-derived vaccine.
Walmsley, Amanda M; Kirk, Dwayne D; Mason, Hugh S
2003-03-03
Passive immunization plays an important role in protecting young mammals against pathogens before the maturation of their own immune systems. Although many reports have shown active immunization of animals and human through the use of plant-derived vaccines, only one report has given evidence of passive immunization of offspring through oral immunization of parents using plant-derived vaccines. In this case, a challenge alone provided the evidence of passive immunization and the mechanism through which this occurred was not investigated. This report describes the first step in elucidating the mechanism of passive immunization of offspring through actively immunizing the female parent through an orally delivered, plant-derived vaccine. The authors found passive immunization of offspring was caused by transfer of antigen-specific IgG through either transplacental transfer or ingesting colostrum. Future studies will investigate the roles of transplacental antibody transfer and ingesting colostrum in passive immunization and the possible involvement of IgA in this immunization route.
ERIC Educational Resources Information Center
Richardson, Barry L.; And Others
1981-01-01
In a comparison of the performance of active and passive mechanically yoked subjects who learned their way through a tactile maze, it was shown that active subjects made more errors and took a greater number of trials to reach criterion than did passive subjects. (Author)
NASA Astrophysics Data System (ADS)
Wang, Zhu; Zhang, Lei; Tang, Xian; Zhang, Ziru; Lu, Minxu
2017-11-01
The protectiveness and characterization of passive films formed at various potentials in H2S-containing environments were studied using electrochemical measurements and surface analysis method. The corrosion resistance of 316L in H2S-containing environment decreases with the applied potential. The Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) results indicate that Ni participates in the film formation, which results in the corresponding enrichment in the passive film. The oxidization degree analysis indicates that metallic elements are present in the passive film. Sulfide ions are significantly favored in the passive film at higher potentials, which is responsible for the breakdown of passive film.
Marceau, Kristine; Palmer, Rohan H.C.; Neiderhiser, Jenae M.; Smith, Taylor F.; McGeary, John E.; Knopik, Valerie S.
2016-01-01
There is considerable evidence that smoke exposure during pregnancy (SDP) environmentally influences birth weight after controlling for genetic influences and maternal characteristics. However, maternal smoking during pregnancy – the behavior that leads to smoke exposure during pregnancy – is also genetically-influenced, indicating the potential role of passive gene-environment correlation. An alternative to passive gene-SDP correlation is a cascading effect whereby maternal and child genetic influences are causally linked to prenatal exposures, which then have an ‘environmental’ effect on the development of the child’s biology and behavior. We describe and demonstrate a conceptual framework for disentangling passive rGE from this cascading GE effect using a systems-based polygenic scoring approach comprised of genes shown to be important in the xenobiotic (substances foreign to the body) metabolism pathway. Data were drawn from 5,044 families from the Avon Longitudinal Study of Parents and Children with information on maternal SDP, birth weight, and genetic polymorphisms in the xenobiotic pathway. Within a k-fold cross-validation approach (k=5), we created weighted maternal and child polygenic scores using 18 polymorphisms from 10 genes that have been implicated in the xenobiotic metabolism pathway. Mothers and children shared variation in xenobiotic metabolism genes. Amongst mothers who smoked during pregnancy, neither maternal nor child xenobiotic metabolism polygenic scores were associated with a higher likelihood of smoke exposure during pregnancy, or the severity of smoke exposure during pregnancy (and therefore, neither proposed mechanism was supported), or with child birth weight. SDP was consistently associated with lower child birth weight controlling for the polygenic scores, maternal educational attainment, social class, psychiatric problems, and age. Limitations of the study design and the potential of the framework using other designs are discussed. PMID:26803317
Jiang, Jin-yang; Wang, Danqian; Chu, Hong-yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei
2017-01-01
An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed. PMID:28772772
Jiang, Jin-Yang; Wang, Danqian; Chu, Hong-Yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei
2017-04-14
An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed.
Chi, Nai-Wen; Yang, Jixia; Lin, Chia-Ying
2018-01-01
Drawing on the stressor-emotion model, we examine how customer mistreatment can evoke service workers' passive forms of deviant behaviors (i.e., work withdrawal behavior [WWB]) and negative impacts on their home life (i.e., work-family conflict [WFC]), and whether individuals' core self-evaluations and customer service training can buffer the negative effects of customer mistreatment. Using the experience sampling method, we collect daily data from 77 customer service employees for 10 consecutive working days, yielding 546 valid daily responses. The results show that daily customer mistreatment increases service workers' daily WWB and WFC through negative emotions. Furthermore, employees with high core self-evaluations and employees who received customer service training are less likely to experience negative emotions when faced with customer mistreatment, and thus are less likely to engage in WWB or provoke WFC. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Renal electrolyte circadian rhythms - Independence from feeding and activity patterns
NASA Technical Reports Server (NTRS)
Moore-Ede, M. C.; Herd, J. A.
1977-01-01
Experiments were conducted on six unanesthetized chair-acclimatized adult male squirrel monkeys (Saimiri sciureus) weighing 600-900 g to determine whether internal synchronization is the result of simple passive dependence of renal excretory rhythms on endogenous rhythms of those variable that influence electrolyte excretion such as dietary intake and muscular activity. Independence of the urinary rhythms from diurnal variations in feeding, drinking, and activity was secured by depriving the animals of food, water, and training them to perform a two-hourly schedule of feeding, drinking, and activity throughout day and night. Results indicate that the internal synchronization which is normally observed between the behavioral and urinary rhythms cannot be explained by any direct dependence of renal function on behavioral patterns. The most probable mechanism for circadian internal synchronization is that the various behavioral and renal rhythms are controlled by potentially independent separate oscillators which are normally kept in synchrony with one another.
NASA Astrophysics Data System (ADS)
Park, In-Jun; Choi, Seok-Ryul; Kim, Jung-Gu
2017-07-01
Effects of Zn and In additions on the aluminum anode for Al-air battery in alkaline solution are examined by the self-corrosion rate, cell voltage, current-voltage characteristics, anodic polarization, discharge performance and AC impedance measurements. The passivation behavior of Zn-added anode during anodic polarization decreases the discharge performance of Al-air battery. The addition of In to Al-Zn anode reduces the formation of Zn passivation film by repeated adsorption and desorption behavior of In ion onto anode surface. The attenuated Zn passive layer by In ion attack leads to the improvement of discharge performance of Al-air battery.
NASA Astrophysics Data System (ADS)
Park, Joonam; Choi, Eunsoo; Park, Kyoungsoo; Kim, Hong-Taek
2011-09-01
Shape memory alloy (SMA) wire jackets for concrete are distinct from conventional jackets of steel or fiber reinforced polymer (FRP) since they provide active confinement which can be easily achieved due to the shape memory effect of SMAs. This study uses NiTiNb SMA wires of 1.0 mm diameter to confine concrete cylinders with the dimensions of 300 mm × 150 mm (L × D). The NiTiNb SMAs have a relatively wider temperature hysteresis than NiTi SMAs; thus, they are more suitable for the severe temperature-variation environments to which civil structures are exposed. Steel jackets of passive confinement are also prepared in order to compare the cyclic behavior of actively and passively confined concrete cylinders. For this purpose, monotonic and cyclic compressive loading tests are conducted to obtain axial and circumferential strain. Both strains are used to estimate the volumetric strains of concrete cylinders. Plastic strains from cyclic behavior are also estimated. For the cylinders jacketed by NiTiNb SMA wires, the monotonic axial behavior differs from the envelope of cyclic behavior. The plastic strains of the actively confined concrete show a similar trend to those of passive confinement. This study proposed plastic strain models for concrete confined by SMA wire or steel jackets. For the volumetric strain, the active jackets of NiTiNb SMA wires provide more energy dissipation than the passive jacket of steel.
Passive Ventricular Mechanics Modelling Using MRI of Structure and Function
Wang, V.Y.; Lam, H.I.; Ennis, D.B.; Young, A.A.; Nash, M.P.
2009-01-01
Patients suffering from dilated cardiomyopathy or myocardial infarction can develop left ventricular (LV) diastolic impairment. The LV remodels its structure and function to adapt to pathophysiological changes in geometry and loading conditions and this remodeling process can alter the passive ventricular mechanics. In order to better understand passive ventricular mechanics, a LV finite element model was developed to incorporate physiological and mechanical information derived from in vivo magnetic resonance imaging (MRI) tissue tagging, in vivo LV cavity pressure recording and ex vivo diffusion tensor MRI (DTMRI) of a canine heart. MRI tissue tagging enables quantitative evaluation of cardiac mechanical function with high spatial and temporal resolution, whilst the direction of maximum water diffusion (the primary eigenvector) in each voxel of a DTMRI directly correlates with the myocardial fibre orientation. This model was customized to the geometry of the canine LV during diastasis by fitting the segmented epicardial and endocardial surface data from tagged MRI using nonlinear finite element fitting techniques. Myofibre orientations, extracted from DTMRI of the same heart, were incorporated into this geometric model using a free form deformation methodology. Pressure recordings, temporally synchronized to the tissue tagging MRI data, were used to simulate the LV deformation during diastole. Simulation of the diastolic LV mechanics allowed us to estimate the stiffness of the passive LV myocardium based on kinematic data obtained from tagged MRI. This integrated physiological model will allow more insight into the regional passive diastolic mechanics of the LV on an individualized basis, thereby improving our understanding of the underlying structural basis of mechanical dysfunction in pathological conditions. PMID:18982680
Passive ventricular mechanics modelling using MRI of structure and function.
Wang, V Y; Lam, H I; Ennis, D B; Young, A A; Nash, M P
2008-01-01
Patients suffering from dilated cardiomyopathy or myocardial infarction can develop left ventricular (LV) diastolic impairment. The LV remodels its structure and function to adapt to pathophysiological changes in geometry and loading conditions and this remodeling process can alter the passive ventricular mechanics. In order to better understand passive ventricular mechanics, a LV finite element model was developed to incorporate physiological and mechanical information derived from in vivo magnetic resonance imaging (MRI) tissue tagging, in vivo LV cavity pressure recording and ex vivo diffusion tensor MRI (DTMRI) of a canine heart. MRI tissue tagging enables quantitative evaluation of cardiac mechanical function with high spatial and temporal resolution, whilst the direction of maximum water diffusion (the primary eigenvector) in each voxel of a DTMRI directly correlates with the myocardial fibre orientation. This model was customized to the geometry of the canine LV during diastasis by fitting the segmented epicardial and endocardial surface data from tagged MRI using nonlinear finite element fitting techniques. Myofibre orientations, extracted from DTMRI of the same heart, were incorporated into this geometric model using a free form deformation methodology. Pressure recordings, temporally synchronized to the tissue tagging MRI data, were used to simulate the LV deformation during diastole. Simulation of the diastolic LV mechanics allowed us to estimate the stiffness of the passive LV myocardium based on kinematic data obtained from tagged MRI. This integrated physiological model will allow more insight into the regional passive diastolic mechanics of the LV on an individualized basis, thereby improving our understanding of the underlying structural basis of mechanical dysfunction in pathological conditions.
Warm up I: potential mechanisms and the effects of passive warm up on exercise performance.
Bishop, David
2003-01-01
Despite limited scientific evidence supporting their effectiveness, warm-up routines prior to exercise are a well-accepted practice. The majority of the effects of warm up have been attributed to temperature-related mechanisms (e.g. decreased stiffness, increased nerve-conduction rate, altered force-velocity relationship, increased anaerobic energy provision and increased thermoregulatory strain), although non-temperature-related mechanisms have also been proposed (e.g. effects of acidaemia, elevation of baseline oxygen consumption (.VO(2)) and increased postactivation potentiation). It has also been hypothesised that warm up may have a number of psychological effects (e.g. increased preparedness). Warm-up techniques can be broadly classified into two major categories: passive warm up or active warm up. Passive warm up involves raising muscle or core temperature by some external means, while active warm up utilises exercise. Passive heating allows one to obtain the increase in muscle or core temperature achieved by active warm up without depleting energy substrates. Passive warm up, although not practical for most athletes, also allows one to test the hypothesis that many of the performance changes associated with active warm up can be largely attributed to temperature-related mechanisms.
NASA Astrophysics Data System (ADS)
Zulai, Luis G. T.; Durand, Fábio R.; Abrão, Taufik
2015-05-01
In this article, an energy-efficiency mechanism for next-generation passive optical networks is investigated through heuristic particle swarm optimization. Ten-gigabit Ethernet-wavelength division multiplexing optical code division multiplexing-passive optical network next-generation passive optical networks are based on the use of a legacy 10-gigabit Ethernet-passive optical network with the advantage of using only an en/decoder pair of optical code division multiplexing technology, thus eliminating the en/decoder at each optical network unit. The proposed joint mechanism is based on the sleep-mode power-saving scheme for a 10-gigabit Ethernet-passive optical network, combined with a power control procedure aiming to adjust the transmitted power of the active optical network units while maximizing the overall energy-efficiency network. The particle swarm optimization based power control algorithm establishes the optimal transmitted power in each optical network unit according to the network pre-defined quality of service requirements. The objective is controlling the power consumption of the optical network unit according to the traffic demand by adjusting its transmitter power in an attempt to maximize the number of transmitted bits with minimum energy consumption, achieving maximal system energy efficiency. Numerical results have revealed that it is possible to save 75% of energy consumption with the proposed particle swarm optimization based sleep-mode energy-efficiency mechanism compared to 55% energy savings when just a sleeping-mode-based mechanism is deployed.
Passive Sun seeker/tracker and a thermally activated power module
NASA Technical Reports Server (NTRS)
Siebert, C. J.; Morris, F. A.
1984-01-01
Development and testing of two mechanisms using a shape memory alloy metal (NITINOL) as the power source are described. The two mechanisms developed are a passive Sun Seeker/Tracker and a generic type power module. These mechanisms use NITINOL wire initially strained in pure torsion which provides the greatest mechanical work capacity upon recovery, as compared to other deformation modes (i.e., tension, helical springs, and bending).
Negative gravitactic behavior of Caenorhabditis japonica dauer larvae.
Okumura, Etsuko; Tanaka, Ryusei; Yoshiga, Toyoshi
2013-04-15
Gravity on Earth is a constant stimulus and many organisms are able to perceive and respond to it. However, there is no clear evidence that nematodes respond to gravity. In this study, we demonstrated negative gravitaxis in a nematode using dauer larvae (DL) of Caenorhabditis japonica, which form an association with their carrier insect Parastrachia japonensis. Caenorhabditis japonica DL demonstrating nictation, a typical host-finding behavior, had a negative gravitactic behavior, whereas non-nictating C. japonica and C. elegans DL did not. The negative gravitactic index of nictating DL collected from younger nematode cultures was higher than that from older cultures. After a 24 h incubation in M9 buffer, nictating DL did not alter their negative gravitactic behavior, but a longer incubation resulted in less pronounced negative gravitaxis. These results are indicative of negative gravitaxis in nictating C. japonica DL, which is maintained once initiated, seems to be affected by the age of DL and does not appear to be a simple passive mechanism.
NASA Astrophysics Data System (ADS)
Temuryants, N. A.; Tumanyants, K. N.; Khusainov, D. R.; Cheretaev, I. V.; Tumanyants, E. N.
2017-12-01
It was found that moderate electromagnetic shielding, which attenuates constant and variable components of the geomagnetic field (19 h per day for 10 days), induces in male rats the development of depression-like behavior. This behavior is diagnosed on the basis of increased passive swimming time and a decreased duration of active swimming in the Porsolt test. These behaviors reach their peak on days 3-4 of the experiment. The daily administration of 1 mg/kg exogenous melatonin reduces these depression-like behaviors as soon as day 1 of the experiment, and this effect persists throughout all stages of the experiment. Electromagnetic shielding and the administration of 1 mg/kg exogenous melatonin do not change the levels of intraspecies aggressiveness. An increase in melatonin dosage to 5 mg/kg even further reduces depression-like symptoms and stops the increase in intraspecies aggressiveness during the experiment. The conclusion is made that melatonin plays an important role in the mechanisms of physiological effects of a weakened electromagnetic geomagnetic field.
Alcohol Control in Cuba: Preventing Countervailing Cultural and Mass Media Influences.
González-Menéndez, Ricardo Á
2016-07-01
Harmful use of alcohol-the prime gateway drug to other addictions-is also a problem in Cuba, even though the National Program for Prevention of Harmful Use of Alcohol includes the most effective measures used in analogous programs around the world. As a participant in the program's committee and empirical observer of its accomplishments and unaccomplished goals, I draw attention to the community's attitude of tolerance toward intoxication manifested by the lack of proportional consequences, and I insist on the need to broaden the community's understanding of the risks of non-social drinking, which in Latin America is practically limited to alcoholism and its complications. This undervalues the damage wreaked by unpredictable and dangerous behavior under the influence, as well as the suffering of codependents and other "passive drinkers," and the adverse effects of even social drinking. KEYWORDS Alcohol abuse/prevention and control, alcohol consumption, alcohol drinking/culture, alcoholism, drinking behavior, behavior and behavior mechanisms, social determinants of health, social reinforcement, mass media, communication, Cuba.
Storage of electric and magnetic energy in passive nonreciprocal networks
NASA Technical Reports Server (NTRS)
Smith, W. E.
1969-01-01
Examination of the relation of stored electric and magnetic energy within a system to the terminal behavior of nonreciprocal passive networks shows both similarities and important differences between wholly reciprocal systems and systems containing nonreciprocal elements.
Auditory short-term memory in the primate auditory cortex
Scott, Brian H.; Mishkin, Mortimer
2015-01-01
Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ‘working memory’ bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ‘match’ stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. PMID:26541581
Minami, Chihiro; Shimizu, Tomoko; Mitani, Akira
2017-01-01
Sociability promotes a sound daily life for individuals. Reduced sociability is a central symptom of various neuropsychiatric disorders, and yet the neural mechanisms underlying reduced sociability remain unclear. The prelimbic cortex (PL) and infralimbic cortex (IL) have been suggested to play an important role in the neural mechanisms underlying sociability because isolation rearing in rats results in impairment of social behavior and structural changes in the PL and IL. One possible mechanism underlying reduced sociability involves dysfunction of the PL and IL. We made a wireless telemetry system to record multiunit activity in the PL and IL of pairs of freely moving rats during social interaction and examined the influence of isolation rearing on this activity. In group-reared rats, PL neurons increased firing when the rat showed approaching behavior and also contact behavior, especially when the rat attacked the partner. Conversely, IL neurons increased firing when the rat exhibited leaving behavior, especially when the partner left on its own accord. In social interaction, the PL may be involved in active actions toward others, whereas the IL may be involved in passive relief from cautionary subjects. Isolation rearing altered social behavior and neural activity. Isolation-reared rats showed an increased frequency and decreased duration of contact behavior. The increased firing of PL neurons during approaching and contact behavior, observed in group-reared rats, was preserved in isolation-reared rats, whereas the increased firing of IL neurons during leaving behavior, observed in group-reared rats, was suppressed in isolation-reared rats. This result indicates that isolation rearing differentially alters neural activity in the PL and IL during social behavior. The differential influence of isolation rearing on neural activity in the PL and IL may be one of the neural bases of isolation rearing-induced behavior.
The Association between Adult Participation and the Engagement of Preschoolers with ASD
Sam, Ann M.; Reszka, Stephanie S.; Boyd, Brian A.; Pan, Yi; Hume, Kara; Odom, Samuel L.
2016-01-01
The ability for a child to engage in the classroom is associated with better academic outcomes. Yet, there is limited information on how child characteristics of autism and adult behavior impact engagement. This study examined (1) the pattern of adult participation and child engagement in preschool classrooms that serve children with ASD, (2) the associations between child engagement and adult participation, and (3) how characteristics of ASD (autism severity, language ability, and challenging behavior) moderate the relationship between adult participation and child engagement. Overall, children were less likely to be engaged when adults were actively or passively participating with them. Moderators impacted this relationship. Children with higher levels of autism severity were more likely to be engaged when adults were actively or passively participating with them. Similarly, children with lower language abilities were more likely to be engaged when adults were actively or passively participating with them. Finally, children with higher levels of challenging behaviors were less likely to be engaged when adults were actively or passively participating with them. These findings have important implications for how adults can best support the engagement of children with ASD. PMID:27006829
The positional-specificity effect reveals a passive-trace contribution to visual short-term memory.
Postle, Bradley R; Awh, Edward; Serences, John T; Sutterer, David W; D'Esposito, Mark
2013-01-01
The positional-specificity effect refers to enhanced performance in visual short-term memory (VSTM) when the recognition probe is presented at the same location as had been the sample, even though location is irrelevant to the match/nonmatch decision. We investigated the mechanisms underlying this effect with behavioral and fMRI studies of object change-detection performance. To test whether the positional-specificity effect is a direct consequence of active storage in VSTM, we varied memory load, reasoning that it should be observed for all objects presented in a sub-span array of items. The results, however, indicated that although robust with a memory load of 1, the positional-specificity effect was restricted to the second of two sequentially presented sample stimuli in a load-of-2 experiment. An additional behavioral experiment showed that this disruption wasn't due to the increased load per se, because actively processing a second object--in the absence of a storage requirement--also eliminated the effect. These behavioral findings suggest that, during tests of object memory, position-related information is not actively stored in VSTM, but may be retained in a passive tag that marks the most recent site of selection. The fMRI data were consistent with this interpretation, failing to find location-specific bias in sustained delay-period activity, but revealing an enhanced response to recognition probes that matched the location of that trial's sample stimulus.
Folding in and out: passive morphing in flapping wings.
Stowers, Amanda K; Lentink, David
2015-03-25
We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover within a beat.
Page, Nadine C.; Nilsson, Viktor O.
2017-01-01
Objective: This paper describes a behavior change intervention that encourages active commuting using electrically assisted bikes (e-bikes) for health promotion in the workplace. This paper presents the preliminary findings of the intervention’s impact on improving employee well-being and organizational behavior, as an indicator of potential business success. Method: Employees of a UK-based organization participated in a workplace travel behavior change intervention and used e-bikes as an active commuting mode; this was a change to their usual passive commuting behavior. The purpose of the intervention was to develop employee well-being and organizational behavior for improved business success. We explored the personal benefits and organizational co-benefits of active commuting and compared these to a travel-as-usual group of employees who did not change their behavior and continued taking non-active commutes. Results: Employees who changed their behavior to active commuting reported more positive affect, better physical health and more productive organizational behavior outcomes compared with passive commuters. In addition, there was an interactive effect of commuting mode and commuting distance: a more frequent active commute was positively associated with more productive organizational behavior and stronger overall positive employee well-being whereas a longer passive commute was associated with poorer well-being, although there was no impact on organizational behavior. Conclusion: This research provides emerging evidence of the value of an innovative workplace health promotion initiative focused on active commuting in protecting and improving employee well-being and organizational behavior for stronger business performance. It considers the significant opportunities for organizations pursuing improved workforce well-being, both in terms of employee health, and for improved organizational behavior and business success. PMID:28119640
Page, Nadine C; Nilsson, Viktor O
2016-01-01
Objective: This paper describes a behavior change intervention that encourages active commuting using electrically assisted bikes (e-bikes) for health promotion in the workplace. This paper presents the preliminary findings of the intervention's impact on improving employee well-being and organizational behavior, as an indicator of potential business success. Method: Employees of a UK-based organization participated in a workplace travel behavior change intervention and used e-bikes as an active commuting mode; this was a change to their usual passive commuting behavior. The purpose of the intervention was to develop employee well-being and organizational behavior for improved business success. We explored the personal benefits and organizational co-benefits of active commuting and compared these to a travel-as-usual group of employees who did not change their behavior and continued taking non-active commutes. Results: Employees who changed their behavior to active commuting reported more positive affect, better physical health and more productive organizational behavior outcomes compared with passive commuters. In addition, there was an interactive effect of commuting mode and commuting distance: a more frequent active commute was positively associated with more productive organizational behavior and stronger overall positive employee well-being whereas a longer passive commute was associated with poorer well-being, although there was no impact on organizational behavior. Conclusion: This research provides emerging evidence of the value of an innovative workplace health promotion initiative focused on active commuting in protecting and improving employee well-being and organizational behavior for stronger business performance. It considers the significant opportunities for organizations pursuing improved workforce well-being, both in terms of employee health, and for improved organizational behavior and business success.
Passive damping in EDS maglev systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rote, D. M.
2002-05-03
There continues to be strong interest in the subjects of damping and drag forces associated with electrodynamic suspension (EDS) systems. While electromagnetic drag forces resist the forward motion of a vehicle and therefore consume energy, damping forces control, at least in part, the response of the vehicle to disturbances. Ideally, one would like to reduce the drag forces as much as possible while retaining adequate damping forces to insure dynamic stability and satisfactory ride quality. These two goals turn out to be difficult to achieve in practice. It is well known that maglev systems tend to be intrinsically under damped.more » Consequently it is often necessary in a practical system design to enhance the damping passively or actively. For reasons of cost and simplicity, it is desirable to rely as much as possible on passive damping mechanisms. In this paper, rough estimates are made of the passive damping and drag forces caused by various mechanisms in EDS systems. No attention will be given to active control systems or secondary suspension systems which are obvious ways to augment passive damping mechanisms if the latter prove to be inadequate.« less
Irving, Thomas; Wu, Yiming; Bekyarova, Tanya; Farman, Gerrie P.; Fukuda, Norio; Granzier, Henk
2011-01-01
We studied the effect of titin-based passive tension on sarcomere structure by simultaneously measuring passive tension and low-angle x-ray diffraction patterns on passive fiber bundles from rabbit skinned psoas muscle. We used a stretch-hold-release protocol with measurement of x-ray diffraction patterns at various passive tension levels during the hold phase before and after passive stress relaxation. Measurements were performed in relaxing solution without and with dextran T-500 to compress the lattice toward physiological levels. The myofilament lattice spacing was measured in the A-band (d1,0) and Z-disk (dZ) regions of the sarcomere. The axial spacing of the thick-filament backbone was determined from the sixth myosin meridional reflection (M6) and the equilibrium positions of myosin heads from the fourth myosin layer line peak position and the I1,1/I1,0 intensity ratio. Total passive tension was measured during the x-ray experiments, and a differential extraction technique was used to determine the relations between collagen- and titin-based passive tension and sarcomere length. Within the employed range of sarcomere lengths (∼2.2–3.4 μm), titin accounted for >80% of passive tension. X-ray results indicate that titin compresses both the A-band and Z-disk lattice spacing with viscoelastic behavior when fibers are swollen after skinning, and elastic behavior when the lattice is reduced with dextran. Titin also increases the axial thick-filament spacing, M6, in an elastic manner in both the presence and absence of dextran. No changes were detected in either I1,1/I1,0 or the position of peaks on the fourth myosin layer line during passive stress relaxation. Passive tension and M6 measurements were converted to thick-filament compliance, yielding a value of ∼85 m/N, which is several-fold larger than the thick-filament compliance determined by others during the tetanic tension plateau of activated intact muscle. This difference can be explained by the fact that thick filaments are more compliant at low tension (passive muscle) than at high tension (tetanic tension). The implications of our findings are discussed. PMID:21402032
Dynamics of Cell Area and Force during Spreading
Brill-Karniely, Yifat; Nisenholz, Noam; Rajendran, Kavitha; Dang, Quynh; Krishnan, Ramaswamy; Zemel, Assaf
2014-01-01
Experiments on human pulmonary artery endothelial cells are presented to show that cell area and the force exerted on a substrate increase simultaneously, but with different rates during spreading; rapid-force increase systematically occurred several minutes past initial spreading. We examine this theoretically and present three complementary mechanisms that may accompany the development of lamellar stress during spreading and underlie the observed behavior. These include: 1), the dynamics of cytoskeleton assembly at the cell basis; 2), the strengthening of acto-myosin forces in response to the generated lamellar stresses; and 3), the passive strain-stiffening of the cytoskeleton. PMID:25517168
On the Active and Passive Flow Separation Control Techniques over Airfoils
NASA Astrophysics Data System (ADS)
Moghaddam, Tohid; Banazadeh Neishabouri, Nafiseh
2017-10-01
In the present work, recent advances in the field of the active and passive flow separation control, particularly blowing and suction flow control techniques, applied on the common airfoils are briefly reviewed. This broad research area has remained the point of interest for many years as it is applicable to various applications. The suction and blowing flow control methods, among other methods, are more technically feasible and market ready techniques. It is well established that the uniform and/or oscillatory blowing and suction flow control mechanisms significantly improve the lift-to-drag ratio, and further, postpone the boundary layer separation as well as the stall. The oscillatory blowing and suction flow control, however, is more efficient compared to the uniform one. A wide range of parameters is involved in controlling the behavior of a blowing and/or suction flow control, including the location, length, and angle of the jet slots. The oscillation range of the jet slot is another substantial parameter.
Intracochlear Scala Media Pressure Measurement: Implications for Models of Cochlear Mechanics.
Kale, Sushrut S; Olson, Elizabeth S
2015-12-15
Models of the active cochlea build upon the underlying passive mechanics. Passive cochlear mechanics is based on physical and geometrical properties of the cochlea and the fluid-tissue interaction between the cochlear partition and the surrounding fluid. Although the fluid-tissue interaction between the basilar membrane and the fluid in scala tympani (ST) has been explored in both active and passive cochleae, there was no experimental data on the fluid-tissue interaction on the scala media (SM) side of the partition. To this aim, we measured sound-evoked intracochlear pressure in SM close to the partition using micropressure sensors. All the SM pressure data are from passive cochleae, likely because the SM cochleostomy led to loss of endocochlear potential. Thus, these experiments are studies of passive cochlear mechanics. SM pressure close to the tissue showed a pattern of peaks and notches, which could be explained as an interaction between fast and slow (i.e., traveling wave) pressure modes. In several animals SM and ST pressure were measured in the same cochlea. Similar to previous studies, ST-pressure was dominated by a slow, traveling wave mode at stimulus frequencies in the vicinity of the best frequency of the measurement location, and by a fast mode above best frequency. Antisymmetric pressure between SM and ST supported the classic single-partition cochlear models, or a dual-partition model with tight coupling between partitions. From the SM and ST pressure we calculated slow and fast modes, and from active ST pressure we extrapolated the passive findings to the active case. The passive slow mode estimated from SM and ST data was low-pass in nature, as predicted by cochlear models. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Intracochlear Scala Media Pressure Measurement: Implications for Models of Cochlear Mechanics
Kale, Sushrut S.; Olson, Elizabeth S.
2015-01-01
Models of the active cochlea build upon the underlying passive mechanics. Passive cochlear mechanics is based on physical and geometrical properties of the cochlea and the fluid-tissue interaction between the cochlear partition and the surrounding fluid. Although the fluid-tissue interaction between the basilar membrane and the fluid in scala tympani (ST) has been explored in both active and passive cochleae, there was no experimental data on the fluid-tissue interaction on the scala media (SM) side of the partition. To this aim, we measured sound-evoked intracochlear pressure in SM close to the partition using micropressure sensors. All the SM pressure data are from passive cochleae, likely because the SM cochleostomy led to loss of endocochlear potential. Thus, these experiments are studies of passive cochlear mechanics. SM pressure close to the tissue showed a pattern of peaks and notches, which could be explained as an interaction between fast and slow (i.e., traveling wave) pressure modes. In several animals SM and ST pressure were measured in the same cochlea. Similar to previous studies, ST-pressure was dominated by a slow, traveling wave mode at stimulus frequencies in the vicinity of the best frequency of the measurement location, and by a fast mode above best frequency. Antisymmetric pressure between SM and ST supported the classic single-partition cochlear models, or a dual-partition model with tight coupling between partitions. From the SM and ST pressure we calculated slow and fast modes, and from active ST pressure we extrapolated the passive findings to the active case. The passive slow mode estimated from SM and ST data was low-pass in nature, as predicted by cochlear models. PMID:26682824
Sağlam, M; Lehnen, N
2014-01-01
During gaze shifts, humans can use visual, vestibular, and proprioceptive feedback, as well as feedforward mechanisms, for stabilization against active and passive head movements. The contributions of feedforward and sensory feedback control, and the role of the cerebellum, are still under debate. To quantify these contributions, we increased the head moment of inertia in three groups (ten healthy, five chronic vestibular-loss and nine cerebellar-ataxia patients) while they performed large gaze shifts to flashed targets in darkness. This induces undesired head oscillations. Consequently, both active (desired) and passive (undesired) head movements had to be compensated for to stabilize gaze. All groups compensated for active and passive head movements, vestibular-loss patients less than the other groups (P < 0.001, passive/active compensatory gains: vestibular-loss 0.23 ± 0.09/0.43 ± 0.12, healthy 0.80 ± 0.17/0.83 ± 0.15, cerebellar-ataxia 0.68 ± 0.17/0.77 ± 0.30, mean ± SD). The compensation gain ratio against passive and active movements was smaller than one in vestibular-loss patients (0.54 ± 0.10, P=0.001). Healthy and cerebellar-ataxia patients did not differ in active and passive compensation. In summary, vestibular-loss patients can better stabilize gaze against active than against passive head movements. Therefore, feedforward mechanisms substantially contribute to gaze stabilization. Proprioception alone is not sufficient (gain 0.2). Stabilization against active and passive head movements was not impaired in our cerebellar ataxia patients.
NASA Astrophysics Data System (ADS)
Luo, Hong; Su, Huaizhi; Li, Baosong; Ying, Guobing
2018-05-01
In the present work, the electrochemical behavior and semiconducting properties of a tin alloyed ferritic stainless steel in simulated concrete solution in presence of NaCl were estimated by conventional electrochemical methods such as potentiodynamic polarization, electrochemical impedance spectroscopy, and capacitance measurement (Mott-Schottky approach). The surface passive film was analyzed by X-ray photoelectron spectroscopy. The results revealed a good agreement between pitting corrosion, electrochemical behaviour, and electronic properties. The p and n-type bilayer structure passive film were observed. The increase of Sn4+ oxide species in the passive film shows no beneficial effects on the pitting corrosion. In addition, the dehydration of the passive film was further discussed.
Adaptive self-regulation: meeting others' expectations of leadership and performance.
Sosik, John J; Potosky, Denise; Jung, Dong I
2002-04-01
The authors used longitudinal multisource field data to examine core aspects of the adaptive self-regulation model (A. S. Tsui & S. J. Ashford, 1994) in terms of linkages between self-monitoring, discrepancy in manager match-to-position, 5 measures of leadership, and manager performance. At Time 1, 64 superiors of focal managers rated the managers' matches to their positions within the organization; at Time 3, they rated the managers' performance. At Time 2, the 64 focal managers completed a measure of self-monitoring, and 192 subordinates rated the focal managers' leadership behaviors. Results of partial least squares analysis revealed that discrepancy in manager match-to-position was associated with reductions in laissez faire and passive management-by-exception behaviors and increases in transformational leadership behavior. Self-monitoring was positively associated with all 5 leadership behaviors. Performance was related positively to transformational leadership behavior and negatively to passive management-by-exception and contingent-reward behaviors
Behavioral Context of Blue and Fin Whale Calling for Density Estimation
2015-09-30
Recording Packages ( HARPs ) deployed inshore and offshore of the Channel Islands. To evaluate how similar the calling is offshore and inshore, we...in the SCB from one year of passive acoustic HARP data. • Compiled all available non-BRS blue and fin whale acoustic tag data through 2014...Passive acoustic analysis Passive acoustic data from three HARP locations, one offshore and two inshore of the Channel Islands (Figure 3), were
Adzhemyan, L Ts; Antonov, N V; Honkonen, J; Kim, T L
2005-01-01
The field theoretic renormalization group and operator-product expansion are applied to the model of a passive scalar quantity advected by a non-Gaussian velocity field with finite correlation time. The velocity is governed by the Navier-Stokes equation, subject to an external random stirring force with the correlation function proportional to delta(t- t')k(4-d-2epsilon). It is shown that the scalar field is intermittent already for small epsilon, its structure functions display anomalous scaling behavior, and the corresponding exponents can be systematically calculated as series in epsilon. The practical calculation is accomplished to order epsilon2 (two-loop approximation), including anisotropic sectors. As for the well-known Kraichnan rapid-change model, the anomalous scaling results from the existence in the model of composite fields (operators) with negative scaling dimensions, identified with the anomalous exponents. Thus the mechanism of the origin of anomalous scaling appears similar for the Gaussian model with zero correlation time and the non-Gaussian model with finite correlation time. It should be emphasized that, in contrast to Gaussian velocity ensembles with finite correlation time, the model and the perturbation theory discussed here are manifestly Galilean covariant. The relevance of these results for real passive advection and comparison with the Gaussian models and experiments are briefly discussed.
Passivation and Depassivation of Defects in Graphene-based field-effect transistors
NASA Astrophysics Data System (ADS)
O'Hara, Andrew; Wang, Pan; Perini, Chris J.; Fleetwood, Daniel M.; Vogel, Eric M.; Pantelides, Sokrates T.
Field effect transistors based on graphene on amorphous SiO2 substrates were fabricated, both with and without a top oxide passivation layer of Al2O3. Initial I-V characteristics of these devices show that the Fermi energy occurs below the Dirac point in graphene (i.e. p-type behavior). Introduction of environmental stresses, e.g. baking the devices, causes a shift in the Fermi energy relative to the Dirac point. 1/f noise measurements indicate the presence of charge trapping defects. In order to find the origins of this behavior, we construct atomistic models of the substrate/graphene interface and the graphene/oxide passivation layer interface. Using density functional theory, we investigate the role that the introduction and removal of hydrogen and hydroxide passivants has on the electronic structure of the graphene layer as well as the relative energetics for these processes to occur in order to gain insights into the experimental results. Supported by DTRA: 1-16-0032 and NSF: ECCS-1508898.
Liu, Shuyue; Wang, Bing; Zhang, Peirong
2016-01-01
Titanium and its alloys have been widely used as implant materials due to their excellent mechanical property and biocompatibility. In the present study, the effect of glucose concentration on corrosion behavior of pure titanium TA2 in Hanks’ simulated body fluid is investigated by the electrochemical impedance spectrum (EIS) and potentiodynamic polarization methods. The range of glucose concentrations investigated in this research includes 5 mmol/L (limosis for healthy people), 7 mmol/L (after diet for healthy people), 10 mmol/L (limosis for hyperglycemia patient), and 12 mmol/L (after diet for hyperglycemia patient), as well as, 15 mmol/L and 20 mmol/L, which represent different body fluid environments. The results indicate that the pure titanium TA2 demonstrates the best corrosion resistance when the glucose concentration is less than 10 mmol/L, which shows that the pure titanium TA2 as implant material can play an effective role in the body fluids with normal and slight high glucose concentrations. Comparatively, the corrosion for the pure titanium implant is more probable when the glucose concentration is over 10 mmol/L due to the premature penetration through passive film on the material surface. Corrosion defects of pitting and crevice exist on the corroded surface, and the depth of corrosion is limited to three microns with a low corrosion rate. The oxidation film on the surface of pure titanium TA2 has a protective effect on the corrosion behavior of the implant inner material. The corrosion behavior of pure titanium TA2 will happen easily once the passive film has been penetrated through. The corrosion rate for TA2 implant will accelerate quickly and a pure titanium implant cannot be used. PMID:28773993
Lagrangian Observations and Modeling of Marine Larvae
NASA Astrophysics Data System (ADS)
Paris, Claire B.; Irisson, Jean-Olivier
2017-04-01
Just within the past two decades, studies on the early-life history stages of marine organisms have led to new paradigms in population dynamics. Unlike passive plant seeds that are transported by the wind or by animals, marine larvae have motor and sensory capabilities. As a result, marine larvae have a tremendous capacity to actively influence their dispersal. This is continuously revealed as we develop new techniques to observe larvae in their natural environment and begin to understand their ability to detect cues throughout ontogeny, process the information, and use it to ride ocean currents and navigate their way back home, or to a place like home. We present innovative in situ and numerical modeling approaches developed to understand the underlying mechanisms of larval transport in the ocean. We describe a novel concept of a Lagrangian platform, the Drifting In Situ Chamber (DISC), designed to observe and quantify complex larval behaviors and their interactions with the pelagic environment. We give a brief history of larval ecology research with the DISC, showing that swimming is directional in most species, guided by cues as diverse as the position of the sun or the underwater soundscape, and even that (unlike humans!) larvae orient better and swim faster when moving as a group. The observed Lagrangian behavior of individual larvae are directly implemented in the Connectivity Modeling System (CMS), an open source Lagrangian tracking application. Simulations help demonstrate the impact that larval behavior has compared to passive Lagrangian trajectories. These methodologies are already the base of exciting findings and are promising tools for documenting and simulating the behavior of other small pelagic organisms, forecasting their migration in a changing ocean.
Pitts, Teresa
2014-01-01
Cough and swallow are highly coordinated reflex behaviors whose common purpose is to protect the airway. The pharynx is the common tube for air and food/liquid movement from the mouth into the thorax, has been largely overlooked, and is potentially seen as just a passive space. The thyropharyngeus muscle responds to cough inducing stimuli to prepare a transient holding area for material that has been removed from the subglottic airway. The cricopharyngeus muscle participates with the larynx to ensure regulation of pressure when a bolus/air is moving from the upper airway through to the thorax (i.e inspiration or swallow) or the reverse (i.e expiration reflex or vomiting).These vital mechanisms have not been evaluated in clinical conditions, but could be impaired in many neurodegenerative diseases leading to aspiration pneumonia. These newly described airway protective mechanisms need further study, especially in healthy and pathologic human populations. PMID:24297325
NASA Astrophysics Data System (ADS)
Wang, Baoming; Haque, M. A.
2015-08-01
With atomic-scale imaging and analytical capabilities such as electron diffraction and energy-loss spectroscopy, the transmission electron microscope has allowed access to the internal microstructure of materials like no other microscopy. It has been mostly a passive or post-mortem analysis tool, but that trend is changing with in situ straining, heating and electrical biasing. In this study, we design and demonstrate a multi-functional microchip that integrates actuators, sensors, heaters and electrodes with freestanding electron transparent specimens. In addition to mechanical testing at elevated temperatures, the chip can actively control microstructures (grain growth and phase change) of the specimen material. Using nano-crystalline aluminum, nickel and zirconium as specimen materials, we demonstrate these novel capabilities inside the microscope. Our approach of active microstructural control and quantitative testing with real-time visualization can influence mechanistic modeling by providing direct and accurate evidence of the fundamental mechanisms behind materials behavior.
NASA Astrophysics Data System (ADS)
Bal, J. K.; Kundu, Sarathi
2013-03-01
Langmuir-Blodgett films of standard amphiphilic molecules like nickel arachidate and cadmium arachidate are grown on wet chemically passivated hydrophilic (OH-Si), hydrophobic (H-Si), and hydrophilic plus hydrophobic (Br-Si) Si(001) surfaces. Top surface morphologies and height-difference correlation functions g(r) with in-plane separation (r) are obtained from the atomic force microscopy studies. Our studies show that deposited bilayer and trilayer films have self-affine correlation behavior irrespective of different passivations and different types of amphiphilic molecules, however, liquid like correlation coexists only for a small part of r, which is located near the cutoff length (1/κ) or little below the correlation length ξ obtained from the liquid like and self-affine fitting, respectively. Thus, length scale dependent surface correlation behavior is observed for both types of Langmuir-Blodgett films. Metal ion specific interactions (ionic, covalent, etc.,) in the headgroup and the nature of the terminated bond (polar, nonpolar, etc.,) of Si surface are mainly responsible for having different correlation parameters.
Polman, Hanneke; de Castro, Bram Orobio; van Aken, Marcel A G
2008-01-01
There is great concern about the effects of playing violent video games on aggressive behavior. The present experimental study was aimed at investigating the differential effects of actively playing vs. passively watching the same violent video game on subsequent aggressive behavior. Fifty-seven children aged 10-13 either played a violent video game (active violent condition), watched the same violent video game (passive violent condition), or played a non-violent video game (active non-violent condition). Aggression was measured through peer nominations of real-life aggressive incidents during a free play session at school. After the active participation of actually playing the violent video game, boys behaved more aggressively than did the boys in the passive game condition. For girls, game condition was not related to aggression. These findings indicate that, specifically for boys, playing a violent video game should lead to more aggression than watching television violence. Copyright 2007 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Huang, Yunfei; Luan, Huiqin; Sun, Lianwen; Bi, Jingfang; Wang, Ying; Fan, Yubo
2017-08-01
Spaceflight induced bone loss is seriously affecting astronauts. Mechanical stimulation from exercise has been shown to restrain bone resorption as well as improve bone formation. Current exercise countermeasures in space cannot prevent it completely. Active exercise may convert to passive exercise in some ways because of the loss of gravity stimulus and inertia of exercise equipment. The aim of this study was to compare the efficacy of passive exercise or/and local vibration on counteracting the deterioration of the musculoskeletal system, including bone, muscle and tendons in tail-suspended rats. We hypothesized that local vibration could enhance the efficacy of passive exercise on countering bone loss. 40 Sprague Dawley rats were randomly distributed into five groups (n = 8, each): tail-suspension (TS), TS+35 Hz vibration (TSV), TS + passive exercise (TSP), TS + passive exercise coupled with 35 Hz vibration (TSPV) and control (CON). Passive exercise or/and local vibration was performed for 21 days. On day 0 and 21, bone mineral density (BMD) was observed by dual energy X-ray absorptiometry (DXA), and trabecular microstructure was evaluated by microcomputer tomography (μCT) analysis in vivo. Mechanical properties of tibia and tendon were determined by a mechanical testing system. Soleus and bone ash weight was tested by an electronic balance. Results showed that the passive exercise could not prevent the decrease of trabecular BMD, microstructure and bone ash weight induced by TS, whereas vibration and passive exercise coupled with local vibration (PV) could. Biomechanical properties of the tibia and tendon in TSPV group significantly increased compared with TS group. In summary, PV in this study was the best method in preventing weightlessness-induced bone loss. Consistent with our hypothesis, local vibration partly enhanced the effect of passive exercise. Furthermore, this study will be useful in improving countermeasure for astronauts, but also for the rehabilitation of disused or aged osteoporosis.
Mandela, Prashant; Yan, Yan; LaRese, Taylor; Eipper, Betty A.; Mains, Richard E.
2014-01-01
Kalirin, a Rho GDP/GTP exchange factor for Rac1 and RhoG, is known to play an essential role in the formation and maintenance of excitatory synapses and in the secretion of neuropeptides. Mice unable to express any of the isoforms of Kalrn in cells that produce POMC at any time during development (POMC cells) exhibited reduced anxiety-like behavior and reduced acquisition of passive avoidance behavior, along with sex-specific alteration in the corticosterone response to restraint stress. Strikingly, lack of Kalrn expression in POMC cells closely mimicked the effects of global Kalrn knockout on anxiety-like behavior and passive avoidance conditioning without causing the other deficits noted in Kalrn knockout mice. Our data suggest that deficits in excitatory inputs onto POMC neurons are responsible for the behavioral phenotypes observed. PMID:25014196
Active and Passive Microrheology: Theory and Simulation
NASA Astrophysics Data System (ADS)
Zia, Roseanna N.
2018-01-01
Microrheological study of complex fluids traces its roots to the work of the botanist Robert Brown in the early nineteenth century. Indeed, passive microrheology and Brownian motion are one and the same. Once thought to reveal a fundamental life force, the phenomenon was ultimately leveraged by Einstein in proof of the atomic nature of matter ( Haw 2006 ). His work simultaneously paved the way for modern-day passive microrheology by connecting observable particle motion—diffusion—to solvent properties—the viscosity—via the well-known Stokes-Einstein relation. Advances in microscopy techniques in the last two decades have prompted extensions of the original model to generalized forms for passive probing of complex fluids. In the last decade, active microrheology has emerged as a means by which to interrogate the nonequilibrium behavior of complex fluids, in particular, the non-Newtonian rheology of dynamically heterogeneous and microscopically small systems. Here we review theoretical and computational approaches and advances in both passive and active microrheology, with a focus on the extent to which these techniques preserve the connection between single-particle motion and flow properties, as well as the rather surprising recovery of non-Newtonian flow behavior observed in bulk rheology.
Prescribing Activities that Engage Passive Residents. An Innovative Method
Kolanowski, Ann; Buettner, Linda
2009-01-01
Individuals with dementia are often passive, which places them at risk for further cognitive and functional decline. Recreational activities have been used in research to reduce passive behaviors, but systematic reviews of these studies have found modest effect sizes for many activities. In this article, we describe the further theoretical development of an innovative method for prescribing activities that have a high likelihood of engaging nursing home residents who are passive and present examples for research application and clinical practice. This method may increase the effect size of activity interventions and encourage more widespread adoption of nonpharmacological interventions in practice. PMID:18274300
Significantly enhanced thermal conductivity of indium arsenide nanowires via sulfur passivation.
Xiong, Yucheng; Tang, Hao; Wang, Xiaomeng; Zhao, Yang; Fu, Qiang; Yang, Juekuan; Xu, Dongyan
2017-10-16
In this work, we experimentally investigated the effect of sulfur passivation on thermal transport in indium arsenide (InAs) nanowires. Our measurement results show that thermal conductivity can be enhanced by a ratio up to 159% by sulfur passivation. Current-voltage (I-V) measurements were performed on both unpassivated and S-passivated InAs nanowires to understand the mechanism of thermal conductivity enhancement. We observed a remarkable improvement in electrical conductivity upon sulfur passivation and a significant contribution of electrons to thermal conductivity, which account for the enhanced thermal conductivity of the S-passivated InAs nanowires.
Sommer, Gerhard; Schriefl, Andreas; Zeindlinger, Georg; Katzensteiner, Andreas; Ainödhofer, Herwig; Saxena, Amulya; Holzapfel, Gerhard A
2013-12-01
Congenital defects of the esophagus are relatively frequent, with 1 out of 2500 babies suffering from such a defect. A new method of treatment by implanting tissue engineered esophagi into newborns is currently being developed and tested using ovine esophagi. For the reconstruction of the biological function of native tissues with engineered esophagi, their cellular structure as well as their mechanical properties must be considered. Since very limited mechanical and structural data for the esophagus are available, the aim of this study was to investigate the multiaxial mechanical behavior of the ovine esophagus and the underlying microstructure. Therefore, uniaxial tensile, biaxial tensile and extension-inflation tests on esophagi were performed. The underlying microstructure was examined in stained histological sections through standard optical microscopy techniques. Moreover, the uniaxial ultimate tensile strength and residual deformations of the tissue were determined. Both the mucosa-submucosa and the muscle layers showed nonlinear and anisotropic mechanical behavior during uniaxial, biaxial and inflation testing. Cyclical inflation of the intact esophageal tube caused marked softening of the passive esophagi in the circumferential direction. The rupture strength of the mucosa-submucosa layer was much higher than that of the muscle layer. Overall, the ovine esophagus showed a heterogeneous and anisotropic behavior with different mechanical properties for the individual layers. The intact and layer-specific multiaxial properties were characterized using a well-known three-dimensional microstructurally based strain-energy function. This novel and complete set of data serves the basis for a better understanding of tissue remodeling in diseased esophagi and can be used to perform computer simulations of surgical interventions or medical-device applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Aspects relating to stability of modified passive stratum on TiO2 nanostructure
NASA Astrophysics Data System (ADS)
Ionita, Daniela; Mazare, Anca; Portan, Diana; Demetrescu, Ioana
2011-04-01
Two kinds of nanotube structures differing from the point of view of their dimensions were obtained using anodizing in two different fluoride electrolytes and these structures were investigated regarding stability. The nanotubes have diameters of around 100 and 65 nm, respectively, and the testing solutions were simulated body fluids (SBF) and NaCl 0.9%. As stability experiments, cyclic voltammetry was performed and ions release was measured. The quantity of released cations in time as a kinetic aspect of passive stratum behavior was followed with an inductively coupled plasma mass spectrometer (ICP-MS) and apatite forming in SBF was found with infrared spectra. This study led to a comparison between the modification and the behavior of passive stratum on nanotubes as a function of their diameters.
Gutherz, Samuel B.; Kulick, Catherine V.; Soper, Colin; Kondratyev, Alexei; Gale, Karen; Forcelli, Patrick A.
2014-01-01
Phenobarbital is the most commonly utilized drug for the treatment of neonatal seizures. However, mounting preclinical evidence suggests that even brief exposure to phenobarbital in the neonatal period can induce neuronal apoptosis, alterations in synaptic development, and long-lasting changes in behavioral functions. In the present report, we treated neonatal rat pups with phenobarbital and evaluated behavior in adulthood. Pups were treated initially with a loading dose (80mg/kg) on postnatal day (P)7 and with a lower dose (40 mg/kg) on P8 and P9. We examined sensorimotor gating (prepulse inhibition), passive avoidance, and conditioned place preference to cocaine when the animals reached adulthood. Consistent with our previous reports, we found that three days of neonatal exposure to phenobarbital significantly impaired prepulse inhibition as compared to vehicle-exposed control animals. Using a step-though passive avoidance paradigm, we found that animals exposed to phenobarbital as neonates and tested as adults showed significant deficits in passive avoidance retention as compared to matched controls, indicating impairment in associative memory and/or recall. Finally, we examined place preference conditioning in response to cocaine. Phenobarbital exposure did not alter the normal conditioned place preference associated with cocaine exposure. Our findings expand the profile of behavioral toxicity induced by phenobarbital. PMID:25112558
Gutherz, Samuel B; Kulick, Catherine V; Soper, Colin; Kondratyev, Alexei; Gale, Karen; Forcelli, Patrick A
2014-08-01
Phenobarbital is the most commonly utilized drug for the treatment of neonatal seizures. However, mounting preclinical evidence suggests that even brief exposure to phenobarbital in the neonatal period can induce neuronal apoptosis, alterations in synaptic development, and long-lasting changes in behavioral functions. In the present report, we treated neonatal rat pups with phenobarbital and evaluated behavior in adulthood. Pups were treated initially with a loading dose (80 mg/kg) on postnatal day (P)7 and with a lower dose (40 mg/kg) on P8 and P9. We examined sensorimotor gating (prepulse inhibition), passive avoidance, and conditioned place preference for cocaine when the animals reached adulthood. Consistent with our previous reports, we found that three days of neonatal exposure to phenobarbital significantly impaired prepulse inhibition compared with vehicle-exposed control animals. Using a step-though passive avoidance paradigm, we found that animals exposed to phenobarbital as neonates and tested as adults showed significant deficits in passive avoidance retention compared with matched controls, indicating impairment in associative memory and/or recall. Finally, we examined place preference conditioning in response to cocaine. Phenobarbital exposure did not alter the normal conditioned place preference associated with cocaine exposure. Our findings expand the profile of behavioral toxicity induced by phenobarbital. Copyright © 2014 Elsevier Inc. All rights reserved.
Smith, Dennis; Artursson, Per; Avdeef, Alex; Di, Li; Ecker, Gerhard F; Faller, Bernard; Houston, J Brian; Kansy, Manfred; Kerns, Edward H; Krämer, Stefanie D; Lennernäs, Hans; van de Waterbeemd, Han; Sugano, Kiyohiko; Testa, Bernard
2014-06-02
Recently, it has been proposed that drug permeation is essentially carrier-mediated only and that passive lipoidal diffusion is negligible. This opposes the prevailing hypothesis of drug permeation through biological membranes, which integrates the contribution of multiple permeation mechanisms, including both carrier-mediated and passive lipoidal diffusion, depending on the compound's properties, membrane properties, and solution properties. The prevailing hypothesis of drug permeation continues to be successful for application and prediction in drug development. Proponents of the carrier-mediated only concept argue against passive lipoidal diffusion. However, the arguments are not supported by broad pharmaceutics literature. The carrier-mediated only concept lacks substantial supporting evidence and successful applications in drug development.
Effects of aging on vasoconstrictor and mechanical properties of rat skeletal muscle arterioles
NASA Technical Reports Server (NTRS)
Muller-Delp, Judy; Spier, Scott A.; Ramsey, Michael W.; Lesniewski, Lisa A.; Papadopoulos, Anthony; Humphrey, J. D.; Delp, Michael D.
2002-01-01
Exercise capacity and skeletal muscle blood flow during exercise are reduced with advancing age. This reduction in blood flow capacity may be related to increased reactivity of skeletal muscle resistance vessels to vasoconstrictor stimuli. The purpose of this study was to test the hypothesis that aging results in increased vasoconstrictor responses of skeletal muscle resistance arterioles. First-order (1A) arterioles (90-220 microm) from the gastrocnemius and soleus muscles of young (4 mo) and aged (24 mo) Fischer-344 rats were isolated, cannulated, and pressurized via hydrostatic reservoirs. Vasoconstriction in response to increases in norepinephrine (NE; 1 x 10(-9)-1 x 10(-4) M) and KCl (20-100 mM) concentrations and increases in intraluminal pressure (10-130 cmH(2)O) were evaluated in the absence of flow. Responses to NE and KCl were similar in both soleus and gastrocnemius muscle arterioles from young and aged rats. In contrast, active myogenic responses to changes in intraluminal pressure were diminished in soleus and gastrocnemius arterioles from aged rats. To assess whether alterations in the mechanical properties of resistance arterioles underlie altered myogenic responsiveness, passive diameter responses to pressure and mechanical stiffness were evaluated. There was no effect of age on the structural behavior (passive pressure-diameter relationship) or stiffness of arterioles from either the soleus or gastrocnemius muscles. These results suggest that aging does not result in a nonspecific decrease in vasoconstrictor responsiveness of skeletal muscle arterioles. Rather, aging-induced adaptations of vasoreactivity of resistance arterioles appear to be limited to mechanisms that are uniquely involved in the signaling of the myogenic response.
Behavioral training enhances cortical temporal processing in neonatally deafened juvenile cats
Vollmer, Maike; Raggio, Marcia W.; Schreiner, Christoph E.
2011-01-01
Deaf humans implanted with a cochlear prosthesis depend largely on temporal cues for speech recognition because spectral information processing is severely impaired. Training with a cochlear prosthesis is typically required before speech perception shows improvement, suggesting that relevant experience modifies temporal processing in the central auditory system. We tested this hypothesis in neonatally deafened cats by comparing temporal processing in the primary auditory cortex (AI) of cats that received only chronic passive intracochlear electric stimulation (ICES) with cats that were also trained with ICES to detect temporally challenging trains of electric pulses. After months of chronic passive stimulation and several weeks of detection training in behaviorally trained cats, multineuronal AI responses evoked by temporally modulated ICES were recorded in anesthetized animals. The stimulus repetition rates that produced the maximum number of phase-locked spikes (best repetition rate) and 50% cutoff rate were significantly higher in behaviorally trained cats than the corresponding rates in cats that received only chronic passive ICES. Behavioral training restored neuronal temporal following ability to levels comparable with those recorded in naïve prior normal-hearing adult deafened animals. Importantly, best repetitition rates and cutoff rates were highest for neuronal clusters activated by the electrode configuration used in behavioral training. These results suggest that neuroplasticity in the AI is induced by behavioral training and perceptual learning in animals deprived of ordinary auditory experience during development and indicate that behavioral training can ameliorate or restore temporal processing in the AI of profoundly deaf animals. PMID:21543753
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yu, Fengxi; Chen, Lihong; Li, Jingfa
2018-06-01
Organic additives, such as the Lewis base thiophene, have been successfully applied to passivate halide perovskite surfaces, improving the stability and properties of perovskite devices based on CH3NH3PbI3. Yet, the detailed nanostructure of the perovskite surface passivated by additives and the mechanisms of such passivation are not well understood. This study presents a nanoscopic view on the interfacial structure of an additive/perovskite interface, consisting of a Lewis base thiophene molecular additive and a lead halide perovskite surface substrate, providing insights on the mechanisms that molecular additives can passivate the halide perovskite surfaces and enhance the perovskite-based device performance. Molecular dynamics study on the interactions between water molecules and the perovskite surfaces passivated by the investigated additive reveal the effectiveness of employing the molecular additives to improve the stability of the halide perovskite materials. The additive/perovskite surface system is further probed via molecular engineering the perovskite surfaces. This study reveals the nanoscopic structure-property relationships of the halide perovskite surface passivated by molecular additives, which helps the fundamental understanding of the surface/interface engineering strategies for the development of halide perovskite based devices.
NASA Astrophysics Data System (ADS)
Konicek, A. R.; Grierson, D. S.; Sumant, A. V.; Friedmann, T. A.; Sullivan, J. P.; Gilbert, P. U. P. A.; Sawyer, W. G.; Carpick, R. W.
2012-04-01
Highly sp3-bonded, nearly hydrogen-free carbon-based materials can exhibit extremely low friction and wear in the absence of any liquid lubricant, but this physical behavior is limited by the vapor environment. The effect of water vapor on friction and wear is examined as a function of applied normal force for two such materials in thin film form: one that is fully amorphous in structure (tetrahedral amorphous carbon, or ta-C) and one that is polycrystalline with <10 nm grains [ultrananocrystalline diamond (UNCD)]. Tribologically induced changes in the chemistry and carbon bond hybridization at the surface are correlated with the effect of the sliding environment and loading conditions through ex situ, spatially resolved near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. At sufficiently high relative humidity (RH) levels and/or sufficiently low loads, both films quickly achieve a low steady-state friction coefficient and subsequently exhibit low wear. For both films, the number of cycles necessary to reach the steady-state is progressively reduced for increasing RH levels. Worn regions formed at lower RH and higher loads have a higher concentration of chemisorbed oxygen than those formed at higher RH, with the oxygen singly bonded as hydroxyl groups (C-OH). While some carbon rehybridization from sp3 to disordered sp2 bonding is observed, no crystalline graphite formation is observed for either film. Rather, the primary solid-lubrication mechanism is the passivation of dangling bonds by OH and H from the dissociation of vapor-phase H2O. This vapor-phase lubrication mechanism is highly effective, producing friction coefficients as low as 0.078 for ta-C and 0.008 for UNCD, and wear rates requiring thousands of sliding passes to produce a few nanometers of wear.
Auditory short-term memory in the primate auditory cortex.
Scott, Brian H; Mishkin, Mortimer
2016-06-01
Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.
Observations of Student Behavior in Collaborative Learning Groups
NASA Astrophysics Data System (ADS)
Adams, Jeffrey P.; Brissenden, Gina; Lindell, Rebecca S.; Slater, Timothy F.; Wallace, Joy
In an effort to determine how our students were responding to the use of collaborative learning groups in our large enrollment introductory astronomy (ASTRO 101) courses, we systematically observed the behavior of 270 undergraduate students working in 48 self-formed groups. Their observed behaviors were classified as: (i) actively engaged; (ii) watching actively; (iii) watching passively; and (iv) disengaged. We found that male behavior is consistent regardless of the sex-composition of the groups. However, females were categorized as watching passively and or disengaged significantly more frequently when working in groups that contained uneven numbers of males and females. This case study observation suggests that faculty who use collaborative learning groups might find that the level of student participation in collaborative group learning activities can depend on the sex-composition of the group.
Passive athermalization of doublets in 8-13 micron waveband
NASA Astrophysics Data System (ADS)
Schuster, Norbert
2014-10-01
Passive athermalization of lenses has become a key-technology for automotive and other outdoor applications using modern uncooled 25, 17 and 12 micron pixel pitch bolometer arrays. Typical pixel counts for thermal imaging are 384x288 (qVGA), 640x480 (VGA), and 1024x768 (XGA). Two lens arrangements (called Doublets) represent a cost effective way to satisfy resolution requirements of these detectors with F-numbers 1.4 or faster. Thermal drift of index of refraction and the geometrical changes (in lenses and housing) versus temperature defocus the initial image plane from the detector plane. The passive athermalization restricts this drop of spatial resolution in a wide temperature range (typically -40°C…+80°C) to an acceptable value without any additional external refocus. In particular, lenses with long focal lengths and high apertures claim athermalization. A careful choice of lens and housing materials and a sophistical dimensioning lead to three different principles of passivation: The Passive Mechanical Athermalization (PMA) shifts the complete lens cell, the Passive Optical and Mechanical Athermalization (POMA) shifts only one lens inside the housing, the Passive Optical Athermalization (POA) works without any mechanism. All three principles will be demonstrated for a typical narrow-field lens (HFOV about 12°) with high aperture (aperture based F-number 1.3) for the actual uncooled reference detector (17micron VGA). Six design examples using different combinations of lens materials show the impact on spatial lens resolution, on overall length, and on weight. First order relations are discussed. They give some hints for optimization solutions. Pros and cons of different passive athermalization principles are evaluated in regards of housing design, availability of materials and costing. Examples with a convergent GASIR®1-lens in front distinguish by best resolution, short overall length, and lowest weight.
Capello, Manuela; Robert, Marianne; Soria, Marc; Potin, Gael; Itano, David; Holland, Kim; Deneubourg, Jean-Louis; Dagorn, Laurent
2015-01-01
The rapid expansion of the use of passive acoustic telemetry technologies has facilitated unprecedented opportunities for studying the behavior of marine organisms in their natural environment. This technological advance would greatly benefit from the parallel development of dedicated methodologies accounting for the variety of timescales involved in the remote detection of tagged animals related to instrumental, environmental and behavioral events. In this paper we propose a methodological framework for estimating the site fidelity (“residence times”) of acoustic tagged animals at different timescales, based on the survival analysis of continuous residence times recorded at multiple receivers. Our approach is validated through modeling and applied on two distinct datasets obtained from a small coastal pelagic species (bigeye scad, Selar crumenophthalmus) and a large, offshore pelagic species (yellowfin tuna, Thunnus albacares), which show very distinct spatial scales of behavior. The methodological framework proposed herein allows estimating the most appropriate temporal scale for processing passive acoustic telemetry data depending on the scientific question of interest. Our method provides residence times free of the bias inherent to environmental and instrumental noise that can be used to study the small scale behavior of acoustic tagged animals. At larger timescales, it can effectively identify residence times that encompass the diel behavioral excursions of fish out of the acoustic detection range. This study provides a systematic framework for the analysis of passive acoustic telemetry data that can be employed for the comparative study of different species and study sites. The same methodology can be used each time discrete records of animal detections of any nature are employed for estimating the site fidelity of an animal at different timescales. PMID:26261985
Liu, Jun; Khattak, Asad J; Richards, Stephen H; Nambisan, Shashi
2015-12-01
Crashes at highway-rail grade crossings can result in severe injuries and fatalities to vehicle occupants. Using a crash database from the Federal Railroad Administration (N=15,639 for 2004-2013), this study explores differences in safety outcomes from crashes between passive controls (Crossbucks and STOP signs) and active controls (flashing lights, gates, audible warnings and highway signals). To address missing data, an imputation model is developed, creating a complete dataset for estimation. Path analysis is used to quantify the direct and indirect associations of passive and active controls with pre-crash behaviors and crash outcomes in terms of injury severity. The framework untangles direct and indirect associations of controls by estimating two models, one for pre-crash driving behaviors (e.g., driving around active controls), and another model for injury severity. The results show that while the presence of gates is not directly associated with injury severity, the indirect effect through stopping behavior is statistically significant (95% confidence level) and substantial. Drivers are more likely to stop at gates that also have flashing lights and audible warnings, and stopping at gates is associated with lower injury severity. This indirect association lowers the chances of injury by 16%, compared with crashes at crossings without gates. Similar relationships between other controls and injury severity are explored. Generally, crashes occurring at active controls are less severe than crashes at passive controls. The results of study can be used to modify Crash Modification Factors (CMFs) to account for crash injury severity. The study contributes to enhancing the understanding of safety by incorporating pre-crash behaviors in a broader framework that quantifies correlates of crash injury severity at active and passive crossings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Capello, Manuela; Robert, Marianne; Soria, Marc; Potin, Gael; Itano, David; Holland, Kim; Deneubourg, Jean-Louis; Dagorn, Laurent
2015-01-01
The rapid expansion of the use of passive acoustic telemetry technologies has facilitated unprecedented opportunities for studying the behavior of marine organisms in their natural environment. This technological advance would greatly benefit from the parallel development of dedicated methodologies accounting for the variety of timescales involved in the remote detection of tagged animals related to instrumental, environmental and behavioral events. In this paper we propose a methodological framework for estimating the site fidelity ("residence times") of acoustic tagged animals at different timescales, based on the survival analysis of continuous residence times recorded at multiple receivers. Our approach is validated through modeling and applied on two distinct datasets obtained from a small coastal pelagic species (bigeye scad, Selar crumenophthalmus) and a large, offshore pelagic species (yellowfin tuna, Thunnus albacares), which show very distinct spatial scales of behavior. The methodological framework proposed herein allows estimating the most appropriate temporal scale for processing passive acoustic telemetry data depending on the scientific question of interest. Our method provides residence times free of the bias inherent to environmental and instrumental noise that can be used to study the small scale behavior of acoustic tagged animals. At larger timescales, it can effectively identify residence times that encompass the diel behavioral excursions of fish out of the acoustic detection range. This study provides a systematic framework for the analysis of passive acoustic telemetry data that can be employed for the comparative study of different species and study sites. The same methodology can be used each time discrete records of animal detections of any nature are employed for estimating the site fidelity of an animal at different timescales.
NASA Astrophysics Data System (ADS)
Fattah-alhosseini, Arash; Ansari, Ali Reza; Mazaheri, Yousef; Karimi, Mohsen
2017-02-01
In this study, the electrochemical behavior of commercial pure titanium with both coarse-grained (annealed sample with the average grain size of about 45 µm) and nano-grained microstructure was compared by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and Mott-Schottky analysis. Nano-grained Ti, which typically has a grain size of about 90 nm, is successfully made by six-cycle accumulative roll-bonding process at room temperature. Potentiodynamic polarization plots and impedance measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure Ti in H2SO4 solutions. Mott-Schottky analysis indicated that the passive films behaved as n-type semiconductors in H2SO4 solutions and grain refinement did not change the semiconductor type of passive films. Also, Mott-Schottky analysis showed that the donor densities decreased as the grain size of the samples reduced. Finally, all electrochemical tests showed that the electrochemical behavior of the nano-grained sample was improved compared to that of annealed pure Ti, mainly due to the formation of thicker and less defective oxide film.
The muscle spindle as a feedback element in muscle control
NASA Technical Reports Server (NTRS)
Andrews, L. T.; Iannone, A. M.; Ewing, D. J.
1973-01-01
The muscle spindle, the feedback element in the myotatic (stretch) reflex, is a major contributor to muscular control. Therefore, an accurate description of behavior of the muscle spindle during active contraction of the muscle, as well as during passive stretch, is essential to the understanding of muscle control. Animal experiments were performed in order to obtain the data necessary to model the muscle spindle. Spectral density functions were used to identify a linear approximation of the two types of nerve endings from the spindle. A model reference adaptive control system was used on a hybrid computer to optimize the anatomically defined lumped parameter estimate of the spindle. The derived nonlinear model accurately predicts the behavior of the muscle spindle both during active discharge and during its silent period. This model is used to determine the mechanism employed to control muscle movement.
Towards a thermodynamics of active matter.
Takatori, S C; Brady, J F
2015-03-01
Self-propulsion allows living systems to display self-organization and unusual phase behavior. Unlike passive systems in thermal equilibrium, active matter systems are not constrained by conventional thermodynamic laws. A question arises, however, as to what extent, if any, can concepts from classical thermodynamics be applied to nonequilibrium systems like active matter. Here we use the new swim pressure perspective to develop a simple theory for predicting phase separation in active matter. Using purely mechanical arguments we generate a phase diagram with a spinodal and critical point, and define a nonequilibrium chemical potential to interpret the "binodal." We provide a generalization of thermodynamic concepts like the free energy and temperature for nonequilibrium active systems. Our theory agrees with existing simulation data both qualitatively and quantitatively and may provide a framework for understanding and predicting the behavior of nonequilibrium active systems.
Design and Validation of Implantable Passive Mechanisms for Orthopedic Surgery
2017-10-01
have post-surgery? Please put the designated grading next to each picture. 2. When comparing to the force applied by the index finger, what percentage...system, when compared with using the direct suture. This concept is inspired by the use of such mechanisms in the design of “underactuated” robotic...AWARD NUMBER: W81XWH-16-1-0794 TITLE: Design and Validation of Implantable Passive Mechanisms for Orthopedic Surgery PRINCIPAL INVESTIGATOR
Visuomotor learning by passive motor experience
Sakamoto, Takashi; Kondo, Toshiyuki
2015-01-01
Humans can adapt to unfamiliar dynamic and/or kinematic transformations through the active motor experience. Recent studies of neurorehabilitation using robots or brain-computer interface (BCI) technology suggest that passive motor experience would play a measurable role in motor recovery, however our knowledge of passive motor learning is limited. To clarify the effects of passive motor experience on human motor learning, we performed arm reaching experiments guided by a robotic manipulandum. The results showed that the passive motor experience had an anterograde transfer effect on the subsequent motor execution, whereas no retrograde interference was confirmed in the ABA paradigm experiment. This suggests that the passive experience of the error between visual and proprioceptive sensations leads to the limited but actual compensation of behavior, although it is fragile and cannot be consolidated as a persistent motor memory. PMID:26029091
Hot particles attract in a cold bath
NASA Astrophysics Data System (ADS)
Tanaka, Hidenori; Lee, Alpha A.; Brenner, Michael P.
2017-04-01
Controlling interactions out of thermodynamic equilibrium is crucial for designing addressable and functional self-organizing structures. These active interactions also underpin collective behavior in biological systems. Here we study a general setting of active particles in a bath of passive particles and demonstrate a mechanism for long-range attraction between active particles. The mechanism operates when the translational persistence length of the active particle motion is smaller than the particle diameter. In this limit, the system reduces to particles of higher diffusivity ("hot" particles) in a bath of particles with lower diffusivity ("cold" particles). This attractive interaction arises as a hot particle pushes cold particles away to create a large hole around itself, and the holes interact via a depletion-like attraction. Strikingly, the interaction range is more than an order of magnitude larger than the particle radius, well beyond the range of the conventional depletion force. Although the mechanism occurs outside the parameter regime of typical biological swimmers, the mechanism could be realized in the laboratory.
Active-passive vibration absorber of beam-cart-seesaw system with piezoelectric transducers
NASA Astrophysics Data System (ADS)
Lin, J.; Huang, C. J.; Chang, Julian; Wang, S.-W.
2010-09-01
In contrast with fully controllable systems, a super articulated mechanical system (SAMS) is a controlled underactuated mechanical system in which the dimensions of the configuration space exceed the dimensions of the control input space. The objectives of the research are to develop a novel SAMS model which is called beam-cart-seesaw system, and renovate a novel approach for achieving a high performance active-passive piezoelectric vibration absorber for such system. The system consists of two mobile carts, which are coupled via rack and pinion mechanics to two parallel tracks mounted on pneumatic rodless cylinders. One cart carries an elastic beam, and the other cart acts as a counterbalance. One adjustable counterweight mass is also installed underneath the seesaw to serve as a passive damping mechanism to absorb impact and shock energy. The motion and control of a Bernoulli-Euler beam subjected to the modified cart/seesaw system are analyzed first. Moreover, gray relational grade is utilized to investigate the sensitivity of tuning the active proportional-integral-derivative (PID) controller to achieve desired vibration suppression performance. Consequently, it is shown that the active-passive vibration absorber can not only provide passive damping, but can also enhance the active action authority. The proposed software/hardware platform can also be profitable for the standardization of laboratory equipment, as well as for the development of entertainment tools.
Andrade, R J; Freitas, S R; Vaz, J R; Bruno, P M; Pezarat-Correia, P
2015-06-01
This study aimed to determine the influence of the head, upper trunk, and foot position on the passive knee extension (PKE) torque-angle response. PKE tests were performed in 10 healthy subjects using an isokinetic dynamometer at 2°/s. Subjects lay in the supine position with their hips flexed to 90°. The knee angle, passive torque, surface electromyography (EMG) of the semitendinosus and quadriceps vastus medialis, and stretch discomfort were recorded in six body positions during PKE. The different maximal active positions of the cervical spine (neutral; flexion; extension), thoracic spine (neutral; flexion), and ankle (neutral; dorsiflexion) were passively combined for the tests. Visual analog scale scores and EMG were unaffected by body segment positioning. An effect of the ankle joint was verified on the peak torque and knee maximum angle when the ankle was in the dorsiflexion position (P < 0.05). Upper trunk positioning had an effect on the knee submaximal torque (P < 0.05), observed as an increase in the knee passive submaximal torque when the cervical and thoracic spines were flexed (P < 0.05). In conclusion, other apparently mechanical unrelated body segments influence torque-angle response since different positions of head, upper trunk, and foot induce dissimilar knee mechanical responses during passive extension. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Shamaei, Kamran; Cenciarini, Massimo; Adams, Albert A; Gregorczyk, Karen N; Schiffman, Jeffrey M; Dollar, Aaron M
2014-06-01
In this study, we describe the mechanical design and control scheme of a quasi-passive knee exoskeleton intended to investigate the biomechanical behavior of the knee joint during interaction with externally applied impedances. As the human knee behaves much like a linear spring during the stance phase of normal walking gait, the exoskeleton implements a spring across the knee in the weight acceptance (WA) phase of the gait while allowing free motion throughout the rest of the gait cycle, accomplished via an electromechanical clutch. The stiffness of the device is able to be varied by swapping springs, and the timing of engagement/disengagement changed to accommodate different loading profiles. After describing the design and control, we validate the mechanical performance and reliability of the exoskeleton through cyclic testing on a mechanical knee simulator. We then describe a preliminary experiment on three healthy adults to evaluate the functionality of the device on both left and right legs. The kinetic and kinematic analyses of these subjects show that the exoskeleton assistance can partially/fully replace the function of the knee joint and obtain nearly invariant moment and angle profiles for the hip and ankle joints, and the overall knee joint and exoskeleton complex under the applied moments of the exoskeleton versus the control condition, implying that the subjects undergo a considerable amount of motor adaptation in their lower extremities to the exoskeletal impedances, and encouraging more in-depth future experiments with the device.
Factors Facilitating Implicit Learning: The Case of the Sesotho Passive
ERIC Educational Resources Information Center
Kline, Melissa; Demuth, Katherine
2010-01-01
Researchers have long debated the mechanisms underlying the learning of syntactic structure. Of significant interest has been the fact that passive constructions appear to be learned earlier in Sesotho than English. This paper provides a comprehensive, quantitative analysis of the passive input Sesotho-speaking children hear, how it differs from…
The Association between Positive Parenting and Externalizing Behavior.
Boeldt, Debra L; Rhee, Soo Hyun; Dilalla, Lisabeth F; Mullineaux, Paula Y; Schulz-Heik, R Jay; Corley, Robin P; Young, Susan E; Hewitt, John K
2012-01-01
The present study examined the role of positive parenting on externalizing behaviors in a longitudinal, genetically informative sample. It often is assumed that positive parenting prevents behavior problems in children via an environmentally mediated process. Alternatively, the association may be due to either an evocative gene-environment correlation, in which parents react to children's genetically-influenced behavior in a positive way, or a passive gene-environment correlation, where parents passively transmit a risk environment and the genetic risk factor for the behavioral outcome to their children. The present study estimated the contribution of these processes in the association between positive parenting and children's externalizing behavior. Positive parenting was assessed via observations at ages 7, 9, 14, 24, and 36 months and externalizing behaviors were assessed through parent report at ages 4, 5, 7, 9, 10, 11, and 12 years. The significant association between positive parenting and externalizing behavior was negative, with children of mothers who showed significantly more positive parenting during toddlerhood having lower levels of externalizing behavior in childhood; however, there was not adequate power to distinguish whether this covariation was due to genetic, shared environmental, or nonshared environmental influences.
Interruption to cutaneous gas exchange is not a likely mechanism of WNS-associated death in bats.
Carey, Charleve S; Boyles, Justin G
2015-07-01
Pseudogymnoascus destructans is the causative fungal agent of white-nose syndrome (WNS), an emerging fungal-borne epizootic. WNS is responsible for a catastrophic decline of hibernating bats in North America, yet we have limited understanding of the physiological interactions between pathogen and host. Pseudogymnoascus destructans severely damages wings and tail membranes, by causing dryness that leads to whole sections crumbling off. Four possible mechanisms have been proposed by which infection could lead to dehydration; in this study, we tested one: P. destructans infection could cause disruption to passive gas-exchange pathways across the wing membranes, thereby causing a compensatory increase in water-intensive pulmonary respiration. We hypothesized that total evaporative water loss would be greater when passive gas exchange was inhibited. We found that bats did not lose more water when passive pathways were blocked. This study provides evidence against the proposed proximal mechanism that disruption to passive gas exchange causes dehydration and death to WNS-infected bats. © 2015. Published by The Company of Biologists Ltd.
Mandela, Prashant; Yan, Yan; LaRese, Taylor; Eipper, Betty A; Mains, Richard E
2014-07-01
Kalirin, a Rho GDP/GTP exchange factor for Rac1 and RhoG, is known to play an essential role in the formation and maintenance of excitatory synapses and in the secretion of neuropeptides. Mice unable to express any of the isoforms of Kalrn in cells that produce POMC at any time during development (POMC cells) exhibited reduced anxiety-like behavior and reduced acquisition of passive avoidance behavior, along with sex-specific alteration in the corticosterone response to restraint stress. Strikingly, lack of Kalrn expression in POMC cells closely mimicked the effects of global Kalrn knockout on anxiety-like behavior and passive avoidance conditioning without causing the other deficits noted in Kalrn knockout mice. Our data suggest that deficits in excitatory inputs onto POMC neurons are responsible for the behavioral phenotypes observed. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan
2018-02-01
In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.
Gao, Chuanji; Rosburg, Timm; Hou, Mingzhu; Li, Bingbing; Xiao, Xin; Guo, Chunyan
2016-12-01
The effectiveness of retrieval practice for aiding long-term memory, referred to as the testing effect, has been widely demonstrated. However, the specific neurocognitive mechanisms underlying this phenomenon remain unclear. In the present study, we sought to explore the role of pre-retrieval processes at initial testing on later recognition performance by using event-related potentials (ERPs). Subjects studied two lists of words (Chinese characters) and then performed a recognition task or a source memory task, or restudied the word lists. At the end of the experiment, subjects received a final recognition test based on the remember-know paradigm. Behaviorally, initial testing (active retrieval) enhanced memory retention relative to restudying (passive retrieval). The retrieval mode at initial testing was indexed by more positive-going ERPs for unstudied items in the active-retrieval tasks than in passive retrieval from 300 to 900 ms. Follow-up analyses showed that the magnitude of the early ERP retrieval mode effect (300-500 ms) was predictive of the behavioral testing effect later on. In addition, the ERPs for correctly rejected new items during initial testing differed between the two active-retrieval tasks from 500 to 900 ms, and this ERP retrieval orientation effect predicted differential behavioral testing gains between the two active-retrieval conditions. Our findings confirm that initial testing promotes later retrieval relative to restudying, and they further suggest that adopting pre-retrieval processing in the forms of retrieval mode and retrieval orientation might contribute to these memory enhancements.
Behavior of fluids in a weightless environment
NASA Technical Reports Server (NTRS)
Fester, D. A.; Eberhardt, R. N.; Tegart, J. R.
1977-01-01
Fluid behavior in a low-g environment is controlled primarily by surface tension forces. Certain fluid and system characteristics determine the magnitude of these forces for both a free liquid surface and liquid in contact with a solid. These characteristics, including surface tension, wettability or contact angle, system geometry, and the relationships governing their interaction, are discussed. Various aspects of fluid behavior in a low-g environment are then presented. This includes the formation of static interface shapes, oscillation and rotation of drops, coalescence, the formation of foams, tendency for cavitation, and diffusion in liquids which were observed during the Skylab fluid mechanics science demonstrations. Liquid reorientation and capillary pumping to establish equilibrium configurations for various system geometries, observed during various free-fall (drop-tower) low-g tests, are also presented. Several passive low-g fluid storage and transfer systems are discussed. These systems use surface tension forces to control the liquid/vapor interface and provide gas-free liquid transfer and liquid-free vapor venting.
Joseph, Olufunmilayo O.; Loto, Cleophas A.; Sivaprasad, Seetharaman; Ajayi, John A.; Tarafder, Soumitra
2016-01-01
In this study, micro-alloyed steel (MAS) material normally used in the production of auto parts has been immersed in an E80 simulated fuel grade ethanol (SFGE) environment and its degradation mechanism in the presence of sodium chloride (NaCl) was evaluated. Corrosion behavior was determined through mass loss tests and electrochemical measurements with respect to a reference test in the absence of NaCl. Fracture behavior was determined via J-integral tests with three-point bend specimens at an ambient temperature of 27 °C. The mass loss of MAS increased in E80 with NaCl up to a concentration of 32 mg/L; beyond that threshold, the effect of increasing chloride was insignificant. MAS did not demonstrate distinct passivation behavior, as well as pitting potential with anodic polarization, in the range of the ethanol-chloride ratio. Chloride caused pitting in MAS. The fracture resistance of MAS reduced in E80 with increasing chloride. Crack tip blunting decreased with increasing chloride, thus accounting for the reduction in fracture toughness. PMID:28773601
Jia, Yunjian; Zhou, Zhenyu; Chen, Fei; Duan, Peng; Guo, Zhen; Mumtaz, Shahid
2017-01-13
Tracking people's behaviors is a main category of cyber physical social sensing (CPSS)-related people-centric applications. Most tracking methods utilize camera networks or sensors built into mobile devices such as global positioning system (GPS) and Bluetooth. In this article, we propose a non-intrusive wireless fidelity (Wi-Fi)-based tracking method. To show the feasibility, we target tracking people's access behaviors in Wi-Fi networks, which has drawn a lot of interest from the academy and industry recently. Existing methods used for acquiring access traces either provide very limited visibility into media access control (MAC)-level transmission dynamics or sometimes are inflexible and costly. In this article, we present a passive CPSS system operating in a non-intrusive, flexible, and simplified manner to overcome above limitations. We have implemented the prototype on the off-the-shelf personal computer, and performed real-world deployment experiments. The experimental results show that the method is feasible, and people's access behaviors can be correctly tracked within a one-second delay.
Jia, Yunjian; Zhou, Zhenyu; Chen, Fei; Duan, Peng; Guo, Zhen; Mumtaz, Shahid
2017-01-01
Tracking people’s behaviors is a main category of cyber physical social sensing (CPSS)-related people-centric applications. Most tracking methods utilize camera networks or sensors built into mobile devices such as global positioning system (GPS) and Bluetooth. In this article, we propose a non-intrusive wireless fidelity (Wi-Fi)-based tracking method. To show the feasibility, we target tracking people’s access behaviors in Wi-Fi networks, which has drawn a lot of interest from the academy and industry recently. Existing methods used for acquiring access traces either provide very limited visibility into media access control (MAC)-level transmission dynamics or sometimes are inflexible and costly. In this article, we present a passive CPSS system operating in a non-intrusive, flexible, and simplified manner to overcome above limitations. We have implemented the prototype on the off-the-shelf personal computer, and performed real-world deployment experiments. The experimental results show that the method is feasible, and people’s access behaviors can be correctly tracked within a one-second delay. PMID:28098772
NASA Astrophysics Data System (ADS)
Cui, Yingqi; Cui, Xianhui; Zhang, Li; Xie, Yujuan; Yang, Mingli
2018-04-01
Ligand passivation is often used to suppress the surface trap states of semiconductor quantum dots (QDs) for their continuous photoluminescence output. The suppression process is related to the electrophilic/nucleophilic activity of surface atoms that varies with the structure and size of QD and the electron donating/accepting nature of ligand. Based on first-principles-based descriptors and cluster models, the electrophilic/nucleophilic activities of bare and chloride-coated CdSe clusters were studied to reveal the suppression mechanism of Cl-passivated QDs and compared to experimental observations. The surface atoms of bare clusters have higher activity than inner atoms and their activity decreases with cluster size. In the ligand-coated clusters, the Cd atom remains as the electrophilic site, while the nucleophilic site of Se atoms is replaced by Cl atoms. The activities of Cd and Cl atoms in the coated clusters are, however, remarkably weaker than those in bare clusters. Cluster size, dangling atoms, ligand coverage, electronegativity of ligand atoms, and solvent (water) were found to have considerable influence on the activity of surface atoms. The suppression of surface trap states in Cl-passivated QDs was attributed to the reduction of electrophilic/nucleophilic activity of Cd/Se/Cl atoms. Both saturation to under-coordinated surface atoms and proper selection for the electron donating/accepting strength of ligands are crucial for eliminating the charge carrier traps. Our calculations predicted a similar suppressing effect of chloride ligands with experiments and provided a simple but effective approach to assess the charge carrier trapping behaviors of semiconductor QDs.
Characterizing Physician Listening Behavior During Hospitalist Handoffs using the HEAR Checklist
Greenstein, Elizabeth A.; Arora, Vineet M.; Staisiunas, Paul G.; Banerjee, Stacy S.; Farnan, Jeanne M.
2015-01-01
Background The increasing fragmentation of healthcare has resulted in more patient handoffs. Many professional groups, including the Accreditation Council on Graduate Medical Education and the Society of Hospital Medicine, have made recommendations for safe and effective handoffs. Despite the two-way nature of handoff communication, the focus of these efforts has largely been on the person giving information. Objective To observe and characterize the listening behaviors of handoff receivers during hospitalist handoffs. Design Prospective observational study of shift change and service change handoffs on a non-teaching hospitalist service at a single academic tertiary care institution. Measurements The “HEAR Checklist”, a novel tool created based on review of effective listening behaviors, was used by third party observers to characterize active and passive listening behaviors and interruptions during handoffs. Results In 48 handoffs (25 shift change, 23 service change), active listening behaviors (e.g. read-back (17%), note-taking (23%), and reading own copy of the written signout (27%)) occurred less frequently than passive listening behaviors (e.g. affirmatory statements (56%) nodding (50%) and eye contact (58%)) (p<0.01). Read-back occurred only 8 times (17%). In 11 handoffs (23%) receivers took notes. Almost all (98%) handoffs were interrupted at least once, most often by side conversations, pagers going off, or clinicians arriving. Handoffs with more patients, such as service change, were associated with more interruptions (r= 0.46, p<0.01). Conclusions Using the “HEAR Checklist”, we can characterize hospitalist handoff listening behaviors. While passive listening behaviors are common, active listening behaviors that promote memory retention are rare. Handoffs are often interrupted, most commonly by side conversations. Future handoff improvement efforts should focus on augmenting listening and minimizing interruptions. PMID:23258389
NASA Astrophysics Data System (ADS)
Zhang, Jianbin; Sun, Xiantao; Chen, Weihai; Chen, Wenjie; Jiang, Lusha
2014-12-01
In microelectromechanical system (MEMS) optical switch assembly, the collision always exists between the optical fiber and the edges of the U-groove due to the positioning errors between them. It will cause the irreparable damage since the optical fiber and the silicon-made U-groove are usually very fragile. Typical solution is first to detect the positioning errors by the machine vision or high-resolution sensors and then to actively eliminate them with the aid of the motion of precision mechanisms. However, this method will increase the cost and complexity of the system. In this paper, we present a passive compensation method to accommodate the positioning errors. First, we study the insertion process of the optical fiber into the U-groove to analyze all possible positioning errors as well as the conditions of successful insertion. Then, a novel passive flexure-based mechanism based on the remote center of compliance concept is designed to satisfy the required insertion condition. The pseudo-rigid-body-model method is utilized to calculate the stiffness of the mechanism along the different directions, which is verified by finite element analysis (FEA). Finally, a prototype of the passive flexure-based mechanism is fabricated for performance tests. Both FEA and experimental results indicate that the designed mechanism can be used to the MEMS optical switch assembly.
Zhang, Jianbin; Sun, Xiantao; Chen, Weihai; Chen, Wenjie; Jiang, Lusha
2014-12-01
In microelectromechanical system (MEMS) optical switch assembly, the collision always exists between the optical fiber and the edges of the U-groove due to the positioning errors between them. It will cause the irreparable damage since the optical fiber and the silicon-made U-groove are usually very fragile. Typical solution is first to detect the positioning errors by the machine vision or high-resolution sensors and then to actively eliminate them with the aid of the motion of precision mechanisms. However, this method will increase the cost and complexity of the system. In this paper, we present a passive compensation method to accommodate the positioning errors. First, we study the insertion process of the optical fiber into the U-groove to analyze all possible positioning errors as well as the conditions of successful insertion. Then, a novel passive flexure-based mechanism based on the remote center of compliance concept is designed to satisfy the required insertion condition. The pseudo-rigid-body-model method is utilized to calculate the stiffness of the mechanism along the different directions, which is verified by finite element analysis (FEA). Finally, a prototype of the passive flexure-based mechanism is fabricated for performance tests. Both FEA and experimental results indicate that the designed mechanism can be used to the MEMS optical switch assembly.
Frankel, Sari; Medvedeva, Natalia; Gutherz, Samuel; Kulick, Catherine; Kondratyev, Alexei; Forcelli, Patrick A
2016-04-01
Anticonvulsant drugs, when given during vulnerable periods of brain development, can have long-lasting consequences on nervous system function. In rats, the second postnatal week approximately corresponds to the late third trimester of gestation/early infancy in humans. Exposure to phenobarbital during this period has been associated with deficits in learning and memory, anxiety-like behavior, and social behavior, among other domains. Phenobarbital is the most common anticonvulsant drug used in neonatology. Several other drugs, such as lamotrigine, phenytoin, and clonazepam, have also been reported to trigger behavioral changes. A new generation anticonvulsant drug, retigabine, has not previously been evaluated for long-term effects on behavior. Retigabine acts as an activator of KCNQ channels, a mechanism that is unique among anticonvulsants. Here, we examined the effects retigabine exposure from postnatal day (P)7 to P14 on behavior in adult rats. We compared these effects with those produced by phenobarbital (as a positive control) and saline (as a negative control). Motor behavior was assessed by using the open field and rotarod, anxiety-like behavior by the open field, elevated plus maze, and light-dark transition task, and learning/memory by the passive avoidance task; social interactions were assessed in same-treatment pairs, and nociceptive sensitivity was assessed via the tail-flick assay. Motor behavior was unaltered by exposure to either drug. We found that retigabine exposure and phenobarbital exposure both induced increased anxiety-like behavior in adult animals. Phenobarbital, but not retigabine, exposure impaired learning and memory. These drugs also differed in their effects on social behavior, with retigabine-exposed animals displaying greater social interaction than phenobarbital-exposed animals. These results indicate that neonatal retigabine induces a subset of behavioral alterations previously described for other anticonvulsant drugs and extend our knowledge of drug-induced behavioral teratogenesis to a new mechanism of anticonvulsant action. Copyright © 2016 Elsevier Inc. All rights reserved.
Frankel, Sari; Medvedeva, Natalia; Gutherz, Samuel; Kulick, Catherine; Kondratyev, Alexei; Forcelli, Patrick A.
2016-01-01
Anticonvulsant drugs, when given during vulnerable periods of brain development, can have long-lasting consequences on nervous system function. In rats, the second postnatal week approximately corresponds to the late third trimester of gestation/early infancy in humans. Exposure to phenobarbital during this period has been associated with deficits in learning and memory, anxiety-like behavior, and social behavior, among other domains. Phenobarbital is the most common anticonvulsant drug used in neonatology. Several other drugs, such as lamotrigine, phenytoin, and clonazepam have also been reported to trigger behavioral changes. A new generation anticonvulsant drug, retigabine, has not previously been evaluated for long-term effects on behavior. Retigabine acts as an activator of KCNQ channels, a mechanism that is unique among anticonvulsants. Here, we examined the effects retigabine exposure from postnatal day (P)7 to P14 on behavior in adult rats. We compared these effects to those produced by phenobarbital (as a positive control) and saline (as a negative control). Motor behavior was assessed using the open field and rotarod, anxiety-like behavior by the open field, elevated plus maze, and light-dark transition task, and learning/memory by the passive avoidance task; social interactions were assessed in same-treatment pairs and nociceptive sensitivity was assessed via the tail-flick assay. Motor behavior was unaltered by exposure to either drug. We found that retigabine and phenobarbital exposure both induced increased anxiety-like behavior in adult animals. Phenobarbital, but not retigabine exposure impaired learning and memory. These drugs also differed in their effects on social behavior, with retigabine-exposed animals displaying greater social interaction than phenobarbital-exposed animals. These results indicate that neonatal retigabine induces a subset of behavioral alterations previously described for other anticonvulsant drugs, and extend our knowledge of drug-induced behavioral teratogenesis to a new mechanism of anticonvulsant action. PMID:26921596
Handbook on passive thermal control coatings
NASA Technical Reports Server (NTRS)
Mookherji, T. K.; Hayes, J. D.
1973-01-01
A handbook of passive thermal control surfaces data pertaining to the heat transfer requirements of spacecraft is presented. Passive temperature control techniques and the selection of control surfaces are analyzed. The space environmental damage mechanisms in passive thermal control surfaces are examined. Data on the coatings for which technical information is available are presented in tabular form. Emphasis was placed on consulting only those references where the experimental simulation of the space environment appeared to be more appropriate.
Influences of passivating elements on the corrosion and biocompatibility of super stainless steels.
Yoo, Young-Ran; Jang, Soon-Geun; Oh, Keun-Taek; Kim, Jung-Gu; Kim, Young-Sik
2008-08-01
Biometals need high corrosion resistance since metallic implants in the body should be biocompatible and metal ion release should be minimized. In this work, we designed three kinds of super stainless steel and adjusted the alloying elements to obtain different microstructures. Super stainless steels contain larger amounts of Cr, Mo, W, and N than commercial alloys. These elements play a very important role in localized corrosion and, thus, their effects can be represented by the "pitting resistance equivalent number (PREN)." This work focused on the behavior which can arise when the bare surface of an implant in the body is exposed during walking, heavy exercise, and so on. Among the experimental alloys examined herein, Alloy Al and 316L stainless steels were mildly cytotoxic, whereas the other super austenitic, duplex, and ferritic stainless steels were noncytotoxic. This behavior is primarily related to the passive current and pitting resistance of the alloys. When the PREN value was increased, the passivation behavior in simulated body solution was totally different from that in acidic chloride solution and, thus, the Cr(2)O(3)/Cr(OH)(3) and [Metal oxide]/[Metal + Metal oxide] ratios of the passive film in the simulated body solution were larger than those in acidic chloride solution. Also, the critical current density in simulated body solution increased and, thus, active dissolution may induce metal ion release into the body when the PREN value and Ni content are increased. This behavior was closely related to the presence of EDTA in the simulated body solution. (c) 2007 Wiley Periodicals, Inc.
Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function.
Wang, Vicky Y; Lam, H I; Ennis, Daniel B; Cowan, Brett R; Young, Alistair A; Nash, Martyn P
2009-10-01
The majority of patients with clinically diagnosed heart failure have normal systolic pump function and are commonly categorized as suffering from diastolic heart failure. The left ventricle (LV) remodels its structure and function to adapt to pathophysiological changes in geometry and loading conditions, which in turn can alter the passive ventricular mechanics. In order to better understand passive ventricular mechanics, a LV finite element (FE) model was customized to geometric data segmented from in vivo tagged magnetic resonance images (MRI) data and myofibre orientation derived from ex vivo diffusion tensor MRI (DTMRI) of a canine heart using nonlinear finite element fitting techniques. MRI tissue tagging enables quantitative evaluation of cardiac mechanical function with high spatial and temporal resolution, whilst the direction of maximum water diffusion in each voxel of a DTMRI directly corresponds to the local myocardial fibre orientation. Due to differences in myocardial geometry between in vivo and ex vivo imaging, myofibre orientations were mapped into the geometric FE model using host mesh fitting (a free form deformation technique). Pressure recordings, temporally synchronized to the tagging data, were used as the loading constraints to simulate the LV deformation during diastole. Simulation of diastolic LV mechanics allowed us to estimate the stiffness of the passive LV myocardium based on kinematic data obtained from tagged MRI. Integrated physiological modelling of this kind will allow more insight into mechanics of the LV on an individualized basis, thereby improving our understanding of the underlying structural basis of mechanical dysfunction under pathological conditions.
Hua, Nengbin; Chen, Wenzhe; Zhang, Lei; Li, Guanghui; Liao, Zhenlong; Lin, Yan
2017-07-01
The present study prepares novel Zr 70+x Al 5 Fe 15-x Nb 10 (x=0, 5) alloys by arc-melting for potential biomedical application. The mechanical properties and bio-tribological behaviors of the Zr-based alloys are evaluated and compared with biomedical pure Zr. The as-prepared alloys exhibit a microstructure containing a micrometer-sized dendritic beta-Zr phase dispersed in a Zr 2 Fe-typed matrix. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high compressive strength. The wear resistance of the Zr-Al-Fe-Nb alloys in air and phosphate buffer saline (PBS) solution is superior to that of pure Zr. The wear mechanism of Zr-based alloys sliding in air is controlled by oxidation and abrasive wear whereas that sliding in PBS is controlled by synergistic effects of the abrasive and corrosive wear. Electrochemical measurements demonstrate that the Zr-based alloys are corrosion resistant in PBS. Their bio-corrosion resistance is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. The Zr 75 Al 5 Fe 10 Nb 10 exhibits the best corrosion resistance in PBS, which contributes to its superior wear resistance in a simulated body environment. The combination of good mechanical properties, corrosion resistance, and biotribological behaviors of the Zr-Al-Fe-Nb alloys offers them potential advantages in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
The Passive Aggressive Conflict Cycle
ERIC Educational Resources Information Center
Whitson, Signe
2013-01-01
Understanding the Passive Aggressive Conflict Cycle (PACC) helps observers to be able to look beyond behavior and better understand what is occurring beneath the surface. This article presents a real-life example of a seemingly minor conflict between a teacher and child that elicited an apparent major overreaction by the adult. Also provided is a…
The Myth of Female Passivity: Thirty Years of Revelations about Female Aggression
ERIC Educational Resources Information Center
Richardson, Deborah South
2005-01-01
This article reviews an extensive program of research that has examined gender differences in aggressive behavior. Early research in the aggression laboratory that was designed to explain why females were nonaggressive actually revealed that females did respond to provocation and that they could not accurately be depicted as passive individuals.…
Comparison of mechanical energy profiles of passive and active below-knee prostheses: a case study.
Takahashi, Kota Z; Horne, John R; Stanhope, Steven J
2015-04-01
With the recent technological advancements of prosthetic lower limbs, there is currently a great desire to objectively evaluate existing prostheses. Using a novel biomechanical analysis, the purpose of this case study was to compare the mechanical energy profiles of anatomical and two disparate prostheses: a passive prosthesis and an active prosthesis. An individual with a transtibial amputation who customarily wears a passive prosthesis (Elation, Össur) and an active prosthesis (BiOM, iWalk, Inc.) and 11 healthy subjects participated in an instrumented gait analysis. The total mechanical power and work of below-knee structures during stance were quantified using a unified deformable segment power analysis. Active prosthesis generated greater peak power and total positive work than passive prosthesis and healthy anatomical limbs. The case study will enhance future efforts to objectively evaluate prosthetic functions during gait in individuals with transtibial amputations. A prosthetic limb should closely replicate the mechanical energy profiles of anatomical limbs. The unified deformable (UD) analysis may be valuable to facilitate future clinical prescription and guide fine adjustments of prosthetic componentry to optimize gait outcomes. © The International Society for Prosthetics and Orthotics 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joy, Lija K.; Sooraj, V.; Sethulakshmi, N.
2014-03-24
Commercial samples of Magnetite with size ranging from 25–30 nm were coated with polyaniline by using radio frequency plasma polymerization to achieve a core shell structure of magnetic nanoparticle (core)–Polyaniline (shell). High resolution transmission electron microscopy images confirm the core shell architecture of polyaniline coated iron oxide. The dielectric properties of the material were studied before and after plasma treatment. The polymer coated magnetite particles exhibited a large dielectric permittivity with respect to uncoated samples. The dielectric behavior was modeled using a Maxwell–Wagner capacitor model. A plausible mechanism for the enhancement of dielectric permittivity is proposed.
Dynamics of cell area and force during spreading.
Brill-Karniely, Yifat; Nisenholz, Noam; Rajendran, Kavitha; Dang, Quynh; Krishnan, Ramaswamy; Zemel, Assaf
2014-12-16
Experiments on human pulmonary artery endothelial cells are presented to show that cell area and the force exerted on a substrate increase simultaneously, but with different rates during spreading; rapid-force increase systematically occurred several minutes past initial spreading. We examine this theoretically and present three complementary mechanisms that may accompany the development of lamellar stress during spreading and underlie the observed behavior. These include: 1), the dynamics of cytoskeleton assembly at the cell basis; 2), the strengthening of acto-myosin forces in response to the generated lamellar stresses; and 3), the passive strain-stiffening of the cytoskeleton. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Alhusaini, Adel A. A.; Crosbie, Jack; Shepherd, Roberta B.; Dean, Catherine M.; Scheinberg, Adam
2010-01-01
Aim: To examine the passive length-tension relations in the myotendinous components of the plantarflexor muscles of children with and without cerebral palsy (CP) under conditions excluding reflex muscle contraction. Method: A cross-sectional, non-interventional study was conducted in a hospital outpatient clinic. Passive torque-angle…
Pozzoli, Tiziana; Gini, Gianluca; Thornberg, Robert
2017-12-01
The present study examined the relations between different empathic dimensions and bystanders' behavior in bullying. Specifically, the indirect effects of empathic concern and perspective taking via empathic anger on defending and passive bystanding were tested in a sample of Italian young adolescents (N = 398; M age = 12 years, 3 months, 47.2% girls). Path analysis confirmed the direct and indirect effects, via empathic anger, of empathic concern and perspective taking on bystanders' behavior, with the exception of the direct association between perspective taking and passive bystanding that was not significant. Our findings suggest that considering empathic anger together with empathic concern and perspective taking could help researchers to better understand the links between empathic dispositions and bystanders' behavior in bullying. Copyright © 2017. Published by Elsevier Ltd.
Ben-Jebria, A; Marthan, R; Rossetti, M; Savineau, J P
1993-05-01
1. The effect of passive sensitization on the mechanical activity of human isolated bronchial smooth muscle induced by the following neuropeptides substance P (SP), neurokinin A (NKA) and vasoactive intestinal peptide (VIP) was studied both in the absence and in the presence of the neutral endopeptidase (NEP) inhibitor, phosphoramidon. 2. Cumulative concentration-response curves (CCRC) to these neuropeptides were constructed in human passively sensitized isolated bronchial rings and compared to those in paired controls. Passively sensitized human isolated bronchial rings were tissues incubated overnight in serum from asthmatic patients atopic to Dermatophagoides pteronyssinus and paired controls were tissues originating from the same lung specimens but incubated overnight in serum from healthy donors. 3. In the absence of phosphoramidon, passive sensitization significantly increased the amplitude of the contractile responses to SP and NKA including that to the maximal concentration given from 50 +/- 5% to 76 +/- 6% (n = 5, P < 0.05) and from 70 +/- 7% to 101 +/- 6% (n = 5, P < 0.05) of the maximal response to acetylcholine, respectively. Passive sensitization significantly shifted to the left the CCRC for both tachykinins as measured by the geometric means dose-ratios which were 8.5 (95% confidence limits (CL): 3.1-13.9) and 7.3 (95% CL: 4.2-10.3) for SP and NKA, respectively. 4. In the presence of phosphoramidon (10 microM), passive sensitization still increased significantly the amplitude of the contractile responses to SP and NKA including that to the maximal concentration given from 74 +/- 4% to 115 +/- 7% (n = 5, P<0.05) and from 104 +/- 9% to 146 +/- 16% (n = 5, P<0.05)of the maximal response to acetylcholine, respectively. Passive sensitization still significantly shifted to the left the CCRC for both tachykinins as measured by the dose-ratios which were 9.0 (95% CL:4.3-13.6) and 5.4 (95% CL: 2.9-7.9) for SP and NKA, respectively.5. The relaxant response to the maximal concentration of VIP given in tissues precontracted with histamine (0.5 mM) was significantly reduced by passive sensitization from 41 +/- 4% to 25 +/- 3% (n = 5,P <0.05) of the amplitude of the precontraction in the absence of phosphoramidon and from 72 +/- 1%to 49 +/- 4% (n = 5, P<0.05) in the presence of phosphoramidon (10 microM). Passive sensitization significantly shifted to the right the CCRC for VIP as measured by the dose-ratios which were 10.4(95% CL: 6.6-14.1) and 6.4 (95% CL: 3.0-9.8) in the absence and in the presence of phosphoramidon,respectively.6. We conclude that passive sensitization enhances the mechanical response to neuropeptides which contract human isolated bronchial smooth muscle and reduces that to a neuropeptide which relaxes it.The mechanism of passive sensitization-induced changes in the mechanical activity appears to be independent of a decrease in NEP activity since these changes persist in the presence of the NEP inhibitor, phosphoramidon.
Electrical transport and low-frequency noise in chemical vapor deposited single-layer MoS2 devices.
Sharma, Deepak; Amani, Matin; Motayed, Abhishek; Shah, Pankaj B; Birdwell, A Glen; Najmaei, Sina; Ajayan, Pulickel M; Lou, Jun; Dubey, Madan; Li, Qiliang; Davydov, Albert V
2014-04-18
We have studied temperature-dependent (77-300 K) electrical characteristics and low-frequency noise (LFN) in chemical vapor deposited (CVD) single-layer molybdenum disulfide (MoS2) based back-gated field-effect transistors (FETs). Electrical characterization and LFN measurements were conducted on MoS2 FETs with Al2O3 top-surface passivation. We also studied the effect of top-surface passivation etching on the electrical characteristics of the device. Significant decrease in channel current and transconductance was observed in these devices after the Al2O3 passivation etching. For passivated devices, the two-terminal resistance variation with temperature showed a good fit to the activation energy model, whereas for the etched devices the trend indicated a hopping transport mechanism. A significant increase in the normalized drain current noise power spectral density (PSD) was observed after the etching of the top passivation layer. The observed channel current noise was explained using a standard unified model incorporating carrier number fluctuation and correlated surface mobility fluctuation mechanisms. Detailed analysis of the gate-referred noise voltage PSD indicated the presence of different trapping states in passivated devices when compared to the etched devices. Etched devices showed weak temperature dependence of the channel current noise, whereas passivated devices exhibited near-linear temperature dependence.
Evaluation of Non-Chromate Passivations on Electroplated gamma-Phase Zinc Nickel
NASA Astrophysics Data System (ADS)
Volz, Steven Michael
This research focused on the corrosion response and electrochemical behavior of electroplated low hydrogen embrittlement alkaline gamma-phase zinc nickel with passivation layers. The motivation was the need to replace hexavalent chromium conversion coatings in military grade electrical systems with a more environment friendly alternative. The passivation layers were employed for the purpose of mitigating corrosion attack while maintaining low contact resistance. Trivalent chromium-based passivations and cerium-based passivations were compared against the currently used hexavalent chromium conversion coating. The coating systems were compared using electrochemical impedance spectroscopy, cyclic potentiodymanic scans, salt spray exposure testing, electrical resistance measurements, microstructure analysis, and compositional analysis. Coating systems with lower open circuit had a lower corrosion current and performed better during salt spray testing. All of the systems evaluated had corrosion products consistent with oxidized zinc compounds but the morphology of the passivation was dependent on the passivation. The electrical contact resistance ranged from 1 to 108 mO/cm 2, after salt spray testing. Two versions of Trivalent chromium-based passivations, were able to meet military performance specifications after corrosion testing.
Imai, Norio; Ito, Tomoyuki; Suda, Ken; Miyasaka, Dai; Endo, Naoto
2017-07-01
Venous thromboembolism is one of the general complications following total hip arthroplasty, wherein various preventive treatments have been recommended. Several studies reported that venous thromboembolism incidence after total hip arthroplasty was similar in patients who were administered prophylaxis with a conventional mechanical procedure alone, and those who were administered pharmacological anticoagulation therapy. Therefore, the optimum methods of prophylaxis are still controversial. The purpose of this study was to investigate whether manual calf massage and passive ankle motion could lower the risk for venous thromboembolism after total hip arthroplasty. We retrospectively reviewed the data of 126 consecutive patients undergoing elective primary unilateral total hip arthroplasty wherein manual calf massage and passive ankle motion were performed after the surgery at our hospitals between January and October 2014. The 138 patients of the control group underwent total hip arthroplasty using the same surgical approach and pre- and postoperative protocols without this mechanical prophylaxis between January and December 2013. This mechanical prophylaxis was performed simultaneously 30 times during approximately 10 s; these procedures were repeated thrice immediately after total hip arthroplasty. Duplex ultrasonography was performed to observe the veins of both legs in all the patients on postoperative day 7. The incidence of deep vein thrombosis was 6.52% and 0.79% in the control and manual calf massage and passive ankle motion groups, respectively. The odds ratio for the manual calf massage and passive ankle motion groups was 8.72. Performing this mechanical prophylaxis reduced the incidence of venous thromboembolism after total hip arthroplasty. This mechanical prophylaxis is not only simple and easy, but is also safe and inexpensive. We therefore recommend that manual calf massage and passive ankle motion be performed in patients who will undergo total hip arthroplasty, if deep vein thrombosis does not exist before the surgery. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Durkheim revisited: "Why do women kill themselves?".
Johnson, K K
1979-01-01
Durkheim divided suicide into four social types; egoistic, anomic, fatalistic, and altruistic assigning the first two to modern, western society while relegating the last two to pre-industrial social orders. However, contemporary studies of female suicidal behavior and depression show that such women exhibit personality characteristics of low self-esteem, passivity, dependence and living vicariously for others which correspond to the behavioral indices of impersonalism, submissiveness, passivity, and obedience that produce the lack of individuation characteristic of Durkheim's altruistic/fatalistic suicide categories. On this basis, the author suggests that altruistic/fatalistic suicide may even in the modern world be relevant to the explanation of female suicidal behavior, a hypothesis which, if true, would support the contention that "men and women inhibit different social worlds."
A study of hyperelastic models for predicting the mechanical behavior of extensor apparatus.
Elyasi, Nahid; Taheri, Kimia Karimi; Narooei, Keivan; Taheri, Ali Karimi
2017-06-01
In this research, the nonlinear elastic behavior of human extensor apparatus was investigated. To this goal, firstly the best material parameters of hyperelastic strain energy density functions consisting of the Mooney-Rivlin, Ogden, invariants, and general exponential models were derived for the simple tension experimental data. Due to the significance of stress response in other deformation modes of nonlinear models, the calculated parameters were used to study the pure shear and balance biaxial tension behavior of the extensor apparatus. The results indicated that the Mooney-Rivlin model predicts an unstable behavior in the balance biaxial deformation of the extensor apparatus, while the Ogden order 1 represents a stable behavior, although the fitting of experimental data and theoretical model was not satisfactory. However, the Ogden order 6 model was unstable in the simple tension mode and the Ogden order 5 and general exponential models presented accurate and stable results. In order to reduce the material parameters, the invariants model with four material parameters was investigated and this model presented the minimum error and stable behavior in all deformation modes. The ABAQUS Explicit solver was coupled with the VUMAT subroutine code of the invariants model to simulate the mechanical behavior of the central and terminal slips of the extensor apparatus during the passive finger flexion, which is important in the prediction of boutonniere deformity and chronic mallet finger injuries, respectively. Also, to evaluate the adequacy of constitutive models in simulations, the results of the Ogden order 5 were presented. The difference between the predictions was attributed to the better fittings of the invariants model compared with the Ogden model.
Xing, Zhuo; Ren, Feng; Wu, Hengyi; Wu, Liang; Wang, Xuening; Wang, Jingli; Wan, Da; Zhang, Guozhen; Jiang, Changzhong
2017-01-01
Nanostructured Si as the high efficiency photoelectrode material is hard to keep stable in aqueous for water splitting. Capping a passivation layer on the surface of Si is an effective way of protecting from oxidation. However, it is still not clear in the different mechanisms and effects between insulating oxide materials and oxide semiconductor materials as passivation layers. Here, we compare the passivation effects, the photoelectrochemical (PEC) properties, and the corresponding mechanisms between the HfO2/nanoporous-Si and the TiO2/nanoporous-Si by I–V curves, Motte-schottky (MS) curves, and electrochemical impedance spectroscopy (EIS). Although the saturated photocurrent densities of the TiO2/nanoporous Si are lower than that of the HfO2/nanoporous Si, the former is more stable than the later. PMID:28252106
NASA Astrophysics Data System (ADS)
Xing, Zhuo; Ren, Feng; Wu, Hengyi; Wu, Liang; Wang, Xuening; Wang, Jingli; Wan, Da; Zhang, Guozhen; Jiang, Changzhong
2017-03-01
Nanostructured Si as the high efficiency photoelectrode material is hard to keep stable in aqueous for water splitting. Capping a passivation layer on the surface of Si is an effective way of protecting from oxidation. However, it is still not clear in the different mechanisms and effects between insulating oxide materials and oxide semiconductor materials as passivation layers. Here, we compare the passivation effects, the photoelectrochemical (PEC) properties, and the corresponding mechanisms between the HfO2/nanoporous-Si and the TiO2/nanoporous-Si by I-V curves, Motte-schottky (MS) curves, and electrochemical impedance spectroscopy (EIS). Although the saturated photocurrent densities of the TiO2/nanoporous Si are lower than that of the HfO2/nanoporous Si, the former is more stable than the later.
Xing, Zhuo; Ren, Feng; Wu, Hengyi; Wu, Liang; Wang, Xuening; Wang, Jingli; Wan, Da; Zhang, Guozhen; Jiang, Changzhong
2017-03-02
Nanostructured Si as the high efficiency photoelectrode material is hard to keep stable in aqueous for water splitting. Capping a passivation layer on the surface of Si is an effective way of protecting from oxidation. However, it is still not clear in the different mechanisms and effects between insulating oxide materials and oxide semiconductor materials as passivation layers. Here, we compare the passivation effects, the photoelectrochemical (PEC) properties, and the corresponding mechanisms between the HfO 2 /nanoporous-Si and the TiO 2 /nanoporous-Si by I-V curves, Motte-schottky (MS) curves, and electrochemical impedance spectroscopy (EIS). Although the saturated photocurrent densities of the TiO 2 /nanoporous Si are lower than that of the HfO 2 /nanoporous Si, the former is more stable than the later.
Corrosion behavior and mechanical properties of bioactive sol-gel coatings on titanium implants.
Catauro, M; Bollino, F; Papale, F; Giovanardi, R; Veronesi, P
2014-10-01
Organic-inorganic hybrid coatings based on zirconia and poly (ε-caprolactone) (PCL) were prepared by means of sol-gel dip-coating technique and used to coat titanium grade 4 implants (Ti-4) in order to improve their wear and corrosion resistance. The coating chemical composition has been analysed by ATR-FTIR. The influence of the PCL amount has been investigated on the microstructure, mechanical properties of the coatings and their ability to inhibit the corrosion of titanium. SEM analysis has shown that all coatings have a nanostructured nature and that the films with high PCL content are crack-free. Mechanical properties of the coatings have been studied using scratch and nano-indentation tests. The results have shown that the Young's modulus of the coatings decreases in presence of large amounts of the organic phase, and that PCL content affects also the adhesion of the coatings to the underlying Ti-4 substrate. However, the presence of cracks on the PCL-free coatings affects severely the mechanical response of the samples at high loads. The electrochemical behavior and corrosion resistance of the coated and uncoated substrate has been investigated by polarization tests. The results have shown that both the coatings with or without PCL don't affect significantly the already excellent passivation properties of titanium. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Mishler, Grant; Tsang, Alan Cheng Hou; Pak, On Shun
2018-03-01
The transport of active and passive particles plays central roles in diverse biological phenomena and engineering applications. In this paper, we present a theoretical investigation of a system consisting of an active particle and a passive particle in a confined micro-fluidic flow. The introduction of an external flow is found to induce the capture of the passive particle by the active particle via long-range hydrodynamic interactions among the particles. This hydrodynamic capture mechanism relies on an attracting stable equilibrium configuration formed by the particles, which occurs when the external flow intensity exceeds a certain threshold. We evaluate this threshold by studying the stability of the equilibrium configurations analytically and numerically. Furthermore, we study the dynamics of typical capture and non-capture events and characterize the basins of attraction of the equilibrium configurations. Our findings reveal a critical dependence of the hydrodynamic capture mechanism on the external flow intensity. Through adjusting the external flow intensity across the stability threshold, we demonstrate that the active particle can capture and release the passive particle in a controllable manner. Such a capture-and-release mechanism is desirable for biomedical applications such as the capture and release of therapeutic payloads by synthetic micro-swimmers in targeted drug delivery.
How birds can negate gusts and maintain heading by crabbing into the wind passively
NASA Astrophysics Data System (ADS)
Quinn, Daniel; Kress, Daniel; Stein, Andrea; Wegrzynski, Michal; Hamzah, Latifah; Lentink, David
2017-11-01
Everyday observations show birds flying stably in strong lateral gusts in which aerial robots cannot operate reliably. However, the mechanisms that birds use to negate lateral gusts are unknown. Therefore, we studied the motions of lovebirds as they flew through strong gusts in a long mesh corridor. The corridor was painted to simulate a forest (vertical stripes), a lake (horizontal stripe), and a cave (dark with a small light at the end). Fan arrays outside the corridor imposed three wind conditions: still air, a uniform gust, and wind shear. We found that lovebirds consistently yaw their body into the wind direction, crabbing like a fixed-wing aircraft, while keeping their head oriented towards the landing perch, unlike aircraft. These results were the same for all three visual conditions, showing how lovebirds can even negate gusts in the dark with a faint point source as a target. Because the naive birds had never experienced gusts before, the gust mitigation behavior is innate. Motivated by these observations, we developed a physical model that shows how yaw corrections can be passive in flapping flight. Our model offers a foundation for understanding wind negation in birds and other flying animals and offers inspiration for aerial robots that are more robust to gusts. How birds can negate gusts and maintain heading by crabbing into the wind passively.
On the classification of seawater intrusion
NASA Astrophysics Data System (ADS)
Werner, Adrian D.
2017-08-01
Seawater intrusion (SWI) arising from aquifer depletion is often classified as ;active; or ;passive;, depending on whether seawater moves in the same direction as groundwater flow or not. However, recent studies have demonstrated that alternative forms of active SWI show distinctly different characteristics, to the degree that the term ;active SWI; may be misleading without additional qualification. In response, this article proposes to modify hydrogeology lexicon by defining and characterizing three classes of SWI, namely passive SWI, passive-active SWI and active SWI. The threshold parameter combinations for the onset of each form of SWI are developed using sharp-interface, steady-state analytical solutions. Numerical simulation is then applied to a hypothetical case study to test the developed theory and to provide additional insights into dispersive SWI behavior. The results indicate that the three classes of SWI are readily predictable, with the exception of active SWI occurring in the presence of distributed recharge. The key characteristics of each SWI class are described to distinguish their most defining features. For example, active SWI occurring in aquifers receiving distributed recharge only creates watertable salinization downstream of the groundwater mound and only where dispersion effects are significant. The revised classification of SWI proposed in this article, along with the analysis of thresholds and SWI characteristics, provides coastal aquifer custodians with an improved basis upon which to expect salinization mechanisms to impact freshwater availability following aquifer depletion.
Occlusion of LTP-Like Plasticity in Human Primary Motor Cortex by Action Observation
Lepage, Jean-François; Morin-Moncet, Olivier; Beaulé, Vincent; de Beaumont, Louis; Champoux, Francois; Théoret, Hugo
2012-01-01
Passive observation of motor actions induces cortical activity in the primary motor cortex (M1) of the onlooker, which could potentially contribute to motor learning. While recent studies report modulation of motor performance following action observation, the neurophysiological mechanism supporting these behavioral changes remains to be specifically defined. Here, we assessed whether the observation of a repetitive thumb movement – similarly to active motor practice – would inhibit subsequent long-term potentiation-like (LTP) plasticity induced by paired-associative stimulation (PAS). Before undergoing PAS, participants were asked to either 1) perform abductions of the right thumb as fast as possible; 2) passively observe someone else perform thumb abductions; or 3) passively observe a moving dot mimicking thumb movements. Motor evoked potentials (MEP) were used to assess cortical excitability before and after motor practice (or observation) and at two time points following PAS. Results show that, similarly to participants in the motor practice group, individuals observing repeated motor actions showed marked inhibition of PAS-induced LTP, while the “moving dot” group displayed the expected increase in MEP amplitude, despite differences in baseline excitability. Interestingly, LTP occlusion in the action-observation group was present even if no increase in cortical excitability or movement speed was observed following observation. These results suggest that mere observation of repeated hand actions is sufficient to induce LTP, despite the absence of motor learning. PMID:22701704
Tribo-electrochemical characterization of metallic biomaterials for total joint replacement.
Diomidis, N; Mischler, S; More, N S; Roy, Manish
2012-02-01
Knee and hip joint replacement implants involve a sliding contact between the femoral component and the tibial or acetabular component immersed in body fluids, thus making the metallic parts susceptible to tribocorrosion. Micro-motions occur at points of fixation leading to debris and ion release by fretting corrosion. β-Titanium alloys are potential biomaterials for joint prostheses due to their biocompatibility and compatibility with the mechanical properties of bone. The biotribocorrosion behavior of Ti-29Nb-13Ta-4.6Zr was studied in Hank's balanced salt solution at open circuit potential and at an applied potential in the passive region. Reciprocating sliding tribocorrosion tests were carried out against technical grade ultra high molecular weight polyethylene, while fretting corrosion tests were carried out against alumina. The wear of the alloy is insignificant when sliding against polyethylene. However, depassivation does take place, but the tested alloy showed an ability to recover its passive state during sliding. The abrasivity of the alloy depends on the electrochemical conditions of the contact, while the wear of polyethylene proceeds through third body formation and material transfer. Under fretting corrosion conditions recovery of the passive state was also achieved. In a fretting contact wear of the alloy proceeds through plastic deformation of the bulk material and wear resistance depends on the electrochemical conditions. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lexcellent, C.; Patoor, E.
2004-06-01
This international conference was held between the 18 and the 23th may 2003, in the "Villa Clythia" belonging to the CAES of the french "Comité National de la Recherche Scientifique CNRS" at Fréjus (France). The scope of this EMMC7 conference was about the use of smart materials which permits the conception of some adaptive systems for industrial applications. A special attention was devoted to active and passive controls of damping in structures. The use of this new class of materials (shape memory alloys, piezoelectric ceramics, TRIP steels, ferromagnetic shape memory alloys, ...) implies the development of numerical tools for computer assisted design process. Complexity of the involved material behaviour requires a deep understanding of strain mechanisms (martensitic phase transformation, reorientation process of domains), the use of accurate experimental techniques and advanced modelling approaches at various scale (micro, meso, macroscopic). In this purpose, it is necessary to use some coupled calculations connecting different fields of physics such as thermal, electromagnetism, electricity and mechanics of materials ones. The conference topic gave the opportunity of fruitful discussions between the mechanics of materials communauty and the specialists of damping or passive control. The scientific program contains nine oral sessions and one poster session. - Experimental characterization of the shape memory alloys thermomechanical behavior (two sessions) - Modeling of the shape memory alloy thermomechanical behavior (two sessions) - Ferromagnetic shape memory alloys behavior (one session) - Piezoelectric ceramics behavior (one session) - Transformation induced plasticity steel behavior (one session) - Hybrid structures including smart materials as sensor or actuator (one session) - Adaptive structure for vibration control (one session) - Poster session. The conference programm contains 50 lectures. 57 scientists were present and come from 14 different countries: 20 from France, 7 from Germany, 6 from Italy, 4 from Russia, 4 from Finland and 5 from USA ... This scientific programm allows all the participants interesting exchanges on "the state of art" about smart materials and adaptive systems. In the aim of its publication in the Proceedings of the EMMC7 Conference (EDP Sciences "Journal de Physique IV") each paper was expertised by two reviewers belonging to the International Scientific Committee and also other specialists. On that occasion, we will thank them for their very important contribution of the scientific level quality of the Proceedings. We will also thank: the sponsors of the Conference: Délégation Générale aux Armements (DGA), le Ministère de la Recherche, l'Université de Metz, l'ENSAM, le CNRS, l'Association Française de Mécanique et l'Institut des Microtechniques de Franche-Comté, the members of the organizing committee, the MECAMAT committee for trusting us, EDP Sciences for the Proceedings, The "Villa Clythia" team for his nice help in the material organization, ... and all the participants. The Co-chairmen Christian LEXCELLENT et Étienne PATOOR
Ahmadalipour, A; Sadeghzadeh, J; Vafaei, A A; Bandegi, A R; Mohammadkhani, R; Rashidy-Pour, A
2015-10-01
Prenatal morphine exposure throughout pregnancy can induce a series of neurobehavioral and neurochemical disturbances by affecting central nervous system development. This study was designed to investigate the effects of an enriched environment on behavioral deficits and changes in hippocampal brain-derived neurotrophic factor (BDNF) levels induced by prenatal morphine in rats. On pregnancy days 11-18, female Wistar rats were randomly injected twice daily with saline or morphine. Offspring were weaned on postnatal day (PND) 21. They were subjected to a standard rearing environment or an enriched environment on PNDs 22-50. On PNDs 51-57, the behavioral responses including anxiety and depression-like behaviors, and passive avoidance memory as well as hippocampal BDNF levels were investigated. The light/dark (L/D) box and elevated plus maze (EPM) were used for the study of anxiety, forced swimming test (FST) was used to assess depression-like behavior and passive avoidance task was used to evaluate learning and memory. Prenatal morphine exposure caused a reduction in time spent in the EPM open arms and a reduction in time spent in the lit side of the L/D box. It also decreased step-through latency and increased time spent in the dark side of passive avoidance task. Prenatal morphine exposure also reduced immobility time and increased swimming time in FST. Postnatal rearing in an enriched environment counteracted with behavioral deficits in the EPM and passive avoidance task, but not in the L/D box. This suggests that exposure to an enriched environment during adolescence period alters anxiety profile in a task-specific manner. Prenatal morphine exposure reduced hippocampal BDNF levels, but enriched environment significantly increased BDNF levels in both saline- and morphine-exposed groups. Our results demonstrate that exposure to an enriched environment alleviates behavioral deficits induced by prenatal morphine exposure and up-regulates the decreased levels of BDNF. BDNF may contribute to the beneficial effects of an enriched environment on prenatal morphine-exposed to rats. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Biaxial Response of Passive Human Cerebral Arteries
Monson, Kenneth L.; Barbaro, Nicholas M.; Manley, Geoffrey T.
2008-01-01
The cerebral circulation is fundamental to the health and maintenance of brain tissue, but injury and disease may result in dysfunction of the vessels. Characterization of cerebral vessel mechanical response is an important step toward a more complete understanding of injury mechanisms and disease development in these vessels, paving the way for improved prevention and treatment. We recently reported a large series of uniaxial tests on fresh human cerebral vessels, but the multi-axial behavior of these vessels has not been previously described. Twelve arteries were obtained from the surface of the temporal lobe of patients undergoing surgery and were subjected to various combinations of axial stretch and pressure around typical physiological conditions before being stretched to failure. Axial and circumferential responses were compared, and measured data were fit to a four parameter, Fung-type hyperelastic constitutive model. Artery behavior was nonlinear and anisotropic, with considerably greater resistance to deformation in the axial direction than around the circumference. Results from axial failure tests of pressurized vessels resulted in a small shift in stress-stretch response compared to previously reported data from unpressurized specimens. These results further define the biaxial response of the cerebral arteries and provide data required for more rigorous study of head injury mechanisms and development of cerebrovascular disease. PMID:18855141
How health information is received by diabetic patients?
Zare-Farashbandi, Firoozeh; Lalazaryan, Anasik; Rahimi, Alireza; Zadeh, Akbar Hassan
2015-01-01
Background: Knowledge of correct information-seeking behavior by the patients can provide health specialists and health information specialists with valuable information in improving health care. This study aimed to investigate the passive receipt and active seeking of health information by diabetic patients. Materials and Methods: A survey method was used in this research on 6426 diabetic patients of whom 362 patients were selected by a no percentage stratified random sampling. The Longo information-seeking behavior questionnaire was used to collect data and they were analyzed by SPSS 20 software. Results: The most common information source by diabetic patients was practitioners (3.12). The minimum usage among the information sources were from charity organizations and emergency phone lines with a usage of close to zero. The amount of health information gained passively from each source has the lowest average of 4.18 and usage of this information in making health decision has the highest average score of 5.83. Analysis of the data related to active seeking of information showed that knowledge of available medical information from each source has the lowest average score of 3.95 and ability in using the acquired information for making medical decisions has the highest average score of 5.28. The paired t-test showed that differences between passive information receipt (41.68) and active information seeking (39.20) considered as statistically significant (P < 0.001). Conclusion: Because diabetic patients are more passive information receivers than active information seekers, the health information must be distributed by passive means to these patients. In addition, information-seeking behavior during different time periods should be investigated; to identify more effective distribution of health information. PMID:26261828
Confocal imaging to quantify passive transport across biomimetic lipid membranes.
Li, Su; Hu, Peichi; Malmstadt, Noah
2010-09-15
The ability of a molecule to pass through the plasma membrane without the aid of any active cellular mechanisms is central to that molecule's pharmaceutical characteristics. Passive transport has been understood in the context of Overton's rule, which states that more lipophilic molecules cross membrane lipid bilayers more readily. Existing techniques for measuring passive transport lack reproducibility and are hampered by the presence of an unstirred layer (USL) that dominates transport across the bilayer. This report describes assays based on spinning-disk confocal microscopy (SDCM) of giant unilamellar vesicles (GUVs) that allow for the detailed investigation of passive transport processes and mechanisms. This approach allows the concentration field to be directly observed, allowing membrane permeability to be determined easily from the transient concentration profile data. A series of molecules of increasing hydrophilicity was constructed, and the transport of these molecules into GUVs was observed. The observed permeability trend is consistent with Overton's rule. However, the values measured depart from the simple partition-diffusion proportionality model of passive transport. This technique is easy to implement and has great promise as an approach to measure membrane transport. It is optimally suited to precise quantitative measurements of the dependence of passive transport on membrane properties.
Magneto-rheological fluid shock absorbers for HMMWV
NASA Astrophysics Data System (ADS)
Gordaninejad, Faramarz; Kelso, Shawn P.
2000-04-01
This paper presents the development and evaluation of a controllable, semi-active magneto-rheological fluid (MRF) shock absorber for a High Mobility Multi-purpose Wheeled Vehicle (HMMWV). The University of Nevada, Reno (UNR) MRF damper is tailored for structures and ground vehicles that undergo a wide range of dynamic loading. It also has the capability for unique rebound and compression characteristics. The new MRF shock absorber emulates the original equipment manufacturer (OEM) shock absorber behavior in passive mode, and provides a wide controllable damping force range. A theoretical study is performed to evaluate the UNR MRF shock absorber. The Bingham plastic theory is employed to model the nonlinear behavior of the MR fluid. A fluid-mechanics-based theoretical model along with a three-dimensional finite element electromagnetic analysis is utilized to predict the MRF damper performance. The theoretical results are compared with experimental data and are demonstrated to be in excellent agreement.
ERIC Educational Resources Information Center
Coolahan, Kathleen; Fantuzzo, John; Mendez, Julia; McDermott, Paul
2000-01-01
Examines whether low-income preschool children's peer play interactions relate to learning behaviors and problem behaviors, and differ according to age and gender. Positive interactive play behavior was associated with active engagement in classroom learning activities, whereas disconnection in play related to inattention, passivity, and lack of…
Feola, Andrew; Abramowitch, Steven; Jallah, Zegbeh; Stein, Suzan; Barone, William; Palcsey, Stacy; Moalli, Pamela
2012-01-01
Objective Define the impact of prolapse mesh on the biomechanical properties of the vagina by comparing the prototype Gynemesh PS (Ethicon, Somerville, NJ) to 2 new generation lower stiffness meshes, SmartMesh (Coloplast, Minneapolis, MN) and UltraPro (Ethicon). Design A study employing a non-human primate model Setting University of Pittsburgh Population 45 parous rhesus macaques Methods Meshes were implanted via sacrocolpexy after hysterectomy and compared to Sham. Because its stiffness is highly directional UltraPro was implanted in two directions: UltraPro Perpendicular (less stiff) and UltraPro Parallel (more stiff), with the indicated direction referring to the blue orientation lines. The mesh-vaginal complex (MVC) was excised en toto after 3 months. Main Outcome Measures Active mechanical properties were quantified as contractile force generated in the presence of 120 mM KCl. Passive mechanical properties (a tissues ability to resist an applied force) were measured using a multi-axial protocol. Results Vaginal contractility decreased 80% following implantation with the Gynemesh PS (p=0.001), 48% after SmartMesh (p=0.001), 68% after UltraPro parallel (p=0.001) and was highly variable after UltraPro perpendicular (p =0.16). The tissue contribution to the passive mechanical behavior of the MVC was drastically reduced for Gynemesh PS (p=0.003) but not SmartMesh (p=0.9) or UltraPro independent of the direction of implantation (p=0.68 and p=0.66, respectively). Conclusions Deterioration of the mechanical properties of the vagina was highest following implantation with the stiffest mesh, Gynemesh PS. Such a decrease associated with implantation of a device of increased stiffness is consistent with findings from other systems employing prostheses for support. PMID:23240801
Jablonski, Sarah A; Williams, Michael T; Vorhees, Charles V
2017-11-01
In utero methamphetamine (MA) exposure leads to a range of adverse effects, such as decreased attention, reduced working-memory capability, behavioral dysregulation, and spatial memory impairments in exposed children. In the current experiment, preweaning Sprague-Dawley rats-as a model of third trimester human exposure-were administered the spin trapping agent, N-tert-butyl-α-phenylnitrone (PBN), daily prior to MA. Rats were given 0 (SAL) or 40 mg/kg PBN prior to each MA dose (10 mg/kg, 4× per day) from postnatal day (P) 6-15. Littermates underwent Cincinnati water maze, Morris water maze, and radial water maze assessment beginning on P30 (males) or P60 (females). Males were also tested for conditioned contextual and cued freezing, while females were trained in passive avoidance. Findings show that, regardless of age/sex, neonatal MA induced deficits in all tests, except passive avoidance. PBN did not ameliorate these effects, but had a few minor effects. Taken together, MA induced learning deficits emerge early and persist, but the mechanism remains unknown. © 2017 Wiley Periodicals, Inc.
Chemistry, metabolism, and toxicology of cannabis: clinical implications.
Sharma, Priyamvada; Murthy, Pratima; Bharath, M M Srinivas
2012-01-01
Cannabis is one of the most widely abused substances throughout the world. The primary psychoactive constituent of cannabis, delta 9-tetrahydrocannabinol (▵(9_)THC), produces a myriad of pharmacological effects in animals and humans. Although it is used as a recreational drug, it can potentially lead to dependence and behavioral disturbances and its heavy use may increase the risk for psychotic disorders.Many studies that endeavor to understand the mechanism of action of cannabis concentrate on pharmacokinetics and pharmacodynamics of cannabinoids in humans. However, there is limited research on the chronic adverse effects and retention of cannabinoids in human subjects.Cannabis can be detected in body fluids following exposure through active/passive inhalation and exposure through breastfeeding. Cannabis detection is directly dependent on accurate analytical procedures for detection of metabolites and verification of recent use.In this review, an attempt has been made to summarize the properties of cannabis and its derivatives, and to discuss the implications of its use with emphasis on bioavailability, limit of detection, carry over period and passive inhalation, important factors for detection and diagnosis.
Chemistry, Metabolism, and Toxicology of Cannabis: Clinical Implications
Murthy, Pratima; Bharath, M.M. Srinivas
2012-01-01
Cannabis is one of the most widely abused substances throughout the world. The primary psychoactive constituent of cannabis, delta 9-tetrahydrocannabinol (▵9_THC), produces a myriad of pharmacological effects in animals and humans. Although it is used as a recreational drug, it can potentially lead to dependence and behavioral disturbances and its heavy use may increase the risk for psychotic disorders. Many studies that endeavor to understand the mechanism of action of cannabis concentrate on pharmacokinetics and pharmacodynamics of cannabinoids in humans. However, there is limited research on the chronic adverse effects and retention of cannabinoids in human subjects. Cannabis can be detected in body fluids following exposure through active/passive inhalation and exposure through breastfeeding. Cannabis detection is directly dependent on accurate analytical procedures for detection of metabolites and verification of recent use. In this review, an attempt has been made to summarize the properties of cannabis and its derivatives, and to discuss the implications of its use with emphasis on bioavailability, limit of detection, carry over period and passive inhalation, important factors for detection and diagnosis. PMID:23408483
NASA Astrophysics Data System (ADS)
Lahlou, Radia; Armstrong, Peter; Grange, Benjamin; Almheiri, Saif; Calvet, Nicolas; Slocum, Alexander; Shamim, Tariq
2016-05-01
An upward-facing three-dimensional secondary concentrator, herein termed Final Optical Element (FOE), is designed to be used in a beam-down tower in combination with an open volumetric direct-absorption molten-salt receiver tank acting simultaneously as a thermal energy storage system. It allows reducing thermal losses from the open receiver by decreasing its aperture area while keeping minimal spillage losses. The FOE is exposed to high solar fluxes, a part of which is absorbed by its reflector material, leading to material degradation by overheating. Consequently, the FOE may require active cooling. A thermal model of the FOE under passive cooling mechanism is proposed as a first step to evaluate its sensitivity to some design parameters. Then, it will be used to evaluate the requirements for the active cooling system. The model provides insights on the FOE thermal behavior and highlights the effectiveness of a design modification on passive cooling enhancement. First prototype tests under reduced flux and with no active cooling will be used for model adjustment.
The effect of facial expressions on peripersonal and interpersonal spaces.
Ruggiero, Gennaro; Frassinetti, Francesca; Coello, Yann; Rapuano, Mariachiara; di Cola, Armando Schiano; Iachini, Tina
2017-11-01
Identifying individuals' intent through the emotional valence conveyed by their facial expression influences our capacity to approach-avoid these individuals during social interactions. Here, we explore if and how the emotional valence of others' facial expressiveness modulates peripersonal-action and interpersonal-social spaces. Through Immersive Virtual Reality, participants determined reachability-distance (for peripersonal space) and comfort-distance (for interpersonal space) from male/female virtual confederates exhibiting happy, angry and neutral facial expressions while being approached by (passive-approach) or walking toward (active-approach) them. Results showed an increase of distance when seeing angry rather than happy confederates in both approach conditions of comfort-distance. The effect also appeared in reachability-distance, but only in the passive-approach. Anger prompts avoidant behaviors, and thus an expansion of distance, particularly with a potential violation of near body space by an intruder. Overall, the findings suggest that peripersonal-action space, in comparison with interpersonal-social space, is similarly sensitive to the emotional valence of stimuli. We propose that this similarity could reflect a common adaptive mechanism shared by these spaces, presumably at different degrees, for ensuring self-protection functions.
Practicum Students' Verbal Responses to Different Clients
ERIC Educational Resources Information Center
Palisi, Anthony T.; Ruzicka, Mary F.
1974-01-01
Counselor trainees' verbal behavior in two initial interview settings, one each with an active and passive client, was significantly different. Verbal behavior was viewed from two perspectives; along the dimension of broad classification by categories of behavior and along the dimension of 3-6 second units of verbal interaction. (Author)
The Association between Positive Parenting and Externalizing Behavior1
Boeldt, Debra L.; Rhee, Soo Hyun; DiLalla, Lisabeth F.; Mullineaux, Paula Y.; Schulz-Heik, R. Jay; Corley, Robin P.; Young, Susan E.; Hewitt, John. K.
2011-01-01
The present study examined the role of positive parenting on externalizing behaviors in a longitudinal, genetically informative sample. It often is assumed that positive parenting prevents behavior problems in children via an environmentally mediated process. Alternatively, the association may be due to either an evocative gene-environment correlation, in which parents react to children’s genetically-influenced behavior in a positive way, or a passive gene-environment correlation, where parents passively transmit a risk environment and the genetic risk factor for the behavioral outcome to their children. The present study estimated the contribution of these processes in the association between positive parenting and children’s externalizing behavior. Positive parenting was assessed via observations at ages 7, 9, 14, 24, and 36 months and externalizing behaviors were assessed through parent report at ages 4, 5, 7, 9, 10, 11, and 12 years. The significant association between positive parenting and externalizing behavior was negative, with children of mothers who showed significantly more positive parenting during toddlerhood having lower levels of externalizing behavior in childhood; however, there was not adequate power to distinguish whether this covariation was due to genetic, shared environmental, or nonshared environmental influences. PMID:22577341
Naproxen Attenuates Sensitization of Depressive-Like Behavior and Fever during Maternal Separation
Hennessy, Michael B.; Stafford, Nathan P.; Yusko-Osborne, Brittany; Schiml, Patricia A.; Xanthos, Evan D.; Deak, Terrence
2014-01-01
Early life stress can increase susceptibility for later development of depressive illness though a process thought to involve inflammatory mediators. Isolated guinea pig pups exhibit a passive, depressive-like behavioral response and fever that appear mediated by proinflammatory activity, and which sensitize with repeated separations. Treatment with an anti-inflammatory can attenuate the behavioral response during the initial separation and separation the following day. Here we used the cyclooxygenase inhibitor naproxen to examine the role of prostaglandins in mediating the depressive-like behavior and core body temperature of young guinea pigs during an initial separation, separation the next day, and separation 10 days after the first. The passive, depressive-like behavior as well as fever sensitized with repeated separation. Three days of injection with 14 mg/kg of naproxen prior to the initial separation reduced depressive-like behavior during all three separations. A 28 mg/kg dose of naproxen, however, had minimal effect on behavior. Fever during the early separations was moderated by naproxen, but only at the higher dose. These results suggest a role of prostaglandins in the behavioral and febrile response to maternal separation, and particularly in the sensitization of depressive-like behavior following repeated separation. PMID:25449392
Wang, Lei; Liu, Chang-sheng; Shi, Lei; An, Cheng-qiang
2015-02-01
A composite silanes-V-Zr passive film was overlayed on hot-dip galvanized steel. Attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometer (XPS) and radio frequency glow discharge optical emission spectrometry (rf-GD-OES) were used to characterize the molecular structure of the silanes-V-Zr passive film. The mechanism of film formation was discussed: The results show that the silane molecules are crosslinked as the main film former and inorganic inhibitor is even distributed in the film. The fitting peak of 100.7 eV in XPS single Si2p energy range spectra of the composite silanes-V-Zr passive film and the widening and strengthening of the Si--O infrared absorption peak at 1100 cm(-1) indicate that the silanes were adsorbed on the surface of zinc with chemical bond of Si--O--Zn, and the silane molecules were connected with each other by bond of Si--O--Si. Two characteristic absorption peaks of amide at 1650 and 1560 cm(-1) appear in the infrared spectroscopy of the composite silanes-V-Zr passive film, and a characteristic absorption peak of epoxy groups at 910 cm(-1) disappears in the infrared spectroscopy of the passive film. The results indicate that gamma-APT can be prepared through nucleophilic ring-opening of ethylene oxide in gamma-GPT molecule to form C--N covalent bonds. The rf-GD-OES results indicate that there is a oxygen enriched layer in 0.3 microm depth of the composite silanes-V-Zr passive film. Moreover, ZrF4, ZrO2 and some inorganic matter obtained by the reaction during the forming processof the composite silanes-V-Zr passive film are distributed evenly throughout the film. According to the film composition, the physical processes and chemical reactions during the film forming process were studied by using ATR-FTIR. Based on this, the film forming mechanism was proposed.
Effect of tritium on corrosion behavior of chromium in 0.01 N sulfuric acid solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyaidzu, M.; Isobe, K.; Hayashi, T.
The effects of tritium on the corrosion behavior of chromium in 0.01 N sulfuric solution have been investigated in the present study. Electrochemical experiments have been carried our for pure chromium. At first, the concentration dependence of sulfuric acid solution on anodic polarization behavior of chromium was experimented, resulting in that 0.01 N one was found appropriate. The dependence of both dissolved oxygen and tritium concentration on anodic behavior of chromium were performed. It was found from that the self-passivation of chromium induced by dissolved oxygen was inhibited in tritiated solution resulting in the enhancement of the corrosion. As amore » consequence it is highly likely that the elution of chromium by highly oxidative radiolysis products would explain the passivation inhibitory effect of SUS304 stainless steel observed in tritiated solutions.« less
Hodgson, John A.; Chi, Sheng-Wei; Yang, Judy P.; Chen, Jiun-Shyan; Edgerton, V. Reggie; Sinha, Shantanu
2014-01-01
The pattern of deformation of the different structural components of a muscle-tendon complex when it is activated provides important information about the internal mechanics of the muscle. Recent experimental observations of deformations in contracting muscle have presented inconsistencies with current widely held assumption about muscle behavior. These include negative strain in aponeuroses, non-uniform strain changes in sarcomeres, even of individual muscle fibers and evidence that muscle fiber cross sectional deformations are asymmetrical suggesting a need to readjust current models of contracting muscle. We report here our use of finite element modeling techniques to simulate a simple muscle-tendon complex and investigate the influence of passive intramuscular material properties upon the deformation patterns under isometric and shortening conditions. While phenomenological force-displacement relationships described the muscle fiber properties, the material properties of the passive matrix were varied to simulate a hydrostatic model, compliant and stiff isotropically hyperelastic models and an anisotropic elastic model. The numerical results demonstrate that passive elastic material properties significantly influence the magnitude, heterogeneity and distribution pattern of many measures of deformation in a contracting muscle. Measures included aponeurosis strain, aponeurosis separation, muscle fiber strain and fiber cross-sectional deformation. The force output of our simulations was strongly influenced by passive material properties, changing by as much as ~80% under some conditions. Maximum output was accomplished by introducing anisotropy along axes which were not strained significantly during a muscle length change, suggesting that correct costamere orientation may be a critical factor in optimal muscle function. Such a model not only fits known physiological data, but also maintains the relatively constant aponeurosis separation observed during in vivo muscle contractions and is easily extrapolated from our plane-strain conditions into a 3-dimensional structure. Such modeling approaches have the potential of explaining the reduction of force output consequent to changes in material properties of intramuscular materials arising in the diseased state such as in genetic disorders. PMID:22498294
Hodgson, John A; Chi, Sheng-Wei; Yang, Judy P; Chen, Jiun-Shyan; Edgerton, Victor R; Sinha, Shantanu
2012-05-01
The pattern of deformation of different structural components of a muscle-tendon complex when it is activated provides important information about the internal mechanics of the muscle. Recent experimental observations of deformations in contracting muscle have presented inconsistencies with current widely held assumption about muscle behavior. These include negative strain in aponeuroses, non-uniform strain changes in sarcomeres, even of individual muscle fibers and evidence that muscle fiber cross sectional deformations are asymmetrical suggesting a need to readjust current models of contracting muscle. We report here our use of finite element modeling techniques to simulate a simple muscle-tendon complex and investigate the influence of passive intramuscular material properties upon the deformation patterns under isometric and shortening conditions. While phenomenological force-displacement relationships described the muscle fiber properties, the material properties of the passive matrix were varied to simulate a hydrostatic model, compliant and stiff isotropically hyperelastic models and an anisotropic elastic model. The numerical results demonstrate that passive elastic material properties significantly influence the magnitude, heterogeneity and distribution pattern of many measures of deformation in a contracting muscle. Measures included aponeurosis strain, aponeurosis separation, muscle fiber strain and fiber cross-sectional deformation. The force output of our simulations was strongly influenced by passive material properties, changing by as much as ~80% under some conditions. The maximum output was accomplished by introducing anisotropy along axes which were not strained significantly during a muscle length change, suggesting that correct costamere orientation may be a critical factor in the optimal muscle function. Such a model not only fits known physiological data, but also maintains the relatively constant aponeurosis separation observed during in vivo muscle contractions and is easily extrapolated from our plane-strain conditions into a three-dimensional structure. Such modeling approaches have the potential of explaining the reduction of force output consequent to changes in material properties of intramuscular materials arising in the diseased state such as in genetic disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dura-Bernal, Salvador; Garreau, Guillaume; Georgiou, Julius; Andreou, Andreas G; Denham, Susan L; Wennekers, Thomas
2013-10-01
The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sonar signatures over multiple time scales. The system architecture is based on a six-layer convolutional neural network, trained and evaluated using a dataset of 10 subjects performing seven different behaviors. Probabilistic combination of system output through time for each modality separately yields 94% (passive audio) and 91% (micro-Doppler sonar) correct behavior classification; probabilistic multimodal integration increases classification performance to 98%. This study supports the efficacy of micro-Doppler sonar systems in characterizing human actions, which can then be efficiently classified using ConvNets. It also demonstrates that the integration of multiple sources of acoustic information can significantly improve the system's performance.
NASA Astrophysics Data System (ADS)
Liu, Yinghui; Soucaze-Guillous, Benoît; Taberna, Pierre-Louis; Simon, Patrice
2017-10-01
In order to shed light on ageing mechanisms of Electrochemical Double Layer Capacitor (EDLC), two kinds of activated carbons are studied in tetraethyl ammonium tetrafluoroborate (Et4NBF4) in acetonitrile. In floating mode, it turns out that two different ageing mechanisms are observed, depending on the activated carbon electrode materials used. On one hand, carbon A exhibits a continuous capacitance and series resistance fall-off; on the other hand, for carbon B, only the series resistance degrades after ageing while the capacitance keeps unchanged. Additional electrochemical characterizations (Electrochemical Impedance Spectroscopy - EIS - and diffusion coefficient calculations) were carried out showing that carbon A's ageing behavior is suspected to be primarily related to the carbon degradation while for carbon B a passivation occurs leading to the formation of a Solid Electrolyte Interphase-Like (SEI-L) film. These hypotheses are supported by TG-IR and Raman spectroscopy analysis. The outcome forms the latter is an increase of carbon defects on carbon A on positive electrode.
Evolution of passive continental margins and initiation of subduction zones
NASA Astrophysics Data System (ADS)
Cloetingh, S. A. P. L.; Wortel, M. J. R.; Vlaar, N. J.
1982-05-01
Although the initiation of subduction is a key element in plate tectonic schemes for evolution of lithospheric plates, the underlying mechanisms are not well understood. Plate rupture is an important aspect of the process of creating a new subduction zone, as stresses of the order of kilobars are required to fracture oceanic lithosphere1. Therefore initiation of subduction could take place preferentially at pre-existing weakness zones or in regions where the lithosphere is prestressed. As such, transform faults2,3 and passive margins4,5 where the lithosphere is downflexed under the influence of sediment loading have been suggested. From a model study of passive margin evolution we found that ageing of passive margins alone does not make them more suitable sites for initiation of subduction. However, extensive sediment loading on young lithosphere might be an effective mechanism for closure of small ocean basins.
Fok, Jonathan; Toogood, Roger W; Badawi, Hisham; Carey, Jason P; Major, Paul W
2011-11-01
To better understand the mechanics of bracket/archwire interaction through analysis of force and couple distribution along the maxillary arch. An orthodontic simulator was utilized to study high canine malocclusion. Force/couple distributions, referenced to the center of resistance (CR) of each tooth, produced by passive ligation brackets and round wire were measured. Tests were repeated for 12 bracket sets with 12 wires per set. Propagation of the force/couple systems around the arch was minimal. Binding was observed only on the teeth adjacent to the displaced canine. For most of the teeth, reduced resistance to sliding of the passive ligation bracket yielded minimal tangential and normal forces at the bracket and contributed to lower moments at CR. Some potential mechanical advantages of passive ligation systems are suggested for the case studied. In particular, limited propagation around the arch reduces the occurrence of unwanted force/couple systems.
Cardiovascular remodeling induced by passive smoking.
Minicucci, Marcos F; Azevedo, Paula S; Paiva, Sergio A R; Zornoff, Leonardo A M
2009-12-01
Coronary heart disease (CHD) is the most common cause of death in many developed countries. The major risk factors for CHD are smoking, high blood pressure, diabetes, high cholesterol levels, and lack of physical activity. Importantly, passive smoke also increases the risk for CHD. The mechanisms involved in the effects of passive smoke in CHD are complex and include endothelial dysfunction, lipoprotein modification, increased inflammation and platelet activation. Recently, several studies have shown that exposure to tobacco smoke can result in cardiac remodeling and compromised cardiac function. Potential mechanisms for these alterations are neurohumoral activation, oxidative stress, and MAPK activation. Although the vascular effects of cigarette smoke exposure are well known, the effects of tobacco smoking on the heart have received less attention. Therefore, this review will focus on the recent findings as to the effects of passive smoking in acute and chronic phases of vascular and cardiac remodeling.
Reactive Flow Control of Delta Wing Vortex (Postprint)
2006-08-01
wing aircraft. A substantial amount of research has been dedicated to the control of aerodynamic flows using both passive and active control mechanisms...Passive vortex control devices such as vortex generators and winglets attach to the wing and require no energy input. Passive vortex control...leading edges is also effective for changing the aerodynamic characteristics of delta wings [2] [3]. Gutmark and Guillot [5] proposed controlling
NASA Astrophysics Data System (ADS)
Caruel, M.; Truskinovsky, L.
2018-03-01
In this paper we report, clarify and broaden various recent efforts to complement the chemistry-centered models of force generation in (skeletal) muscles by mechanics-centered models. The physical mechanisms of interest can be grouped into two classes: passive and active. The main passive effect is the fast force recovery which does not require the detachment of myosin cross-bridges from actin filaments and can operate without a specialized supply of metabolic fuel (ATP). In mechanical terms, it can be viewed as a collective folding-unfolding phenomenon in the system of interacting bi-stable units and modeled by near equilibrium Langevin dynamics. The active force generation mechanism operates at slow time scales, requires detachment and is crucially dependent on ATP hydrolysis. The underlying mechanical processes take place far from equilibrium and are represented by stochastic models with broken time reversal symmetry implying non-potentiality, correlated noise or multiple reservoirs. The modeling approaches reviewed in this paper deal with both active and passive processes and support from the mechanical perspective the biological point of view that phenomena involved in slow (active) and fast (passive) force generation are tightly intertwined. They reveal, however, that biochemical studies in solution, macroscopic physiological measurements and structural analysis do not provide by themselves all the necessary insights into the functioning of the organized contractile system. In particular, the reviewed body of work emphasizes the important role of long-range interactions and criticality in securing the targeted mechanical response in the physiological regime of isometric contractions. The importance of the purely mechanical micro-scale modeling is accentuated at the end of the paper where we address the puzzling issue of the stability of muscle response on the so called ‘descending limb’ of the isometric tetanus.
Physics of muscle contraction.
Caruel, M; Truskinovsky, L
2018-03-01
In this paper we report, clarify and broaden various recent efforts to complement the chemistry-centered models of force generation in (skeletal) muscles by mechanics-centered models. The physical mechanisms of interest can be grouped into two classes: passive and active. The main passive effect is the fast force recovery which does not require the detachment of myosin cross-bridges from actin filaments and can operate without a specialized supply of metabolic fuel (ATP). In mechanical terms, it can be viewed as a collective folding-unfolding phenomenon in the system of interacting bi-stable units and modeled by near equilibrium Langevin dynamics. The active force generation mechanism operates at slow time scales, requires detachment and is crucially dependent on ATP hydrolysis. The underlying mechanical processes take place far from equilibrium and are represented by stochastic models with broken time reversal symmetry implying non-potentiality, correlated noise or multiple reservoirs. The modeling approaches reviewed in this paper deal with both active and passive processes and support from the mechanical perspective the biological point of view that phenomena involved in slow (active) and fast (passive) force generation are tightly intertwined. They reveal, however, that biochemical studies in solution, macroscopic physiological measurements and structural analysis do not provide by themselves all the necessary insights into the functioning of the organized contractile system. In particular, the reviewed body of work emphasizes the important role of long-range interactions and criticality in securing the targeted mechanical response in the physiological regime of isometric contractions. The importance of the purely mechanical micro-scale modeling is accentuated at the end of the paper where we address the puzzling issue of the stability of muscle response on the so called 'descending limb' of the isometric tetanus.
Energy extraction from a semi-passive flapping-foil turbine with active heave and passive pitch
NASA Astrophysics Data System (ADS)
Boudreau, Matthieu; Dumas, Guy; Gunther, Kevin; CFD Laboratory LMFN Team
2017-11-01
Due to the inherent complexity of the mechanisms needed to prescribe the heaving and the pitching motions of optimal flapping-foil turbines, several research groups are now investigating the potential of using unconstrained passive motions. The amplitude, the phase and the frequency of such free motions are thus the result of the interaction of the blade with the flow and its elastic supports, namely springs and dampers. In parallel with our current study on fully-passive flapping-foil turbines, we investigate in this work the possibility of using a semi-passive turbine. Unlike previous semi-passive turbines studied in the literature, we propose a turbine with a passive pitching motion and an active heaving motion constrained to be a sine wave with desired amplitude and frequency. As most of the energy extracted by flapping-foil turbines comes from the heaving motion, it is natural to connect an electric generator to this degree of freedom, thereby allowing one to constrain this motion. It is found that large-amplitude pitching motions leading to a considerable energy extraction can arise under different circumstances and mechanisms, either forced by the heaving motion or driven by an instability of the pitching motion itself. The authors gratefully acknowledge the support from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Tyler Lewis Clean Energy Research Foundation, Calcul Québec and Compute Canada.
Leape, Lucian L; Shore, Miles F; Dienstag, Jules L; Mayer, Robert J; Edgman-Levitan, Susan; Meyer, Gregg S; Healy, Gerald B
2012-07-01
A substantial barrier to progress in patient safety is a dysfunctional culture rooted in widespread disrespect. The authors identify a broad range of disrespectful conduct, suggesting six categories for classifying disrespectful behavior in the health care setting: disruptive behavior; humiliating, demeaning treatment of nurses, residents, and students; passive-aggressive behavior; passive disrespect; dismissive treatment of patients; and systemic disrespect.At one end of the spectrum, a single disruptive physician can poison the atmosphere of an entire unit. More common are everyday humiliations of nurses and physicians in training, as well as passive resistance to collaboration and change. Even more common are lesser degrees of disrespectful conduct toward patients that are taken for granted and not recognized by health workers as disrespectful.Disrespect is a threat to patient safety because it inhibits collegiality and cooperation essential to teamwork, cuts off communication, undermines morale, and inhibits compliance with and implementation of new practices. Nurses and students are particularly at risk, but disrespectful treatment is also devastating for patients. Disrespect underlies the tensions and dissatisfactions that diminish joy and fulfillment in work for all health care workers and contributes to turnover of highly qualified staff. Disrespectful behavior is rooted, in part, in characteristics of the individual, such as insecurity or aggressiveness, but it is also learned, tolerated, and reinforced in the hierarchical hospital culture. A major contributor to disrespectful behavior is the stressful health care environment, particularly the presence of "production pressure," such as the requirement to see a high volume of patients.
A novel optical imaging system for investigating sarcomere dynamics in single skeletal muscle fibers
NASA Astrophysics Data System (ADS)
Panchangam, Appaji; Witte, Russell S.; Claflin, Dennis R.; O'Donnell, Matthew; Faulkner, John A.
2006-02-01
The protein substructure of skeletal muscle fibers forms a diffraction grating with repeating units, termed 'sarcomeres'. A laser scanning system is described that maps the lengths of sarcomeres (SL) and the widths of the first-order diffraction lines (DLW) of permeabilized single fibers in real-time. The apparatus translates a laser beam (λ = 670 nm and w 0 = ~75 μm) along the length of a fiber segment through 20 contiguous regions per sweep at 500 sweeps/s. The fiber segments (~1 mm long) were obtained from vastus lateralis muscles of humans by needle biopsy. During both passive stretches and maximum fixed-end activations, the mappings of SL and DLW of the fibers were extracted from the diffraction spectra. Heterogeneity of SLs was evaluated by computing the standard deviation ( σ SL) of the 20 SLs measured during a single sweep. Compared with the σ SL before a passive stretch, the increase of 5+/-0.5% in σ SL after the passive stretch, indicated differences in passive length-tension relationships along the fiber. In contrast, no change, ~0.5+/-0.1%, was observed in DLW. Within 10s after the fiber was returned to its initial length, the shape of the SL profile returned close to pre-stretch conditions ( σ SL = 1+/- 0.2%). Following maximum Ca 2+ - activation of the fiber, the heterogeneity of the steady state SLs increased greatly (DLW up by ~300% and σ SL up by ~100%). The scanning system provided high resolution tracking of sarcomere behavior single muscle fibers. Potential applications are for studies of the mechanisms of muscle fiber injury and injury propagation.
NASA Astrophysics Data System (ADS)
Gadala, Ibrahim M.; Alfantazi, Akram
2015-12-01
The key steps involved in X100 pipeline steel passivation in bicarbonate-based simulated soil solutions from the pre-passive to transpassive potential regions have been analyzed here using a step-wise anodizing-electrochemical impedance spectroscopy (EIS) routine. Pre-passive steps involve parallel dissolution-adsorption in early stages followed by clear diffusion-adsorption control shortly before iron hydroxide formation. Aggressive NS4 chlorides/sulfate promote steel dissolution whilst inhibiting diffusion in pre-passive steps. Diffusive and adsorptive effects remain during iron hydroxide formation, but withdraw shortly thereafter during its removal and the development of the stable iron carbonate passive layer. Passive layer protectiveness is evaluated using EIS fitting, current density analysis, and correlations with semiconductive parameters, consistently revealing improved robustness in colder, bicarbonate-rich, chloride/sulfate-free conditions. Ferrous oxide formation at higher potentials results in markedly lower impedances with disordered behavior, and the involvement of the iron(III) valence state is observed in Mott-Schottky tests exclusively for 75 °C conditions.
NASA Technical Reports Server (NTRS)
McCrea, R. A.; Gdowski, G. T.; Boyle, R.; Belton, T.; Peterson, B. W. (Principal Investigator)
1999-01-01
The firing behavior of 51 non-eye movement related central vestibular neurons that were sensitive to passive head rotation in the plane of the horizontal semicircular canal was studied in three squirrel monkeys whose heads were free to move in the horizontal plane. Unit sensitivity to active head movements during spontaneous gaze saccades was compared with sensitivity to passive head rotation. Most units (29/35 tested) were activated at monosynaptic latencies following electrical stimulation of the ipsilateral vestibular nerve. Nine were vestibulo-spinal units that were antidromically activated following electrical stimulation of the ventromedial funiculi of the spinal cord at C1. All of the units were less sensitive to active head movements than to passive whole body rotation. In the majority of cells (37/51, 73%), including all nine identified vestibulo-spinal units, the vestibular signals related to active head movements were canceled. The remaining units (n = 14, 27%) were sensitive to active head movements, but their responses were attenuated by 20-75%. Most units were nearly as sensitive to passive head-on-trunk rotation as they were to whole body rotation; this suggests that vestibular signals related to active head movements were cancelled primarily by subtraction of a head movement efference copy signal. The sensitivity of most units to passive whole body rotation was unchanged during gaze saccades. A fundamental feature of sensory processing is the ability to distinguish between self-generated and externally induced sensory events. Our observations suggest that the distinction is made at an early stage of processing in the vestibular system.
The role of helplessness, fear of pain, and passive pain-coping in chronic pain patients.
Samwel, Han J A; Evers, Andrea W M; Crul, Ben J P; Kraaimaat, Floris W
2006-01-01
The goal of this study was to examine the relative contribution of helplessness, fear of pain, and passive pain-coping to pain level, disability, and depression in chronic pain patients attending an interdisciplinary pain center. One hundred sixty-nine chronic pain patients who had entered treatment at an interdisciplinary pain center completed various questionnaires and a pain diary. Helplessness, fear of pain, and passive pain-coping strategies were all related to the pain level, disability, and depression. When comparing the contribution of the predictors in multiple regression analyses, helplessness was the only significant predictor for pain level. Helplessness and the passive behavioral pain-coping strategies of resting significantly predicted disability. The passive cognitive pain-coping strategy of worrying significantly predicted depression. These findings indicate a role for helplessness and passive pain-coping in chronic pain patients and suggest that both may be relevant in the treatment of pain level, disability, and/or depression.
Passive vs. Active Control of Rhythmic Ball Bouncing: The Role of Visual Information
ERIC Educational Resources Information Center
Siegler, Isabelle A.; Bardy, Benoit G.; Warren, William H.
2010-01-01
The simple task of bouncing a ball on a racket offers a model system for studying how human actors exploit the physics and information of the environment to control their behavior. Previous work shows that people take advantage of a passively stable solution for ball bouncing but can also use perceptual information to actively stabilize bouncing.…
ERIC Educational Resources Information Center
Doramajian, Caroline; Bukowski, William M.
2015-01-01
This study investigated the prospective association between moral disengagement and bystander behaviors in bullying situations, including both defending and passive bystanding. A diverse sample of Canadian school children (N = 130; 68 boys and 62 girls; mean age = 11.36 years) participated in a three-wave longitudinal study over a 4-month period.…
Playing It Cool: Temperament, Emotion Regulation, and Social Behavior in Preschoolers
ERIC Educational Resources Information Center
Blair, Kimberly A.; Denham, Susanne A.; Kochanoff, Anita; Whipple, Beth
2004-01-01
The contributions of temperamental styles and emotional coping strategies to the development of preschoolers' social competence and behavior problems were investigated. The ability to cope with emotion was found to be more important than temperament alone in the development of prosocial behavior. Our results indicate that the use of passive coping…
ERIC Educational Resources Information Center
Erekson, Thomas L.; Schultz, Robert
This guide is intended to help vocational teachers to manage student behavior, including that of students with handicaps and behavioral problems, in vocational educational laboratories. The guide is organized into three sections. The first section explains the different types of vocational laboratories (active and passive) and what types of…
Narusyte, Jurgita; Neiderhiser, Jenae M; Andershed, Anna-Karin; D'Onofrio, Brian M; Reiss, David; Spotts, Erica; Ganiban, Jody; Lichtenstein, Paul
2011-05-01
Genetic factors are important for the association between parental negativity and child problem behavior, but it is not clear whether this is due to passive or evocative genotype-environment correlation (rGE). In this study, we applied the extended children-of-twins model to directly examine the presence of passive and evocative rGE as well as direct environmental effects in the association between parental criticism and adolescent externalizing problem behavior. The cross-sectional data come from the Twin and Offspring Study in Sweden (N = 909 pairs of adult twins) and from the Twin Study of Child and Adolescent Development (N = 915 pairs of twin children). The results revealed that maternal criticism was primarily due to evocative rGE emanating from their adolescent's externalizing behavior. On the other hand, fathers' critical remarks tended to affect adolescent problem behavior in a direct environmental way. This suggests that previously reported differences in caretaking between mothers and fathers also are reflected in differences in why parenting is associated with externalizing behavior in offspring.
Narusyte, Jurgita; Neiderhiser, Jenae M.; Andershed, Anna-Karin; D’Onofrio, Brian M.; Reiss, David; Spotts, Erica; Ganiban, Jody; Lichtenstein, Paul
2011-01-01
Genetic factors are important for the association between parental negativity and child problem behavior, but it is not clear whether this is dueto passive or evocative genotype-environment correlation (rGE). In this study we applied the extended children-of-twins model to directly examine the presence of passive and evocative rGE as well as direct environmental effects in the association between parental criticism and adolescent externalizing problem behavior. The cross-sectional data come from the Twin and Offspring Study in Sweden (TOSS) (N=909 pairs of adult twins) and from the Twin study of CHild and Adolescent Development (TCHAD) (N=915 pairs of twin children). The results revealed that maternal criticism was primarily due to evocative rGE emanating from their adolescent’s externalizing behavior. On the other hand, fathers’ critical remarks tended to affect adolescent problem behavior in a direct environmental way. This suggests that previously reported differences in caretaking between mothers and fathers also are reflected in differences in why parenting is associated with externalizing behavior in offspring. PMID:21280930
Lan, Tu; Feng, Yue; Liao, Jiali; Li, Xiaolong; Ding, Congcong; Zhang, Dong; Yang, Jijun; Zeng, Junhui; Yang, Yuanyou; Tang, Jun; Liu, Ning
2014-08-01
In order to identify a more efficient biosorbent for (137)Cs, we have investigated the biosorption behavior and mechanism of (137)Cs on Rhodosporidium fluviale (R. fluviale) strain UA2, one of the dominant species of a fungal group isolated from a stable cesium solution. We observed that the biosorption of (137)Cs on R. fluviale strain UA2 was a fast and pH-dependent process in the solution composed of R. fluviale strain UA2 (5 g/L) and cesium (1 mg/L). While a Langmuir isotherm equation indicated that the biosorption of (137)Cs was a monolayer adsorption, the biosorption behavior implied that R. fluviale strain UA2 adsorbed cesium ions by electrostatic attraction. The TEM analysis revealed that cesium ions were absorbed into the cytoplasm of R. fluviale strain UA2 across the cell membrane, not merely fixed on the cell surface, which implied that a mechanism of metal uptake contributed largely to the cesium biosorption process. Moreover, PIXE and EPBS analyses showed that ion-exchange was another biosorption mechanism for the cell biosorption of (137)Cs, in which the decreased potassium ions were replaced by cesium ions. All the above results implied that the biosorption of (137)Cs on R. fluviale strain UA2 involved a two-step process. The first step is passive biosorption that cesium ions are adsorbed to cells surface by electrostatic attraction; after that, the second step is active biosorption that cesium ions penetrate the cell membrane and accumulate in the cytoplasm. Copyright © 2014 Elsevier Ltd. All rights reserved.
Passive Smoking Impairs Histone Deacetylase-2 in Children With Severe Asthma
Kobayashi, Yoshiki; Bossley, Cara; Gupta, Atul; Akashi, Kenichi; Tsartsali, Lemonia; Mercado, Nicolas; Barnes, Peter J.; Bush, Andrew
2014-01-01
Background: Parental smoking is known to worsen asthma symptoms in children and to make them refractory to asthma treatment, but the molecular mechanism is unclear. Oxidative stress from tobacco smoke has been reported to impair histone deacetylase-2 (HDAC2) via phosphoinositide-3-kinase (PI3K)/Akt activation and, thus, to reduce corticosteroid sensitivity. The aim of this study was to investigate passive smoking-dependent molecular abnormalities in alveolar macrophages (AMs) by comparing passive smoke-exposed children and non-passive smoke-exposed children with uncontrolled severe asthma. Methods: BAL fluid (BALF) was obtained from 19 children with uncontrolled severe asthma (10 non-passive smoking-exposed subjects and nine passive smoking-exposed subjects), and HDAC2 expression/activity, Akt/HDAC2 phosphorylation levels, and corticosteroid responsiveness in AMs were evaluated. Results: Parental smoking reduced HDAC2 protein expression by 54% and activity by 47%, with concomitant enhancement of phosphorylation of Akt1 and HDAC2. In addition, phosphorylation levels of Akt1 correlated positively with HDAC2 phosphorylation levels and negatively with HDAC2 activity. Furthermore, passive smoke exposure reduced the inhibitory effects of dexamethasone on tumor necrosis factor-α-induced CXCL8 release in AMs. There were relatively higher neutrophil counts and CXCL8 concentrations in BALF and lower Asthma Control Test scores compared with non-passive smoke-exposed children with uncontrolled severe asthma. Conclusions: Passive smoking impairs HDAC2 function via PI3K signaling activation, which could contribute to corticosteroid-insensitive inflammation in children with severe asthma. This novel mechanism will be a treatment target in children with severe asthma and stresses the need for a smoke-free environment for asthmatic children. PMID:24030221
Hierarchical Petascale Simulation Framework for Stress Corrosion Cracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vashishta, Priya
2014-12-01
Reaction Dynamics in Energetic Materials: Detonation is a prototype of mechanochemistry, in which mechanically and thermally induced chemical reactions far from equilibrium exhibit vastly different behaviors. It is also one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. The CACS group has performed multimillion-atom reactive MD simulations to reveal a novel two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine (RDX) crystal. Rapid production of N2 and H2O within ~10 ps is followed by delayed production of CO molecules within ~ 1 ns. They found that further decomposition towards the final products ismore » inhibited by the formation of large metastable C- and O-rich clusters with fractal geometry. The CACS group has also simulated the oxidation dynamics of close-packed aggregates of aluminum nanoparticles passivated by oxide shells. Their simulation results suggest an unexpectedly active role of the oxide shell as a nanoreactor.« less
Top-down predictions in the cognitive brain
Kveraga, Kestutis; Ghuman, Avniel S.; Bar, Moshe
2007-01-01
The human brain is not a passive organ simply waiting to be activated by external stimuli. Instead, it is proposed tat the brain continuously employs memory of past experiences to interpret sensory information and predict the immediately relevant future. This review concentrates on visual recognition as the model system for developing and testing ideas about the role and mechanisms of top-down predictions in the brain. We cover relevant behavioral, computational and neural aspects. These ideas are then extended to other domains. The basic elements of this proposal include analogical mapping, associative representations and the generation of predictions. Connections to a host of cognitive processes will be made and implications to several mental disorders will be proposed. PMID:17923222
Physical principles of intracellular organization via active and passive phase transitions
NASA Astrophysics Data System (ADS)
Berry, Joel; Brangwynne, Clifford P.; Haataja, Mikko
2018-04-01
Exciting recent developments suggest that phase transitions represent an important and ubiquitous mechanism underlying intracellular organization. We describe key experimental findings in this area of study, as well as the application of classical theoretical approaches for quantitatively understanding these data. We also discuss the way in which equilibrium thermodynamic driving forces may interface with the fundamentally out-of-equilibrium nature of living cells. In particular, time and/or space-dependent concentration profiles may modulate the phase behavior of biomolecules in living cells. We suggest future directions for both theoretical and experimental work that will shed light on the way in which biological activity modulates the assembly, properties, and function of viscoelastic states of living matter.
Femtosecond pulses generated from a synchronously pumped chromium-doped forsterite laser
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, R. R.
1993-01-01
Kerr lens mode-locking (KLM) has become a standard method to produce femtosecond pulses from tunable solid state lasers. High power inside the laser resonator propagating through the laser-medium with nonlinear index of refraction, coupled with the stability conditions of the laser modes in the resonator, result in a passive amplitude modulation which explains the mechanism for pulse shortening. Recently, chromium doped forsterite was shown to exhibit similar pulse behavior. A successful attempt to generate femtosecond pulses from a synchronously pumped chromium-doped forsterite laser with intracavity dispersion compensation is reported. Stable, transform limited pulses with duration of 105 fs were routinely generated, tunable between 1240 to 1270 nm.
NASA Astrophysics Data System (ADS)
Han, Guangdong; Lu, Zhanpeng; Ru, Xiangkun; Chen, Junjie; Xiao, Qian; Tian, Yongwu
2015-12-01
The oxidation behavior of 316L stainless steel specimens after emery paper grounding, mechanical polishing, and electropolishing were investigated in simulated pressurized water reactor primary water at 310 °C for 120 and 500 h. Electropolishing afforded improved oxidation resistance especially during the early immersion stages. Duplex oxide films comprising a coarse Fe-rich outer layer and a fine Cr-rich inner layer formed on all specimens after 500 h of immersion. Only a compact layer was observed on the electropolished specimen after 120 h of immersion. The enrichment of chromium in the electropolished layer contributed to the passivity and protectiveness of the specimen.
Physical principles of intracellular organization via active and passive phase transitions.
Berry, Joel; Brangwynne, Clifford P; Haataja, Mikko
2018-04-01
Exciting recent developments suggest that phase transitions represent an important and ubiquitous mechanism underlying intracellular organization. We describe key experimental findings in this area of study, as well as the application of classical theoretical approaches for quantitatively understanding these data. We also discuss the way in which equilibrium thermodynamic driving forces may interface with the fundamentally out-of-equilibrium nature of living cells. In particular, time and/or space-dependent concentration profiles may modulate the phase behavior of biomolecules in living cells. We suggest future directions for both theoretical and experimental work that will shed light on the way in which biological activity modulates the assembly, properties, and function of viscoelastic states of living matter.
Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation.
Niu, Tianqi; Lu, Jing; Munir, Rahim; Li, Jianbo; Barrit, Dounya; Zhang, Xu; Hu, Hanlin; Yang, Zhou; Amassian, Aram; Zhao, Kui; Liu, Shengzhong Frank
2018-04-01
The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high-performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron-based grazing-incidence X-ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb-I antisite defects and vacancies created by under-coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2013-01-01
We report on the passivation properties of molecularly modified, oxide-free Si(111) surfaces. The reaction of 1-alcohol with the H-passivated Si(111) surface can follow two possible paths, nucleophilic substitution (SN) and radical chain reaction (RCR), depending on adsorption conditions. Moderate heating leads to the SN reaction, whereas with UV irradiation RCR dominates, with SN as a secondary path. We show that the site-sensitive SN reaction leads to better electrical passivation, as indicated by smaller surface band bending and a longer lifetime of minority carriers. However, the surface-insensitive RCR reaction leads to more dense monolayers and, therefore, to much better chemical stability, with lasting protection of the Si surface against oxidation. Thus, our study reveals an inherent dissonance between electrical and chemical passivation. Alkoxy monolayers, formed under UV irradiation, benefit, though, from both chemical and electronic passivation because under these conditions both SN and RCR occur. This is reflected in longer minority carrier lifetimes, lower reverse currents in the dark, and improved photovoltaic performance, over what is obtained if only one of the mechanisms operates. These results show how chemical kinetics and reaction paths impact electronic properties at the device level. It further suggests an approach for effective passivation of other semiconductors. PMID:24205409
Passive Baited Sequential Fly Trap
USDA-ARS?s Scientific Manuscript database
Sampling fly populations associated with human populations is needed to understand diel behavior and to monitor population densities before and after control operations. Population control measures are dependent on the results of monitoring efforts as they may provide insight into the fly behavior ...
The cognitive architecture of anxiety-like behavioral inhibition.
Bach, Dominik R
2017-01-01
The combination of reward and potential threat is termed approach/avoidance conflict and elicits specific behaviors, including passive avoidance and behavioral inhibition (BI). Anxiety-relieving drugs reduce these behaviors, and a rich psychological literature has addressed how personality traits dominated by BI predispose for anxiety disorders. Yet, a formal understanding of the cognitive inference and planning processes underlying anxiety-like BI is lacking. Here, we present and empirically test such formalization in the terminology of reinforcement learning. We capitalize on a human computer game in which participants collect sequentially appearing monetary tokens while under threat of virtual "predation." First, we demonstrate that humans modulate BI according to experienced consequences. This suggests an instrumental implementation of BI generation rather than a Pavlovian mechanism that is agnostic about action outcomes. Second, an internal model that would make BI adaptive is expressed in an independent task that involves no threat. The existence of such internal model is a necessary condition to conclude that BI is under model-based control. These findings relate a plethora of human and nonhuman observations on BI to reinforcement learning theory, and crucially constrain the quest for its neural implementation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Egger, Philipp; Caracoglia, Luca
2015-09-01
Impact dampers are often used in the field of civil, mechanical and aerospace engineering for reducing structural vibrations. The behavior of this type of passive control device has been investigated for several decades. In this research a distributed-mass impact damper, similar to the "chain damper" used in wind engineering, has been examined and applied to the vibration reduction on a slender line-like structural element (stay-cable). This study is motivated by a practical problem and describes the derivation of a reduced-order model for explaining the behavior, observed during a field experiment on a prototype system. In its simplest form, the dynamics of the apparatus is modeled as a "resilient damper", composed of mass-spring-dashpot secondary elements, attached to the primary structure. Various sources of excitation are analyzed: free vibration, external harmonic force and random excitation. The proposed model is general and potentially applicable to the analysis of several structural systems. The study also shows that the model can adequately describe and explain the experimentally observed behavior.
Kinematic amplification strategies in plants and engineering
NASA Astrophysics Data System (ADS)
Charpentier, Victor; Hannequart, Philippe; Adriaenssens, Sigrid; Baverel, Olivier; Viglino, Emmanuel; Eisenman, Sasha
2017-06-01
While plants are primarily sessile at the organismal level, they do exhibit a vast array of movements at the organ or sub-organ level. These movements can occur for reasons as diverse as seed dispersal, nutrition, protection or pollination. Their advanced mechanisms generate a myriad of movement typologies, many of which are not fully understood. In recent years, there has been a renewal of interest in understanding the mechanical behavior of plants from an engineering perspective, with an interest in developing novel applications by up-sizing these mechanisms from the micro- to the macro-scale. This literature review identifies the main strategies used by plants to create and amplify movements and anatomize the most recent mechanical understanding of compliant engineering mechanics. The paper ultimately demonstrates that plant movements, rooted in compliance and multi-functionality, can effectively inspire better kinematic/adaptive structures and materials. In plants, the actuators and the deployment structures are fused into a single system. The understanding of those natural movements therefore starts with an exploration of mechanisms at the origins of movements. Plant movements, whether slow or fast, active or passive, reversible or irreversible, are presented and detailed for their mechanical significance. With a focus on displacement amplification, the most recent promising strategies for actuation and adaptive systems are examined with respect to the mechanical principles of shape morphing plant tissues.
Locomotor adaptation is modulated by observing the actions of others
Patel, Mitesh; Roberts, R. Edward; Riyaz, Mohammed U.; Ahmed, Maroof; Buckwell, David; Bunday, Karen; Ahmad, Hena; Kaski, Diego; Arshad, Qadeer
2015-01-01
Observing the motor actions of another person could facilitate compensatory motor behavior in the passive observer. Here we explored whether action observation alone can induce automatic locomotor adaptation in humans. To explore this possibility, we used the “broken escalator” paradigm. Conventionally this involves stepping upon a stationary sled after having previously experienced it actually moving (Moving trials). This history of motion produces a locomotor aftereffect when subsequently stepping onto a stationary sled. We found that viewing an actor perform the Moving trials was sufficient to generate a locomotor aftereffect in the observer, the size of which was significantly correlated with the size of the movement (postural sway) observed. Crucially, the effect is specific to watching the task being performed, as no motor adaptation occurs after simply viewing the sled move in isolation. These findings demonstrate that locomotor adaptation in humans can be driven purely by action observation, with the brain adapting motor plans in response to the size of the observed individual's motion. This mechanism may be mediated by a mirror neuron system that automatically adapts behavior to minimize movement errors and improve motor skills through social cues, although further neurophysiological studies are required to support this theory. These data suggest that merely observing the gait of another person in a challenging environment is sufficient to generate appropriate postural countermeasures, implying the existence of an automatic mechanism for adapting locomotor behavior. PMID:26156386
Raber, Jacob; Torres, Eileen Ruth S; Akinyeke, Tunde; Lee, Joanne; Weber Boutros, Sydney J; Turker, Mitchell S; Kronenberg, Amy
2018-04-20
The space radiation environment includes helium (⁴He) ions that may impact brain function. As little is known about the effects of exposures to ⁴He ions on the brain, we assessed the behavioral and cognitive performance of C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation with ⁴He ions (250 MeV/n; linear energy transfer (LET) = 1.6 keV/μm; 0, 21, 42 or 168 cGy). Sham-irradiated mice and mice irradiated with 21 or 168 cGy showed novel object recognition, but mice irradiated with 42 cGy did not. In the passive avoidance test, mice received a slight foot shock in a dark compartment, and latency to re-enter that compartment was assessed 24 h later. Sham-irradiated mice and mice irradiated with 21 or 42 cGy showed a higher latency on Day 2 than Day 1, but the latency to enter the dark compartment in mice irradiated with 168 cGy was comparable on both days. ⁴He ion irradiation, at 42 and 168 cGy, reduced the levels of the dendritic marker microtubule-associated protein-2 (MAP-2) in the cortex. There was an effect of radiation on apolipoprotein E (apoE) levels in the hippocampus and cortex, with higher apoE levels in mice irradiated at 42 cGy than 168 cGy and a trend towards higher apoE levels in mice irradiated at 21 than 168 cGy. In addition, in the hippocampus, there was a trend towards a negative correlation between MAP-2 and apoE levels. While reduced levels of MAP-2 in the cortex might have contributed to the altered performance in the passive avoidance test, it does not seem sufficient to do so. The higher hippocampal and cortical apoE levels in mice irradiated at 42 than 168 cGy might have served as a compensatory protective response preserving their passive avoidance memory. Thus, there were no alterations in behavioral performance in the open filed or depressive-like behavior in the forced swim test, while cognitive impairments were seen in the object recognition and passive avoidance tests, but not in the contextual or cued fear conditioning tests. Taken together, the results indicate that some aspects of cognitive performance are altered in male mice exposed to ⁴He ions, but that the response is task-dependent. Furthermore, the sensitive doses can vary within each task in a non-linear fashion. This highlights the importance of assessing the cognitive and behavioral effects of charged particle exposure with a variety of assays and at multiple doses, given the possibility that lower doses may be more damaging due to the absence of induced compensatory mechanisms at higher doses.
A deflectable guiding catheter for real-time MRI-guided interventions.
Bell, Jamie A; Saikus, Christina E; Ratnayaka, Kanishka; Wu, Vincent; Sonmez, Merdim; Faranesh, Anthony Z; Colyer, Jessica H; Lederman, Robert J; Kocaturk, Ozgur
2012-04-01
To design a deflectable guiding catheter that omits long metallic components yet preserves mechanical properties to facilitate therapeutic interventional MRI procedures. The catheter shaft incorporated Kevlar braiding. A 180° deflection was attained with a 5-cm nitinol slotted tube, a nitinol spring, and a Kevlar pull string. We tested three designs: passive, passive incorporating an inductively coupled coil, and active receiver. We characterized mechanical properties, MRI properties, RF induced heating, and in vivo performance in swine. Torque and tip deflection force were satisfactory. Representative procedures included hepatic and azygos vein access, laser cardiac septostomy, and atrial septal defect crossing. Visualization was best in the active configuration, delineating profile and tip orientation. The passive configuration could be used in tandem with an active guidewire to overcome its limited conspicuity. There was no RF-induced heating in all configurations under expected use conditions in vitro and in vivo. Kevlar and short nitinol component substitutions preserved mechanical properties. The active design offered the best visibility and usability but reintroduced metal conductors. We describe versatile deflectable guiding catheters with a 0.057" lumen for interventional MRI catheterization. Implementations are feasible using active, inductive, and passive visualization strategies to suit application requirements. Copyright © 2011 Wiley Periodicals, Inc.
The ICAP Framework: Linking Cognitive Engagement to Active Learning Outcomes
ERIC Educational Resources Information Center
Chi, Michelene T. H.; Wylie, Ruth
2014-01-01
This article describes the ICAP framework that defines cognitive engagement activities on the basis of students' overt behaviors and proposes that engagement behaviors can be categorized and differentiated into one of four modes: "Interactive," "Constructive," "Active," and "Passive." The ICAP hypothesis…
Pederson, L L; Bull, S B; Ashley, M J; Lefcoe, N M
1989-01-01
Results from the further analysis of a population survey on legislative measures to restrict smoking revealed that identification of subgroups of smokers is more reliable than identification of subgroups of nonsmokers when a variety of attitudes were the measures of interest. A similar pattern emerged when analyses were carried out on knowledge of active and passive smoking health effects and on predicted personal and general compliance. Because distinct sets of variables were found to be related to distinct outcomes, program planning for changes in knowledge and behavior might, of necessity, have to be different. Media messages might be useful for changes in knowledge, while actual experience might be more important for attitude and behavior change.
Schroer, Alison K; Shotwell, Matthew S; Sidorov, Veniamin Y; Wikswo, John P; Merryman, W David
2017-01-15
This companion study presents the biomechanical analysis of the "I-Wire" platform using a modified Hill model of muscle mechanics that allows for further characterization of construct function and response to perturbation. The I-Wire engineered cardiac tissue construct (ECTC) is a novel experimental platform to investigate cardiac cell mechanics during auxotonic contraction. Whereas passive biomaterials often exhibit nonlinear and dissipative behavior, active tissue equivalents, such as ECTCs, also expend metabolic energy to perform mechanical work that presents additional challenges in quantifying their properties. The I-Wire model uses the passive mechanical response to increasing applied tension to measure the inherent stress and resistance to stretch of the construct before, during, and after treatments. Both blebbistatin and isoproterenol reduced prestress and construct stiffness; however, blebbistatin treatment abolished subsequent force-generating potential while isoproterenol enhanced this property. We demonstrate that the described model can replicate the response of these constructs to intrinsic changes in force-generating potential in response to both increasing frequency of stimulation and decreasing starting length. This analysis provides a useful mathematical model of the I-Wire platform, increases the number of parameters that can be derived from the device, and serves as a demonstration of quantitative characterization of nonlinear, active biomaterials. We anticipate that this quantitative analysis of I-Wire constructs will prove useful for qualifying patient-specific cardiomyocytes and fibroblasts prior to their utilization for cardiac regenerative medicine. Passive biomaterials may have non-linear elasticity and losses, but engineered muscle tissue also exhibits time- and force-dependent contractions. Historically, mathematical muscle models include series-elastic, parallel-elastic, contractile, and viscous elements. While hearts-on-a-chip can demonstrate in vitro the contractile properties of engineered cardiac constructs and their response to drugs, most of these use cellular monolayers that cannot be readily probed with controlled forces. The I-Wire platform described in the preceding paper by Sidorov et al. addresses these limitations with three-dimensional tissue constructs to which controlled forces can be applied. In this companion paper, we show how to characterize I-Wire constructs using a non-linear, active Hill model, which should be useful for qualifying cells prior to their use in cardiac regenerative medicine. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Masliah, Eliezer; Rockenstein, Edward; Mante, Michael; Crews, Leslie; Spencer, Brian; Adame, Anthony; Patrick, Christina; Trejo, Margarita; Ubhi, Kiren; Rohn, Troy T; Mueller-Steiner, Sarah; Seubert, Peter; Barbour, Robin; McConlogue, Lisa; Buttini, Manuel; Games, Dora; Schenk, Dale
2011-04-29
Dementia with Lewy bodies (DLB) and Parkinson's Disease (PD) are common causes of motor and cognitive deficits and are associated with the abnormal accumulation of alpha-synuclein (α-syn). This study investigated whether passive immunization with a novel monoclonal α-syn antibody (9E4) against the C-terminus (CT) of α-syn was able to cross into the CNS and ameliorate the deficits associated with α-syn accumulation. In this study we demonstrate that 9E4 was effective at reducing behavioral deficits in the water maze, moreover, immunization with 9E4 reduced the accumulation of calpain-cleaved α-syn in axons and synapses and the associated neurodegenerative deficits. In vivo studies demonstrated that 9E4 traffics into the CNS, binds to cells that display α-syn accumulation and promotes α-syn clearance via the lysosomal pathway. These results suggest that passive immunization with monoclonal antibodies against the CT of α-syn may be of therapeutic relevance in patients with PD and DLB.
Coping Styles, Well-Being and Self-Care Behaviors Among African Americans With Type 2 Diabetes
Samuel-Hodge, Carmen D.; Watkins, Daphne C.; Rowell, Kyrel L.; Hooten, Elizabeth G.
2009-01-01
Purpose The purpose of this study was to describe how coping styles among African Americans with type 2 diabetes relate to diabetes appraisals, self-care behaviors, and health-related quality of life or well-being. Methods This cross-sectional analysis of baseline measures from 185 African Americans with type 2 diabetes enrolled in a church-based randomized controlled trial uses the theoretical framework of the transactional model of stress and coping to describe bivariate and multivariate associations among coping styles, psychosocial factors, self-care behaviors, and well-being, as measured by validated questionnaires. Results Among participants who were on average 59 years of age with 9 years of diagnosed diabetes, passive and emotive styles of coping were used most frequently, with older and less educated participants using more often passive forms of coping. Emotive styles of coping were significantly associated with greater perceived stress, problem areas in diabetes, and negative appraisals of diabetes control. Both passive and active styles of coping were associated with better diabetes self-efficacy and competence in bivariate analysis. In multivariate analysis, significant proportions of the variance in dietary behaviors and mental well-being outcomes (general and diabetes specific) were explained, with coping styles among the independent predictors. A positive role for church involvement in the psychological adaptation to living with diabetes was also observed. Conclusions In this sample of older African Americans with diabetes, coping styles were important factors in diabetes appraisals, self-care behaviors, and psychological outcomes. These findings suggest potential benefits in emphasizing cognitive and behavioral strategies to promote healthy coping outcomes in persons living with diabetes. PMID:18535323
Brun, C; Metral, M; Chancel, M; Kavounoudias, A; Luyat, M; Guerraz, M
2015-01-29
Recent studies of both healthy and patient populations have cast doubt on the mirror paradigm's beneficial effect on motor behavior. Indeed, the voluntary arm displacement that accompanies reflection in the mirror may be the determining factor in terms of the motor behavior of the contralateral arm. The objective of the present study was to assess the respective effects of mirror reflection and arm displacement (whether real or simulated) on involuntary motor behavior of the contralateral arm following sustained, isometric contraction (Kohnstamm phenomenon). Our results revealed that (i) passive displacement of one arm (displacement of the left arm via a motorized manipulandum moving at 4°/s) influenced the velocity of the Kohnstamm phenomenon (forearm flexion occurring shortly after the cessation of muscle contraction) in the contralateral arm and (ii) mirror vision had no effect. Indeed, the velocity of the Kohnstamm phenomenon tended to be adjusted to match the velocity of the passive displacement of the other arm. In a second experiment, arm displacement was simulated by vibrating the triceps at 25, 50 or 75 Hz. Results showed that the velocity of the Kohnstamm phenomenon in one arm increased with the vibration frequency applied to the other arm. Our results revealed the occurrence of bimanual coupling because involuntary displacement of one arm was regulated by muscle-related information generated by the actual or simulated displacement of the other arm. In line with the literature data on voluntary motor behavior, our study failed to evidence an additional impact of mirror vision on involuntary motor behavior. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Mechanisms underlying ICU muscle wasting and effects of passive mechanical loading
2012-01-01
Introduction Critically ill ICU patients commonly develop severe muscle wasting and impaired muscle function, leading to delayed recovery, with subsequent increased morbidity and financial costs, and decreased quality of life for survivors. Critical illness myopathy (CIM) is a frequently observed neuromuscular disorder in ICU patients. Sepsis, systemic corticosteroid hormone treatment and post-synaptic neuromuscular blockade have been forwarded as the dominating triggering factors. Recent experimental results from our group using a unique experimental rat ICU model show that the mechanical silencing associated with CIM is the primary triggering factor. This study aims to unravel the mechanisms underlying CIM, and to evaluate the effects of a specific intervention aiming at reducing mechanical silencing in sedated and mechanically ventilated ICU patients. Methods Muscle gene/protein expression, post-translational modifications (PTMs), muscle membrane excitability, muscle mass measurements, and contractile properties at the single muscle fiber level were explored in seven deeply sedated and mechanically ventilated ICU patients (not exposed to systemic corticosteroid hormone treatment, post-synaptic neuromuscular blockade or sepsis) subjected to unilateral passive mechanical loading for 10 hours per day (2.5 hours, four times) for 9 ± 1 days. Results These patients developed a phenotype considered pathognomonic of CIM; that is, severe muscle wasting and a preferential myosin loss (P < 0.001). In addition, myosin PTMs specific to the ICU condition were observed in parallel with an increased sarcolemmal expression and cytoplasmic translocation of neuronal nitric oxide synthase. Passive mechanical loading for 9 ± 1 days resulted in a 35% higher specific force (P < 0.001) compared with the unloaded leg, although it was not sufficient to prevent the loss of muscle mass. Conclusion Mechanical silencing is suggested to be a primary mechanism underlying CIM; that is, triggering the myosin loss, muscle wasting and myosin PTMs. The higher neuronal nitric oxide synthase expression found in the ICU patients and its cytoplasmic translocation are forwarded as a probable mechanism underlying these modifications. The positive effect of passive loading on muscle fiber function strongly supports the importance of early physical therapy and mobilization in deeply sedated and mechanically ventilated ICU patients. PMID:23098317
Chapy, Hélène; Smirnova, Maria; André, Pascal; Schlatter, Joël; Chiadmi, Fouad; Couraud, Pierre-Olivier; Scherrmann, Jean-Michel; Declèves, Xavier
2015-01-01
Background: The rate of entry of cocaine into the brain is a critical factor that influences neuronal plasticity and the development of cocaine addiction. Until now, passive diffusion has been considered the unique mechanism known by which cocaine crosses the blood-brain barrier. Methods: We reassessed mechanisms of transport of cocaine at the blood-brain barrier using a human cerebral capillary endothelial cell line (hCMEC/D3) and in situ mouse carotid perfusion. Results: Both in vivo and in vitro cocaine transport studies demonstrated the coexistence of a carrier-mediated process with passive diffusion. At pharmacological exposure level, passive diffusion of cocaine accounted for only 22.5% of the total cocaine influx in mice and 5.9% in hCMEC/D3 cells, whereas the carrier-mediated influx rate was 3.4 times greater than its passive diffusion rate in vivo. The functional identification of this carrier-mediated transport demonstrated the involvement of a proton antiporter that shared the properties of the previously characterized clonidine and nicotine transporter. The functionnal characterization suggests that the solute carrier (SLC) transporters Oct (Slc22a1-3), Mate (Slc47a1) and Octn (Slc22a4-5) are not involved in the cocaine transport in vivo and in vitro. Diphenhydramine, heroin, tramadol, cocaethylene, and norcocaine all strongly inhibited cocaine transport, unlike benzoylecgonine. Trans-stimulation studies indicated that diphenhydramine, nicotine, 3,4-methylenedioxyamphetamine (ecstasy) and the cathinone compound 3,4-methylenedioxypyrovalerone (MDPV) were also substrates of the cocaine transporter. Conclusions: Cocaine transport at the BBB involves a proton-antiporter flux that is quantitatively much more important than its passive diffusion. The molecular identification and characterization of this transporter will provide new tools to understand its role in addictive mechanisms. PMID:25539501
NASA Astrophysics Data System (ADS)
Raghunathan, Ravi
In recent years, passively mode-locked quantum dot lasers have shown great promise as compact, efficient and reliable pulsed sources of light for a range of precision and high performance applications, such as high bit-rate optical communications, diverse waveform generation, metrology, and clock distribution in high-performance computing (HPC) processors. For such applications, stable optical pulses with short picosecond pulse durations and multi-gigahertz repetition rates are required. In addition, a low pulse-to-pulse timing jitter is also necessary to prevent errors arising from the ambiguity between neighboring pulses. In order to optimize pulse quality in terms of optical characteristics such as pulse shape and pulse train behavior, as well as RF characteristics such as phase noise and timing jitter, understanding the nonlinear output dynamics of such devices is of critical importance, not only to get a sense of the regimes of operation where device output might be stable or unstable, but also to gain insight into the parameters that influence the output characteristics the most, and how they can be accessed and exploited to optimize design and performance for next generation applications. In this dissertation, theoretical and experimental studies have been combined to investigate the dynamical trends of two-section passively mode-locked quantum dot lasers. On the theoretical side, a novel numerical modeling scheme is presented as a powerful and versatile framework to study the nonlinear dynamics specific to a device, with device-specific parameters extracted over a range of operating conditions. The practical utility of this scheme is then demonstrated, first, in an analytical capability to interpret and explain dynamical trends observed in experiment, and subsequently, as a predictive tool to guide experiment to operate in a desired dynamical regime. Modeling results are compared to experimental findings where possible. Finally, optical feedback from an external reflector is experimentally studied as an additional control mechanism over the output dynamics of the device, and shown to enable invaluable insight into the behavior of the RF and optical spectra of the output. Together, the theoretical and experimental findings of this dissertation are shown to offer a systematic approach to understand, control and exploit the dynamical trends of passively mode-locked two-section quantum dot lasers.
Bornovalova, M A; Cummings, J R; Hunt, E; Blazei, R; Malone, S; Iacono, W G
2014-03-01
Previous work reports an association between familial risk factors stemming from parental characteristics and offspring disruptive behavior disorders (DBDs). This association may reflect (a) the direct effects of familial environment and (b) a passive gene-environment correlation (r(GE)), wherein the parents provide both the genes and the environment. The current study examined the contributions of direct environmental influences and passive r(GE) by comparing the effects of familial risk factors on child DBDs in genetically related (biological) and non-related (adoptive) families. Participants were 402 adoptive and 204 biological families. Familial environment was defined as maternal and paternal maladaptive parenting and antisociality, marital conflict and divorce; offspring DBDs included attention deficit hyperactivity disorder (ADHD), conduct disorder (CD) and oppositional defiant disorder (ODD). Mixed-level regressions estimated the main effects of familial environment, adoption status and the familial environment by adoption status interaction term, which tested for the presence of passive r(GE). There was a main effect of maternal and paternal maladaptive parenting and marital discord on child DBDs, indicating a direct environmental effect. There was no direct environmental effect of maternal or paternal antisociality, but maternal and paternal antisociality had stronger associations with child DBDs in biological families than adoptive families, indicating the presence of a passive r(GE). Many familial risk factors affected children equally across genetically related and non-related families, providing evidence for direct environmental effects. The relationship of parental antisociality and offspring DBDs was best explained by a passive r(GE), where a general vulnerability toward externalizing psychopathology is passed down by the parents to the children.
Van Hoogmoed, A H; Nadel, L; Spanò, G; Edgin, J O
2016-02-01
Event related potentials (ERPs) can help to determine the cognitive and neural processes underlying memory functions and are often used to study populations with severe memory impairment. In healthy adults, memory is typically assessed with active tasks, while in patient studies passive memory paradigms are generally used. In this study we examined whether active and passive continuous object recognition tasks measure the same underlying memory process in typically developing (TD) adults and in individuals with Down syndrome (DS), a population with known hippocampal impairment. We further explored how ERPs in these tasks relate to behavioral measures of memory. Data-driven analysis techniques revealed large differences in old-new effects in the active versus passive task in TD adults, but no difference between these tasks in DS. The group with DS required additional processing in the active task in comparison to the TD group in two ways. First, the old-new effect started 150 ms later. Second, more repetitions were required to show the old-new effect. In the group with DS, performance on a behavioral measure of object-location memory was related to ERP measures across both tasks. In total, our results suggest that active and passive ERP memory measures do not differ in DS and likely reflect the use of implicit memory, but not explicit processing, on both tasks. Our findings highlight the need for a greater understanding of the comparison between active and passive ERP paradigms before they are inferred to measure similar functions across populations (e.g., infants or intellectual disability). Copyright © 2016 Elsevier Ltd. All rights reserved.
Bornovalova, Marina A.; Cummings, Jenna R.; Hunt, Elizabeth; Blazei, Ryan; Malone, Steve; Iacono, William G.
2013-01-01
Background: Previous work reports an association between familial risk factors stemming from parental characteristics and offspring disruptive behavior disorders (DBDs). This association may reflect a) the direct effects of familial environment, and b) a passive gene-environment correlation, wherein the parents provide both the genes and the environment. The current study examined the contributions of direct environmental influences and passive gene-environment correlations by comparing the effects of familial risk factors on child DBDs in genetically related (biological) and non-related (adoptive) families. Method: Participants were 402 adoptive and 204 biological families. Familial environment was defined as maternal and paternal maladaptive parenting and antisociality, marital conflict, and divorce; offspring DBDs included attention deficit/hyperactivity disorder, conduct disorder, and oppositional defiant disorder. Mixed-level regressions estimated the main effects of familial environment, adoption status, and the familial environment by adoption status interaction term, which tested for a presence of passive gene-environment correlations. Results: There was a main effect of maternal and paternal maladaptive parenting and marital discord on child DBDs, indicating a direct environmental effect. There was no direct environmental effect of maternal or paternal antisociality, but maternal and paternal antisociality had stronger associations with child DBDs in biological families than adoptive families, indicating the presence of a passive gene-environment correlation. Conclusions: Many familial risk factors affected children equally across genetically-related and non-related families, providing evidence for direct environmental effects. The relationship of parental antisociality and offspring DBDs was best explained by a passive gene-environment correlation, where a general vulnerability toward externalizing psychopathology is passed down by the parents to the children. PMID:23714724
Gärtner, Manja
2017-01-01
We investigate whether individuals are more prone to act selfishly if they can passively allow for an outcome to be implemented (omission) rather than having to make an active choice (commission). In most settings, active and passive choice alternatives differ in terms of factors such as the presence of a suggested option, costs of taking an action, and awareness. We isolate the omission effect from confounding factors in three experiments, and find no evidence that the distinction between active and passive choices has an independent effect on the propensity to implement selfish outcomes. This suggests that increased selfishness through omission, as observed in various economic choice situations, is driven by other factors than a preference for selfish omissions. PMID:28248979
CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells
NASA Astrophysics Data System (ADS)
Swanson, Drew E.; Reich, Carey; Abbas, Ali; Shimpi, Tushar; Liu, Hanxiao; Ponce, Fernando A.; Walls, John M.; Zhang, Yong-Hang; Metzger, Wyatt K.; Sampath, W. S.; Holman, Zachary C.
2018-05-01
As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extending Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.
Masson, Ingrid; Beaussier, Hélène; Boutouyrie, Pierre; Laurent, Stéphane; Humphrey, Jay D; Zidi, Mustapha
2011-12-01
The goal of this study was to model the in vivo non-linear mechanical behavior of human common carotid arteries (CCAs) and then to compare wall stresses and associated contributions of micro-constituents in normotensive (NT) and treated hypertensive (HT) subjects. We used an established theoretical model of 3D arterial mechanics that assumes a hyperelastic, anisotropic, active-passive, and residually stressed wall. In vivo data were obtained non-invasively from CCAs in 16 NT (21-64 years old) and 25 treated HT (44-69 years old) subjects. The associated quasi-static boundary value problem was solved semi-analytically over a cardiac cycle while accounting for surrounding perivascular tissue. Best-fit values of model parameters, including those describing contributions by intramural elastin, fibrillar collagen, and vascular smooth muscle, were estimated by a non-linear least-squares method. The model (1) captured temporal changes in intraluminal pressure, (2) estimated wall stress fields that appeared to reflect the presence or absence of age and disease, and (3) suggested changes in mechanical characteristics of wall micro-constituents despite medical treatment of hypertension. For example, age was positively correlated with residual stresses and altered fibrillar collagen in NT subjects, which indirectly validated the modeling, and HT subjects had higher levels of stresses, increased smooth muscle tone, and a stiffer elastin-dominated matrix despite treatment. These results are consistent with prior reports on effects of age and hypertension, but provide increased insight into evolving contributions of cell and matrix mechanics to arterial behavior in vivo.
Simons, Dorien; De Bourdeaudhuij, Ilse; Clarys, Peter; De Cocker, Katrien; de Geus, Bas; Vandelanotte, Corneel; Van Cauwenberg, Jelle; Deforche, Benedicte
2017-01-01
This study aimed to examine potential differences in walking, cycling, public transport and passive transport (car/moped/motorcycle) to work and to other destinations between college and non-college educated working young adults. Secondly, we aimed to investigate which psychosocial and environmental factors are associated with the four transport modes and whether these associations differ between college and non-college educated working young adults. In this cross-sectional study, 224 working young adults completed an online questionnaire assessing socio-demographic variables (8 items), psychosocial variables (6 items), environmental variables (10 items) and transport mode (4 types) and duration to work/other destinations. Zero-inflated negative binomial regression models were performed in R. A trend (p<0.10) indicated that more college educated compared to non-college educated young adults participated in cycling and public transport. However, another trend indicated that cycle time and public transport trips were longer and passive transport trips were shorter in non-college compared to college educated working young adults. In all working young adults, high self-efficacy towards active transport, and high perceived benefits and low perceived barriers towards active and public transport were related to more active and public transport. High social support/norm/modeling towards active, public and passive transport was related to more active, public and passive transport. High neighborhood walkability was related to more walking and less passive transport. Only in non-college educated working young adults, feeling safe from traffic and crime in their neighborhood was related to more active and public transport and less passive transport. Educational levels should be taken into account when promoting healthy transport behaviors in working young adults. Among non-college educated working young adults, focus should be on increasing active and public transport participation and on increasing neighborhood safety to increase active and public transport use. Among college educated working young adults, more minutes of active transport should be encouraged.
De Bourdeaudhuij, Ilse; Clarys, Peter; De Cocker, Katrien; de Geus, Bas; Vandelanotte, Corneel; Van Cauwenberg, Jelle; Deforche, Benedicte
2017-01-01
Background This study aimed to examine potential differences in walking, cycling, public transport and passive transport (car/moped/motorcycle) to work and to other destinations between college and non-college educated working young adults. Secondly, we aimed to investigate which psychosocial and environmental factors are associated with the four transport modes and whether these associations differ between college and non-college educated working young adults. Methods In this cross-sectional study, 224 working young adults completed an online questionnaire assessing socio-demographic variables (8 items), psychosocial variables (6 items), environmental variables (10 items) and transport mode (4 types) and duration to work/other destinations. Zero-inflated negative binomial regression models were performed in R. Results A trend (p<0.10) indicated that more college educated compared to non-college educated young adults participated in cycling and public transport. However, another trend indicated that cycle time and public transport trips were longer and passive transport trips were shorter in non-college compared to college educated working young adults. In all working young adults, high self-efficacy towards active transport, and high perceived benefits and low perceived barriers towards active and public transport were related to more active and public transport. High social support/norm/modeling towards active, public and passive transport was related to more active, public and passive transport. High neighborhood walkability was related to more walking and less passive transport. Only in non-college educated working young adults, feeling safe from traffic and crime in their neighborhood was related to more active and public transport and less passive transport. Conclusions Educational levels should be taken into account when promoting healthy transport behaviors in working young adults. Among non-college educated working young adults, focus should be on increasing active and public transport participation and on increasing neighborhood safety to increase active and public transport use. Among college educated working young adults, more minutes of active transport should be encouraged. PMID:28319165
Fok, Jonathan; Toogood, Roger W; Badawi, Hisham; Carey, Jason P; Major, Paul W
2011-11-01
To better understand the mechanics of bracket/archwire interaction through analysis of force and couple distribution along the maxillary arch using elastic ligation and to compare these results with passive ligation. An orthodontic simulator was used to study a high canine malocclusion. Force and couple distributions produced by elastic ligation and round wire were measured. Forces and couples were referenced to the center of resistance of each tooth. Tests were repeated for 12 bracket sets with 12 wires per set. Data were compared with those derived from similar tests for passive ligation. Propagation of the force/couple systems around the arch using elastic ligation was extensive. Elastic ligation produced significantly more resistance to sliding, contributing to higher forces and couples at the center of resistance than were observed for passive ligation. The results of this study suggest some potential mechanical advantages of passive over elastic ligation. In particular, limited propagation around the arch in passive ligation reduces the occurrence of unwanted force/couple systems compared with elastic ligation. These advantages may not transfer to a clinical setting because of the conditions of the tests; additional testing would be required to determine whether these advantages can be generalized.
RATT: RFID Assisted Tracking Tile. Preliminary results.
Quinones, Dario R; Cuevas, Aaron; Cambra, Javier; Canals, Santiago; Moratal, David
2017-07-01
Behavior is one of the most important aspects of animal life. This behavior depends on the link between animals, their nervous systems and their environment. In order to study the behavior of laboratory animals several tools are needed, but a tracking tool is essential to perform a thorough behavioral study. Currently, several visual tracking tools are available. However, they have some drawbacks. For instance, when an animal is inside a cave, or is close to other animals, the tracking cameras cannot always detect the location or movement of this animal. This paper presents RFID Assisted Tracking Tile (RATT), a tracking system based on passive Radio Frequency Identification (RFID) technology in high frequency band according to ISO/IEC 15693. The RATT system is composed of electronic tiles that have nine active RFID antennas attached; in addition, it contains several overlapping passive coils to improve the magnetic field characteristics. Using several tiles, a large surface can be built on which the animals can move, allowing identification and tracking of their movements. This system, that could also be combined with a visual tracking system, paves the way for complete behavioral studies.
Huynh, Ho Phi; Sweeny, Kate; Miller, Tricia
2018-04-01
Clinicians face the complex challenge of motivating their patients to achieve optimal health while also ensuring their satisfaction. Inspired by transformational leadership theory, we proposed that clinicians' motivational behaviors can be organized into three patient care styles (transformational, transactional, and passive-avoidant) and that these styles differentially predict patient health outcomes. In two studies using patient-reported data and observer ratings, we found that transformational patient care style positively predicted patients' satisfaction and health expectations above and beyond transactional and passive-avoidant patient care style. These findings provide initial support for the patient care style approach and suggest novel directions for the study of clinicians' motivational behaviors.
Pearson-Leary, J; Eacret, D; Chen, R; Takano, H; Nicholas, B; Bhatnagar, S
2017-06-27
During exposure to chronic stress, some individuals engage in active coping behaviors that promote resiliency to stress. Other individuals engage in passive coping that is associated with vulnerability to stress and with anxiety and depression. In an effort to identify novel molecular mechanisms that underlie vulnerability or resilience to stress, we used nonbiased analyses of microRNAs in the ventral hippocampus (vHPC) to identify those miRNAs differentially expressed in active (long-latency (LL)/resilient) or passive (short-latency (SL)/vulnerable) rats following chronic social defeat. In the vHPC of active coping rats, miR-455-3p level was increased, while miR-30e-3p level was increased in the vHPC of passive coping rats. Pathway analyses identified inflammatory and vascular remodeling pathways as enriched by genes targeted by these microRNAs. Utilizing several independent markers for blood vessels, inflammatory processes and neural activity in the vHPC, we found that SL/vulnerable rats exhibit increased neural activity, vascular remodeling and inflammatory processes that include both increased blood-brain barrier permeability and increased number of microglia in the vHPC relative to control and resilient rats. To test the relevance of these changes for the development of the vulnerable phenotype, we used pharmacological approaches to determine the contribution of inflammatory processes in mediating vulnerability and resiliency. Administration of the pro-inflammatory cytokine vascular endothelial growth factor-164 increased vulnerability to stress, while the non-steroidal anti-inflammatory drug meloxicam attenuated vulnerability. Collectively, these results show that vulnerability to stress is determined by a re-designed neurovascular unit characterized by increased neural activity, vascular remodeling and pro-inflammatory mechanisms in the vHPC. These results suggest that dampening inflammatory processes by administering anti-inflammatory agents reduces vulnerability to stress. These results have translational relevance as they suggest that administration of anti-inflammatory agents may reduce the impact of stress or trauma in vulnerable individuals.
Pearson-Leary, J; Eacret, D; Chen, R; Takano, H; Nicholas, B; Bhatnagar, S
2017-01-01
During exposure to chronic stress, some individuals engage in active coping behaviors that promote resiliency to stress. Other individuals engage in passive coping that is associated with vulnerability to stress and with anxiety and depression. In an effort to identify novel molecular mechanisms that underlie vulnerability or resilience to stress, we used nonbiased analyses of microRNAs in the ventral hippocampus (vHPC) to identify those miRNAs differentially expressed in active (long-latency (LL)/resilient) or passive (short-latency (SL)/vulnerable) rats following chronic social defeat. In the vHPC of active coping rats, miR-455-3p level was increased, while miR-30e-3p level was increased in the vHPC of passive coping rats. Pathway analyses identified inflammatory and vascular remodeling pathways as enriched by genes targeted by these microRNAs. Utilizing several independent markers for blood vessels, inflammatory processes and neural activity in the vHPC, we found that SL/vulnerable rats exhibit increased neural activity, vascular remodeling and inflammatory processes that include both increased blood–brain barrier permeability and increased number of microglia in the vHPC relative to control and resilient rats. To test the relevance of these changes for the development of the vulnerable phenotype, we used pharmacological approaches to determine the contribution of inflammatory processes in mediating vulnerability and resiliency. Administration of the pro-inflammatory cytokine vascular endothelial growth factor-164 increased vulnerability to stress, while the non-steroidal anti-inflammatory drug meloxicam attenuated vulnerability. Collectively, these results show that vulnerability to stress is determined by a re-designed neurovascular unit characterized by increased neural activity, vascular remodeling and pro-inflammatory mechanisms in the vHPC. These results suggest that dampening inflammatory processes by administering anti-inflammatory agents reduces vulnerability to stress. These results have translational relevance as they suggest that administration of anti-inflammatory agents may reduce the impact of stress or trauma in vulnerable individuals. PMID:28654094
García-Grajales, Julián A.; Rucabado, Gabriel; García-Dopico, Antonio; Peña, José-María; Jérusalem, Antoine
2015-01-01
With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite—explicit and implicit—were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented dendritic tree, and a damaged axon. The capabilities of the program to deal with large scale scenarios, segmented neuronal structures, and functional deficits under mechanical loading are specifically highlighted. PMID:25680098
Compact and efficient 2μm Tm:YAP lasers with mechanical or passive Q-switching
NASA Astrophysics Data System (ADS)
Cole, Brian; Goldberg, Lew
2017-02-01
We describe compact and efficient Q-switched diode-pumped, Tm:YAP lasers operating at 1.94μm. Laser CW and Q-switched performance is compared, using both compact mechanical as well as passive Q-switching. For passive Q-switching using a Cr:ZnS saturable absorber (unsaturated transmission of 95%), the laser produced 0.5mJ pulses with an average power of 4.4W and 6.5kW peak power, and had an optical efficiency of 30%. A resonant mirror mechanical Q-switch resulted in a 4 kHz PRF pulse train, with an optical slope efficiency of 52% and an optical-to-optical conversion efficiency of 41%. The laser generated 1.5 mJ, 45 ns FWHM, 33kW peak power pulses, and 6.2W of average output. A second mechanically Q-switched laser operating at 10 kHz PRF produced 1mJ, 35kW peak power pulses, generating 11W average power with an optical efficiency of 46%, and a beam quality of 1.4x diffraction limit.
Size, time, and asynchrony matter: the species-area relationship for parasites of freshwater fishes.
Zelmer, Derek A
2014-10-01
The tendency to attribute species-area relationships to "island biogeography" effectively bypasses the examination of specific mechanisms that act to structure parasite communities. Positive covariation between fish size and infrapopulation richness should not be examined within the typical extinction-based paradigm, but rather should be addressed from the standpoint of differences in colonization potential among individual hosts. Although most mechanisms producing the aforementioned pattern constitute some variation of passive sampling, the deterministic aspects of the accumulation of parasite individuals by fish hosts makes untenable the suggestion that infracommunities of freshwater fishes are stochastic assemblages. At the component community level, application of extinction-dependent mechanisms might be appropriate, given sufficient time for colonization, but these structuring forces likely act indirectly through their effects on the host community to increase the probability of parasite persistence. At all levels, the passive sampling hypothesis is a relevant null model. The tendency for mechanisms that produce species-area relationships to produce nested subset patterns means that for most systems, the passive sampling hypothesis can be addressed through the application of appropriate null models of nested subset structure.
Rodent ultrasonic vocalizations are bound to active sniffing behavior
Sirotin, Yevgeniy B.; Costa, Martín Elias; Laplagne, Diego A.
2014-01-01
During rodent active behavior, multiple orofacial sensorimotor behaviors, including sniffing and whisking, display rhythmicity in the theta range (~5–10 Hz). During specific behaviors, these rhythmic patterns interlock, such that execution of individual motor programs becomes dependent on the state of the others. Here we performed simultaneous recordings of the respiratory cycle and ultrasonic vocalization emission by adult rats and mice in social settings. We used automated analysis to examine the relationship between breathing patterns and vocalization over long time periods. Rat ultrasonic vocalizations (USVs, “50 kHz”) were emitted within stretches of active sniffing (5–10 Hz) and were largely absent during periods of passive breathing (1–4 Hz). Because ultrasound was tightly linked to the exhalation phase, the sniffing cycle segmented vocal production into discrete calls and imposed its theta rhythmicity on their timing. In turn, calls briefly prolonged exhalations, causing an immediate drop in sniffing rate. Similar results were obtained in mice. Our results show that ultrasonic vocalizations are an integral part of the rhythmic orofacial behavioral ensemble. This complex behavioral program is thus involved not only in active sensing but also in the temporal structuring of social communication signals. Many other social signals of mammals, including monkey calls and human speech, show structure in the theta range. Our work points to a mechanism for such structuring in rodent ultrasonic vocalizations. PMID:25477796
Reptile Embryos Lack the Opportunity to Thermoregulate by Moving within the Egg.
Telemeco, Rory S; Gangloff, Eric J; Cordero, Gerardo A; Mitchell, Timothy S; Bodensteiner, Brooke L; Holden, Kaitlyn G; Mitchell, Sarah M; Polich, Rebecca L; Janzen, Fredric J
2016-07-01
Historically, egg-bound reptile embryos were thought to passively thermoconform to the nest environment. However, recent observations of thermal taxis by embryos of multiple reptile species have led to the widely discussed hypothesis that embryos behaviorally thermoregulate. Because temperature affects development, such thermoregulation could allow embryos to control their fate far more than historically assumed. We assessed the opportunity for embryos to behaviorally thermoregulate in nature by examining thermal gradients within natural nests and eggs of the common snapping turtle (Chelydra serpentina; which displays embryonic thermal taxis) and by simulating thermal gradients within nests across a range of nest depths, egg sizes, and soil types. We observed little spatial thermal variation within nests, and thermal gradients were poorly transferred to eggs. Furthermore, thermal gradients sufficiently large and constant for behavioral thermoregulation were not predicted to occur in our simulations. Gradients of biologically relevant magnitude have limited global occurrence and reverse direction twice daily when they do exist, which is substantially faster than embryos can shift position within the egg. Our results imply that reptile embryos will rarely, if ever, have the opportunity to behaviorally thermoregulate by moving within the egg. We suggest that embryonic thermal taxis instead represents a play behavior, which may be adaptive or selectively neutral, and results from the mechanisms for behavioral thermoregulation in free-living stages coming online prior to hatching.
2016-11-01
A.; Weinstein, M. P.; Lohmann, R. Trophodynamic behavior of hydrophobic organic contaminants in the aquatic food web of a tidal river. Environ. Sci...FINAL REPORT Development of a Passive Multisampling Method to Measure Dioxins/Furans and Other Contaminant Bioavailability in Aquatic...trade name, trademark, manufacturer , or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.
Oliveira, N T C; Guastaldi, A C
2009-01-01
Electrochemical behavior of pure Ti and Ti-Mo alloys (6-20wt.% Mo) was investigated as a function of immersion time in electrolyte simulating physiological media. Open-circuit potential values indicated that all Ti-Mo alloys studied and pure Ti undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the chloride-containing solution. It also indicated that the addition of Mo to pure Ti up to 15wt.% seems to improve the protection characteristics of its spontaneous oxides. Electrochemical impedance spectroscopy (EIS) studies showed high impedance values for all samples, increasing with immersion time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The fit obtained suggests a single passive film present on the metals' surface, improving their resistance with immersion time, presenting the highest values to Ti-15Mo alloy. Potentiodynamic polarization showed a typical valve-metal behavior, with anodic formation of barrier-type oxide films, without pitting corrosion, even in chloride-containing solution. In all cases, the passive current values were quite small, and decrease after 360h of immersion. All these electrochemical results suggest that the Ti-15Mo alloy is a promising material for orthopedic devices, since electrochemical stability is directly associated with biocompatibility and is a necessary condition for applying a material as biomaterial.
NASA Astrophysics Data System (ADS)
Pujar, M. G.; Anita, T.; Shaikh, H.; Dayal, R. K.; Khatak, H. S.
2007-08-01
In the present paper, studies were conducted on AISI Type 316 stainless steel (SS) in deaerated solutions of sodium sulfate as well as sodium chloride to establish the effect of sulfate and chloride ions on the electrochemical corrosion behavior of the material. The experiments were conducted in deaerated solutions of 0.5 M sodium sulfate as well as 0.5 M sodium chloride using electrochemical noise (EN) technique at open circuit potential (OCP) to collect the correlated current and potential signals. Visual records of the current and potential, analysis of data to arrive at the statistical parameters, spectral density estimation using the maximum entropy method (MEM) showed that sulfate ions were incorporated in the passive film to strengthen the same. However, the adsorption of chloride ions resulted in pitting corrosion thereby adversely affecting noise resistance ( R N). Distinct current and potential signals were observed for metastable pitting, stable pitting and passive film build-up. Distinct changes in the values of the statistical parameters like R N and the spectral noise resistance at zero frequency ( R°SN) revealed adsorption and incorporation of sulfate and chloride ions on the passive film/solution interface.
Raassens, Néomie; Haans, Hans
2017-08-01
The Net Promoter Score (NPS) is, according to Reichheld, the single most reliable indicator of company growth, and many companies use this recommendation-based technique for measuring customer loyalty. Despite its widespread adoption by many companies across multiple industries, the debate about NPS goes on. A major concern is that managers treat NPS as being equivalent across customers, which is often very misleading. By using a unique data set that combines customers' promoter scores and online word-of-mouth (eWOM) behavior, this research studies how individual customers' promoter scores are related to eWOM, including its relationship with the three categories of customers that are identified by the NPS paradigm (i.e., promoters, passives, and detractors). Based on a sample of 189 customers, their promoter scores and corresponding eWOM, the results show that there is a positive relationship between customers' promoter scores and the valence of online messages. Further, while detractors and promoters are homogeneous with respect to the valence of the eWOM messages they spread, passives show message valence heterogeneity. Thus, although passives, the largest group of customers, have no weight in calculating the NPS, our results reveal that companies should flag passives for further attention and action.
Ben-Jebria, A.; Marthan, R.; Rossetti, M.; Savineau, J. P.
1993-01-01
1. The effect of passive sensitization on the mechanical activity of human isolated bronchial smooth muscle induced by the following neuropeptides substance P (SP), neurokinin A (NKA) and vasoactive intestinal peptide (VIP) was studied both in the absence and in the presence of the neutral endopeptidase (NEP) inhibitor, phosphoramidon. 2. Cumulative concentration-response curves (CCRC) to these neuropeptides were constructed in human passively sensitized isolated bronchial rings and compared to those in paired controls. Passively sensitized human isolated bronchial rings were tissues incubated overnight in serum from asthmatic patients atopic to Dermatophagoides pteronyssinus and paired controls were tissues originating from the same lung specimens but incubated overnight in serum from healthy donors. 3. In the absence of phosphoramidon, passive sensitization significantly increased the amplitude of the contractile responses to SP and NKA including that to the maximal concentration given from 50 +/- 5% to 76 +/- 6% (n = 5, P < 0.05) and from 70 +/- 7% to 101 +/- 6% (n = 5, P < 0.05) of the maximal response to acetylcholine, respectively. Passive sensitization significantly shifted to the left the CCRC for both tachykinins as measured by the geometric means dose-ratios which were 8.5 (95% confidence limits (CL): 3.1-13.9) and 7.3 (95% CL: 4.2-10.3) for SP and NKA, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7684296
The mechanism of phloem loading in rice (Oryza sativa).
Eom, Joon-Seob; Choi, Sang-Bong; Ward, John M; Jeon, Jong-Seong
2012-05-01
Carbohydrates, mainly sucrose, that are synthesized in source organs are transported to sink organs to support growth and development. Phloem loading of sucrose is a crucial step that drives long-distance transport by elevating hydrostatic pressure in the phloem. Three phloem loading strategies have been identified, two active mechanisms, apoplastic loading via sucrose transporters and symplastic polymer trapping, and one passive mechanism. The first two active loading mechanisms require metabolic energy, carbohydrate is loaded into the phloem against a concentration gradient. The passive process, diffusion, involves equilibration of sucrose and other metabolites between cells through plasmodesmata. Many higher plant species including Arabidopsis utilize the active loading mechanisms to increase carbohydrate in the phloem to higher concentrations than that in mesophyll cells. In contrast, recent data revealed that a large number of plants, especially woody species, load sucrose passively by maintaining a high concentration in mesophyll cells. However, it still remains to be determined how the worldwide important cereal crop, rice, loads sucrose into the phloem in source organs. Based on the literature and our results, we propose a potential strategy of phloem loading in rice. Elucidation of the phloem loading mechanism should improve our understanding of rice development and facilitate its manipulation towards the increase of crop productivity.
Hyphantis, Thomas; Katsoudas, Spiros; Voudiclari, Sonia
2010-03-24
Several parameters mediate the selection of treatment modality in end-stage renal disease (ESRD). The nephrology community suggests that patient preference should be the prime determinant of modality choice. We aimed to test whether ego mechanisms of defense are associated with patients' treatment modality preferences, independent of psychological distress. In 58 eligible ESRD patients who had themselves chosen their treatment modality, we administered the Symptom Distress Checklist-90-R and the Defense Style Questionnaire. Thirty-seven patients (53.4%) had chosen hemodialysis and 21 (46.6%) peritoneal dialysis. Patients who preferred peritoneal dialysis were younger (odds ratio [OR], 0.89; 95% confidence interval [CI]: 0.804-0.988), had received more education (OR, 8.84; 95% CI: 1.301-60.161), and were twice as likely to adopt an adaptive defense style as compared to patients who preferred hemodialysis (57.1% vs 27.0%, respectively; P < 0.033). On the contrary, the latter were more likely to adopt an image-distorting defense style (35.1% vs 14.3%; P = 0.038) and passive-aggressive defenses (OR, 0.73: 95% CI: 0.504-1.006). These results were independent of psychological distress. Our findings indicate that the patient's personality should be taken into account, if we are to better define which modalities are best suited to which patients. Also, physicians should bear in mind passive-aggressive behaviors that warrant attention and intervention in patients who preferred hemodialysis.
Novel locomotion via biological inspiration
NASA Astrophysics Data System (ADS)
Quinn, Roger D.; Boxerbaum, Alexander; Palmer, Luther; Chiel, Hillel; Diller, Eric; Hunt, Alexander; Bachmann, Richard
2011-05-01
Animal behavioral, physiological and neurobiological studies are providing a wealth of inspirational data for robot design and control. Several very different biologically inspired mobile robots will be reviewed. A robot called DIGbot is being developed that moves independent of the direction of gravity using Distributed Inward Gripping (DIG) as a rapid and robust attachment mechanism observed in climbing animals. DIGbot is an 18 degree of freedom hexapod with onboard power and control systems. Passive compliance in its feet, which is inspired by the flexible tarsus of the cockroach, increases the robustness of the adhesion strategy and enables DIGbot to execute large steps and stationary turns while walking on mesh screens. A Whegs™ robot, inspired by insect locomotion principles, is being developed that can be rapidly reconfigured between tracks and wheel-legs and carry GeoSystems Zipper Mast. The mechanisms that cause it to passively change its gait on irregular terrain have been integrated into its hubs for a compact and modular design. The robot is designed to move smoothly on moderately rugged terrain using its tracks and run on irregular terrain and stairs using its wheel-legs. We are also developing soft bodied robots that use peristalsis, the same method of locomotion earthworms use. We present a technique of using a braided mesh exterior to produce fluid waves of motion along the body of the robot that increase the robot's speed relative to previous designs. The concept is highly scalable, for endoscopes to water, oil or gas line inspection.
Micro-mechanics of micro-composites
NASA Technical Reports Server (NTRS)
Donovan, Richard P.
1995-01-01
The Structural Dynamics branch at NASA LaRC is working on developing an active passive mount system for vibration control. Toward this end a system utilizing piezoelectric actuators is currently being utilized. There are limitations to the current system related to space applications under which it is desired to eliminate deformations in the actuators associated with thermal effects. In addition, a material that is readily formable into complex shapes and whose mechanical properties can be optimized with regards to vibration control would be highly desirable. Microcomposite material are currently under study to service these needs. Microcomposite materials are essentially materials in which particles on the scale of microns are bound together with a polyimide (LaRC Si) that has been developed at LaRC. In particular a micro-composite consisting of LaRC Si binder and piezoelectric ceramic particles shows promise in satisfying the needs of the active passive mount project. The LaRC/ Si microcomposite has a unique combination of piezoelectric properties combined with a near zero coefficient of thermal expansion and easy machinability. The goal of this ASEE project is to develop techniques to analytically determine important material properties necessary to characterize the dynamic properties of actuators and mounts made from the LaRC Si / ceramic microcomposite. In particular, a generalized method of cells micromechanics originally developed at NASA Lewis is employed to analyze the microstructural geometry of the microcomposites and predict the overall mechanical properties of the material. A testing program has been established to evaluate and refine the GMC approach to these materials. In addition, a theory of mixtures analysis is being developed that utilizes the GMC micromechanics information to analyze complex behavior of the microcomposite material which has a near zero CTE.
77 FR 16846 - Published Privacy Impact Assessments on the Web
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
... Security Advanced Research Projects Agency (HSARPA), S&T Directorate seeks to develop physiological and behavioral screening technologies that will enable security officials to test the effectiveness of current... FAST research is adding a new type of research, the Passive Methods for Precision Behavioral Screening...
An Examination of the Validity of Social Subtypes in Autism.
ERIC Educational Resources Information Center
Borden, M. Christopher; Ollendick, Thomas H.
1994-01-01
Examination of 53 children with autism supported the validity of the subtypes "aloof" and "active-but-odd" as predictors of behavior across language/communication, reciprocal social interaction, and stereotyped behavior/restricted interest domains. Partial support for an intermediate, "passive" subtype was garnered. (Author/JDD)
Coping behavior and loneliness among obese patients.
Hörchner, Rogier; Tuinebreijer, Wim E; Kelder, Hans; van Urk, Elly
2002-12-01
Morbid obesity can be accompanied by physical and social problems that may influence interpersonal relationships and the recruitment of social support. The problems can be tackled with a variety of coping strategies. 104 patients with a body mass index (BMI) 32-64 kg/m2 and mean age 36 yr were presented with the Utrecht Coping List (UCL) and the Loneliness Scale. Of these patients, 94 were female, and this cohort was analyzed more extensively. Patients exhibited elevated values on the Loneliness Scale and in the UCL sub-scales palliative response, avoidance / wait-and-see, passive / depressive response pattern and expression of emotions / anger. The active approach UCL sub-scale scored lower than in a control group. Obese female patients displayed avoidance, wait-and-see and passive response pattern as coping behavior, experiencing their intimate relationships as relatively unreliable and not very intimate. More research is needed to determine the effect of coping behavior on therapeutic effect.
Gender-atypical personality or sexual behavior: What is disgusting about male homosexuality?
Caswell, T Andrew; Sackett-Fox, Kyrsten
2018-01-15
Research consistently finds that homosexuality elicits strong feelings of disgust, but the reasons remain unclear. In the current research, we investigate responses to gay men who violate social norms governing the expression of gender and sexuality. Two hundred forty-three college undergraduates read a vignette about a gay male college student whose personality traits (masculine, feminine, or neutral) and sexual behavior (active vs. passive) varied and reported their affective responses to and cognitive appraisals of the target. The gay target who displayed a feminine personality elicited more disgust and was perceived as lower in gender role conformity than a gay man who displayed a masculine personality. Similarly, the gay target who assumed a passive sex role elicited more disgust and was perceived as lower in gender role conformity than a gay man who assumed an active sex role. The sexual behavior/disgust relationship was mediated by perceived gender role conformity.
Gaboriau, Dorian; Boniface, Maxime; Valero, Anthony; Aldakov, Dmitry; Brousse, Thierry; Gentile, Pascal; Sadki, Said
2017-04-19
Silicon nanowires were coated by a 1-5 nm thin alumina layer by atomic layer deposition (ALD) in order to replace poorly reproducible and unstable native silicon oxide by a highly conformal passivating alumina layer. The surface coating enabled probing the behavior of symmetric devices using such electrodes in the EMI-TFSI electrolyte, allowing us to attain a large cell voltage up to 6 V in ionic liquid, together with very high cyclability with less than 4% capacitance fade after 10 6 charge/discharge cycles. These results yielded fruitful insights into the transition between an electrochemical double-layer capacitor behavior and an electrolytic capacitor behavior. Ultimately, thin ALD dielectric coatings can be used to obtain hybrid devices exhibiting large cell voltage and excellent cycle life of dielectric capacitors, while retaining energy and power densities close to the ones displayed by supercapacitors.
Schönweiler, R; Wübbelt, P; Tolloczko, R; Rose, C; Ptok, M
2000-01-01
Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P(1), N(1), P(2) and N(2). Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups. Different DA methods and SOFM configurations were trained to the values. SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CAPD includes a 'non-peripheral' auditory processing deficit. Copyright 2000 S. Karger AG, Basel.
Fox, Jesse; Anderegg, Courtney
2014-11-01
Due to their pervasiveness and unique affordances, social media play a distinct role in the development of modern romantic relationships. This study examines how a social networking site is used for information seeking about a potential or current romantic partner. In a survey, Facebook users (N=517) were presented with Facebook behaviors categorized as passive (e.g., reading a partner's profile), active (e.g., "friending" a common third party), or interactive (e.g., commenting on the partner's wall) uncertainty reduction strategies. Participants reported how normative they perceived these behaviors to be during four possible stages of relationship development (before meeting face-to-face, after meeting face-to-face, casual dating, and exclusive dating). Results indicated that as relationships progress, perceived norms for these behaviors change. Sex differences were also observed, as women perceived passive and interactive strategies as more normative than men during certain relationship stages.
Gordon, P; Chafetz, J
1990-09-01
Several studies have shown that children perform worse on tests of passive comprehension when the verb is non-actional than when it is actional. Most existing accounts focus on the semantic characteristics of the class of non-action verbs in explaining this difference. An alternative is a "verb-based" account in which passives are initially learned verb by verb, and children hear fewer non-actional passives in their language input. An analysis of the passives heard by Adam, Eve and Sarah (Brown, 1973) found more actional than non-actional passives, consistent with the verb-based account. In a second study, children tested for passive comprehension were re-tested a week later. The verb-based account predicts that children should show a consistent pattern of responses for individual verbs on test and re-test. Such consistency was found, with some inconsistency due to improvement over the re-test. Further analyses showed no effects of affectedness in explaining children's problems with passives. Finally, we discuss whether a mixed model containing both verb-based and class-based mechanisms is required to explain the actionality effects.
Sidewall passivation for InGaN/GaN nanopillar light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Won Hyuck; Abraham, Michael; Yu, Shih-Ying
2014-07-07
We studied the effect of sidewall passivation on InGaN/GaN multiquantum well-based nanopillar light emitting diode (LED) performance. In this research, the effects of varying etch rate, KOH treatment, and sulfur passivation were studied for reducing nanopillar sidewall damage and improving device efficiency. Nanopillars prepared under optimal etching conditions showed higher photoluminescence intensity compared with starting planar epilayers. Furthermore, nanopillar LEDs with and without sulfur passivation were compared through electrical and optical characterization. Suppressed leakage current under reverse bias and four times higher electroluminescence (EL) intensity were observed for passivated nanopillar LEDs compared with unpassivated nanopillar LEDs. The suppressed leakage currentmore » and EL intensity enhancement reflect the reduction of non-radiative recombination at the nanopillar sidewalls. In addition, the effect of sulfur passivation was found to be very stable, and further insight into its mechanism was gained through transmission electron microscopy.« less
The Corrosion Behavior of Stainless Steel 316L in Novel Quaternary Eutectic Molten Salt System
NASA Astrophysics Data System (ADS)
Wang, Tao; Mantha, Divakar; Reddy, Ramana G.
2017-03-01
In this article, the corrosion behavior of stainless steel 316L in a low melting point novel LiNO3-NaNO3-KNO3-NaNO2 eutectic salt mixture was investigated at 695 K which is considered as thermally stable temperature using electrochemical and isothermal dipping methods. The passive region in the anodic polarization curve indicates the formation of protective oxides layer on the sample surface. After isothermal dipping corrosion experiments, samples were analyzed using SEM and XRD to determine the topography, corrosion products, and scale growth mechanisms. It was found that after long-term immersion in the LiNO3-NaNO3-KNO3-NaNO2 molten salt, LiFeO2, LiFe5O8, Fe3O4, (Fe, Cr)3O4 and (Fe, Ni)3O4 oxides were formed. Among these corrosion products, LiFeO2 formed a dense and protective layer which prevents the SS 316L from severe corrosion.
Role of chemical interaction between MgH2 and TiO2 additive on the hydrogen storage behavior of MgH2
NASA Astrophysics Data System (ADS)
Pukazhselvan, D.; Nasani, Narendar; Sandhya, K. S.; Singh, Budhendra; Bdikin, Igor; Koga, Nobuaki; Fagg, Duncan Paul
2017-10-01
The present study explores how the additive titania chemically reacts with magnesium hydride and influences the dehydrogenation of MgH2. Quantitative X - ray diffraction study of ball milled MgH2 + xTiO2 (x = 0.25, 0.33, 0.5 and 1) suggests that Ti substituted MgO is the main reaction product in all the product powders. Convincing evidence is obtained to conclude that Ti dissolution in MgO makes a dramatic behavioral change to MgO; passive MgO turns as an active in-built catalyst. The analysis correlating the dehydrogenation kinetics, composition of in-situ catalyst and sample durability suggests that effectiveness of Ti substituted MgO (MgxTiyOx+y) as a catalyst for MgH2 depends on the concentration of Ti in MgxTiyOx+y rock salt. These observations are immensely helpful for understanding the hydrogen desorption mechanism of metal oxide additives loaded MgH2 system.
Biflorin Ameliorates Memory Impairments Induced by Cholinergic Blockade in Mice
Jeon, Se Jin; Kim, Boseong; Ryu, Byeol; Kim, Eunji; Lee, Sunhee; Jang, Dae Sik; Ryu, Jong Hoon
2017-01-01
To examine the effect of biflorin, a component of Syzygium aromaticum, on memory deficit, we introduced a scopolamine-induced cognitive deficit mouse model. A single administration of biflorin increased latency time in the passive avoidance task, ameliorated alternation behavior in the Y-maze, and increased exploration time in the Morris water maze task, indicating the improvement of cognitive behaviors against cholinergic dysfunction. The biflorin-induced reverse of latency in the scopolamine-treated group was attenuated by MK-801, an NMDA receptor antagonist. Biflorin also enhanced cognitive function in a naïve mouse model. To understand the mechanism of biflorin for memory amelioration, we performed Western blot. Biflorin increased the activation of protein kinase C-ζ and its downstream signaling molecules in the hippocampus. These results suggest that biflorin ameliorates drug-induced memory impairment by modulation of protein kinase C-ζ signaling in mice, implying that biflorin could function as a possible therapeutic agent for the treatment of cognitive problems. PMID:27829270
NASA Astrophysics Data System (ADS)
Bellanger, G.; Rameau, J. J.
1996-02-01
This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive -transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique.
A deflectable guiding catheter for real-time MRI-guided interventions
Bell, Jamie A.; Saikus, Christina E.; Ratnakaya, Kanishka; Wu, Vincent; Sonmez, Merdim; Faranesh, Anthony Z.; Colyer, Jessica H.; Lederman, Robert J.; Kocaturk, Ozgur
2011-01-01
Purpose To design a deflectable guiding catheter that omits long metallic components yet preserves mechanical properties to facilitate therapeutic interventional MRI procedures. Materials and Methods The catheter shaft incorporated Kevlar braiding. 180° deflection was attained with a 5 cm nitinol slotted tube, a nitinol spring, and a Kevlar pull string. We tested three designs: passive, passive incorporating an inductively-coupled coil, and active receiver. We characterized mechanical properties, MRI properties, RF induced heating, and in vivo performance in swine. Results Torque and tip deflection force were satisfactory. Representative procedures included hepatic and azygos vein access, laser cardiac septostomy, and atrial septal defect crossing. Visualization was best in the active configuration, delineating profile and tip orientation. The passive configuration could be used in tandem with an active guidewire to overcome its limited conspicuity. There was no RF-induced heating in all configurations under expected use conditions in vitro and in vivo. Conclusion Kevlar and short nitinol component substitutions preserved mechanical properties. The active design offered the best visibility and usability but reintroduced metal conductors. We describe versatile deflectable guiding catheters with a 0.057” lumen for interventional MRI catheterization. Implementations are feasible using active, inductive, and passive visualization strategies to suit application requirements. PMID:22128071
Taffoni, F; Von, Hofsten
2010-01-01
Toys denote objects used in playing. From the first examples of toys made of materials available in the environment and manufactured by parents or by children themselves only for recreational purpose, toys have evolved into more sophisticated devices which integrate mechanics, electronics and informatics (mechatronic toys) used in several different application fields. There are two main kinds of mechatronic toys: sensorized toys are passive toys equipped with a set of sensors used to record user/toy interactions; robotic toys are artefacts or computers, usually self-propelled with the help of motors, which collect information from the surrounding environment by sensors, and decode this information into behaviors consistent with them. This entry explores the use of the word "toys" from a technological point of view focussing on mechatronic toys and their applications.
Micromachined structures for vertical microelectrooptical devices on InP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seassal, C.; Leclercq, J.L.; Letartre, X.
1996-12-31
The authors presented a microstructuring method in order to fabricate tunable vertical resonant cavity optical devices. PL characterizations were performed on a test structure in order to evaluate the effect of the cavity thickness on the peak characteristics. Modeling of the mechanical, electrostatic, and optical behavior of the device, PL simulation were performed, and showed a good agreement with the experiments. This is a first preliminary validation of InP-based MOEMS for further realization of tunable wavelength-selective passive filters, or photodiodes and lasers by incorporating active region within the cavity. Micro-reflectivity measurements with a spatial resolution of 20 {micro}m are underwaymore » in their group, in order to measure directly the resonance shift and spectral linewidth.« less
The Corrosion Behavior of Ni3(Si,Nb) Alloys in Boiling 70 wt.% Sulfuric Acid
NASA Astrophysics Data System (ADS)
Hsu, Jen-Hsien; Larson, Christopher M.; Newkirk, Joseph W.; Brow, Richard K.; Zhang, San-Hong
2016-02-01
Corrosion-resistant Ni3(Si,Nb) alloys are promising materials of construction for hydrogen-production systems based on the sulfur-iodine thermochemical cycle. In this work, the corrosion rates of three different Ni3(Si,Nb) alloys were measured in boiling 70 wt.% sulfuric acid and a three-stage corrosion mechanism was identified, based on the composition and morphology of surface scale that developed. The α(Ni) + β(Ni3Si) eutectic constituent of the alloy microstructure was selectively attacked by acid and, when present, is detrimental to corrosion resistance. The G-phase (Ni16Si17Nb6) is more passive than the β-matrix and seems to contribute to a lower steady-state corrosion rate.
NASA Astrophysics Data System (ADS)
Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Valek, B.; Bravman, J. C.; Spolenak, R.; Brown, W. L.; Marieb, T.; Fujimoto, H.; Batterman, B. W.; Patel, J. R.
2002-05-01
The availability of high brilliance synchrotron sources, coupled with recent progress in achromatic focusing optics and large area two-dimensional detector technology, has allowed us to develop an x-ray synchrotron technique that is capable of mapping orientation and strain/stress in polycrystalline thin films with submicron spatial resolution. To demonstrate the capabilities of this instrument, we have employed it to study the microstructure of aluminum thin film structures at the granular and subgranular levels. Due to the relatively low absorption of x-rays in materials, this technique can be used to study passivated samples, an important advantage over most electron probes given the very different mechanical behavior of buried and unpassivated materials.
Suppressed blinking behavior of CdSe/CdS QDs by polymer coating
NASA Astrophysics Data System (ADS)
Zhang, Aidi; Bian, Yannan; Wang, Jinjie; Chen, Kuiyong; Dong, Chaoqing; Ren, Jicun
2016-02-01
Semiconductor quantum dots (QDs) are very important fluorescent nanocrystals with excellent optical properties. However, QDs, at the single-particle level, show severe fluorescence intermittency (or blinking) on a wide time scale from milliseconds to minutes, which limits certain optical and biological applications. Generally, blinking behavior of QDs strongly depends on their surface state and surrounding environment. Therefore, current blinking suppression approaches are mostly focused on the introduction of an inorganic shell and organic small molecule compounds. In this study, we described a ``bottom up'' approach for the synthesis of CdSe/CdS/polymer core/shell/shell QDs via the in situ one-pot polymerization approach in order to control the blinking behavior of QDs. Three monomers (dithiothreitol (DTT), phenylenediamine (PDA), and hexamethylenediamine (HDA)) were respectively used to polymerize with hexachlorocyclotriphosphazene (HCCP), and then the polyphosphazene polymers were obtained with cyclotriphosphazene as the basic macromolecular backbone. By regulating the molar ratios of the activated comonomers, we can control the blinking behavior of CdSe/CdS/polymer QDs. Under the optimal conditions, the percentage of ``non-blinking'' CdSe/CdS/polymer QDs (the ``on time'' fraction > 99% of the overall observation time) was up to 78%. The suppression mechanism was attributed to the efficient passivation of QD surface traps by the sulfhydryl or phenyl groups in the polyphosphazene polymers.Semiconductor quantum dots (QDs) are very important fluorescent nanocrystals with excellent optical properties. However, QDs, at the single-particle level, show severe fluorescence intermittency (or blinking) on a wide time scale from milliseconds to minutes, which limits certain optical and biological applications. Generally, blinking behavior of QDs strongly depends on their surface state and surrounding environment. Therefore, current blinking suppression approaches are mostly focused on the introduction of an inorganic shell and organic small molecule compounds. In this study, we described a ``bottom up'' approach for the synthesis of CdSe/CdS/polymer core/shell/shell QDs via the in situ one-pot polymerization approach in order to control the blinking behavior of QDs. Three monomers (dithiothreitol (DTT), phenylenediamine (PDA), and hexamethylenediamine (HDA)) were respectively used to polymerize with hexachlorocyclotriphosphazene (HCCP), and then the polyphosphazene polymers were obtained with cyclotriphosphazene as the basic macromolecular backbone. By regulating the molar ratios of the activated comonomers, we can control the blinking behavior of CdSe/CdS/polymer QDs. Under the optimal conditions, the percentage of ``non-blinking'' CdSe/CdS/polymer QDs (the ``on time'' fraction > 99% of the overall observation time) was up to 78%. The suppression mechanism was attributed to the efficient passivation of QD surface traps by the sulfhydryl or phenyl groups in the polyphosphazene polymers. Electronic supplementary information (ESI) available: Synthesis and characterization of QDs, FTIR analysis, particle distribution, PL decays, TGA data and power-law distribution of QDs. See DOI: 10.1039/c5nr08504g
Dissociation of Active Working Memory and Passive Recognition in Rhesus Monkeys
ERIC Educational Resources Information Center
Basile, Benjamin M.; Hampton, Robert R.
2013-01-01
Active cognitive control of working memory is central in most human memory models, but behavioral evidence for such control in nonhuman primates is absent and neurophysiological evidence, while suggestive, is indirect. We present behavioral evidence that monkey memory for familiar images is under active cognitive control. Concurrent cognitive…
Why Do Bystanders of Bullying Help or Not? A Multidimensional Model
ERIC Educational Resources Information Center
Pozzoli, Tiziana; Gini, Gianluca
2013-01-01
The authors employed Latane and Darley's model about bystanders' behavior to explain children's active defending and passive bystanding behavior in school bullying. The three central steps of the model were operationalized by measuring provictim attitudes, personal responsibility for intervention, and coping strategies. Moreover, the role of…
Behavioral and Environmental Characteristics of Delinquent Youths as Related to Recidivisim.
ERIC Educational Resources Information Center
Chase, Mary M.
This study examined the usefulness of certain sociodemographic and psychological measures for explaining and predicting postrelease recidivism among youths treated in the New York State Division for Youth rehabilitation programs during 1971-1972. Changes in hostile behaviors were related most to program structure, but passive and work-related…
Behavioral Strategies for Nonsmokers: Avoiding and Confronting Smokers.
ERIC Educational Resources Information Center
Jason, Leonard A.
Nonsmokers repeatedly breathe smoke-polluted air in various settings, despite the evidence demonstrating the deleterious consequences upon such passive smokers. The extent of exposure to environmental irritants during a 17-day baseline period was tested, and the efficacy of two simple behavioral strategies in reducing smoke were documented…
Prefrontal Brain Activity Predicts Temporally Extended Decision-Making Behavior
ERIC Educational Resources Information Center
Yarkoni, Tal; Braver, Todd S.; Gray, Jeremy R.; Green, Leonard
2005-01-01
Although functional neuroimaging studies of human decision-making processes are increasingly common, most of the research in this area has relied on passive tasks that generate little individual variability. Relatively little attention has been paid to the ability of brain activity to predict overt behavior. Using functional magnetic resonance…
NASA Technical Reports Server (NTRS)
Elberg, R.
1984-01-01
This experiment has three objectives. The first and main objective is to detect a possible variation in the coefficient of thermal expansion of composite samples during a 1-year exposure to the near-Earth orbital environment. A second objective is to detect a possible change in the mechanical integrity of composite products, both simple elements and honeycomb sandwich assemblies. A third objective is to compare the behavior of two epoxy resins commonly used in space structural production. The experimental approach is to passively expose samples of epoxy matrix composite materials to the space environment and to compare preflight and postflight measurements of mechanical properties. The experiment will be located in one of the three FRECOPA (French cooperative payload) boxes in a 12-in.-deep peripheral tray that contains nine other experiments from France. The FRECOPA box will protect the samples from contamination during the launch and reentry phases of the mission. The coefficients of thermal expansion are measured on Earth before and after space exposure.
Marinho, Hellen Veloso Rocha; Amaral, Giovanna Mendes; de Souza Moreira, Bruno; Araújo, Vanessa Lara; Souza, Thales Rezende; Ocarino, Juliana Melo; da Fonseca, Sérgio Teixeira
2017-12-01
Study Design Controlled laboratory study, cross-sectional. Background Deficits in ankle proprioceptive acuity have been reported in persons with functional instability of the ankle. Passive stiffness has been proposed as a possible mechanism underlying proprioceptive acuity. Objective To compare proprioceptive acuity and passive ankle stiffness in persons with and without functional ankle instability, and to assess the influence of passive joint stiffness on proprioceptive acuity in persons with functional ankle instability. Methods A sample of 18 subjects with and 18 without complaints of functional ankle instability following lateral ankle sprain participated. An isokinetic dynamometer was used to compare motion perception threshold, passive position sense, and passive ankle stiffness between groups. To evaluate the influence of passive stiffness on proprioceptive acuity, individuals in the lateral functional ankle instability group were divided into 2 subgroups: "high" and "low" passive ankle stiffness. Results The functional ankle instability group exhibited increased motion perception threshold when compared with the corresponding limb of the control group. Between-group differences were not found for passive position sense and passive ankle stiffness. Those in the functional ankle instability group with higher passive ankle stiffness had smaller motion perception thresholds than those with lower passive ankle stiffness. Conclusion Unlike motion perception threshold, passive position sense is not affected by the presence of functional ankle instability. Passive ankle stiffness appears to influence proprioceptive acuity in persons with functional ankle instability. J Orthop Sports Phys Ther 2017;47(12):899-905. Epub 7 Oct 2017. doi:10.2519/jospt.2017.7030.
CdCl2 Passivation of Polycrystalline CdMgTe and CdZnTe Absorbers for Tandem Photovoltaic Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, Wyatt K; Swanson, Drew; Reich, Carey
As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extendingmore » Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.« less
Du, Yixing; Ma, Baofeng; Kiyoshi, Conrad M.; Alford, Catherine C.; Wang, Wei
2015-01-01
Mature astrocytes exhibit a linear current-to-voltage K+ membrane conductance (passive conductance) and an extremely low membrane resistance (Rm) in situ. The combination of these electrophysiological characteristics establishes a highly negative and stable membrane potential that is essential for basic functions, such as K+ spatial buffering and neurotransmitter uptake. However, astrocytes are coupled extensively in situ. It remains to be determined whether the observed passive behavior and low Rm are attributable to the intrinsic properties of membrane ion channels or to gap junction coupling in functionally mature astrocytes. In the present study, freshly dissociated hippocampal tissues were used as a new model to examine this basic question in young adult animals. The morphologically intact single astrocytes could be reliably dissociated from animals postnatal day 21 and older. At this animal age, dissociated single astrocytes exhibit passive conductance and resting membrane potential similar to those exhibited by astrocytes in situ. To precisely measure the Rm from single astrocytes, dual-patch single-astrocyte recording was performed. We show that dissociated single astrocytes exhibit a low Rm similarly to syncytial coupled astrocytes. Functionally, the symmetric expression of high-K+ conductance enabled rapid change in the intracellular K+ concentrations in response to changing K+ drive force. Altogether, we demonstrate that freshly dissociated tissue preparation is a highly useful model for study of the functional expression and regulation of ion channels, receptors, and transporters in astrocytes and that passive behavior and low Rm are the intrinsic properties of mature astrocytes. PMID:25810481
Passive lumbar tissue loading during trunk bending at three speeds: An in vivo study.
Ning, Xiaopeng; Nussbaum, Maury A
2015-08-01
Low back disorders are closely related with the magnitude of mechanical loading on human spine. However, spinal loading contributed by the lumbar passive tissues is still not well understood. In this study, the effect of motion speed on lumbar passive moment output was investigated. In addition, the increase of lumbar passive moment during trunk bending was modeled. Twelve volunteers performed trunk-bending motions at three different speeds. Trunk kinematics and muscle activities were collected and used to estimate instantaneous spinal loading and the corresponding lumbar passive moment. The lumbar passive moments at different ranges of trunk motion were compared at different speed levels and the relationship between lumbar passive moment lumbar flexion was modeled. A non-linear, two-stage pattern of increase in lumbar passive moment was evident during trunk flexion. However, the effect of motion speed was not significant on lumbar passive moments or any of the model parameters. As reported previously, distinct lumbar ligaments may begin to generate tension at differing extents of trunk flexion, and this could be the cause of the observed two-stage increasing pattern of lumbar passive moment. The current results also suggest that changes in tissue strain rate may not have a significant impact on the total passive moment output at the relatively slow trunk motions examined here. Copyright © 2015 Elsevier Ltd. All rights reserved.
The U.S. Navy Healthy Back Program: Effect on Back Knowledge among Recruits
1992-08-01
b) anatomy of the spine including the role of vertebrae, ligaments, discs, and muscles, and (c) exercises and behaviors to protect the back from...exercise, traction, passive mobilization, physical strengthening, physiotherapy, drugs, surgery, hypnosis, psychotherapy, behavior modification, and skills...A recent evaluation of the effectiveness of Navy health education videotapes in changing knowledge and behavior in a nonpatient population indicated
NASA Astrophysics Data System (ADS)
Keshavarz, Mohsen K.; Fattah-Alhosseini, Arash
2018-05-01
The corrosiveness of bismuth telluride-based thermoelectric materials (n-type single-phase alloy and a nanocomposite with MoS2 nanoinclusions), in 0.1 molar solution of sodium chloride (NaCl), was investigated. The electrochemical impedance spectroscopy curves obtained after 1, 24, 48 and 72 h immersion time revealed the enhancement of the corrosion resistance of the nanocomposite specimen in a 0.1 molar NaCl solution in comparison with the single-phase bismuth telluride-based alloys, and the passivity increased by immersion time up to 72 h. The nanocomposite sample with submicron grains provided suitable nucleation sites for passive film nucleation that led to higher protective behavior.
Lee, Jason S; Ray, Richard I; Little, Brenda J
2010-08-01
Experiments were designed to evaluate the nature and extent of microbial contamination and the potential for microbiologically influenced corrosion of alloys exposed in a conventional high sulfur diesel (L100) and alternative fuels, including 100% biodiesel (B100), ultra-low sulfur diesel (ULSD) and blends of ULSD and B100 (B5 and B20). In experiments with additions of distilled water, all fuels supported biofilm formation. Changes in the water pH did not correlate with observations related to corrosion. In all exposures, aluminum 5052 was susceptible to pitting while stainless steel 304L exhibited passive behavior. Carbon steel exhibited uniform corrosion in ULSD and L100, and passive behavior in B5, B20, and B100.
The corrosivity and passivity of sputtered Mg-Ti alloys
Song, Guang -Ling; Unocic, Kinga A.; Meyer, III, Harry M.; ...
2015-11-30
Our study explored the possibility of forming a “stainless” Mg–Ti alloy. The electrochemical behavior of magnetron-sputtered Mg–Ti alloys was measured in a NaCl solution, and the surface films on the alloys were examined by XPS, SEM and TEM. Increased corrosion resistance was observed with increased Ti content in the sputtered Mg–Ti alloys, but passive-like behavior was not reached until the Ti level (atomic %) was higher than the Mg level. Moreover, the surface film that formed on sputtered Mg–Ti based alloys in NaCl solution was thick, discontinuous and non-protective, whereas a thin, continuous and protective Mg and Ti oxide filmmore » was formed on a sputtered Ti–Mg based alloy.« less
Corrosion behavior of austenitic alloy 690 under anodic and cathodic potentials
NASA Astrophysics Data System (ADS)
Dutta, R. S.; Dey, G. K.; Lobo, A.; Purandare, R.; Kulkarni, S. K.
2002-05-01
The corrosion behavior of austenitic alloy 690 in a solution-annealed condition has been evaluated with the application of anodic as well as cathodic potentials in an acidic chloride solution at room temperature (RT). In a 0.5M H2SO4 + 0.5M NaCl solution, the alloy displayed active-passive pitting behavior with the application of an anodic potential. Surface films, formed at the onset and later stage of the passive region, were characterized using X-ray photoelectron spectroscopy (XPS). The XPS revealed that the surface film formed at the onset of passivity (+ 100 mV SCE) consisted of Cr(OH)3, without any Fe+3/Fe+2. The presence of nickel in the film was found in a transition state of Ni+2 and Ni0. The passive film formed at the higher anodic potential (+ 700 mV SCE) consisted of Cr2O3 without any Fe+3/Fe+2 or even Ni+2/Ni0. Microscopic studies of alloy 690 after anodic polarization in an acidic chloride solution revealed pitting, which was found to be initiated at large, faceted TiN-type inclusions. The susceptibility of the alloy to hydrogen embrittlement has been investigated by conducting cathodic charging of the tensile samples in a 0.5M H2SO4 solution at RT and by subsequent tensile testing of the charged samples in air at a strain rate of 1.3 × 10-4 s-1 up to fracture. An indication toward hydrogen-induced ductility loss was noticed for the samples of the alloy, which is believed to be attributable to a hydrogen-enhanced microvoid growth process. Since the microvoid growth process occurs at the last stage of fracture, the effect of hydrogen on the ductility of the alloy is little.
Glasper, Erica R.; Hyer, Molly M.; Hunter, Terrence J.
2018-01-01
Early-life experiences with caregivers can significantly affect offspring development in human and non-human animals. While much of our knowledge of parent-offspring relationships stem from mother-offspring interactions, increasing evidence suggests interactions with the father are equally as important and can prevent social, behavioral, and neurological impairments that may appear early in life and have enduring consequences in adulthood. In the present study, we utilized the monogamous and biparental California mouse (Peromyscus californicus). California mouse fathers provide extensive offspring care and are essential for offspring survival. Non-sibling virgin male and female mice were randomly assigned to one of two experimental groups following the birth of their first litter: (1) biparental care: mate pairs remained with their offspring until weaning; or (2) paternal deprivation (PD): paternal males were permanently removed from their home cage on postnatal day (PND) 1. We assessed neonatal mortality rates, body weight, survival of adult born cells in the dentate gyrus of the hippocampus, and anxiety-like and passive stress-coping behaviors in male and female young adult offspring. While all biparentally-reared mice survived to weaning, PD resulted in a ~35% reduction in survival of offspring. Despite this reduction in survival to weaning, biparentally-reared and PD mice did not differ in body weight at weaning or into young adulthood. A sex-dependent effect of PD was observed on new cell survival in the dentate gyrus of the hippocampus, such that PD reduced cell survival in female, but not male, mice. While PD did not alter classic measures of anxiety-like behavior during the elevated plus maze task, exploratory behavior was reduced in PD mice. This observation was irrespective of sex. Additionally, PD increased some passive stress-coping behaviors (i.e., percent time spent immobile) during the forced swim task—an effect that was also not sex-dependent. Together, these findings demonstrate that, in a species where paternal care is not only important for offspring survival, PD can also contribute to altered structural and functional neuroplasticity of the hippocampus. The mechanisms contributing to the observed sex-dependent alterations in new cell survival in the dentate gyrus should be further investigated. PMID:29487509
NASA Astrophysics Data System (ADS)
Wu, Daheng; Ren, Siming; Pu, Jibin; Lu, Zhibin; Zhang, Guangan; Wang, Liping
2018-05-01
The tribological behaviors of hydrogenated DLC film sliding against Al2O3, ZrO2, Si3N4 and WC mating balls have been comparatively investigated by a ball-on-disk tribometer at 150 °C under helium and air (RH = 6%) conditions. The results showed that the mating material influenced the friction and wear behavior remarkably in helium atmosphere, where the wear rates were in inversely proportional to the friction coefficients (COF) of those tribo-pairs. Compared to the tests in helium, the tribological performance of DLC film significantly improved in air. Scanning electron microscope (SEM) and Raman spectroscopy were performed to study the friction behavior and wear mechanism of the film under different conditions. It suggested that the severe abrasion was caused by the strong interaction between the tribo-pairs in helium atmosphere at 150 °C, whereas the sufficient passivation of the dangling bonds of carbon atoms at sliding interface by chemically active molecules, such as water and oxygen, dominated the ultralow friction under air condition. Meanwhile, Hertz analysis was used to further elucidate the frictional mechanism of DLC film under helium and air conditions. It showed that the coefficient of friction was consistent with the varied tendency of the contact radius, namely, higher friction coefficient corresponded to the larger contact radius, which was the same with the relationship between the wear rate and the contact pressure. All of the results made better understanding of the essential mechanism of hydrogenated DLC film sliding against different pairs, which were able to guide the further application of DLC film in the industrial fields of helium atmosphere.
Neuromechanical tuning of nonlinear postural control dynamics
NASA Astrophysics Data System (ADS)
Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.
2009-06-01
Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.
Using a System Identification Approach to Investigate Subtask Control during Human Locomotion
Logan, David; Kiemel, Tim; Jeka, John J.
2017-01-01
Here we apply a control theoretic view of movement to the behavior of human locomotion with the goal of using perturbations to learn about subtask control. Controlling one's speed and maintaining upright posture are two critical subtasks, or underlying functions, of human locomotion. How the nervous system simultaneously controls these two subtasks was investigated in this study. Continuous visual and mechanical perturbations were applied concurrently to subjects (n = 20) as probes to investigate these two subtasks during treadmill walking. Novel application of harmonic transfer function (HTF) analysis to human motor behavior was used, and these HTFs were converted to the time-domain based representation of phase-dependent impulse response functions (ϕIRFs). These ϕIRFs were used to identify the mapping from perturbation inputs to kinematic and electromyographic (EMG) outputs throughout the phases of the gait cycle. Mechanical perturbations caused an initial, passive change in trunk orientation and, at some phases of stimulus presentation, a corrective trunk EMG and orientation response. Visual perturbations elicited a trunk EMG response prior to a trunk orientation response, which was subsequently followed by an anterior-posterior displacement response. This finding supports the notion that there is a temporal hierarchy of functional subtasks during locomotion in which the control of upper-body posture precedes other subtasks. Moreover, the novel analysis we apply has the potential to probe a broad range of rhythmic behaviors to better understand their neural control. PMID:28123365
Design and Characterization of a Quasi-Passive Pneumatic Foot-Ankle Prosthesis.
Lee, Jeffrey D; Mooney, Luke M; Rouse, Elliott J
2017-07-01
The majority of commercially available passive prosthetic feet are not capable of providing joint mechanics that match that of the intact human ankle. Due to their cantilever design, their stiffness characteristics contrast with what has been observed in the biological ankle, namely, an increase in stiffness during the stance phase of walking. In this paper, we introduce the design and control of a pneumatic foot-ankle prosthesis that attempts to provide biomimetic mechanics. The prosthesis is comprised of a pneumatic cylinder in series with a fiberglass leaf spring, and a solenoid valve to control the flow of air between the two sides of the cylinder. The solenoid valve acts as a mechanical clutch, enabling resetting of the ankle's equilibrium position. By adjusting the pressure inside the cylinder, the prosthesis can be customized to provide a range of ankle mechanics. A mechanical testing machine is used to compare the torque-angle curve of the pneumatic prosthesis with a low-profile passive prosthetic foot. Finally, data are presented of one transtibial amputee walking with the prosthesis at 1.2 m/s. The testing shows that the pneumatic prosthesis is capable of providing an appropriate range of motion as well a maximum torque of 94 Nm, while returning approximately 11.5 J of energy.
Sun, Desheng; Monaghan, Peter; Brantley, William A; Johnston, William M
2002-01-01
Corrosion of cast alloy restorations may lead to their failure or adversely affect their biocompatibility. Although some documentation of the corrosion behavior of the high-palladium dental alloys exists, questions remain about their corrosion resistance and mechanisms. This study compared the in vitro corrosion characteristics of 3 high-palladium alloys and 1 gold-palladium alloy in simulated body fluid and oral environments. Two Pd-Cu-Ga alloys and 1 Pd-Ga alloy were selected; an Au-Pd alloy served as the control. The corrosion behavior for the as-cast and simulated porcelain-firing (heat-treated) conditions of each alloy (N = 5) was evaluated in 0.9% NaCl, 0.09% NaCl, and Fusayama solutions. Heat-treated specimens of each alloy (N = 5) were also tested in N(2)-deaerated 0.09% NaCl and Fusayama solutions (pH 4). After immersion in the electrolyte for 24 hours, the open-circuit potential (OCP) was measured, and linear polarization was performed from -20 mV to +20 mV (vs. OCP) at a scanning rate of 0.125 mV/s. Cyclic polarization was performed from -300 mV to +1000 mV and back to -300 mV (vs. OCP) at a scanning rate of 1 mV/s. Data were evaluated with analysis of variance and the Ryan-Einot-Gabriel-Welsch multiple-range test (alpha=.05). The OCP of each alloy varied with the condition (as-cast or heat-treated) and electrolyte used. Corrosion resistance was similar for the 4 alloys tested. For cyclic polarization, all alloys showed active-passive or spontaneous passive behavior in nearly all electrolytes. During some reverse scans, the 3 high-palladium alloys displayed 3 or 5 anodic peaks. No positive hysteresis was observed for any of the alloy/electrolyte combinations evaluated. The corrosion resistances of the 3 high-palladium alloys in simulated body fluid and oral environments were comparable to that of the gold-palladium alloy. The similar corrosion resistance for the 3 high-palladium alloys was attributed to their high noble metal content and theorized stable structure at the submicron level. Selective corrosion of different phases and elements, surface enrichment of palladium, and adsorption of species are possible corrosion mechanisms. The cyclic polarization results suggest that none of the 4 alloys would be prone to pitting or crevice corrosion under in vivo conditions, but crevice conditions should nonetheless be avoided for these alloys in the oral environment.
Masliah, Eliezer; Rockenstein, Edward; Mante, Michael; Crews, Leslie; Spencer, Brian; Adame, Anthony; Patrick, Christina; Trejo, Margarita; Ubhi, Kiren; Rohn, Troy T.; Mueller-Steiner, Sarah; Seubert, Peter; Barbour, Robin; McConlogue, Lisa; Buttini, Manuel; Games, Dora; Schenk, Dale
2011-01-01
Dementia with Lewy bodies (DLB) and Parkinson's Disease (PD) are common causes of motor and cognitive deficits and are associated with the abnormal accumulation of alpha-synuclein (α-syn). This study investigated whether passive immunization with a novel monoclonal α-syn antibody (9E4) against the C-terminus (CT) of α-syn was able to cross into the CNS and ameliorate the deficits associated with α-syn accumulation. In this study we demonstrate that 9E4 was effective at reducing behavioral deficits in the water maze, moreover, immunization with 9E4 reduced the accumulation of calpain-cleaved α-syn in axons and synapses and the associated neurodegenerative deficits. In vivo studies demonstrated that 9E4 traffics into the CNS, binds to cells that display α-syn accumulation and promotes α-syn clearance via the lysosomal pathway. These results suggest that passive immunization with monoclonal antibodies against the CT of α-syn may be of therapeutic relevance in patients with PD and DLB. PMID:21559417
NASA Astrophysics Data System (ADS)
Li, DengKe; Zhu, ZhengWang; Zhang, HaiFeng; Wang, AiMin; Hu, ZhuangQi
2012-12-01
The influence of Zr content on corrosion behaviors of the Ni61.5Nb38.5- x Zr x ( x=1, 3, 5, 7, 9 at.%) bulk metallic glasses (BMGs) in 1 M HCl aqueous solution was investigated by potentiodynamic polarization measurements and X-ray photo-electron spectroscopy (XPS). It was found that these BMG alloys possess superior corrosion resistance, that is, with large passive region of about 1.5 V and low passive current density (as low as 0.05 Am-2 for Ni61.5Nb31.5Zr7). XPS analysis indicates that the high corrosion resistance is attributed to the formation of Nb- and Zr-enriched surface films formed in the aggressive acid solution. The Zr substitution for Nb effectively reduces the Ni content, particularly the metallic state Ni content in the surface films, which depresses the electrical conduction of the surface films and reduces the passive current density, thus leading to the enhancement of the corrosion resistance of these Ni-Nb-Zr BMGs. These alloys may potentially be useful for engineering applications.
Lithium effects on the mechanical and electronic properties of germanium nanowires
NASA Astrophysics Data System (ADS)
González-Macías, A.; Salazar, F.; Miranda, A.; Trejo-Baños, A.; Pérez, L. A.; Carvajal, E.; Cruz-Irisson, M.
2018-04-01
Semiconductor nanowire arrays promise rapid development of a new generation of lithium (Li) batteries because they can store more Li atoms than conventional crystals due to their large surface areas. During the charge-discharge process, the electrodes experience internal stresses that fatigue the material and limit the useful life of the battery. The theoretical study of electronic and mechanical properties of lithiated nanowire arrays allows the designing of electrode materials that could improve battery performance. In this work, we present a density functional theory study of the electronic band structure, formation energy, binding energy, and Young’s modulus (Y) of hydrogen passivated germanium nanowires (H-GeNWs) grown along the [111] and [001] crystallographic directions with surface and interstitial Li atoms. The results show that the germanium nanowires (GeNWs) with surface Li atoms maintain their semiconducting behavior but their energy gap size decreases when the Li concentration grows. In contrast, the GeNWs can have semiconductor or metallic behavior depending on the concentration of the interstitial Li atoms. On the other hand, Y is an indicator of the structural changes that GeNWs suffer due to the concentration of Li atoms. For surface Li atoms, Y stays almost constant, whereas for interstitial Li atoms, the Y values indicate important structural changes in the GeNWs.
Lateral Organization of Lipids in Multi-component Liposomes
NASA Astrophysics Data System (ADS)
Ramachandran, Sanoop; Laradji, Mohamed; Sunil Kumar, P. B.
2009-04-01
Inspite of the fluid nature and low elastic modulus, membranes play a crucial role in maintaining the structural integrity of the cell. Recent experiments have challenged the passive nature of the membrane as proposed by the classical fluid mosaic model. Experiments indicate that biomembranes of eukaryotic cells may be laterally organized into small nanoscopic domains, called rafts, which are rich in sphingomyelin and cholesterol. It is largely believed that this in-plane organization is essential for a variety of physiological functions such as signaling, recruitment of specific proteins and endocytosis. However, elucidation of the fundamental issues including the mechanisms leading to the formation of lipid rafts, their stability, and their size remain difficult. This has reiterated the importance of understanding the equilibrium phase behavior and the kinetics of fluid multicomponent lipid membranes before attempts are made to find the effects of more complex mechanisms that may be involved in the formation and stability of lipid rafts. Current increase in interest in the domain formation in multicomponent membranes also stems from the experiments demonstrating fluid-fluid coexistence in mixtures of lipids and cholesterol and the success of several computational models in predicting their behavior. Here we review time dependent Ginzburg Landau model, dynamical triangulation Monte Carlo, and dissipative particle dynamics which are some of the methods that are commonly employed.
NASA Astrophysics Data System (ADS)
Pandey, Rahul; Chaujar, Rishu
2017-04-01
A 29.5% efficient perovskite/SiC passivated interdigitated back contact silicon heterojunction (IBC-SiHJ) mechanically stacked tandem solar cell device has been designed and simulated. This is a substantial improvement of 40% and 15%, respectively, compared to the transparent perovskite solar cell (21.1%) and Si solar cell (25.6%) operated individually. The perovskite solar cell has been used as a top subcell, whereas 250- and 25-μm-thick IBC-SiHJ solar cells have been used as bottom subcells. The realistic technology computer aided design analysis has been performed to understand the physical processes in the device and to make reliable predictions of the behavior. The performance of the top subcell has been obtained for different acceptor densities and hole mobility in Spiro-MeOTAD along with the impact of counter electrode work function. To incorporate the effect of material quality, the influence of carrier lifetimes has also been studied for perovskite top and IBC-SiHJ bottom subcells. The optical and electrical behavior of the devices has been obtained for both standalone as well as tandem configuration. Results reported in this study reveal that the proposed four-terminal tandem device may open a new door for cost-effective and energy-efficient applications.
Distributed multirobot sensing and tracking: a behavior-based approach
NASA Astrophysics Data System (ADS)
Parker, Lynne E.
1995-09-01
An important issue that arises in the automation of many large-scale surveillance and reconnaissance tasks is that of tracking the movements of (or maintaining passive contact with) objects navigating in a bounded area of interest. Oftentimes in these problems, the area to be monitored will move over time or will not permit fixed sensors, thus requiring a team of mobile sensors--or robots--to monitor the area collectively. In these situations, the robots must not only have mechanisms for determining how to track objects and how to fuse information from neighboring robots, but they must also have distributed control strategies for ensuring that the entire area of interest is continually covered to the greatest extent possible. This paper focuses on the distributed control issue by describing a proposed decentralized control mechanism that allows a team of robots to collectively track and monitor objects in an uncluttered area of interest. The approach is based upon an extension to the ALLIANCE behavior-based architecture that generalizes from the domain of loosely-coupled, independent applications to the domain of strongly cooperative applications, in which the action selection of a robot is dependent upon the actions selected by its teammates. We conclude the paper be describing our ongoing implementation of the proposed approach on a team of four mobile robots.
Hodzic, Amra; Veit, Ralf; Karim, Ahmed A; Erb, Michael; Godde, Ben
2004-01-14
Perceptual learning can be induced by passive tactile coactivation without attention or reinforcement. We used functional MRI (fMRI) and psychophysics to investigate in detail the specificity of this type of learning for different tactile discrimination tasks and the underlying cortical reorganization. We found that a few hours of Hebbian coactivation evoked a significant increase of primary (SI) and secondary (SII) somatosensory cortical areas representing the stimulated body parts. The amount of plastic changes was strongly correlated with improvement in spatial discrimination performance. However, in the same subjects, frequency discrimination was impaired after coactivation, indicating that even maladaptive processes can be induced by intense passive sensory stimulation.
Structures and Intermittency in a Passive Scalar Model
NASA Astrophysics Data System (ADS)
Vergassola, M.; Mazzino, A.
1997-09-01
Perturbative expansions for intermittency scaling exponents in the Kraichnan passive scalar model [Phys. Rev. Lett. 72, 1016 (1994)] are investigated. A one-dimensional compressible model is considered for this purpose. High resolution Monte Carlo simulations using an Ito approach adapted to an advecting velocity field with a very short correlation time are performed and lead to clean scaling behavior for passive scalar structure functions. Perturbative predictions for the scaling exponents around the Gaussian limit of the model are derived as in the Kraichnan model. Their comparison with the simulations indicates that the scale-invariant perturbative scheme correctly captures the inertial range intermittency corrections associated with the intense localized structures observed in the dynamics.
Machado, Aline dos Santos; Pires-Neto, Ruy Camargo; Carvalho, Maurício Tatsch Ximenes; Soares, Janice Cristina; Cardoso, Dannuey Machado; de Albuquerque, Isabella Martins
2017-01-01
ABSTRACT Objective: To evaluate the effects that passive cycling exercise, in combination with conventional physical therapy, have on peripheral muscle strength, duration of mechanical ventilation, and length of hospital stay in critically ill patients admitted to the ICU of a tertiary care university hospital. Methods: This was a randomized clinical trial involving 38 patients (≥ 18 years of age) on mechanical ventilation who were randomly divided into two groups: control (n = 16), receiving conventional physical therapy; and intervention (n = 22), receiving conventional physical therapy and engaging in passive cycling exercise five days per week. The mean age of the patients was 46.42 ± 16.25 years, and 23 were male. The outcomes studied were peripheral muscle strength, as measured by the Medical Research Council scale, duration of mechanical ventilation, and length of hospital stay. Results: There was a significant increase in peripheral muscle strength (baseline vs. final) in both groups (control: 40.81 ± 7.68 vs. 45.00 ± 6.89; and intervention: 38.73 ± 11.11 vs. 47.18 ± 8.75; p < 0.001 for both). However, the range of increase in strength was higher in the intervention group than in the control group (8.45 ± 5.20 vs. 4.18 ± 2.63; p = 0.005). There were no significant differences between the groups in terms of duration of mechanical ventilation or length of hospital stay. Conclusions: The results suggest that the performance of continuous passive mobilization on a cyclical basis helps to recover peripheral muscle strength in ICU patients. (ClinicalTrials.gov Identifier: NCT01769846 [http://www.clinicaltrials.gov/]) PMID:28538781
2001-10-25
axis during passive elbow extension. A padded shoulder block was placed superior to the subject’s acromioclavicular joint to stabilize the shoulder...girdle position. A pressure sensor was used between the padded shoulder block and the acromioclavicular joint to monitor and standardize the pressure
NASA Astrophysics Data System (ADS)
Kotulak, Nicole A.; Chen, Meixi; Schreiber, Nikolas; Jones, Kevin; Opila, Robert L.
2015-11-01
The surface passivation of p-benzoquinone (BQ) and hydroquinone (HQ) when dissolved in methanol (ME) has been examined through effective lifetime testing of crystalline silicon (c-Si) wafers treated with the aforementioned solutions. Changes in the availability of both photons and protons in the solutions were demonstrated to affect the level of passivation achieved. The requirement of both excess protons and ambient light exposure to maintain high effective lifetimes supports the presence of a free radical species that drives the surface passivation. Surface analysis suggests a 1:1 ratio of HQ-like bonds to methoxy bonds on the c-Si surface after treatment with a BQ/ME solution.
Passive water collection with the integument: mechanisms and their biomimetic potential.
Comanns, Philipp
2018-05-22
Several mechanisms of water acquisition have evolved in animals living in arid habitats to cope with limited water supply. They enable access to water sources such as rain, dew, thermally facilitated condensation on the skin, fog, or moisture from a damp substrate. This Review describes how a significant number of animals - in excess of 39 species from 24 genera - have acquired the ability to passively collect water with their integument. This ability results from chemical and structural properties of the integument, which, in each species, facilitate one or more of six basic mechanisms: increased surface wettability, increased spreading area, transport of water over relatively large distances, accumulation and storage of collected water, condensation, and utilization of gravity. Details are described for each basic mechanism. The potential for bio-inspired improvement of technical applications has been demonstrated in many cases, in particular for several wetting phenomena, fog collection and passive, directional transport of liquids. Also considered here are potential applications in the fields of water supply, lubrication, heat exchangers, microfluidics and hygiene products. These present opportunities for innovations, not only in product functionality, but also for fabrication processes, where resources and environmental impact can be reduced. © 2018. Published by The Company of Biologists Ltd.
Retardation mechanism of ultrathin Al2O3 interlayer on Y2O3 passivated gallium nitride surface.
Quah, Hock Jin; Cheong, Kuan Yew
2014-05-28
A systematic investigation was carried out by incorporating an ultrathin aluminum oxide (Al2O3) as an interlayer between yttrium oxide (Y2O3) passivation layer and GaN substrate. The sandwiched samples were then subjected to postdeposition annealing in oxygen ambient from 400 to 800 °C. The Al2O3 interlayer was discovered to play a significant role in slowing down inward diffusion of oxygen through the Y2O3 passivation layer as well as in impeding outward diffusion of Ga(3+) and N(3-) from the decomposed GaN surface. These beneficial effects have suppressed subsequent formation of interfacial layer. A mechanism in association with the function of Al2O3 as an interlayer was suggested and discussed. The mechanism was explicitly described on the basis of the obtained results from X-ray diffraction, X-ray photoelectron spectroscopy, energy-filtered transmission electron microscopy (TEM), high resolution TEM, and electron energy loss spectroscopy line scan. A correlation between the proposed mechanism and metal-oxide-semiconductor characteristics of Y2O3/Al2O3/GaN structure has been proposed.
Kaneda, Takumi; Shigemune, Yayoi; Tsukiura, Takashi
2017-02-01
Memories for emotion-laden stimuli are remembered more accurately than those for neutral stimuli. Although this enhancement reflects stimulus-driven modulation of memory by emotions, functional neuroimaging evidence of the interacting mechanisms between emotions generated by intentional processes, such as semantic elaboration, and memory is scarce. The present fMRI study investigated how encoding-related activation is modulated by emotions generated during the process of semantic elaboration. During encoding with fMRI, healthy young adults viewed neutral (target) pictures either passively or with semantic elaboration. In semantic elaboration, participants imagined background stories related to the pictures. Encoding trials with semantic elaboration were subdivided into conditions in which participants imagined negative, positive, or neutral stories. One week later, memories for target pictures were tested. In behavioral results, memories for target pictures were significantly enhanced by semantic elaboration, compared to passive viewing, and the memory enhancement was more remarkable when negative or positive stories were imagined. fMRI results demonstrated that activations in the left inferior frontal gyrus and dorsal medial prefrontal cortex (dmPFC) were greater during the encoding of target pictures with semantic elaboration than those with passive viewing, and that these activations further increased during encoding with semantic elaboration of emotional stories than of neutral stories. Functional connectivity between the left inferior frontal gyrus and dmPFC/hippocampus during encoding significantly predicted retrieval accuracies of memories encoded with self-generated emotional stories. These findings suggest that networks including the left inferior frontal region, dmPFC, and hippocampus could contribute to the modulation of memories encoded with the emotion generation.
Adaptive-passive vibration control systems for industrial applications
NASA Astrophysics Data System (ADS)
Mayer, D.; Pfeiffer, T.; Vrbata, J.; Melz, T.
2015-04-01
Tuned vibration absorbers have become common for passive vibration reduction in many industrial applications. Lightly damped absorbers (also called neutralizers) can be used to suppress narrowband disturbances by tuning them to the excitation frequency. If the resonance is adapted in-operation, the performance of those devices can be significantly enhanced, or inertial mass can be decreased. However, the integration of actuators, sensors and control electronics into the system raises new design challenges. In this work, the development of adaptive-passive systems for vibration reduction at an industrial scale is presented. As an example, vibration reduction of a ship engine was studied in a full scale test. Simulations were used to study the feasibility and evaluate the system concept at an early stage. Several ways to adjust the resonance of the neutralizer were evaluated, including piezoelectric actuation and common mechatronic drives. Prototypes were implemented and tested. Since vibration absorbers suffer from high dynamic loads, reliability tests were used to assess the long-term behavior under operational conditions and to improve the components. It was proved that the adaptive systems are capable to withstand the mechanical loads in an industrial application. Also a control strategy had to be implemented in order to track the excitation frequency. The most mature concepts were integrated into the full scale test. An imbalance exciter was used to simulate the engine vibrations at a realistic level experimentally. The neutralizers were tested at varying excitation frequencies to evaluate the tracking capabilities of the control system. It was proved that a significant vibration reduction is possible.
Feasibility study of silicon nitride protection of plastic encapsulated semiconductors
NASA Technical Reports Server (NTRS)
Peters, J. W.; Hall, T. C.; Erickson, J. J.; Gebhart, F. L.
1979-01-01
The application of low temperature silicon nitride protective layers on wire bonded integrated circuits mounted on lead frame assemblies is reported. An evaluation of the mechanical and electrical compatibility of both plasma nitride and photochemical silicon nitride (photonitride) passivations (parallel evaluations) of integrated circuits which were then encapsulated in plastic is described. Photonitride passivation is compatible with all wire bonded lead frame assemblies, with or without initial chip passivation. Plasma nitride passivation of lead frame assemblies is possible only if the chip is passivated before lead frame assembly. The survival rate after the environmental test sequence of devices with a coating of plasma nitride on the chip and a coating of either plasma nitride or photonitride over the assembled device is significantly greater than that of devices assembled with no nitride protective coating over either chip or lead frame.
Yamada, K; Inoue, T; Tanaka, M; Furukawa, T
1985-04-01
Effects of aniracetam (1-anysoyl-2-pyrrolodone) and piracetam (1-acetamido-2-pyrrolidone) on passive avoidance behavior were studied in 2 and 18 months old rats using a step-down passive avoidance task. Repeated administration of aniracetam (30 and 50 mg/kg, IP X 5 days) or piracetam (100 mg/kg, IP X 5 days) significantly prolonged step-down latencies for a passive avoidance task in 2 months old rats. Administration of aniracetam (50 mg/kg, IP) or piracetam (100 mg/kg, IP), however, did not affect locomotor activity. This prolongation of latencies was also seen with oral administration of aniracetam (50 mg/kg X 5 days). Similar prolongation of latencies also occurred in 18 months old rat treated with aniracetam (50 mg/kg, IP X 5 days). The results imply that aniracetam may improve learning and/or memory in 2 and 18 months old rats.
NASA Astrophysics Data System (ADS)
Briley, Chad; Mock, Alyssa; Korlacki, Rafał; Hofmann, Tino; Schubert, Eva; Schubert, Mathias
2017-11-01
We present magneto-optical dielectric tensor data of cobalt and cobalt oxide slanted columnar thin films obtained by vector magneto-optical generalized ellipsometry. Room-temperature hysteresis magnetization measurements were performed in longitudinal and polar Kerr geometries on samples prior to and after a heat treatment process with and without a conformal Al2O3 passivation coating. The samples have been characterized by generalized ellipsometry, scanning electron microscopy, and Raman spectroscopy in conjuncture with density functional theory. We observe strongly anisotropic hysteresis behaviors, which depend on the nanocolumn and magnetizing field orientations. We find that deposited cobalt films that have been exposed to heat treatment and subsequent atmospheric oxidation into Co3O4, when not conformally passivated, reveal no measurable magneto-optical properties while cobalt films with passivation coatings retain highly anisotropic magneto-optical properties.
Effect of load deflection on corrosion behavior of NiTi wire.
Liu, I H; Lee, T M; Chang, C Y; Liu, C K
2007-06-01
For dental orthodontic applications, NiTi wires are used under bending conditions in the oral environment for a long period. The purpose of this study was to investigate the effect of bending stress on the corrosion of NiTi wires using potentiodynamic and potentiostatic tests in artificial saliva. The results indicated that bending stress induces a higher corrosion rate of NiTi wires in passive regions. It is suggested that the passive oxide film of specimens would be damaged under bending conditions. Auger electron spectroscopic analysis showed a lower thickness of passive films on stressed NiTi wires compared with unstressed specimens in the passive region. By scanning electron microscopy, localized corrosion was observed on stressed Sentalloy specimens after a potentiodynamic test at pH 2. In conclusion, this study indicated that bending stress changed the corrosion properties and surface characteristics of NiTi wires in a simulated intra-oral environment.
Perspectives on scaling and multiscaling in passive scalar turbulence
NASA Astrophysics Data System (ADS)
Banerjee, Tirthankar; Basu, Abhik
2018-05-01
We revisit the well-known problem of multiscaling in substances passively advected by homogeneous and isotropic turbulent flows or passive scalar turbulence. To that end we propose a two-parameter continuum hydrodynamic model for an advected substance concentration θ , parametrized jointly by y and y ¯, that characterize the spatial scaling behavior of the variances of the advecting stochastic velocity and the stochastic additive driving force, respectively. We analyze it within a one-loop dynamic renormalization group method to calculate the multiscaling exponents of the equal-time structure functions of θ . We show how the interplay between the advective velocity and the additive force may lead to simple scaling or multiscaling. In one limit, our results reduce to the well-known results from the Kraichnan model for passive scalar. Our framework of analysis should be of help for analytical approaches for the still intractable problem of fluid turbulence itself.
Development of heat-storage building materials for passive-solar applications
NASA Astrophysics Data System (ADS)
Fletcher, J. W.
A heat storage building material to be used for passive solar applications and general load leveling within building spaces was developed. Specifically, PCM-filled plastic panels are to be developed as wallboard and ceiling panels. Three PCMs (CaCl2, 6H2O; Na2SO4, 10H2O; LiNO3, 3H2O are to be evaluated for use in the double walled, hollow channeled plastic panels. Laboratory development of the panels will include determination of filling and sealing techniques, behavior of the PCMs, container properties and materials compatibility. Testing will include vapor transmission, thermal cycle, dynamic performance, accelerated life and durability tests. In addition to development and testing, an applications analysis will be performed for specific passive solar applications. Conceptual design of a single family passive solar residence will be prepared and performance evaluated. Screening of the three PCM candidates is essentially complete.
Jiang, Lixin; Probst, Tahira M
2016-06-01
While safety knowledge and safety motivation are well-established predictors of safety participation, less is known about the impact of leadership styles on these relationships. The purpose of the current study was to examine whether the positive relationships between safety knowledge and motivation and safety participation are contingent on transformational and passive forms of safety leadership. Using multilevel modeling with a sample of 171 employees nested in 40 workgroups, we found that transformational safety leadership strengthened the safety knowledge-participation relationship, whereas passive leadership weakened the safety motivation-participation relationship. Under low transformational leadership, safety motivation was not related to safety participation; under high passive leadership, safety knowledge was not related to safety participation. These results are discussed in light of organizational efforts to increase safety-related citizenship behaviors. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.
A Comparison of Passive Aggressive and Negativistic Personality Disorders
Hopwood, Christopher J.; Wright, Aidan G.C.
2012-01-01
Passive aggressive personality disorder (PAPD) has historically played an important role in clinical theorizing and was diagnosable prior to the DSM-IV, in which the construct was relabeled ‘negativistic’, expanded to include negative affective symptoms, and appendicized. In this study we tested the hypothesis that the expansion of PAPD to include content related to negative moods and non-specific personality pathology compromised its discriminant validity. In an undergraduate sample (N = 1215), a self-report measure of PAPD was only moderately related to NEGPD and showed less diagnostic overlap with other PDs than NEGPD. Furthermore, a conjoint factor analysis yielded a strong first factor (moodiness) which appeared less specific to passive aggressive behavior than three other factors (irresponsibility, inadequacy and contempt). We conclude that future research on this potentially important clinical construct should focus on core passive aggressive features and abandon the negativistic content that has been added to it in successive editions of the DSM. PMID:22329420
1980-07-01
the reac- tion modes of the Ag/AgCl, AgO/Ag 2O/Ag, and Zn/ ZnO electrodes and to testing various theories that predict electrode behavior. v LOCKHEED...of sudden passivation was related to a simul- taneous precipitation of flocculent ZnO , and this passivation was removed by addi- tion of fresh...vation occurred more slowly by covering with a thin, adherent film, and that a dis- solution, diffusion, deposition mode prevailed in the formation of ZnO
Alaal, Naresh; Medhekar, Nikhil; Shukla, Alok
2018-04-18
We employ a first-principles calculations based density-functional-theory (DFT) approach to study the electronic properties of partially and fully edge-hydrogenated armchair boron-nitrogen-carbon (BNC) nanoribbons (ABNCNRs), with widths between 0.85 nm to 2.3 nm. Due to the partial passivation of edges, the electrons, which do not participate in the bonding, form new energy states located near the Fermi-level. Because of these additional bands, some ABNCNRs exhibit metallic behavior, which is quite uncommon in armchair nanoribbons. Our calculations reveal that metallic behavior is observed for the following passivation patterns: (i) when the B atom from one edge and the N atom from another edge are unpassivated. (ii) when the N atoms from both the edges are unpassivated. (iii) when the C atom from one edge and the N atom from another edge are unpassivated. Furthermore, spin-polarization is also observed for certain passivation schemes, which is also quite uncommon for armchair nanoribbons. Thus, our results suggest that the ABNCNRs exhibit a wide range of electronic and magnetic properties in that the fully edge-hydrogenated ABNCNRs are direct band gap semiconductors, while the partially edge-hydrogenated ones are either semiconducting, or metallic, while simultaneously exhibiting spin polarization, based on the nature of passivation. We also find that the ribbons with larger widths are more stable as compared to the narrower ones.
Snakes on a plane: modeling flexible active nematics
NASA Astrophysics Data System (ADS)
Selinger, Robin
Active soft matter systems of self-propelled rod-shaped particles exhibit ordered phases and collective behavior that are remarkably different from their passive analogs. In nature, many self-propelled rod-shaped particles, such as gliding bacteria and kinesin-driven microtubules, are flexible and can bend. We model these ``living liquid crystals'' to explore their phase behavior, dynamics, and pattern formation. We model particles as short polymers via molecular dynamics with a Langevin thermostat and various types of activity, substrate, and environments. For self-propelled polar particles gliding on a solid substrate, we map out the phase diagram as a function of particle density and flexibility. We compare simulated defect structures to those observed in colonies of gliding myxobacteria; compare spooling behavior to that observed in microtubule gliding assays; and analyze emergence of nematic and polar order. Next we explore pattern formation of self-propelled polar particles under flexible encapsulation, and on substrates with non-uniform Gaussian curvature. Lastly, we impose an activity mechanism that mimics extensile shear, study flexible particles both on solid substrates and coupled to a lipid membrane, and discuss comparisons to relevant experiments. Work performed in collaboration with Michael Varga (Kent State) and Luca Giomi (Universiteit Leiden.) Work supported by NSF DMR-1409658.
Atomic level characterization in corrosion studies
NASA Astrophysics Data System (ADS)
Marcus, Philippe; Maurice, Vincent
2017-06-01
Atomic level characterization brings fundamental insight into the mechanisms of self-protection against corrosion of metals and alloys by oxide passive films and into how localized corrosion is initiated on passivated metal surfaces. This is illustrated in this overview with selected data obtained at the subnanometre, i.e. atomic or molecular, scale and also at the nanometre scale on single-crystal copper, nickel, chromium and stainless steel surfaces passivated in well-controlled conditions and analysed in situ and/or ex situ by scanning tunnelling microscopy/spectroscopy and atomic force microscopy. A selected example of corrosion modelling by ab initio density functional theory is also presented. The discussed aspects include the surface reconstruction induced by hydroxide adsorption and formation of two-dimensional (hydr)oxide precursors, the atomic structure, orientation and surface hydroxylation of three-dimensional ultrathin oxide passive films, the effect of grain boundaries in polycrystalline passive films acting as preferential sites of passivity breakdown, the differences in local electronic properties measured at grain boundaries of passive films and the role of step edges at the exposed surface of oxide grains on the dissolution of the passive film. This article is part of the themed issue 'The challenges of hydrogen and metals'.
Coping Styles and Gender-Role: Some Implications for Mexican American Adult Education.
ERIC Educational Resources Information Center
Evans, Stephanie; Crockett, Stanley
Passive coping behavior and traditional role-gender definitions affect learning needs of segments of the Mexican American adult community and may affect the behavioral development of younger family members. Networking within the community is useful in defining and meeting learning needs of adult Mexican Americans by creating cooperative,…
Doing It MySELF: A Protocol Supporting Young Adults in Managing Their Behavior
ERIC Educational Resources Information Center
Clouse, Diane E.; Bauer, Anne M.
2016-01-01
Self-advocacy, self-management, self-regulation, and self-knowledge are complex terms, often considered forms of self-determination. Whatever term you may use, helping young adults with intellectual disability (ID) make authentic decisions about their own goals and behaviors often results in passive agreement. Even though advancing…
ERIC Educational Resources Information Center
Sagiv, Lilach
1999-01-01
A taxonomy of decision behavior styles (independence/dependence, active/passive, insightful/not) tested with 372 career counseling clients was supported by similar structure analysis and confirmatory factor analysis. Counselors were more likely to be satisfied with decisions of clients they perceived to be insightful. (SK)
The Place of Drugs in the Management of Behavior Disorders after Traumatic Brain Injury.
ERIC Educational Resources Information Center
Rose, Martyn J.
1988-01-01
The article examines the role of drug treatment stressing the need to treat disorders of brain function rather than direct behavior control. Treatment principles concern classification, dosage, monitoring effects, timing of therapy, the distinction between passive and active disorders as well as syndromal, manipulative, ritualistic, cyclothymic,…
Cognitive Behavior Therapy for Relatively Active and for Passive Chronic Fatigue Syndrome Patients
ERIC Educational Resources Information Center
Bazelmans, Ellen; Prins, Judith; Bleijenberg, Gijs
2006-01-01
In chronic fatigue syndrome (CFS), facilitating, initiating, and perpetuating factors are distinguished. Although somatic factors might have initiated symptoms in CFS, they do not explain the persistence of fatigue. Cognitive behavior therapy (CBT) for CFS focuses on factors that perpetuate and prolong symptoms. Recently it has been shown that,…
Health behaviors and occupational stress of Brazilian civil servants living in an urban center.
Goston, Janaina Lavalli; Caiaffa, Waleska Teixeira; de Souza Andrade, Amanda Cristina; Vlahov, David
2013-01-01
Occupational stress and unhealthy lifestyles are common characteristics of urban workers. The association between health behaviors and job stress of urban Brazilian civil servants was studied. A cross-sectional study included 893 workers. Health markers, the dependent variables, were: Fruit/vegetable (FV) and alcohol (A) intake, physical activity (PA), including at work (PAW), smoking (S), BMI ≥ 25 Kg/m(2). Occupational stress, assessed by Job Stress Scale-Brazilian version, classified employees into: High-strain, Low-strain, Active, and Passive. Prevalence rates and multivariate Poisson models were adopted. On average, employees (mean age = 40.2 years; 69.1% female) reported healthy lifestyle factors: FV (56%); PA (59.7%); S (13.3%); however, 49.4% were overweight. Compared to low-strain, high-strain workers reported higher PAW; passive workers lesser PA and higher PAW. After adjusting for socio-demographics and work characteristics, the occupational stress dimensions were no longer associated to health behaviors. Our results do not support the hypothesis of an effect for occupational stress on urban employees' health behaviors. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willemin, Marie-Emilie; Lumen, Annie, E-mail: Anni
Thyroid homeostasis can be disturbed due to thiocyanate exposure from the diet or tobacco smoke. Thiocyanate inhibits both thyroidal uptake of iodide, via the sodium-iodide symporter (NIS), and thyroid hormone (TH) synthesis in the thyroid, via thyroid peroxidase (TPO), but the mode of action of thiocyanate is poorly quantified in the literature. The characterization of the link between intra-thyroidal thiocyanate concentrations and dose of exposure is crucial for assessing the risk of thyroid perturbations due to thiocyanate exposure. We developed a PBPK model for thiocyanate that describes its kinetics in the whole-body up to daily doses of 0.15 mmol/kg, withmore » a mechanistic description of the thyroidal kinetics including NIS, passive diffusion, and TPO. The model was calibrated in a Bayesian framework using published studies in rats. Goodness-of-fit was satisfactory, especially for intra-thyroidal thiocyanate concentrations. Thiocyanate kinetic processes were quantified in vivo, including the metabolic clearance by TPO. The passive diffusion rate was found to be greater than NIS-mediated uptake rate. The model captured the dose-dependent kinetics of thiocyanate after acute and chronic exposures. Model behavior was evaluated using a Morris screening test. The distribution of thiocyanate into the thyroid was found to be determined primarily by the partition coefficient, followed by NIS and passive diffusion; the impact of the latter two mechanisms appears to increase at very low doses. Extrapolation to humans resulted in good predictions of thiocyanate kinetics during chronic exposure. The developed PBPK model can be used in risk assessment to quantify dose-response effects of thiocyanate on TH. - Highlights: • A PBPK model of thiocyanate (SCN{sup −}) was calibrated in rats in a Bayesian framework. • The intra-thyroidal kinetics of thiocyanate including NIS and TPO was modeled. • Passive diffusion rate for SCN{sup −} seemed to be greater than the NIS-mediated uptake. • The dose-dependent kinetics of SCN{sup −} was captured after an acute and chronic exposure. • The PBPK model of thiocyanate was successfully extrapolated to humans.« less
Jordan, Gregory J.; Brodribb, Timothy J.
2017-01-01
Producing leaves with closely spaced veins is a key innovation linked to high rates of photosynthesis in angiosperms. A close geometric link between veins and stomata in angiosperms ensures that investment in enhanced venous water transport provides the strongest net carbon return to the plant. This link is underpinned by “passive dilution” via expansion of surrounding cells. However, it is not known whether this ‘passive dilution’ mechanism is present in plant lineages other than angiosperms and is another key feature of the angiosperms’ evolutionary success. Consequently, we sought to determine whether the ‘passive dilution’ mechanism is; (i) exclusive to the angiosperms, (ii) a conserved mechanism that evolved in the common ancestor of ferns and angiosperms, or (iii) has evolved continuously over time. To do this we first we assessed the plasticity of vein and stomatal density and epidermal cell size in ferns in response to light environment. We then compared the relationships between these traits found among ferns with modelled relationships that assume vein and stomatal density respond passively to epidermal cell expansion, and with those previously observed in angiosperms. Vein density, stomatal density and epidermal cell size were linked in ferns with remarkably similar relationships to those observed in angiosperms, except that fern leaves had fewer veins per stomata. However, plasticity was limited in ferns and stomatal spacing was dependent on active stomatal differentiation as well as passive cell expansion. Thus, ferns (like angiosperms) appear to coordinate vein and stomatal density with epidermal cell expansion to some extent to maintain a constant ratio between veins and stomata in the leaf. The different general relationships between vein density and stomatal density in ferns and angiosperms suggests the groups have different optimum balances between the production of vein tissue dedicated to water supply and stomatal tissue for gas exchange. PMID:28953931
Carrier characteristics influence the kinetics of passive drug loading into lipid nanoemulsions.
Göke, Katrin; Bunjes, Heike
2018-05-01
Passive loading as a novel screening approach is a material-saving tool for the efficient selection of a suitable colloidal lipid carrier system for poorly water soluble drug candidates. This method comprises incubation of preformed carrier systems with drug powder and subsequent determination of the resulting drug load of the carrier particles after removal of excess drug. For reliable routine use and to obtain meaningful loading results, information on the kinetics of the process is required. Passive loading proceeds via a dissolution-diffusion-based mechanism, where drug surface area and drug water solubility are key parameters for fast passive loading. While the influence of the drug characteristics is mostly understood, the influence of the carrier characteristics remains unknown. The aim of this study was to examine how the lipid nanocarriers' characteristics, i.e. the type of lipid, the lipid content and the particle size, influence the kinetics of passive loading. Fenofibrate was used as model drug and the loading progress was analyzed by UV spectroscopy. The saturation solubility in the nanocarrier particles, i.e. the lipid type, did not influence the passive loading rate constant. Low lipid content in the nanocarrier and a small nanocarrier particle size both increased passive loading speed. Both variations increase the diffusivity of the nanocarrier particles, which is the primary cause for fast loading at these conditions: The quicker the carrier particles diffuse, the higher is the speed of passive loading. The influence of the diffusivity of the lipid nanocarriers and the effect of drug dissolution rate were included in an overall mechanistic model developed for similar processes (A. Balakrishnan, B.D. Rege, G.L. Amidon, J.E. Polli, Surfactant-mediated dissolution: contributions of solubility enhancement and relatively low micelle diffusivity, J. Pharm. Sci. 93 (2004) 2064-2075). The resulting mechanistic model gave a good estimate of the speed of passive loading in nanoemulsions. Whilst the drug's characteristics - apart from drug surface area - are basically fixed, the lipid nanocarriers can be customized to improve passive loading speed, e.g. by using small nanocarrier particles. The knowledge of the loading mechanism now allows the use of passive loading for the straightforward, material-saving selection of suitable lipid drug nanocarriers. Copyright © 2017 Elsevier B.V. All rights reserved.
Chapy, Hélène; Smirnova, Maria; André, Pascal; Schlatter, Joël; Chiadmi, Fouad; Couraud, Pierre-Olivier; Scherrmann, Jean-Michel; Declèves, Xavier; Cisternino, Salvatore
2014-10-31
The rate of entry of cocaine into the brain is a critical factor that influences neuronal plasticity and the development of cocaine addiction. Until now, passive diffusion has been considered the unique mechanism known by which cocaine crosses the blood-brain barrier. We reassessed mechanisms of transport of cocaine at the blood-brain barrier using a human cerebral capillary endothelial cell line (hCMEC/D3) and in situ mouse carotid perfusion. Both in vivo and in vitro cocaine transport studies demonstrated the coexistence of a carrier-mediated process with passive diffusion. At pharmacological exposure level, passive diffusion of cocaine accounted for only 22.5% of the total cocaine influx in mice and 5.9% in hCMEC/D3 cells, whereas the carrier-mediated influx rate was 3.4 times greater than its passive diffusion rate in vivo. The functional identification of this carrier-mediated transport demonstrated the involvement of a proton antiporter that shared the properties of the previously characterized clonidine and nicotine transporter. The functionnal characterization suggests that the solute carrier (SLC) transporters Oct (Slc22a1-3), Mate (Slc47a1) and Octn (Slc22a4-5) are not involved in the cocaine transport in vivo and in vitro. Diphenhydramine, heroin, tramadol, cocaethylene, and norcocaine all strongly inhibited cocaine transport, unlike benzoylecgonine. Trans-stimulation studies indicated that diphenhydramine, nicotine, 3,4-methylenedioxyamphetamine (ecstasy) and the cathinone compound 3,4-methylenedioxypyrovalerone (MDPV) were also substrates of the cocaine transporter. Cocaine transport at the BBB involves a proton-antiporter flux that is quantitatively much more important than its passive diffusion. The molecular identification and characterization of this transporter will provide new tools to understand its role in addictive mechanisms. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Grasa, J; Sierra, M; Muñoz, M J; Soteras, F; Osta, R; Calvo, B; Miana-Mena, F J
2014-11-01
The present study shows a new computational FEM technique to simulate the evolution of the mechanical response of 3D muscle models subjected to fatigue. In an attempt to obtain very realistic models, parameters needed to adjust the mathematical formulation were obtained from in vivo experimental tests. The fatigue contractile properties of three different rat muscles (Tibialis Anterior, Extensor Digitorium Longus and Soleus) subjected to sustained maximal isometric contraction were determined. Experiments were conducted on three groups [Formula: see text] of male Wistar rats [Formula: see text] using a protocol previously developed by the authors for short tetanic contractions. The muscles were subjected to an electrical stimulus to achieve tetanic contraction during 10 s. The parameters obtained for each muscle were incorporated into a finite strain formulation for simulating active and passive behavior of muscles with different fiber metabolisms. The results show the potential of the model to predict muscle fatigue under high-frequency stimulation and the 3D distribution of mechanical variables such as stresses and strains.
NASA Astrophysics Data System (ADS)
Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc
2017-02-01
Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.
Arakawa, Hiroyuki
2006-01-01
This study examined the effect of the establishment of dominance relationships and subordination on exploratory behavior for both postpubertal and adult male rats. Prior to an open field test, subjects were housed either in isolation (IS) or in littermate pairs (PS) with mild dominance relationships without overt victory or defeat, or in pairs with clear hierarchical relationships as dominants (DOM) or subordinates (SUB). Stretch-attend postures and entries into the center area of the open-field were measured as an index of passive and active exploratory behavior, respectively, and crossings in the peripheral area were counted as activity. SUB rats, both postpubertal and adult, displayed less activity and lower levels of active exploratory behavior, whereas adult IS rats showed higher levels of active exploratory behavior compared to the other groups. Furthermore, both DOM and PS rats exhibited a more passive pattern of exploratory behavior in adulthood than in postpuberty. Thus the results show that an increase in the active exploratory pattern is inhibited by the establishment of social relationships among adult rats, while a decrease in activity is a primarily effect of subordination. The capacity to change exploratory patterns following subordination is found even in the postpubertal stage when adultlike social relationships have not yet appeared. Copyright 2005 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhao, Lei; Wang, Guanghong; Diao, Hongwei; Wang, Wenjing
2018-01-01
AFORS-HET (automat for simulation of heterostructures) simulation was utilized to explore the physical criteria for the passivation layer in hydrogenated amorphous/crystalline silicon heterojunction (SHJ) solar cells, by systematically investigating the solar cell current density-voltage (J-V) performance as a function of the interface defect density (D it) at the passivation layer/c-Si hetero-interface, the thickness (t) of the passivation layer, the bandgap (E g) of the passivation layer, and the density of dangling bond states (D db)/band tail states (D bt) in the band gap of the passivation layer. The corresponding impact regulations were presented clearly. Except for D it, the impacts of D db, D bt and E g are strongly dependent on the passivation layer thickness t. While t is smaller than 4-5 nm, the solar cell performance is less sensitive to the variation of D db, D bt and E g. Low D it at the a-Si:H/c-Si interface and small thickness t are the critical criteria for the passivation layer in such a case. However, if t has to be relatively larger, the microstructure, i.e. the material quality, including D db, D bt and E g, of the passivation layer should be controlled carefully. The mechanisms involved were analyzed and some applicable methods to prepare the passivation layer were proposed.
Effects of the estrous cycle and ovarian hormones on behavioral indices of anxiety in female rats.
Mora, S; Dussaubat, N; Díaz-Véliz, G
1996-10-01
The influence of the estrous cycle and the effects of exogenous administration of estradiol and progesterone on level of anxiety were studied in intact and ovariectomized rats. Intact Sprague-Dawley female rats were classified according to the stages of estrous cycle. Another group of rats was ovariectomized bilaterally and, 14 days after surgery, they received estradiol benzoate (10 micrograms/kg, s.c.) and/or progesterone (25 mg/kg, s.c.) or corn oil (1 ml/kg). The behavioral tests began 3 h after estradiol or 6 h after progesterone and consisted of: (1) exploration of an elevated plus-maze; and (2) retention of a passive avoidance response. Open-arm exploration of the plus-maze varied according to light intensity and the stages of the estrous cycle. There was a slight increase in open-arm exploration by rats in metestrus, under high light intensity. Low light intensity increased the exploration of the open arms by rats in proestrus and estrus, compared to the other phases of the cycle. Retention of the passive avoidance response was inhibited during proestrus and estrus. Progesterone increased open-arm exploration of the plus-maze under high light conditions, whereas estradiol antagonized this effect. Retention of passive avoidance was inhibited after estradiol or progesterone injection. These results suggest that the behavioral indices of anxiety can vary across the estrous cycle, that low light intensities have anxiolytic-like effects, and that the sensitivity to this effect is higher during proestrus and estrus. This could be explained through modulatory effects of ovarian hormones upon behavioral indices of anxiety.
Kolanowski, Ann; Litaker, Mark; Buettner, Lin; Moeller, Joyel; Costa, Paul T
2011-06-01
To test the main and interactive effects of activities derived from the Need-Driven Dementia-Compromised Behavior model for responding to behavioral symptoms in nursing home residents. Randomized double-blind clinical trial. Nine community-based nursing homes. One hundred twenty-eight cognitively impaired residents randomly assigned to activities adjusted to functional level (FL) (n=32), personality style of interest (PSI) (n=33), functional level and personality style of interest (FL+PSI) (n=31), or active control (AC) (n=32). Three weeks of activities provided twice daily. Agitation, passivity, engagement, affect, and mood assessed from video recordings and real-time observations during baseline, intervention, random times outside of intervention, and 1 week after intervention. All treatments improved outcomes during intervention except mood, which worsened under AC. During intervention the PSI group demonstrated greater engagement, alertness, and attention than the other groups; the FL+PSI group demonstrated greater pleasure. During random times, engagement returned to baseline levels except in the FL group in which it decreased. There was also less agitation and passivity in groups with a component adjusted to PSI. One week after the intervention, mood, anxiety, and passivity improved over baseline; significantly less pleasure was displayed after withdrawal of treatment. The hypothesis that activities adjusted to FL+PSI would improve behavioral outcomes to a greater extent than partially adjusted or nonadjusted activities was partially supported. PSI is a critical component of individualized activity prescription. © 2011, Copyright the Authors. Journal compilation © 2011, The American Geriatrics Society.
Ramirez, Artemio; Sumner, Erin M; Hayes, Jameson
2016-08-01
Social network sites (SNSs) such as Facebook function as both venues for reconnecting with associates from a user's past and sources of social information about them. Yet, little is known about what factors influence the initial decision to reconnect with a past associate. This oversight is significant given that SNSs and other platforms provide an abundance of social information that may be utilized for reaching such decisions. The present study investigated the links among relational reconnection, information seeking (IS) behavior, and individual- and relationship-level factors in user decisions to reconnect on Facebook. A national survey of 244 Facebook users reported on their most recent experience of receiving a friend request from someone with whom they had been out of contact for an extended period. Results indicated that uncertainty about the potential reconnection partner and forecast about the reconnection's potential reward level significantly predicted IS behavior (passive on both target and mutual friends' SNS pages as well as active). However, the emergence of their two-way interaction revealed that the forecasts moderated the IS-uncertainty link on three of the strategies (extractive, both passive approaches). Moreover, social anxiety, sociability, uncertainty about the partner, the forecast about the reconnection's reward level, and extractive and passive (target SNS pages) strategies significantly predicted user decisions to reconnect. Future directions for research on relational reconnection on SNSs are offered.
The structure of turbulent channel flow with passive scalar transport
NASA Technical Reports Server (NTRS)
Guezennec, Y.; Stretch, D.; Kim, J.
1990-01-01
The simulation of turbulent channel flow, with various passive markers, was examined to investigate the local mechanisms of passive scalar transport. We found significant differences between the local transport of heat and momentum, even when the molecular and turbulent Prandtl numbers are of order one. These discrepancies can be attributed to the role of the pressure. We also found that the heat is a poor marker of the vorticity field outside of the near wall region and that scalar transport over significant distances results from the aggregate effect of many turbulent eddies.
NASA Astrophysics Data System (ADS)
Joo, So-Yeong; Park, Hyun-Su; Kim, Do-yeon; Kim, Bum-Sung; Lee, Chan Gi; Kim, Woo-Byoung
2018-01-01
In this study, we have developed an effective amino passivation process for quantum dots (QDs) at room temperature and have investigated a passivation mechanism using a photo-assisted chemical method. As a result of the reverse reaction of the H2O molecules, the etching kinetics of the photo-assisted chemical method increased upon increasing the 3-amino-1-propanol (APOL)/H2O ratio of the etching solution. Photon-excited electron-hole pairs lead to strong bonding between the organic and surface atoms of the QDs, and results in an increase of the quantum yield (QY%). This passivation method is also applicable to CdSe/ZnSe core/shell structures of QDs, due to the passivation of mid-gap defects states at the interface. The QY% of the as-synthesized CdSe QDs is dramatically enhanced by the amino passivation from 37% to 75% and the QY% of the CdSe/ZnSe core/shell QDs is also improved by ˜28%.
77 FR 61745 - Endangered Species; File No. 16803
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-11
... work is to determine their abundance, size ranges, growth, sex ratio, health status, diving behavior... procedures performed before release: Photography/video; carapace marking; flipper tagging and passive...
Blažek, Patrick; Ferri-Certić, Jerko; Vražić, Hrvoje; Lennerz, Carsten; Grebmer, Christian; Kaitani, Kazuaki; Karch, Martin; Starčević, Boris; Semmler, Verena; Kolb, Christof
2018-03-20
Fixation of the pacemaker leads during pacemaker implantation leads to an increase of cardiac Troponin T (cTnT) that can be interpreted as a sign of minimal myocardial damage. This trial evaluates whether the mechanism type of lead fixation influences the magnitude of cTnT release. Patients having a de-novo cardiac pacemaker implantation or a lead revision were centrally randomized to receive either a ventricular lead with an active (screw) or passive (tine) fixation mechanism. High-sensitive Troponin T (hsTnT) was determined on the day of the procedure beforehand and on the following day. 326 Patients (median age (IQR) 75.0 (69.0-80.0) years, 64% male) from six international centers were randomized to receive ventricular leads with an active (n = 166) or passive (n = 160) fixation mechanism. Median (IQR) hsTnT levels increased by 0.009 (0.004-0.021) ng/ml in the group receiving screw-in ventricular leads and by 0.008 (0.003-0.030) ng/ml in the group receiving tined ventricular leads (n.s.). In conclusion pacemaker implantations are followed by a release of hsTnT. The choice between active or passive fixation ventricular leads does not have a significant influence on the extent of myocardial injury and the magnitude of hsTnT release.
Calling behavior of blue and fin whales off California
NASA Astrophysics Data System (ADS)
Oleson, Erin Marie
Passive acoustic monitoring is an effective means for evaluating cetacean presence in remote regions and over long time periods, and may become an important component of cetacean abundance surveys. To use passive acoustic recordings for abundance estimation, an understanding of the behavioral ecology of cetacean calling is crucial. In this dissertation, I develop a better understanding of how blue (Balaenoptera musculus) and fin (B. physalus ) whales use sound with the goal of evaluating passive acoustic techniques for studying their populations. Both blue and fin whales produce several different call types, though the behavioral and environmental context of these calls have not been widely investigated. To better understand how calling is used by these whales off California I have employed both new technologies and traditional techniques, including acoustic recording tags, continuous long-term autonomous acoustic recordings, and simultaneous shipboard acoustic and visual surveys. The outcome of these investigations has led to several conclusions. The production of blue whale calls varies with sex, behavior, season, location, and time of day. Each blue whale call type has a distinct behavioral context, including a male-only bias in the production of song, a call type thought to function in reproduction, and the production of some calls by both sexes. Long-term acoustic records, when interpreted using all call types, provide a more accurate measure of the local seasonal presence of whales, and how they use the region annually, seasonally and daily. The relative occurrence of different call types may indicate prime foraging habitat and the presence of different segments of the population. The proportion of animals heard calling changes seasonally and geographically relative to the number seen, indicating the calibration of acoustic and visual surveys is complex and requires further study on the motivations behind call production and the behavior of calling whales. These findings will play a role in the future development of acoustic census methods and habitat studies for these species, and will provide baseline information for the determination of anthropogenic impacts on these populations.
Harvey, Roxann C.; Dembro, Kimberly A.; Rajagopalan, Kiran; Mutebi, Michael M.; Kantak, Kathleen M.
2010-01-01
Rationale Deficits in amygdala-related stimulus-reward learning are produced following 18 drug-free days of cocaine self-administration or its passive delivery in rats exposed during adulthood. No deficits in stimulus-reward learning are produced by cocaine exposure initiated during adolescence. Objectives To determine if age of initiating cocaine exposure differentially affects behavioral functioning of an additional memory system linked to cocaine addiction, the orbitofrontal cortex. Materials and methods A yoked-triad design (n=8) was used. One rat controlled cocaine delivery and the other two passively received cocaine or saline. Rats controlling drug delivery (1.0 mg/kg) self-administered cocaine from either P37–P59 or P77–P99, and then underwent 18 drug-free days (P60–P77 vs. P100–P117). Rats next were tested for acquisition of odor-delayed win-shift behavior conducted over 15 sessions (P78–P96 vs. P118–P136). Results Cocaine self-administration did not differ between adults and adolescents. During the test phase of the odor-delayed win-shift task (relatively difficult task demands), rats from both drug-onset ages showed learning deficits. Rats with cocaine self-administration experience committed more errors and had longer session latencies compared to rats passively receiving saline or cocaine. Rats with adolescent-onset cocaine self-administration experience showed an additional learning deficit by requiring more sessions to reach criterion levels for task acquisition compared to same-aged passive saline controls or rats with adult-onset cocaine self-administration experience. Rats passively receiving cocaine did not differ from the passive saline control from either age group. Conclusions Rats with adolescent-onset cocaine self-administration experience were more impaired in an orbitofrontal cortex-related learning task than rats with adult-onset cocaine self-administration experience. PMID:19513699
Tracking marine mammals using passive acoustics
NASA Astrophysics Data System (ADS)
Nosal, Eva-Marie
2007-12-01
It is difficult to study the behavior and physiology of marine mammals or to understand and mitigate human impact on them because much of their lives are spent underwater. Since sound propagates for long distances in the ocean and since many cetaceans are vocal, passive acoustics is a valuable tool for studying and monitoring their behavior. After a brief introduction to and review of passive acoustic tracking methods, this dissertation develops and applies two new methods. Both methods use widely-spaced (tens of kilometers) bottom-mounted hydrophone arrays, as well as propagation models that account for depth-dependent sound speed profiles. The first passive acoustic tracking method relies on arrival times of direct and surface-reflected paths. It is used to track a sperm whale using 5 at the Atlantic Undersea Test and Evaluation Center (AUTEC) and gives position estimates that are accurate to within 10 meters. With such accuracy, the whale's pitch and yaw are estimated by assuming that its main axis (which points from the tail to the rostrum) is parallel to its velocity. Roll is found by fitting the details of the pulses within each sperm whale click to the so-called bent horn model of sperm whale sound production. Finally, given the position and orientation of the whale, its beam pattern is reconstructed and found to be highly directional with an intense forward directed component. Pair-wise spectrogram (PWS) processing is the second passive acoustic tracking method developed in this dissertation. Although it is computationally more intensive, PWS has several advantages over arrival-time tracking methods, especially in shallow water environments, for long duration calls, and for multiple-animal datasets, as is the case for humpback whales on Hawaiian breeding grounds. Results of simulations with realistic noise conditions and environmental mismatch are given and compared to other passive localization techniques. When applied to the AUTEC sperm whale dataset, PWS position estimates are within meters of those obtained using the time-of-arrival method.
Convective Self-Sustained Motion in Mixtures of Chemically Active and Passive Particles.
Shklyaev, Oleg E; Shum, Henry; Yashin, Victor V; Balazs, Anna C
2017-08-15
We develop a model to describe the behavior of a system of active and passive particles in solution that can undergo spontaneous self-organization and self-sustained motion. The active particles are uniformly coated with a catalyst that decomposes the reagent in the surrounding fluid. The resulting variations in the fluid density give rise to a convective flow around the active particles. The generated fluid flow, in turn, drives the self-organization of both the active and passive particles into clusters that undergo self-sustained propulsion along the bottom wall of a microchamber. This propulsion continues until the reagents in the solution are consumed. Depending on the number of active and passive particles and the structure of the self-organized cluster, these assemblies can translate, spin, or remain stationary. We also illustrate a scenario in which the geometry of the container is harnessed to direct the motion of a self-organized, self-propelled cluster. The findings provide guidelines for creating autonomously moving active particles, or chemical "motors" that can transport passive cargo in microfluidic devices.
Effect of temperature on the passivation behavior of steel rebar
NASA Astrophysics Data System (ADS)
Chen, Shan-meng; Cao, Bei; Wu, Yin-shun; Ma, Ke
2014-05-01
Steel rebar normally forms an oxide or rusty skin before it is embedded into concrete and the passivation properties of this skin will be heavily influenced by temperature. To study the effect of temperature on the passivation properties of steel rebar under different surface conditions, we conducted scanning electron microscopy (SEM) observations and electrochemical measurements, such as measurements of the free corrosion potential and polarization curves of HPB235 steel rebar. These measurements identified three kinds of surfaces: polished, oxide skin, and rusty skin. Our results show that the passivation properties of all the surface types decrease with the increase of temperature. Temperature has the greatest effect on the rusty-skin rebar and least effect on the polished steel rebar, because of cracks and crevices on the mill scale on the steel rebar's surface. The rusty-skin rebar exhibits the highest corrosion rate because crevice corrosion can accelerate the corrosion of the steel rebar, particularly at high temperature. The results also indicate that the threshold temperatures of passivation for the oxide-skin rebar and the rusty-skin rebar are 37°C and 20°C, respectively.
Zhao, Guo-Hua; Aune, Ragnhild E; Mao, Huahai; Espallargas, Nuria
2016-07-01
Owing to the amorphous structure, Bulk Metallic Glasses (BMGs) have been demonstrating attractive properties for potential biomedical applications. In the present work, the degradation mechanisms of Zr-based BMGs with nominal compositions Zr55Cu30Ni5Al10 and Zr65Cu18Ni7Al10 as potential load-bearing implant material were investigated in a tribocorrosion environment. The composition-dependent micro-mechanical and tribological properties of the two BMGs were evaluated prior to the tribocorrosion tests. The sample Zr65-BMG with a higher Zr content exhibited increased plasticity but relatively reduced wear resistance during the ball-on-disc tests. Both BMGs experienced abrasive wear after the dry wear test under the load of 2N. The cross-sectional subsurface structure of the wear track was examined by Focused Ion Beam (FIB). The electrochemical properties of the BMGs in simulated body fluid were evaluated by means of potentiodynamic polarization and X-ray Photoelectron Spectroscopy (XPS). The spontaneous passivation of Zr-based BMGs in Phosphate Buffer Saline solution was mainly attributed to the highly concentrated zirconium cation (Zr(4+)) in the passive film. The tribocorrosion performance of the BMGs was investigated using a reciprocating tribometer equipped with an electrochemical cell. The more passive nature of the Zr65-BMG had consequently a negative influence on its tribocorrosion resistance, which induced the wear-accelerated corrosion and eventually speeded-up the degradation process. It has been revealed the galvanic coupling was established between the depassivated wear track and the surrounding passive area, which is the main degradation mechanism for the passive Zr65-BMG subjected to the tribocorrosion environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kay, Anthony D; Blazevich, Anthony J
2009-04-01
The effects of static stretch on muscle and tendon mechanical properties and muscle activation were studied in fifteen healthy human volunteers. Peak active and passive moment data were recorded during plantar flexion trials on an isokinetic dynamometer. Electromyography (EMG) monitoring of the triceps surae muscles, real-time motion analysis of the lower leg, and ultrasound imaging of the Achilles-medial gastrocnemius muscle-tendon junction were simultaneously conducted. Subjects performed three 60-s static stretches before being retested 2 min and 30 min poststretch. There were three main findings in the present study. First, peak concentric moment was significantly reduced after stretch; 60% of the deficit recovered 30 min poststretch. This was accompanied by, and correlated with (r = 0.81; P < 0.01) reductions in peak triceps surae EMG amplitude, which was fully recovered at 30 min poststretch. Second, Achilles tendon length was significantly shorter during the concentric contraction after stretch and at 30 min poststretch; however, no change in tendon stiffness was detected. Third, passive joint moment was significantly reduced after stretch, and this was accompanied by significant reductions in medial gastrocnemius passive muscle stiffness; both measures fully recovered by 30 min poststretch. These data indicate that the stretching protocol used in this study induced losses in concentric moment that were accompanied by, and related to, reductions in neuromuscular activity, but they were not associated with alterations in tendon stiffness or shorter muscle operating length. Reductions in passive moment were associated with reductions in muscle stiffness, whereas tendon mechanics were unaffected by the stretch. Importantly, the impact on mechanical properties and neuromuscular activity was minimal at 30 min poststretch.
Tyler, Nicholas J C; Gregorini, Pablo; Forchhammer, Mads C; Stokkan, Karl-Arne; van Oort, Bob E H; Hazlerigg, David G
2016-10-01
Occurrence of 24-h rhythms in species apparently lacking functional molecular clockwork indicates that strong circadian mechanisms are not essential prerequisites of robust timing, and that rhythmical patterns may arise instead as passive responses to periodically changing environmental stimuli. Thus, in a new synthesis of grazing in a ruminant (MINDY), crepuscular peaks of activity emerge from interactions between internal and external stimuli that influence motivation to feed, and the influence of the light/dark cycle is mediated through the effect of low nocturnal levels of food intake on gastric function. Drawing on risk allocation theory, we hypothesized that the timing of behavior in ruminants is influenced by the independent effects of light on motivation to feed and perceived risk of predation. We predicted that the antithetical relationship between these 2 drivers would vary with photoperiod, resulting in a systematic shift in the phase of activity relative to the solar cycle across the year. This prediction was formalized in a model in which phase of activity emerges from a photoperiod-dependent trade-off between food and safety. We tested this model using data on the temporal pattern of activity in reindeer/caribou Rangifer tarandus free-living at natural mountain pasture in sub-Arctic Norway. The resulting nonlinear relationship between the phasing of crepuscular activity and photoperiod, consistent with the model, suggests a mechanism for behavioral timing that is independent of the core circadian system. We anticipate that such timing depends on integration of metabolic feedback from the digestive system and the activity of the glucocorticoid axis which modulates the behavioral responses of the animal to environmental hazard. The hypothalamus is the obvious neural substrate to achieve this integration. © 2016 The Author(s).
Passive band-gap reconfiguration born from bifurcation asymmetry.
Bernard, Brian P; Mann, Brian P
2013-11-01
Current periodic structures are constrained to have fixed energy transmission behavior unless active control or component replacement is used to alter their wave propagation characteristics. The introduction of nonlinearity to generate multiple stable equilibria is an alternative strategy for realizing distinct energy propagation behaviors. We investigate the creation of a reconfigurable band-gap system by implementing passive switching between multiple stable states of equilibrium, to alter the level of energy attenuation in response to environmental stimuli. The ability to avoid potentially catastrophic loads is demonstrated by tailoring the bandpass and band-gap regions to coalesce for two stable equilibria and varying an external load parameter to trigger a bifurcation. The proposed phenomenon could be utilized in remote or autonomous applications where component modifications and active control are impractical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pariona, Moises Meza, E-mail: mmpariona@uepg.br; Teleginski, Viviane; Santos, Kelly dos
Laser beam welding has recently been incorporated into the fabrication process of aircraft and automobile structures. Surface roughness is an important parameter of product quality that strongly affects the performance of mechanical parts, as well as production costs. This parameter influences the mechanical properties such as fatigue behavior, corrosion resistance, creep life, etc., and other functional characteristics such as friction, wear, light reflection, heat transmission, lubrification, electrical conductivity, etc. The effects of laser surface remelting (LSR) on the morphology of Al-Fe aerospace alloys were examined before and after surface treatments, using optical microscopy (OM), scanning electron microscopy (SEM), low-angle X-raymore » diffraction (LA-XRD), atomic force microscopy (AFM), microhardness measurements (Vickers hardness), and cyclic voltammetry. This analysis was performed on both laser-treated and untreated sanded surfaces, revealing significant differences. The LA-XRD analysis revealed the presence of alumina, simple metals and metastable intermetallic phases, which considerably improved the microhardness of laser-remelted surfaces. The morphology produced by laser surface remelting enhanced the microstructure of the Al-Fe alloys by reducing their roughness and increasing their hardness. The treated surfaces showed passivity and stability characteristics in the electrolytic medium employed in this study. - Highlights: Black-Right-Pointing-Pointer The samples laser-treated and untreated showed significant differences. Black-Right-Pointing-Pointer The La-XRD revealed the presence of alumina in Al-1.5 wt.% Fe. Black-Right-Pointing-Pointer The laser-treated reducing the roughness and increasing the hardness. Black-Right-Pointing-Pointer The laser-treated surfaces showed characteristic passive in the electrolytic medium. Black-Right-Pointing-Pointer The laser-treated is a promising technique for applications technological.« less
Corrosion Behavior of Plasma-Passivated Cu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbour, J.C.; Braithwaite, J.W.; Son, K.A.
1999-07-09
A new approach is being pursued to study corrosion in Cu alloy systems by using combinatorial analysis combined with microscopic experimentation (the Combinatorial Microlab) to determine mechanisms for copper corrosion in air. Corrosion studies are inherently difficult because of complex interactions between materials and environment, forming a multidimensional phase space of corrosion variables. The Combinatorial Microlab was specifically developed to address the mechanism of Cu sulfidation, which is an important reliability issue for electronic components. This approach differs from convention by focusing on microscopic length scales, the relevant scale for corrosion. During accelerated aging, copper is exposed to a varietymore » of corrosive environments containing sulfidizing species that cause corrosion. A matrix experiment was done to determine independent and synergistic effects of initial Cu oxide thickness and point defect density. The CuO{sub x} was controlled by oxidizing Cu in an electron cyclotron resonance (ECR) O{sub 2} plasma, and the point defect density was modified by Cu ion irradiation. The matrix was exposed to 600 ppb H{sub 2}S in 65% relative humidity air atmosphere. This combination revealed the importance of oxide quality in passivating Cu and prevention of the sulfidizing reaction. A native oxide and a defect-laden ECR oxide both react at 20 C to form a thick Cu{sub 2}S layer after exposure to H{sub 2}S, while different thicknesses of as-grown ECR oxide stop the formation of Cu{sub 2}S. The species present in the ECR oxide will be compared to that of an air oxide, and the sulfide layer growth rate will be presented.« less
Active versus Passive Hard Disks against a Membrane: Mechanical Pressure and Instability.
Junot, G; Briand, G; Ledesma-Alonso, R; Dauchot, O
2017-07-14
We experimentally study the mechanical pressure exerted by a set of respectively passive isotropic and self-propelled polar disks onto two different flexible unidimensional membranes. In the case of the isotropic disks, the mechanical pressure, inferred from the shape of the membrane, is identical for both membranes and follows the equilibrium equation of state for hard disks. On the contrary, for the self-propelled disks, the mechanical pressure strongly depends on the membrane in use and thus is not a state variable. When self-propelled disks are present on both sides of the membrane, we observe an instability of the membrane akin to the one predicted theoretically for active Brownian particles against a soft wall. In that case, the integrated mechanical pressure difference across the membrane cannot be computed from the sole knowledge of the packing fractions on both sides, further evidence of the absence of an equation of state.
Liu, Chao; Cox, Ronald B; Washburn, Isaac J; Croff, Julie M; Crethar, Hugh C
2017-07-01
Requiring parental consent may result in sampling biases that confound scientific conclusions and stifle the representation of children most at risk for adverse outcomes. This study aims to investigate whether active parental consent, compared with passive parental consent, creates a bias in response rate, demographic makeup, and adverse outcomes in adolescent samples. A meta-analysis was performed on peer-reviewed articles and unpublished dissertations from 1975 to 2016 in five computerized databases ERIC, PsycINFO, MEDLINE, PubMed and ProQuest. Quantitative studies were retained if they included the following keywords: active consent (or informed consent or parental consent), passive consent (or waiver of consent), risk behavior, adolescen*. Fifteen studies were identified with a total number of 104,074 children. Results showed (1) response rates were significantly lower for studies using active consent procedure than those using passive consent procedure (Z = 3.05, p = .002); (2) more females, younger participants, and less African-Americans were included in studies using active consent procedures than studies using passive procedures (Z = -2.73, p = .006; Z = -12.06, p < .00001; Z = 2.19, p = .03, respectively); (3) studies with passive consent procedures showed higher rates of self-reported substance use than studies using active consent procedures (Z = 3.07, p = .002). Requiring active parental consent can lead to a systematic bias in the sample where the population under study is misrepresented. Institutional review board committees should collaborate with researchers to find solutions that protect minors without silencing the voice of high-risk youth in the literature. Copyright © 2017 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vasilescu, Cora; Drob, Silviu Iulian; Osiceanu, Petre; Moreno, Jose Maria Calderon; Prodana, Mariana; Ionita, Daniela; Demetrescu, Ioana; Marcu, Maria; Popovici, Ion Alexandru; Vasilescu, Ecaterina
2017-01-01
A new Ti-20Zr-5Ta-2Ag alloy was elaborated and characterized regarding its microstructure, its native passive film composition and thickness, its surface wettability, its electrochemical behavior in Ringer solution of different pH values, and its ion release. The new alloy has a bi-phase, α + β, acicular, homogeneous microstructure (scanning electron microscopy (SEM)). Its native passive film (12-nm thicknesses) consists of the protective TiO2, ZrO2, and Ta2O5 oxides, Ti and Ta suboxides, and metallic Ag (X-ray photoelectron spectroscopy (XPS) data). The alloy possesses high hydrophilic properties. The main electrochemical parameters of the new alloy are superior to those of Ti as a result of the beneficial influence of Zr, Ta, and Ag alloying elements, which reinforce its native passive film. Electrochemical impedance spectroscopy (EIS) spectra in Ringer solutions for the new alloy displayed better values of impedances and phase angles, proving a more insulate passive film than that on the Ti surface. The main corrosion parameters for the new Ti-20Zr-5Ta-2Ag alloy are more favorable by about 25 to 38 times than those of Ti, confirming extremely resistant passive film. The new Ti-20Zr-5Ta-2Ag alloy releases into Ringer solution low quantities of Ti4+, Zr4+ metallic ions (inductively coupled plasma-mass spectroscopy (ICP-MS)). The Ag+ ions are released in low quantity, conferring to this alloy's low antibacterial activity. All experimental results show that the new Ti-20Zr-5Ta-2Ag alloy fulfills the requirements for biocompatibility, corrosion resistance, and antibacterial protection.
Passive device based on plastic optical fibers to determine the indices of refraction of liquids.
Zubia, J; Garitaonaindía, G; Arrúe, J
2000-02-20
We have designed and measured a passive device based on plastic optical fibers (POF's) that one can use to determine the indices of refraction of liquids. A complementary software has also been designed to simulate the behavior of the device. We report on the theoretical model developed for the device, its implementation in a simulation software program, and the results of the simulation. A comparison of the experimental and calculated results is also shown and discussed.
Passive Acoustic Methods for Tracking Marine Mammals Using Widely-Spaced Bottom-Mounted Hydrophones
2009-09-30
HARP [Wiggins 2007] at about 400m depth on the summit of Cross Seamount , approximately 290 km south of the Hawaiian island of Oahu (dataset provided...based tracking methods developed in this project are used to support ONR award N000140910489: The ecology and acoustic behavior of minke whales in the ...N000140811142 http://www.soest.hawaii.edu/ore/faculty/nosal LONG-TERM GOALS The long-term goal of this project is to improve passive acoustic methods
A habituation based approach for detection of visual changes in surveillance camera
NASA Astrophysics Data System (ADS)
Sha'abani, M. N. A. H.; Adan, N. F.; Sabani, M. S. M.; Abdullah, F.; Nadira, J. H. S.; Yasin, M. S. M.
2017-09-01
This paper investigates a habituation based approach in detecting visual changes using video surveillance systems in a passive environment. Various techniques have been introduced for dynamic environment such as motion detection, object classification and behaviour analysis. However, in a passive environment, most of the scenes recorded by the surveillance system are normal. Therefore, implementing a complex analysis all the time in the passive environment resulting on computationally expensive, especially when using a high video resolution. Thus, a mechanism of attention is required, where the system only responds to an abnormal event. This paper proposed a novelty detection mechanism in detecting visual changes and a habituation based approach to measure the level of novelty. The objective of the paper is to investigate the feasibility of the habituation based approach in detecting visual changes. Experiment results show that the approach are able to accurately detect the presence of novelty as deviations from the learned knowledge.
Elasticity-induced force reversal between active spinning particles in dense passive media
Aragones, J. L.; Steimel, J. P.; Alexander-Katz, A.
2016-01-01
The self-organization of active particles is governed by their dynamic effective interactions. Such interactions are controlled by the medium in which such active agents reside. Here we study the interactions between active agents in a dense non-active medium. Our system consists of actuated, spinning, active particles embedded in a dense monolayer of passive, or non-active, particles. We demonstrate that the presence of the passive monolayer alters markedly the properties of the system and results in a reversal of the forces between active spinning particles from repulsive to attractive. The origin of such reversal is due to the coupling between the active stresses and elasticity of the system. This discovery provides a mechanism for the interaction between active agents in complex and structured media, opening up opportunities to tune the interaction range and directionality via the mechanical properties of the medium. PMID:27112961