Assessment of Spacecraft Operational Status Using Electro-Optical Predictive Techniques
2010-09-01
panel appendages, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical sensors...observing and characterizing key spacecraft features. The simulation results are based on electro-optical signatures apparent to nonimaging sensors, along...and communication equipment, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical
Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries
USDA-ARS?s Scientific Manuscript database
Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...
Classification of Active Microwave and Passive Optical Data Based on Bayesian Theory and Mrf
NASA Astrophysics Data System (ADS)
Yu, F.; Li, H. T.; Han, Y. S.; Gu, H. Y.
2012-08-01
A classifier based on Bayesian theory and Markov random field (MRF) is presented to classify the active microwave and passive optical remote sensing data, which have demonstrated their respective advantages in inversion of surface soil moisture content. In the method, the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. And the model is validated for the necessities of integration of TM and ASAR, it shows that, the total precision of classification in this paper is 89.4%. Comparing with the classification with single TM, the accuracy increase 11.5%, illustrating that synthesis of active and passive optical remote sensing data is efficient and potential in classification.
Fiber-optic sensing in cryogenic environments. [for rocket propellant tank monitoring
NASA Technical Reports Server (NTRS)
Sharma, M.; Brooks, R. E.
1980-01-01
Passive optical sensors using fiber-optic signal transmission to a remote monitoring station are explored as an alternative to electrical sensors used to monitor the status of explosive propellants. The designs of passive optical sensors measuring liquid level, pressure, and temperature in cryogenic propellant tanks are discussed. Test results for an experimental system incorporating these sensors and operating in liquid nitrogen demonstrate the feasibility of passive sensor techniques and indicate that they can serve as non-hazardous replacements for more conventional measuring equipment in explosive environments.
A novel survivable architecture for hybrid WDM/TDM passive optical networks
NASA Astrophysics Data System (ADS)
Qiu, Yang; Chan, Chun-Kit
2014-02-01
A novel tree-ring survivable architecture, which consists of an organization of a wavelength-division-multiplexing (WDM) tree from optical line terminal (OLT) to remote nodes (RNs) and a time division multiplexing (TDM) ring in each RN, is proposed for hybrid WDM/TDM passive optical networks. By utilizing the cyclic property of arrayed waveguide gratings (AWGs) and the single-ring topology among a group of optical network units (ONUs) in the remote node, not only the feeder and distribution fibers, but also any fiber failures in the RN rings are protected simultaneously. Five-Gbit/s transmissions under both normal working and protection modes were experimentally demonstrated and a traffic restoration time was successfully measured.
Material Characterization using Passive Multispectral Polarimetric Imagery
2013-03-01
least intuitive RS technique is undoubtedly polarimetry . Polarization is a property of all TEM waves, so its applications are not limited to any...Shaw. “Review of passive imaging polarimetry for remote sensing applications”. Applied Optics, 45(22):5453–5469, 2006. [48] Vanderbilt, V.C. and...refractive index; polarimetry ; multispectral; polarization; polarisation; polarimetric imagery; dispersion; Drude model; Cauchy equation; remote
Investigation of fugitive emissions from petrochemical transport barges using optical remote sensing
Recent airborne remote sensing survey data acquired with passive gas imaging equipment (PGIE), in this case infrared cameras, have shown potentially significant fugitive volatile organic carbon (VOC) emissions from petrochemical transport barges. The experiment found remote sens...
Detection of emission sources using passive-remote Fourier transform infrared spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demirgian, J.C.; Macha, S.M.; Darby, S.M.
1995-12-31
The detection and identification of toxic chemicals released in the environment is important for public safety. Passive-remote Fourier transform infrared (FTIR) spectrometers can be used to detect these releases. Their primary advantages are their small size and ease of setup and use. Open-path FTIR spectrometers are used to detect concentrations of pollutants from a fixed frame of reference. These instruments detect plumes, but they are too large and difficult to aim to be used to track a plume to its source. Passive remote FTIR spectrometers contain an interferometer, optics, and a detector. They can be used on tripods and inmore » some cases can be hand-held. A telescope can be added to most units. The authors will discuss the capability of passive-remote FTIR spectrometers to detect the origin of plumes. Low concentration plumes were released using a custom-constructed vaporizer. These plumes were detected with different spectrometers from different distances. Passive-remote spectrometers were able to detect small 10 cm on a side chemical releases at concentration-pathlengths at the low parts per million-meter (ppm-m) level.« less
Detection of emission sources using passive-remote Fourier transform infrared spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demirgian, J.C.; Macha, S.M.; Darby, S.M.
1995-04-01
The detection and identification of toxic chemicals released in the environment is important for public safety. Passive-remote Fourier transform infrared (FTIR) spectrometers can be used to detect these releases. Their primary advantages are their small size and ease of setup and use. Open-path FTIR spectrometers are used to detect concentrations of pollutants from a fixed frame of reference. These instruments detect plumes, but they are too large and difficult to aim to be used to track a plume to its source. Passive remote FTIR spectrometers contain an interferometer, optics, and a detector. They can be used on tripods and inmore » some cases can be hand-held. A telescope can be added to most units. We will discuss the capability of passive-remote FTIR spectrometers to detect the origin of plumes. Low concentration plumes were released using a custom-constructed vaporizer. These plumes were detected with different spectrometers from different distances. Passive-remote spectrometers were able to detect small 10 cm on a side chemical releases at concentration-pathlengths at the low parts per million-meter (ppm-m) level.« less
Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation
2009-09-01
Introduction This presentation summarizes recent activity in monitoring spacecraft health status using passive remote optical nonimaging ...Approved for public release; distribution is unlimited. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation...It is beneficial to the observer/analyst to understand the fundamental optical signature variability associated with these detection and
Deriving Leaf Area Index (LAI) from multiple lidar remote sensing systems
NASA Astrophysics Data System (ADS)
Tang, H.; Dubayah, R.; Zhao, F.
2012-12-01
LAI is an important biophysical variable linking biogeochemical cycles of earth systems. Observations with passive optical remote sensing are plagued by saturation and results from different passive and active sensors are often inconsistent. Recently lidar remote sensing has been applied to derive vertical canopy structure including LAI and its vertical profile. In this research we compare LAI retrievals from three different types of lidar sensors. The study areas include the La Selva Biological Station in Costa Rica and Sierra Nevada Forest in California. We first obtain independent LAI estimates from different lidar systems including airborne lidar (LVIS), spaceborne lidar (GLAS) and ground lidar (Echidna). LAI retrievals are then evaluated between sensors as a function of scale, land cover type and sensor characteristics. We also assess the accuracy of these LAI products against ground measurements. By providing a link between ground observations, ground lidar, aircraft and space-based lidar we hope to demonstrate a path for deriving more accurate estimates of LAI on a global basis, and to provide a more robust means of validating passive optical estimates of this important variable.
A telescopic cinema sound camera for observing high altitude aerospace vehicles
NASA Astrophysics Data System (ADS)
Slater, Dan
2014-09-01
Rockets and other high altitude aerospace vehicles produce interesting visual and aural phenomena that can be remotely observed from long distances. This paper describes a compact, passive and covert remote sensing system that can produce high resolution sound movies at >100 km viewing distances. The telescopic high resolution camera is capable of resolving and quantifying space launch vehicle dynamics including plume formation, staging events and payload fairing jettison. Flight vehicles produce sounds and vibrations that modulate the local electromagnetic environment. These audio frequency modulations can be remotely sensed by passive optical and radio wave detectors. Acousto-optic sensing methods were primarily used but an experimental radioacoustic sensor using passive micro-Doppler radar techniques was also tested. The synchronized combination of high resolution flight vehicle imagery with the associated vehicle sounds produces a cinema like experience that that is useful in both an aerospace engineering and a Hollywood film production context. Examples of visual, aural and radar observations of the first SpaceX Falcon 9 v1.1 rocket launch are shown and discussed.
Passive long range acousto-optic sensor
NASA Astrophysics Data System (ADS)
Slater, Dan
2006-08-01
Alexander Graham Bell's photophone of 1880 was a simple free space optical communication device that used the sun to illuminate a reflective acoustic diaphragm. A selenium photocell located 213 m (700 ft) away converted the acoustically modulated light beam back into sound. A variation of the photophone is presented here that uses naturally formed free space acousto-optic communications links to provide passive multichannel long range acoustic sensing. This system, called RAS (remote acoustic sensor), functions as a long range microphone with a demonstrated range in excess of 40 km (25 miles).
Passive optical remote sensing of Congo River bathymetry using Landsat
NASA Astrophysics Data System (ADS)
Ache Rocha Lopes, V.; Trigg, M. A.; O'Loughlin, F.; Laraque, A.
2014-12-01
While there have been notable advances in deriving river characteristics such as width, using satellite remote sensing datasets, deriving river bathymetry remains a significant challenge. Bathymetry is fundamental to hydrodynamic modelling of river systems and being able to estimate this parameter remotely would be of great benefit, especially when attempting to model hard to access areas where the collection of field data is difficult. One such region is the Congo Basin, where due to past political instability and large scale there are few studies that characterise river bathymetry. In this study we test whether it is possible to use passive optical remote sensing to estimate the depth of the Congo River using Landsat 8 imagery in the region around Malebo Pool, located just upstream of the Kinshasa gauging station. Methods of estimating bathymetry using remotely sensed datasets have been used extensively for coastal regions and now more recently have been demonstrated as feasible for optically shallow rivers. Previous river bathymetry studies have focused on shallow rivers and have generally used aerial imagery with a finer spatial resolution than Landsat. While the Congo River has relatively low suspended sediment concentration values the application of passive bathymetry estimation to a river of this scale has not been attempted before. Three different analysis methods are tested in this study: 1) a single band algorithm; 2) a log ratio method; and 3) a linear transform method. All three methods require depth data for calibration and in this study area bathymetry measurements are available for three cross-sections resulting in approximately 300 in-situ measurements of depth, which are used in the calibration and validation. The performance of each method is assessed, allowing the feasibility of passive depth measurement in the Congo River to be determined. Considering the scarcity of in-situ bathymetry measurements on the Congo River, even an approximate estimate of depths from these methods will be of considerable value in its hydraulic characterisation.
NASA Astrophysics Data System (ADS)
Ma, Y.; Liu, S.
2017-12-01
Accurate estimation of surface evapotranspiration (ET) with high quality is one of the biggest obstacles for routine applications of remote sensing in eco-hydrological studies and water resource management at basin scale. However, many aspects urgently need to deeply research, such as the applicability of the ET models, the parameterization schemes optimization at the regional scale, the temporal upscaling, the selecting and developing of the spatiotemporal data fusion method and ground-based validation over heterogeneous land surfaces. This project is based on the theoretically robust surface energy balance system (SEBS) model, which the model mechanism need further investigation, including the applicability and the influencing factors, such as local environment, and heterogeneity of the landscape, for improving estimation accuracy. Due to technical and budget limitations, so far, optical remote sensing data is missing due to frequent cloud contamination and other poor atmospheric conditions in Southwest China. Here, a multi-source remote sensing data fusion method (ESTARFM: Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) method will be proposed through blending multi-source remote sensing data acquired by optical, and passive microwave remote sensors on board polar satellite platforms. The accurate "all-weather" ET estimation will be carried out for daily ET of the River Source Region in Southwest China, and then the remotely sensed ET results are overlapped with the footprint-weighted images of EC (eddy correlation) for ground-based validation.
Experimental demonstration of remote, passive acousto-optic sensing.
Antonelli, Lynn; Blackmon, Fletcher
2004-12-01
Passively detecting underwater sound from the air can allow aircraft and surface vessels to monitor the underwater acoustic environment. Experimental research into an optical hydrophone is being conducted for remote, aerial detection of underwater sound. A laser beam is directed onto the water surface to measure the velocity of the vibrations occurring as the underwater acoustic signal reaches the water surface. The acoustically generated surface vibrations modulate the phase of the laser beam. Sound detection occurs when the laser is reflected back towards the sensor. Therefore, laser alignment on the specularly reflecting water surface is critical. As the water surface moves, the laser beam is reflected away from the photodetector and no signal is obtained. One option to mitigate this problem is to continually steer the laser onto a spot on the water surface that provides a direct back-reflection. Results are presented from a laboratory test that investigates the feasibility of the acousto-optic sensor detection on hydrostatic and hydrodynamic surfaces using a laser Doppler vibrometer in combination with a laser-based, surface normal glint tracker for remotely detecting underwater sound. This paper outlines the acousto-optic sensor and tracker concepts and presents experimental results comparing sensor operation under various sea surface conditions.
Surveillance technique for hybrid WDM/PS-PON using a tunable OTDR
NASA Astrophysics Data System (ADS)
Hann, Swook; Yoo, Jun-sang; Park, Chang-soo
2005-05-01
A surveillance technique for passive optical networks (PON) is presented. The technique is based on the remote sensing of fiber Bragg grating using a tunable OTDR. Hybrid architecture of WDM and passive splitter-PON can be analyzed by the surveillance method at the central office under in-service state of PON.
NASA Astrophysics Data System (ADS)
Chen, H.; Schmidt, S.; Coddington, O.; Wind, G.; Bucholtz, A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.
2017-12-01
Cloud Optical Parameters (COPs: e.g., cloud optical thickness and cloud effective radius) and surface albedo are the most important inputs for determining the Cloud Radiative Effect (CRE) at the surface. In the Arctic, the COPs derived from passive remote sensing such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) are difficult to obtain with adequate accuracy owing mainly to insufficient knowledge about the snow/ice surface, but also because of the low solar zenith angle. This study aims to validate COPs derived from passive remote sensing in the Arctic by using aircraft measurements collected during two field campaigns based in Fairbanks, Alaska. During both experiments, ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and ARISE (Arctic Radiation-IceBridge Sea and Ice Experiment), the Solar Spectral Flux Radiometer (SSFR) measured upwelling and downwelling shortwave spectral irradiances, which can be used to derive surface and cloud albedo, as well as the irradiance transmitted by clouds. We assess the variability of the Arctic sea ice/snow surfaces albedo through these aircraft measurements and incorporate this variability into cloud retrievals for SSFR. We then compare COPs as derived from SSFR and MODIS for all suitable aircraft underpasses of the satellites. Finally, the sensitivities of the COPs to surface albedo and solar zenith angle are investigated.
Fault discovery protocol for passive optical networks
NASA Astrophysics Data System (ADS)
Hajduczenia, Marek; Fonseca, Daniel; da Silva, Henrique J. A.; Monteiro, Paulo P.
2007-06-01
All existing flavors of passive optical networks (PONs) provide an attractive alternative to legacy copper-based access lines deployed between a central office (CO) of the service provider (SP) and a customer site. One of the most challenging tasks for PON network planners is the reduction of the overall cost of employing protection schemes for the optical fiber plant while maintaining a reasonable level of survivability and reducing the downtime, thus ensuring acceptable levels of quality of service (QoS) for end subscribers. The recently growing volume of Ethernet PONs deployment [Kramer, IEEE 802.3, CFI (2006)], connected with low-cost electronic and optical components used in the optical network unit (ONU) modules, results in the situation where remote detection of faulty/active subscriber modules becomes indispensable for proper operation of an EPON system. The problem of the remote detection of faulty ONUs in the system is addressed where the upstream channel is flooded with the cw transmission from one or more damaged ONUs and standard communication is severed, providing a solution that is applicable in any type of PON network, regardless of the operating protocol, physical structure, and data rate.
NASA Technical Reports Server (NTRS)
Guenther, Bruce W. (Editor)
1991-01-01
Various papers on the calibration of passive remote observing optical and microwave instrumentation are presented. Individual topics addressed include: on-board calibration device for a wide field-of-view instrument, calibration for the medium-resolution imaging spectrometer, cryogenic radiometers and intensity-stabilized lasers for EOS radiometric calibrations, radiometric stability of the Shuttle-borne solar backscatter ultraviolet spectrometer, ratioing radiometer for use with a solar diffuser, requirements of a solar diffuser and measurements of some candidate materials, reflectance stability analysis of Spectralon diffuse calibration panels, stray light effects on calibrations using a solar diffuser, radiometric calibration of SPOT 23 HRVs, surface and aerosol models for use in radiative transfer codes. Also addressed are: calibrated intercepts for solar radiometers used in remote sensor calibration, radiometric calibration of an airborne multispectral scanner, in-flight calibration of a helicopter-mounted Daedalus multispectral scanner, technique for improving the calibration of large-area sphere sources, remote colorimetry and its applications, spatial sampling errors for a satellite-borne scanning radiometer, calibration of EOS multispectral imaging sensors and solar irradiance variability.
NASA Cold Land Processes Experiment (CLPX 2002/03): Spaceborne remote sensing
Robert E. Davis; Thomas H. Painter; Don Cline; Richard Armstrong; Terry Haran; Kyle McDonald; Rick Forster; Kelly Elder
2008-01-01
This paper describes satellite data collected as part of the 2002/03 Cold Land Processes Experiment (CLPX). These data include multispectral and hyperspectral optical imaging, and passive and active microwave observations of the test areas. The CLPX multispectral optical data include the Advanced Very High Resolution Radiometer (AVHRR), the Landsat Thematic Mapper/...
NASA Cold Land Processes Experiment (CLPX 2002/03): Airborne remote sensing
Don Cline; Simon Yueh; Bruce Chapman; Boba Stankov; Al Gasiewski; Dallas Masters; Kelly Elder; Richard Kelly; Thomas H. Painter; Steve Miller; Steve Katzberg; Larry Mahrt
2009-01-01
This paper describes the airborne data collected during the 2002 and 2003 Cold Land Processes Experiment (CLPX). These data include gamma radiation observations, multi- and hyperspectral optical imaging, optical altimetry, and passive and active microwave observations of the test areas. The gamma observations were collected with the NOAA/National Weather Service Gamma...
Real-time monitoring implementation in a remote-pumped WDM PON
NASA Astrophysics Data System (ADS)
Liaw, S.-K.; Hong, K.-L.; Shei, Y.-S.
2008-08-01
We report on an improved configuration to monitor a passive optical network with high quality in service. This proposed system comprises fiber-Bragg gratings, a 1 × 4 optical switch, and an optical time-domain reflectometry to diagnose the broken point in real time. It could simultaneously detect multioptical network units in a WDM PON. The remote-pump integrated residual pumping reused function is implemented. Broken points in different optical paths can be detected simultaneously even when the distances to the central office are identical. The bit-error rate testing is verified with a small power penalty, making it an ideal solution for the real-time monitoring in a WDM PON.
An empirical InSAR-optical fusion approach to mapping vegetation canopy height
Wayne S. Walker; Josef M. Kellndorfer; Elizabeth LaPoint; Michael Hoppus; James Westfall
2007-01-01
Exploiting synergies afforded by a host of recently available national-scale data sets derived from interferometric synthetic aperture radar (InSAR) and passive optical remote sensing, this paper describes the development of a novel empirical approach for the provision of regional- to continental-scale estimates of vegetation canopy height. Supported by data from the...
Monitoring technique for a hybrid PS/WDM-PON by using a tunable OTDR and FBGs
NASA Astrophysics Data System (ADS)
Hann, Swook; Yoo, Jun-sang; Park, Chang-Soo
2006-05-01
A monitoring technique for hybrid passive optical networks (PON) is presented. The technique is based on the remote sensing of fibre Bragg gratings (FBGs) using a tunable optical time domain reflectometer (OTDR). The FBG would help discern an individual event during the monitoring of the hybrid PON in collaboration with the information provided by the Rayleigh backscattered power. The hybrid architecture of passive splitter-PON and WDM-PON can be analysed by the monitoring method by using the tunable OTDR and FBGs at the central office under the in-service state of PON.
All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.
Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis
2013-05-20
This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.
Exploration of Data Fusion between Polarimetric Radar and Multispectral Image Data
2012-09-01
target decomposition theorems in radar polarimetry . Transactions on Geoscience and Remote Sensing, 34(2), 498–518. Cloude, S. R. (1985). Target...Proceedings of the Journees Internationales De La Polarimetrie Radar (JIPR ‘90), Nantes, France. Huynen, J. R. (1965). Measurement of theTarget scattering...J. A. (2006). Review of passive imaging polarimetry for remote sensing applications. Applied Optics, 45(22), 5453–5469. Vanzyl, J., Zebker, H
Extraterrestrial applications of solar optics for interior illumination
NASA Technical Reports Server (NTRS)
Eijadi, David A.; Williams, Kyle D.
1992-01-01
Solar optics is a terrestrial technology that has potential extraterrestrial applications. Active solar optics (ASO) and passive solar optics (PSO) are two approaches to the transmission of sunlight to remote interior spaces. Active solar optics is most appropriate for task illumination, while PSO is most appropriate for general illumination. Research into solar optics, motivated by energy conservation, has produced lightweight and low-cost materials, products that have applications to NASA's Controlled Ecological Life Support System (CELSS) program and its lunar base studies. Specifically, prism light guides have great potential in these contexts. Several applications of solar optics to lunar base concepts are illustrated.
NASA Astrophysics Data System (ADS)
Hann, Swook; Kim, Dong-Hwan; Park, Chang-Soo
2006-04-01
A monitoring technique for multiple power splitter-passive optical networks (PS-PON) is presented. The technique is based on the remote sensing of fiber Bragg grating (FBG) using a tunable OTDR. To monitor the multiple PS-PON, the FBG can be used for a wavelength dependent reflective reference on each branch end of the PS. The FBG helps discern an individual event of the multiple PS-PON for the monitoring in collaborate with information of Rayleigh backscattered power. The multiple PS-PON can be analyzed by the monitoring method at the central office under 10-Gbit/s in-service.
NASA Astrophysics Data System (ADS)
Zhang, Jianbin; Sun, Xiantao; Chen, Weihai; Chen, Wenjie; Jiang, Lusha
2014-12-01
In microelectromechanical system (MEMS) optical switch assembly, the collision always exists between the optical fiber and the edges of the U-groove due to the positioning errors between them. It will cause the irreparable damage since the optical fiber and the silicon-made U-groove are usually very fragile. Typical solution is first to detect the positioning errors by the machine vision or high-resolution sensors and then to actively eliminate them with the aid of the motion of precision mechanisms. However, this method will increase the cost and complexity of the system. In this paper, we present a passive compensation method to accommodate the positioning errors. First, we study the insertion process of the optical fiber into the U-groove to analyze all possible positioning errors as well as the conditions of successful insertion. Then, a novel passive flexure-based mechanism based on the remote center of compliance concept is designed to satisfy the required insertion condition. The pseudo-rigid-body-model method is utilized to calculate the stiffness of the mechanism along the different directions, which is verified by finite element analysis (FEA). Finally, a prototype of the passive flexure-based mechanism is fabricated for performance tests. Both FEA and experimental results indicate that the designed mechanism can be used to the MEMS optical switch assembly.
Zhang, Jianbin; Sun, Xiantao; Chen, Weihai; Chen, Wenjie; Jiang, Lusha
2014-12-01
In microelectromechanical system (MEMS) optical switch assembly, the collision always exists between the optical fiber and the edges of the U-groove due to the positioning errors between them. It will cause the irreparable damage since the optical fiber and the silicon-made U-groove are usually very fragile. Typical solution is first to detect the positioning errors by the machine vision or high-resolution sensors and then to actively eliminate them with the aid of the motion of precision mechanisms. However, this method will increase the cost and complexity of the system. In this paper, we present a passive compensation method to accommodate the positioning errors. First, we study the insertion process of the optical fiber into the U-groove to analyze all possible positioning errors as well as the conditions of successful insertion. Then, a novel passive flexure-based mechanism based on the remote center of compliance concept is designed to satisfy the required insertion condition. The pseudo-rigid-body-model method is utilized to calculate the stiffness of the mechanism along the different directions, which is verified by finite element analysis (FEA). Finally, a prototype of the passive flexure-based mechanism is fabricated for performance tests. Both FEA and experimental results indicate that the designed mechanism can be used to the MEMS optical switch assembly.
Comparison of polarimetric cameras
2017-03-01
polarimetry field of science. Maxwell’s differential equations based on Faraday’s concepts put EM waves into transverse wave solutions. His theory of the...Dennis L. Goldstein, David B. Chenault, and Joseph A. Shaw. “Review of Passive Imaging Polarimetry for Remote Sensing Applications.” Applied Optics 45
NASA Technical Reports Server (NTRS)
Farmer, F. H.; Jarrett, O., Jr.; Brown, C. A., Jr.
1983-01-01
The concentration and composition of phytoplankton populations are measured by an optical method which can be used either in situ or remotely. This method is based upon the in vivo light absorption characteristics of phytoplankton. To provide a data base for testing assumptions relative to the proposed method, visible absorbance spectra of pure cultures of 20 marine phytoplankton were obtained under laboratory conditions. Descriptive and analytical statistics were computed for the absorbance spectra and were used to make comparisons between members of major taxonomic groups and between groups. Spectral variation between the members of the major taxonomic groups was observed to be considerably less than the spectral variation between these groups. In several cases the differences between the mean absorbance spectra of major taxonomic groups are significant enough to be detected with passive remote sensing techniques.
Experimental integration of quantum key distribution and gigabit-capable passive optical network
NASA Astrophysics Data System (ADS)
Sun, Wei; Wang, Liu-Jun; Sun, Xiang-Xiang; Mao, Yingqiu; Yin, Hua-Lei; Wang, Bi-Xiao; Chen, Teng-Yun; Pan, Jian-Wei
2018-01-01
Quantum key distribution (QKD) ensures information-theoretic security for the distribution of random bits between two remote parties. To extend QKD applications to fiber-to-the-home optical communications, such as gigabit-capable passive optical networks (GPONs), an effective method is the use of wavelength-division multiplexing. However, the Raman scattering noise from intensive classical traffic and the huge loss introduced by the beam splitter in a GPON severely limits the performance of QKD. Here, we demonstrate the integration of QKD and a commercial GPON system with fiber lengths up to 14 km, in which the maximum splitting ratio of the beam splitter reaches 1:64. By placing the QKD transmitter on the optical line terminal side, we reduce the Raman noise collected at the QKD receiver. Using a bypass structure, the loss of the beam splitter is circumvented effectively. Our results pave the way to extending the applications of QKD to last-mile communications.
Chamber Optics for Testing Passive Remote Sensing Vapor Detectors
1993-11-01
BIOLOGICAL A DEFENSE AGENCY Aberden Proving Ground , Maryland 21010-6423 S4 2 18 94-05616 Best Available Copy Disclaimer The findings in this report are...were tried; ray tracing proved to be the most useful. Rays were iteratively traced through every element using the following paraxial equations. 8 U
A Study of Tropical thin Cirrus Clouds with Supervised Learning
NASA Astrophysics Data System (ADS)
Rodier, S. D.; Hu, Y.; Vaughan, M. A.
2007-12-01
ABSTRACT Accurate knowledge of the temporal frequency and spatial extent of optically thin cirrus is crucial to climate feedback analysis. Current global warming theory asserts that when the atmospheric concentration of CO2 increases, the outgoing longwave radiation at non-window wavelengths is reduced. If the Earth's net radiative balance is to remain stable, ground temperatures must rise in response, thereby increasing thermal emission to space. Current models do not account for subsequent changes in cloud cover, because this aspect of the climate feedback system is so poorly understood. One possible response of the cloud-climate feedback process is an increase in the global occurrence of thin cirrus clouds, driven by the increase in longwave cooling in the upper troposphere that results from higher CO2 concentrations. Exacerbating the difficulty of assessing the situation is the fact that passive remote sensing instruments cannot reliably detect cirrus clouds with optical depths less than ~0.3, because these clouds do not reflect enough sunlight to create a sufficient contrast with the Earth's surface. Now, however, the presence of thin cirrus can for the first time be accurately detected and systematically monitored by the combination of active and passive sensors onboard the CALIPSO satellite. Nevertheless, the data record is still quite limited, as CALIPSO has been in orbit for only 16 months. We have therefore initiated a multi-platform data fusion study to establish a methodology for extending the limited set of CALIPSO measurements to the existing 30-year record of passive remote sensing data, and thus improve our understanding of cloud feedback mechanisms. Using nighttime data from the first 10 days in April 2007 as a training set, we applied a general regression neural network (GRNN) to collocated samples of sea surface temperature (SST) reported by AMSR, brightness temperatures (BT) from the CALIPSO imaging infrared radiometer (IIR), and optical depths (OD) derived from the CALIPSO lidar measurements. The result is an accurate mapping of the optical depths derived from the active sensors to the brightness temperatures computed from the passive sensor measurements. Applying the trained network to this combination of passive sensor parameters, optical depths as small as 0.1 can be reliably retrieved. The relative uncertainties in the retrieval are reasonable, and can be improved significantly by use of a much larger training set.
2011-09-01
information about the materials that make up a scene. Imaging polarimetry measures the polarization of the light forming the image through filtering...Shaw, J. A. Review of Passive Imaging Polarimetry for Remote Sensing Applications. App. Optics 2006, 45 (22), 5453–5469. 8. Shaw, J. A.; Nugent, P
Rugged passively cooled high power laser fiber optic connectors and methods of use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinzler, Charles C.; Gray, William C.; Fraze, Jason D.
2016-06-07
There are provided high power laser connectors and couplers and methods that are capable of providing high laser power without the need for active cooling to remote, harsh and difficult to access locations and under difficult and harsh conditions and to manage and mitigate the adverse effects of back reflections.
Aerospace remote sensing of the coastal zone for water quality and biotic productivity applications
NASA Technical Reports Server (NTRS)
Pritchard, E. B.; Harriss, R. C.
1981-01-01
Remote sensing can provide the wide area synoptic coverage of surface waters which is required for studies of such phenomena as river plume mixing, phytoplankton dynamics, and pollutant transport and fate, but which is not obtainable by conventional oceanographic techniques. The application of several remote sensors (aircraftborne and spacecraftborne multispectral scanners, passive microwave radiometers, and active laser systems) to coastal zone research is discussed. Current measurement capabilities (particulates, chlorophyll a, temperature, salinity, ocean dumped materials, other pollutants, and surface winds and roughness) are defined and the results of recent remote sensing experiments conducted in the North Atlantic coastal zone are presented. The future development of remote sensing must rely on an integrated laboratory research program in optical physics. Recent results indicate the potential for separation of particulates into subsets by remote sensors.
Towards Understanding the Timing and Frequency of Rain-on-Snow (ROS) Events in Alaska
NASA Astrophysics Data System (ADS)
Pan, C.; Kirchner, P. B.; Kimball, J. S.; Kim, Y.; Kamp, U.
2017-12-01
Rain-on-snow (ROS) events affect ecosystem processes at multiple spatial and temporal scales including hydrology, carbon cycling, wildlife movement and human transportation and result in marked changes to snowpack processes including enhanced snow melt, surface albedo and energy balance. Changes in the surface structure of the snowpack are visible through optical remote sensing and changes in the relative content and distribution of water, air and ice in the snowpack are detectable using passive microwave remote sensing. This project aims to develop ROS products to elucidate changes in frequency and distribution in ROS events using satellite data products derived from both optical and passive microwave satellite records. To detect ROS events, we use downscaled brightness temperature measurements derived from vertical and horizontal polarizations at 19 and 37 GHz from the Advanced Microwave Scanning Radiometer (AMSR-E/2) passive microwave satellites. Preliminary results indicate an overall classification accuracy of 77.6% relative to in situ weather observations including surface air temperature, precipitation, and snow depth. ROS events are spatially distributed largely to elevations below 500 m and occur most frequently on northern to western aspects in addition to southeastern. Regional ROS hot spots occur in southwest Alaska characterized by warmer climates and transient snowcover. The seasonal timing of ROS events indicates increasing frequency during the fall and spring months.
Tropospheric Passive Remote Sensing
NASA Technical Reports Server (NTRS)
Keafer, L. S., Jr. (Editor)
1982-01-01
The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.
Remote sensing measurements of atmospheric methane at 2.3 microns with a nonmechanical GFCR
NASA Technical Reports Server (NTRS)
Wang, Liang-guo; Sachse, Glen; Wallio, Andrew; LeBel, Peter; Vay, Stephanie
1995-01-01
Gas filter correlation radiometer (GFCR) is a passive remote sensing technique used in a variety of atmospheric measurements. In recent years, a nonmechanical optical switching GFCR has been invented and developed at NASA Langley Research Center. The use of a polarization modulator, in conjunction with a polarization beamsplitter, enables rapid optical switching without mechanically moving parts. In comparison with the conventional GFCR, which involves mechanical chopping or switching between two optical paths, the nonmechanical GFCR possesses some very attractive advantages such as fast sampling rate, high reliability, low weight, and long operational life time. In a recent study, we have developed a new GFCR configuration and have fabricated a compact, nonmechanical breadboard instrument. Using this instrument, we have carried out atmospheric methane measurements in the 2.3 micron region. Measurement results are compared with theoretical predictions using the HITRAN database.
Huang, Jingfeng; Wei, Chen; Zhang, Yao; Blackburn, George Alan; Wang, Xiuzhen; Wei, Chuanwen; Wang, Jing
2015-01-01
Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550–560nm) and red edge (680–750nm) regions; chlorophyll b on the red, (630–660nm), red edge (670–710nm) and the near-infrared (800–810nm); carotenoids on the 500–580nm region; and anthocyanins on the green (550–560nm), red edge (700–710nm) and near-infrared (780–790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a. PMID:26356842
NASA Technical Reports Server (NTRS)
1990-01-01
Various papers on remote sensing (RS) for the nineties are presented. The general topics addressed include: subsurface methods, radar scattering, oceanography, microwave models, atmospheric correction, passive microwave systems, RS in tropical forests, moderate resolution land analysis, SAR geometry and SNR improvement, image analysis, inversion and signal processing for geoscience, surface scattering, rain measurements, sensor calibration, wind measurements, terrestrial ecology, agriculture, geometric registration, subsurface sediment geology, radar modulation mechanisms, radar ocean scattering, SAR calibration, airborne radar systems, water vapor retrieval, forest ecosystem dynamics, land analysis, multisensor data fusion. Also considered are: geologic RS, RS sensor optical measurements, RS of snow, temperature retrieval, vegetation structure, global change, artificial intelligence, SAR processing techniques, geologic RS field experiment, stochastic modeling, topography and Digital Elevation model, SAR ocean waves, spaceborne lidar and optical, sea ice field measurements, millimeter waves, advanced spectroscopy, spatial analysis and data compression, SAR polarimetry techniques. Also discussed are: plant canopy modeling, optical RS techniques, optical and IR oceanography, soil moisture, sea ice back scattering, lightning cloud measurements, spatial textural analysis, SAR systems and techniques, active microwave sensing, lidar and optical, radar scatterometry, RS of estuaries, vegetation modeling, RS systems, EOS/SAR Alaska, applications for developing countries, SAR speckle and texture.
Polarimetric passive remote sensing of periodic surfaces
NASA Technical Reports Server (NTRS)
Veysoglu, Murat E.; Yueh, H. A.; Shin, R. T.; Kong, J. A.
1991-01-01
The concept of polarimetry in active remote sensing is extended to passive remote sensing. The potential use of the third and fourth Stokes parameters U and V, which play an important role in polarimetric active remote sensing, is demonstrated for passive remote sensing. It is shown that, by the use of the reciprocity principle, the polarimetric parameters of passive remote sensing can be obtained through the solution of the associated direct scattering problem. These ideas are applied to study polarimetric passive remote sensing of periodic surfaces. The solution of the direct scattering problem is obtained by an integral equation formulation which involves evaluation of periodic Green's functions and normal derivative of those on the surface. Rapid evaluation of the slowly convergent series associated with these functions is observed to be critical for the feasibility of the method. New formulas, which are rapidly convergent, are derived for the calculation of these series. The study has shown that the brightness temperature of the Stokes parameter U can be significant in passive remote sensing. Values as high as 50 K are observed for certain configurations.
Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B. Carol; Shirley, Eric; Cao, Changyong
2014-01-01
This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth’s land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies’ scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized1. PMID:26601030
Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B Carol; Shirley, Eric; Cao, Changyong
2014-01-01
This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth's land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies' scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized.
Using landsat time-series and lidar to inform aboveground carbon baseline estimation in Minnesota
Ram K. Deo; Grant M. Domke; Matthew B. Russell; Christopher W. Woodall; Michael J. Falkowski
2015-01-01
Landsat data has long been used to support forest monitoring and management decisions despite the limited success of passive optical remote sensing for accurate estimation of structural attributes such as aboveground biomass. The archive of publicly available Landsat images dating back to the 1970s can be used to predict historic forest biomass dynamics. In addition,...
Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network.
Calosso, C E; Bertacco, E; Calonico, D; Clivati, C; Costanzo, G A; Frittelli, M; Levi, F; Mura, A; Godone, A
2014-03-01
We performed a two-way remote optical phase comparison on optical fiber. Two optical frequency signals were launched in opposite directions in an optical fiber and their phases were simultaneously measured at the other end. In this technique, the fiber noise is passively canceled, and we compared two optical frequencies at the ultimate 10(-21) stability level. The experiment was performed on a 47 km fiber that is part of the metropolitan network for Internet traffic. The technique relies on the synchronous measurement of the optical phases at the two ends of the link, which is here performed by digital electronics. This scheme offers some advantages with respect to active noise cancellation schemes, as the light travels only once in the fiber.
Active and Passive Remote Sensing of Ice.
1984-09-01
This is a report on the progress that has been made in the study of active and passive remote sensing of ice during the period of February 1, 1984...the emissivities as functions of viewing angles and polarizations. They are used to interpret the passive microwave remote sensing data from
Active and Passive Remote Sensing of Ice.
1985-01-01
This is a report on the progress that has been made in the study of active and passive remote sensing of ice during the period of August 1, 1984...active and passive microwave remote sensing , (2) used the strong fluctuation theory and the fluctuation-dissipation theorem to calculate the brightness
NASA Technical Reports Server (NTRS)
Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.
2010-01-01
Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space ]based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below ]aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol ]induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 microns) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS ]retrieved cloud optical thickness and effective radius can reach values of 10 and 10 microns, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, J. A.
1993-01-01
Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.
Assessment of space sensors for ocean pollution monitoring
NASA Technical Reports Server (NTRS)
Alvarado, U. R.; Tomiyasu, K.; Gulatsi, R. L.
1980-01-01
Several passive and active microwave, as well as passive optical remote sensors, applicable to the monitoring of oil spills and waste discharges at sea, are considered. The discussed types of measurements relate to: (1) spatial distribution and properties of the pollutant, and (2) oceanic parameters needed to predict the movement of the pollutants and their impact upon land. The sensors, operating from satellite platforms at 700-900 km altitudes, are found to be useful in mapping the spread of oil in major oil spills and in addition, can be effective in producing wind and ocean parameters as inputs to oil trajectory and dispersion models. These capabilities can be used in countermeasures.
NASA Astrophysics Data System (ADS)
Bergeron, Jean
Snow cover estimation is a principal source of error for spring streamflow simulations in Québec, Canada. Optical and near infrared remote sensing can improve snow cover area (SCA) estimation due to high spatial resolution but is limited by cloud cover and incoming solar radiation. Passive microwave remote sensing is complementary by its near-transparence to cloud cover and independence to incoming solar radiation, but is limited by its coarse spatial resolution. The study aims to create an improved SCA product from blended passive microwave (AMSR-E daily L3 Brightness Temperature) and optical (MODIS Terra and Aqua daily snow cover L3) remote sensing data in order to improve estimation of river streamflow caused by snowmelt with Québec's operational MOHYSE hydrological model through direct-insertion of the blended SCA product in a coupled snowmelt module (SPH-AV). SCA estimated from AMSR-E data is first compared with SCA estimated with MODIS, as well as with in situ snow depth measurements. Results show good agreement (+95%) between AMSR-E-derived and MODIS-derived SCA products in spring but comparisons with Environment Canada ground stations and SCA derived from Advanced Very High Resolution Radiometer (AVHRR) data show lesser agreements (83 % and 74% respectively). Results also show that AMSR-E generally underestimates SCA. Assimilating the blended snow product in SPH-AV coupled with MOHYSE yields significant improvement of simulated streamflow for the aux Écorces et au Saumon rivers overall when compared with simulations with no update during thaw events, These improvements are similar to results driven by biweekly ground data. Assimilation of remotely-sensed passive microwave data was also found to have little positive impact on springflood forecast due to the difficulty in differentiating melting snow from snow-free surfaces. Considering the direct-insertion and Newtonian nudging assimilation methods, the study also shows the latter method to be superior to the former, notably when assimilating noisy data. Keywords: Snow cover, spring streamflow, MODIS, AMSR-E, hydrological model.
NASA Astrophysics Data System (ADS)
Mahmood, Tanvir
Considering the network size, bit rate, spectral and channel capacity limitations, different modulation formats may be selectively used in future optical networks. Although the traditional metropolitan area networks (MANs) still uses the non-return-to-zero on-off keying (NRZ-OOK) modulation format due to its technical simplicity and therefore low cost, QPSK format is more advantageous in spectrally efficient long-haul fiber optic transmission systems because of its constant power envelope, and robustness to various transmission impairments. Consequently, an important problem may arise, in particular how to route the OOK-data streams from MANs to long-haul backbone networks when the state of polarization (SOP) of the remotely generated OOK is unpredictable. Hence, the focus of this dissertation was to investigate a polarization insensitive (PI) all-optical nonlinear optical signal processing (NOSP) method that can be implemented at the network cross-connect (X-connect) to transfer data from a remotely and a locally generated OOK data simultaneously to more effectual QPSK format for long-haul transmission. By utilizing cross-phase modulation (XPM) and inherent birefringence of the device, the work demonstrated, for the first time, PI all-optical data transfer utilizing dual pump-phase transmultiplexing (DPTM) from 2 x 10-GBd OOKs to 10-GBd RZ-QPSK in a passive nonlinear birefringent photonic crystal fiber (PCF). Polarization insensitivity was achieved by scrambling the SOP of the remotely generated OOK pump and launching the locally generated OOK pump and the probe off-axis. To mitigate polarization induced power fluctuations and detrimental effects due to nearby partially degenerate and non-degenerate four wave mixings, an optimum pump-probe detuning was also utilized. The PI DPTM RZ-QPSK demonstrated a pre-amplified receiver sensitivity penalty < 5.5 dB at 10--9 bit-error-rate (BER), relative to relative to the FPGA-precoded RZ-DQPSK baseline in ASE-limited transmission system. The effect of the remotely generated OOK pump OSNR degradation on PI DPTM RZ-QPSK was also investigated and it was established that 10 -9 BER metric was attainable till the remotely generated OOK pump reached the threshold OSNR limit of 34 dB/0.1nm. Finally, DWDM transmission performance of the PI DPTM RZ-QPSK signal was evaluated using 138-km long recirculating loop and it was demonstrated that the PI DPTM RZ-QPSK can be transmitted over 1,500 km before it reached ITU-T G.709 7% HD-FEC overhead limit. This propagation distance was well beyond the transmission requisites of any typical metro network (≈ 600 km). Furthermore, it was demonstrated that, within the threshold limit, OSNR degradation of the remotely generated OOK pump had minimal impact on the transmission distance of the PI DPTM RZ-QPSK before it reached 7% HD-FEC overhead limit.
NASA Technical Reports Server (NTRS)
Montesano, P. M.; Cook, B. D.; Sun, G.; Simard, M.; Zhang, Z.; Nelson, R. F.; Ranson, K. J.; Lutchke, S.; Blair, J. B.
2012-01-01
The synergistic use of active and passive remote sensing (i.e., data fusion) demonstrates the ability of spaceborne light detection and ranging (LiDAR), synthetic aperture radar (SAR) and multispectral imagery for achieving the accuracy requirements of a global forest biomass mapping mission. This data fusion approach also provides a means to extend 3D information from discrete spaceborne LiDAR measurements of forest structure across scales much larger than that of the LiDAR footprint. For estimating biomass, these measurements mix a number of errors including those associated with LiDAR footprint sampling over regional - global extents. A general framework for mapping above ground live forest biomass (AGB) with a data fusion approach is presented and verified using data from NASA field campaigns near Howland, ME, USA, to assess AGB and LiDAR sampling errors across a regionally representative landscape. We combined SAR and Landsat-derived optical (passive optical) image data to identify forest patches, and used image and simulated spaceborne LiDAR data to compute AGB and estimate LiDAR sampling error for forest patches and 100m, 250m, 500m, and 1km grid cells. Forest patches were delineated with Landsat-derived data and airborne SAR imagery, and simulated spaceborne LiDAR (SSL) data were derived from orbit and cloud cover simulations and airborne data from NASA's Laser Vegetation Imaging Sensor (L VIS). At both the patch and grid scales, we evaluated differences in AGB estimation and sampling error from the combined use of LiDAR with both SAR and passive optical and with either SAR or passive optical alone. This data fusion approach demonstrates that incorporating forest patches into the AGB mapping framework can provide sub-grid forest information for coarser grid-level AGB reporting, and that combining simulated spaceborne LiDAR with SAR and passive optical data are most useful for estimating AGB when measurements from LiDAR are limited because they minimized forest AGB sampling errors by 15 - 38%. Furthermore, spaceborne global scale accuracy requirements were achieved. At least 80% of the grid cells at 100m, 250m, 500m, and 1km grid levels met AGB density accuracy requirements using a combination of passive optical and SAR along with machine learning methods to predict vegetation structure metrics for forested areas without LiDAR samples. Finally, using either passive optical or SAR, accuracy requirements were met at the 500m and 250m grid level, respectively.
VSF Measurements and Inversion for RaDyO
2012-09-30
near-surface waters, including the surf zone. APPROACH MASCOT (Multi-Angle SCattering Optical Tool) has a 30 mW 658 nm laser diode source...in Santa Barbara Channel are provided in Fig. 1. Despite the widespread use of polarized laser sources across a diversity of Navy applications, this...operations that rely on divers, cameras, laser imaging systems, and active and passive remote sensing systems. These include mine countermeasures, harbor
Fiber optic sensor based on Mach-Zehnder interferometer for securing entrance areas of buildings
NASA Astrophysics Data System (ADS)
Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Mec, Pavel; Novak, Martin; Bednarek, Lukas; Vasinek, Vladimir
2017-10-01
Authors of this article focused on the utilization of fiber optic sensors based on interferometric measurements for securing entrance areas of buildings such as windows and doors. We described the implementation of the fiber-optic interferometer (type Mach-Zehnder) into the window frame or door, sensor sensitivity, analysis of the background noise and methods of signal evaluation. The advantage of presented solution is the use of standard telecommunication fiber standard G.652.D, high sensitivity, immunity of sensor to electromagnetic interference (EMI) and passivity of the sensor regarding power supply. Authors implemented the Graphical User Interface (GUI) which offers the possibility of remote monitoring presented sensing solution.
Remote-seeded WDM-PON upgrade using linear semiconductor opticalamplifiers
NASA Astrophysics Data System (ADS)
Martínez, J. J.; Merayo, N.; Villafranca, A.; Garcés, I.
2013-05-01
In this work we have assessed the capacity of a linear (gain-clamped) semiconductor optical amplifier to enhance the budget of WDM PON network links for their evolution from FTTC to FTTH access. A wavelength-seeded network architecture has been considered, evaluating the performance improvement obtained by the use of an amplifier for the cases of link reach extension and optical splitting to reach end users. The evaluation measurements have shown that the extra budget is enough to compensate for the losses of a passive splitter up to atleast 1:16 division rate or to highly increment reach of the network.
Overview of SnowEx Year 1 Activities
NASA Technical Reports Server (NTRS)
Kim, Edward; Gatebe, Charles; Hall, Dorothy; Newlin, Jerry; Misakonis, Amy; Elder, Kelly; Marshall, Hans Peter; Heimstra, Chris; Brucker, Ludovic; De Marco, Eugenia;
2017-01-01
SnowEx is a multi-year airborne snow campaign with the primary goal of addressing the question: How much water is stored in Earths terrestrial snow-covered regions? Year 1 (2016-17) focused on the distribution of snow-water equivalent (SWE) and the snow energy balance in a forested environment. The year 1 primary site was Grand Mesa and the secondary site was the Senator Beck Basin, both in western, Colorado, USA. Nine sensors on five aircraft made observations using a broad range of sensing techniques, active and passive microwave, and active and passive optical infrared to determine the sensitivity and accuracy of these potential satellite remote sensing techniques, along with models, to measure snow under a range of forest conditions. SnowEx also included an extensive range of ground truth measurements in-situ manual samples, snow pits, ground based remote sensing measurements, and sophisticated new techniques. A detailed description of the data collected will be given and some preliminary results will be presented.
NASA Technical Reports Server (NTRS)
Ambrosia, Vincent G.; Linthicum, K. G.; Bailey, C. L.; Sebesta, P.
1989-01-01
The NASA Ames Ecosystem Science and Technology Branch and the U.S. Army Medical Research Institute of Infectious Diseases are conducting research to detect Rift Valley fever (RVF) vector habitats in eastern Africa using active and passive remote-sensing. The normalized difference vegetation index (NDVI) calculated from Landsat TM and SPOT data is used to characterize the vegetation common to the Aedes mosquito. Relationships have been found between the highest NDVI and the 'dambo' habitat areas near Riuru, Kenya on both wet and dry data. High NDVI values, when combined with the vegetation classifications, are clearly related to the areas of vector habitats. SAR data have been proposed for use during the rainy season when optical systems are of minimal use and the short frequency and duration of the optimum RVF mosquito habitat conditions necessitate rapid evaluation of the vegetation/moisture conditions; only then can disease potential be stemmed and eradication efforts initiated.
Emergence of the Green’s Functions from Noise and Passive Acoustic Remote Sensing of Ocean Dynamics
2009-09-30
Acoustic Remote Sensing of Ocean Dynamics Oleg A. Godin CIRES/Univ. of Colorado and NOAA/OAR/Earth System Research Lab., R/PSD99, 325 Broadway...characterization of a time-varying ocean where ambient acoustic noise is utilized as a probing signal. • To develop a passive remote sensing technique for...inapplicable. 3. To quantify degradation of performance of passive remote sensing techniques due to ocean surface motion and other variations of underwater
Active and Passive Remote Sensing of Ice
1993-01-26
92 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Active and Passive Remote Sensing of Ice NO0014-89-J-l 107 6. AUTHOR(S) 425f023-08 Prof. J.A. Kong 7... REMOTE SENSING OF ICE Sponsored by: Department of the Navy Office of Naval Research Contract number: N00014-89-J-1107 Research Organization: Center for...J. A. Kong Period covered: October 1, 1988 - November 30, 1992 St ACTIVE AND PASSIVE REMOTE SENSING OF ICE FINAL REPORT This annual report covers
Sampling strategies to improve passive optical remote sensing of river bathymetry
Legleiter, Carl; Overstreet, Brandon; Kinzel, Paul J.
2018-01-01
Passive optical remote sensing of river bathymetry involves establishing a relation between depth and reflectance that can be applied throughout an image to produce a depth map. Building upon the Optimal Band Ratio Analysis (OBRA) framework, we introduce sampling strategies for constructing calibration data sets that lead to strong relationships between an image-derived quantity and depth across a range of depths. Progressively excluding observations that exceed a series of cutoff depths from the calibration process improved the accuracy of depth estimates and allowed the maximum detectable depth ($d_{max}$) to be inferred directly from an image. Depth retrieval in two distinct rivers also was enhanced by a stratified version of OBRA that partitions field measurements into a series of depth bins to avoid biases associated with under-representation of shallow areas in typical field data sets. In the shallower, clearer of the two rivers, including the deepest field observations in the calibration data set did not compromise depth retrieval accuracy, suggesting that $d_{max}$ was not exceeded and the reach could be mapped without gaps. Conversely, in the deeper and more turbid stream, progressive truncation of input depths yielded a plausible estimate of $d_{max}$ consistent with theoretical calculations based on field measurements of light attenuation by the water column. This result implied that the entire channel, including pools, could not be mapped remotely. However, truncation improved the accuracy of depth estimates in areas shallower than $d_{max}$, which comprise the majority of the channel and are of primary interest for many habitat-oriented applications.
NASA Astrophysics Data System (ADS)
Hadley, Brian Christopher
This dissertation assessed remotely sensed data and geospatial modeling technique(s) to map the spatial distribution of total above-ground biomass present on the surface of the Savannah River National Laboratory's (SRNL) Mixed Waste Management Facility (MWMF) hazardous waste landfill. Ordinary least squares (OLS) regression, regression kriging, and tree-structured regression were employed to model the empirical relationship between in-situ measured Bahia (Paspalum notatum Flugge) and Centipede [Eremochloa ophiuroides (Munro) Hack.] grass biomass against an assortment of explanatory variables extracted from fine spatial resolution passive optical and LIDAR remotely sensed data. Explanatory variables included: (1) discrete channels of visible, near-infrared (NIR), and short-wave infrared (SWIR) reflectance, (2) spectral vegetation indices (SVI), (3) spectral mixture analysis (SMA) modeled fractions, (4) narrow-band derivative-based vegetation indices, and (5) LIDAR derived topographic variables (i.e. elevation, slope, and aspect). Results showed that a linear combination of the first- (1DZ_DGVI), second- (2DZ_DGVI), and third-derivative of green vegetation indices (3DZ_DGVI) calculated from hyperspectral data recorded over the 400--960 nm wavelengths of the electromagnetic spectrum explained the largest percentage of statistical variation (R2 = 0.5184) in the total above-ground biomass measurements. In general, the topographic variables did not correlate well with the MWMF biomass data, accounting for less than five percent of the statistical variation. It was concluded that tree-structured regression represented the optimum geospatial modeling technique due to a combination of model performance and efficiency/flexibility factors.
Chow, C W; Kuo, F M; Shi, J W; Yeh, C H; Wu, Y F; Wang, C H; Li, Y T; Pan, C L
2010-01-18
Fiber-to-the-antenna (FTTA) system can be a cost-effective technique for distributing high frequency signals from the head-end office to a number of remote antenna units via passive optical splitter and propagating through low-loss and low-cost optical fibers. Here, we experimentally demonstrate an optical ultra-wideband (UWB) - impulse radio (IR) FTTA system for in-building and in-home applications. The optical UWB-IR wireless link is operated in the W-band (75 GHz - 110 GHz) using our developed near-ballistic unitraveling-carrier photodiode based photonic transmitter (PT) and a 10 GHz mode-locked laser. 2.5 Gb/s UWB-IR FTTA systems with 1,024 high split-ratio and transmission over 300 m optical fiber are demonstrated using direct PT modulation.
Stable radio-frequency transfer over optical fiber by phase-conjugate frequency mixing.
He, Yabai; Orr, Brian J; Baldwin, Kenneth G H; Wouters, Michael J; Luiten, Andre N; Aben, Guido; Warrington, R Bruce
2013-08-12
We demonstrate long-distance (≥100-km) synchronization of the phase of a radio-frequency reference over an optical-fiber network without needing to actively stabilize the optical path length. Frequency mixing is used to achieve passive phase-conjugate cancellation of fiber-length fluctuations, ensuring that the phase difference between the reference and synchronized oscillators is independent of the link length. The fractional radio-frequency-transfer stability through a 100-km "real-world" urban optical-fiber network is 6 × 10(-17) with an averaging time of 10(4) s. Our compensation technique is robust, providing long-term stability superior to that of a hydrogen maser. By combining our technique with the short-term stability provided by a remote, high-quality quartz oscillator, this system is potentially applicable to transcontinental optical-fiber time and frequency dissemination where the optical round-trip propagation time is significant.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, J. A.
1992-01-01
Research findings are summarized for projects dealing with the following: application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated Mie scatterers with size distribution and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; theoretical modeling for passive microwave remote sensing of earth terrain; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.
Passive and Active Detection of Clouds: Comparisons between MODIS and GLAS Observations
NASA Technical Reports Server (NTRS)
Mahesh, Ashwin; Gray, Mark A.; Palm, Stephen P.; Hart, William D.; Spinhirne, James D.
2003-01-01
The Geoscience Laser Altimeter System (GLAS), launched on board the Ice, Cloud and Land Elevation Satellite in January 2003 provides space-borne laser observations of atmospheric layers. GLAS provides opportunities to validate passive observations of the atmosphere for the first time from space with an active optical instrument. Data from the Moderate Resolution Imaging Spectrometer aboard the Aqua satellite is examined along with GLAS observations of cloud layers. In more than three-quarters of the cases, MODIS scene identification from spectral radiances agrees with GLAS. Disagreement between the two platforms is most significant over snow-covered surfaces in the northern hemisphere. Daytime clouds detected by GLAS are also more easily seen in the MODIS data as well, compared to observations made at night. These comparisons illustrate the capabilities of active remote sensing to validate and assess passive measurements, and also to complement them in studies of atmospheric layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-01-01
Theoretical and experimental data which have defined and/or extended the effectiveness of remote sensing operations are explored, with consideration given to both scientific and commercial activities. The remote sensing of soil moisture, the sea surface, and oil slicks is discussed, as are programs using satellites for studying geodynamics and geodesy, currents and waves, and coastal zones. NASA, Canadian, and Japanese radar and microwave passive and active systems are described, together with algorithms and techniques for image processing and classification. The SAR-580 project is outlined, and attention is devoted to satellite applications in investigations of the structure of the atmosphere, agriculturemore » and land use, and geology. Design and performance features of various optical scanner, radar, and multispectral data processing systems and procedures are detailed.« less
Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors
Zheng, Guang; Moskal, L. Monika
2009-01-01
The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels. PMID:22574042
Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors.
Zheng, Guang; Moskal, L Monika
2009-01-01
The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels.
Panda, Sudhanshu S.; Rao, Mahesh N.; Thenkabail, Prasad S.; Fitzerald, James E.
2015-01-01
The American Society of Photogrammetry and Remote Sensing defined remote sensing as the measurement or acquisition of information of some property of an object or phenomenon, by a recording device that is not in physical or intimate contact with the object or phenomenon under study (Colwell et al., 1983). Environmental Systems Research Institute (ESRI) in its geographic information system (GIS) dictionary defines remote sensing as “collecting and interpreting information about the environment and the surface of the earth from a distance, primarily by sensing radiation that is naturally emitted or reflected by the earth’s surface or from the atmosphere, or by sending signals transmitted from a device and reflected back to it (ESRI, 2014).” The usual source of passive remote sensing data is the measurement of reflected or transmitted electromagnetic radiation (EMR) from the sun across the electromagnetic spectrum (EMS); this can also include acoustic or sound energy, gravity, or the magnetic field from or of the objects under consideration. In this context, the simple act of reading this text is considered remote sensing. In this case, the eye acts as a sensor and senses the light reflected from the object to obtain information about the object. It is the same technology used by a handheld camera to take a photograph of a person or a distant scenic view. Active remote sensing, however, involves sending a pulse of energy and then measuring the returned energy through a sensor (e.g., Radio Detection and Ranging [RADAR], Light Detection and Ranging [LiDAR]). Thermal sensors measure emitted energy by different objects. Thus, in general, passive remote sensing involves the measurement of solar energy reflected from the Earth’s surface, while active remote sensing involves synthetic (man-made) energy pulsed at the environment and the return signals are measured and recorded.
NASA Astrophysics Data System (ADS)
Ticehurst, C. J.; Bartsch, A.; Doubkova, M.; van Dijk, A. I. J. M.
2009-11-01
Continuous flood monitoring can support emergency response, water management and environmental monitoring. Optical sensors such as MODIS allow inundation mapping with high spatial and temporal resolution (250-1000 m, twice daily) but are affected by cloud cover. Passive microwave sensors also acquire observations at high temporal resolution, but coarser spatial resolution (e.g. ca. 5-70 km for AMSR-E) and smaller footprints are also affected by cloud and/or rain. ScanSAR systems allow all-weather monitoring but require spatial resolution to be traded off against coverage and/or temporal resolution; e.g. the ENVISAT ASAR Global Mode observes at ca. 1 km over large regions about twice a week. The complementary role of the AMSR-E and ASAR GM data to that of MODIS is here introduced for three flood events and locations across Australia. Additional improvements can be made by integrating digital elevation models and stream flow gauging data.
Influence of ground level SO2 on the diffuse to direct irradiance ratio in the middle ultraviolet
NASA Technical Reports Server (NTRS)
Klenk, K. F.; Green, A. E. S.
1977-01-01
The dependence of the ratio of the diffuse to direct irradiances at the ground were examined for a wavelength of 315.1 nm. A passive remote sensing method based on ratio measurements for obtaining the optical thickness of SO2 in the vertical column was proposed. If, in addition to the ratio measurements, the SO2 density at the ground is determining using an appropriate point-sampling technique then some inference on the vertical extent of SO2 can be drawn. An analytic representation is presented of the ratio for a wide range of SO2 and aerosol optical thicknesses and solar zenith angles which can be inverted algebraically to give the SO2 optical thickness in terms of the measured ratio, aerosol optical thickness and solar zenith angle.
Active/Passive Remote Sensing of the Ocean Surface at Microwave Frequencies
1999-09-30
This report summarizes research activities and results obtained under grant N000l4-99-1-0627 "Active/Passive Remote Sensing of the Ocean Surface at...Measurements were completed during April 1999 by the Microwave Remote Sensing Laboratory at the University of Massachusetts.
Anti-collision radio-frequency identification system using passive SAW tags
NASA Astrophysics Data System (ADS)
Sorokin, A. V.; Shepeta, A. P.
2017-06-01
Modern multi sensor systems should have high operating speed and resistance to climate impacts. Radiofrequency systems use passive SAW tags for identification items and vehicles. These tags find application in industry, traffic remote control systems, and railway remote traffic control systems for identification and speed measuring. However, collision of the passive SAW RFID tags hinders development passive RFID SAW technology in Industry. The collision problem for passive SAW tags leads for incorrect identification and encoding each tag. In our researching, we suggest approach for identification of several passive SAW tags in collision case.
Design of Distortion-Invariant Optical ID Tags for Remote Identification and Verification of Objects
NASA Astrophysics Data System (ADS)
Pérez-Cabré, Elisabet; Millán, María Sagrario; Javidi, Bahram
Optical identification (ID) tags [1] have a promising future in a number of applications such as the surveillance of vehicles in transportation, control of restricted areas for homeland security, item tracking on conveyor belts or other industrial environment, etc. More specifically, passive optical ID tag [1] was introduced as an optical code containing a signature (that is, a characteristic image or other relevant information of the object), which permits its real-time remote detection and identification. Since their introduction in the literature [1], some contributions have been proposed to increase their usefulness and robustness. To increase security and avoid counterfeiting, the signature was introduced in the optical code as an encrypted function [2-5] following the double-phase encryption technique [6]. Moreover, the design of the optical ID tag was done in such a way that tolerance to variations in scale and rotation was achieved [2-5]. To do that, the encrypted information was multiplexed and distributed in the optical code following an appropriate topology. Further studies were carried out to analyze the influence of different sources of noise. In some proposals [5, 7], the designed ID tag consists of two optical codes where the complex-valued encrypted signature was separately introduced in two real-valued functions according to its magnitude and phase distributions. This solution was introduced to overcome some difficulties in the readout of complex values in outdoors environments. Recently, the fully phase encryption technique [8] has been proposed to increase noise robustness of the authentication system.
Disaggregation Of Passive Microwave Soil Moisture For Use In Watershed Hydrology Applications
NASA Astrophysics Data System (ADS)
Fang, Bin
In recent years the passive microwave remote sensing has been providing soil moisture products using instruments on board satellite/airborne platforms. Spatial resolution has been restricted by the diameter of antenna which is inversely proportional to resolution. As a result, typical products have a spatial resolution of tens of kilometers, which is not compatible for some hydrological research applications. For this reason, the dissertation explores three disaggregation algorithms that estimate L-band passive microwave soil moisture at the subpixel level by using high spatial resolution remote sensing products from other optical and radar instruments were proposed and implemented in this investigation. The first technique utilized a thermal inertia theory to establish a relationship between daily temperature change and average soil moisture modulated by the vegetation condition was developed by using NLDAS, AVHRR, SPOT and MODIS data were applied to disaggregate the 25 km AMSR-E soil moisture to 1 km in Oklahoma. The second algorithm was built on semi empirical physical models (NP89 and LP92) derived from numerical experiments between soil evaporation efficiency and soil moisture over the surface skin sensing depth (a few millimeters) by using simulated soil temperature derived from MODIS and NLDAS as well as AMSR-E soil moisture at 25 km to disaggregate the coarse resolution soil moisture to 1 km in Oklahoma. The third algorithm modeled the relationship between the change in co-polarized radar backscatter and the remotely sensed microwave change in soil moisture retrievals and assumed that change in soil moisture was a function of only the canopy opacity. The change detection algorithm was implemented using aircraft based the remote sensing data from PALS and UAVSAR that were collected in SMPAVEX12 in southern Manitoba, Canada. The PALS L-band h-polarization radiometer soil moisture retrievals were disaggregated by combining them with the PALS and UAVSAR L-band hh-polarization radar spatial resolutions of 1500 m and 5 m/800 m, respectively. All three algorithms were validated using ground measurements from network in situ stations or handheld hydra probes. The validation results demonstrate the practicability on coarse resolution passive microwave soil moisture products.
NASA Astrophysics Data System (ADS)
Petrou, Zisis I.; Xian, Yang; Tian, YingLi
2018-04-01
Estimation of sea ice motion at fine scales is important for a number of regional and local level applications, including modeling of sea ice distribution, ocean-atmosphere and climate dynamics, as well as safe navigation and sea operations. In this study, we propose an optical flow and super-resolution approach to accurately estimate motion from remote sensing images at a higher spatial resolution than the original data. First, an external example learning-based super-resolution method is applied on the original images to generate higher resolution versions. Then, an optical flow approach is applied on the higher resolution images, identifying sparse correspondences and interpolating them to extract a dense motion vector field with continuous values and subpixel accuracies. Our proposed approach is successfully evaluated on passive microwave, optical, and Synthetic Aperture Radar data, proving appropriate for multi-sensor applications and different spatial resolutions. The approach estimates motion with similar or higher accuracy than the original data, while increasing the spatial resolution of up to eight times. In addition, the adopted optical flow component outperforms a state-of-the-art pattern matching method. Overall, the proposed approach results in accurate motion vectors with unprecedented spatial resolutions of up to 1.5 km for passive microwave data covering the entire Arctic and 20 m for radar data, and proves promising for numerous scientific and operational applications.
A Polarimetric Extension of the van Cittert-Zernike Theorem for Use with Microwave Interferometers
NASA Technical Reports Server (NTRS)
Piepmeier, J. R.; Simon, N. K.
2004-01-01
The van Cittert-Zernike theorem describes the Fourier-transform relationship between an extended source and its visibility function. Developments in classical optics texts use scalar field formulations for the theorem. Here, we develop a polarimetric extension to the van Cittert-Zernike theorem with applications to passive microwave Earth remote sensing. The development provides insight into the mechanics of two-dimensional interferometric imaging, particularly the effects of polarization basis differences between the scene and the observer.
Remote coding scheme based on waveguide Bragg grating in PLC splitter chip for PON monitoring.
Zhang, Xuan; Lu, Fengjun; Chen, Si; Zhao, Xingqun; Zhu, Min; Sun, Xiaohan
2016-03-07
A distributing arranged waveguide Bragg gratings (WBGs) in PLC splitter chip based remote coding scheme is proposed and analyzed for passive optical network (PON) monitoring, by which the management system can identify each drop fiber link through the same reflector in the terminal of each optical network unit, even though there exist several equidistant users. The corresponding coding and capacity models are respectively established and investigated so that we can obtain a minimum number of the WBGs needed under the condition of the distributed structure. Signal-to-noise ratio (SNR) model related to the number of equidistant users is also developed to extend the analyses for the overall performance of the system. Simulation results show the proposed scheme is feasible and allow the monitoring of a 64 users PON with SNR range of 7.5~10.6dB. The scheme can solve some of difficulties of construction site at the lower user cost for PON system.
Microwave remote sensing and radar polarization signatures of natural fields
NASA Technical Reports Server (NTRS)
Mo, Tsan
1989-01-01
Theoretical models developed for simulation of microwave remote sensing of the Earth surface from airborne/spaceborne sensors are described. Theoretical model calculations were performed and the results were compared with data of field measurements. Data studied included polarimetric images at the frequencies of P band, L band, and C band, acquired with airborne polarimeters over a agricultural field test site. Radar polarization signatures from bare soil surfaces and from tree covered fields were obtained from the data. The models developed in this report include: (1) Small perturbation model of wave scatterings from randomly rough surfaces, (2) Physical optics model, (3) Geometrical optics model, and (4) Electromagnetic wave scattering from dielectric cylinders of finite lengths, which replace the trees and branches in the modeling of tree covered field. Additionally, a three-layer emissivity model for passive sensing of a vegetation covered soil surface is also developed. The effects of surface roughness, soil moisture contents, and tree parameters on the polarization signatures were investigated.
Laser Induced Fluorescence (LIF) as a Remote Sensing Tool: A Review
NASA Technical Reports Server (NTRS)
Chappelle, E. W.; Kim, M. S.; Mulchi, C. L.; Daughtry, C. S. T.; McMurtrey, J.; Corp, L.
1998-01-01
Vegetational changes are primary indicators of the present and future ecological status of the globe. These are changes which not only impact upon the primary productivity, but the total of the biogeochemical processes occurring on the planet. The impacts of global climatic and other environmental changes on vegetation must be monitored by some means in order to develop models which will allow us to predict long term effects. Large scale monitoring is now possible only with remote sensing systems, primarily passive reflectance, obtained by the use of satellite and aircraft platforms. However, passive reflectance techniques at this time are limited in their ability to detect subtle changes in the concentration and oxidation states of the many compounds involved in the light reactions of photosynthesis. Knowledge of these changes we consider to be fundamental in the remote assessment of both the rate and efficiency of photosynthesis and also the early detection of stress damage. The above factors pointed to the desirability of a sensing technique with the sensitivity and specificity necessary for detecting and quantifying those biological entities involved in photosynthesis. Another optical technique for vegetation monitoring is fluorescence. Previously, the lack of adequate excitation light sources and detector technologies have limited the use of fluorescence on intact plant leaves in the field. It is only recently with the advent of lasers with short pulse duration and advanced detector technologies that fluorescence measurements in the remote mode have become possible in the presence of ambient light.
Passive Polarimetric Remote Sensing of Snow and Ice
1997-09-30
In recent years, polarimetric radiometry has shown great potential to revolutionize passive remote sensing of the ocean surface. As a result, several...polarimetric radiometer, in 2001. This project explores the possibility of applying this new technology to remote sensing in the Polar Regions by investigating the polarimetric signature of ice and snow.
Analytical and Numerical Studies of Active and Passive Microwave Ocean Remote Sensing
2001-09-30
of both analytical and efficient numerical methods for electromagnetics and hydrodynamics. New insights regarding these phenomena can then be applied to improve microwave active and passive remote sensing of the ocean surface.
Active-Passive Microwave Remote Sensing of Martian Permafrost and Subsurface Water
NASA Technical Reports Server (NTRS)
Raizer, V.; Linkin, V. M.; Ozorovich, Y. R.; Smythe, W. D.; Zoubkov, B.; Babkin, F.
2000-01-01
The investigation of permafrost formation global distribution and their appearance in h less than or equal 1 m thick subsurface layer would be investigated successfully by employment of active-passive microwave remote sensing techniques.
NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing
NASA Technical Reports Server (NTRS)
Chirayath, Ved
2018-01-01
We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and aquatic organics.
NASA Technical Reports Server (NTRS)
Vandegriend, A. A.; Owe, M.; Chang, A. T. C.
1992-01-01
The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. The research program consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components are explained in general and activities performed within the passive microwave research component are summarized. The microwave theory is discussed taking into account: soil dielectric constant, emissivity, soil roughness effects, vegetation effects, optical depth, single scattering albedo, and wavelength effects. The study site is described. The soil moisture data and its processing are considered. The relation between observed large scale soil moisture and normalized brightness temperatures is discussed. Vegetation characteristics and inverse modeling of soil emissivity is considered.
Satellite Remote Sensing Studies of Biological and Biogeochemical Processing in the Ocean
NASA Technical Reports Server (NTRS)
Vernet, Maria
2001-01-01
The remote sensing of phycoerythrin-containing phytoplankton by ocean color was evaluated. Phycoerythrin (PE) can be remotely sensed by three methods: surface reflectance (Sathyendranath et al. 1994), by laser-activated fluorescence (Hoge and Swift 1986) and by passive fluorescence (Letelier et al. 1996). In collaboration with Dr. Frank Hoge and Robert Swift during Dr. Maria Vernet's tenure as Senior Visiting Scientist at Wallops Island, the active and passive methods were studied, in particular the detection of PE fluorescence and spectral reflectance from airborne LIDAR (AOL). Airborne instrumentation allows for more detailed and flexible sampling of the ocean surface than satellites thus providing the ideal platform to test model and develop algorithms than can later be applied to ocean color by satellites such as TERRA and AQUA. Dr. Vernet's contribution to the Wallops team included determination of PE in the water column, in conjunction with AOL flights in the North Atlantic Bight. In addition, a new flow-through fluorometer for PE determination by fluorescence was tested and calibrated. Results: several goals were achieved during this period. Cruises to the California Current, North Atlantic Bight, Gulf of Maine and Chesapeake Bay provided sampling under different oceanographic and optical conditions. The ships carried the flow-through fluorometer and samples for the determination of PE were obtained from the flow-through flow. The AOL was flown over the ship's track, usually several flights during the cruise, weather permitting.
Assessing the relationship between microwave vegetation optical depth and gross primary production
NASA Astrophysics Data System (ADS)
Teubner, Irene E.; Forkel, Matthias; Jung, Martin; Liu, Yi Y.; Miralles, Diego G.; Parinussa, Robert; van der Schalie, Robin; Vreugdenhil, Mariette; Schwalm, Christopher R.; Tramontana, Gianluca; Camps-Valls, Gustau; Dorigo, Wouter A.
2018-03-01
At the global scale, the uptake of atmospheric carbon dioxide by terrestrial ecosystems through photosynthesis is commonly estimated through vegetation indices or biophysical properties derived from optical remote sensing data. Microwave observations of vegetated areas are sensitive to different components of the vegetation layer than observations in the optical domain and may therefore provide complementary information on the vegetation state, which may be used in the estimation of Gross Primary Production (GPP). However, the relation between GPP and Vegetation Optical Depth (VOD), a biophysical quantity derived from microwave observations, is not yet known. This study aims to explore the relationship between VOD and GPP. VOD data were taken from different frequencies (L-, C-, and X-band) and from both active and passive microwave sensors, including the Advanced Scatterometer (ASCAT), the Soil Moisture Ocean Salinity (SMOS) mission, the Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E) and a merged VOD data set from various passive microwave sensors. VOD data were compared against FLUXCOM GPP and Solar-Induced chlorophyll Fluorescence (SIF) from the Global Ozone Monitoring Experiment-2 (GOME-2). FLUXCOM GPP estimates are based on the upscaling of flux tower GPP observations using optical satellite data, while SIF observations present a measure of photosynthetic activity and are often used as a proxy for GPP. For relating VOD to GPP, three variables were analyzed: original VOD time series, temporal changes in VOD (ΔVOD), and positive changes in VOD (ΔVOD≥0). Results show widespread positive correlations between VOD and GPP with some negative correlations mainly occurring in dry and wet regions for active and passive VOD, respectively. Correlations between VOD and GPP were similar or higher than between VOD and SIF. When comparing the three variables for relating VOD to GPP, correlations with GPP were higher for the original VOD time series than for ΔVOD or ΔVOD≥0 in case of sparsely to moderately vegetated areas and evergreen forests, while the opposite was true for deciduous forests. Results suggest that original VOD time series should be used jointly with changes in VOD for the estimation of GPP across biomes, which may further benefit from combining active and passive VOD data.
Mejía, Rubén Galicia; Vázquez, Josémanueldelarosa; Isakina, Suren Stolik; García, Edgard Moreno; Iglesias, Gustavo Sosa
2013-01-08
In recent years several techniques have been developed to measure and monitor the pollution of the air. Among these techniques, remote sensing using optical methods stands out due to several advantages for air quality control applications. A Passive Differential Optical Absorption Spectroscopy system that uses the ultraviolet region from 200 to 355 nm of the solar radiation is presented. The developed system is portable; therefore it is practical for real time and in situ measurements. The enhanced wavelength range of the system is intended to detect the ultraviolet light penetration in the Mexican Valley considering the solar zenith angle and the altitude. The system was applied to retrieve atmospheric SO2 columns emitted either by anthropogenic (power plant) or natural sources (volcano), reaching a detection limit of about 1 ppm. The measurement of the penetrating solar radiation on the earth surface at the UVC range is presented and the possibility to measure pollution traces of some contaminants as O3, NO2 and aromatic compounds in real time and in situ in the ultraviolet region is discussed.
2013-01-01
In recent years several techniques have been developed to measure and monitor the pollution of the air. Among these techniques, remote sensing using optical methods stands out due to several advantages for air quality control applications. A Passive Differential Optical Absorption Spectroscopy system that uses the ultraviolet region from 200 to 355 nm of the solar radiation is presented. The developed system is portable; therefore it is practical for real time and in situ measurements. The enhanced wavelength range of the system is intended to detect the ultraviolet light penetration in the Mexican Valley considering the solar zenith angle and the altitude. The system was applied to retrieve atmospheric SO2 columns emitted either by anthropogenic (power plant) or natural sources (volcano), reaching a detection limit of about 1 ppm. The measurement of the penetrating solar radiation on the earth surface at the UVC range is presented and the possibility to measure pollution traces of some contaminants as O3, NO2 and aromatic compounds in real time and in situ in the ultraviolet region is discussed. PMID:23369629
An NFC-Enabled CMOS IC for a Wireless Fully Implantable Glucose Sensor.
DeHennis, Andrew; Getzlaff, Stefan; Grice, David; Mailand, Marko
2016-01-01
This paper presents an integrated circuit (IC) that merges integrated optical and temperature transducers, optical interface circuitry, and a near-field communication (NFC)-enabled digital, wireless readout for a fully passive implantable sensor platform to measure glucose in people with diabetes. A flip-chip mounted LED and monolithically integrated photodiodes serve as the transduction front-end to enable fluorescence readout. A wide-range programmable transimpedance amplifier adapts the sensor signals to the input of an 11-bit analog-to-digital converter digitizing the measurements. Measurement readout is enabled by means of wireless backscatter modulation to a remote NFC reader. The system is able to resolve current levels of less than 10 pA with a single fluorescent measurement energy consumption of less than 1 μJ. The wireless IC is fabricated in a 0.6-μm-CMOS process and utilizes a 13.56-MHz-based ISO15693 for passive wireless readout through a NFC interface. The IC is utilized as the core interface to a fluorescent, glucose transducer to enable a fully implantable sensor-based continuous glucose monitoring system.
[Remote sensing of atmospheric trace gas by airborne passive FTIR].
Gao, Min-quang; Liu, Wen-qing; Zhang, Tian-shu; Liu, Jian-guo; Lu, Yi-huai; Wang, Ya-ping; Xu, Liang; Zhu, Jun; Chen, Jun
2006-12-01
The present article describes the details of aviatic measurement for remote sensing trace gases in atmosphere under various surface backgrounds with airborne passive FTIR. The passive down viewing and remote sensing technique used in the experiment is discussed. The method of acquiring atmospheric trace gases infrared characteristic spectra in complicated background and the algorithm of concentration retrieval are discussed. The concentrations of CO and N2O of boundary-layer atmosphere in experimental region below 1000 m are analyzed quantitatively. This measurement technique and the data analysis method, which does not require a previously measured background spectrum, allow fast and mobile remote detection and identification of atmosphere trace gas in large area, and also can be used for urgent monitoring of pollution accidental breakout.
Has China been exporting less particulate air pollution over the past decade?
NASA Astrophysics Data System (ADS)
Zhang, Jianglong; Reid, Jeffrey S.; Alfaro-Contreras, Ricardo; Xian, Peng
2017-03-01
Particulate matter (PM) pollution from China is transported eastward to Korea and Japan and has been suggested to influence surface air quality on the West Coast of the United States. However, remote sensing studies have been inconclusive as to recent trends in Chinese emissions and transport. We reconciled different passive remote sensing points of view and found that while aerosol optical thickness (AOT) as an indicator of particulate pollution has increased from the start of the observation period (2000) to 2006-2007 from the main Chinese coastal outflow regions, since then there has been a 10-20% decrease in AOT (with respect to 2007). Reductions were observed in spring, summer, and fall seasons. No improvement in exported PM pollution is found for the winter season.
Datla, R. U.; Rice, J. P.; Lykke, K. R.; Johnson, B. C.; Butler, J. J.; Xiong, X.
2011-01-01
The pre-launch characterization and calibration of remote sensing instruments should be planned and carried out in conjunction with their design and development to meet the mission requirements. The onboard calibrators such as blackbodies and the sensors such as spectral radiometers should be characterized and calibrated using SI traceable standards. In the case of earth remote sensing, this allows inter-comparison and intercalibration of different sensors in space to create global time series of climate records of high accuracy where some inevitable data gaps can be easily bridged. The recommended best practice guidelines for this pre-launch effort is presented based on experience gained at National Institute of Standards and Technology (NIST), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) programs over the past two decades. The currently available radiometric standards and calibration facilities at NIST serving the remote sensing community are described. Examples of best practice calibrations and intercomparisons to build SI (international System of Units) traceable uncertainty budget in the instrumentation used for preflight satellite sensor calibration and validation are presented. PMID:26989588
Datla, R U; Rice, J P; Lykke, K R; Johnson, B C; Butler, J J; Xiong, X
2011-01-01
The pre-launch characterization and calibration of remote sensing instruments should be planned and carried out in conjunction with their design and development to meet the mission requirements. The onboard calibrators such as blackbodies and the sensors such as spectral radiometers should be characterized and calibrated using SI traceable standards. In the case of earth remote sensing, this allows inter-comparison and intercalibration of different sensors in space to create global time series of climate records of high accuracy where some inevitable data gaps can be easily bridged. The recommended best practice guidelines for this pre-launch effort is presented based on experience gained at National Institute of Standards and Technology (NIST), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) programs over the past two decades. The currently available radiometric standards and calibration facilities at NIST serving the remote sensing community are described. Examples of best practice calibrations and intercomparisons to build SI (international System of Units) traceable uncertainty budget in the instrumentation used for preflight satellite sensor calibration and validation are presented.
Bakó, Gábor; Tolnai, Márton; Takács, Ádám
2014-01-01
Remote sensing is a method that collects data of the Earth's surface without causing disturbances. Thus, it is worthwhile to use remote sensing methods to survey endangered ecosystems, as the studied species will behave naturally while undisturbed. The latest passive optical remote sensing solutions permit surveys from long distances. State-of-the-art highly sensitive sensor systems allow high spatial resolution image acquisition at high altitudes and at high flying speeds, even in low-visibility conditions. As the aerial imagery captured by an airplane covers the entire study area, all the animals present in that area can be recorded. A population assessment is conducted by visual interpretations of an ortho image map. The basic objective of this study is to determine whether small- and medium-sized bird species are recognizable in the ortho images by using high spatial resolution aerial cameras. The spatial resolution needed for identifying the bird species in the ortho image map was studied. The survey was adjusted to determine the number of birds in a colony at a given time. PMID:25046012
Shao, Zhenfeng; Zhang, Linjing
2016-01-01
Estimation of forest aboveground biomass is critical for regional carbon policies and sustainable forest management. Passive optical remote sensing and active microwave remote sensing both play an important role in the monitoring of forest biomass. However, optical spectral reflectance is saturated in relatively dense vegetation areas, and microwave backscattering is significantly influenced by the underlying soil when the vegetation coverage is low. Both of these conditions decrease the estimation accuracy of forest biomass. A new optical and microwave integrated vegetation index (VI) was proposed based on observations from both field experiments and satellite (Landsat 8 Operational Land Imager (OLI) and RADARSAT-2) data. According to the difference in interaction between the multispectral reflectance and microwave backscattering signatures with biomass, the combined VI (COVI) was designed using the weighted optical optimized soil-adjusted vegetation index (OSAVI) and microwave horizontally transmitted and vertically received signal (HV) to overcome the disadvantages of both data types. The performance of the COVI was evaluated by comparison with those of the sole optical data, Synthetic Aperture Radar (SAR) data, and the simple combination of independent optical and SAR variables. The most accurate performance was obtained by the models based on the COVI and optical and microwave optimal variables excluding OSAVI and HV, in combination with a random forest algorithm and the largest number of reference samples. The results also revealed that the predictive accuracy depended highly on the statistical method and the number of sample units. The validation indicated that this integrated method of determining the new VI is a good synergistic way to combine both optical and microwave information for the accurate estimation of forest biomass. PMID:27338378
NASA Astrophysics Data System (ADS)
Kachhatiya, Vivek; Prince, Shanthi
2016-12-01
In this paper, we have proposed and simulated optical time division multiplexed passive optical network (TDM-PON) using delayed optical amplitude modulation (AM). Eight upstream wavelengths are demonstrated to show optical time wavelength division multiplexed (TWDM) by combining optical network units (ONU) users data at the remote node (RN). Each ONU generates 2.5 Gb/s user data, and it is modulated using novel return to zero (RZ) delayed AM. Optical TDM aggregates 10 Gb/s data per wavelength from four 2.5 Gb/s upstream user data, which facilitates four different ONU data on the same wavelength as 10 Gb/s per upstream wavelength and, simplify the laser requirements (2.5 Gb/s) at each optical network unit (ONU) transmitter. Upstream optical TWDM-PON is investigated for eight wavelengths with wavelength spacing of 100 GHz. Novel optical TDM for upstream increased the number of the simultaneous user to fourfold from conventional TWDM-PON using delayed AM with a high-quality-factor of received signal. Despite performance degradation due to different fiber reach and dispersion compensation technique, Optical TWDM link shows significant improvement regarding receiver sensitivity when compared with common TWDM link. Hence, it offers optimistic thinking to show optical TDM at this phase as one of the future direction, where complex digital signal processing (DSP) and coherent optical communication are frequently demonstrated to serve the access network. Downstream side conventional TWDM eight wavelengths are multiplexed at the OLT and sent downstream to serve distributed tunable ONU receivers through an optical distribution network (ODN). Each downstream wavelengths are modulated at the peak rate of 10 Gb/s using non-return to zero external modulation (NRZ-EM). The proposed architecture is cost efficient and supports high data rates as well as ;pay as you grow; network for both service providers and the users perspectives. Users are classified into two categories viz home-user and business-user, with an option for easy up-gradation. Proposed architecture operates on next generation passive optical network stage 2 (NG-PON2) wavelength plan, with symmetrical data rate. Downstream performance is investigated by comparing, high power laser source with a conventional laser source and the L-band Erbium-doped fiber amplifier (EDFA) of gain 10 dB and 20 dB. Downstream eight wavelengths perform error-free up to 40 Km fiber reach and 1024 splitting points. Power budget of the proposed architecture incorporates the N1, N2, E1 and E2 optical path loss class.
Active and Passive Remote Sensing of Ice
1991-11-15
To demonstrate the use of polarimetry in passive remote sensing of azimuthally asymmetric features on a terrain surface, an experiment was designed...azimuthal asymmetry on the remotely sensed soil surface. It is also observed from the experiment that the brightness temperatures for all three Stokes...significant implication of this experiment is that the surface asymmetry can be detected with a measurement of U at a single azimuthal angle. -8
NASA Technical Reports Server (NTRS)
Plotkin, Henry H.; Sokoloski, Martin M.; Rubin, Bernard
1991-01-01
Terrestrial and atmospheric missions of NASA's program to develop remote sensing instrumentation are described along with several of the instruments and related mission. Systems such as lidar and radar, passive coherent sensors, passive noncoherent sensors, as well as cryogenic cooler technology are discussed.
Khalid, Muhammad Waqas; Ahmed, Rajib; Yetisen, Ali K.
2018-01-01
Optical sensors for detecting temperature and strain play a crucial role in the analysis of environmental conditions and real-time remote sensing. However, the development of a single optical device that can sense temperature and strain simultaneously remains a challenge. Here, a flexible corner cube retroreflector (CCR) array based on passive dual optical sensing (temperature and strain) is demonstrated. A mechanical embossing process was utilised to replicate a three-dimensional (3D) CCR array in a soft flexible polymer film. The fabricated flexible CCR array samples were experimentally characterised through reflection measurements followed by computational modelling. As fabricated samples were illuminated with a monochromatic laser beam (635, 532, and 450 nm), a triangular shape reflection was obtained at the far-field. The fabricated flexible CCR array samples tuned retroreflected light based on external stimuli (temperature and strain as an applied force). For strain and temperature sensing, an applied force and temperature, in the form of weight suspension, and heat flow was applied to alter the replicated CCR surface structure, which in turn changed its optical response. Directional reflection from the heated flexible CCR array surface was also measured with tilt angle variation (max. up to 10°). Soft polymer CCRs may have potential in remote sensing applications, including measuring the temperature in space and in nuclear power stations. PMID:29568510
NASA Technical Reports Server (NTRS)
Tsang, Leung; Hwang, Jenq-Neng
1996-01-01
A method to incorporate passive microwave remote sensing measurements within a spatially distributed snow hydrology model to provide estimates of the spatial distribution of Snow Water Equivalent (SWE) as a function of time is implemented. The passive microwave remote sensing measurements are at 25 km resolution. However, in mountain regions the spatial variability of SWE over a 25 km footprint is large due to topographic influences. On the other hand, the snow hydrology model has built-in topographic information and the capability to estimate SWE at a 1 km resolution. In our work, the snow hydrology SWE estimates are updated and corrected using SSM/I passive microwave remote sensing measurements. The method is applied to the Upper Rio Grande River Basin in the mountains of Colorado. The change in prediction of SWE from hydrology modeling with and without updating is compared with measurements from two SNOTEL sites in and near the basin. The results indicate that the method incorporating the remote sensing measurements into the hydrology model is able to more closely estimate the temporal evolution of the measured values of SWE as a function of time.
Athermalization of resonant optical devices via thermo-mechanical feedback
Rakich, Peter; Nielson, Gregory N.; Lentine, Anthony L.
2016-01-19
A passively athermal photonic system including a photonic circuit having a substrate and an optical cavity defined on the substrate, and passive temperature-responsive provisions for inducing strain in the optical cavity of the photonic circuit to compensate for a thermo-optic effect resulting from a temperature change in the optical cavity of the photonic circuit. Also disclosed is a method of passively compensating for a temperature dependent thermo-optic effect resulting on an optical cavity of a photonic circuit including the step of passively inducing strain in the optical cavity as a function of a temperature change of the optical cavity thereby producing an elasto-optic effect in the optical cavity to compensate for the thermo-optic effect resulting on an optical cavity due to the temperature change.
3D MOEMS-based optical micro-bench platform for the miniaturization of sensing devices
NASA Astrophysics Data System (ADS)
Garcia-Blanco, Sonia; Caron, Jean-Sol; Leclair, Sébastien; Topart, Patrice A.; Jerominek, Hubert
2008-02-01
As we enter into the 21st century, the need for miniaturized portable diagnostic devices is increasing continuously. Portable devices find important applications for point-of-care diagnostics, patient self-monitoring and in remote areas, such as unpopulated regions where the cost of large laboratory facilities is not justifiable, underdeveloped countries and other remote locations such as space missions. The advantage of miniaturized sensing optical systems includes not only the reduced weight and size but also reduced cost, decreased time to results and robustness (e.g. no need for frequent re-alignments). Recent advances in micro-fabrication and assembly technologies have enabled important developments in the field of miniaturized sensing systems. INO has developed a technology platform for the three dimensional integration of MOEMS on an optical microbench. Building blocks of the platform include microlenses, micromirrors, dichroic beamsplitters, filters and optical fibers, which can be positioned using passive alignment structures to build the desired miniaturised system. The technology involves standard microfabrication, thick resist UV-lithography, thick metal electroplating, soldering, replication in sol-gel materials and flip-chip bonding processes. The technology is compatible with wafer-to-wafer bonding. A placement accuracy of +/- 5 μm has been demonstrated thanks to the integration of alignment marks co registered with other optical elements fabricated on different wafers. In this paper, the building blocks of the technology will be detailed. The design and fabrication of a 5x5 channels light processing unit including optical fibers, mirrors and collimating microlenses will be described. Application of the technology to various kinds of sensing devices will be discussed.
Performance Enhancement of Bidirectional TWDM-PON by Rayleigh Backscattering Mitigation
NASA Astrophysics Data System (ADS)
Elewah, Ibrahim A.; Wadie, Martina N.; Aly, Moustafa H.
2018-01-01
A bidirectional time wavelength division multiplexing-passive optical network (TWDM-PON) with a centralized light source (CLS) is designed and evaluated. TWDM-PON is the promising solution for PON future expansion and migration. The most important issue that limits optical fiber transmission length is the interferometric noise caused by Rayleigh backscattering (RB). In this study, we demonstrate a TWDM-PON architecture with subcarrier at the remote node (RN) to mitigate the RB effect. A successful transmission with 8 optical channels is achieved using wavelength division multiplexing (WDM). Each optical channel is splitted into 8 time slots to achieve TWDM. The proposed scheme is operated over 20 km bidirectional single mode fiber (SMF). The proposed system has the advantage of expanding the downstream (DS) capacity to be 160 Gb/s (8 channels×20 Gb/s) and 20 Gb/s (8 channels×2.5 Gb/s) for the upstream (US) transmission capacity. This is accomplished by a remarkable bit error rate (BER) and low complexity.
Classification of bottom composition and bathymetry of shallow waters by passive remote sensing
NASA Astrophysics Data System (ADS)
Spitzer, D.; Dirks, R. W. J.
The use of remote sensing data in the development of algorithms to remove the influence of the watercolumn on upwelling optical signals when mapping the bottom depth and composition in shallow waters. Calculations relating the reflectance spectra to the parameters of the watercolumn and the diverse bottom types are performed and measurements of the underwater reflection coefficient of sandy, mud, and vegetation-type seabottoms are taken. The two-flow radiative transfer model is used. Reflectances within the spectral bands of the Landsat MSS, the Landsat TM, SPOT HVR, and the TIROS-N series AVHRR were computed in order to develop appropriate algorithms suitable for the bottom depth and type mapping. Bottom depth and features appear to be observable down to 3-20 m depending on the water composition and bottom type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hostetler, Chris; Ferrare, Richard
The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institutemore » for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent analysis and archival of the data, and the presentation of results in conferences, workshops, and publications. DOE ASR field campaigns supported under this project included - MAX-Mex /MILAGRO (2006) - TexAQS 2006/GoMACCS (2006) - CHAPS (2007) - RACORO (2009) - CARE/CalNex (2010) In addition, data acquired on HSRL airborne field campaigns sponsored by other agencies were used extensively to fulfill the science objectives of this project and the data acquired have been made available to other DOE ASR investigators upon request.« less
NASA Astrophysics Data System (ADS)
Ding, Jiachen; Bi, Lei; Yang, Ping; Kattawar, George W.; Weng, Fuzhong; Liu, Quanhua; Greenwald, Thomas
2017-03-01
An ice crystal single-scattering property database is developed in the microwave spectral region (1 to 874 GHz) to provide the scattering, absorption, and polarization properties of 12 ice crystal habits (10-plate aggregate, 5-plate aggregate, 8-column aggregate, solid hexagonal column, hollow hexagonal column, hexagonal plate, solid bullet rosette, hollow bullet rosette, droxtal, oblate spheroid, prolate spheroid, and sphere) with particle maximum dimensions from 2 μm to 10 mm. For each habit, four temperatures (160, 200, 230, and 270 K) are selected to account for temperature dependence of the ice refractive index. The microphysical and scattering properties include projected area, volume, extinction efficiency, single-scattering albedo, asymmetry factor, and six independent nonzero phase matrix elements (i.e. P11, P12, P22, P33, P43 and P44). The scattering properties are computed by the Invariant Imbedding T-Matrix (II-TM) method and the Improved Geometric Optics Method (IGOM). The computation results show that the temperature dependence of the ice single-scattering properties in the microwave region is significant, particularly at high frequencies. Potential active and passive remote sensing applications of the database are illustrated through radar reflectivity and radiative transfer calculations. For cloud radar applications, ignoring temperature dependence has little effect on ice water content measurements. For passive microwave remote sensing, ignoring temperature dependence may lead to brightness temperature biases up to 5 K in the case of a large ice water path.
Electronic band-gap modified passive silicon optical modulator at telecommunications wavelengths.
Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Liu, Xiangdong; Lu, Qingming; Wang, Jiyang
2015-11-13
The silicon optical modulator is considered to be the workhorse of a revolution in communications. In recent years, the capabilities of externally driven active silicon optical modulators have dramatically improved. Self-driven passive modulators, especially passive silicon modulators, possess advantages in compactness, integration, low-cost, etc. Constrained by a large indirect band-gap and sensitivity-related loss, the passive silicon optical modulator is scarce and has been not advancing, especially at telecommunications wavelengths. Here, a passive silicon optical modulator is fabricated by introducing an impurity band in the electronic band-gap, and its nonlinear optics and applications in the telecommunications-wavelength lasers are investigated. The saturable absorption properties at the wavelength of 1.55 μm was measured and indicates that the sample is quite sensitive to light intensity and has negligible absorption loss. With a passive silicon modulator, pulsed lasers were constructed at wavelengths at 1.34 and 1.42 μm. It is concluded that the sensitive self-driven passive silicon optical modulator is a viable candidate for photonics applications out to 2.5 μm.
USDA-ARS?s Scientific Manuscript database
Remotely-sensed soil moisture studies have mainly focused on retrievals using active and passive microwave (MW) sensors whose measurements provided a direct relationship to soil moisture (SM). MW sensors present obvious advantages such as the ability to retrieve through non-precipitating cloud cover...
USDA-ARS?s Scientific Manuscript database
Satellite-based passive microwave remote sensing typically involves a scanning antenna that makes measurements at irregularly spaced locations. These locations can change on a day to day basis. Soil moisture products derived from satellite-based passive microwave remote sensing are usually resampled...
Siberian lidar station: instruments and results
NASA Astrophysics Data System (ADS)
Matvienko, Gennadii G.; Balin, Yurii S.; Bobrovnikov, Sergey M.; Romanovskii, Oleg A.; Kokhanenko, Grigirii P.; Samoilova, Svetlana V.; Penner, Ioganes E.; Gorlov, Evgenii V.; Zharkov, Victir I.; Sadovnikov, Sergey A.; Yakovlev, Semen V.; Bazhenov, Oleg E.; Dolgii, Sergey I.; Makeev, Andrey P.; Nevzorov, Alexey A.; Nevzorov, Alexey V.; Kharchenko, Olga V.
2018-04-01
The Siberian Lidar Station created at V.E. Zuev Institute of Atmospheric Optics and operating in Tomsk (56.5° N, 85.0° E) is a unique atmospheric observatory. It combines up-to-date instruments for remote laser and passive sounding for the study of aerosol and cloud fields, air temperature and humidity, and ozone and gaseous components of the ozone cycles. In addition to controlling a wide range of atmospheric parameters, the observatory allows simultaneous monitoring of the atmosphere throughout the valuable altitude range 0-75 km. In this paper, the instruments and results received at the Station are described.
Jiao, Yang; Xu, Liang; Gao, Min-Guang; Feng, Ming-Chun; Jin, Ling; Tong, Jing-Jing; Li, Sheng
2012-07-01
Passive remote sensing by Fourier-transform infrared (FTIR) spectrometry allows detection of air pollution. However, for the localization of a leak and a complete assessment of the situation in the case of the release of a hazardous cloud, information about the position and the distribution of a cloud is essential. Therefore, an imaging passive remote sensing system comprising an interferometer, a data acquisition and processing software, scan system, a video system, and a personal computer has been developed. The remote sensing of SF6 was done. The column densities of all directions in which a target compound has been identified may be retrieved by a nonlinear least squares fitting algorithm and algorithm of radiation transfer, and a false color image is displayed. The results were visualized by a video image, overlaid by false color concentration distribution image. The system has a high selectivity, and allows visualization and quantification of pollutant clouds.
Tunnel-Site Selection by Remote Sensing Techniques
A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave
1700 deg C optical temperature sensor
NASA Technical Reports Server (NTRS)
Mossey, P. W.; Shaffernocker, W. M.; Mulukutla, A. R.
1986-01-01
A new gas temperature sensor was developed that shows promise of sufficient ruggedness to be useful as a gas turbine temperature sensor. The sensor is in the form of a single-crystal aluminum oxide ceramic, ground to a cone shape and given an emissive coating. A lens and an optical fiber conduct the thermally emitted light to a remote and near-infrared photodetector assembly. Being optically coupled and passive, the sensor is highly immune to all types of electrical interference. Candidate sensors were analyzed for optical sensor performance, heat transfer characteristics, stress from gas loading. This led to the selection of the conical shape as the most promising for the gas turbine environment. One uncoated and two coated sensing elements were prepared for testing. Testing was conducted to an indicated 1750 C in a propane-air flame. Comparison with the referee optical pyrometer shows an accuracy of + or - 25 C at 1700 C for this initial development. One hundred cycles from room temperature to 1700 C left the sapphire cone intact, but some loss of the platinum, 6% rhodium coating was observed. Several areas for improving the overall performance and durability are identified.
Photo-acoustic and video-acoustic methods for sensing distant sound sources
NASA Astrophysics Data System (ADS)
Slater, Dan; Kozacik, Stephen; Kelmelis, Eric
2017-05-01
Long range telescopic video imagery of distant terrestrial scenes, aircraft, rockets and other aerospace vehicles can be a powerful observational tool. But what about the associated acoustic activity? A new technology, Remote Acoustic Sensing (RAS), may provide a method to remotely listen to the acoustic activity near these distant objects. Local acoustic activity sometimes weakly modulates the ambient illumination in a way that can be remotely sensed. RAS is a new type of microphone that separates an acoustic transducer into two spatially separated components: 1) a naturally formed in situ acousto-optic modulator (AOM) located within the distant scene and 2) a remote sensing readout device that recovers the distant audio. These two elements are passively coupled over long distances at the speed of light by naturally occurring ambient light energy or other electromagnetic fields. Stereophonic, multichannel and acoustic beam forming are all possible using RAS techniques and when combined with high-definition video imagery it can help to provide a more cinema like immersive viewing experience. A practical implementation of a remote acousto-optic readout device can be a challenging engineering problem. The acoustic influence on the optical signal is generally weak and often with a strong bias term. The optical signal is further degraded by atmospheric seeing turbulence. In this paper, we consider two fundamentally different optical readout approaches: 1) a low pixel count photodiode based RAS photoreceiver and 2) audio extraction directly from a video stream. Most of our RAS experiments to date have used the first method for reasons of performance and simplicity. But there are potential advantages to extracting audio directly from a video stream. These advantages include the straight forward ability to work with multiple AOMs (useful for acoustic beam forming), simpler optical configurations, and a potential ability to use certain preexisting video recordings. However, doing so requires overcoming significant limitations typically including much lower sample rates, reduced sensitivity and dynamic range, more expensive video hardware, and the need for sophisticated video processing. The ATCOM real time image processing software environment provides many of the needed capabilities for researching video-acoustic signal extraction. ATCOM currently is a powerful tool for the visual enhancement of atmospheric turbulence distorted telescopic views. In order to explore the potential of acoustic signal recovery from video imagery we modified ATCOM to extract audio waveforms from the same telescopic video sources. In this paper, we demonstrate and compare both readout techniques for several aerospace test scenarios to better show where each has advantages.
Porcar-Castell, Albert; Tyystjärvi, Esa; Atherton, Jon; van der Tol, Christiaan; Flexas, Jaume; Pfündel, Erhard E; Moreno, Jose; Frankenberg, Christian; Berry, Joseph A
2014-08-01
Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF and photosynthesis remains obscure. Additionally, while the current understanding of in vivo ChlF is based on pulse amplitude-modulated (PAM) measurements, remote sensing applications are based on the measurement of the passive solar-induced chlorophyll fluorescence (SIF), which entails important differences and new challenges that remain to be solved. In this review we introduce and revisit the physical, physiological, and methodological factors that control the leaf-level ChlF signal in the context of the new remote sensing applications. Specifically, we present the basis of photosynthetic acclimation and its optical signals, we introduce the physical and physiological basis of ChlF from the molecular to the leaf level and beyond, and we introduce and compare PAM and SIF methodology. Finally, we evaluate and identify the challenges that still remain to be answered in order to consolidate our mechanistic understanding of the remotely sensed SIF signal. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Fiber optically isolated and remotely stabilized data transmission system
Nelson, Melvin A.
1992-01-01
A fiber optically isolated and remotely stabilized data transmission system s described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber.
Fiber optically isolated and remotely stabilized data transmission system
Nelson, M.A.
1992-11-10
A fiber optically isolated and remotely stabilized data transmission systems described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber. 3 figs.
NASA Technical Reports Server (NTRS)
Laymon, Charles; Srinivasan, Karthik; Limaye, Ashutosh
2011-01-01
Passive remote sensing of the Earth s surface and atmosphere from space has significant importance in operational and research environmental studies, in particular for the scientific understanding, monitoring and prediction of climate change and its impacts. Passive remote sensing requires the measurement of naturally occurring radiations, usually of very low power levels, which contain essential information on the physical process under investigation. As such, these sensed radio frequency bands are a unique natural resource enabling space borne passive sensing of the atmosphere and the Earth s surface that deserves adequate allocation to the Earth Exploration Satellite Service and absolute protection from interference. Unfortunately, radio frequency interference (RFI) is an increasing problem for Earth remote sensing, particularly for passive observations of natural emissions. Because these natural signals tend to be very weak, even low levels of interference received by a passive sensor may degrade the fidelity of scientific data. The characteristics of RFI (low-level interference and radar-pulse noise) are not well known because there has been no systematic surveillance, spectrum inventory or mapping of RFI. While conducting a flight experiment over central Tennessee in May 2010, RFI, a concern for any instrument operating in the passive L band frequency, was observed across 16 subbands between 1402-1427 MHz. Such a survey provides rare characterization data from which to further develop mitigation technologies as well as to identify bandwidths to avoid in future sensor formulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfmeyer, Volker; Hardesty, R. Michael; Turner, David D.
A review of remote sensing technology for lower tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer—usually characterized by an inversion—and the lowermore » troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global navigation satellite system, as well as water vapor and temperature Raman lidar and water vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
NASA Technical Reports Server (NTRS)
Yueh, Simon H.
2004-01-01
Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.
NASA Astrophysics Data System (ADS)
Zulai, Luis G. T.; Durand, Fábio R.; Abrão, Taufik
2015-05-01
In this article, an energy-efficiency mechanism for next-generation passive optical networks is investigated through heuristic particle swarm optimization. Ten-gigabit Ethernet-wavelength division multiplexing optical code division multiplexing-passive optical network next-generation passive optical networks are based on the use of a legacy 10-gigabit Ethernet-passive optical network with the advantage of using only an en/decoder pair of optical code division multiplexing technology, thus eliminating the en/decoder at each optical network unit. The proposed joint mechanism is based on the sleep-mode power-saving scheme for a 10-gigabit Ethernet-passive optical network, combined with a power control procedure aiming to adjust the transmitted power of the active optical network units while maximizing the overall energy-efficiency network. The particle swarm optimization based power control algorithm establishes the optimal transmitted power in each optical network unit according to the network pre-defined quality of service requirements. The objective is controlling the power consumption of the optical network unit according to the traffic demand by adjusting its transmitter power in an attempt to maximize the number of transmitted bits with minimum energy consumption, achieving maximal system energy efficiency. Numerical results have revealed that it is possible to save 75% of energy consumption with the proposed particle swarm optimization based sleep-mode energy-efficiency mechanism compared to 55% energy savings when just a sleeping-mode-based mechanism is deployed.
NASA Astrophysics Data System (ADS)
Jia, S.; Kim, S. H.; Nghiem, S. V.; Kafatos, M.
2017-12-01
Live fuel moisture (LFM) is the water content of live herbaceous plants expressed as a percentage of the oven-dry weight of plant. It is a critical parameter in fire ignition in Mediterranean climate and routinely measured in sites selected by fire agencies across the U.S. Vegetation growing cycle, meteorological metrics, soil type, and topography all contribute to the seasonal and inter-annual variation of LFM, and therefore, the risk of wildfire. The optical remote sensing-based vegetation indices (VIs) have been used to estimate the LFM. Comparing to the VIs, microwave remote sensing products have advantages like less saturation effect in greenness and representing the water content of the vegetation cover. In this study, we established three models to evaluate the predictability of LFM in Southern California using MODIS NDVI, vegetation temperature condition index (VTCI) from downscaled Soil Moisture Active Passive (SMAP) products, and vegetation optical depth (VOD) derived by Land Parameter Retrieval Model. Other ancillary variables, such as topographic factors (aspects and slope) and meteorological metrics (air temperature, precipitation, and relative humidity), are also considered in the models. The model results revealed an improvement of LFM estimation from SMAP products and VOD, despite the uncertainties introduced in the downscaling and parameter retrieval. The estimation of LFM using remote sensing data can provide an assessment of wildfire danger better than current methods using NDVI-based growing seasonal index. Future study will test the VOD estimation from SMAP data using the multi-temporal dual channel algorithm (MT-DCA) and extend the LFM modeling to a regional scale.
NASA Astrophysics Data System (ADS)
Kacenelenbogen, M. S.; Russell, P. B.; Vaughan, M.; Redemann, J.; Shinozuka, Y.; Livingston, J. M.; Zhang, Q.
2014-12-01
According to the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), the model estimates of Radiative Forcing due to aerosol-radiation interactions (RFari) for individual aerosol types are less certain than the total RFari [Boucher et al., 2013]. For example, the RFari specific to Black Carbon (BC) is uncertain due to an underestimation of its mass concentration near source regions [Koch et al., 2009]. Several recent studies have evaluated chemical transport model (CTM) predictions using observations of aerosol optical properties such as Aerosol Optical Depth (AOD) or Single Scattering Albedo (SSA) from satellite or ground-based instruments (e.g., Huneeus et al., [2010]). However, most passive remote sensing instruments fail to provide a comprehensive assessment of the particle type without further analysis and combination of measurements. To improve the predictions of aerosol composition in CTMs, we have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground based passive remote sensing instruments [Russell et al., 2014]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. First, we apply the SCMC method to five years of clear-sky space-borne POLDER observations over Greece. We then use the aerosol extinction and SSA spectra retrieved from a combination of MODIS, OMI and CALIOP clear-sky observations to infer the aerosol type over the globe in 2007. Finally, we will extend the spaceborne aerosol classification from clear-sky to above low opaque water clouds using a combination of CALIOP AOD and backscatter observations and OMI absorption AOD values from near-by clear-sky pixels.
Vegetation optical depth measured by microwave radiometry as an indicator of tree mortality risk
NASA Astrophysics Data System (ADS)
Rao, K.; Anderegg, W.; Sala, A.; Martínez-Vilalta, J.; Konings, A. G.
2017-12-01
Increased drought-related tree mortality has been observed across several regions in recent years. Vast spatial extent and high temporal variability makes field monitoring of tree mortality cumbersome and expensive. With global coverage and high temporal revisit, satellite remote sensing offers an unprecedented tool to monitor terrestrial ecosystems and identify areas at risk of large drought-driven tree mortality events. To date, studies that use remote sensing data to monitor tree mortality have focused on external climatic thresholds such as temperature and evapotranspiration. However, this approach fails to consider internal water stress in vegetation - which can vary across trees even for similar climatic conditions due to differences in hydraulic behavior, soil type, etc - and may therefore be a poor basis for measuring mortality events. There is a consensus that xylem hydraulic failure often precedes drought-induced mortality, suggesting depleted canopy water content shortly before onset of mortality. Observations of vegetation optical depth (VOD) derived from passive microwave are proportional to canopy water content. In this study, we propose to use variations in VOD as an indicator of potential tree mortality. Since VOD accounts for intrinsic water stress undergone by vegetation, it is expected to be more accurate than external climatic stress indicators. Analysis of tree mortality events in California, USA observed by airborne detection shows a consistent relationship between mortality and the proposed VOD metric. Although this approach is limited by the kilometer-scale resolution of passive microwave radiometry, our results nevertheless demonstrate that microwave-derived estimates of vegetation water content can be used to study drought-driven tree mortality, and may be a valuable tool for mortality predictions if they can be combined with higher-resolution variables.
Fusion of radar and optical data for mapping and monitoring of water bodies
NASA Astrophysics Data System (ADS)
Jenerowicz, Agnieszka; Siok, Katarzyn
2017-10-01
Remote sensing techniques owe their great popularity to the possibility to obtain of rapid, accurate and information over large areas with optimal time, spatial and spectral resolutions. The main areas of interest for remote sensing research had always been concerned with environmental studies, especially water bodies monitoring. Many methods that are using visible and near- an infrared band of the electromagnetic spectrum had been already developed to detect surface water reservoirs. Moreover, the usage of an image obtained in visible and infrared spectrum allows quality monitoring of water bodies. Nevertheless, retrieval of water boundaries and mapping surface water reservoirs with optical sensors is still quite demanding. Therefore, the microwave data could be the perfect complement to data obtained with passive optical sensors to detect and monitor aquatic environment especially surface water bodies. This research presents the methodology to detect water bodies with open- source satellite imagery acquired with both optical and microwave sensors. The SAR Sentinel- 1 and multispectral Sentinel- 2 imagery were used to detect and monitor chosen reservoirs in Poland. In the research Level, 1 Sentinel- 2 data and Level 1 SAR images were used. SAR data were mainly used for mapping water bodies. Next, the results of water boundaries extraction with Sentinel-1 data were compared to results obtained after application of modified spectral indices for Sentinel- 2 data. The multispectral optical data can be used in the future for the evaluation of the quality of the reservoirs. Preliminary results obtained in the research had shown, that the fusion of data obtained with optical and microwave sensors allow for the complex detection of water bodies and could be used in the future quality monitoring of water reservoirs.
Knobelspiesse, Kirk; Cairns, Brian; Mishchenko, Michael; Chowdhary, Jacek; Tsigaridis, Kostas; van Diedenhoven, Bastiaan; Martin, William; Ottaviani, Matteo; Alexandrov, Mikhail
2012-09-10
Remote sensing of aerosol optical properties is difficult, but multi-angle, multi-spectral, polarimetric instruments have the potential to retrieve sufficient information about aerosols that they can be used to improve global climate models. However, the complexity of these instruments means that it is difficult to intuitively understand the relationship between instrument design and retrieval success. We apply a Bayesian statistical technique that relates instrument characteristics to the information contained in an observation. Using realistic simulations of fine size mode dominated spherical aerosols, we investigate three instrument designs. Two of these represent instruments currently in orbit: the Multiangle Imaging SpectroRadiometer (MISR) and the POLarization and Directionality of the Earths Reflectances (POLDER). The third is the Aerosol Polarimetry Sensor (APS), which failed to reach orbit during recent launch, but represents a viable design for future instruments. The results show fundamental differences between the three, and offer suggestions for future instrument design and the optimal retrieval strategy for current instruments. Generally, our results agree with previous validation efforts of POLDER and airborne prototypes of APS, but show that the MISR aerosol optical thickness uncertainty characterization is possibly underestimated.
Modular reconfigurable matched spectral filter spectrometer
NASA Astrophysics Data System (ADS)
Schundler, Elizabeth; Engel, James R.; Gruber, Thomas; Vaillancourt, Robert; Benedict-Gill, Ryan; Mansur, David J.; Dixon, John; Potter, Kevin; Newbry, Scott
2015-06-01
OPTRA is currently developing a modular, reconfigurable matched spectral filter (RMSF) spectrometer for the monitoring of greenhouse gases. The heart of this spectrometer will be the RMSF core, which is a dispersive spectrometer that images the sample spectrum from 2000 - 3333 cm-1 onto a digital micro-mirror device (DMD) such that different columns correspond to different wavebands. By applying masks to this DMD, a matched spectral filter can be applied in hardware. The core can then be paired with different fore-optics or detector modules to achieve active in situ or passive remote detection of the chemicals of interest. This results in a highly flexible system that can address a wide variety of chemicals by updating the DMD masks and a wide variety of applications by swapping out fore-optic and detector modules. In either configuration, the signal on the detector is effectively a dot-product between the applied mask and the sample spectrum that can be used to make detection and quantification determinations. Using this approach significantly reduces the required data bandwidth of the sensor without reducing the information content, therefore making it ideal for remote, unattended systems. This paper will focus on the design of the RMSF core.
Large optical 3D MEMS switches in access networks
NASA Astrophysics Data System (ADS)
Madamopoulos, Nicholas; Kaman, Volkan; Yuan, Shifu; Jerphagnon, Olivier; Helkey, Roger; Bowers, John E.
2007-09-01
Interest is high among residential customers and businesses for advanced, broadband services such as fast Internet access, electronic commerce, video-on-demand, digital broadcasting, teleconferencing and telemedicine. In order to satisfy such growing demand of end-customers, access technologies such as fiber-to-the-home/building (FTTH/B) are increasingly being deployed. Carriers can reduce maintenance costs, minimize technology obsolescence and introduce new services easily by reducing active elements in the fiber access network. However, having a passive optical network (PON) also introduces operational and maintenance challenges. Increased diagnostic monitoring capability of the network becomes a necessity as more and more fibers are provisioned to deliver services to the end-customers. This paper demonstrates the clear advantages that large 3D optical MEMS switches offer in solving these access network problems. The advantages in preventative maintenance, remote monitoring, test and diagnostic capability are highlighted. The low optical insertion loss for all switch optical connections of the switch enables the monitoring, grooming and serving of a large number of PON lines and customers. Furthermore, the 3D MEMS switch is transparent to optical wavelengths and data formats, thus making it easy to incorporate future upgrades, such higher bit rates or DWDM overlay to a PON.
NASA Astrophysics Data System (ADS)
Ren, Xusheng; Qian, Longsheng; Zhang, Guiyan
2005-12-01
According to Generic Reliability Assurance Requirements for Passive Optical Components GR-1221-CORE (Issue 2, January 1999), reliability determination test of different kinds of passive optical components which using in uncontrolled environments is taken. The test condition of High Temperature Storage Test (Dry Test) and Damp Test is in below sheet. Except for humidity condition, all is same. In order to save test time and cost, after a sires of contrast tests, the replacement of Dry Heat is discussed. Controlling the Failure mechanism of dry heat and damp heat of passive optical components, the contrast test of dry heat and damp heat for passive optical components (include DWDM, CWDM, Coupler, Isolator, mini Isolator) is taken. The test result of isolator is listed. Telcordia test not only test the reliability of the passive optical components, but also test the patience of the experimenter. The cost of Telcordia test in money, manpower and material resources, especially in time is heavy burden for the company. After a series of tests, we can find that Damp heat could factually test the reliability of passive optical components, and equipment manufacturer in accord with component manufacture could omit the dry heat test if damp heat test is taken first and passed.
Exploiting passive polarimetric imagery for remote sensing applications
NASA Astrophysics Data System (ADS)
Vimal Thilak Krishna, Thilakam
Polarization is a property of light or electromagnetic radiation that conveys information about the orientation of the transverse electric and magnetic fields. The polarization of reflected light complements other electromagnetic radiation attributes such as intensity, frequency, or spectral characteristics. A passive polarization based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. The polarization due to surface reflections from such objects contains information about the targets that can be exploited in remote sensing applications such as target detection, target classification, object recognition and shape extraction/recognition. In recent years, there has been renewed interest in the use of passive polarization information in remote sensing applications. The goal of our research is to design image processing algorithms for remote sensing applications by utilizing physics-based models that describe the polarization imparted by optical scattering from an object. In this dissertation, we present a method to estimate the complex index of refraction and reflection angle from multiple polarization measurements. This method employs a polarimetric bidirectional reflectance distribution function (pBRDF) that accounts for polarization due to specular scattering. The parameters of interest are derived by utilizing a nonlinear least squares estimation algorithm, and computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Furthermore, laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle. We also study the use of extracted index of refraction as a feature vector in designing two important image processing applications, namely image segmentation and material classification so that the resulting systems are largely invariant to illumination source location. This is in contrast to most passive polarization-based image processing algorithms proposed in the literature that employ quantities such as Stokes vectors and the degree of polarization and which are not robust to changes in illumination conditions. The estimated index of refraction, on the other hand, is invariant to illumination conditions and hence can be used as an input to image processing algorithms. The proposed estimation framework also is extended to the case where the position of the observer (camera) moves between measurements while that of the source remains fixed. Finally, we explore briefly the topic of parameter estimation for a generalized model that accounts for both specular and volumetric scattering. A combination of simulation and experimental results are provided to evaluate the effectiveness of the above methods.
Probability theory for 3-layer remote sensing radiative transfer model: univariate case.
Ben-David, Avishai; Davidson, Charles E
2012-04-23
A probability model for a 3-layer radiative transfer model (foreground layer, cloud layer, background layer, and an external source at the end of line of sight) has been developed. The 3-layer model is fundamentally important as the primary physical model in passive infrared remote sensing. The probability model is described by the Johnson family of distributions that are used as a fit for theoretically computed moments of the radiative transfer model. From the Johnson family we use the SU distribution that can address a wide range of skewness and kurtosis values (in addition to addressing the first two moments, mean and variance). In the limit, SU can also describe lognormal and normal distributions. With the probability model one can evaluate the potential for detecting a target (vapor cloud layer), the probability of observing thermal contrast, and evaluate performance (receiver operating characteristics curves) in clutter-noise limited scenarios. This is (to our knowledge) the first probability model for the 3-layer remote sensing geometry that treats all parameters as random variables and includes higher-order statistics. © 2012 Optical Society of America
Theory of Remote Image Formation
NASA Astrophysics Data System (ADS)
Blahut, Richard E.
2004-11-01
In many applications, images, such as ultrasonic or X-ray signals, are recorded and then analyzed with digital or optical processors in order to extract information. Such processing requires the development of algorithms of great precision and sophistication. This book presents a unified treatment of the mathematical methods that underpin the various algorithms used in remote image formation. The author begins with a review of transform and filter theory. He then discusses two- and three-dimensional Fourier transform theory, the ambiguity function, image construction and reconstruction, tomography, baseband surveillance systems, and passive systems (where the signal source might be an earthquake or a galaxy). Information-theoretic methods in image formation are also covered, as are phase errors and phase noise. Throughout the book, practical applications illustrate theoretical concepts, and there are many homework problems. The book is aimed at graduate students of electrical engineering and computer science, and practitioners in industry. Presents a unified treatment of the mathematical methods that underpin the algorithms used in remote image formation Illustrates theoretical concepts with reference to practical applications Provides insights into the design parameters of real systems
Assimilation of Passive and Active Microwave Soil Moisture Retrievals
NASA Technical Reports Server (NTRS)
Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.
2012-01-01
Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.
NASA Astrophysics Data System (ADS)
Zemek, Peter G.; Plowman, Steven V.
2010-04-01
Advances in hardware have miniaturized the emissions spectrometer and associated optics, rendering them easily deployed in the field. Such systems are also suitable for vehicle mounting, and can provide high quality data and concentration information in minutes. Advances in software have accompanied this hardware evolution, enabling the development of portable point-and-click OP-FTIR systems that weigh less than 16 lbs. These systems are ideal for first-responders, military, law enforcement, forensics, and screening applications using optical remote sensing (ORS) methodologies. With canned methods and interchangeable detectors, the new generation of OP-FTIR technology is coupled to the latest forward reference-type model software to provide point-and-click technology. These software models have been established for some time. However, refined user-friendly models that use active, passive, and solar occultation methodologies now allow the user to quickly field-screen and quantify plumes, fence-lines, and combustion incident scenarios in high-temporal-resolution. Synthetic background generation is now redundant as the models use highly accurate instrument line shape (ILS) convolutions and several other parameters, in conjunction with radiative transfer model databases to model a single calibration spectrum to collected sample spectra. Data retrievals are performed directly on single beam spectra using non-linear classical least squares (NLCLS). Typically, the Hitran line database is used to generate the initial calibration spectrum contained within the software.
Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.; ...
2015-07-08
A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.
A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
NASA Astrophysics Data System (ADS)
Wolf, Kevin; Ehrlich, André; Hüneke, Tilman; Pfeilsticker, Klaus; Werner, Frank; Wirth, Martin; Wendisch, Manfred
2017-03-01
Spectral radiance measurements collected in nadir and sideward viewing directions by two airborne passive solar remote sensing instruments, the Spectral Modular Airborne Radiation measurement sysTem (SMART) and the Differential Optical Absorption Spectrometer (mini-DOAS), are used to compare the remote sensing results of cirrus optical thickness τ. The comparison is based on a sensitivity study using radiative transfer simulations (RTS) and on data obtained during three airborne field campaigns: the North Atlantic Rainfall VALidation (NARVAL) mission, the Mid-Latitude Cirrus Experiment (ML-CIRRUS) and the Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems (ACRIDICON) campaign. Radiative transfer simulations are used to quantify the sensitivity of measured upward radiance I with respect to τ, ice crystal effective radius reff, viewing angle of the sensor θV, spectral surface albedo α, and ice crystal shape. From the calculations it is concluded that sideward viewing measurements are generally better suited than radiance data from the nadir direction to retrieve τ of optically thin cirrus, especially at wavelengths larger than λ = 900 nm. Using sideward instead of nadir-directed spectral radiance measurements significantly improves the sensitivity and accuracy in retrieving τ, in particular for optically thin cirrus of τ ≤ 2. The comparison of retrievals of τ based on nadir and sideward viewing radiance measurements from SMART, mini-DOAS and independent estimates of τ from an additional active remote sensing instrument, the Water Vapor Lidar Experiment in Space (WALES), shows general agreement within the range of measurement uncertainties. For the selected example a mean τ of 0.54 ± 0.2 is derived from SMART, and 0.49 ± 0.2 by mini-DOAS nadir channels, while WALES obtained a mean value of τ = 0.32 ± 0.02 at 532 nm wavelength, respectively. The mean of τ derived from the sideward viewing mini-DOAS channels is 0.26 ± 0.2. For the few simultaneous measurements, the mini-DOAS sideward channel measurements systematically underestimate (-17.6 %) the nadir observations from SMART and mini-DOAS. The agreement between mini-DOAS sideward viewing channels and WALES is better, showing the advantage of using sideward viewing measurements for cloud remote sensing for τ ≤ 1. Therefore, we suggest sideward viewing measurements for retrievals of τ of thin cirrus because of the significantly enhanced capability of sideward viewing compared to nadir measurements.
Optical fiber Fabry-Perot interferometry
NASA Astrophysics Data System (ADS)
Wang, Anbo
2014-06-01
Fiber Fabry-Perot (FP) interferometry is one of the most important tools for harsh environment sensing because of its great flexibility of sensor material selection, superior long--term stability, and nature of remote passive operation. Virginia Tech's Center for Photonics Technology has been involved in the research of this field for many years. After a quick review of the typical methods for the construction of F-P sensors, emphasis will be placed on the whitelight interferometry, which is perhaps the most robust interferometric sensor demodulation technique today. The recent discovery of an additional phase will be presented and its significance to the sensor demodulation will be discussed.
Results from the July 1981 Workshop on Passive Remote Sensing of the Troposphere
NASA Technical Reports Server (NTRS)
Keafer, L. S., Jr.; Reichle, H. G., Jr.
1982-01-01
Potential roles of passive remote sensors in the study of the chemistry and related dynamics of the lower atmosphere were defined by a Tropospheric Passive Remote Sensing Workshop, and technology advances required to implement these roles were identified. A promising role is in making global-scale, multilayer measurements of the more abundant trace tropospheric gaseous species (e.g., O3, CO, CH4, HNO3) and of aerosol thickness and size distribution. It includes both nadirand limb-viewing measurements. Technology advances focus on both scanning- and fixed-spectra, nadir-viewing techniques with resolutions of 0.1 kaysers or better. Balloon- and Shuttle-borne experiments should be performed to study the effects of instrument noise and background fluctuations on data inversion and to determine the utility of simultaneously obtained nadir- and limb-viewing data.
I-SCAD® standoff chemical agent detector overview
NASA Astrophysics Data System (ADS)
Popa, Mirela O.; Griffin, Matthew T.
2012-06-01
This paper presents a system-level description of the I-SCAD® Standoff Chemical Agent Detector, a passive Fourier Transform InfraRed (FTIR) based remote sensing system, for detecting chemical vapor threats. The passive infrared detection system automatically searches the 7 to 14 micron region of the surrounding atmosphere for agent vapor clouds. It is capable of operating while on the move to accomplish reconnaissance, surveillance, and contamination avoidance missions. Additionally, the system is designed to meet the needs for application on air and sea as well as ground mobile and fixed site platforms. The lightweight, passive, and fully automatic detection system scans the surrounding atmosphere for chemical warfare agent vapors. It provides on-the-move, 360-deg coverage from a variety of tactical and reconnaissance platforms at distances up to 5 km. The core of the system is a rugged Michelson interferometer with a flexure spring bearing mechanism and bi-directional data acquisition capability. The modular system design facilitates interfacing to many platforms. A Reduced Field of View (RFOV) variant includes novel modifications to the scanner subcomponent assembly optical design that gives extended performance in detection range and detection probability without sacrificing existing radiometric sensitivity performance. This paper will deliver an overview of system.
Development of the Synthetic Aperture Radiometer ESTAR and the Next Generation
NASA Technical Reports Server (NTRS)
LeVine, David M.; Haken, Michael; Swift, Calvin T.
2004-01-01
ESTAR is a research instrument built to develop the technology of aperture synthesis for passive remote sensing of Earth from space. Aperture synthesis is an interferometric technology that addresses the problem of putting large antenna apertures in space to achieve the spatial resolution needed for remote sensing at long wavelengths ESTAR was a first step (synthesis only across track and only at horizontal polarization). The development has progressed to a new generation instrument that is dual polarized and does aperture synthesis in two dimensions. Among the plans for the future is technology to combine active and passive remote sensing.
Satellite remote sensing of the ocean
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Liu, W. T.; Abbott, Mark R.
1990-01-01
A concise description of the principles and applications of several selected instruments that have been utilized most frequently in remote sensing of the ocean from satellites is presented. Emphasis is placed on the current progress in oceanographic applications and the outlook of the instruments in future oceanographic satellite missions is discussed. The instruments under discussion are placed into three groups: active microwave sensors, passive ocean color and infrared sensors, and passive microwave sensors.
Experimental demonstration of 1.5Hz passive isolation system for precision optical payloads
NASA Astrophysics Data System (ADS)
Guan, Xin; Wang, Guang-yuan; Cao, Dong-jing; Tang, Shao-fan; Chen, Xiang; Liang, Lu; Zheng, Gang-tie
2017-11-01
The ground resolution of remote sensing satellite has been raised from hundreds of meters to less than one meter in recent few decades. As a result, the precision optical payload becomes more and more sensitive to structure vibrations of satellite buses. Although these vibrations generally have extremely low magnitude, they can result in significant image quality degradation to an optical payload. The suggestion of using vibration isolators to isolate payload from the satellite bus has been put forward in 1980s'[1]. Recently, WorldView-2 achieved its perfect image quality via using a set of low frequency isolators[2]. Recently, some of the optical payload manufacturers begin to provide vibration isolators as standard parts together with their main products . During the prototype testing of an earth resource satellite, the image of the optical payload was found to jitter for 5 10 pixels due to disturbances transmitted from the satellite bus structure. Test results indicated that the acceleration level of the vibration was of mG magnitude. To solve the problem, a highly sensitive vibration isolation system was developed to reduce the transmission of disturbances. Integrated isolation performance tests showed that the image jitter can be decreased to below 0.3 pixels.
An all-silicon passive optical diode.
Fan, Li; Wang, Jian; Varghese, Leo T; Shen, Hao; Niu, Ben; Xuan, Yi; Weiner, Andrew M; Qi, Minghao
2012-01-27
A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input power is higher than the forward input. The silicon optical diode is ultracompact and is compatible with current complementary metal-oxide semiconductor processing.
36 Years of Remote Oceanographic Laser Fluorosensing: Findings, Challenges and Pathways to Explore
NASA Astrophysics Data System (ADS)
Chekalyuk, A. M.
2009-12-01
Since its initial bright start in early 70s, the oceanographic applications of laser remote fluorosensing have been mostly driven by the enthusiastic laser geeks, who tried to transfer the recent technological advances from their laboratory breadboards to the real world. This communication provides an overview of the key milestones and advances in the oceanographic applications of remote laser fluorosensing that is used for qualitative and quantitative characterization of the key aquatic constituents, including chromophoric dissolved organic matter, phytoplankton pigments, their biomass, community structure, and photo-physiological status. The basic principles and analytical techniques, including fluorescence excitation and emission measurements, as well as active control over the media to retrieve additional information (“super-active remote sensing”), are briefly discussed and illustrated with examples of practical applications. The laser excitation sources (including solid state, tunable lasers and optical parametric oscillators) and signal detectors and analyzers (including multi-spectral and hyperspectral systems) are discussed. The advantages and limitations of various platforms (stationary settings, ships, airplanes, helicopters, unmanned autonomous vehicles (UAV), and satellites) are analyzed. The recent findings, methodological and technological developments in oceanographic applications of laser fluorescence indicate that there is a significant, still underexplored potential of remote fluorosensing that may provide new observational capabilities and serve as a useful tool for oceanographic research, bio-environmental monitoring, and validation of passive satellite retrievals.
Optical Fiber Networks for Remote Fiber Optic Sensors
Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel
2012-01-01
This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered. PMID:22666011
Capabilities and Limitations of Space-Borne Passive Remote Sensing of Dust
NASA Technical Reports Server (NTRS)
Kalashnikova, Olga
2008-01-01
Atmospheric dust particles have significant effects on the climate and the environment and despite notable recent advances in modeling and observation, wind-blown dust radiative effects remain poorly quantified in both magnitude and sign [IPCC, 2001]. To address this issue, many scientists are using passive satellite observations to study dust properties and to constrain emission/transport models, because the information provided is both time-resolved and global in coverage. In order to assess the effects of individual dust outbreaks on atmospheric radiation and circulation, relatively high temporal resolution (of the order of hours or days) is required in the observational data. Data should also be available over large geographical areas, as dust clouds may cover hundreds of thousands of square kilometers and will exhibit significant spatial variation in their vertical structure, composition and optical properties, both between and within dust events. Spatial and temporal data continuity is necessary if the large-scale impact of dust loading on climate over periods ranging from hours to months is to be assessed.
Fiber optic sensor system for entrance areas monitoring
NASA Astrophysics Data System (ADS)
Fajkus, Marcel; Nedoma, Jan; Kepak, Stanislav; Cubik, Jakub; Jargus, Jan; Zboril, Ondřej; Martinek, Radek; Vasinek, Vladimir
2017-10-01
Authors of this article present the fiber-optic system based on fiber Bragg gratings (FBGs) which are used to secure the entrance areas such as buildings, halls, warehouses, etc. The system uses the specially encapsulated sensory array of fiber Bragg gratings which are implemented into the floor or on the floor and allows for monitoring the area of 1 m2 up to 100 m2 depending on the number of FBG sensors. The sensory array is characterized by immunity to electromagnetic interference (EMI), passivity regarding electrical power supply, the possibility of remote evaluation (up to units of km) and high sensitivity. Proposed sensor system has detection capability greater than 99 % and furthermore, provides information about the weight load to an accuracy of +/- 5 kg. The concept has been tested in a real environment within the test polygon for several weeks. As the reference devices, we used the CCTV (Closed Circuit Television).
Compact handheld low-cost biosensor platform for remote health monitoring
NASA Astrophysics Data System (ADS)
Hastanin, J.; Lenaerts, C.; Gailly, P.; Jans, H.; Huang, C.; Lagae, L.; Kokkinos, D.; Fleury-Frenette, K.
2016-04-01
In this paper, we present an original concept of plasmonic-related instrumentation platform dedicated to diagnostic biosensing tests out of the laboratory. The developed instrumental platform includes both disposable one-use microfluidic affinity biochip and compact optical readout device for biochip monitoring involving mobile Internet devices for data processing and communication. The biochip includes both microfluidic and optical coupling structures formed into a single plastic slab. The microfluidic path of the biochip operates in passive capillary pumping mode. In the proof-of-concept prototype, we address specifically the sensing format involving Surface Plasmon Resonance phenomenon. The biochip is plugged in the readout device without the use of an index matching fluid. An essential advantage of the developed biochip is that its implementation involves conventional hot embossing and thin film deposition process, perfectly suited for mass production of low-cost microfluidic biochip for biochemical applications.
NASA Technical Reports Server (NTRS)
Woodfill, J. R.; Thomson, F. J.
1979-01-01
The paper deals with the design, construction, and applications of an active/passive multispectral scanner combining lasers with conventional passive remote sensors. An application investigation was first undertaken to identify remote sensing applications where active/passive scanners (APS) would provide improvement over current means. Calibration techniques and instrument sensitivity are evaluated to provide predictions of the APS's capability to meet user needs. A preliminary instrument design was developed from the initial conceptual scheme. A design review settled the issues of worthwhile applications, calibration approach, hardware design, and laser complement. Next, a detailed mechanical design was drafted and construction of the APS commenced. The completed APS was tested and calibrated in the laboratory, then installed in a C-47 aircraft and ground tested. Several flight tests completed the test program.
Role of passive remote sensors. Sensor System Panel report
NASA Astrophysics Data System (ADS)
1982-06-01
Capabilities of present passive systems are described and the development of passive remote sensing systems for the more abundant tropospheric trace species is recommended. The combination of nadir-viewing spectrometers and solar occultation for tropospheric measurement of those gases having large stratospheric burdens is discussed. Development of a nadir-viewing instrument capable of obtaining continuous spectra in narrower bands is recommended. Gas filter radiometers for species specific measurements and development of a spectral survey instrument are discussed. Further development of aerosol retrieval algorithms, including polarization techniques, for obtaining aerosol thickness and size distributions is advised. Recommendations of specific investigations to be pursued are presented.
Role of passive remote sensors. Sensor System Panel report
NASA Technical Reports Server (NTRS)
1982-01-01
Capabilities of present passive systems are described and the development of passive remote sensing systems for the more abundant tropospheric trace species is recommended. The combination of nadir-viewing spectrometers and solar occultation for tropospheric measurement of those gases having large stratospheric burdens is discussed. Development of a nadir-viewing instrument capable of obtaining continuous spectra in narrower bands is recommended. Gas filter radiometers for species specific measurements and development of a spectral survey instrument are discussed. Further development of aerosol retrieval algorithms, including polarization techniques, for obtaining aerosol thickness and size distributions is advised. Recommendations of specific investigations to be pursued are presented.
NASA Astrophysics Data System (ADS)
Ma, Xuejiao; Gan, Chaoqin; Deng, Shiqi; Huang, Yan
2011-11-01
A survivable wavelength division multiplexing passive optical network enabling both point-to-point service and broadcast service is presented and demonstrated. This architecture provides an automatic traffic recovery against feeder and distribution fiber link failure, respectively. In addition, it also simplifies the protection design for multiple services transmission in wavelength division multiplexing passive optical networks.
Hydrological Application of Remote Sensing: Surface States -- Snow
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Kelly, Richard E. J.; Foster, James L.; Chang, Alfred T. C.
2004-01-01
Remote sensing research of snow cover has been accomplished for nearly 40 years. The use of visible, near-infrared, active and passive-microwave remote sensing for the analysis of snow cover is reviewed with an emphasis on the work on the last decade.
Passive Microwave Remote Sensing of Soil Moisture
NASA Technical Reports Server (NTRS)
Njoku, Eni G.; Entekhabi, Dara
1996-01-01
Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive Microwave soil moisture sensors currently considered for space operation are in the range 10-20 km. The most useful frequency range for soil moisture sensing is 1-5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations.
Remote sensing of high-latitude ionization profiles by ground-based and spaceborne instrumentation
NASA Technical Reports Server (NTRS)
Vondrak, R. R.
1981-01-01
Ionospheric specification and modeling are now largely based on data provided by active remote sensing with radiowave techniques (ionosondes, incoherent-scatter radars, and satellite beacons). More recently, passive remote sensing techniques have been developed that can be used to monitor quantitatively the spatial distribution of high-latitude E-region ionization. These passive methods depend on the measurement, or inference, of the energy distribution of precipitating kilovolt electrons, the principal source of the nighttime E-region at high latitudes. To validate these techniques, coordinated measurements of the auroral ionosphere have been made with the Chatanika incoherent-scatter radar and a variety of ground-based and spaceborne sensors
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Moore, R. K.; Fung, A. K.
1981-01-01
The three components of microwave remote sensing (sensor-scene interaction, sensor design, and measurement techniques), and the applications to geoscience are examined. The history of active and passive microwave sensing is reviewed, along with fundamental principles of electromagnetic wave propagation, antennas, and microwave interaction with atmospheric constituents. Radiometric concepts are reviewed, particularly for measurement problems for atmospheric and terrestrial sources of natural radiation. Particular attention is given to the emission by atmospheric gases, clouds, and rain as described by the radiative transfer function. Finally, the operation and performance characteristics of radiometer receivers are discussed, particularly for measurement precision, calibration techniques, and imaging considerations.
RFI and Remote Sensing of the Earth from Space
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Johnson, J. T.; Piepmeier, J.
2016-01-01
Passive microwave remote sensing of the Earth from space provides information essential for understanding the Earth's environment and its evolution. Parameters such as soil moisture, sea surface temperature and salinity, and profiles of atmospheric temperature and humidity are measured at frequencies determined by the physics (e.g. sensitivity to changes in desired parameters) and by the availability of suitable spectrum free from interference. Interference from manmade sources (radio frequency interference) is an impediment that in many cases limits the potential for accurate measurements from space. A review is presented here of the frequencies employed in passive microwave remote sensing of the Earth from space and the associated experience with RFI.
NASA Astrophysics Data System (ADS)
Dozier, J.; Tolle, K.; Bair, N.
2014-12-01
We have a problem that may be a specific example of a generic one. The task is to estimate spatiotemporally distributed estimates of snow water equivalent (SWE) in snow-dominated mountain environments, including those that lack on-the-ground measurements. Several independent methods exist, but all are problematic. The remotely sensed date of disappearance of snow from each pixel can be combined with a calculation of melt to reconstruct the accumulated SWE for each day back to the last significant snowfall. Comparison with streamflow measurements in mountain ranges where such data are available shows this method to be accurate, but the big disadvantage is that SWE can only be calculated retroactively after snow disappears, and even then only for areas with little accumulation during the melt season. Passive microwave sensors offer real-time global SWE estimates but suffer from several issues, notably signal loss in wet snow or in forests, saturation in deep snow, subpixel variability in the mountains owing to the large (~25 km) pixel size, and SWE overestimation in the presence of large grains such as depth and surface hoar. Throughout the winter and spring, snow-covered area can be measured at sub-km spatial resolution with optical sensors, with accuracy and timeliness improved by interpolating and smoothing across multiple days. So the question is, how can we establish the relationship between Reconstruction—available only after the snow goes away—and passive microwave and optical data to accurately estimate SWE during the snow season, when the information can help forecast spring runoff? Linear regression provides one answer, but can modern machine learning techniques (used to persuade people to click on web advertisements) adapt to improve forecasts of floods and droughts in areas where more than one billion people depend on snowmelt for their water resources?
Effects of the Ionosphere on Passive Microwave Remote Sensing of Ocean Salinity from Space
NASA Technical Reports Server (NTRS)
LeVine, D. M.; Abaham, Saji; Hildebrand, Peter H. (Technical Monitor)
2001-01-01
Among the remote sensing applications currently being considered from space is the measurement of sea surface salinity. The salinity of the open ocean is important for understanding ocean circulation and for modeling energy exchange with the atmosphere. Passive microwave remote sensors operating near 1.4 GHz (L-band) could provide data needed to fill the gap in current coverage and to complement in situ arrays being planned to provide subsurface profiles in the future. However, the dynamic range of the salinity signal in the open ocean is relatively small and propagation effects along the path from surface to sensor must be taken into account. In particular, Faraday rotation and even attenuation/emission in the ionosphere can be important sources of error. The purpose or this work is to estimate the magnitude of these effects in the context of a future remote sensing system in space to measure salinity in L-band. Data will be presented as a function of time location and solar activity using IRI-95 to model the ionosphere. The ionosphere presents two potential sources of error for the measurement of salinity: Rotation of the polarization vector (Faraday rotation) and attenuation/emission. Estimates of the effect of these two phenomena on passive remote sensing over the oceans at L-band (1.4 GHz) are presented.
Occurrence of weak, sub-micron, tropospheric aerosol events at high Arctic latitudes
NASA Astrophysics Data System (ADS)
O'Neill, N. T.; Pancrati, O.; Baibakov, K.; Eloranta, E.; Batchelor, R. L.; Freemantle, J.; McArthur, L. J. B.; Strong, K.; Lindenmaier, R.
2008-07-01
Numerous fine mode (sub-micron) aerosol optical events were observed during the summer of 2007 at the High Arctic atmospheric observatory (PEARL) located at Eureka, Nunavut, Canada. Half of these events could be traced to forest fires in southern and eastern Russia and the Northwest Territories of Canada. The most notable findings were that (a) a combination of ground-based measurements (passive sunphotometry, high spectral resolution lidar) could be employed to determine that weak (near sub-visual) fine mode events had occurred, and (b) this data combined with remote sensing imagery products (MODIS, OMI-AI, FLAMBE fire sources), Fourier transform spectroscopy and back trajectories could be employed to identify the smoke events.
Polar research from satellites
NASA Technical Reports Server (NTRS)
Thomas, Robert H.
1991-01-01
In the polar regions and climate change section, the topics of ocean/atmosphere heat transfer, trace gases, surface albedo, and response to climate warming are discussed. The satellite instruments section is divided into three parts. Part one is about basic principles and covers, choice of frequencies, algorithms, orbits, and remote sensing techniques. Part two is about passive sensors and covers microwave radiometers, medium-resolution visible and infrared sensors, advanced very high resolution radiometers, optical line scanners, earth radiation budget experiment, coastal zone color scanner, high-resolution imagers, and atmospheric sounding. Part three is about active sensors and covers synthetic aperture radar, radar altimeters, scatterometers, and lidar. There is also a next decade section that is followed by a summary and recommendations section.
Method of remote powering and detecting multiple UWB passive tags in an RFID system
Dowla, Farid U [Castro Valley, CA; Nekoogar, Faranak [San Ramon, CA; Benzel, David M [Livermore, CA; Dallum, Gregory E [Livermore, CA; Spiridon, Alex [Palo Alto, CA
2012-05-29
A new Radio Frequency Identification (RFID), tracking, powering apparatus/system and method using coded Ultra-wideband (UWB) signaling is introduced. The proposed hardware and techniques disclosed herein utilize a plurality of passive UWB transponders in a field of an RFID-radar system. The radar system itself enables multiple passive tags to be remotely powered (activated) at about the same time frame via predetermined frequency UWB pulsed formats. Once such tags are in an activated state, an UWB radar transmits specific "interrogating codes" to put predetermined tags in an awakened status. Such predetermined tags can then communicate by a unique "response code" so as to be detected by an UWB system using radar methods.
NASA Technical Reports Server (NTRS)
Campbell, W. J.; Wayenberg, J.; Ramseyer, J. B.; Ramseier, R. O.; Vant, M. R.; Weaver, R.; Redmond, A.; Arsenault, L.; Gloersen, P.; Zwally, H. J.
1978-01-01
A microwave remote sensing program of sea ice in the Beaufort Sea was conducted during the Arctic Ice Dynamics Joint Experiment (AIDJEX). Several types of both passive and active sensors were used to perform surface and aircraft measurements during all seasons of the year. In situ observations were made of physical properties (salinity, temperature, density, surface roughness), dielectric properties, and passive microwave measurements were made of first-year, multiyear, and first-year/multiyear mixtures. Airborne passive microwave measurements were performed with the electronically scanning microwave radiometer while airborne active microwave measurements were performed by synthetic aperture radar, X- and L-band radar, and a scatterometer.
Coherence Effects in L-Band Active and Passive Remote Sensing of Quasi-Periodic Corn Canopies
NASA Technical Reports Server (NTRS)
Utku, Cuneyt; Lang, Roger H.
2011-01-01
Due to their highly random nature, vegetation canopies can be modeled using the incoherent transport theory for active and passive remote sensing applications. Agricultural vegetation canopies however are generally more structured than natural vegetation. The inherent row structure in agricultural canopies induces coherence effects disregarded by the transport theory. The objective of this study is to demonstrate, via Monte-Carlo simulations, these coherence effects on L-band scattering and thermal emission from corn canopies consisting of only stalks.
Design of visible and IR infrared dual-band common-path telescope system
NASA Astrophysics Data System (ADS)
Guo, YuLin; Yu, Xun; Tao, Yu; Jiang, Xu
2018-01-01
The use of visible and IR infrared dual-band combination can effectively improve the performance of photoelectric detection system,TV and IR system were designed with the common path by the common reflection optical system.A TV/IR infrared common-caliber and common-path system is designed,which can realize the Remote and all-day information.For the 640×512 cooled focal plane array,an infrared middle wave system was presented with a focal length of 600mm F number of 4 field of view(FOV) of 0.38°×0.43°, the system uses optical passive thermal design, has o compact structure and can meet 100% cold shield efficiency,meanwhile it meets the design requirements of lightweight and athermalization. For the 1920×1080 pixels CCD,a visible (TV) system ,which had 500mm focal length, 4F number,was completed.The final optical design along with their modulation transfer function is presented,showing excellent imaging performance in dual-band at the temperature range between -40° and 60°.
Performance Simulations for a Spaceborne Methane Lidar Mission
NASA Technical Reports Server (NTRS)
Kiemle, C.; Kawa, Stephan Randolph; Quatrevalet, Mathieu; Browell, Edward V.
2014-01-01
Future spaceborne lidar measurements of key anthropogenic greenhouse gases are expected to close current observational gaps particularly over remote, polar, and aerosol-contaminated regions, where actual in situ and passive remote sensing observation techniques have difficulties. For methane, a "Methane Remote Lidar Mission" was proposed by Deutsches Zentrum fuer Luft- und Raumfahrt and Centre National d'Etudes Spatiales in the frame of a German-French climate monitoring initiative. Simulations assess the performance of this mission with the help of Moderate Resolution Imaging Spectroradiometer and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations of the earth's surface albedo and atmospheric optical depth. These are key environmental parameters for integrated path differential absorption lidar which uses the surface backscatter to measure the total atmospheric methane column. Results showthat a lidar with an average optical power of 0.45W at 1.6 µm wavelength and a telescope diameter of 0.55 m, installed on a low Earth orbit platform(506 km), will measure methane columns at precisions of 1.2%, 1.7%, and 2.1% over land, water, and snow or ice surfaces, respectively, for monthly aggregated measurement samples within areas of 50 × 50 km2. Globally, the mean precision for the simulated year 2007 is 1.6%, with a standard deviation of 0.7%. At high latitudes, a lower reflectance due to snow and ice is compensated by denser measurements, owing to the orbital pattern. Over key methane source regions such as densely populated areas, boreal and tropical wetlands, or permafrost, our simulations show that the measurement precision will be between 1 and 2%.
Polymer optics for the passive infrared
NASA Astrophysics Data System (ADS)
Claytor, Richard N.
2016-10-01
An important, but largely invisible, area of polymer optics involves sensing the motion of warm objects. It can be further subdivided into optics for security, for energy conservation, and for convenience; the area has become known as optics for the passive infrared. The passive infrared is generally known as the 8 to 14 μm region of the optical spectrum. The region's roots are in the traditional infrared technology of many decades ago; there is a coincident atmospheric window, although that has little relevance to many short-range applications relevant to polymer optics. Regrettably, there is no polymer material ideally suited to the passive infrared, but one material is generally superior to other candidates. The inadequacy of this material makes the Fresnel lens important. Polymer optics for the passive infrared were first introduced in the 1970s. Patents from that period will be shown, as well as early examples. The unfamiliar names of the pioneering companies and their technical leaders will be mentioned. The 1980s and 90s brought a new and improved lens type, and rapid growth. Pigments for visible-light appearance and other reasons were introduced; one was a spectacular failure. Recent advances include faster lenses, a new groove structure, additional pigments, and lens-mirror combinations. New sensor types are also being introduced. Finally, some unique and inventive applications will be discussed.
Passive microwave remote sensing of an anisotropic random-medium layer
NASA Technical Reports Server (NTRS)
Lee, J. K.; Kong, J. A.
1985-01-01
The principle of reciprocity is invoked to calculate the brightness temperatures for passive microwave remote sensing of a two-layer anisotropic random medium. The bistatic scattering coefficients are first computed with the Born approximation and then integrated over the upper hemisphere to be subtracted from unity, in order to obtain the emissivity for the random-medium layer. The theoretical results are illustrated by plotting the emissivities as functions of viewing angles and polarizations. They are used to interpret remote sgnsing data obtained from vegetation canopy where the anisotropic random-medium model applies. Field measurements with corn stalks arranged in various configurations with preferred azimuthal directions are successfully interpreted with this model.
Radiative transfer in multilayered random medium with laminar structure - Green's function approach
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1986-01-01
For a multilayered random medium with a laminar structure a Green's function approach is introduced to obtain the emitted intensity due to an arbitrary point source. It is then shown that the approach is applicable to both active and passive remote sensing. In active remote sensing, the computed radar backscattering cross section for the multilayered medium includes the effects of both volume multiple scattering and surface multiple scattering at the layer boundaries. In passive remote sensing, the brightness temperature is obtained for arbitrary temperature profiles in the layers. As an illustration the brightness temperature and reflectivity are calculated for a bounded layer and compared with results in the literature.
Improving detection sensitivity for partial discharge monitoring of high voltage equipment
NASA Astrophysics Data System (ADS)
Hao, L.; Lewin, P. L.; Swingler, S. G.
2008-05-01
Partial discharge (PD) measurements are an important technique for assessing the health of power apparatus. Previous published research by the authors has shown that an electro-optic system can be used for PD measurement of oil-filled power transformers. A PD signal generated within an oil-filled power transformer may reach a winding and then travel along the winding to the bushing core bar. The bushing, acting like a capacitor, can transfer the high frequency components of the partial discharge signal to its earthed tap point. Therefore, an effective PD current measurement can be implemented at the bushing tap by using a radio frequency current transducer around the bushing-tap earth connection. In addition, the use of an optical transmission technique not only improves the electrical noise immunity and provides the possibility of remote measurement but also realizes electrical isolation and enhances safety for operators. However, the bushing core bar can act as an aerial and in addition noise induced by the electro-optic modulation system may influence overall measurement sensitivity. This paper reports on a machine learning technique, namely the use of a support vector machine (SVM), to improve the detection sensitivity of the system. Comparison between the signal extraction performances of a passive hardware filter and the SVM technique has been assessed. The results obtained from the laboratory-based experiment have been analysed and indicate that the SVM approach provides better performance than the passive hardware filter and it can reliably detect discharge signals with apparent charge greater than 30 pC.
NASA Astrophysics Data System (ADS)
Briley, Chad; Mock, Alyssa; Korlacki, Rafał; Hofmann, Tino; Schubert, Eva; Schubert, Mathias
2017-11-01
We present magneto-optical dielectric tensor data of cobalt and cobalt oxide slanted columnar thin films obtained by vector magneto-optical generalized ellipsometry. Room-temperature hysteresis magnetization measurements were performed in longitudinal and polar Kerr geometries on samples prior to and after a heat treatment process with and without a conformal Al2O3 passivation coating. The samples have been characterized by generalized ellipsometry, scanning electron microscopy, and Raman spectroscopy in conjuncture with density functional theory. We observe strongly anisotropic hysteresis behaviors, which depend on the nanocolumn and magnetizing field orientations. We find that deposited cobalt films that have been exposed to heat treatment and subsequent atmospheric oxidation into Co3O4, when not conformally passivated, reveal no measurable magneto-optical properties while cobalt films with passivation coatings retain highly anisotropic magneto-optical properties.
Processing implicit control: evidence from reading times
McCourt, Michael; Green, Jeffrey J.; Lau, Ellen; Williams, Alexander
2015-01-01
Sentences such as “The ship was sunk to collect the insurance” exhibit an unusual form of anaphora, implicit control, where neither anaphor nor antecedent is audible. The non-finite reason clause has an understood subject, PRO, that is anaphoric; here it may be understood as naming the agent of the event of the host clause. Yet since the host is a short passive, this agent is realized by no audible dependent. The putative antecedent to PRO is therefore implicit, which it normally cannot be. What sorts of representations subserve the comprehension of this dependency? Here we present four self-paced reading time studies directed at this question. Previous work showed no processing cost for implicit vs. explicit control, and took this to support the view that PRO is linked syntactically to a silent argument in the passive. We challenge this conclusion by reporting that we also find no processing cost for remote implicit control, as in: “The ship was sunk. The reason was to collect the insurance.” Here the dependency crosses two independent sentences, and so cannot, we argue, be mediated by syntax. Our Experiments 1–4 examined the processing of both implicit (short passive) and explicit (active or long passive) control in both local and remote configurations. Experiments 3 and 4 added either “3 days ago” or “just in order” to the local conditions, to control for the distance between the passive and infinitival verbs, and for the predictability of the reason clause, respectively. We replicate the finding that implicit control does not impose an additional processing cost. But critically we show that remote control does not impose a processing cost either. Reading times at the reason clause were never slower when control was remote. In fact they were always faster. Thus, efficient processing of local implicit control cannot show that implicit control is mediated by syntax; nor, in turn, that there is a silent but grammatically active argument in passives. PMID:26579016
Survey of Meteorological Remote Sensors
DOT National Transportation Integrated Search
1971-05-01
The preliminary results of a survey are presented which identify techniques for determining meteorological data by remote sensing, applicable to automatic data buoy platforms. Both passive and active techniques are reviewed with emphasis on the forme...
Naval EarthMap Observer (NEMO) Hyperspectral Remote Sensing Program
2000-10-01
The NEMO hyperspectral remote sensing program will provide unclassified, space-based hyperspectral passive imagery at moderate resolution that offers substantial potential for direct use by Naval forces and the Civil Sector.
All optical OFDM transmission for passive optical networks
NASA Astrophysics Data System (ADS)
Kachare, Nitin; Ashik T., J.; Bai, K. Kalyani; Kumar, D. Sriram
2017-06-01
This paper demonstrates the idea of data transmission at a very higher rate (Tbits/s) through optical fibers in a passive optical network using the most efficient data transmission technique widely used in wireless communication that is orthogonal frequency division multiplexing. With an increase in internet users, data traffic has also increased significantly and the current dense wavelength division multiplexing (DWDM) systems may not support the next generation passive optical networks (PONs) requirements. The approach discussed in this paper allows to increase the downstream data rate per user and extend the standard single-mode fiber reach for future long-haul applications. All-optical OFDM is a promising solution for terabit per second capable single wavelength transmission, with high spectral efficiency and high tolerance to chromatic dispersion.
Optical Power Transfer System for Powering a Remote Mobility System for Multiple Missions
NASA Technical Reports Server (NTRS)
Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)
2016-01-01
An optical power transfer system for powering a remote mobility system for multiple missions comprising a high power source and a chilling station connected to a laser source. The laser source transmits a high optical energy to a beam switch assembly via an optical fiber. The beam switch assembly is optically connected to actively cooled fiber spoolers. Docking stations are adapted for securing the fiber spoolers until alternatively ready for use by a remote mobility system. The remote mobility system is optically connected to the fiber spoolers and has a receiving port adapted for securing the fiber spoolers thereon. The fiber spooler transmits the optical energy to a power conversion system which converts the optical energy received to another usable form of energy. More than one power source may be used where the remote mobility system transfers from one source to another while maintaining an operational radius to each source.
Concurrent remote sensing of Arctic sea ice from submarine and aircraft
NASA Technical Reports Server (NTRS)
Wadhams, P.; Davis, N. R.; Comiso, J. C.; Kutz, R.; Crawford, J.; Jackson, G.; Krabill, W.; Sear, C. B.; Swift, R.; Tucker, W. B., III
1991-01-01
In May 1987 a concurrent remote sensing study of Arctic sea ice from above and below was carried out. A submarine equipped with sidescan and upward looking sonar collaborated with two remote sensing aircraft equipped with passive microwave, synthetic aperture radar (SAR), a laser profilometer and an infrared radiometer. By careful registration of the three tracks it has been possible to find relationships between ice type, ice morphology and thickness, SAR backscatter and microwave brightness temperatures. The key to the process has been the sidescan sonar's ability to identify ice type through differences in characteristic topography. Over a heavily ridged area of mainly multiyear ice there is a strong positive correlation between SAR backscatter and ice draft or elevation. It was also found that passive and active microwave complement each other in that SAR has a high contrast between open water and multiyear ice, while passive microwave has a high contrast between open water and first-year ice.
Fluid Lensing and Applications to Remote Sensing of Aquatic Environments
NASA Technical Reports Server (NTRS)
Chirayath, Ved
2017-01-01
The use of fluid lensing technology on UAVs is presented as a novel means for 3D imaging of aquatic ecosystems from above the water's surface at the centimeter scale. Preliminary results are presented from airborne fluid lensing campaigns conducted over the coral reefs of Ofu Island, American Samoa (2013) and the stromatolite reefs of Shark Bay, Western Australia (2014), covering a combined area of 15km2. These reef ecosystems were revealed with centimetre-scale 2D resolution, and an accompanying 3D bathymetry model was derived using fluid lensing, Structure from Motion and UAV position data. Data products were validated from in-situ survey methods including underwater calibration targets, depth measurements and millimetre-scale high-dynamic range gigapixel photogrammetry. Fluid lensing is an experimental technology that uses water transmitting wavelengths to passively image underwater objects at high-resolution by exploiting time-varying optical lensing events caused by surface waves. Fluid lensing data are captured from low-altitude, cost-effective electric UAVs to achieve multispectral imagery and bathymetry models at the centimetre scale over regional areas. As a passive system, fluid lensing is presently limited by signal-to-noise ratio and water column inherent optical properties to approximately 10 m depth over visible wavelengths in clear waters. The datasets derived from fluid lensing present the first centimetre-scale images of a reef acquired from above the ocean surface, without wave distortion. The 3D multispectral data distinguish coral, fish and invertebrates in American Samoa, and reveal previously undocumented, morphologically distinct, stromatolite structures in Shark Bay. These findings suggest fluid lensing and multirotor electric drones represent a promising advance in the remote sensing of aquatic environments at the centimetre scale, or 'reef scale' relevant to the conservation of reef ecosystems. Pending further development and validation of fluid lensing methods, these technologies present a solution for large-scale 3D surveys of shallow aquatic habitats with centimetre-scale spatial resolution and hourly temporal sampling.
NASA Technical Reports Server (NTRS)
Gervin, Janette C.; Behrenfeld, Michael; McClain, Charles R.; Spinhirne, James; Purves, Lloyd; Wood, H. John; Roberto, Michael R.
2004-01-01
The Physiology Lidar-Multispectral Mission (PhyLM) is intended to explore the complex ecosystems of our global oceans. New "inversion" methods and improved understanding of marine optics have opened the door to quantifying a range of critical ocean properties. This new information could revolutionize our understanding of global ocean processes, such as phytoplankton growth, harmful algal blooms, carbon fluxes between major pools and the productivity equation. The new science requires new measurements not addressed by currently planned space missions. PhyLM will combine active and advanced passive remote sensing technologies to quantify standing stocks and fluxes of climate-critical components of the Ocean carbon cycle to meet these science providing multispectral bands from the far UV through the near infrared (340 - 1250 nm) at a ground resolution of 250 m. Improved detectors, filters, mirrors, digitization and focal plane design will offer an overall higher-quality data product. The unprecedented accuracy and precision of the absolute water-leaving radiances will support inversion- based quantification of an expanded set of ocean carbon cycle components. The dual- wavelength (532 & 1064 nm) Nd:Yag Lidar will enhance the accuracy and precision of the passive data by providing aerosol profiles for atmospheric correction and coincident active measurements of backscattering. The Lidar will also examine dark-side fluorescence as an additional approach to quantifying phytoplankton biomass in highly productive regions.
Solid state lasers for use in non-contact temperature measurements
NASA Technical Reports Server (NTRS)
Buoncristiani, A. M.
1989-01-01
The last decade has seen a series of dramatic developments in solid state laser technology. Prominent among these has been the emergence of high power semiconductor laser diode arrays and a deepening understanding of the dynamics of solid state lasers. Taken in tandem these two developments enable the design of laser diode pumped solid state lasers. Pumping solid state lasers with semiconductor diodes relieves the need for cumbersome and inefficient flashlamps and results in an efficient and stable laser with the compactness and reliability. It provides a laser source that can be reliably used in space. These new coherent sources are incorporated into the non-contact measurement of temperature. The primary focus is the development and characterization of new optical materials for use in active remote sensors of the atmosphere. In the course of this effort several new materials and new concepts were studied which can be used for other sensor applications. The general approach to the problem of new non-contact temperature measurements has had two components. The first component centers on passive sensors using optical fibers; an optical fiber temperature sensor for the drop tube was designed and tested at the Marshall Space Flight Center. Work on this problem has given insight into the use of optical fibers, especially new IR fibers, in thermal metrology. The second component of the effort is to utilize the experience gained in the study of passive sensors to examine new active sensor concepts. By active sensor are defined as a sensing device or mechanism which is interrogated in some way be radiation, usually from a laser. The status of solid state lasers as sources for active non-contact temperature sensors are summarized. Some specific electro-optic techniques are described which are applicable to the sensor problems at hand. Work on some of these ideas is in progress while other concepts are still being worked out.
All-optical retro-modulation for free-space optical communication.
Born, Brandon; Hristovski, Ilija R; Geoffroy-Gagnon, Simon; Holzman, Jonathan F
2018-02-19
This work presents device and system architectures for free-space optical and optical wireless communication at high data rates over multidirectional links. This is particularly important for all-optical networks, with high data rates, low latencies, and network protocol transparency, and for asymmetrical networks, with multidirectional links from one transceiver to multiple distributed transceivers. These two goals can be met by implementing a passive uplink via all-optical retro-modulation (AORM), which harnesses the optical power from an active downlink to form a passive uplink through retroreflection. The retroreflected optical power is modulated all-optically to ideally achieve terabit-per-second data rates. The proposed AORM architecture, for passive uplinks, uses high-refractive-index S-LAH79 hemispheres to realize effective retroreflection and an interior semiconductor thin film of CuO nanocrystals to realize ultrafast all-optical modulation on a timescale of approximately 770 fs. The AORM architecture is fabricated and tested, and ultimately shown to be capable of enabling multidirectional free-space optical communication with terabit-per-second aggregate data rates.
Trace Gas Measurements on Mars and Earth Using Optical Parametric Generation
NASA Technical Reports Server (NTRS)
Numata, Kenji; Haris, Riris; Li, Steve; Sun, Xiaoli; Abshire, James Brice
2010-01-01
Trace gases and their isotopic ratios in planetary atmospheres offer important but subtle clues as to the origins of a planet's atmosphere, hydrology, geology, and potential for biology. An orbiting laser remote sensing instrument is capable of measuring trace gases on a global scale with unprecedented accuracy, and higher spatial resolution that can be obtained by passive instruments. We have developed an active sensing instrument for the remote measurement of trace gases in planetary atmospheres (including Earth). The technique uses widely tunable, seeded optical parametric generation (OPG) to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planets. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Methane levels have remained relatively constant over the last decade around 1.78 parts per million (ppm) but recent observations indicate that methane levels may be on the rise. Increasing methane concentrations may trigger a positive feedback loop and a subsequent runaway greenhouse effect, where increasing temperatures result in increasing methane levels. The NRC Decadal Survey recognized the importance of global observations of greenhouse gases and called for simultaneous CH4, CO, and CO2 measurements but also underlined the technological limitations for these observations. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can identify and localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. It can identify the dynamics of methane generation over time and latitude and identify future lander mission sites for more detailed in-situ analysis. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 micron and 1.65 micron. The OPG is pumped by a passively q-switched single frequency laser (3ns, 5KHz, 50uJ) and seeded by a diode laser. The spectral width of both signal and idler of seeded OPG is nearly Fourier transform limited. The output of seeded OPG is single frequency with high spectral purity and is widely tunable. Both 1650 nm and 3300 nm can be generated with a conversion efficiency of more than 30%. We have demonstrated detection of methane at 3274 nm and 1650 nm in a cell and also performed open path atmospheric measurements of methane at the same wavelengths. Finally, we were able to demonstrate simultaneous detection of methane at 3270.4 nm and CO2 at 1578.2 nm. In this paper we will discuss the OPG performance and atmospheric open path measurement results.
Remote Sensing of the Arctic Seas.
ERIC Educational Resources Information Center
Weeks, W. F.; And Others
1986-01-01
Examines remote sensing of the arctic seas by discussing: (1) passive microwave sensors; (2) active microwave sensors; (3) other types of sensors; (4) the future deployment of sensors; (5) data buoys; and (6) future endeavors. (JN)
Integrated resonant micro-optical gyroscope and method of fabrication
Vawter, G Allen [Albuquerque, NM; Zubrzycki, Walter J [Sandia Park, NM; Guo, Junpeng [Albuquerque, NM; Sullivan, Charles T [Albuquerque, NM
2006-09-12
An integrated optic gyroscope is disclosed which is based on a photonic integrated circuit (PIC) having a bidirectional laser source, a pair of optical waveguide phase modulators and a pair of waveguide photodetectors. The PIC can be connected to a passive ring resonator formed either as a coil of optical fiber or as a coiled optical waveguide. The lasing output from each end of the bidirectional laser source is phase modulated and directed around the passive ring resonator in two counterpropagating directions, with a portion of the lasing output then being detected to determine a rotation rate for the integrated optical gyroscope. The coiled optical waveguide can be formed on a silicon, glass or quartz substrate with a silicon nitride core and a silica cladding, while the PIC includes a plurality of III V compound semiconductor layers including one or more quantum well layers which are disordered in the phase modulators and to form passive optical waveguides.
Satellite Snow-Cover Mapping: A Brief Review
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.
1995-01-01
Satellite snow mapping has been accomplished since 1966, initially using data from the reflective part of the electromagnetic spectrum, and now also employing data from the microwave part of the spectrum. Visible and near-infrared sensors can provide excellent spatial resolution from space enabling detailed snow mapping. When digital elevation models are also used, snow mapping can provide realistic measurements of snow extent even in mountainous areas. Passive-microwave satellite data permit global snow cover to be mapped on a near-daily basis and estimates of snow depth to be made, but with relatively poor spatial resolution (approximately 25 km). Dense forest cover limits both techniques and optical remote sensing is limited further by cloudcover conditions. Satellite remote sensing of snow cover with imaging radars is still in the early stages of research, but shows promise at least for mapping wet or melting snow using C-band (5.3 GHz) synthetic aperture radar (SAR) data. Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) data beginning with the launch of the first EOS platform in 1998. Digital maps will be produced that will provide daily, and maximum weekly global snow, sea ice and lake ice cover at 1-km spatial resolution. Statistics will be generated on the extent and persistence of snow or ice cover in each pixel for each weekly map, cloudcover permitting. It will also be possible to generate snow- and ice-cover maps using MODIS data at 250- and 500-m resolution, and to study and map snow and ice characteristics such as albedo. been under development. Passive-microwave data offer the potential for determining not only snow cover, but snow water equivalent, depth and wetness under all sky conditions. A number of algorithms have been developed to utilize passive-microwave brightness temperatures to provide information on snow cover and water equivalent. The variability of vegetative Algorithms are being developed to map global snow and ice cover using Earth Algorithms to map global snow cover using passive-microwave data have also cover and of snow grain size, globally, limits the utility of a single algorithm to map global snow cover.
The impact of turbulent fluctuations on light propagation in a controlled environment
NASA Astrophysics Data System (ADS)
Matt, Silvia; Hou, Weilin; Goode, Wesley
2014-05-01
Underwater temperature and salinity microstructure can lead to localized changes in the index of refraction and can be a limiting factor in oceanic environments. This optical turbulence can affect electro-optical (EO) signal transmissions that impact various applications, from diver visibility to active and passive remote sensing. To quantify the scope of the impacts from turbulent flows on EO signal transmission, and to examine and mitigate turbulence effects, we perform experiments in a controlled turbulence environment allowing the variation of turbulence intensity. This controlled turbulence setup is implemented at the Naval Research Laboratory Stennis Space Center (NRLSSC). Convective turbulence is generated in a classical Rayleigh-Benard tank and the turbulent flow is quantified using a state-of-the-art suite of sensors that includes high-resolution Acoustic Doppler Velocimeter profilers and fast thermistor probes. The measurements are complemented by very high- resolution non-hydrostatic numerical simulations. These computational fluid dynamics simulations allow for a more complete characterization of the convective flow in the laboratory tank than would be provided by measurements alone. Optical image degradation in the tank is assessed in relation to turbulence intensity. The unique approach of integrating optical techniques, turbulence measurements and numerical simulations helps advance our understanding of how to mitigate the effects of turbulence impacts on underwater optical signal transmission, as well as of the use of optical techniques to probe oceanic processes.
NASA Astrophysics Data System (ADS)
Li, Ze; Zhang, Min; Wang, Danshi; Cui, Yue
2017-09-01
We propose a flexible and reconfigurable wavelength-division multiplexing (WDM) multicast scheme supporting downstream emergency multicast communication for WDM optical access network (WDM-OAN) via a multicast module (MM) based on four-wave mixing (FWM) in a semiconductor optical amplifier. It serves as an emergency measure to dispose of the burst, large bandwidth, and real-time multicast service with fast service provisioning and high resource efficiency. It also plays the role of physical backup in cases of big data migration or network disaster caused by invalid lasers or modulator failures. It provides convenient and reliable multicast service and emergency protection for WDM-OAN without modifying WDM-OAN structure. The strategies of an MM setting at the optical line terminal and remote node are discussed to apply this scheme to passive optical networks and active optical networks, respectively. Utilizing the proposed scheme, we demonstrate a proof-of-concept experiment in which one-to-six/eight 10-Gbps nonreturn-to-zero-differential phase-shift keying WDM multicasts in both strategies are successfully transmitted over single-mode fiber of 20.2 km. One-to-many reconfigurable WDM multicasts dealing with higher data rate and other modulation formats of multicast service are possible through the proposed scheme. It can be applied to different WDM access technologies, e.g., time-wavelength-division multiplexing-OAN and coherent WDM-OAN, and upgraded smoothly.
Passive Thermal Compensation of the Optical Bench of the Galaxy Evolution Explorer
NASA Technical Reports Server (NTRS)
Ford, Virginia; Parks, Rick; Coleman, Michelle
2004-01-01
The Galaxy Evolution Explorer is an orbiting space telescope that will collect information on star formation by observing galaxies and stars in ultraviolet wavelengths. The optical bench supporting detectors and related optical components used an interesting and unusual passive thermal compensation technique to accommodate thermally-induced focal length changes in the optical system. The proposed paper will describe the optical bench thermal compensation design including concept, analysis, assembly and testing results.
Active and Passive 3D Vector Radiative Transfer with Preferentially-Aligned Ice Particles
NASA Technical Reports Server (NTRS)
Adams, Ian S.; Munchak, Stephen J.; Pelissier, Craig S.; Kuo, Kwo-Sen; Heymsfield, Gerald M.
2017-01-01
For the purposes of interpreting active (radar) and passive (radiometer) microwave and millimeter wave remote sensing data, we have constructed a consistent radiative transfer modeling framework to simulate the responses for arbitrary sensors with differing sensing geometries and hardware configurations. As part of this work, we have implemented a recent method for calculating the electromagnetic properties of individual ice crystals and snow flakes. These calculations will allow us to exploit polarized remote sensing observations to discriminate different particles types and elucidate dynamics of cloud and precipitating systems.
Remote Optical Control of an Optical Flip-Flop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maywar, D.N.; Solomon, K.P.; Agrawal, G.P.
2007-11-01
We experimentally demonstrate control of a holding-beam–enabled optical flip-flop by means of optical signals that act in a remote fashion. These optical-control signals vary the holding-beam power by means of cross-gain modulation within a remotely located semiconductor optical amplifier (SOA). The power-modulated holding beam then travels through a resonant-type SOA, where flip-flop action occurs as the holding-beam power falls above and below the switching thresholds of the bistable hysteresis. Control is demonstrated using submilliwatt pulses whose wavelengths are not restricted to the vicinity of the holding beam. Benefits of remote control include the potential for controlling multiple flip-flops with amore » single pair of optical signals and for realizing all-optical control of any holding-beam–enabled flip-flop.« less
Aerosol profiling during the large scale field campaign CINDI-2
NASA Astrophysics Data System (ADS)
Apituley, Arnoud; Roozendael, Michel Van; Richter, Andreas; Wagner, Thomas; Friess, Udo; Hendrick, Francois; Kreher, Karin; Tirpitz, Jan-Lukas
2018-04-01
For the validation of space borne observations of NO2 and other trace gases from hyperspectral imagers, ground based instruments based on the MAXDOAS technique are an excellent choice, since they rely on similar retrieval techniques as the observations from orbit. To ensure proper traceability of the MAXDOAS observations, a thorough validation and intercomparison is mandatory. Advanced MAXDOAS observation and retrieval techniques enable inferring vertical structure of trace gases and aerosols. These techniques and their results need validation by e.g. lidar techniques. For the proper understanding of the results from passive remote sensing techniques, independent observations are needed that include parameters needed to understand the light paths, i.e. in-situ aerosol observations of optical and microphysical properties, and essential are in particular the vertical profiles of aerosol optical properties by (Raman) lidar. The approach used in the CINDI-2 campaign held in Cabauw in 2016 is presented in this paper and the results will be discussed in the presentation at the conference.
REMOTE SENSING IN OCEANOGRAPHY.
remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and
NASA Technical Reports Server (NTRS)
Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.
2013-01-01
Many remote sensing techniques and passive sensors have been developed to measure global aerosol properties. While instantaneous comparisons between pixel-level data often reveal quantitative differences, here we use Empirical Orthogonal Function (EOF) analysis, also known as Principal Component Analysis, to demonstrate that satellite-derived aerosol optical depth (AOD) data sets exhibit essentially the same spatial and temporal variability and are thus suitable for large-scale studies. Analysis results show that the first four EOF modes of AOD account for the bulk of the variance and agree well across the four data sets used in this study (i.e., Aqua MODIS, Terra MODIS, MISR, and SeaWiFS). Only SeaWiFS data over land have slightly different EOF patterns. Globally, the first two EOF modes show annual cycles and are mainly related to Sahara dust in the northern hemisphere and biomass burning in the southern hemisphere, respectively. After removing the mean seasonal cycle from the data, major aerosol sources, including biomass burning in South America and dust in West Africa, are revealed in the dominant modes due to the different interannual variability of aerosol emissions. The enhancement of biomass burning associated with El Niño over Indonesia and central South America is also captured with the EOF technique.
Multiple channel optical data acquisition system
Fasching, G.E.; Goff, D.R.
1985-02-22
A multiple channel optical data acquisition system is provided in which a plurality of remote sensors monitoring specific process variable are interrogated by means of a single optical fiber connecting the remote station/sensors to a base station. The remote station/sensors derive all power from light transmitted through the fiber from the base station. Each station/sensor is individually accessed by means of a light modulated address code sent over the fiber. The remote station/sensors use a single light emitting diode to both send and receive light signals to communicate with the base station and provide power for the remote station. The system described can power at least 100 remote station/sensors over an optical fiber one mile in length.
Optical fiber-fault surveillance for passive optical networks in S-band operation window
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Chi, Sien
2005-07-01
An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.
Seng, Frederick; Yang, Zhenchao; King, Rex; Shumway, LeGrand; Stan, Nikola; Hammond, Alec; Warnick, Karl F; Schultz, Stephen
2017-06-10
This work introduces a passive dipole antenna integrated into the packaging of a slab-coupled optical sensor to enhance the directional sensitivity of electro-optic electric field measurements parallel to the fiber axis. Using the passive integrated dipole antenna described in this work, a sensor that can typically only sense fields transverse to the fiber direction is able to sense a 1.25 kV/m field along the fiber direction with a gain of 17.5. This is verified through simulation and experiment.
Optical fiber-fault surveillance for passive optical networks in S-band operation window.
Yeh, Chien-Hung; Chi, Sien
2005-07-11
An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.
A micro-vibration generated method for testing the imaging quality on ground of space remote sensing
NASA Astrophysics Data System (ADS)
Gu, Yingying; Wang, Li; Wu, Qingwen
2018-03-01
In this paper, a novel method is proposed, which can simulate satellite platform micro-vibration and test the impact of satellite micro-vibration on imaging quality of space optical remote sensor on ground. The method can generate micro-vibration of satellite platform in orbit from vibrational degrees of freedom, spectrum, magnitude, and coupling path. Experiment results show that the relative error of acceleration control is within 7%, in frequencies from 7Hz to 40Hz. Utilizing this method, the system level test about the micro-vibration impact on imaging quality of space optical remote sensor can be realized. This method will have an important applications in testing micro-vibration tolerance margin of optical remote sensor, verifying vibration isolation and suppression performance of optical remote sensor, exploring the principle of micro-vibration impact on imaging quality of optical remote sensor.
Fiber-optic apparatus and method for measurement of luminescence and raman scattering
Myrick, Michael L.; Angel, Stanley M.
1993-01-01
A dual fiber forward scattering optrode for Raman spectroscopy with the remote ends of the fibers in opposed, spaced relationship to each other to form a analyte sampling space therebetween and the method of measuring Raman spectra utilizing same. One optical fiber is for sending an exciting signal to the remote sampling space and, at its remote end, has a collimating microlens and an optical filter for filtering out background emissions generated in the fiber. The other optical fiber is for collecting the Raman scattering signal at the remote sampling space and, at its remote end, has a collimating microlens and an optical filter to prevent the exciting signal from the exciting fiber from entering the collection fiber and to thereby prevent the generation of background emissions in the collecting fiber.
Optical Techniques for the Remote Detection of Biological Aerosols
1974-08-01
1) Laboratory exneriments (2) Remote detection experiments. In the first phase , the optical characteristics of several selected biological...the-art optical sensor system. The estimates were favorable, and a second research phase was initiated. Remote detection experiments were conducted...that of phase fluorometry. The fluorescence is excited by 3. continuous light source, the output of which is modulated at a high freeuency by an optical
Passive athermalization: required accuracy of the thermo-optical coefficients
NASA Astrophysics Data System (ADS)
Rogers, John R.
2014-12-01
Passive athermalization requires that the materials (both optical and mechanical) and optical powers be carefully selected in order for the image to stay adequately in focus at the plane of the detector as the various materials change in physical dimension and refractive index. For a large operational temperature range, the accuracy of the thermo-optical coefficients (dn/dT coefficients and the Coefficients of Thermal Expansion) can limit the performance of the final system. Based on an example lens designed to be passively athermalized over a 200°C temperature range, and using a Monte Carlo analysis technique, we examine the accuracy to which the expansion coefficients and dn/dT coefficients of the system must be known.
Passive Optical Locking Techniques for Diode Lasers
NASA Astrophysics Data System (ADS)
Zhang, Quan
1995-01-01
Most current diode-based nonlinear frequency converters utilize electronic frequency locking techniques. However, this type of locking technique typically involves very complex electronics, and suffers the 'power-drop' problem. This dissertation is devoted to the development of an all-optical passive locking technique that locks the diode laser frequency to the external cavity resonance stably without using any kind of electronic servo. The amplitude noise problem associated with the strong optical locking has been studied. Single-mode operation of a passively locked single-stripe diode with an amplitude stability better than 1% has been achieved. This passive optical locking technique applies to broad-area diodes as well as single-stripe diodes, and can be easily used to generate blue light. A schematic of a milliwatt level blue laser based on the single-stripe diode locking technique has been proposed. A 120 mW 467 nm blue laser has been built using the tapered amplifier locking technique. In addition to diode-based blue lasers, this passive locking technique has applications in nonlinear frequency conversions, resonant spectroscopy, particle counter devices, telecommunications, and medical devices.
Spatially enhanced passive microwave derived soil moisture: capabilities and opportunities
USDA-ARS?s Scientific Manuscript database
Low frequency passive microwave remote sensing is a proven technique for soil moisture retrieval, but its coarse resolution restricts the range of applications. Downscaling, otherwise known as disaggregation, has been proposed as the solution to spatially enhance these coarse resolution soil moistur...
NASA Astrophysics Data System (ADS)
Tong, X.; Tian, F.; Brandt, M.; Zhang, W.; Liu, Y.; Fensholt, R.
2017-12-01
Changes in vegetation phenological events are among the most sensitive biological responses to climate change. In last decades, facilitating by satellite remote sensing techniques, land surface phenology (LSP) have been monitored at global scale using proxy approaches as tracking the temporal change of a satellite-derived vegetation index. However, the existing global assessments of changes in LSP are all established on the basis of leaf phenology using NDVI derived from optical sensors, being responsive to vegetation canopy cover and greenness. Instead, the vegetation optical depth (VOD) parameter from passive microwave sensors, which is sensitive to the aboveground vegetation water content by including as well the woody components in the observations, provides an alternative, independent and comprehensive means for global vegetation phenology monitoring. We used the unique long-term global VOD record available for the period 1992-2012 to monitoring the dynamics of LSP metrics (length of season, start of season and end of season) in comparison with the dynamics of LSP metrics derived from the latest GIMMS NDVI3G V1. We evaluated the differences in the linear trends of LSP metrics between two datasets. Currently, our results suggest that the level of seasonality variation of vegetation water content is less than the vegetation greenness. We found significant phenological changes in vegetation water content in African woodlands, where has been reported with little leaf phenological change regardless of the delays in rainfall onset. Therefore, VOD might allow us to detect temporal shifts in the timing difference of vegetation water storage vs. leaf emergence and to see if some ecophysiological thresholds seem to be reached, that could cause species turnover as climate change-driven alterations to the African monsoon proceed.
Remote Acoustic Imaging of Geosynchronous Satellites
NASA Astrophysics Data System (ADS)
Watson, Z.; Hart, M.
Identification and characterization of orbiting objects that are not spatially resolved are challenging problems for traditional remote sensing methods. Hyper temporal imaging, enabled by fast, low-noise electro-optical detectors is a new sensing modality which may allow the direct detection of acoustic resonances on satellites enabling a new regime of signature and state detection. Detectable signatures may be caused by the oscillations of solar panels, high-gain antennae, or other on-board subsystems driven by thermal gradients, fluctuations in solar radiation pressure, worn reaction wheels, or orbit maneuvers. Herein we present the first hyper-temporal observations of geosynchronous satellites. Data were collected at the Kuiper 1.54-meter telescope in Arizona using an experimental dual-channel imaging instrument that simultaneously measures light in two orthogonally polarized beams at sampling rates extending up to 1 kHz. In these observations, we see evidence of acoustic resonances in the polarization state of satellites. The technique is expected to support object identification and characterization of on-board components and to act as a discriminant between active satellites, debris, and passive bodies.
Optical registration of spaceborne low light remote sensing camera
NASA Astrophysics Data System (ADS)
Li, Chong-yang; Hao, Yan-hui; Xu, Peng-mei; Wang, Dong-jie; Ma, Li-na; Zhao, Ying-long
2018-02-01
For the high precision requirement of spaceborne low light remote sensing camera optical registration, optical registration of dual channel for CCD and EMCCD is achieved by the high magnification optical registration system. System integration optical registration and accuracy of optical registration scheme for spaceborne low light remote sensing camera with short focal depth and wide field of view is proposed in this paper. It also includes analysis of parallel misalignment of CCD and accuracy of optical registration. Actual registration results show that imaging clearly, MTF and accuracy of optical registration meet requirements, it provide important guarantee to get high quality image data in orbit.
Virtual and remote experiments for radiometric and photometric measurements
NASA Astrophysics Data System (ADS)
Thoms, L.-J.; Girwidz, R.
2017-09-01
The analysis of spectra is fundamental to our modern understanding of wave optics and colour perception. Since spectrometers are expensive, and accurate calibration is necessary to achieve high quality spectra, we developed a remote lab on optical spectrometry. With this tool, students can carry out real experiments over the Internet. In this article the pros and cons of remote labs, the physical background of optical spectrometry, and the development and use of a radiometric remote lab for higher education are discussed. The remote lab is freely accessible to everyone at http://virtualremotelab.net.
Overview of the NASA tropospheric environmental quality remote sensing program
NASA Technical Reports Server (NTRS)
Allario, F.; Ayers, W. G.; Hoell, J. M.
1979-01-01
This paper will summarize the current NASA Tropospheric Environmental Quality Remote Sensing Program for studying the global and regional troposphere from space, airborne and ground-based platforms. As part of the program to develop remote sensors for utilization from space, NASA has developed a series of passive and active remote sensors which have undergone field test measurements from airborne and ground platforms. Recent measurements with active lidar and passive gas filter correlation and infrared heterodyne techniques will be summarized for measurements of atmospheric aerosols, CO, SO2, O3, and NH3. These measurements provide the data base required to assess the sensitivity of remote sensors for applications to urban and regional field measurement programs. Studies of Earth Observation Satellite Systems are currently being performed by the scientific community to assess the capability of satellite imagery to detect regions of elevated pollution in the troposphere. The status of NASA sponsored research efforts in interpreting satellite imagery for determining aerosol loadings over land and inland bodies of water will be presented, and comments on the potential of these measurements to supplement in situ and airborne remote sensors in detecting regional haze will be made.
Remote Optical Switch for Localized and Selective Control of Gene Interference
Lee, Somin Eunice; Liu, Gang Logan; Kim, Franklin; Lee, Luke P.
2009-01-01
Near infrared-absorbing gold nanoplasmonic particles (GNPs) are used as optical switches of gene interference and are remotely controlled using light. We have tuned optical switches to a wavelength where cellular photodamage is minimized. Optical switches are functionalized with double-stranded oligonucleotides. At desired times and at specific intracellular locations, remote optical excitation is used to liberate gene-interfering oligonucleotides. We demonstrate a novel gene-interfering technique offering spatial and temporal control, which is otherwise impossible using conventional gene-interfering techniques. PMID:19128006
No-go theorem for passive single-rail linear optical quantum computing.
Wu, Lian-Ao; Walther, Philip; Lidar, Daniel A
2013-01-01
Photonic quantum systems are among the most promising architectures for quantum computers. It is well known that for dual-rail photons effective non-linearities and near-deterministic non-trivial two-qubit gates can be achieved via the measurement process and by introducing ancillary photons. While in principle this opens a legitimate path to scalable linear optical quantum computing, the technical requirements are still very challenging and thus other optical encodings are being actively investigated. One of the alternatives is to use single-rail encoded photons, where entangled states can be deterministically generated. Here we prove that even for such systems universal optical quantum computing using only passive optical elements such as beam splitters and phase shifters is not possible. This no-go theorem proves that photon bunching cannot be passively suppressed even when extra ancilla modes and arbitrary number of photons are used. Our result provides useful guidance for the design of optical quantum computers.
Machine Learning Algorithms for Automated Satellite Snow and Sea Ice Detection
NASA Astrophysics Data System (ADS)
Bonev, George
The continuous mapping of snow and ice cover, particularly in the arctic and poles, are critical to understanding the earth and atmospheric science. Much of the world's sea ice and snow covers the most inhospitable places, making measurements from satellite-based remote sensors essential. Despite the wealth of data from these instruments many challenges remain. For instance, remote sensing instruments reside on-board different satellites and observe the earth at different portions of the electromagnetic spectrum with different spatial footprints. Integrating and fusing this information to make estimates of the surface is a subject of active research. In response to these challenges, this dissertation will present two algorithms that utilize methods from statistics and machine learning, with the goal of improving on the quality and accuracy of current snow and sea ice detection products. The first algorithm aims at implementing snow detection using optical/infrared instrument data. The novelty in this approach is that the classifier is trained using ground station measurements of snow depth that are collocated with the reflectance observed at the satellite. Several classification methods are compared using this training data to identify the one yielding the highest accuracy and optimal space/time complexity. The algorithm is then evaluated against the current operational NASA snow product and it is found that it produces comparable and in some cases superior accuracy results. The second algorithm presents a fully automated approach to sea ice detection that integrates data obtained from passive microwave and optical/infrared satellite instruments. For a particular region of interest the algorithm generates sea ice maps of each individual satellite overpass and then aggregates them to a daily composite level, maximizing the amount of high resolution information available. The algorithm is evaluated at both, the individual satellite overpass level, and at the daily composite level. Results show that at the single overpass level for clear-sky regions, the developed multi-sensor algorithm performs with accuracy similar to that of the optical/infrared products, with the advantage of being able to also classify partially cloud-obscured regions with the help of passive microwave data. At the daily composite level, results show that the algorithm's performance with respect to total ice extent is in line with other daily products, with the novelty of being fully automated and having higher resolution.
NASA Astrophysics Data System (ADS)
Fix, Andreas; Amediek, Axel; Bovensmann, Heinrich; Ehret, Gerhard; Gerbig, Christoph; Gerilowski, Konstantin; Pfeilsticker, Klaus; Roiger, Anke; Zöger, Martin
2018-04-01
TIn order to improve our current knowledge on the budgets of the two most important anthropogenic greenhouse gases, CO2 and CH4, an airborne mission on board the German research aircraft HALO in coordination with two smaller Cessna aircraft is going to be conducted in April/May 2017. The goal of CoMet is to combine a suite of the best currently available active (lidar) and passive remote sensors as well as in-situ instruments to provide regional-scale data of greenhouse gases which are urgently required.
Radio Frequency Interference Detection for Passive Remote Sensing Using Eigenvalue Analysis
NASA Technical Reports Server (NTRS)
Schoenwald, Adam; Kim, Seung-Jun; Mohammed-Tano, Priscilla
2017-01-01
Radio frequency interference (RFI) can corrupt passive remote sensing measurements taken with microwave radiometers. With the increasingly utilized spectrum and the push for larger bandwidth radiometers, the likelihood of RFI contamination has grown significantly. In this work, an eigenvalue-based algorithm is developed to detect the presence of RFI and provide estimates of RFI-free radiation levels. Simulated tests show that the proposed detector outperforms conventional kurtosis-based RFI detectors in the low-to-medium interferece-to-noise-power-ratio (INR) regime under continuous wave (CW) and quadrature phase shift keying (QPSK) RFIs.
Radio Frequency Interference Detection for Passive Remote Sensing Using Eigenvalue Analysis
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Kim, Seung-Jun; Mohammed, Priscilla N.
2017-01-01
Radio frequency interference (RFI) can corrupt passive remote sensing measurements taken with microwave radiometers. With the increasingly utilized spectrum and the push for larger bandwidth radiometers, the likelihood of RFI contamination has grown significantly. In this work, an eigenvalue-based algorithm is developed to detect the presence of RFI and provide estimates of RFI-free radiation levels. Simulated tests show that the proposed detector outperforms conventional kurtosis-based RFI detectors in the low-to-medium interference-to-noise-power-ratio (INR) regime under continuous wave (CW) and quadrature phase shift keying (QPSK) RFIs.
Fiber-optic apparatus and method for measurement of luminescence and Raman scattering
Myrick, M.L.; Angel, S.M.
1993-03-16
A dual fiber forward scattering optrode for Raman spectroscopy with the remote ends of the fibers in opposed, spaced relationship to each other to form a analyte sampling space therebetween and the method of measuring Raman spectra utilizing same are described. One optical fiber is for sending an exciting signal to the remote sampling space and, at its remote end, has a collimating microlens and an optical filter for filtering out background emissions generated in the fiber. The other optical fiber is for collecting the Raman scattering signal at the remote sampling space and, at its remote end, has a collimating microlens and an optical filter to prevent the exciting signal from the exciting fiber from entering the collection fiber and to thereby prevent the generation of background emissions in the collecting fiber.
Protection of passive radio frequencies used for earth exploration by satellite
NASA Astrophysics Data System (ADS)
Rochard, Guy
2004-10-01
Space-borne passive sensing of the Earth"s surface and atmosphere has an essential and increasing importance in Earth Observation. The impressive progress recently made or shortly expected in weather analysis, warning and forecasts (in particular for dangerous weather phenomena as rain and floods, storms, cyclones, droughts) as well as in the study and prediction of climate change, is mainly attributable to the spaceborne observations. On this basis, economic studies show that meteorological services have a high positive impact on a wide range of economic activities, notwithstanding safety of life and property aspects. Space-borne passive sensing feeds crucial observational data to numerical weather predction models run on the most advanced super-computers that are operated by a few global forecasting centers. All meteorological and environmental satellite organizations operate these crucial remote-sensing missions as part of the GOS of the World Weather Watch and others... Spaceborne passive sensing for meterological applications is performed in frequency bands allocated to the Earth Exploration-Satellite Service. This is named "EESS passive" in the ITU-R Radio Regulations. The appropriate bands are uniquely determined by the physical properties (e.g. molecular resonance) of constituents of the atmosphere, and are therefore one of the unique natural resources (similarly to Radio Astronomy bands). Passive measurements at several frequencies in the microwave spectrum must be made simultaneously in order to extract the individual contribution of the geophysical parameter of interest. Bands below 100 GHz are of particular importance to provide an "all-weather" capability since many clouds are almost transparent at these frequencies. Along this line, the two first figures below about zenithal opacity describes respectively the atmosphere optical thickness due to water vapor and dry components in the frequency range 1 to 275 GHz and 275 GHz to 1000 GHz on which have been based the definition of most of the current allocations to EESS (passive) that are listed, as currently specified in ITU-R Rec. SA.515-3 summarized below. Interference criteria and performance criteria of passive sensors are indicated in ITU-R Rec(s) SA.1028-2 and 1029-2, respectively. A common summary of these two Rec(s) is also available below.
Potential of Sentinel Satellites for Schistosomiasis Monitoring
NASA Astrophysics Data System (ADS)
Li, C.-R.; Tang, L.-L.; Niu, H.-B.; Zhou, X.-N.; Liu, Z.-Y.; Ma, L.-L.; Zhou, Y.-S.
2012-04-01
Schistosomiasis is a parasitic disease that menaces human health. In terms of impact this disease is second only to malaria as the most devastating parasitic disease. Oncomelania hupensis is the unique intermediate host of Schistosoma, and hence monitoring and controlling of the number of oncomelania is key to reduce the risk of schistosomiasis transmission. Remote sensing technology can real-timely access the large-scale environmental factors related to oncomelania breeding and reproduction, such as temperature, moisture, vegetation, soil, and rainfall, and can also provide the efficient information to determine the location, area, and spread tendency of oncomelania. Many studies show that the correlation coefficient between oncomelania densities and remote sensing environmental factors depends largely on suitable and high quality remote sensing data used in retrieve environmental factors. Research achievements on retrieving environmental factors (which are related to the living, multiplying and transmission of oncomelania) by multi-source remote data are shown firstly, including: (a) Vegetation information (e.g., Modified Soil-Adjusted Vegetation Index, Normalized Difference Moisture Index, Fractional Vegetation Cover) extracted from optical remote sensing data, such as Landsat TM, HJ-1A/HSI image; (b) Surface temperature retrieval from Thermal Infrared (TIR) and passive-microwave remote sensing data; (c) Water region, soil moisture, forest height retrieval from synthetic aperture radar data, such as Envisat SAR, DLR's ESAR image. Base on which, the requirements of environmental factor accuracy for schistosomiasis monitoring will be analyzed and summarized. Our work on applying remote sensing technique to schistosomiasis monitoring is then presented. The fuzzy information theory is employed to analyze the sensitivity and feasibility relation between oncomelania densities and environmental factors. Then a mechanism model of predicting oncomelania distribution and densities is developed. The new model is validated with field data of Dongting Lake and the dynamic monitoring of schistosomiasis breeding in Dongting Lake region is presented. Finally, emphasis are placed on analyzing the potential of Sentinel satellites for schistosomiasis monitoring. The requirements of optical high resolution data on spectral resolution, spatial resolution, radiometric resolution/accuracy, as well as the requirements of synthetic aperture radar data on operation frequency, spatial resolution, polarization, radiometric accuracy, repeat cycle are presented and then compared with the parameters of Sentinel satellites. The parameters of Sentinel satellites are also compared with those of available remote satellites, such as Envisat, Landsat, whose data are being used for schistosomiasis monitoring. The application potential of Sentinel satellites for the schistosomiasis monitoring will be concluded in the end, which will benefit for the mission operation, model development, etc.
Recovering Signals from Optical Fiber Interferometric Sensors
1991-06-01
GROUP SUB* GROUp Demodulation-, optical fiber, fi ber optic, sensors, passive -homodyne demodulation, symmetric demodul -ation, asymmetric demodulation...interferomeler without feedback control or modulation ofl th laser itself and without requiring the use of electronics withi -n the interferometer. One of...the 3x3 coupler permits Passive Homodyne Demodulation -of the phase-modulated signals provided by the interferometcr without feedback control or
Optical remote measurement of toxic gases
NASA Technical Reports Server (NTRS)
Grant, W. B.; Kagann, R. H.; McClenny, W. A.
1992-01-01
Enactment of the Clean Air Act Amendments (CAAA) of 1990 has resulted in increased ambient air monitoring needs for industry, some of which may be met efficiently using open-path optical remote sensing techniques. These techniques include Fourier transform spectroscopy, differential optical absorption spectroscopy, laser long-path absorption, differential absorption lidar, and gas cell correlation spectroscopy. With this regulatory impetus, it is an opportune time to consider applying these technologies to the remote and/or path-averaged measurement and monitoring of toxic gases covered by the CAAA. This article reviews the optical remote sensing technology and literature for that application.
NASA Astrophysics Data System (ADS)
Wang, C.; Luo, Z. J.; Chen, X.; Zeng, X.; Tao, W.; Huang, X.
2012-12-01
Cloud top temperature is a key parameter to retrieval in the remote sensing of convective clouds. Passive remote sensing cannot directly measure the temperature at the cloud tops. Here we explore a synergistic way of estimating cloud top temperature by making use of the simultaneous passive and active remote sensing of clouds (in this case, CloudSat and MODIS). Weighting function of the MODIS 11μm band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat retrievals and temperature and humidity profiles based on ECMWF ERA-interim reanalysis into a radiation transfer model. Among 19,699 tropical deep convective clouds observed by the CloudSat in 2008, the averaged effective emission level (EEL, where the weighting function attains its maximum) is at optical depth 0.91 with a standard deviation of 0.33. Furthermore, the vertical gradient of CloudSat radar reflectivity, an indicator of the fuzziness of convective cloud top, is linearly proportional to, d_{CTH-EEL}, the distance between the EEL of 11μm channel and cloud top height (CTH) determined by the CloudSat when d_{CTH-EEL}<0.6km. Beyond 0.6km, the distance has little sensitivity to the vertical gradient of CloudSat radar reflectivity. Based on these findings, we derive a formula between the fuzziness in the cloud top region, which is measurable by CloudSat, and the MODIS 11μm brightness temperature assuming that the difference between effective emission temperature and the 11μm brightness temperature is proportional to the cloud top fuzziness. This formula is verified using the simulated deep convective cloud profiles by the Goddard Cumulus Ensemble model. We further discuss the application of this formula in estimating cloud top buoyancy as well as the error characteristics of the radiative calculation within such deep-convective clouds.
Validation of satellite-based operational flood monitoring in Southern Queensland, Australia
NASA Astrophysics Data System (ADS)
Gouweleeuw, Ben; Ticehurst, Catherine; Lerat, Julien; Thew, Peter
2010-05-01
The integration of remote sensing observations with stage data and flood modeling has the potential to provide improved support to a number of disciplines, such as flood warning emergency response and operational water resources management. The ability of remote sensing technology to monitor the dynamics of hydrological events lies in its capacity to map surface water. For flood monitoring, remote sensing imagery needs to be available sufficiently frequently to capture subsequent inundation stages. MODIS optical data are available at a moderately high spatial and temporal resolution (250m-1km, twice daily), but are affected by cloud cover. AMSR-E passive microwave observations are available at comparable temporal resolution, but coarse spatial resolution (5-70km), where the smaller footprints corresponds with the higher frequency bands, which are affected by precipitating clouds. A novel operational technique to monitor flood extent combines MODIS reflectance and AMSR-E passive microwave imagery to optimize data continuity. Flood extent is subsequently combined with a DEM to obtain total flood water volume. The flood extent and volume product is operational for the lower-Balonne floodplain in Southern Queensland, Australia. For validation purposes, two moderate flood events coinciding with the MODIS and AMSR-E sensor lifetime are evaluated. The flood volume estimated from MODIS/AMSR-E images gives an accurate indication of both the timing and the magnitude of the flood peak compared to the net volume from recorded flow. In the flood recession, however, satellite-derived water volume declines rapidly, while the net flow volume remains level. This may be explained by a combination of ungauged outflows, soil infiltration, evaporation and diversion of flood water into many large open reservoirs for irrigation purposes. The open water storage extent unchanged, the water volume product is not sensitive enough to capture the change in storage water level. Additional information on the latter, e.g. via telemetered buoys, may circumvent this limitation.
Observation of Atmospheric Constituents From Space
NASA Astrophysics Data System (ADS)
Burrows, J. P.
Remote sensing of the atmosphere from space is a growing research field. Surprisingly but for good physical reasons, the mesosphere and stratosphere are easier to probe from space than the troposphere. GOME (Global Ozone Monitoring Experiment) and SCIAMACHY (Scanning Imaging absorption spectroMeter for Atmospheric CHartographY) are related European instruments, which were proposed and been designed to measure atmospheric constituents (gases, aerosols and clouds) by passive remote sensing of the up-welling solar radiation leaving atmosphere. GOME is a smaller version of SCIAMACHY and was launched as part of the core payload of the second European research satellite (ERS-2) on the 20th April 1995. GOME comprises four spectral channels and measures simultaneously the earthshine radiance or solar extra terrestrial irradiance between 240 and 790 nm. Inversion of GOME measurements using the DOAS (Differential Optical Absorption Spectroscopy) yields the total column of trace gases (e.g. O3, NO2, HCHO, BrO and OClO). Application of the FURM (Full Retrieval Method) enables the profiles of O3 to be retrieved. One of the important achievements of GOME has been the separation of tropopsheirc columns of trace gases using TEM (Tropospheric Excess Method). SCIAMACHY has been developed as Germa n, Dutch and Belgian contribution to ENVISAT. It has significantly enhanced capability compared to GOME, measuring a larger spectral range, 220-2380 nm, and observing in alternate nadir and limb modes as well as solar and lunar occultation. ENVISAT is to be launched into a sun synchronous polar orbit, having an equator crossing time of 10.00 a.m. at the beginning of March 2002. SCIAMACHY is thereby able to measure many more species and vertical profiles than GOME. This facilitates improved tropospheric retrievals. Finally GeoTROPE (Geostationary TROPospheric Explorer) is a new mission, which is proposed for launch within the ESA Earth Explorer Opportunity Mission. It comprises two national contributions: the instruments GeoSCIA and GeoFIS. The capabilities of passive remote sensing and recent results will be discussed in this contribution.
NASA Astrophysics Data System (ADS)
Offret, J.-P.; Lebedinsky, J.; Navello, L.; Pina, V.; Serio, B.; Bailly, Y.; Hervé, P.
2015-05-01
Temperature data play an important role in the combustion chamber since it determines both the efficiency and the rate of pollutants emission of engines. Air pollution problem concerns the emissions of gases such as CO, CO2, NO, NO2, SO2 and also aerosols, soot and volatile organic compounds. Flame combustion occurs in hostile environments where temperature and concentration profiles are often not easy to measure. In this study, a temperature and CO2 concentration profiles optical measurement method, suitable for combustion analysis, is discussed and presented. The proposed optical metrology method presents numerous advantages when compared to intrusive methods. The experimental setup comprises a passive radiative emission measurement method combined with an active laser-measurement method. The passive method is based on the use of gas emission spectroscopy. The experimental spectrometer device is coupled with an active method. The active method is used to investigate and correct complex flame profiles. This method similar to a LIDAR (Light Detection And Ranging) device is based on the measurement of Rayleigh scattering of a short laser pulse recorded using a high-speed streak camera. The whole experimental system of this new method is presented. Results obtained on a small-scale turbojet are shown and discussed in order to illustrate the potentials deliver by the sophisticated method. Both temperature and concentration profiles of the gas jet are presented and discussed.
Air pollution measurements from satellites
NASA Technical Reports Server (NTRS)
Ludwig, C. B.; Griggs, M.; Malkmus, W.; Bartle, E. R.
1973-01-01
A study is presented on the remote sensing of gaseous and particulate air pollutants which is an extension of a previous report. Pollutants can be observed by either active or passive remote sensing systems. Calculations discussed herein indicate that tropospheric CO, CO2, SO2, NO2, NH3, HCHO, and CH4 can be measured by means of nadir looking passive systems. Additional species such as NO, HNO3, O3, and H2O may be measured in the stratosphere through a horizon experiment. A brief theoretical overview of resonance Raman scattering and resonance fluorescence is given. It is found that radiance measurements are most promising for general global applications, and that stratospheric aerosols may be measured using a sun occultation technique. The instrumentation requirements for both active and passive systems are examined and various instruments now under development are described.
Active and Passive Remote Sensing of Ice
1991-11-15
direct scattering problem. These ideas are applied to study polarimetric pasive remote sensing of periodic surfaces. The solution of the direct...different location). As a result, the correlation between HH and VV decreases. As a matter of fact, for completely randomly oriented dipoles both the
Combined active and passive microwave remote sensing of vegetated surfaces at l-band
USDA-ARS?s Scientific Manuscript database
In previous work the distorted Born approximation (DBA) of volume scattering was combined with the numerical solutions of Maxwell equations (NMM3D) for a rough surface to calculate the radar backscattering coefficient for the Soil Moisture Active Passive (SMAP) mission. The model results were valida...
A novel WDM passive optical network architecture supporting two independent multicast data streams
NASA Astrophysics Data System (ADS)
Qiu, Yang; Chan, Chun-Kit
2012-01-01
We propose a novel scheme to perform optical multicast overlay of two independent multicast data streams on a wavelength-division-multiplexed (WDM) passive optical network. By controlling a sinusoidal clock signal and shifting the wavelength at the optical line terminal (OLT), the delivery of the two multicast data, being carried by the generated optical tones, can be independently and flexibly controlled. Simultaneous transmission of 10-Gb/s unicast downstream and upstream data as well as two independent 10-Gb/s multicast data was successfully demonstrated.
Role of Lidar Technology in Future NASA Space Missions
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin
2008-01-01
The past success of lidar instruments in space combined with potentials of laser remote sensing techniques in improving measurements traditionally performed by other instrument technologies and in enabling new measurements have expanded the role of lidar technology in future NASA missions. Compared with passive optical and active radar/microwave instruments, lidar systems produce substantially more accurate and precise data without reliance on natural light sources and with much greater spatial resolution. NASA pursues lidar technology not only as science instruments, providing atmospherics and surface topography data of Earth and other solar system bodies, but also as viable guidance and navigation sensors for space vehicles. This paper summarizes the current NASA lidar missions and describes the lidar systems being considered for deployment in space in the near future.
Field Test on the Feasibility of Remoting HF Antenna with Fiber Optics
2008-07-31
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5652--08-9137 Field Test on the Feasibility of Remoting HF Antenna with Fiber Optics July...NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Field Test on the Feasibility of Remoting HF Antenna...optic link was employed to remote a high-frequency ( HF , 2-30 MHz) direction-finding (DF) array. The test link comprised a seven-element “L” array
Analysis and modeling of atmospheric turbulence on the high-resolution space optical systems
NASA Astrophysics Data System (ADS)
Lili, Jiang; Chen, Xiaomei; Ni, Guoqiang
2016-09-01
Modeling and simulation of optical remote sensing system plays an unslightable role in remote sensing mission predictions, imaging system design, image quality assessment. It has already become a hot research topic at home and abroad. Atmospheric turbulence influence on optical systems is attached more and more importance to as technologies of remote sensing are developed. In order to study the influence of atmospheric turbulence on earth observation system, the atmospheric structure parameter was calculated by using the weak atmospheric turbulence model; and the relationship of the atmospheric coherence length and high resolution remote sensing optical system was established; then the influence of atmospheric turbulence on the coefficient r0h of optical remote sensing system of ground resolution was derived; finally different orbit height of high resolution optical system imaging quality affected by atmospheric turbulence was analyzed. Results show that the influence of atmospheric turbulence on the high resolution remote sensing optical system, the resolution of which has reached sub meter level meter or even the 0.5m, 0.35m and even 0.15m ultra in recent years, image quality will be quite serious. In the above situation, the influence of the atmospheric turbulence must be corrected. Simulation algorithms of PSF are presented based on the above results. Experiment and analytical results are posted.
NASA Astrophysics Data System (ADS)
Zhou, Lu; Xu, Shiming; Liu, Jiping; Wang, Bin
2018-03-01
The accurate knowledge of sea ice parameters, including sea ice thickness and snow depth over the sea ice cover, is key to both climate studies and data assimilation in operational forecasts. Large-scale active and passive remote sensing is the basis for the estimation of these parameters. In traditional altimetry or the retrieval of snow depth with passive microwave remote sensing, although the sea ice thickness and the snow depth are closely related, the retrieval of one parameter is usually carried out under assumptions over the other. For example, climatological snow depth data or as derived from reanalyses contain large or unconstrained uncertainty, which result in large uncertainty in the derived sea ice thickness and volume. In this study, we explore the potential of combined retrieval of both sea ice thickness and snow depth using the concurrent active altimetry and passive microwave remote sensing of the sea ice cover. Specifically, laser altimetry and L-band passive remote sensing data are combined using two forward models: the L-band radiation model and the isostatic relationship based on buoyancy model. Since the laser altimetry usually features much higher spatial resolution than L-band data from the Soil Moisture Ocean Salinity (SMOS) satellite, there is potentially covariability between the observed snow freeboard by altimetry and the retrieval target of snow depth on the spatial scale of altimetry samples. Statistically significant correlation is discovered based on high-resolution observations from Operation IceBridge (OIB), and with a nonlinear fitting the covariability is incorporated in the retrieval algorithm. By using fitting parameters derived from large-scale surveys, the retrievability is greatly improved compared with the retrieval that assumes flat snow cover (i.e., no covariability). Verifications with OIB data show good match between the observed and the retrieved parameters, including both sea ice thickness and snow depth. With detailed analysis, we show that the error of the retrieval mainly arises from the difference between the modeled and the observed (SMOS) L-band brightness temperature (TB). The narrow swath and the limited coverage of the sea ice cover by altimetry is the potential source of error associated with the modeling of L-band TB and retrieval. The proposed retrieval methodology can be applied to the basin-scale retrieval of sea ice thickness and snow depth, using concurrent passive remote sensing and active laser altimetry based on satellites such as ICESat-2 and WCOM.
Development of Planar Optics for an Optical Tracking Sensor
NASA Astrophysics Data System (ADS)
Kawano, Hiroyuki; Sasagawa, Tomohiro
1998-10-01
An optical tracking sensor for large-capacity flexible disk drive (FDD) is demonstrated. The passive optics is compact and lightweight (5.4 mm length×3.6 mm width×1.2 mm height in size and 18 mg weight). It comprises all passive optical elements necessary for optical tracking, e.g., a focusing lens, a three-beam grating, an aperture and a beam splitter grating. Three beams were focused to a predetermined spot size of 13 µm at designed intervals of 110 µm on a disk surface and the reflected beams were successfully guided to photodiodes. This confirms that the application of the planar optical technique is very useful for realizing a compact and light optical sensor.
Architectures of fiber optic network in telecommunications
NASA Astrophysics Data System (ADS)
Vasile, Irina B.; Vasile, Alexandru; Filip, Luminita E.
2005-08-01
The operators of telecommunications have targeted their efforts towards realizing applications using broad band fiber optics systems in the access network. Thus, a new concept related to the implementation of fiber optic transmission systems, named FITL (Fiber In The Loop) has appeared. The fiber optic transmission systems have been extensively used for realizing the transport and intercommunication of the public telecommunication network, as well as for assuring the access to the telecommunication systems of the great corporations. Still, the segment of the residential users and small corporations did not benefit on large scale of this technology implementation. For the purpose of defining fiber optic applications, more types of architectures were conceived, like: bus, ring, star, tree. In the case of tree-like networks passive splitters (that"s where the name of PON comes from - Passive Optical Network-), which reduce significantly the costs of the fiber optic access, by separating the costs of the optical electronic components. That's why the passive fiber optics architectures (PON represent a viable solution for realizing the access at the user's loop. The main types of fiber optics architectures included in this work are: FTTC (Fiber To The Curb); FTTB (Fiber To The Building); FTTH (Fiber To The Home).
Velocity filtering applied to optical flow calculations
NASA Technical Reports Server (NTRS)
Barniv, Yair
1990-01-01
Optical flow is a method by which a stream of two-dimensional images obtained from a forward-looking passive sensor is used to map the three-dimensional volume in front of a moving vehicle. Passive ranging via optical flow is applied here to the helicopter obstacle-avoidance problem. Velocity filtering is used as a field-based method to determine range to all pixels in the initial image. The theoretical understanding and performance analysis of velocity filtering as applied to optical flow is expanded and experimental results are presented.
Santos, J L; Jackson, D A
1991-08-01
A passive demodulation technique suitable for interferometric interrogation of short optical cavities is described. It is based on time multiplexing of two low-finesse Fabry-Perot interferometers subject to the same measurand and with a differential optical phase of pi/2 (modulo 2pi). Independently of the cavity length, two optical outputs in quadrature are generated, which permits signal reading free of fading. The concept is demonstrated for the measurement of vibration using a simple processing scheme.
A Profile of Defense Manufacturing Costs and Enabling Technologies
1992-01-01
RECEIVE MODULE F Missiles 75mm Cadmium Zinc Telluride F 94 GHZ MILLIMETER WAVE TRANSCEIVER F COMPOSITES FOR PASSIVE THERMAL MANAGEMENT F COMPOSITES FOR... PASSIVE THERMAL MANAGEMENT F Design standards for surface mount devices I Electro-optic Components Advanced Manufacturing PrDcess I FIBER OPTIC
Linear and passive silicon optical isolator
Wang, Chen; Zhong, Xiao-Lan; Li, Zhi-Yuan
2012-01-01
On-chip optical isolation plays a key role in optical communications and computing based on silicon integrated photonic structures and has attracted great attentions for long years. Recently there have appeared hot controversies upon whether isolation of light can be realized via linear and passive photonic structures. Here we demonstrate optical isolation of infrared light in purely linear and passive silicon photonic structures. Both numerical simulations and experimental measurements show that the round-trip transmissivity of in-plane infrared light across a silicon photonic crystal slab heterojunction diode could be two orders of magnitudes smaller than the forward transmissivity at around 1,550 nm with a bandwidth of about 50 nm, indicating good performance of optical isolation. The occurrence of in-plane light isolation is attributed to the information dissipation due to off-plane and side-way scattering and selective modal conversion in the multiple-channel structure and has no conflict with the reciprocal principle. PMID:22993699
Engineering multiphoton states for linear optics computation
NASA Astrophysics Data System (ADS)
Aniello, P.; Lupo, C.; Napolitano, M.; Paris, M. G. A.
2007-03-01
Transformations achievable by linear optical components allow to generate the whole unitary group only when restricted to the one-photon subspace of a multimode Fock space. In this paper, we address the more general problem of encoding quantum information by multiphoton states, and elaborating it via ancillary extensions, linear optical passive devices and photodetection. Our scheme stems in a natural way from the mathematical structures underlying the physics of linear optical passive devices. In particular, we analyze an economical procedure for mapping a fiducial 2-photon 2-mode state into an arbitrary 2-photon 2-mode state using ancillary resources and linear optical passive N-ports assisted by post-selection. We found that adding a single ancilla mode is enough to generate any desired target state. The effect of imperfect photodetection in post-selection is considered and a simple trade-off between success probability and fidelity is derived.
Directional amplifier in an optomechanical system with optical gain
NASA Astrophysics Data System (ADS)
Jiang, Cheng; Song, L. N.; Li, Yong
2018-05-01
Directional amplifiers are crucial nonreciprocal devices in both classical and quantum information processing. Here we propose a scheme for realizing a directional amplifier between optical and microwave fields based on an optomechanical system with optical gain, where an active optical cavity and two passive microwave cavities are coupled to a common mechanical resonator via radiation pressure. The two passive cavities are coupled via hopping interaction to facilitate the directional amplification between the active and passive cavities. We obtain the condition of achieving optical directional amplification and find that the direction of amplification can be controlled by the phase differences between the effective optomechanical couplings. The effects of the gain rate of the active cavity and the effective coupling strengths on the maximum gain of the amplifier are discussed. We show that the noise added to this amplifier can be greatly suppressed in the large cooperativity limit.
Delivery of video-on-demand services using local storages within passive optical networks.
Abeywickrama, Sandu; Wong, Elaine
2013-01-28
At present, distributed storage systems have been widely studied to alleviate Internet traffic build-up caused by high-bandwidth, on-demand applications. Distributed storage arrays located locally within the passive optical network were previously proposed to deliver Video-on-Demand services. As an added feature, a popularity-aware caching algorithm was also proposed to dynamically maintain the most popular videos in the storage arrays of such local storages. In this paper, we present a new dynamic bandwidth allocation algorithm to improve Video-on-Demand services over passive optical networks using local storages. The algorithm exploits the use of standard control packets to reduce the time taken for the initial request communication between the customer and the central office, and to maintain the set of popular movies in the local storage. We conduct packet level simulations to perform a comparative analysis of the Quality-of-Service attributes between two passive optical networks, namely the conventional passive optical network and one that is equipped with a local storage. Results from our analysis highlight that strategic placement of a local storage inside the network enables the services to be delivered with improved Quality-of-Service to the customer. We further formulate power consumption models of both architectures to examine the trade-off between enhanced Quality-of-Service performance versus the increased power requirement from implementing a local storage within the network.
NASA Astrophysics Data System (ADS)
Timmermans, Joris; Gomez-Dans, Jose; Lewis, Philip; Loew, Alexander; Schlenz, Florian
2017-04-01
The large amount of remote sensing data nowadays available provides a huge potential for monitoring crop development, drought conditions and water efficiency. This potential however not been realized yet because algorithms for land surface parameter retrieval mostly use data from only a single sensor. Consequently products that combine different low-level observations from different sensors are hard to find. The lack of synergistic retrieval is caused because it is easier to focus on single sensor types/footprints and temporal observation times, than to find a way to compensate for differences. Different sensor types (microwave/optical) require different radiative transfer (RT) models and also require consistency between the models to have any impact on the retrieval of soil moisture by a microwave instrument. Varying spatial footprints require first proper collocation of the data before one can scale between different resolutions. Considering these problems, merging optical and microwave observations have not been performed yet. The goal of this research was to investigate the potential of integrating optical and microwave RT models within the Earth Observation Land Data Assimilation System (EOLDAS) synergistically to derive biophysical parameters. This system uses a Bayesian data assimilation approach together with observation operators such as the PROSAIL model to estimate land surface parameters. For the purpose of enabling the system to integrate passive microwave radiation (from an ELBARRA II passive microwave radiometer), the Community Microwave Emission Model (CMEM) RT-model, was integrated within the EOLDAS system. In order to quantify the potential, a variety of land surface parameters was chosen to be retrieved from the system, in particular variables that a) impact only optical RT (such as leaf water content and leaf dry matter), b) only impact the microwave RT (such as soil moisture and soil temperature), and c) Leaf Area Index (LAI) that impacts both optical and microwave RT. The results show a high potential when both optical and microwave are used independently. Using only RapidEye only with SAIL RT model, LAI was estimated with R=0.68 with p=0.09, although estimating leaf water content and dry matter showed lower correlations |R|<0.4. The results for retrieving soil temperature and leaf area index retrievals using only (passive microwave) Elbarra-II observations were good with respectively R=[0.85, 0.79], P=[0.0, 0.0], when focusing on dry-spells (of at least 9 days) only the results respectively [R=0.73, and P=0.0], and R=0.89 and R=0.77 for respectively the trend and anomalies. Synergistically using optical and microwave shows also a good potential. This scenario shows that absolute errors improved (with RMSE=1.22 and S=0.89), but with degrading correlations (R=0.59 and P=0.04); the sparse optical observations only improved part of the temporal domain. However in general the synergistic retrieval showed good potential; microwave data provides better information concerning the overall trend of the retrieved LAI due to the regular acquisitions, while optical data provides better information concerning the absolute values of the LAI.
Dorzolamide Loaded Niosomal Vesicles: Comparison of Passive and Remote Loading Methods.
Hashemi Dehaghi, Mohadeseh; Haeri, Azadeh; Keshvari, Hamid; Abbasian, Zahra; Dadashzadeh, Simin
2017-01-01
Glaucoma is a common progressive eye disorder and the treatment strategies will benefit from nanoparticulate delivery systems with high drug loading and sustained delivery of intraocular pressure lowering agents. Niosomes have been reported as a novel approach to improve drug low corneal penetration and bioavailability characteristics. Along with this, poor entrapment efficiency of hydrophilic drug in niosomal formulation remains as a major formulation challenge. Taking this perspective into consideration, dorzolamide niosomes were prepared employing two different loading methodologies (passive and remote loading methods) and the effects of various formulation variables (lipid to drug ratio, cholesterol percentage, drug concentration, freeze/thaw cycles, TPGS content, and external and internal buffer molarity and pH) on encapsulation efficiency were assessed. Encapsulation of dorzolamide within niosomes increased remarkably by the incorporation of higher cholesterol percentage as well as increasing the total lipid concentration. Remote loading method showed higher efficacy for drug entrapment compared to passive loading technique. Incorporation of TPGS in bilayer led to decrease in EE; however, retarded drug release rate. Scanning electron microscopy (SEM) studies confirmed homogeneous particle distribution, and spherical shape with smooth surface. In conclusion, the highest encapsulation can be obtained using phosphate gradient method and 50% cholesterol in Span 60 niosomal formulation.
Balch, William M; Bowler, Bruce C; Drapeau, David T; Lubelczyk, Laura C; Lyczkowski, Emily
2018-01-01
Coccolithophores are a critical component of global biogeochemistry, export fluxes, and seawater optical properties. We derive globally significant relationships to estimate integrated coccolithophore and coccolith concentrations as well as integrated concentrations of particulate inorganic carbon (PIC) from their respective surface concentration. We also examine surface versus integral relationships for other biogeochemical variables contributed by all phytoplankton (e.g., chlorophyll a and particulate organic carbon) or diatoms (biogenic silica). Integrals are calculated using both 100 m integrals and euphotic zone integrals (depth of 1% surface photosynthetically available radiation). Surface concentrations are parameterized in either volumetric units (e.g., m -3 ) or values integrated over the top optical depth. Various relationships between surface concentrations and integrated values demonstrate that when surface concentrations are above a specific threshold, the vertical distribution of the property is biased to the surface layer, and when surface concentrations are below a specific threshold, the vertical distributions of the properties are biased to subsurface maxima. Results also show a highly predictable decrease in explained-variance as vertical distributions become more vertically heterogeneous. These relationships have fundamental utility for extrapolating surface ocean color remote sensing measurements to 100 m depth or to the base of the euphotic zone, well beyond the depths of detection for passive ocean color remote sensors. Greatest integrated concentrations of PIC, coccoliths, and coccolithophores are found when there is moderate stratification at the base of the euphotic zone.
Bowler, Bruce C.; Drapeau, David T.; Lubelczyk, Laura C.; Lyczkowski, Emily
2018-01-01
Abstract Coccolithophores are a critical component of global biogeochemistry, export fluxes, and seawater optical properties. We derive globally significant relationships to estimate integrated coccolithophore and coccolith concentrations as well as integrated concentrations of particulate inorganic carbon (PIC) from their respective surface concentration. We also examine surface versus integral relationships for other biogeochemical variables contributed by all phytoplankton (e.g., chlorophyll a and particulate organic carbon) or diatoms (biogenic silica). Integrals are calculated using both 100 m integrals and euphotic zone integrals (depth of 1% surface photosynthetically available radiation). Surface concentrations are parameterized in either volumetric units (e.g., m−3) or values integrated over the top optical depth. Various relationships between surface concentrations and integrated values demonstrate that when surface concentrations are above a specific threshold, the vertical distribution of the property is biased to the surface layer, and when surface concentrations are below a specific threshold, the vertical distributions of the properties are biased to subsurface maxima. Results also show a highly predictable decrease in explained‐variance as vertical distributions become more vertically heterogeneous. These relationships have fundamental utility for extrapolating surface ocean color remote sensing measurements to 100 m depth or to the base of the euphotic zone, well beyond the depths of detection for passive ocean color remote sensors. Greatest integrated concentrations of PIC, coccoliths, and coccolithophores are found when there is moderate stratification at the base of the euphotic zone. PMID:29576683
NASA Astrophysics Data System (ADS)
Zemek, P. G.
2017-12-01
Quantum Cascade Lasers (QCLs) are quickly replacing Tunable Diode Lasers (TDL) for multi-target species identification and quantification in both extractive and open-path (OP) Optical Remote Sensing (ORS) fence-line instrumentation. As was seen with TDL incorporation and pricing drops as the adoption by the telecommunications industry and its current scaling has improved robustness and pricing, the QCL is also, albiet more slowly, becoming a mature market. There are several advantages of QCLs over conventional TDLs such as improved brightness and beam density, high resolution, as well as the incorporation of external etalons or internal gratings to scan over wide spectral areas. QCLs typically operate in the Mid infra-red (MIR) as opposed to the Near-Infrared (NIR) region used with TDL. The MidIR is a target rich absorption band area where compounds have high absorbtivity coefficients resulting in better detection limits as compared to TDL instruments. The use of novel chemometrics and more sensitive non-cryo-cooled detectors has allowed some of the first QCL open-path instruments in both active and passive operation. Data and field studies of one of the newest QCL OP systems is presented that allows one system to measure multiple target compounds. Multiple QCL spectral regions may be stitched together to increase the capability of QCLs over TDL OP systems. A comparison of several ORS type systems will be presented.
Automated Glacier Surface Velocity using Multi-Image/Multi-Chip (MIMC) Feature Tracking
NASA Astrophysics Data System (ADS)
Ahn, Y.; Howat, I. M.
2009-12-01
Remote sensing from space has enabled effective monitoring of remote and inhospitable polar regions. Glacier velocity, and its variation in time, is one of the most important parameters needed to understand glacier dynamics, glacier mass balance and contribution to sea level rise. Regular measurements of ice velocity are possible from large and accessible satellite data set archives, such as ASTER and LANDSAT-7. Among satellite imagery, optical imagery (i.e. passive, visible to near-infrared band sensors) provides abundant data with optimal spatial resolution and repeat interval for tracking glacier motion at high temporal resolution. Due to massive amounts of data, computation of ice velocity from feature tracking requires 1) user-friendly interface, 2) minimum local/user parameter inputs and 3) results that need minimum editing. We focus on robust feature tracking, applicable to all currently available optical satellite imagery, that is ASTER, SPOT and LANDSAT etc. We introduce the MIMC (multiple images/multiple chip sizes) matching approach that does not involve any user defined local/empirical parameters except approximate average glacier speed. We also introduce a method for extracting velocity from LANDSAT-7 SLC-off data, which has 22 percent of scene data missing in slanted strips due to failure of the scan line corrector. We apply our approach to major outlet glaciers in west/east Greenland and assess our MIMC feature tracking technique by comparison with conventional correlation matching and other methods (e.g. InSAR).
NASA Astrophysics Data System (ADS)
Bindhaiq, Salem; Supa'at, Abu Sahmah M.; Zulkifli, Nadiatulhuda; Shaddad, Redhwan Q.; Mataria, Abdallah
2014-07-01
A high data transmission rate is the main requirement for next-generation telecommunication networks. A design for a 40 Gb/s time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 is presented. The use of a modulated grating Y-branch (MG-Y) laser is proposed as an upstream tunable colorless laser source to upgrade the optical network unit. The electronically tuned MG-Y externally modulated laser with a 10 Gb/s modulation rate is applied to a TWDM-PON and presented across a 3.2-nm tuning range. The performance of the proposed laser is analyzed in terms of bit error rate, eye diagram, and optical signal-to-noise ratio. The proposed TWDM-PON achieved an aggregated data rate of 40 Gb/s along 40 km of bidirectional fiber at a 1:128 splitting ratio without amplification and dispersion compensation.
NASA Technical Reports Server (NTRS)
1976-01-01
Sensitivity requirements of the various measurements obtained by microwave sensors, and radiometry techniques are described. Analytical techniques applied to detailed sharing analyses are discussed. A bibliography of publications pertinent to the scientific justification of frequency requirements for passive microwave remote sensing is included.
USDA-ARS?s Scientific Manuscript database
Global-scale surface soil moisture (SSM) products retrieved from active and passive microwave remote sensing provide an effective method for monitoring near-real-time SSM content with nearly daily temporal resolution. In the present study, we first inter-compared global-scale error patterns and comb...
NASA Astrophysics Data System (ADS)
corradini, stefano; merucci, luca; guerrieri, lorenzo; pugnaghi, sergio; mcgarragh, greg; carboni, elisa; ventress, lucy; grainger, roy; scollo, simona; pardini, federica; zaksek, klemen; langmann, baerbel; bancalá, severin; stelitano, dario
2016-04-01
The volcanic ash cloud altitude is one of the most important parameter needed for the volcanic ash cloud estimations (mass, effective radius and optical depth). It is essential by modelers to initialize the ash cloud transportation models, and by volcanologists to give insights into eruption dynamics. Moreover, it is extremely important in order to reduce the disruption to flights as a result of volcanic activity whilst still ensuring safe travel. In this work, the volcanic ash cloud altitude is computed from remote sensing passive satellite data (SEVIRI, MODIS, IASI and MISR) by using the most of the existing retrieval techniques. A novel approach, based on the CO2 slicing procedure, is also shown. The comparisons among different techniques are presented and advantages and drawbacks emphasized. As test cases Etna eruptions in the period between 03 and 09 December 2015 are considered. During this time four lava fountain events occurred at the Voragine crater, forming eruption columns higher than 12 km asl and producing copious tephra fallout on volcano flanks. These events, among the biggest of the last 20 years, produced emissions that reached the stratosphere and produced a circum-global transport throughout the northern hemisphere.
Legleiter, Carl; Kinzel, Paul J.; Nelson, Jonathan M.
2017-01-01
Although river discharge is a fundamental hydrologic quantity, conventional methods of streamgaging are impractical, expensive, and potentially dangerous in remote locations. This study evaluated the potential for measuring discharge via various forms of remote sensing, primarily thermal imaging of flow velocities but also spectrally-based depth retrieval from passive optical image data. We acquired thermal image time series from bridges spanning five streams in Alaska and observed strong agreement between velocities measured in situ and those inferred by Particle Image Velocimetry (PIV), which quantified advection of thermal features by the flow. The resulting surface velocities were converted to depth-averaged velocities by applying site-specific, calibrated velocity indices. Field spectra from three clear-flowing streams provided strong relationships between depth and reflectance, suggesting that, under favorable conditions, spectrally-based bathymetric mapping could complement thermal PIV in a hybrid approach to remote sensing of river discharge; this strategy would not be applicable to larger, more turbid rivers, however. A more flexible and efficient alternative might involve inferring depth from thermal data based on relationships between depth and integral length scales of turbulent fluctuations in temperature, captured as variations in image brightness. We observed moderately strong correlations for a site-aggregated data set that reduced station-to-station variability but encompassed a broad range of depths. Discharges calculated using thermal PIV-derived velocities were within 15% of in situ measurements when combined with depths measured directly in the field or estimated from field spectra and within 40% when the depth information also was derived from thermal images. The results of this initial, proof-of-concept investigation suggest that remote sensing techniques could facilitate measurement of river discharge.
NASA Astrophysics Data System (ADS)
Song, Jingjing; Yang, Chuanchuan; Zhang, Qingxiang; Ma, Zhuang; Huang, Xingang; Geng, Dan; Wang, Ziyu
2015-09-01
Higher capacity and larger scales have always been the top targets for the evolution of optical access networks, driven by the ever-increasing demand from the end users. One thing that started to attract wide attention not long ago, but with at least equal importance as capacity and scale, is energy efficiency, a metric essential nowadays as human beings are confronted with severe environmental issues like global warming, air pollution, and so on. Here, different from the conventional energy consumption analysis of tree-topology networks, we propose an effective energy consumption calculation method to compare the energy efficiency of the tree-topology 10 gigabit ethernet passive optical network (10G-EPON) and ring-topology time- and wavelength-division-multiplexed passive optical network (TWDM-PON), two experimental networks deployed in China. Numerical results show that the ring-topology TWDM-PON networks with 2, 4, 8, and 16 wavelengths are more energy efficient than the tree-topology 10G-EPON, although 10G-EPON consumes less energy. Also, TWDM-PON with four wavelengths is the most energy-efficient network candidate and saves 58.7% more energy than 10G-EPON when fully loaded.
NASA Astrophysics Data System (ADS)
Jethva, H. T.; Torres, O.; Waquet, F.; Chand, D.
2013-12-01
Atmospheric aerosols are known to produce a net cooling effect in the cloud-free conditions. However, when present over the reflective cloud decks, absorbing aerosols such as biomass burning generated smoke and wind-blown dust can potentially exert a large positive forcing through enhanced atmospheric heating resulting from cloud-aerosol radiative interactions. The interest on this aspect of aerosol science has grown significantly in the recent years. Particularly, development of the satellite-based retrieval techniques and unprecedented knowledge on the above-cloud aerosol optical depth (ACAOD) is of great relevance. A direct validation of satellite ACAOD is a difficult task primarily due to lack of ample in situ and/or remote sensing measurements of aerosols above cloud. In these circumstances, a comparative analysis on the inter-satellite ACAOD retrievals can be performed for the sack of consistency check. Here, we inter-compare the ACAOD of biomass burning plumes observed from different A-train sensors, i.e., MODIS [Jethva et al., 2013], CALIOP [Chand et al., 2008], POLDER [Waquet et al., 2009], and OMI [Torres et al., 2012]. These sensors have been shown to acquire sensitivity and independent capabilities to detect and retrieve aerosol loading above marine stratocumulus clouds--a kind of situation often found over the southeastern Atlantic Ocean during dry burning season. A systematic one-to-one comparison reveals that, in general, all passive sensors and CALIOP-based research methods retrieve comparable ACAOD over homogeneous cloud fields. The high-resolution sensors (MODIS and CALIOP) are able to retrieve aerosols over thin clouds but with larger discrepancies. Given the different types of sensor measurements processed with different algorithms, a reasonable agreement between them is encouraging. A direct validation of satellite-based ACAOD remains an open challenge for which dedicated field measurements over the region of frequent aerosol/cloud overlap are a prime requirement. Jethva, H., O. Torres, L. A. Remer, P. K. Bhartia (2013), A Color Ratio Method for Simultaneous Retrieval of Aerosol and Cloud Optical Thickness of Above-Cloud Absorbing Aerosols From Passive Sensors: Application to MODIS Measurements, Geoscience and Remote Sensing, IEEE Transactions on, 51(7), pp. 3862-3870, doi: 10.1109/TGRS.2012.2230008. Chand, D., T. L. Anderson, R. Wood, R. J. Charlson, Y. Hu, Z. Liu, and M. Vaughan (2008), Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing, J. Geophys. Res., 113, D13206, doi:10.1029/2007JD009433. Waquet, F., J. Riedi, L. C. Labonnote, P. Goloub, B. Cairns, J.-L. Deuzeand, and D. Tanre (2009), Aerosol remote sensing over clouds using a-train observations, J. Atmos. Sci., 66(8), 2468-2480, doi: http://dx.doi.org/10.1175/2009JAS3026.1 Torres, O., H. Jethva, and P. K. Bhartia (2012), Retrieval of aerosol optical depth above clouds from OMI observations: Sensitivity analysis and case studies, J. Atmos. Sci., 69(3), 1037-1053, doi: http://dx.doi.org/10.1175/JAS-D-11-0130.
Surface passivation and aging of InGaAs/InP heterojunction phototransistors
NASA Astrophysics Data System (ADS)
Park, Min-Su; Razaei, Mohsen; Barnhart, Katie; Tan, Chee Leong; Mohseni, Hooman
2017-06-01
We report the effect of different surface treatment and passivation techniques on the stability of InGaAs/InP heterojunction phototransistors (HPTs). An In0.53Ga0.47As surface passivated with aqueous ammonium sulfide ((NH4)2S), aluminum oxide (Al2O3) grown by atomic layer deposition (ALD), and their combination is evaluated by using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). All samples were kept in the air ambient, and their performances were periodically measured to investigate their long-term stability. Raman spectroscopy revealed that the peak intensity of the GaAs-like longitudinal optical phonon of all passivated samples is decreased compared with that of the control sample. This is attributable to the diminution of the carriers near the passivated surfaces, which was proven by extracted surface potential (Vs). The Vs of all passivated samples was decreased to less than half of that for the control sample. XPS evaluation of As3d spectra showed that arsenic oxides (As2O3 and As2O5) on the surfaces of the samples can be removed by passivation. However, both Raman and XPS spectra show that the (NH4)2S passivated sample reverts back over time and will resemble the untreated control sample. When capped with ALD-grown Al2O3, passivated samples irrespective of the pretreatment show no degradation over the measured time of 4 weeks. Similar conclusions are made from our experimental measurement of the performance of differently passivated HPTs. The ALD-grown Al2O3 passivated devices show an improved optical gain at low optical powers and long-term stability.
NASA Astrophysics Data System (ADS)
Davis, A. B.
2015-12-01
Planetary atmospheres are made primarily of molecules, and their optical properties are well known. They scatter sunlight across the spectrum, but far more potently at shorter wavelengths. Consequently, they redden the Sun as it sets and, at the same time, endow the daytime sky with its characteristic blue hue. There are also microscopic atmospheric particulates that are equally omnipresent because small enough (up to ~10s of microns) to remain lofted for long periods of time. However, in contrast with molecules of the major gases, their concentrations are highly variable in space and time. Their optical properties are also far more interesting. These airborne particles are either solid---hence the word "aerosols"---or liquid, most notably in the form of cloud droplets. Needless to say that both aerosols and clouds have major impacts on the balance of the Earth's climate system. Harder to understand, but nonetheless true, is that their climate impacts are much harder to assess by Earth system modelers than those of greenhouse gases such as CO2. That makes them prime targets of study by multiple approaches, including ground- and space-based remote sensing. To characterize aerosols and clouds quantitatively by optical remote sensing methods, either passive (sunlight-based) or active (laser-based), we need predictive capability for the signals recorded by sensors, whether ground-based, airborne, or carried by satellites. This in turn draws on the physical theory of "radiative transfer" that describes how the light propagates and scatters in the molecular-and-particulate atmosphere. This is a challenge for remote sensing scientists. I will show why by simulating with simple means the point spread function or "PSF" of scattering particulate atmospheres with varying opacity, thus covering tabletop analogs of the pristine air, the background aerosol, all the way to optically thick cloudy airmasses. I will also show PSF measurements of real clouds over New Mexico and Oklahoma. These were used as a piece of the Multiple Scattering Cloud Lidar (MuSCL) observations from which cloud properties where derived and compared against independent determinations. For the STEM-hungry, I will show how to derive the dependence of the cloud PSF on cloud geometry and opacity.
NASA Astrophysics Data System (ADS)
Bair, Edward H.; Abreu Calfa, Andre; Rittger, Karl; Dozier, Jeff
2018-05-01
In the mountains, snowmelt often provides most of the runoff. Operational estimates use imagery from optical and passive microwave sensors, but each has its limitations. An accurate approach, which we validate in Afghanistan and the Sierra Nevada USA, reconstructs spatially distributed snow water equivalent (SWE) by calculating snowmelt backward from a remotely sensed date of disappearance. However, reconstructed SWE estimates are available only retrospectively; they do not provide a forecast. To estimate SWE throughout the snowmelt season, we consider physiographic and remotely sensed information as predictors and reconstructed SWE as the target. The period of analysis matches the AMSR-E radiometer's lifetime from 2003 to 2011, for the months of April through June. The spatial resolution of the predictions is 3.125 km, to match the resolution of a microwave brightness temperature product. Two machine learning techniques - bagged regression trees and feed-forward neural networks - produced similar mean results, with 0-14 % bias and 46-48 mm RMSE on average. Nash-Sutcliffe efficiencies averaged 0.68 for all years. Daily SWE climatology and fractional snow-covered area are the most important predictors. We conclude that these methods can accurately estimate SWE during the snow season in remote mountains, and thereby provide an independent estimate to forecast runoff and validate other methods to assess the snow resource.
Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China
NASA Astrophysics Data System (ADS)
Huang, Xiaodong; Deng, Jie; Ma, Xiaofang; Wang, Yunlong; Feng, Qisheng; Hao, Xiaohua; Liang, Tiangang
2016-10-01
By combining optical remote sensing snow cover products with passive microwave remote sensing snow depth (SD) data, we produced a MODIS (Moderate Resolution Imaging Spectroradiometer) cloudless binary snow cover product and a 500 m snow depth product. The temporal and spatial variations of snow cover from December 2000 to November 2014 in China were analyzed. The results indicate that, over the past 14 years, (1) the mean snow-covered area (SCA) in China was 11.3 % annually and 27 % in the winter season, with the mean SCA decreasing in summer and winter seasons, increasing in spring and fall seasons, and not much change annually; (2) the snow-covered days (SCDs) showed an increase in winter, spring, and fall, and annually, whereas they showed a decrease in summer; (3) the average SD decreased in winter, summer, and fall, while it increased in spring and annually; (4) the spatial distributions of SD and SCD were highly correlated seasonally and annually; and (5) the regional differences in the variation of snow cover in China were significant. Overall, the SCD and SD increased significantly in south and northeast China, and decreased significantly in the north of Xinjiang province. The SCD and SD increased on the southwest edge and in the southeast part of the Tibetan Plateau, whereas it decreased in the north and northwest regions.
Nonlinear Photonic Systems for V- and W-Band Antenna Remoting Applications
2016-10-22
for commercial, academic, and military purposes delivering microwaves through fibers to remote areas for wireless sensing , imaging, and detection...academic, and military purposes, which use optical carriers to deliver microwave signals to remote areas for wireless sensing , imaging, and...and military purposes, which use optical carriers to deliver microwave signals to remote areas for wireless sensing , imaging, and detection
NASA Astrophysics Data System (ADS)
Ji, Wei
2013-07-01
Video on demand is a very attractive service used for entertainment, education, and other purposes. The design of passive optical networking+Ethernet over coaxial cable accessing and a home gateway system is proposed. The network integrates the passive optical networking and Ethernet over coaxial cable to provide high dedicated bandwidth for the metropolitan video-on-demand services. Using digital video broadcasting, IP television protocol, unicasting, and broadcasting mechanisms maximizes the system throughput. The home gateway finishes radio frequency signal receiving and provides three kinds of interfaces for high-definition video, voice, and data, which achieves triple-play and wire/wireless access synchronously.
NASA Astrophysics Data System (ADS)
Xu, Xiaoguang; Wang, Jun; Wang, Yi; Zeng, Jing; Torres, Omar; Yang, Yuekui; Marshak, Alexander; Reid, Jeffrey; Miller, Steve
2017-07-01
We presented an algorithm for inferring aerosol layer height (ALH) and optical depth (AOD) over ocean surface from radiances in oxygen A and B bands measured by the Earth Polychromatic Imaging Camera (EPIC) on the Deep Space Climate Observatory (DSCOVR) orbiting at Lagrangian-1 point. The algorithm was applied to EPIC imagery of a 2 day dust outbreak over the North Atlantic Ocean. Retrieved ALHs and AODs were evaluated against counterparts observed by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer, and Aerosol Robotic Network. The comparisons showed 71.5% of EPIC-retrieved ALHs were within ±0.5 km of those determined from CALIOP and 74.4% of EPIC AOD retrievals fell within a ± (0.1 + 10%) envelope of MODIS retrievals. This study demonstrates the potential of EPIC measurements for retrieving global aerosol height multiple times daily, which are essential for evaluating aerosol profile simulated in climate models and for better estimating aerosol radiative effects.
NASA Tech Briefs, December 2006
NASA Technical Reports Server (NTRS)
2006-01-01
Topic include: Inferring Gear Damage from Oil-Debris and Vibration Data; Forecasting of Storm-Surge Floods Using ADCIRC and Optimized DEMs; User Interactive Software for Analysis of Human Physiological Data; Representation of Serendipitous Scientific Data; Automatic Locking of Laser Frequency to an Absorption Peak; Self-Passivating Lithium/Solid Electrolyte/Iodine Cells; Four-Quadrant Analog Multipliers Using G4-FETs; Noise Source for Calibrating a Microwave Polarimeter; Hybrid Deployable Foam Antennas and Reflectors; Coating MCPs with AlN and GaN; Domed, 40-cm-Diameter Ion Optics for an Ion Thruster; Gesture-Controlled Interfaces for Self-Service Machines; Dynamically Alterable Arrays of Polymorphic Data Types; Identifying Trends in Deep Space Network Monitor Data; Predicting Lifetime of a Thermomechanically Loaded Component; Partial Automation of Requirements Tracing; Automated Synthesis of Architecture of Avionic Systems; SSRL Emergency Response Shore Tool; Wholly Aromatic Ether-Imides as n-Type Semiconductors; Carbon-Nanotube-Carpet Heat-Transfer Pads; Pulse-Flow Microencapsulation System; Automated Low-Gravitation Facility Would Make Optical Fibers; Alignment Cube with One Diffractive Face; Graphite Composite Booms with Integral Hinges; Tool for Sampling Permafrost on a Remote Planet; and Special Semaphore Scheme for UHF Spacecraft Communications.
Passive Infrared Surveillance: New Methods of Analysis
1979-09-24
f NRL Memorandum Report 4078 EOTPO Report 55 Passive Infrared Surveillance: New Methods of Analysis RICHARD A. STINBERG Electro- Optical Technology...Progrant Offtcw Management Information and Special Programs Organizallon September 24, 1979 KL I -r- ’I . ,3 ELECTRO- OPTICAL TECHNOLOGY PROGRAM OFFICE...by Dr.Joh M.Ma1a1u m ,J, I’ Head, Bleutro- Optical Technology Program Office SECURITY CLASSIPICATION Of THII4 PAGE (Wim"u Data Bille) REPORT
A passivity criterion for sampled-data bilateral teleoperation systems.
Jazayeri, Ali; Tavakoli, Mahdi
2013-01-01
A teleoperation system consists of a teleoperator, a human operator, and a remote environment. Conditions involving system and controller parameters that ensure the teleoperator passivity can serve as control design guidelines to attain maximum teleoperation transparency while maintaining system stability. In this paper, sufficient conditions for teleoperator passivity are derived for when position error-based controllers are implemented in discrete-time. This new analysis is necessary because discretization causes energy leaks and does not necessarily preserve the passivity of the system. The proposed criterion for sampled-data teleoperator passivity imposes lower bounds on the teleoperator's robots dampings, an upper bound on the sampling time, and bounds on the control gains. The criterion is verified through simulations and experiments.
NASA Astrophysics Data System (ADS)
Ding, Peng; Zhang, Ye; Deng, Wei-Jian; Jia, Ping; Kuijper, Arjan
2018-07-01
Detection of objects from satellite optical remote sensing images is very important for many commercial and governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles. The results show that the improved network structure can detect objects in satellite optical remote sensing images more accurately and efficiently.
Measurement and compensation of wavefront deformations and focal shifts in high-power laser optics
NASA Astrophysics Data System (ADS)
Mann, K.; Schäfer, B.; Stubenvoll, M.; Hentschel, K.; Zenz, M.
2015-11-01
We demonstrate the feasibility of passive compensation of the thermal lens effect in fused silica optics, placing suitable optical materials with negative dn/dT in the beam path of a high power near IR fiber laser. Following a brief overview of the involved mechanisms, photo-thermal absorption measurements with a Hartmann-Shack sensor are described, from which coefficients for surface/coating and bulk absorption in various materials are determined. Based on comprehensive knowledge of the 2D wavefront deformations resulting from absorption, passive compensation of thermally induced aberrations in complex optical systems is possible, as illustrated for an F-Theta objective. By means of caustic measurements during high-power operation we are able to demonstrate a 60% reduction of the focal shift in F-Theta lenses through passive compensation.
Woodruff, Steven D.; Mcintyre, Dustin L.
2016-03-29
A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.
2002-09-30
integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to develop hyperspectral remote sensing techniques in optically complex nearshore coastal waters.
Greenland 1979 microwave remote sensing data catalog report, 14-15 October 1979
NASA Technical Reports Server (NTRS)
Hennigar, H. F.; Hirstein, W. S.; Schaffner, S. K.; Delnore, V. E.; Grantham, W. L.
1983-01-01
Microwave remote sensing measurements were cataloged for active and passive instruments in support of the 1979 Greenland Remote Sensing Experiment. Instruments used in this field experiment include the stepped frequency microwave radiometer (4 to 8 GHz) and the airborne microwave scatterometer (14.6 GHz). The microwave signature data are inventoried and cataloged in a user friendly format and are available on 9 track computer compatible tapes upon request.
Embedded optical interconnect technology in data storage systems
NASA Astrophysics Data System (ADS)
Pitwon, Richard C. A.; Hopkins, Ken; Milward, Dave; Muggeridge, Malcolm
2010-05-01
As both data storage interconnect speeds increase and form factors in hard disk drive technologies continue to shrink, the density of printed channels on the storage array midplane goes up. The dominant interconnect protocol on storage array midplanes is expected to increase to 12 Gb/s by 2012 thereby exacerbating the performance bottleneck in future digital data storage systems. The design challenges inherent to modern data storage systems are discussed and an embedded optical infrastructure proposed to mitigate this bottleneck. The proposed solution is based on the deployment of an electro-optical printed circuit board and active interconnect technology. The connection architecture adopted would allow for electronic line cards with active optical edge connectors to be plugged into and unplugged from a passive electro-optical midplane with embedded polymeric waveguides. A demonstration platform has been developed to assess the viability of embedded electro-optical midplane technology in dense data storage systems and successfully demonstrated at 10.3 Gb/s. Active connectors incorporate optical transceiver interfaces operating at 850 nm and are connected in an in-plane coupling configuration to the embedded waveguides in the midplane. In addition a novel method of passively aligning and assembling passive optical devices to embedded polymer waveguide arrays has also been demonstrated.
Kang, Eun Kyu; Lee, Yong Woo; Ravindran, Sooraj; Lee, Jun Ki; Choi, Hee Ju; Ju, Gun Wu; Min, Jung Wook; Song, Young Min; Sohn, Ik-Bu; Lee, Yong Tak
2016-05-16
We demonstrate an advanced structure for optical interconnect consisting of 4 channel × 10 Gb/s bidirectional optical subassembly (BOSA) formed using silicon optical bench (SiOB) with tapered fiber guiding holes (TFGHs) for precise and passive optical alignment of vertical-cavity surface-emitting laser (VCSEL)-to-multi mode fiber (MMF) and MMF-to-photodiode (PD). The co-planar waveguide (CPW) transmission line (Tline) was formed on the backside of silicon substrate to reduce the insertion loss of electrical data signal. The 4 channel VCSEL and PD array are attached at the end of CPW Tline using a flip-chip bonder and solder pad. The 12-channel ribbon fiber is simply inserted into the TFGHs of SiOB and is passively aligned to the VCSEL and PD in which no additional coupling optics are required. The fabricated BOSA shows high coupling efficiency and good performance with the clearly open eye patterns and a very low bit error rate of less than 10-12 order at a data rate of 10 Gb/s with a PRBS pattern of 231-1.
Advances in satellite oceanography
NASA Technical Reports Server (NTRS)
Brown, O. B.; Cheney, R. E.
1983-01-01
Technical advances and recent applications of active and passive satellite remote sensing techniques to the study of oceanic processes are summarized. The general themes include infrared and visible radiometry, active and passive microwave sensors, and buoy location systems. The surface parameters of sea surface temperature, windstream, sea state, altimetry, color, and ice are treated as applicable under each of the general methods.
The impact of extensively used arsenic-containing herbicides on groundwater beneath golf courses has become a topic of interest. Although currently used organoarsenicals are less toxic, their application into the environment may produce the more toxic inorganic arsenicals. The ob...
Study of bidirectional broadband passive optical network (BPON) using EDFA
NASA Astrophysics Data System (ADS)
Almalaq, Yasser
Optical line terminals (OLTs) and number of optical network units (ONUs) are two main parts of passive optical network (PON). OLT is placed at the central office of the service providers, the ONUs are located near to the end subscribers. When compared with point-to-point design, a PON decreases the number of fiber used and central office components required. Broadband PON (BPON), which is one type of PON, can support high-speed voice, data and video services to subscribers' residential homes and small businesses. In this research, by using erbium doped fiber amplifier (EDFA), the performance of bi-directional BPON is experimented and tested for both downstream and upstream traffic directions. Ethernet PON (E-PON) and gigabit PON (G-PON) are the two other kinds of passive optical network besides BPON. The most beneficial factor of using BPON is it's reduced cost. The cost of the maintenance between the central office and the users' side is suitable because of the use of passive components, such as a splitter in the BPON architecture. In this work, a bidirectional BPON has been analyzed for both downstream and upstream cases by using bit error rate analyzer (BER). BER analyzers test three factors that are the maximum Q factor, minimum bit error rate, and eye height. In other words, parameters such as maximum Q factor, minimum bit error rate, and eye height can be analyzed utilized a BER tester. Passive optical components such as a splitter, optical circulator, and filters have been used in modeling and simulations. A 12th edition Optiwave simulator has been used in order to analyze the bidirectional BPON system. The system has been tested under several conditions such as changing the fiber length, extinction ratio, dispersion, and coding technique. When a long optical fiber above 40km was used, an EDFA was used in order to improve the quality of the signal.
NASA Astrophysics Data System (ADS)
Kern, Christoph; Masias, Pablo; Apaza, Fredy; Reath, Kevin A.; Platt, Ulrich
2017-05-01
Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800-900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.
Stable passive optical clock generation in SOA-based fiber lasers.
Wang, Jing-Yun; Lin, Kuei-Huei; Chen, Hou-Ren
2015-02-15
Stable optical pulse trains are obtained from 1.3-μm and 1.5-μm semiconductor optical amplifier (SOA)-based fiber lasers using passive optical technology. The waveforms depend on SOA currents, and the repetition rates can be tuned by varying the relative length of sub-cavities. The output pulse trains of these SOA-based fiber lasers are stable against intracavity polarization adjustment and environmental perturbation. The optical clock generation is explained in terms of mode competition, self-synchronization, and SOA saturation. Without resorting to any active modulation circuits or devices, the technology used here is simple and may find various applications in the future.
Mobile inductively coupled plasma system
D'Silva, Arthur P.; Jaselskis, Edward J.
1999-03-30
A system for sampling and analyzing a material located at a hazardous site. A laser located remote from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer.
NASA Astrophysics Data System (ADS)
Gutierrez-Velez, V. H.; DeFries, R. S.
2011-12-01
Oil palm expansion has led to clearing of extensive forest areas in the tropics. However quantitative assessments of the magnitude of oil palm expansion to deforestation have been challenging due in large part to the limitations presented by conventional optical data sets for discriminating plantations from forests and other tree cover vegetations. Recently available information from active remote sensors has opened the possibility of using these data sources to overcome these limitations. The purpose of this analysis is to evaluate the accuracy of oil palm classification when using ALOS/PALSAR active satellite data in conjunction with Landsat information, compared to the use of Landsat data only. The analysis takes place in a focused region around the city of Pucallpa in the Ucayali province of the Peruvian Amazon for the year 2010. Oil palm plantations were separated in five categories consisting of four age classes (0-3, 3-5, 5-10 and > 10 yrs) and an additional class accounting for degraded plantations older than 15 yr. Other land covers were water bodies, unvegetated land, short and tall grass, fallow, secondary vegetation, and forest. Classifications were performed using random forests. Training points for calibration and validation consisted of 411 polygons measured in areas representative of the land covers of interest and totaled 6,367 ha. Overall classification accuracy increased from 89.9% using only Landsat data sets to 94.3% using both Landast and ALOS/PALSAR. Both user's and producer's accuracy increased in all classes when using both data sets except for producer's accuracy in short grass which decreased by 1%. The largest increase in user's accuracy was obtained in oil palm plantations older than 10 years from 62 to 80% while producer's accuracy improved the most in plantations in age class 3-5 from 63 to 80%. Results demonstrate the suitability of data from ALOS/PALSAR and other active remote sensors to improve classification of oil palm plantations in age classes and discriminate them from other land covers. Results suggest a potential for improving discrimination of other tree cover types using a combination of active and conventional optical remote sensors.
Thermal Remote Anemometer Device
NASA Technical Reports Server (NTRS)
Heyman, Joseph S.; Heath, D. Michele; Winfree, William P.; Miller, William E.; Welch, Christopher S.
1988-01-01
Thermal Remote Anemometer Device developed for remote, noncontacting, passive measurement of thermal properties of sample. Model heated locally by scanning laser beam and cooled by wind in tunnel. Thermal image of model analyzed to deduce pattern of airflow around model. For materials applications, system used for evaluation of thin films and determination of thermal diffusivity and adhesive-layer contact. For medical applications, measures perfusion through skin to characterize blood flow and used to determine viabilities of grafts and to characterize tissues.
Applications of airborne remote sensing in atmospheric sciences research
NASA Technical Reports Server (NTRS)
Serafin, R. J.; Szejwach, G.; Phillips, B. B.
1984-01-01
This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.
Dorzolamide Loaded Niosomal Vesicles: Comparison of Passive and Remote Loading Methods
Hashemi Dehaghi, Mohadeseh; Haeri, Azadeh; Keshvari, Hamid; Abbasian, Zahra; Dadashzadeh, Simin
2017-01-01
Glaucoma is a common progressive eye disorder and the treatment strategies will benefit from nanoparticulate delivery systems with high drug loading and sustained delivery of intraocular pressure lowering agents. Niosomes have been reported as a novel approach to improve drug low corneal penetration and bioavailability characteristics. Along with this, poor entrapment efficiency of hydrophilic drug in niosomal formulation remains as a major formulation challenge. Taking this perspective into consideration, dorzolamide niosomes were prepared employing two different loading methodologies (passive and remote loading methods) and the effects of various formulation variables (lipid to drug ratio, cholesterol percentage, drug concentration, freeze/thaw cycles, TPGS content, and external and internal buffer molarity and pH) on encapsulation efficiency were assessed. Encapsulation of dorzolamide within niosomes increased remarkably by the incorporation of higher cholesterol percentage as well as increasing the total lipid concentration. Remote loading method showed higher efficacy for drug entrapment compared to passive loading technique. Incorporation of TPGS in bilayer led to decrease in EE; however, retarded drug release rate. Scanning electron microscopy (SEM) studies confirmed homogeneous particle distribution, and spherical shape with smooth surface. In conclusion, the highest encapsulation can be obtained using phosphate gradient method and 50% cholesterol in Span 60 niosomal formulation. PMID:28979296
Zhang, Xiao-Ying; Hsu, Chia-Hsun; Lien, Shui-Yang; Chen, Song-Yan; Huang, Wei; Yang, Chih-Hsiang; Kung, Chung-Yuan; Zhu, Wen-Zhang; Xiong, Fei-Bing; Meng, Xian-Guo
2017-12-01
Hafnium oxide (HfO 2 ) thin films have attracted much attention owing to their usefulness in equivalent oxide thickness scaling in microelectronics, which arises from their high dielectric constant and thermodynamic stability with silicon. However, the surface passivation properties of such films, particularly on crystalline silicon (c-Si), have rarely been reported upon. In this study, the HfO 2 thin films were deposited on c-Si substrates with and without oxygen plasma pretreatments, using a remote plasma atomic layer deposition system. Post-annealing was performed using a rapid thermal processing system at different temperatures in N 2 ambient for 10 min. The effects of oxygen plasma pretreatment and post-annealing on the properties of the HfO 2 thin films were investigated. They indicate that the in situ remote plasma pretreatment of Si substrate can result in the formation of better SiO 2 , resulting in a better chemical passivation. The deposited HfO 2 thin films with oxygen plasma pretreatment and post-annealing at 500 °C for 10 min were effective in improving the lifetime of c-Si (original lifetime of 1 μs) to up to 67 μs.
A novel survivable WDM passive optical networks
NASA Astrophysics Data System (ADS)
Cheng, Xiaofei; Fang, Qin; Zhang, Yong; Chen, Bin; Lu, Fucai
2008-11-01
We propose a novel survivable wavelength-division multiplexed-passive optical network (WDM-PON) based on an N × N cyclic array waveguide grating (AWG) and reflective semiconductor optical amplifiers (RSOAs). ONUs are grouped and connected with extra connection fibres (CFs). Protection resources are provided mutually in ONU pairs. The characteristics of the proposed survivable WDM-PON and wavelength routing scheme are analyzed. Experiments of 10- Gb/s downstream and 1.25-Gb/s upstream transmission experiments are demonstrated to verify our proposed scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wainwright, K.
1999-10-01
Solar technologies and indigenous materials are used in this remote Texas ranch house. Passive solar, thermal mass of adobe walls, photovoltaics, wood stoves, native stone, a ventilated roof, reflective barrier, and porch overhangs surrounding the house combine to keep the house comfortable all summer. The PV system used a passive solar tracking system that increased the electrical output by an overall 29 percent.
NASA Astrophysics Data System (ADS)
Smith, W. L., Jr.; Spangenberg, D.; Fleeger, C.; Sun-Mack, S.; Chen, Y.; Minnis, P.
2016-12-01
Determining accurate cloud properties horizontally and vertically over a full range of time and space scales is currently next to impossible using data from either active or passive remote sensors or from modeling systems. Passive satellite imagers provide horizontal and temporal resolution of clouds, but little direct information on vertical structure. Active sensors provide vertical resolution but limited spatial and temporal coverage. Cloud models embedded in NWP can produce realistic clouds but often not at the right time or location. Thus, empirical techniques that integrate information from multiple observing and modeling systems are needed to more accurately characterize clouds and their impacts. Such a strategy is employed here in a new cloud water content profiling technique developed for application to satellite imager cloud retrievals based on VIS, IR and NIR radiances. Parameterizations are developed to relate imager retrievals of cloud top phase, optical depth, effective radius and temperature to ice and liquid water content profiles. The vertical structure information contained in the parameterizations is characterized climatologically from cloud model analyses, aircraft observations, ground-based remote sensing data, and from CloudSat and CALIPSO. Thus, realistic cloud-type dependent vertical structure information (including guidance on cloud phase partitioning) circumvents poor assumptions regarding vertical homogeneity that plague current passive satellite retrievals. This paper addresses mixed phase cloud conditions for clouds with glaciated tops including those associated with convection and mid-latitude storm systems. Novel outcomes of our approach include (1) simultaneous retrievals of ice and liquid water content and path, which are validated with active sensor, microwave and in-situ data, and yield improved global cloud climatologies, and (2) new estimates of super-cooled LWC, which are demonstrated in aviation safety applications and validated with icing PIREPS. The initial validation is encouraging for single-layer cloud conditions. More work is needed to test and refine the method for global application in a wider range of cloud conditions. A brief overview of our current method, applications, verification, and plans for future work will be presented.
Monitoring the Snowpack in Remote, Ungauged Mountains
NASA Astrophysics Data System (ADS)
Dozier, J.; Davis, R. E.; Bair, N.; Rittger, K. E.
2013-12-01
Our objective is to estimate seasonal snow volumes, relative to historical trends and extremes, in snow-dominated mountains that have austere infrastructure, sparse gauging, challenges of accessibility, and emerging or enduring insecurity related to water resources. The world's mountains accumulate substantial snow and, in some areas, produce the bulk of the runoff. In ranges like Afghanistan's Hindu Kush, availability of water resources affects US policy, military and humanitarian operations, and national security. The rugged terrain makes surface measurements difficult and also affects the analysis of remotely sensed data. To judge feasibility, we consider two regions, a validation case and a case representing inaccessible mountains. For the validation case, we use the Sierra Nevada of California, a mountain range of extensive historical study, emerging scientific innovation, and conflicting priorities in managing water for agriculture, urban areas, hydropower, recreation, habitat, and flood control. For the austere regional focus, we use the Hindu Kush, where some of the most persistent drought in the world causes food insecurity and combines with political instability, and occasional flooding. Our approach uses a mix of satellite data and spare modeling to present information essential for planning and decision making, ranging from optimization of proposed infrastructure projects to assessment of water resources stored as snow for seasonal forecasts. We combine optical imagery (MODIS on Terra/Aqua), passive microwave data (SSM/I and AMSR-E), retrospective reconstruction with energy balance calculations, and a snowmelt model to establish the retrospective context. With the passive microwave data we bracket the historical range in snow cover volume. The rank orders of total retrieved volume correlates with reconstructions. From a library of historical reconstruction, we find similar cases that provide insights about snow cover distribution at a finer scale than the passive retrievals. Specifically, we examine the decade-long record from Terra and Aqua to bracket the historical record. In the California Sierra Nevada, surface measurements have sufficient spatial and temporal resolution for us to validate our approach, whereas in the Hindu Kush surface data are sparse and access presents significant difficulties.
Large-scale monitoring of air pollution in remote and ecologically important areas
Andrzej Bytnerowicz; Witold Fraczek
2013-01-01
New advances in air quality monitoring techniques, such as passive samplers for nitrogenous (N) or sulphurous (S) pollutants and ozone (O3), have allowed for an improved understanding of concentrations of these pollutants in remote areas. Mountains create special problems with regard to the feasibility of establishing and maintaining air pollution monitoring networks,...
Sensors research and technology
NASA Technical Reports Server (NTRS)
Cutts, James A.
1988-01-01
Information on sensors research and technology is given in viewgraph form. Information is given on sensing techniques for space science, passive remote sensing techniques and applications, submillimeter coherent sensing, submillimeter mixers and local oscillator sources, non-coherent sensors, active remote sensing, solid state laser development, a low vibration cooler, separation of liquid helium and vapor phase in zero gravity, and future plans.
Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers
NASA Astrophysics Data System (ADS)
Na, Dongsoo; Park, Kichul; Park, Ki-Hwan; Song, Yong-Won
2017-11-01
Black phosphorus (BP) has attracted increasing attention due to its unique electrical properties. In addition, the outstanding optical nonlinearity of BP has been demonstrated in various ways. Its functionality as a saturable absorber, in particular, has been validated in demonstrations of passive mode-locked lasers. However, normally, the performance of BP is degraded eventually by both thermal and chemical damage in ambient conditions. The passivation of BP is the critical issue to guarantee a stable performance of the optical devices. We quantitatively characterized the mode-locked lasers operated by BP saturable absorbers with diversified passivation materials such as polydimethylsiloxane (PDMS) or Al2O3, considering the atomic structure of the materials, and therefore the hydro-permeability of the passivation layers. Unlike the BP layers without passivation, we demonstrated that the Al2O3-passivated BP layer was protected from the surface oxidation reaction in the long-term, and the PDMS-passivated one had a short-term blocking effect. The quantitative analysis showed that the time-dependent characteristics of the pulsed laser without passivation were changed with respect to the pulse duration, spectral width, and time-bandwidth product displaying 550 fs, 2.8 nm, and 0.406, respectively. With passivation, the changes were limited to <43 fs, <0.3 nm, and <0.012, respectively.
Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers.
Na, Dongsoo; Park, Kichul; Park, Ki-Hwan; Song, Yong-Won
2017-11-24
Black phosphorus (BP) has attracted increasing attention due to its unique electrical properties. In addition, the outstanding optical nonlinearity of BP has been demonstrated in various ways. Its functionality as a saturable absorber, in particular, has been validated in demonstrations of passive mode-locked lasers. However, normally, the performance of BP is degraded eventually by both thermal and chemical damage in ambient conditions. The passivation of BP is the critical issue to guarantee a stable performance of the optical devices. We quantitatively characterized the mode-locked lasers operated by BP saturable absorbers with diversified passivation materials such as polydimethylsiloxane (PDMS) or Al 2 O 3 , considering the atomic structure of the materials, and therefore the hydro-permeability of the passivation layers. Unlike the BP layers without passivation, we demonstrated that the Al 2 O 3 -passivated BP layer was protected from the surface oxidation reaction in the long-term, and the PDMS-passivated one had a short-term blocking effect. The quantitative analysis showed that the time-dependent characteristics of the pulsed laser without passivation were changed with respect to the pulse duration, spectral width, and time-bandwidth product displaying 550 fs, 2.8 nm, and 0.406, respectively. With passivation, the changes were limited to <43 fs, <0.3 nm, and <0.012, respectively.
NASA Astrophysics Data System (ADS)
Hu, Z.; Xu, L.; Yu, B.
2018-04-01
A empirical model is established to analyse the daily retrieval of soil moisture from passive microwave remote sensing using convolutional neural networks (CNN). Soil moisture plays an important role in the water cycle. However, with the rapidly increasing of the acquiring technology for remotely sensed data, it's a hard task for remote sensing practitioners to find a fast and convenient model to deal with the massive data. In this paper, the AMSR-E brightness temperatures are used to train CNN for the prediction of the European centre for medium-range weather forecasts (ECMWF) model. Compared with the classical inversion methods, the deep learning-based method is more suitable for global soil moisture retrieval. It is very well supported by graphics processing unit (GPU) acceleration, which can meet the demand of massive data inversion. Once the model trained, a global soil moisture map can be predicted in less than 10 seconds. What's more, the method of soil moisture retrieval based on deep learning can learn the complex texture features from the big remote sensing data. In this experiment, the results demonstrates that the CNN deployed to retrieve global soil moisture can achieve a better performance than the support vector regression (SVR) for soil moisture retrieval.
NASA Technical Reports Server (NTRS)
Le Vine, David M; Jackson, Thomas J.; Kim, Edward J.; Lang, Roger H.
2011-01-01
The Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad 2010) was held in Washington, DC from March 1 to 4, 2010. The objective of MicroRad 2010 was to provide an open forum to report and discuss recent advances in the field of microwave radiometry, particularly with application to remote sensing of the environment. The meeting was highly successful, with more than 200 registrations representing 48 countries. There were 80 oral presentations and more than 100 posters. MicroRad has become a venue for the microwave radiometry community to present new research results, instrument designs, and applications to an audience that is conversant in these issues. The meeting was divided into 16 sessions (listed in order of presentation): 1) SMOS Mission; 2) Future Passive Microwave Remote Sensing Missions; 3) Theory and Physical Principles of Electromagnetic Models; 4) Field Experiment Results; 5) Soil Moisture and Vegetation; 6) Snow and Cryosphere; 7) Passive/Active Microwave Remote Sensing Synergy; 8) Oceans; 9) Atmospheric Sounding and Assimilation; 10) Clouds and Precipitation; 11) Instruments and Advanced Techniques I; 12) Instruments and Advanced Techniques II; 13) Cross Calibration of Satellite Radiometers; 14) Calibration Theory and Methodology; 15) New Technologies for Microwave Radiometry; 16) Radio Frequency Interference.
Chen, Chen; Zhang, Chongfu; Liu, Deming; Qiu, Kun; Liu, Shuang
2012-10-01
We propose and experimentally demonstrate a multiuser orthogonal frequency-division multiple access passive optical network (OFDMA-PON) with source-free optical network units (ONUs), enabled by tunable optical frequency comb generation technology. By cascading a phase modulator (PM) and an intensity modulator and dynamically controlling the peak-to-peak voltage of a PM driven signal, a tunable optical frequency comb source can be generated. It is utilized to assist the configuration of a multiple source-free ONUs enhanced OFDMA-PON where simultaneous and interference-free multiuser upstream transmission over a single wavelength can be efficiently supported. The proposed multiuser OFDMA-PON is scalable and cost effective, and its feasibility is successfully verified by experiment.
Experimental investigation of passive infrared ice detection for helicopter applications
NASA Technical Reports Server (NTRS)
Dershowitz, Adam; Hansman, R. John, Jr.
1991-01-01
A technique is proposed to remotely detect rotor icing on helicopters. Using passive infrared (IR) thermometry it is possible to detect the warming caused by latent heat released as supercooled water freezes. During icing, the ice accretion region on the blade leading edge will be warmer than the uniced trailing edge resulting in a chordwise temperature profile characteristic of icing. Preliminary tests were conducted on a static model in the NASA Icing Research Tunnel for a variety of wet (glaze) and dry (rime) ice conditions. The characteristic chordwise temperature profiles were observed with an IR thermal video system and confirmed with thermocouple measurements. A prototype detector system was built consisting of a single point IR pyrometer, and experiments were run on a small scale rotor model. Again the characteristic chordwise temperature profiles were observed during icing, and the IR system was able to remotely detect icing. Based on the static and subscale rotor tests the passive IR technique is promising for rotor ice detection.
Experimental investigation of passive infrared ice detection for helicopter applications
NASA Technical Reports Server (NTRS)
Dershowitz, Adam; Hansman, R. John, Jr.
1991-01-01
A technique is proposed to remotely detect rotor icing on helicopters. Using passive infrared (IR) thermometry, it is possible to detect the warming caused by latent heat released as supercooled water freezes. During icing, the ice accretion region on the blade leading edge will be warmer than the uniced trailing edge, resulting in a chordwise temperature profile characteristic of icing. Preliminary tests were conducted on a static model in the NASA Icing Research Tunnel for a variety of wet (glaze) and dry (rime) ice conditions. The characteristic chordwise temperature profiles were observed with an IR thermal video system and confirmed with thermocouple measurements. A prototype detector system was built consisting of a single point IR pyrometer. Experiments were run on a small scale rotor model. Again, the characteristic chordwise temperature profiles were observed during icing, and the IR system was able to remotely detect icing. Based on the static and subscale rotor tests, the passive IR technique is promising for rotor ice detection.
Guo, J.; Tsang, L.; Josberger, E.G.; Wood, A.W.; Hwang, J.-N.; Lettenmaier, D.P.
2003-01-01
This paper presents an algorithm that estimates the spatial distribution and temporal evolution of snow water equivalent and snow depth based on passive remote sensing measurements. It combines the inversion of passive microwave remote sensing measurements via dense media radiative transfer modeling results with snow accumulation and melt model predictions to yield improved estimates of snow depth and snow water equivalent, at a pixel resolution of 5 arc-min. In the inversion, snow grain size evolution is constrained based on pattern matching by using the local snow temperature history. This algorithm is applied to produce spatial snow maps of Upper Rio Grande River basin in Colorado. The simulation results are compared with that of the snow accumulation and melt model and a linear regression method. The quantitative comparison with the ground truth measurements from four Snowpack Telemetry (SNOTEL) sites in the basin shows that this algorithm is able to improve the estimation of snow parameters.
Laser And Nonlinear Optical Materials For Laser Remote Sensing
NASA Technical Reports Server (NTRS)
Barnes, Norman P.
2005-01-01
NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.
Achievable Performance and Effective Interrogator Design for SAW RFID Sensor Tags
NASA Technical Reports Server (NTRS)
Barton Richard J.
2012-01-01
For many NASA missions, remote sensing is a critical application that supports activities such as environmental monitoring, planetary science, structural shape and health monitoring, non-destructive evaluation, etc. The utility of the remote sensing devices themselves is greatly increased if they are passive V that is, they do not require any on-board power supply such as batteries V and if they can be identified uniquely during the sensor interrogation process. Additional passive sensor characteristics that enable greater utilization in space applications are small size and weight, long read ranges with low interrogator power, ruggedness, and operability in extreme environments (vacuum, extreme high/low temperature, high radiation, etc.) In this paper, we consider one very promising passive sensor technology, called surface acoustic wave (SAW) radio-frequency identification (RFID), that satisfies all of these criteria. In general, RFID is a method of identifying items using radio waves to interrogate tags encoded with a unique identifier that are affixed to the items of interest. In the case of passive tags, only the interrogator, which transmits power to the tags in the form of radio-frequency electromagnetic radiation, requires access to a power supply. Passive RFID technologies are used today in many applications, including asset tracking and management, security and access control, and remote sensing. To date, most of the development and application in RFID technology has focused on either asset/inventory tracking and control or security and access control because these are the largest commercial application areas. Recently however, there has been growing interest in using passive RFID technology for remote sensing applications, and SAW devices are at the forefront of RFID sensing technology development. Although SAW RFID tags have great potential for use in numerous space-based remote sensing applications, the limited collision resolution capability of current generation tags limits the performance in a cluttered sensing environment. That is, as more SAW-based sensors are added to the environment, numerous tag responses are superimposed at the receiver and decoding all or even a subset of the telemetry becomes increasingly difficult. Background clutter generated by reflectors other than the sensors themselves is also a problem, as is multipath interference and signal distortion, but the limiting factor in many remote sensing applications can be expected to be tag mutual interference. This problem may be greatly mitigated by proper design of the SAW tag waveform, but that remains an open research problem, and in the meantime, several other related questions remain to be answered including: (1) What are the fundamental relationships between tag parameters such as bit-rate, time-bandwidth-product, SNR, and achievable collision resolution? (2) What are the differences in optimal or near-optimal interrogator designs between noise-limited environments and interference-limited environments? (3) What are the performance characteristics of different interrogator designs in term of parameters such as transmitter power level, range, and number of interfering tags? In this paper, we will present the results of a research effort aimed at providing at least partial answers to all of these questions.
Mobile inductively coupled plasma system
D`Silva, A.P.; Jaselskis, E.J.
1999-03-30
A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.
NASA Astrophysics Data System (ADS)
Hoffmann, Alex; Huebner, Marko; Macleod, Neil; Weidmann, Damien
2016-04-01
Over the course of the last decade, the Laser Spectroscopy Group at RAL Space has considerably furthered the passive remote sensing technique of thermal IR Laser Heterodyne Radiometry (LHR), and applied it successfully to the ground-based sounding of atmospheric profiles of a variety of trace gases, including methane. LHR is underpinned by coherent detection technology and ideally shot noise-limited, which can significantly enhance the signal-to-noise ratio of acquired atmospheric spectra over conventional direct detection spectrometers when high spectral (>500,000 resolving power) and high spatial resolutions are needed. These benefits allow probing optimized narrow spectral windows (1 cm-1) with full absorption lineshape information, useful for trace gas vertical profiling. Furthermore, LHR has a high potential for miniaturization into a rugged, unprecedentedly compact package, through hollow waveguide optical integration, facilitating its deployment in ground-based observation networks, as well as on a variety of airborne and spaceborne platforms, whilst retaining its high specifications. This makes LHR well-suited to the remote sounding of key greenhouse gases, in particular carbon dioxide, as observations with high precision and accuracy are crucial to discriminate trends and small variations over a substantial background concentration, and in order to contribute to flux estimations in top-down carbon cycle inversion approaches and anthropogenic emission monitoring. Here, we present a new optical bench-based LHR prototype that has been specifically built to demonstrate CO2 sounding in the thermal IR. The instrument has been coupled to a new permanently installed solar tracker to take a long-term measurement series in solar occultation mode, and to assess the performance of the instrument. We discuss its theoretical performance modelled using an Observation System Simulator, and showcase first results from a 6 months' archive, with observations undergoing gradual refinement as the retrieval method is improved.
NASA Technical Reports Server (NTRS)
Alberts, Thomas E.; Xia, Houchun; Chen, Yung
1992-01-01
The effectiveness of constrained viscoelastic layer damping treatment designs is evaluated separately as passive control measures for low frequency joint dominated modes and higher frequency boom flexure dominated modes using a NASTRAN finite element analysis. Passive damping augmentation is proposed which is based on a constrained viscoelastic layer damping treatment applied to the surface of the manipulators's flexible booms. It is pointed out that even the joint compliance dominated modes can be damped to some degree through appropriate design of the treatment.
Development of flight experiments for remote measurement of pollution
NASA Technical Reports Server (NTRS)
Keafer, L. S., Jr.; Kopia, L. P.
1973-01-01
The status as of February 1973 of several NASA-sponsored development projects is reported concerning flight experiments for remote measurement of pollution. Eight passive multispectral instruments for remotely sensing air and water pollutants are described, as well as two active (laser radar) measuring techniques. These techniques are expected to add some new dimensions to the remote sensing of water quality, oceanographic parameters, and earth resources. Multiple applications in these fields are generally possible. Successful completion of the flight demonstration tests and comparisons with simultaneously obtained surface truth measurements may establish these techniques as valid water quality monitoring tools.
Evaluation of passive samplers for the collection of dissolved organic matter in streams.
Warner, Daniel L; Oviedo-Vargas, Diana; Royer, Todd V
2015-01-01
Traditional sampling methods for dissolved organic matter (DOM) in streams limit opportunities for long-term studies due to time and cost constraints. Passive DOM samplers were constructed following a design proposed previously which utilizes diethylaminoethyl (DEAE) cellulose as a sampling medium, and they were deployed throughout a temperate stream network in Indiana. Two deployments of the passive samplers were conducted, during which grab samples were frequently collected for comparison. Differences in DOM quality between sites and sampling methods were assessed using several common optical analyses. The analyses revealed significant differences in optical properties between sampling methods, with the passive samplers preferentially collecting terrestrial, humic-like DOM. We assert that the differences in DOM composition from each sampling method were caused by preferential binding of complex humic compounds to the DEAE cellulose in the passive samplers. Nonetheless, the passive samplers may provide a cost-effective, integrated sample of DOM in situations where the bulk DOM pool is composed mainly of terrestrial, humic-like compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekoogar, Faranak; Reynolds, Matthew; Lefton, Scott
A secure passive RFID tag system comprises at least one base station and at least one passive RFID tag. The tag includes a fiber optic cable with the cable ends sealed within the tag and the middle portion forming an external loop. The loop may be secured to at least portions of an object. The tag transmits and receives an optical signal through the fiber optic cable, and the cable is configured to be damaged or broken in response to removal or tampering attempts, wherein the optical signal is significantly altered if the cable is damaged or broken. The tagmore » transmits the optical signal in response to receiving a radio signal from the base station and compares the transmitted optical signal to the received optical signal. If the transmitted optical signal and the received optical signal are identical, the tag transmits an affirmative radio signal to the base station.« less
NASA Technical Reports Server (NTRS)
Jackson, T. J.; Schmugge, T. J.; Allen, L. H., Jr.; Oneill, P.; Slack, R.; Wang, J.; Engman, E. T.
1981-01-01
Experiments were conducted to evaluate aircraft remote sensing techniques for hydrology in a wide range of physiographic and climatic regions using several sensor platforms. The data were collected in late 1978 and during 1979 in two humid areas--Taylor Creek, Fla., and Little River, Ga. Soil moisture measurements and climatic observations are presented as well as the remote sensing data collected using thermal infrared, passive microwave, and active microwave systems.
NASA Astrophysics Data System (ADS)
Geary, Kevin
The development of high-frequency polymer electro-optic modulators has seen steady and significant progress in recent years, yet applications of these promising materials to more complicated integrated optic structures and arrays of devices have been limited primarily due to high optical waveguide loss characteristics. This is unfortunate since a major advantage of polymers as photonic materials is their compatibility with photolithographic processing of large components. In this Dissertation, etchless waveguide writing techniques are presented in order to improve the overall optical insertion loss of electro-optic polymer waveguide devices. These techniques include poling-induced writing, stress-induced waveguide writing, and photobleaching. Using these waveguide writing mechanisms, we have demonstrated straight waveguides, phase modulators, Mach-Zehnder intensity modulators, variable optical attenuators, and multimode interference (MMI) power splitters, all with improved loss characteristics over their etched rib waveguide counterparts. Ultimately, the insertion loss of an integrated optic device is limited by the actual material loss of the core waveguide material. In this Dissertation, passive-to-active polymer waveguide transitions are proposed to circumvent this problem. These transitions are compact, in-plane, self-aligned, and require no tapering of any physical dimensions of the waveguides. By utilizing both the time-dependent and intensity-dependent photobleaching characteristics of electro-optic polymer materials, adiabatic refractive index tapers can be seamlessly coupled to in-plane butt couple transitions, resulting in losses as low as 0.1 dB per interface. By integrating passive polymer planar lightwave circuits with the high-speed phase shifting capability of electro-optic polymers, active wideband photonic devices of increased size and complexity can be realized. Optical fiber-to-device coupling can also result in significant contributions to the overall insertion loss of an integrated electro-optic polymer device. In this Dissertation, we leverage the photobleached refractive index taper component of our proposed passive-to-active polymer waveguide transitions in order to realize a two-dimensional optical mode transformer for improved overall fiber-to-device coupling of electro-optic polymer waveguide devices.
Fiber-Coupled Acousto-Optical-Filter Spectrometer
NASA Technical Reports Server (NTRS)
Levin, Kenneth H.; Li, Frank Yanan
1993-01-01
Fiber-coupled acousto-optical-filter spectrometer steps rapidly through commanded sequence of wavelengths. Sample cell located remotely from monochromator and associated electronic circuitry, connected to them with optical fibers. Optical-fiber coupling makes possible to monitor samples in remote, hazardous, or confined locations. Advantages include compactness, speed, and no moving parts. Potential applications include control of chemical processes, medical diagnoses, spectral imaging, and sampling of atmospheres.
Remote artificial eyes using micro-optical circuit for long-distance 3D imaging perception.
Thammawongsa, Nopparat; Yupapin, Preecha P
2016-01-01
A small-scale optical device incorporated with an optical nano-antenna is designed to operate as the remote artificial eye using a tiny conjugate mirror. A basic device known as a conjugate mirror can be formed using the artificial eye device, the partially reflected light intensities from input source are interfered and the 3D whispering gallery modes formed within the ring centers, which can be modulated and propagated to the object. The image pixel is obtained at the center ring and linked with the optic nerve in the remote area via the nano-antenna, which is useful for blind people.
Development of optical fiber technology in Poland 2015
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.; Wójcik, Waldemar
2015-12-01
The paper is a digest of works presented during the XVIth National Symposium on Optical Fibres and Their Applications. The Symposium is organized since 1976. OFTA 2015 was organized by Optical Fibre Laboratory of the Faculty of Chemistry at University of Maria Curie Skłodowska, and Institute of Electronics and Information Technology of Lublin University of Technology, in Nałęczów on 22-25 September 2015. The meeting has gathered around 120 participants who presented 85 research and technical papers. The Symposium organized every 18 months is a good portrait of optical fibre technology development in Poland at university laboratories, governmental institutes, company R&D laboratories, etc. Topical tracks of the Symposium were: optical and photonic materials, technology of classical, tailored and structural photonic optical fibres, light propagation physics in optical fibres, passive and active optical fibre components, optical fibre sensors, passive and active optical fibre networks, optical fibre amplifiers and lasers, optical fibre network issues: modulation, architectures, economy, etc.
A consideration of the use of optical fibers to remotely couple photometers to telescopes
NASA Technical Reports Server (NTRS)
Heacox, William D.
1988-01-01
The possible use of optical fibers to remotely couple photometers to telescopes is considered. Such an application offers the apparent prospect of enhancing photometric stability as a consequence of the benefits of remote operation and decreased sensitivity to image details. A properly designed fiber optic coupler will probably show no significant changes in optical transmisssion due to normal variations in the fiber configuration. It may be more difficult to eliminate configuration-dependent effects on the pupil of the transmitted beam, and thus achieve photometric stability to guiding and seeing errors. In addition, there is some evidence for significant changes in the optical throughputs of fibers over the temperature range normally encountered in astronomical observatories.
Ben-David, Avishai; Embury, Janon F; Davidson, Charles E
2006-09-10
A comprehensive analytical radiative transfer model for isothermal aerosols and vapors for passive infrared remote sensing applications (ground-based and airborne sensors) has been developed. The theoretical model illustrates the qualitative difference between an aerosol cloud and a chemical vapor cloud. The model is based on two and two/four stream approximations and includes thermal emission-absorption by the aerosols; scattering of diffused sky radiances incident from all sides on the aerosols (downwelling, upwelling, left, and right); and scattering of aerosol thermal emission. The model uses moderate resolution transmittance ambient atmospheric radiances as boundary conditions and provides analytical expressions for the information on the aerosol cloud that is contained in remote sensing measurements by using thermal contrasts between the aerosols and diffused sky radiances. Simulated measurements of a ground-based sensor viewing Bacillus subtilis var. niger bioaerosols and kaolin aerosols are given and discussed to illustrate the differences between a vapor-only model (i.e., only emission-absorption effects) and a complete model that adds aerosol scattering effects.
Development of a Spectropolarimetric Remote Sensing Capability
2013-03-01
34Review of passive imaging polarimetry for remote sensing applications," Appl. Opt. 45, 5453-5469 (2006). [8] D. B. Chenault, "Infrared...Annen, “Hyperspectral IR polarimetry with application in demining and unexploded ordnance detection,” SPIE Vol. 3534 (1998). [30] Pesses, M... Polarimetry , Fourier Transform Spectrometer, DOLP, Spectropolarimetry, Stokes 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18
NASA Technical Reports Server (NTRS)
Mannucci, A.J.; Wu, D.L.; Teixeira, J.; Ao, C.O.; Xie, F.; Diner, D.J.; Wood, R.; Turk, Joe
2012-01-01
Objective: significant progress in understanding low-cloud boundary layer processes. This is the Single largest uncertainty in climate projections. Radio occultation has unique features suited to boundary layer remote sensing (1) Cloud penetrating (2) Very high vertical resolution (approximately 50m-100m) (3) Sensitivity to thermodynamic variables
Linear and passive silicon diodes, isolators, and logic gates
NASA Astrophysics Data System (ADS)
Li, Zhi-Yuan
2013-12-01
Silicon photonic integrated devices and circuits have offered a promising means to revolutionalize information processing and computing technologies. One important reason is that these devices are compatible with conventional complementary metal oxide semiconductor (CMOS) processing technology that overwhelms current microelectronics industry. Yet, the dream to build optical computers has yet to come without the breakthrough of several key elements including optical diodes, isolators, and logic gates with low power, high signal contrast, and large bandwidth. Photonic crystal has a great power to mold the flow of light in micrometer/nanometer scale and is a promising platform for optical integration. In this paper we present our recent efforts of design, fabrication, and characterization of ultracompact, linear, passive on-chip optical diodes, isolators and logic gates based on silicon two-dimensional photonic crystal slabs. Both simulation and experiment results show high performance of these novel designed devices. These linear and passive silicon devices have the unique properties of small fingerprint, low power request, large bandwidth, fast response speed, easy for fabrication, and being compatible with COMS technology. Further improving their performance would open up a road towards photonic logics and optical computing and help to construct nanophotonic on-chip processor architectures for future optical computers.
Continuous Water Vapor Profiles from Operational Ground-Based Active and Passive Remote Sensors
NASA Technical Reports Server (NTRS)
Turner, D. D.; Feltz, W. F.; Ferrare, R. A.
2000-01-01
The Atmospheric Radiation Measurement program's Southern Great Plains Cloud and Radiation Testbed site central facility near Lamont, Oklahoma, offers unique operational water vapor profiling capabilities, including active and passive remote sensors as well as traditional in situ radiosonde measurements. Remote sensing technologies include an automated Raman lidar and an automated Atmospheric Emitted Radiance Interferometer (AERI), which are able to retrieve water vapor profiles operationally through the lower troposphere throughout the diurnal cycle. Comparisons of these two water vapor remote sensing methods to each other and to radiosondes over an 8-month period are presented and discussed, highlighting the accuracy and limitations of each method. Additionally, the AERI is able to retrieve profiles of temperature while the Raman lidar is able to retrieve aerosol extinction profiles operationally. These data, coupled with hourly wind profiles from a 915-MHz wind profiler, provide complete specification of the state of the atmosphere in noncloudy skies. Several case studies illustrate the utility of these high temporal resolution measurements in the characterization of mesoscale features within a 3-day time period in which passage of a dryline, warm air advection, and cold front occurred.
Compact and efficient 2μm Tm:YAP lasers with mechanical or passive Q-switching
NASA Astrophysics Data System (ADS)
Cole, Brian; Goldberg, Lew
2017-02-01
We describe compact and efficient Q-switched diode-pumped, Tm:YAP lasers operating at 1.94μm. Laser CW and Q-switched performance is compared, using both compact mechanical as well as passive Q-switching. For passive Q-switching using a Cr:ZnS saturable absorber (unsaturated transmission of 95%), the laser produced 0.5mJ pulses with an average power of 4.4W and 6.5kW peak power, and had an optical efficiency of 30%. A resonant mirror mechanical Q-switch resulted in a 4 kHz PRF pulse train, with an optical slope efficiency of 52% and an optical-to-optical conversion efficiency of 41%. The laser generated 1.5 mJ, 45 ns FWHM, 33kW peak power pulses, and 6.2W of average output. A second mechanically Q-switched laser operating at 10 kHz PRF produced 1mJ, 35kW peak power pulses, generating 11W average power with an optical efficiency of 46%, and a beam quality of 1.4x diffraction limit.
Qiu, Yi; Wei, Xiaoming; Du, Shuxin; Wong, Kenneth K Y; Tsia, Kevin K; Xu, Yiqing
2018-04-16
We propose a passively mode-locked fiber optical parametric oscillator assisted with optical time-stretch. Thanks to the lately developed optical time-stretch technique, the onset oscillating spectral components can be temporally dispersed across the pump envelope and further compete for the parametric gain with the other parts of onset oscillating sidebands within the pump envelope. By matching the amount of dispersion in optical time-stretch with the pulse width of the quasi-CW pump and oscillating one of the parametric sidebands inside the fiber cavity, we numerically show that the fiber parametric oscillator can be operated in a single pulse regime. By varying the amount of the intracavity dispersion, we further verify that the origin of this single pulse mode-locking regime is due to the optical pulse stretching and compression.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Chow, Chi-Wai; Chiang, Ming-Feng; Shih, Fu-Yuan; Pan, Ci-Ling
2011-09-01
In a wavelength division multiplexed-passive optical network (WDM-PON), different fiber lengths and optical components would introduce different power budgets to different optical networking units (ONUs). Besides, the power decay of the distributed optical carrier from the optical line terminal owing to aging of the optical transmitter could also reduce the injected power into the ONU. In this work, we propose and demonstrate a carrier distributed WDM-PON using a reflective semiconductor optical amplifier-based ONU that can adjust its upstream data rate to accommodate different injected optical powers. The WDM-PON is evaluated at standard-reach (25 km) and long-reach (100 km). Bit-error rate measurements at different injected optical powers and transmission lengths show that by adjusting the upstream data rate of the system (622 Mb/s, 1.25 and 2.5 Gb/s), error-free (<10-9) operation can still be achieved when the power budget drops.
Utilization of solar radiation by polar animals: an optical model for pelts.
Grojean, R E; Sousa, J A; Henry, M C
1980-02-01
A summary of existing passive solar-heat conversion panels provides the basis for a definition of an ideal passive solar-heat converter. Evidence for the existence of a biological greenhouse effect in certain homopolar homeothermic species is reviewed. The thermal and optical properties of homeothermic pelts, in particular those of the polar bear, are described, and a qualitative optical model of the polar bear pelt is proposed. The effectiveness of polar bear and seal pelts as solar-heat converters is discussed, and comparison is made with the ideal converter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttler, William T.; Lamoreaux, Steven K.
2010-08-10
We formalize the physics of an optical heterodyne accelerometer that allows measurement of low and high velocities from material surfaces under high strain. The proposed apparatus incorporates currently common optical velocimetry techniques used in shock physics, with interferometric techniques developed to self-stabilize and passively balance interferometers in quantum cryptography. The result is a robust telecom-fiber-based velocimetry system insensitive to modal and frequency dispersion that should work well in the presence of decoherent scattering processes, such as from ejecta clouds and shocked surfaces.
NASA Astrophysics Data System (ADS)
Burba, G. G.; Avenson, T.; Burkart, A.; Gamon, J. A.; Guan, K.; Julitta, T.; Pastorello, G.; Sakowska, K.
2017-12-01
Many hundreds of flux towers are presently operational as standalone projects and as parts of regional networks. However, the vast majority of these towers do not allow straightforward coupling with remote sensing (drone, aircraft, satellite, etc.) data, and even fewer have optical sensors for validation of remote sensing products, and upscaling from field to regional levels. In 2016-2017, new tools to collect, process, and share time-synchronized flux data from multiple towers were developed and deployed globally. Originally designed to automate site and data management, and to streamline flux data analysis, these tools allow relatively easy matching of tower data with remote sensing data: GPS-driven PTP time protocol synchronizes instrumentation within the station, different stations with each other, and all of these to remote sensing data to precisely align remote sensing and flux data in time Footprint size and coordinates computed and stored with flux data help correctly align tower flux footprints and drone, aircraft or satellite motion to precisely align optical and flux data in space Full snapshot of the remote sensing pixel can then be constructed, including leaf-level, ground optical sensor, and flux tower measurements from the same footprint area, closely coupled with the remote sensing measurements to help interpret remote sensing data, validate models, and improve upscaling Additionally, current flux towers can be augmented with advanced ground optical sensors and can use standard routines to deliver continuous products (e.g. SIF, PRI, NDVI, etc.) based on automated field spectrometers (e.g., FloX and RoX, etc.) and other optical systems. Several dozens of new towers already operational globally can be readily used for the proposed workflow. Over 500 active traditional flux towers can be updated to synchronize their data with remote sensing measurements. This presentation will show how the new tools are used by major networks, and describe how this approach can be utilized for matching remote sensing and tower data to aid in ground truthing, improve scientific interactions, and promote joint grant writing and other forms of collaboration between the flux and remote sensing communities.
An advanced wide area chemical sensor testbed
NASA Astrophysics Data System (ADS)
Seeley, Juliette A.; Kelly, Michael; Wack, Edward; Ryan-Howard, Danette; Weidler, Darryl; O'Brien, Peter; Colonero, Curtis; Lakness, John; Patel, Paras
2005-11-01
In order to meet current and emerging needs for remote passive standoff detection of chemical agent threats, MIT Lincoln Laboratory has developed a Wide Area Chemical Sensor (WACS) testbed. A design study helped define the initial concept, guided by current standoff sensor mission requirements. Several variants of this initial design have since been proposed to target other applications within the defense community. The design relies on several enabling technologies required for successful implementation. The primary spectral component is a Wedged Interferometric Spectrometer (WIS) capable of imaging in the LWIR with spectral resolutions as narrow as 4 cm-1. A novel scanning optic will enhance the ability of this sensor to scan over large areas of concern with a compact, rugged design. In this paper, we shall discuss our design, development, and calibration process for this system as well as recent testbed measurements that validate the sensor concept.
Characteristics of 13.9 GHz radar scattering from oil films on the sea surface
NASA Technical Reports Server (NTRS)
Johnson, J. W.; Croswell, W. F.
1982-01-01
Aircraft microwave scatterometer measurements are presented, which were made in 1979 as part of a project to study the response of a number of active and passive microwave and optical remote sensors to an oil-covered sea surface conducted by NASA Langley Research Center. A 13.9-GHz Doppler scatterometer with a fan beam antenna and coherent detection was used to measure radar backscatter as a function of incidence angle. The radar scattering signature of the clear surface and signatures of the surface covered with various crude oil films are compared. Reductions in Ku band microwave backscatter up to 14 dB are observed for both treated and untreated LaRosa and Murban crude oil films deposited on the sea surface. Maximum Ku band sensitivity to the effects of the oil in terms of differential scatter is observed in the 25-35 deg incidence angle region.
Whitecap coverage from aerial photography
NASA Technical Reports Server (NTRS)
Austin, R. W.
1970-01-01
A program for determining the feasibility of deriving sea surface wind speeds by remotely sensing ocean surface radiances in the nonglitter regions is discussed. With a knowledge of the duration and geographical extent of the wind field, information about the conventional sea state may be derived. The use of optical techniques for determining sea state has obvious limitations. For example, such means can be used only in daylight and only when a clear path of sight is available between the sensor and the surface. However, sensors and vehicles capable of providing the data needed for such techniques are planned for the near future; therefore, a secondary or backup capability can be provided with little added effort. The information currently being sought regarding white water coverage is also of direct interest to those working with passive microwave systems, the study of energy transfer between winds and ocean currents, the aerial estimation of wind speeds, and many others.
Reactive granular optics for passive tracking of the sun
NASA Astrophysics Data System (ADS)
Frenkel, I.; Niv, A.
2017-08-01
The growing need for cost-effective renewable energy sources is hampered by the stagnation in solar cell technology, thus preventing a substantial reduction in the module and energy-production price. Lowering the energy-production cost could be achieved by using modules with efficiency. One of the possible means for increasing the module efficiency is concentrated photovoltaics (CPV). CPV, however, requires complex and accurate active tracking of the sun that reduces much of its cost-effectiveness. Here, we propose a passive tracking scheme based on a reactive optical device. The optical reaction is achieved by a new kind of light activated mechanical force that acts on micron-sized particles. This optical force allows the formation of granular disordered optical media that can be switched from being opaque to become transparent based on the intensity of light it interacts with. Such media gives rise to an efficient passive tracking scheme that when combined with an external optical cavity forms a new solar power conversion approach. Being external to the cell itself, this approach is indifferent to the type of semiconducting material that is used, as well as to other aspects of the cell design. This, in turn, liberates the cell layout from its optical constraints thus paving the way to higher efficiencies at lower module price.
Compact fiber optic gyroscopes for platform stabilization
NASA Astrophysics Data System (ADS)
Dickson, William C.; Yee, Ting K.; Coward, James F.; McClaren, Andrew; Pechner, David A.
2013-09-01
SA Photonics has developed a family of compact Fiber Optic Gyroscopes (FOGs) for platform stabilization applications. The use of short fiber coils enables the high update rates required for stabilization applications but presents challenges to maintain high performance. We are able to match the performance of much larger FOGs by utilizing several innovative technologies. These technologies include source noise reduction to minimize Angular Random Walk (ARW), advanced digital signal processing that minimizes bias drift at high update rates, and advanced passive thermal packaging that minimizes temperature induced bias drift while not significantly affecting size, weight, or power. In addition, SA Photonics has developed unique distributed FOG packaging technologies allowing the FOG electronics and photonics to be packaged remotely from the sensor head or independent axis heads to minimize size, weight, and power at the sensing location(s). The use of these technologies has resulted in high performance, including ARW less than 0.001 deg/rt-hr and bias drift less than 0.004 deg/hr at an update rate of 10 kHz, and total packaged volume less than 30 cu. in. for a 6 degree of freedom FOG-based IMU. Specific applications include optical beam stabilization for LIDAR and LADAR, beam stabilization for long-range free-space optical communication, Optical Inertial Reference Units for HEL stabilization, and Ka band antenna pedestal pointing and stabilization. The high performance of our FOGs also enables their use in traditional navigation and positioning applications. This paper will review the technologies enabling our high-performance compact FOGs, and will provide performance test results.
Radar Remote Sensing of Waves and Currents in the Nearshore Zone
2006-01-01
and application of novel microwave, acoustic, and optical remote sensing techniques. The objectives of this effort are to determine the extent to which...Doppler radar techniques are useful for nearshore remote sensing applications. Of particular interest are estimates of surf zone location and extent...surface currents, waves, and bathymetry. To date, optical (video) techniques have been the primary remote sensing technology used for these applications. A key advantage of the radar is its all weather day-night operability.
NASA Astrophysics Data System (ADS)
Wong, Elaine; Nadarajah, Nishaanthan; Chae, Chang-Joon; Nirmalathas, Ampalavanapillai; Attygalle, Sanjeewa M.
2006-01-01
We describe two optical layer schemes which simultaneously facilitate local area network emulation and automatic protection switching against distribution fiber breaks in passive optical networks. One scheme employs a narrowband fiber Bragg grating placed close to the star coupler in the feeder fiber of the passive optical network, while the other uses an additional short length distribution fiber from the star coupler to each customer for the redirection of the customer traffic. Both schemes use RF subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office at baseband. Failure detection and automatic protection switching are performed independently by each optical network unit that is located at the customer premises in a distributed manner. The restoration of traffic transported between the central office and an optical network unit in the event of the distribution fiber break is performed by interconnecting adjacent optical network units and carrying out signal transmissions via an independent but interconnected optical network unit. Such a protection mechanism enables multiple adjacent optical network units to be simultaneously protected by a single optical network unit utilizing its maximum available bandwidth. We experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the central office and 155 Mb/s local area network data transmission on a RF subcarrier frequency. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme.
NASA Astrophysics Data System (ADS)
Kuhn, C.; Richey, J. E.; Striegl, R. G.; Ward, N.; Sawakuchi, H. O.; Crawford, J.; Loken, L. C.; Stadler, P.; Dornblaser, M.; Butman, D. E.
2017-12-01
More than 93% of the world's river-water volume occurs in basins impacted by large dams and about 43% of river water discharge is impacted by flow regulation. Human land use also alters nutrient and carbon cycling and the emission of carbon dioxide from inland reservoirs. Increased water residence times and warmer temperatures in reservoirs fundamentally alter the physical settings for biogeochemical processing in large rivers, yet river biogeochemistry for many large systems remains undersampled. Satellite remote sensing holds promise as a methodology for responsive regional and global water resources management. Decades of ocean optics research has laid the foundation for the use of remote sensing reflectance in optical wavelengths (400 - 700 nm) to produce satellite-derived, near-surface estimates of phytoplankton chlorophyll concentration. Significant improvements between successive generations of ocean color sensors have enabled the scientific community to document changes in global ocean productivity (NPP) and estimate ocean biomass with increasing accuracy. Despite large advances in ocean optics, application of optical methods to inland waters has been limited to date due to their optical complexity and small spatial scale. To test this frontier, we present a study evaluating the accuracy and suitability of empirical inversion approaches for estimating chlorophyll-a, turbidity and temperature for the Amazon, Columbia and Mississippi rivers using satellite remote sensing. We demonstrate how riverine biogeochemical measurements collected at high frequencies from underway vessels can be used as in situ matchups to evaluate remotely-sensed, near-surface temperature, turbidity, chlorophyll-a derived from the Landsat 8 (NASA) and Sentinel 2 (ESA) satellites. We investigate the use of remote sensing water reflectance to infer trophic status as well as tributary influences on the optical characteristics of the Amazon, Mississippi and Columbia rivers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliyahu, Danny; Yariv, Amnon
1997-05-01
Using the time domain master equation for a complex electric-field pulse envelope, we find analytical results for the optical spectra of passively mode-locked semiconductor lasers. The analysis includes the effect of optical nonlinearity of semiconductor lasers, which is characterized by a slow saturable amplifier and absorber. Group velocity dispersion, bandwidth limiting, and self-phase modulation were considered as well. The FWHM of the spectrum profile was found to have a strong dependence on group velocity dispersion and self-phase modulation. For large absolute values of the chirp parameter, the optical spectra result in equispaced continuous wave frequencies, a large fraction of whichmore » have equal power. {copyright} 1997 Optical Society of America« less
NASA Astrophysics Data System (ADS)
Nakamura, Hirotaka; Suzuki, Hiro; Kani, Jun-Ichi; Iwatsuki, Katsumi
2006-05-01
This paper proposes and demonstrates a reliable wide-area wavelength-division-multiplexing passive optical network (WDM-PON) with a wavelength-shifted protection scheme. This protection scheme utilizes the cyclic property of 2 × N athermal arrayed-waveguide grating and two kinds of wavelength allocations, each of which is assigned for working and protection, respectively. Compared with conventional protection schemes, this scheme does not need a 3-dB optical coupler, thus leading to ensure the large loss budget that is suited for wide-area WDM-PONs. It also features a passive access node and does not have a protection function in the optical network unit (ONU). The feasibility of the proposed scheme is experimentally confirmed by the carrier-distributed WDM-PON with gigabit Ethernet interface (GbE-IF) and 10-GbE-IF, in which the ONU does not employ a light source, and all wavelengths for upstream signals are centralized and distributed from the central office.
NASA Astrophysics Data System (ADS)
Mock, Alyssa; Carlson, Timothy; VanDerslice, Jeremy; Mohrmann, Joel; Woollam, John A.; Schubert, Eva; Schubert, Mathias
2017-11-01
Optical changes in alumina passivated highly porous silicon slanted columnar thin films during controlled exposure to toluene vapor are reported. Electron-beam evaporation glancing angle deposition and subsequent atomic layer deposition are utilized to deposit alumina passivated nanostructured porous silicon thin films. In-situ Mueller matrix generalized spectroscopic ellipsometry in an environmental cell is then used to determine changes in optical properties of the nanostructured thin films by inspection of individual Mueller matrix elements, each of which exhibit sensitivity to adsorption. The use of a multiple-layered effective medium approximation model allows for accurate description of the inhomogeneous nature of toluene adsorption onto alumina passivated highly porous silicon slanted columnar thin films.
High-performance fiber optic link for ECM antenna remoting
NASA Astrophysics Data System (ADS)
Edge, Colin; Burgess, John W.; Wale, Michael J.; Try, Nicholas W.
1998-11-01
The ability to remotely radiate microwave signals has become an essential feature of modern electronic counter-measures (ECM) systems. The use of fiber optics allows remote microwave links to be constructed which have very low propagation loss and dispersion, are very flexible and light in weight, and have a high degree of immunity from external electromagnetic fields, crosstalk and environmental effects. This combination of desirable characteristics are very beneficial to avionic ECM antenna remoting as well as many other applications. GEC-Marconi have developed high performance fiber components for use in a towed radar decoy. The resulting rugged and compact optical transmitter and receiver modules have been developed and proven to maintain the required performance over the full hostile range of environmental conditions encountered on a fast jet. Packaged fiber optic links have been produced which can achieve a compression dynamic range of greater than 87 dB in 1 MHz bandwidth over a 2 to 18 GHz.
Remote optical stethoscope and optomyography sensing device
NASA Astrophysics Data System (ADS)
Golberg, Mark; Polani, Sagi; Ozana, Nisan; Beiderman, Yevgeny; Garcia, Javier; Ruiz-Rivas Onses, Joaquin; Sanz Sabater, Martin; Shatsky, Max; Zalevsky, Zeev
2017-02-01
In this paper we present the usage of photonic remote laser based device for sensing nano-vibrations for detection of muscle contraction and fatigue, eye movements and in-vivo estimation of glucose concentration. The same concept is also used to realize a remote optical stethoscope. The advantage of doing the measurements from a distance is in preventing passage of infections as in the case of optical stethoscope or in the capability to monitor e.g. sleep quality without disturbing the patient. The remote monitoring of glucose concentration in the blood stream and the capability to perform opto-myography for the Messer muscles (chewing) is very useful for nutrition and weight control. The optical configuration for sensing the nano-vibrations is based upon analyzing the statistics of the secondary speckle patterns reflected from various tissues along the body of the subjects. Experimental results present the preliminary capability of the proposed configuration for the above mentioned applications.
SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign
NASA Technical Reports Server (NTRS)
Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre;
2016-01-01
Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.
A droplet-based passive force sensor for remote tactile sensing applications
NASA Astrophysics Data System (ADS)
Nie, Baoqing; Yao, Ting; Zhang, Yiqiu; Liu, Jian; Chen, Xinjian
2018-01-01
A droplet-based flexible wireless force sensor has been developed for remote tactile-sensing applications. By integration of a droplet-based capacitive sensing unit and two circular planar coils, this inductor-capacitor (LC) passive sensor offers a platform for the mechanical force detection in a wireless transmitting mode. Under external loads, the membrane surface of the sensor deforms the underlying elastic droplet uniformly, introducing a capacitance response in tens of picofarads. The LC circuit transduces the applied force into corresponding variations of its resonance frequency, which is detected by an external electromagnetic coupling coil. Specifically, the liquid droplet features a mechanosensitive plasticity, which results in an increased device sensitivity as high as 2.72 MHz N-1. The high dielectric property of the droplet endows our sensor with high tolerance for noise and large capacitance values (20-40 pF), the highest value in the literature for the LC passive devices in comparable dimensions. It achieves excellent reproducibility under periodical loads ranging from 0 to 1.56 N and temperature fluctuations ranging from 10 °C to 55 °C. As an interesting conceptual demonstration, the flexible device has been configured into a fingertip-amounted setting in a highly compact package (of 11 mm × 11 mm × 0.25 mm) for remote contact force sensing in the table tennis game.
Kern, Christoph; Masias, Pablo; Apaza, Fredy; Reath, Kevin; Platt, Ulrich
2017-01-01
Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800–900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.
NASA Astrophysics Data System (ADS)
Kim, S.; Kim, H.; Choi, M.; Kim, K.
2016-12-01
Estimating spatiotemporal variation of soil moisture is crucial to hydrological applications such as flood, drought, and near real-time climate forecasting. Recent advances in space-based passive microwave measurements allow the frequent monitoring of the surface soil moisture at a global scale and downscaling approaches have been applied to improve the spatial resolution of passive microwave products available at local scale applications. However, most downscaling methods using optical and thermal dataset, are valid only in cloud-free conditions; thus renewed downscaling method under all sky condition is necessary for the establishment of spatiotemporal continuity of datasets at fine resolution. In present study Support Vector Machine (SVM) technique was utilized to downscale a satellite-based soil moisture retrievals. The 0.1 and 0.25-degree resolution of daily Land Parameter Retrieval Model (LPRM) L3 soil moisture datasets from Advanced Microwave Scanning Radiometer 2 (AMSR2) were disaggregated over Northeast Asia in 2015. Optically derived estimates of surface temperature (LST), normalized difference vegetation index (NDVI), and its cloud products were obtained from MODerate Resolution Imaging Spectroradiometer (MODIS) for the purpose of downscaling soil moisture in finer resolution under all sky condition. Furthermore, a comparison analysis between in situ and downscaled soil moisture products was also conducted for quantitatively assessing its accuracy. Results showed that downscaled soil moisture under all sky condition not only preserves the quality of AMSR2 LPRM soil moisture at 1km resolution, but also attains higher spatial data coverage. From this research we expect that time continuous monitoring of soil moisture at fine scale regardless of weather conditions would be available.
INTERCOMPARISON OF OPTICAL REMOTE SENSING SYSTEMS FOR ROADSIDE MEASUREMENTS
The presentation describes results of an intercomparison of three optical remote sensing systems for measurements of nitric oxide emitted from passenger cars and light-duty trucks. The intercomparison included a standards comparison to establish comparability of standards, follo...
OPTICAL REMOTE SENSING FOR AIR QUALITY MONITORING
The paper outlines recent developments in using optical remote sensing (ORS) instruments for air quality monitoring both for gaseous pollutants and airborne particulate matter (PM). The U.S. Environmental Protection Agency (EPA) has been using open-path Fourier transform infrared...
NASA Astrophysics Data System (ADS)
Won, Yong-Yuk; Jung, Sang-Min; Han, Sang-Kook
2014-08-01
A new technique, which reduces optical beat interference (OBI) noise in orthogonal frequency division multiple access-passive optical network (OFDMA-PON) links, is proposed. A self-homodyne balanced detection, which uses a single laser for the optical line terminal (OLT) as well as for the optical network unit (ONU), reduces OBI noise and also improves the signal to noise ratio (SNR) of the discrete multi-tone (DMT) signal. The proposed scheme is verified by transmitting quadrature phase shift keying (QPSK)-modulated DMT signal over a 20-km single mode fiber. The optical signal to noise ratio (OSNR), that is required for BER of 10-5, is reduced by 2 dB in the balanced detection compared with a single channel due to the cancellation of OBI noise in conjunction with the local laser.
Passive Fully Polarimetric W-Band Millimeter-Wave Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.
2012-04-01
We present the theory, design, and experimental results obtained from a scanning passive W-band fully polarimetric imager. Passive millimeter-wave imaging offers persistent day/nighttime imaging and the ability to penetrate dust, clouds and other obscurants, including clothing and dry soil. The single-pixel scanning imager includes both far-field and near-field fore-optics for investigation of polarization phenomena. Using both fore-optics, a variety of scenes including natural and man-made objects was imaged and these results are presented showing the utility of polarimetric imaging for anomaly detection. Analysis includes conventional Stokes-parameter based approaches as well as multivariate image analysis methods.
Diode pumped CW and passively Q-switched Nd:LGGG laser at 1062 nm
NASA Astrophysics Data System (ADS)
Yang, H.; Jia, Z. T.; Zhang, B. T.; He, J. L.; Liu, S. D.; Yang, Y.; Tao, X. T.
2012-05-01
We report a Nd:LGGG laser at 1062 nm in the operations of the continuous-wave (CW) and passively Q-switching. The maximum CW output power of 5.62 W was obtained, corresponding to an optical-to-optical conversion efficiency of 49.0% and slope efficiency of 55.9%. By using Cr4+:YAG with initial transmission of 94% as the saturable absorber, for the first time, we got the maximum passively Q-switched output power of 1.21 W, accompanied with a highest pulse repetition rate of 27.1 kHz and a shortest pulse width of 9.1 ns.
Investigation of remote sensing techniques of measuring soil moisture
NASA Technical Reports Server (NTRS)
Newton, R. W. (Principal Investigator); Blanchard, A. J.; Nieber, J. L.; Lascano, R.; Tsang, L.; Vanbavel, C. H. M.
1981-01-01
Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models.
NASA Technical Reports Server (NTRS)
Taylor, E. C.; Davis, J. D.
1978-01-01
A study of the interaction between the orbiter primary reaction control system (PRCS) and the remote manipulator system (RMS) with a loaded arm is documented. This analysis was performed with the Payload Deployment and Retrieval Systems Simulation (PDRSS) program with the passive arm bending option. The passive-arm model simulates the arm as massless elastic links with locked joints. The study was divided into two parts. The first part was the evaluation of the response of the arm to step inputs (i.e. constant jet torques) about each of the orbiter body axes. The second part of the study was the evaluation of the response of the arm to minimum impulse primary RCS jet firings with both single pulse and pulse train inputs.
2011-03-01
to remotely sensed SCA and SWE. The first analysis, a comparison to SCA imagery, tests the models ability to correctly estimate the snow extent...remotely sensed data (Con- galton and Green 2009). The producer’s accuracies consistently show the model underestimating the snow extent at the end...and K. Green. 2009. Assessing the accuracy of remotely sensed data: principals and practices, Second edition. CRC Press, Taylor & Francis Group
Microwave remote sensing from space for earth resource surveys
NASA Technical Reports Server (NTRS)
1977-01-01
The concepts of radar remote sensing and microwave radiometry are discussed and their utility in earth resource sensing is examined. The direct relationship between the character of the remotely sensed data and the level of decision making for which the data are appropriate is considered. Applications of active and a passive microwave sensing covered include hydrology, land use, mapping, vegetation classification, environmental monitoring, coastal features and processes, geology, and ice and snow. Approved and proposed microwave sensors are described and the use of space shuttle as a development platform is evaluated.
NASA Astrophysics Data System (ADS)
Rapp, M.; Ehret, G.; Fix, A.; Wirth, M.; Amediek, A.; Kiemle, C.; Quatrevalet, M.; Butz, A.; Roiger, A.; Joeckel, P.
2017-12-01
For meeting the goals of the Paris agreement it is highly desirable to obtain objective global information on anthropogenic greenhouse gas emission rates. A promising approach for a space based observation system is the combination of active and passive remote sensing from satellites in Low Earth Orbit (LEO). While LIDAR techniques have the potential to yield low bias observations which are independent of solar illumination and hence also work during night and at polar winter latitudes, spectroscopic observations of scattered sunlight are suitable for imaging atmospheric concentrations at high spatial resolution. This presentation reviews progress and plans of work conducted at the German Aerospace Center (DLR). Regarding active remote sensing, DLR has developed the airborne Integrated Path Differential Absorption (IPDA)-Lidar CHARM-F (CO2 and CH4 Remote Monitoring—Flugzeug) for the quantification of carbon dioxide and methane column mixing ratios. CHARM-F has been deployed in an initial airborne field campaign in spring 2015 and results of strong anthropogenic sources detected during these flights will be presented. In addition, DLR is in the process of preparing an international airborne campaign (CoMet - Carbon Dioxide and Methane Mission for HALO) for April 2018 which will be supported by various in-situ, ground based, and modelling activities. These airborne field campaigns are important steps towards the German-French satellite mission MERLIN which also utilizes an IPDA-LIDAR. Also, DLR has started to further investigate concepts for a future space borne IPDA-Lidar for the quantification of strong anthropogenic CO2 point sources. Jointly with the latter, DLR is currently further studying the concept of a passive spectrometer for the observation of CO2 point emissions.
Optical effects module and passive sample array
NASA Technical Reports Server (NTRS)
Linton, R. C.
1983-01-01
The Optical Effects Module (OEM) has the objective to monitor the effects of the deposition and adhesion of both molecular species and particles on optical surfaces in the Shuttle cargo bay environment. The OEM performs inflight measurements of the ultraviolet (253.7 nm) transmittance and diffuse reflectance of five optical samples at regular intervals throughout the orbital mission. Most of the obtained results indicates or implies the absence of a significant accumulation of contamination other than particulates on the samples. The contaminant species (or particulates) adhering to the samples of the Passive Sample Array (PSA) were identified by means of Auger and X-ray energy dispersive analyses. The elements silicon, chlorine, and phosphorus were discovered.
Uplink transmission of a 60-km-reach WDM/OCDM-PON using a spectrum-sliced pulse source
NASA Astrophysics Data System (ADS)
Choi, Yong-Kyu; Hanawa, Masanori; Park, Chang-Soo
2014-02-01
We propose and experimentally demonstrate the uplink transmission of a 60-km-reach wavelength division multiplexing/optical code division multiplexing (WDM/OCDM) passive optical network (PON) using a spectrum-sliced pulse source. As a single light source, a broadband pulse source with a bandwidth of 6.5 nm and a repetition rate of 1.25 GHz is generated at a central office and supplied to a remote node (RN) through a 50-km fiber link. At the RN, narrow-band pulses (as a source for uplink transmission) are obtained by spectrum slicing the broadband pulse source with a cyclic arrayed waveguide grating and are then supplied to all optical network units (ONUs) via 1×4 power splitters and 10-km drop fibers. Eight wavelengths are obtained with a 6.5-nm bandwidth of the broadband pulse source, and the qualities of the pulses with a repetition rate of 1.25 GHz and a pulse width of 45 ps for the eight wavelengths are sufficient for four-chip OCDM encoding at the ONUs. In our experiments, four signals are multiplexed by OCDM at one wavelength, and another encoded signal is also multiplexed by WDM. The bit error rates (BERs) of the signals exhibit error-free transmission (BER<10-9) over a 60-km single-mode fiber at 1.25 Gb/s.
Characterization of optically actuated MRI-compatible active needles for medical interventions
NASA Astrophysics Data System (ADS)
Black, Richard J.; Ryu, Seokchang; Moslehi, Behzad; Costa, Joannes M.
2014-03-01
The development of a Magnetic Resonance Imaging (MRI) compatible optically-actuated active needle for guided percutaneous surgery and biopsy procedures is described. Electrically passive MRI-compatible actuation in the small diameter needle is provided by non-magnetic materials including a shape memory alloy (SMA) subject to precise fiber laser operation that can be from a remote (e.g., MRI control room) location. Characterization and optimization of the needle is facilitated using optical fiber Bragg grating (FBG) temperature sensors arrays. Active bending of the needle during insertion allows the needle to be accurately guided to even relatively small targets in an organ while avoiding obstacles and overcoming undesirable deviations away from the planned path due to unforeseen or unknowable tissue interactions. This feature makes the needle especially suitable for use in image-guided surgical procedures (ranging from MRI to CT and ultrasound) when accurate targeting is imperative for good treatment outcomes. Such interventions include reaching small tumors in biopsies, delineating freezing areas in, for example, cryosurgery and improving the accuracy of seed placement in brachytherapy. Particularly relevant are prostate procedures, which may be subject to pubic arch interference. Combining diagnostic imaging and actuation assisted biopsy into one treatment can obviate the need for a second exam for guided biopsy, shorten overall procedure times (thus increasing operating room efficiencies), address healthcare reimbursement constraints and, most importantly, improve patient comfort and clinical outcomes.
Optical vs. electronic enhancement of remote sensing imagery
NASA Technical Reports Server (NTRS)
Colwell, R. N.; Katibah, E. F.
1976-01-01
Basic aspects of remote sensing are considered and a description is provided of the methods which are employed in connection with the optical or electronic enhancement of remote sensing imagery. The advantages and limitations of various image enhancement methods and techniques are evaluated. It is pointed out that optical enhancement methods and techniques are currently superior to electronic ones with respect to spatial resolution and equipment cost considerations. Advantages of electronic procedures, on the other hand, are related to a greater flexibility regarding the presentation of the information as an aid for the interpretation by the image analyst.
Research on optimal path planning algorithm of task-oriented optical remote sensing satellites
NASA Astrophysics Data System (ADS)
Liu, Yunhe; Xu, Shengli; Liu, Fengjing; Yuan, Jingpeng
2015-08-01
GEO task-oriented optical remote sensing satellite, is very suitable for long-term continuous monitoring and quick access to imaging. With the development of high resolution optical payload technology and satellite attitude control technology, GEO optical remote sensing satellites will become an important developing trend for aerospace remote sensing satellite in the near future. In the paper, we focused on GEO optical remote sensing satellite plane array stare imaging characteristics and real-time leading mission of earth observation mode, targeted on satisfying needs of the user with the minimum cost of maneuver, and put forward the optimal path planning algorithm centered on transformation from geographic coordinate space to Field of plane, and finally reduced the burden of the control system. In this algorithm, bounded irregular closed area on the ground would be transformed based on coordinate transformation relations in to the reference plane for field of the satellite payload, and then using the branch and bound method to search for feasible solutions, cutting off the non-feasible solution in the solution space based on pruning strategy; and finally trimming some suboptimal feasible solutions based on the optimization index until a feasible solution for the global optimum. Simulation and visualization presentation software testing results verified the feasibility and effectiveness of the strategy.
Fiber-Optic Sensor-Based Remote Acoustic Emission Measurement in a 1000 °C Environment.
Yu, Fengming; Okabe, Yoji
2017-12-14
Recently, the authors have proposed a remote acoustic emission (AE) measurement configuration using a sensitive fiber-optic Bragg grating (FBG) sensor. In the configuration, the FBG sensor was remotely bonded on a plate, and an optical fiber was used as the waveguide to propagate AE waves from the adhesive point to the sensor. The previous work (Yu et al., Smart Materials and Structures 25 (10), 105,033 (2016)) has clarified the sensing principle behind the special remote measurement system that enables accurate remote sensing of AE signals. Since the silica-glass optical fibers have a high heat-resistance exceeding 1000 °C, this work presents a preliminary high-temperature AE detection method by using the optical fiber-based ultrasonic waveguide to propagate the AE from a high-temperature environment to a room-temperature environment, in which the FBG sensor could function as the receiver of the guided wave. As a result, the novel measurement configuration successfully achieved highly sensitive and stable AE detection in an alumina plate at elevated temperatures in the 100 °C to 1000 °C range. Due to its good performance, this detection method will be potentially useful for the non-destructive testing that can be performed in high-temperature environments to evaluate the microscopic damage in heat-resistant materials.
Strain Wave Acquisition by a Fiber Optic Coherent Sensor for Impact Monitoring
Sbarufatti, Claudio; Beligni, Alessio; Gilioli, Andrea; Ferrario, Maddalena; Mattarei, Marco; Martinelli, Mario; Giglio, Marco
2017-01-01
A novel fiber optic sensing technology for high frequency dynamics detection is proposed in this paper, specifically tailored for structural health monitoring applications based on strain wave analysis, for both passive impact identification and active Lamb wave monitoring. The sensing solution relies on a fiber optic-based interferometric architecture associated to an innovative coherent detection scheme, which retrieves in a completely passive way the high-frequency phase information of the received optical signal. The sensing fiber can be arranged into different layouts, depending on the requirement of the specific application, in order to enhance the sensor sensitivity while still ensuring a limited gauge length if punctual measures are required. For active Lamb wave monitoring, this results in a sensing fiber arranged in multiple loops glued on an aluminum thin panel in order to increase the phase signal only in correspondence to the sensing points of interest. Instead, for passive impact identification, the required sensitivity is guaranteed by simply exploiting a longer gauge length glued to the structure. The fiber optic coherent (FOC) sensor is exploited to detect the strain waves emitted by a piezoelectric transducer placed on the aluminum panel or generated by an impulse hammer, respectively. The FOC sensor measurements have been compared with both a numerical model based on Finite Elements and traditional piezoelectric sensors, confirming a good agreement between experimental and simulated results for both active and passive impact monitoring scenarios. PMID:28773154
A Cloud Hydrology and Albedo Synthesis Mission (CHASM)
NASA Technical Reports Server (NTRS)
Davies, Roger
2004-01-01
This slide presentation reviews the Cloud Hydrology and Albedo Synthesis Mission (CHASM). The interaction of clouds with radiation and the hydrological cycle represents a huge uncertainty in our understanding of climate science and the modeling of climate system feedbacks. Despite the recognized need for a unified treatment of cloud processes, the present global average values of remotely sensed cloud liquid water and theoretically accepted values used for cloud physics and precipitation modeling differ by an order of magnitude. This is due in part to sampling and saturation effects, as well as to threedimensional cloud structure effects. In recent work with the Multiangle Imaging SpectroRadiometer (MISR) on Terra, we have gained new insights as to how the remote sensing approach could be significantly improved using a new instrument that combines passive optical (visible and near infrared) and microwave measurements, both as pushbroom scanners with multiple viewing angles, to the degree that measurements of liquid water path over deep convective clouds over land also become possible. This instrument would also have the ability of measuring height-resolved cloud-tracked winds using a hyper stereo retrieval technique. Deployment into a precessing low earth orbit would be optimal for measuring diurnal cloud activity. We have explored an instrument design concept for this that looks promising if we can establish partnerships that provide launch and bus capabilities.
NASA Astrophysics Data System (ADS)
Sun, Zhongqiu; Peng, Zhiyan; Wu, Di; Lv, Yunfeng
2018-02-01
The optical scattering property of the target is the essential signal for passive remote sensing applications. To deepen our understanding of the light reflected from vegetation, we present results of photopolarimetric laboratory measurements from single leaf and two vegetation covers (planophile and erectophile) over a wide range of viewing directions. The bidirectional polarized reflectance factor (BPRF) was used to characterize the polarization property of our samples. We observed positive and negative polarization (-BPRFQ) of all samples in the forward scattering and backward scattering directions, respectively. Based on the comparison of the BPRF among single leaf, planophile vegetation and erectophile vegetation, our measurements demonstrate that the orientation of the leaf is a key factor in describing the amount of polarization in the forward scattering direction. Our measurements also validated certain model results stating that (1) specular reflection generates a portion of polarization in the forward scattering direction and diffuses scattering of polarized light in all hemisphere directions, (2) BPRFU is anti-symmetric in the principal plane from a recent study in which the authors simulated the polarized reflectance of vegetation cover using the vector radiative transfer theory. These photopolarimetric measurement results, which can be completely explained by the theoretical results, are useful in remote sensing applications to vegetation.
NASA Technical Reports Server (NTRS)
Mace, Gerald G.; Benson, Sally; Sonntag, Karen L.; Kato, Seiji; Min, Qilong; Minnis, Patrick; Twohy, Cynthia H.; Poellot, Michael; Dong, Xiquan; Long, Charles;
2006-01-01
It has been hypothesized that continuous ground-based remote sensing measurements from active and passive remote sensors combined with regular soundings of the atmospheric thermodynamic structure can be combined to describe the effects of clouds on the clear sky radiation fluxes. We critically test that hypothesis in this paper and a companion paper (Part II). Using data collected at the Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site sponsored by the U.S. Department of Energy, we explore an analysis methodology that results in the characterization of the physical state of the atmospheric profile at time resolutions of five minutes and vertical resolutions of 90 m. The description includes thermodynamics and water vapor profile information derived by merging radiosonde soundings with ground-based data, and continues through specification of the cloud layer occurrence and microphysical and radiative properties derived from retrieval algorithms and parameterizations. The description of the atmospheric physical state includes a calculation of the infrared and clear and cloudy sky solar flux profiles. Validation of the methodology is provided by comparing the calculated fluxes with top of atmosphere (TOA) and surface flux measurements and by comparing the total column optical depths to independently derived estimates. We find over a 1-year period of comparison in overcast uniform skies, that the calculations are strongly correlated to measurements with biases in the flux quantities at the surface and TOA of less than 10% and median fractional errors ranging from 20% to as low as 2%. In the optical depth comparison for uniform overcast skies during the year 2000 where the optical depth varies over 3 orders of magnitude we find a mean positive bias of 46% with a median bias of less than 10% and a 0.89 correlation coefficient. The slope of the linear regression line for the optical depth comparison is 0.86 with a normal deviation of 20% about this line. In addition to a case study where we examine the cloud radiative effects at the TOA, surface and atmosphere by a middle latitude synoptic-scale cyclone, we examine the cloud top pressure and optical depth retrievals of ISCCP and LBTM over a period of 1 year. Using overcast period from the year 2000, we find that the satellite algorithms tend to bias cloud tops into the middle troposphere and underestimate optical depth in high optical depth events (greater than 100) by as much as a factor of 2.
2017-03-10
formats by the co- integration of a passive 90 degree optical hybrid, highspeed balanced Ge photodetectors and a high-speed two-channel transimpedance...40 Gbaud and can handle advanced modulation formats by the co-integration of a passive 90 degree optical hybrid, high- speed balanced Ge...reached at an OSNR of 12.4 dB. The hard -decision FEC (HD-FEC) threshold (BER of 3.8 × 10-3 for 7% overhead) requires 14 dB OSNR. For 16-QAM this requires
NASA Astrophysics Data System (ADS)
Lee, Kwanil; Lee, Sang Bae; Lee, Ju Han; Han, Young-Geun; Mun, Sil-Gu; Lee, Sang-Mook; Lee, Chang-Hee
2007-04-01
We propose and experimentally demonstrate a novel protection scheme for wavelength-division-multiplexed passive optical network (WDM-PON) employing colorless optical transceivers. The proposed network employs 2 × N arrayed waveguide grating (AWG) to utilize its routing characteristics. The colorless operation is achieved by using wavelength-locked Fabry-Perot laser diodes (FP-LDs) injected with spectrum-sliced amplified spontaneous emission (ASE) light. The experimental results show that the restoration can be achieved within 8 ms against the feeder fiber fault and the power penalty introduced by the restoration process is negligible.
MEMS: A new approach to micro-optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sniegowski, J.J.
1997-12-31
MicroElectroMechanical Systems (MEMS) and their fabrication technologies provide great opportunities for application to micro-optical systems (MOEMS). Implementing MOEMS technology ranges from simple, passive components to complicated, active systems. Here, an overview of polysilicon surface micromachining MEMS combined with optics is presented. Recent advancements to the technology, which may enhance its appeal for micro-optics applications are emphasized. Of all the MEMS fabrication technologies, polysilicon surface micromachining technology has the greatest basis in and leverages the most the infrastructure for silicon integrated circuit fabrication. In that respect, it provides the potential for very large volume, inexpensive production of MOEMS. This paper highlightsmore » polysilicon surface micromachining technology in regards to its capability to provide both passive and active mechanical elements with quality optical elements.« less
NASA Astrophysics Data System (ADS)
Balakrishnan, M.; Diemeer, M. B. J.; Driessen, A.; Faccini, M.; Verboom, W.; Reinhoudt, D. N.; Leinse, A.
2006-02-01
Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature (T g) and photodefinable properties. The polymers tested are polysulfone (PS) and SU8. The electro-optic chromophore, tricyanovinylidenediphenylaminobenzene (TCVDPA), which was reported to have a high photochemical stability 1 has been employed in the current work. Tert-butyl-TCVDPA, having bulky side groups, was synthesized and a doubling of the electro-optic coefficient (r33) compared to the unmodified TCVDPA was shown. A microring resonator design was made based on the PS-TCVDPA system. SU8 (passive) and TCVDPA (active) channel waveguides were fabricated by the photodefinition technique and the passive waveguide losses were measured to be 5 dB/cm at 1550 nm.
Coherent optical modulation for antenna remoting
NASA Technical Reports Server (NTRS)
Fitzmartin, D. J.; Gels, R. G.; Balboni, E. J.
1991-01-01
A coherent fiber optic link employing wideband frequency modulation (FM) of the optical carrier is used to transfer radio frequency (RF) or microwave signals. This system is used to link a remotely located antenna to a conveniently located electronics processing site. The advantages of coherent analog fiber optic systems over non-coherent intensity modulated fiber optic analog transmission systems are described. An optical FM link employing an indirect transmitter to frequency modulate the optical carrier and a microwave delay line discriminator receiver is described. Measured performance data for a video signal centered at 60 MHz is presented showing the use of wideband FM in the link.
Experimental demonstration of PAM-DWMT for passive optical network
NASA Astrophysics Data System (ADS)
Lin, Bangjiang; Zhang, Kaiwei; Tang, Xuan; Ghassemlooy, Zabih; Lin, Chun; Zhou, Zhenlei
2018-07-01
We experimentally demonstrate a discrete wavelet multitone (DWMT) modulation scheme based on pulse amplitude modulation (PAM) for next generation passive optical network (PON), which offers high tolerance against chromatic dispersion, high spectral efficiency, low peak to average power ratio (PAPR) and low side lobes. The experimental results show the chromatic dispersion induced power penalties are negligible after 20km fiber transmission. Compared with orthogonal frequency division multiplexing (OFDM), DWMT offers a better receiver sensitivity.
Quantum secured gigabit optical access networks
Fröhlich, Bernd; Dynes, James F.; Lucamarini, Marco; Sharpe, Andrew W.; Tam, Simon W.-B.; Yuan, Zhiliang; Shields, Andrew J.
2015-01-01
Optical access networks connect multiple endpoints to a common network node via shared fibre infrastructure. They will play a vital role to scale up the number of users in quantum key distribution (QKD) networks. However, the presence of power splitters in the commonly used passive network architecture makes successful transmission of weak quantum signals challenging. This is especially true if QKD and data signals are multiplexed in the passive network. The splitter introduces an imbalance between quantum signal and Raman noise, which can prevent the recovery of the quantum signal completely. Here we introduce a method to overcome this limitation and demonstrate coexistence of multi-user QKD and full power data traffic from a gigabit passive optical network (GPON) for the first time. The dual feeder implementation is compatible with standard GPON architectures and can support up to 128 users, highlighting that quantum protected GPON networks could be commonplace in the future. PMID:26656307
Cost-effective parallel optical interconnection module based on fully passive-alignment process
NASA Astrophysics Data System (ADS)
Son, Dong Hoon; Heo, Young Soon; Park, Hyoung-Jun; Kang, Hyun Seo; Kim, Sung Chang
2017-11-01
In optical interconnection technology, high-speed and large data transitions with low error rate and cost reduction are key issues for the upcoming 8K media era. The researchers present notable types of optical manufacturing structures of a four-channel parallel optical module by fully passive alignment, which are able to reduce manufacturing time and cost. Each of the components, such as vertical-cavity surface laser/positive-intrinsic negative-photodiode array, microlens array, fiber array, and receiver (RX)/transmitter (TX) integrated circuit, is integrated successfully using flip-chip bonding, die bonding, and passive alignment with a microscope. Clear eye diagrams are obtained by 25.78-Gb/s (for TX) and 25.7-Gb/s (for RX) nonreturn-to-zero signals of pseudorandom binary sequence with a pattern length of 231 to 1. The measured responsivity and minimum sensitivity of the RX are about 0.5 A/W and ≤-6.5 dBm at a bit error rate (BER) of 10-12, respectively. The optical power margin at a BER of 10-12 is 7.5 dB, and cross talk by the adjacent channel is ≤1 dB.
Sea Ice Concentration Estimation Using Active and Passive Remote Sensing Data Fusion
NASA Astrophysics Data System (ADS)
Zhang, Y.; Li, F.; Zhang, S.; Zhu, T.
2017-12-01
In this abstract, a decision-level fusion method by utilizing SAR and passive microwave remote sensing data for sea ice concentration estimation is investigated. Sea ice concentration product from passive microwave concentration retrieval methods has large uncertainty within thin ice zone. Passive microwave data including SSM/I, AMSR-E, and AMSR-2 provide daily and long time series observations covering whole polar sea ice scene, and SAR images provide rich sea ice details with high spatial resolution including deformation and polarimetric features. In the proposed method, the merits from passive microwave data and SAR data are considered. Sea ice concentration products from ASI and sea ice category label derived from CRF framework in SAR imagery are calibrated under least distance protocol. For SAR imagery, incident angle and azimuth angle were used to correct backscattering values from slant range to ground range in order to improve geocoding accuracy. The posterior probability distribution between category label from SAR imagery and passive microwave sea ice concentration product is modeled and integrated under Bayesian network, where Gaussian statistical distribution from ASI sea ice concentration products serves as the prior term, which represented as an uncertainty of sea ice concentration. Empirical model based likelihood term is constructed under Bernoulli theory, which meets the non-negative and monotonically increasing conditions. In the posterior probability estimation procedure, final sea ice concentration is obtained using MAP criterion, which equals to minimize the cost function and it can be calculated with nonlinear iteration method. The proposed algorithm is tested on multiple satellite SAR data sets including GF-3, Sentinel-1A, RADARSAT-2 and Envisat ASAR. Results show that the proposed algorithm can improve the accuracy of ASI sea ice concentration products and reduce the uncertainty along the ice edge.
EVALUATION OF FUGITIVE EMISSIONS USING GROUND-BASED OPTICAL REMOTE SENSING TECHNOLOGY
EPA has developed and evaluated a method for characterizing fugitive emissions from large area sources. The method, known as radial plume mapping (RPM) uses multiple-beam, scanning, optical remote sensing (ORS) instrumentation such as open-path Fourier transform infrared spectro...
Remote Sensing and Monitoring of Earthen Flood-Control Structures
2017-07-01
The source of energy in passive techniques is derived from incident solar radiation or sunlight that reacts with the atmosphere, hydrosphere, and...the energy reflected or emitted from the earth’s surface. The source of energy in passive techniques involves incident solar radiation or sunlight... solar radiation is reflected back into the atmosphere, or where heat energy is emitted from the earth’s surface. As shown by Figure 2-3, certain regions
Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review
Zhang, Dianjun; Zhou, Guoqing
2016-01-01
As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, such as SMOS and SMAP etc., resulting in many data products, they are almost low resolution and not applicable in small catchment or field scale. Estimations of SM from optical and thermal remote sensing have been studied for many years and significant progress has been made. In contrast to previous reviews, this paper presents a new, comprehensive and systematic review of using optical and thermal remote sensing for estimating SM. The physical basis and status of the estimation methods are analyzed and summarized in detail. The most important and latest advances in soil moisture estimation using temporal information have been shown in this paper. SM estimation from optical and thermal remote sensing mainly depends on the relationship between SM and the surface reflectance or vegetation index. The thermal infrared remote sensing methods uses the relationship between SM and the surface temperature or variations of surface temperature/vegetation index. These approaches often have complex derivation processes and many approximations. Therefore, combinations of optical and thermal infrared remotely sensed data can provide more valuable information for SM estimation. Moreover, the advantages and weaknesses of different approaches are compared and applicable conditions as well as key issues in current soil moisture estimation algorithms are discussed. Finally, key problems and suggested solutions are proposed for future research. PMID:27548168
Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review.
Zhang, Dianjun; Zhou, Guoqing
2016-08-17
As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, such as SMOS and SMAP etc., resulting in many data products, they are almost low resolution and not applicable in small catchment or field scale. Estimations of SM from optical and thermal remote sensing have been studied for many years and significant progress has been made. In contrast to previous reviews, this paper presents a new, comprehensive and systematic review of using optical and thermal remote sensing for estimating SM. The physical basis and status of the estimation methods are analyzed and summarized in detail. The most important and latest advances in soil moisture estimation using temporal information have been shown in this paper. SM estimation from optical and thermal remote sensing mainly depends on the relationship between SM and the surface reflectance or vegetation index. The thermal infrared remote sensing methods uses the relationship between SM and the surface temperature or variations of surface temperature/vegetation index. These approaches often have complex derivation processes and many approximations. Therefore, combinations of optical and thermal infrared remotely sensed data can provide more valuable information for SM estimation. Moreover, the advantages and weaknesses of different approaches are compared and applicable conditions as well as key issues in current soil moisture estimation algorithms are discussed. Finally, key problems and suggested solutions are proposed for future research.
NASA Astrophysics Data System (ADS)
Khatri, P.; Iwabuchi, H.; Saito, M.
2017-12-01
High-level cirrus clouds, which normally occur over more than 20% of the globe, are known to have profound impacts on energy budget and climate change. The scientific knowledge regarding the vertical structure of such high-level cirrus clouds and their geometrical thickness are relatively poorer compared to low-level water clouds. Knowledge regarding cloud vertical structure is especially important in passive remote sensing of cloud properties using infrared channels or channels strongly influenced by gaseous absorption when clouds are geometrically thick and optically thin. Such information is also very useful for validating cloud resolving numerical models. This study analyzes global scale data of ice clouds identified by Cloud profiling Radar (CPR) onboard CloudSat and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO to parameterize (i) vertical profiles of ice water content (IWC), cloud-particle effective radius (CER), and ice-particle number concentration for varying ice water path (IWP) values and (ii) the relation of cloud geometrical thickness (CGT) with IWP and CER for varying cloud top temperature (CTT) values. It is found that the maxima in IWC and CER profile shifts towards cloud base with the increase of IWP. Similarly, if the cloud properties remain same, CGT shows an increasing trend with the decrease of CTT. The implementation of such cloud vertical inhomogeneity parameterization in the forward model used in the Integrated Cloud Analysis System ICAS (Iwabuchi et al., 2016) generally shows increase of brightness temperatures in infrared channels compared to vertically homogeneous cloud assumption. The cloud vertical inhomogeneity is found to bring noticeable changes in retrieved cloud properties. Retrieved CER and cloud top height become larger for optically thick cloud. We will show results of comparison of cloud properties retrieved from infrared measurements and active remote sensing.
Remote sensing of snow and ice.
Meier, M.F.
1980-01-01
Active and passive sensors operating in the visible, near infrared, thermal infrared, and microwave wavelengths are described in regard to general applications and in regard to specific USA or USSR satellites. -from Author
The family of micro sensors for remote control the pollution in liquids and gases
NASA Astrophysics Data System (ADS)
Tulaikova, Tamara; Kocharyun, Gevorg; Rogerson, Graham; Burmistrova, Ludmyla; Sychugov, Vladimir; Dorojkin, Peter
2005-10-01
There are the results for the 3 groups of fiber-optical sensors. First is the fiber-optical sensor with changed sensitive heads on the base on porous polymer with clamped activated dye. Vibration method for fiber-optical sensors provides more convenient output measurements of resonant frequency changes, in comparison with the first device. The self-focusing of the living sells into optical wave-guides in laser road in water will be considered as a new touch method for environment remote sensing.
2003-09-30
We are developing an integrated rapid environmental assessment capability that will be used to feed an ocean nowcast/forecast system. The goal is to develop a capacity for predicting the dynamics in inherent optical properties in coastal waters. This is being accomplished by developing an integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to calibrate hyperspectral remote sensing sensors in optically complex nearshore coastal waters.
Use of IRI to Model the Effect of Ionosphere Emission on Earth Remote Sensing at L-Band
NASA Technical Reports Server (NTRS)
Abraham, Saji; LeVine, David M.
2004-01-01
Microwave remote sensing in the window at 1.413 GHz (L-band) set aside for passive use only is important for monitoring sea surface salinity and soil moisture. These parameters are important for understanding ocean dynamics and energy exchange between the surface and atmosphere, and both NASA and ESA plan to launch satellite sensors to monitor these parameters at L-band (Aquarius, Hydros and SMOS). The ionosphere is an important source of error for passive remote sensing at this frequency. In addition to Faraday rotation, emission from the ionosphere is also a potential source of error at L-band. As an aid for correcting for emission, a regression model is presented that relates ionosphere emission to the integrated electron density (TEC). The goal is to use TEC from sources such as TOPEX, JASON or GPS to obtain estimates of emission over the oceans where the electron density profiles needed to compute emission are not available. In addition, data will also be presented to evaluate the use of the IRI for computing emission over the ocean.
NASA Astrophysics Data System (ADS)
Ren, Fang; Li, Juhao; Wu, Zhongying; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin
2017-01-01
We propose three-mode mode-division-multiplexing passive optical network (MDM-PON) based on low mode-crosstalk few-mode fiber (FMF) and all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). The FMF with step-index profile is designed and fabricated for effectively three-independent-spatial-mode transmission and low mode-crosstalk for MDM-PON transmission. The all-fiber mode MUX/DEMUX are composed of cascaded mode selective couplers (MSCs), which simultaneously multiplex or demultiplex multiple modes. Based on the low mode-crosstalk of the FMF and all-fiber mode MUX/DEMUX, each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing a different optical linearly polarized (LP) spatial mode in MDM-PON system. We experimentally demonstrate MDM-PON transmission of three independent-spatial-modes over 12-km FMF with 10-Gb/s optical on-off keying (OOK) signal and direct detection.
Experimental demonstration of time- and mode-division multiplexed passive optical network
NASA Astrophysics Data System (ADS)
Ren, Fang; Li, Juhao; Tang, Ruizhi; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin
2017-07-01
A time- and mode-division multiplexed passive optical network (TMDM-PON) architecture is proposed, in which each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing both different time slots and switched optical linearly polarized (LP) spatial modes. Combination of a mode multiplexer/demultiplexer (MUX/DEUX) and a simple N × 1 optical switch is employed to select the specific LP mode in each ONU. A mode-insensitive power splitter is used for signal broadcast/combination between OLT and ONUs. We theoretically propose a dynamic mode and time slot assignment scheme for TMDM-PON based on inter-ONU priority rating, in which the time delay and packet loss ratio's variation tendency are investigated by simulation. Moreover, we experimentally demonstrate 2-mode TMDM-PON transmission over 10 km FMF with 10-Gb/s on-off keying (OOK) signal and direct detection.
A long-reach WDM passive optical network enabling broadcasting service with centralized light source
NASA Astrophysics Data System (ADS)
Liu, D.; Tang, M.; Fu, S.; Liu, D.; Shum, P.
2012-02-01
We propose a long-reach wavelength-division-multiplexed (WDM) passive optical network (PON) to provide conventional point-to-point (P2P) data and downstream broadcasting service simultaneously by superimposing, for each WDM channel, the differential-phase-shift-keying (DPSK) broadcasting signal with the subcarrier multiplexing (SCM) modulated downstream P2P signal, at the optical line terminal (OLT). In the optical network units (ONUs), by re-modulating part of the downstream signal with a reflective semiconductor optical amplifier (RSOA), we realize color-less ONUs for upstream data transmission. The proposed scheme is numerically verified with a 5 Gb/s downstream P2P signal and broadcasting services, as well as 2.5 Gb/s upstream data through a 60 km bidirectional fiber link. In particular, the influence of the downstream lightwave's optical carrier-subcarrier ratio (OCSR) on the system performance is also investigated.
Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar.
Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam
2016-09-29
The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system's capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.
Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar
Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam
2016-01-01
The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system’s capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications. PMID:27690051
NASA Astrophysics Data System (ADS)
Motes, Keith R.; Olson, Jonathan P.; Rabeaux, Evan J.; Dowling, Jonathan P.; Olson, S. Jay; Rohde, Peter P.
2015-05-01
Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place—typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer—fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection—is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.
Motes, Keith R; Olson, Jonathan P; Rabeaux, Evan J; Dowling, Jonathan P; Olson, S Jay; Rohde, Peter P
2015-05-01
Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place--typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer--fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection--is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.
The Radio-optical Spectra of BL Lacs and Possible Relatives
NASA Astrophysics Data System (ADS)
Dennett-Thorpe, J.
I consider the suggestion that, in a complete sample of flat-spectrum radio sources with available optical spectra (Marcha et al 1996), the strong emission line objects, or those with passive elliptical spectra are close relatives of the BL Lacs. New observations at four frequencies from 8 to 43GHz are presented, together with evidence for radio variability. Combined with other radio and optical data from the literature, we are able to construct the non-thermal SEDs and use these to address the questions: are the optically passive objects potentially `unrecognised' BL Lacs (either intrinsically weak and/or hidden by starlight)? What is the relationship between the surprising number of strong emission-line objects and the BL Lacs?
A Highly Flexible and Efficient Passive Optical Network Employing Dynamic Wavelength Allocation
NASA Astrophysics Data System (ADS)
Hsueh, Yu-Li; Rogge, Matthew S.; Yamamoto, Shu; Kazovsky, Leonid G.
2005-01-01
A novel and high-performance passive optical network (PON), the SUCCESS-DWA PON, employs dynamic wavelength allocation to provide bandwidth sharing across multiple physical PONs. In the downstream, tunable lasers, an arrayed waveguide grating, and coarse/fine filtering combine to create a flexible new optical access solution. In the upstream, several distributed and centralized schemes are proposed and investigated. The network performance is compared to conventional TDM-PONs under different traffic models, including the self-similar traffic model and the transaction-oriented model. Broadcast support and deployment issues are addressed. The network's excellent scalability can bridge the gap between conventional TDM-PONs and WDM-PONs. The powerful architecture is a promising candidate for next generation optical access networks.
NASA Astrophysics Data System (ADS)
Lin, Wen-Piao; Wu, He-Long
2005-08-01
We propose a fiber-Bragg-grating (FBG)-based optical code-division multiple access passive optical network (OCDMA-PON) using a dual-baseband modulation scheme. A mathematical model is developed to study the performance of this scheme. According to the analyzed results, this scheme can allow a tolerance of the spectral power distortion (SPD) ratio of 25% with a bit error rate (BER) of 10-9 when the modified pseudorandom noise (PN) code length is 16. Moreover, we set up a simulated system to evaluate the baseband and radio frequency (RF) band transmission characteristics. The simulation results demonstrate that our proposed OCDMA-PON can provide a cost-effective and scalable fiber-to-the-home solution.
NASA Astrophysics Data System (ADS)
Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.
2016-10-01
Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.
NASA Technical Reports Server (NTRS)
Aronson, Albert Irving (Inventor)
1977-01-01
A three stage passive cooler for use in a spacecraft for cooling an infra-red detector includes a detector mounting cold plate for mounting the detector directly to the telescope optics. The telescope optics collect and direct the infra-red radiation from the earth, for example, to the infra-red detector, and are mounted directly to the spacecraft. The remaining stages of the cooler are mounted with thermal insulators to each other and to the spacecraft at separate locations from the detector mounting cold plate.
Optical flows method for lightweight agile remote sensor design and instrumentation
NASA Astrophysics Data System (ADS)
Wang, Chong; Xing, Fei; Wang, Hongjian; You, Zheng
2013-08-01
Lightweight agile remote sensors have become one type of the most important payloads and were widely utilized in space reconnaissance and resource survey. These imaging sensors are designed to obtain the high spatial, temporary and spectral resolution imageries. Key techniques in instrumentation include flexible maneuvering, advanced imaging control algorithms and integrative measuring techniques, which are closely correlative or even acting as the bottle-necks for each other. Therefore, mutual restrictive problems must be solved and optimized. Optical flow is the critical model which to be fully represented in the information transferring as well as radiation energy flowing in dynamic imaging. For agile sensors, especially with wide-field-of view, imaging optical flows may distort and deviate seriously when they perform large angle attitude maneuvering imaging. The phenomena are mainly attributed to the geometrical characteristics of the three-dimensional earth surface as well as the coupled effects due to the complicated relative motion between the sensor and scene. Under this circumstance, velocity fields distribute nonlinearly, the imageries may badly be smeared or probably the geometrical structures are changed since the image velocity matching errors are not having been eliminated perfectly. In this paper, precise imaging optical flow model is established for agile remote sensors, for which optical flows evolving is factorized by two forms, which respectively due to translational movement and image shape changing. Moreover, base on that, agile remote sensors instrumentation was investigated. The main techniques which concern optical flow modeling include integrative design with lightweight star sensors along with micro inertial measurement units and corresponding data fusion, the assemblies of focal plane layout and control, imageries post processing for agile remote sensors etc. Some experiments show that the optical analyzing method is effective to eliminate the limitations for the performance indexes, and succeeded to be applied for integrative system design. Finally, a principle prototype of agile remote sensor designed by the method is discussed.
Comparison of Model Prediction with Measurements of Galactic Background Noise at L-Band
NASA Technical Reports Server (NTRS)
LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, Willam J.; Skou, Niels; Sobjaerg, S.
2004-01-01
The spectral window at L-band (1.413 GHz) is important for passive remote sensing of surface parameters such as soil moisture and sea surface salinity that are needed to understand the hydrological cycle and ocean circulation. Radiation from celestial (mostly galactic) sources is strong in this window and an accurate accounting for this background radiation is often needed for calibration. Modem radio astronomy measurements in this spectral window have been converted into a brightness temperature map of the celestial sky at L-band suitable for use in correcting passive measurements. This paper presents a comparison of the background radiation predicted by this map with measurements made with several modem L-band remote sensing radiometers. The agreement validates the map and the procedure for locating the source of down-welling radiation.
Best practices in passive remote sensing VNIR hyperspectral system hardware calibrations
Jablonski, Joseph; Durell, Christopher; Slonecker, Terry; Wong, Kwok; Simon, Blair; Eichelberger, Andrew; Osterberg, Jacob
2016-01-01
Hyperspectral imaging (HSI) is an exciting and rapidly expanding area of instruments and technology in passive remote sensing. Due to quickly changing applications, the instruments are evolving to suit new uses and there is a need for consistent definition, testing, characterization and calibration. This paper seeks to outline a broad prescription and recommendations for basic specification, testing and characterization that must be done on Visible Near Infra-Red grating-based sensors in order to provide calibrated absolute output and performance or at least relative performance that will suit the user’s task. The primary goal of this paper is to provide awareness of the issues with performance of this technology and make recommendations towards standards and protocols that could be used for further efforts in emerging procedures for national laboratory and standards groups.
A Self-Referenced Optical Intensity Sensor Network Using POFBGs for Biomedical Applications
Moraleda, Alberto Tapetado; Montero, David Sánchez; Webb, David J.; García, Carmen Vázquez
2014-01-01
This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF)-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG) and polymer FBGs (POFBG) is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown. PMID:25615736
A self-referenced optical intensity sensor network using POFBGs for biomedical applications.
Tapetado Moraleda, Alberto; Sánchez Montero, David; Webb, David J; Vázquez García, Carmen
2014-12-12
This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF)-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG) and polymer FBGs (POFBG) is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown.
Optically powered remote gas monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubaniewicz, T.H. Jr.; Chilton, J.E.
1995-12-31
Many mines rely on toxic gas sensors to help maintain a safe and healthy work environment. This report describes a prototype monitoring system developed by the US Bureau of Mines (USBM) that uses light to power and communicate with several remote toxic gas sensors. The design is based on state-of-art optical-to-electrical power converters, solid-state diode lasers, and fiber optics. This design overcomes several problems associated with conventional wire-based systems by providing complete electrical isolation between the remote sensors and the central monitor. The prototype performed well during a 2-week field trial in the USBM Pittsburgh Research Center Safety Research Coalmore » Mine.« less
In-situ spectrophotometric probe
Prather, William S.
1992-01-01
A spectrophotometric probe for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and coterminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focussing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid.
Remote sensing with intense filaments enhanced by adaptive optics
NASA Astrophysics Data System (ADS)
Daigle, J.-F.; Kamali, Y.; Châteauneuf, M.; Tremblay, G.; Théberge, F.; Dubois, J.; Roy, G.; Chin, S. L.
2009-11-01
A method involving a closed loop adaptive optic system is investigated as a tool to significantly enhance the collected optical emissions, for remote sensing applications involving ultrafast laser filamentation. The technique combines beam expansion and geometrical focusing, assisted by an adaptive optics system to correct the wavefront aberrations. Targets, such as a gaseous mixture of air and hydrocarbons, solid lead and airborne clouds of contaminated aqueous aerosols, were remotely probed with filaments generated at distances up to 118 m after the focusing beam expander. The integrated backscattered signals collected by the detection system (15-28 m from the filaments) were increased up to a factor of 7, for atmospheric N2 and solid lead, when the wavefronts were corrected by the adaptive optic system. Moreover, an extrapolation based on a simplified version of the LIDAR equation showed that the adaptive optic system improved the detection distance for N2 molecular fluorescence, from 45 m for uncorrected wavefronts to 125 m for corrected.
Monitoring muscle optical scattering properties during rigor mortis
NASA Astrophysics Data System (ADS)
Xia, J.; Ranasinghesagara, J.; Ku, C. W.; Yao, G.
2007-09-01
Sarcomere is the fundamental functional unit in skeletal muscle for force generation. In addition, sarcomere structure is also an important factor that affects the eating quality of muscle food, the meat. The sarcomere structure is altered significantly during rigor mortis, which is the critical stage involved in transforming muscle to meat. In this paper, we investigated optical scattering changes during the rigor process in Sternomandibularis muscles. The measured optical scattering parameters were analyzed along with the simultaneously measured passive tension, pH value, and histology analysis. We found that the temporal changes of optical scattering, passive tension, pH value and fiber microstructures were closely correlated during the rigor process. These results suggested that sarcomere structure changes during rigor mortis can be monitored and characterized by optical scattering, which may find practical applications in predicting meat quality.
RADIAL COMPUTED TOMOGRAPHY OF AIR CONTAMINANTS USING OPTICAL REMOTE SENSING
The paper describes the application of an optical remote-sensing (ORS) system to map air contaminants and locate fugitive emissions. Many ORD systems may utilize radial non-overlapping beam geometry and a computed tomography (CT) algorithm to map the concentrations in a plane. In...
Passive absolute age and temperature history sensor
Robinson, Alex; Vianco, Paul T.
2015-11-10
A passive sensor for historic age and temperature sensing, including a first member formed of a first material, the first material being either a metal or a semiconductor material and a second member formed of a second material, the second material being either a metal or a semiconductor material. A surface of the second member is in contact with a surface of the first member such that, over time, the second material of the second member diffuses into the first material of the first member. The rate of diffusion for the second material to diffuse into the first material depends on a temperature of the passive sensor. One of the electrical conductance, the electrical capacitance, the electrical inductance, the optical transmission, the optical reflectance, or the crystalline structure of the passive sensor depends on the amount of the second material that has diffused into the first member.
Passive isolator design for jitter reduction in the Terrestrial Planet Finder Coronagraph
NASA Technical Reports Server (NTRS)
Blaurock, Carl; Liu, Kuo-Chia; Dewell, Larry; Alexander, James
2005-01-01
Terrestrial Planet Finder (TPF) is a mission to locate and study extrasolar Earth-like planets. The TPF Coronagraph (TPF-C), planned for launch in the latter half of the next decade, will use a coronagraphic mask and other optics to suppress the light of the nearby star in order to collect visible light from such planets. The required contrast ratio of 5e-11 can only be achieved by maintaining pointing accuracy to 4 milli-arcseconds, and limiting optics jitter to below 5 nm. Numerous mechanical disturbances act to induce jitter. This paper concentrates on passive isolation techniques to minimize the optical degradation introduced by disturbance sources. A passive isolation system, using compliant mounts placed at an energy bottleneck to reduce energy transmission above a certain frequency, is a low risk, flight proven design approach. However, the attenuation is limited, compared to an active system, so the feasibility of the design must be demonstrated by analysis. The paper presents the jitter analysis for the baseline TPF design, using a passive isolation system. The analysis model representing the dynamics of the spacecraft and telescope is described, with emphasis on passive isolator modeling. Pointing and deformation metrics, consistent with the TPF-C error budget, are derived. Jitter prediction methodology and results are presented. Then an analysis of the critical design parameters that drive the TPF-C jitter response is performed.
NASA Astrophysics Data System (ADS)
Pleros, N.; Kalfas, G.; Mitsolidou, C.; Vagionas, C.; Tsiokos, D.; Miliou, A.
2017-01-01
Future broadband access networks in the 5G framework will need to be bilateral, exploiting both optical and wireless technologies. This paper deals with new approaches and synergies on radio-over-fiber (RoF) technologies and how those can be leveraged to seamlessly converge wireless technology for agility and mobility with passive optical networks (PON)-based backhauling. The proposed convergence paradigm is based upon a holistic network architecture mixing mm-wave wireless access with photonic integration, dynamic capacity allocation and network coding schemes to enable high bandwidth and low-latency fixed and 60GHz wireless personal area communications for gigabit rate per user, proposing and deploying on top a Medium-Transparent MAC (MT-MAC) protocol as a low-latency bandwidth allocation mechanism. We have evaluated alternative network topologies between the central office (CO) and the access point module (APM) for data rates up to 2.5 Gb/s and SC frequencies up to 60 GHz. Optical network coding is demonstrated for SCM-based signaling to enhance bandwidth utilization and facilitate optical-wireless convergence in 5G applications, reporting medium-transparent network coding directly at the physical layer between end-users communicating over a RoF infrastructure. Towards equipping the physical layer with the appropriate agility to support MT-MAC protocols, a monolithic InP-based Remote Antenna Unit optoelectronic PIC interface is shown that ensures control over the optical resource allocation assisting at the same time broadband wireless service. Finally, the MT-MAC protocol is analysed and simulation and analytical theoretical results are presented that are found to be in good agreement confirming latency values lower than 1msec for small- to mid-load conditions.
NASA Astrophysics Data System (ADS)
Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang
2017-10-01
In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.
Cost-effective and monitoring-active technique for TDM-passive optical networks
NASA Astrophysics Data System (ADS)
Chi, Chang-Chia; Lin, Hong-Mao; Tarn, Chen-Wen; Lin, Huang-Liang
2014-08-01
A reliable, detection-active and cost-effective method which employs the hello and heartbeat signals for branched node distinguishing to monitor fiber fault in any branch of distribution fibers of a time division multiplexing passive optical network (TDM-PON) is proposed. With this method, the material cost of building an optical network monitor system for a TDM-PON with 168 ONUs and the time of identifying a multiple branch faults is significantly reduced in a TDM-PON system of any scale. A fault location in a 1 × 32 TDM-PON system using this method to identify the fault branch is demonstrated.
Self-match based on polling scheme for passive optical network monitoring
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Guo, Hao; Jia, Xinhong; Liao, Qinghua
2018-06-01
We propose a self-match based on polling scheme for passive optical network monitoring. Each end-user is equipped with an optical matcher that exploits only the specific length patchcord and two different fiber Bragg gratings with 100% reflectivity. The simple and low-cost scheme can greatly simplify the final recognition processing of the network link status and reduce the sensitivity of the photodetector. We analyze the time-domain relation between reflected pulses and establish the calculation model to evaluate the false alarm rate. The feasibility of the proposed scheme and the validity of the time-domain relation analysis are experimentally demonstrated.
Nyachionjeka, Kumbirayi
2014-01-01
In this paper, the performance and feasibility of a hybrid wavelength division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) system with 128 optical network units (ONUs) is analysed. In this system, triple play services (video, voice and data) are successfully communicated through a distance of up to 28 km. Moreover, we analysed and compared the performance of various modulation formats for different distances in the proposed hybrid WDM/TDM PON. NRZ rectangular emerged as the most appropriate modulation format for triple play transmission in the proposed hybrid PON. PMID:27382633
NASA Astrophysics Data System (ADS)
Farhadi, L.; Bateni, S. M.; Auligne, T.; Navari, M.
2017-12-01
Snow emissivity is a key parameter for the estimation of snow surface temperature, which is needed as an initial value in climate models and determination of the outgoing long-wave radiation. Moreover, snow emissivity is required for retrieval of atmospheric parameters (e.g., temperature and humidity profiles) from satellite measurements and satellite data assimilations in numerical weather prediction systems. Microwave emission models and remote sensing data cannot accurately estimate snow emissivity due to limitations attributed to each of them. Existing microwave emission models introduce significant uncertainties in their snow emissivity estimates. This is mainly due to shortcomings of the dense media theory for snow medium at high frequencies, and erroneous forcing variables. The well-known limitations of passive microwave data such as coarse spatial resolution, saturation in deep snowpack, and signal loss in wet snow are the major drawbacks of passive microwave retrieval algorithms for estimation of snow emissivity. A full exploitation of the information contained in the remote sensing data can be achieved by merging them with snow emission models within a data assimilation framework. Such an optimal merging can overcome the specific limitations of models and remote sensing data. An Ensemble Batch Smoother (EnBS) data assimilation framework was developed in this study to combine the synthetically generated passive microwave brightness temperatures at 1.4-, 18.7-, 36.5-, and 89-GHz frequencies with the MEMLS microwave emission model to reduce the uncertainty of the snow emissivity estimates. We have used the EnBS algorithm in the context of observing system simulation experiment (or synthetic experiment) at the local scale observation site (LSOS) of the NASA CLPX field campaign. Our findings showed that the developed methodology significantly improves the estimates of the snow emissivity. The simultaneous assimilation of passive microwave brightness temperatures at all frequencies (i.e., 1.4-, 18.7-, 36.5-, and 89-GHz) reduce the root-mean-square-error (RMSE) of snow emissivity at 1.4-, 18.7-, 36.5-, and 89-GHz (H-pol.) by 80%, 42%, 52%, 40%, respectively compared to the corresponding snow emissivity estimates from the open-loop model.
NASA Astrophysics Data System (ADS)
Wu, Yanzhi; Ye, Tong; Zhang, Liang; Hu, Xiaofeng; Li, Xinwan; Su, Yikai
2011-03-01
It is believed that next-generation passive optical networks (PONs) are required to provide flexible and various services to users in a cost-effective way. To address this issue, for the first time, this paper proposes and demonstrates a novel wavelength-division-multiplexed PON (WDM-PON) architecture to simultaneously support three types of services: 1) wireless access traffic, 2) optical virtual passive network (VPN) communications, and 3) conventional wired services. In the optical line terminal (OLT), we use two cascaded Mach-Zehnder modulators (MZMs) on each wavelength channel to generate an optical carrier, and produce the wireless and the downstream traffic using the orthogonal modulation technique. In each optical network unit (ONU), the obtained optical carrier is modulated by a single MZM to provide the VPN and upstream communications. Consequently, the light sources in the ONUs are saved and the system cost is reduced. The feasibility of our proposal is experimentally and numerically verified.
Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil
2018-02-01
Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical fibers and their applications 2012
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.; Wójcik, Waldemar
2013-01-01
XIVth Conference on Optical Fibers and Their Applications, Nałęczów 2012, which has been organized since more than 35 years, has summarized the achievements of the local optical fiber technology community, for the last year and a half. The conference specializes in developments of optical fiber technology, glass and polymer, classical and microstructured, passive and active. The event gathered around 100 participants. There were shown 60 presentations from 20 research and application groups active in fiber photonics, originating from academia and industry. Topical tracks of the Conference were: photonic materials, planar waveguides, passive and active optical fibers, propagation theory in nonstandard optical fibers, and new constructions of optical fibers. A panel discussion concerned teaching in fiber photonics. The conference was accompanied by a school on Optical Fiber Technology. The paper summarizes the chosen main topical tracks of the conference on Optical Fibers and Their Applications, Nałęczów 2012. The papers from the conference presentations will be published in Proc.SPIE. The next conference from this series is scheduled for January 2014 in Białowieża.
The paper presents a new approach to quantifying emissions from fugitive gaseous air pollution sources. Computed tomography (CT) and path-integrated optical remote sensing (PI-ORS) concentration data are combined in a new field beam geometry. Path-integrated concentrations are ...
Remote-controlled optics experiment for supporting senior high school and undergraduate teaching
NASA Astrophysics Data System (ADS)
Choy, S. H.; Jim, K. L.; Mak, C. L.; Leung, C. W.
2017-08-01
This paper reports the development of a remote laboratory (RemoteLab) platform for practising technologyenhanced learning of optics. The development of RemoteLab enhances students' understanding of experimental methodologies and outcomes, and enable students to conduct experiments everywhere at all times. While the initial goal of the system was for physics major undergradutes, the sytem was also made available for senior secondary school students. To gauge the impact of the RemoteLab, we evaluated two groups of students, which included 109 physics 1st-year undergraduates and 11 students from a local secondary school. After the experiments, evaluation including questionnaire survey and interviews were conducted to collect data on students' perceptions on RemoteLab and implementation issues related to the platform. The surveys focused on four main topics, including user interface, experiment setup, booking system and learning process. The survey results indicated that most of the participants' views towards RemoteLab was positive.
NASA Technical Reports Server (NTRS)
Congalton, Russell G.; Thomas, Randall W.; Zinke, Paul J.
1986-01-01
Work focused on the acquisition of remotely sensed data for the 1985 to 1986 hydrogolic year; continuation of the field measurement program; continued acquisition and construction of passive microwave remote sensing instruments; a compilation of data necessary for an initial water balance computation; and participation with the EOS Simulataneity Team in reviewing the Feather River watershed as a possible site for a simultaneity experiment.
2012-12-01
IR remote sensing o ers a measurement method to detect gaseous species in the outdoor environment. Two major obstacles limit the application of this... method in quantitative analysis : (1) the e ect of both temperature and concentration on the measured spectral intensities and (2) the di culty and...crucial. In this research, particle swarm optimization, a population- based optimization method was applied. Digital ltering and wavelet processing methods
16TH Nordic Semiconductor Meeting, Laugarvatn, Iceland, 12-15 June 1994. Abstracts
1995-01-10
measured resistance and inductance values were essentially in accordance with the theoretical values. The coils where characterized remotely using a grid...dip meter, inductively coupled to our electroplated coils. Reference 1. Passive Silicon Transensor Intended for Biomedical, Remote Pressure Monitoring...covered with Li (99.9%) imbedded in mineral oil. Lithium was then pre-deposited at 300-350C for 10-30 minutes in a diffusion furnace . Excess Li was
Design issues for semi-passive optical communication devices
NASA Astrophysics Data System (ADS)
Glaser, I.
2007-09-01
Optical smart cards are devices containing a retro-reflector, light modulator, and some computing and data storage capabilities to affect semi-passive communication. They do not produce light; instead they modulate and send back light received from a stationary unit. These devices can replace contact-based smart cards as well as RF based ones for applications ranging from identification to transmitting and validating data. Since their transmission is essentially focused on the receiving unit, they are harder to eavesdrop than RF devices, yet need no physical contact or alignment. In this paper we explore optical design issues of these devices and estimate their optical behavior. Specifically, we analyze how these compact devices can be optimized for selected application profiles. Some of the key parameters addressed are effective light efficiency (how much modulated signal can be received by the stationary unit given the amount of light it transmits), range of tilt angles (angle between device surface normal to the line connecting the optical smart card with the stationary unit) through which the device would be effective, and power requirements of the semi-passive unit. In addition, issues concerning compact packaging of this device are discussed. Finally, results of the analysis are employed to produce a comparison of achievable capabilities of these optical smart cards, as opposed to alternative devices, and discuss potential applications were they can be best utilized.
NASA Astrophysics Data System (ADS)
Bhardwaj, Atul; Agrawal, Lalita; Pal, Suranjan; Kumar, Anil
2006-12-01
Laser Science and Technology Center (LASTEC), Delhi, is developing a space qualified diode pumped Nd: YAG laser transmitter capable of generating 10 ns pulses of 30 mJ energy @ 10 pps. This paper presents the results of experiments for comparative studies between electro-optic and passively Q-switched Nd: YAG laser in a crossed porro prism based laser resonator. Experimental studies have been performed by developing an economical bench model of flash lamp pumped Nd: YAG laser (rod dimension, \
Passive device based on plastic optical fibers to determine the indices of refraction of liquids.
Zubia, J; Garitaonaindía, G; Arrúe, J
2000-02-20
We have designed and measured a passive device based on plastic optical fibers (POF's) that one can use to determine the indices of refraction of liquids. A complementary software has also been designed to simulate the behavior of the device. We report on the theoretical model developed for the device, its implementation in a simulation software program, and the results of the simulation. A comparison of the experimental and calculated results is also shown and discussed.
NASA Astrophysics Data System (ADS)
Piqueras, M. A.; Mengual, T.; Navasquillo, O.; Sotom, M.; Caille, G.
2017-11-01
The evolution of broadband communication satellites shows a clear trend towards beam forming and beamswitching systems with efficient multiple access schemes with wide bandwidths, for which to be economically viable, the communication price shall be as low as possible. In such applications, the most demanding antenna concept is the Direct Radiating Array (DRA) since its use allows a flexible power allocation between beams and may afford failures in their active chains with low impact on the antenna radiating pattern. Forming multiple antenna beams, as for `multimedia via satellite' missions, can be done mainly in three ways: in microwave domain, by digital or optical processors: - Microwave beam-formers are strongly constrained by the mass and volume of microwave devices and waveguides - the bandwidth of digital processors is limited due to power consumption and complexity constraints. - The microwave photonics is an enabling technology that can improve the antenna feeding network performances, overcoming the limitations of the traditional technology in the more demanding scenarios, and may overcome the conventional RF beam-former issues, to generate accurately the very numerous time delays or phase shifts required in a DRA with a large number of beams and of radiating elements. Integrated optics technology can play a crucial role as an alternative technology for implementing beam-forming structures for satellite applications thanks to the well known advantages of this technology such as low volume and weight, huge electrical bandwidth, electro-magnetic interference immunity, low consumption, remote delivery capability with low-attenuation (by carrying all microwave signals over optical fibres) and the robustness and precision that exhibits integrated optics. Under the ESA contract 4000105095/12/NL/RA the consortium formed by DAS Photonics, Thales Alenia Space and the Nanophotonic Technology Center of Valencia is developing a three-dimensional Optical Beamforming Network (OBFN) based on integrated photonics, with fibre-optics remote antenna feeding capabilities, that addresses the requirements of SoA DRA antennas in space communications, able to feed potentially hundreds of antenna elements with hundred of simultaneous, orthogonal beams. The core of this OBFN is a Photonic Integrated Circuit (PIC) implementing a passive Butler matrix similar to the structure well known by the RF community, but overcoming the issues of scalability, size, compactness and manufacturability associated to the fact of addressing hundred of elements. This fully-integrated beam-former solution also overcomes the opto-mechanical issues and environmental sensitivity of other free-space based OBFNs.
Ray, Mark D.; Sedlacek, Arthur J.
2003-08-19
A method and apparatus for remote, stand-off, and high efficiency spectroscopic detection of biological and chemical substances. The apparatus including an optical beam transmitter which transmits a beam having an axis of transmission to a target, the beam comprising at least a laser emission. An optical detector having an optical detection path to the target is provided for gathering optical information. The optical detection path has an axis of optical detection. A beam alignment device fixes the transmitter proximal to the detector and directs the beam to the target along the optical detection path such that the axis of transmission is within the optical detection path. Optical information gathered by the optical detector is analyzed by an analyzer which is operatively connected to the detector.
NASA Technical Reports Server (NTRS)
Inaba, H.
1986-01-01
An all optical remote sensing system utilizing long distance, ultralow loss optical fiber networks is studied and discussed for near infrared absorption measurements of combustible and/or explosive gases such as CH4 and C3H8 in our environment, including experimental results achieved in a diameter more than 20 km. The use of a near infrared wavelength range is emphasized.
NASA Astrophysics Data System (ADS)
El-Sheikh, H. M.; Yakushenkov, Y. G.
2014-08-01
Formulas for determination of the interconnection between the spatial resolution from perspective distortions and the temporal resolution of the onboard electro-optical system for remote sensing application for a variety of scene viewing modes is offered. These dependences can be compared with the user's requirements, upon the permission values of the design parameters of the modern main units of the electro-optical system is discussed.
Xia, Mengling; Liu, Chao; Zhao, Zhiyong; Wang, Jing; Lin, Changgui; Xu, Yinsheng; Heo, Jong; Dai, Shixun; Han, Jianjun; Zhao, Xiujian
2017-02-07
CdSe quantum dots (QDs) doped glasses have been widely investigated for optical filters, LED color converter and other optical emitters. Unlike CdSe QDs in solution, it is difficult to passivate the surface defects of CdSe QDs in glass matrix, which strongly suppress its intrinsic emission. In this study, surface passivation of CdSe quantum dots (QDs) by Cd 1-x Zn x Se shell in silicate glass was reported. An increase in the Se/Cd ratio can lead to the partial passivation of the surface states and appearance of the intrinsic emission of CdSe QDs. Optimizing the heat-treatment condition promotes the incorporation of Zn into CdSe QDs and results in the quenching of the defect emission. Formation of CdSe/Cd 1-x Zn x Se core/graded shell QDs is evidenced by the experimental results of TEM and Raman spectroscopy. Realization of the surface passivation and intrinsic emission of II-VI QDs may facilitate the wide applications of QDs doped all inorganic amorphous materials.
A continuous-wave and passively Q-switched Nd:LaGGG laser at 937 nm
NASA Astrophysics Data System (ADS)
Li, Z.-Y.; Ying, H.-Y.; Yang, H.; He, J.-L.
2013-10-01
A diode-end-pumped continuous-wave (CW) and passively Q-switched Nd:LaGGG (GGG: gadolinium gallium garnet) laser at about 937 nm was demonstrated for the first time. The maximum CW output power of 540 mW was obtained with the optical-optical conversion efficiency of 3.2% and the slope efficiency of 4.4%. A V3+:YAG (yttrium aluminum garnet) saturable absorber with the initial transmission of 97% was used for the passive Q-switching regime. The shortest pulse width was achieved as 500 ns with the pulse repetition rate of 96 kHz. The corresponding single-pulse energy and pulse peak power were determined as 1.56 μJ and 3.12 W, respectively.
Remote sensing of ecosystem health: opportunities, challenges, and future perspectives.
Li, Zhaoqin; Xu, Dandan; Guo, Xulin
2014-11-07
Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.
In-situ spectrophotometric probe
Prather, W.S.
1992-12-15
A spectrophotometric probe is described for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and co-terminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focusing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid. 5 figs.
FIBER AND INTEGRATED OPTICS: Integrated optical passive ring resonator for optical gyroscopes
NASA Astrophysics Data System (ADS)
Baĭborodin, Yu V.; Dyadin, S. S.; Lyadenko, A. F.; Mashchenko, A. I.; Ul'yanov, I. A.; Fatin, Yu L.
1992-02-01
A passive ring resonator based on channel waveguides, formed in a K8 glass substrate by diffusion ion exchange in molten potassium nitrate, was made and investigated. The waveguide structure of the resonator included a ring waveguide as well as two Y-type couplers, whose symmetric arms were coupled to the ring waveguide, whereas homogeneous arms were coupled to an external laser and a photodetector. The coupling of the external devices to the channel waveguides was implemented by prisms and butt (end face) contacts. The transfer function of the ring resonator was determined experimentally in order to illustrate its resonant properties and sharpness. Estimates were obtained of the ultimate sensitivity of an optical gyroscope utilizing a ring resonator with the properties described above and ways of improving this sensitivity were analyzed.
The progress of sub-pixel imaging methods
NASA Astrophysics Data System (ADS)
Wang, Hu; Wen, Desheng
2014-02-01
This paper reviews the Sub-pixel imaging technology principles, characteristics, the current development status at home and abroad and the latest research developments. As Sub-pixel imaging technology has achieved the advantages of high resolution of optical remote sensor, flexible working ways and being miniaturized with no moving parts. The imaging system is suitable for the application of space remote sensor. Its application prospect is very extensive. It is quite possible to be the research development direction of future space optical remote sensing technology.
NASA Technical Reports Server (NTRS)
Clarke, Antony D.; Porter, John N.
1997-01-01
Our research effort is focused on improving our understanding of aerosol properties needed for optical models for remote marine regions. This includes in-situ and vertical column optical closure and involves a redundancy of approaches to measure and model optical properties that must be self consistent. The model is based upon measured in-situ aerosol properties and will be tested and constrained by the vertically measured spectral differential optical depth of the marine boundary layer, MBL. Both measured and modeled column optical properties for the boundary layer, when added to the free-troposphere and stratospheric optical depth, will be used to establish spectral optical depth over the entire atmospheric column for comparison to and validation of satellite derived radiances (AVHRR).
Laer-induced Breakdown Spectroscopy Instrument for Element Analysis of Planetary Surfaces
NASA Technical Reports Server (NTRS)
Blacic, J.; Pettit, D.; Cremers, D.; Roessler, N.
1993-01-01
One of the most fundamental pieces of information about any planetary body is the elemental and mineralogical composition of its surface materials. We are developing an instrument to obtain such data at ranges of up to several hundreds of meters using the technique of Laser-Induced Breakdown Spectroscopy (LIBS). We envision our instrument being used from a spacecraft in close rendezvous with small bodies such as comets and asteroids, or deployed on surface-rover vehicles on large bodies such as Mars and the Moon. The elemental analysis is based on atomic emission spectroscopy of a laser-induced plasma or spark. A pulsed, diode pumped Nd:YAG laser of several hundred millijoules optical energy is used to vaporize and electronically excite the constituent elements of a rock surface remotely located from the laser. Light emitted from the excited plasma is collected and introduced to the entrance slit of a small grating spectrometer. The spectrally dispersed spark light is detected with either a linear photo diode array or area CCD array. When the latter detector is used, the optical and spectrometer components of the LIBS instrument can also be used in a passive imaging mode to collect and integrate reflected sunlight from the same rock surface. Absorption spectral analysis of this reflected light gives mineralogical information that provides a remote geochemical characterization of the rock surface. We performed laboratory calibrations in air and in vacuum on standard rock powders to quantify the LIBS analysis. We performed preliminary field tests using commercially available components to demonstrate remote LIBS analysis of terrestrial rock surfaces at ranges of over 25 m, and we have demonstrated compatibility with a six-wheeled Russian robotic rover vehicle. Based on these results, we believe that all major and most minor elements expected on planetary surfaces can be measured with absolute accuracy of 10-15 percent and much higher relative accuracy. We have performed preliminary systems analysis of a LIBS instrument to evaluate probable mass and power requirements; results of this analysis are summarized.
Components for IFOG based inertial measurement units using active and passive polymer materials
NASA Astrophysics Data System (ADS)
Ashley, Paul R.; Temmen, Mark G.; Diffey, William M.; Sanghadasa, Mohan; Bramson, Michael D.; Lindsay, Geoffrey A.; Guenthner, Andrew J.
2006-08-01
Highly accurate, compact, and low cost inertial measurement units (IMUs) are needed for precision guidance in navigation systems. Active and passive polymer materials have been successfully used in fabricating two of the key guided-wave components, the phase modulator and the optical transceiver, for IMUs based on the interferometric fiber optic gyroscope (IFOG) technology. Advanced hybrid waveguide fabrication processes and novel optical integration techniques have been introduced. Backscatter compensated low loss phase modulators with low half-wave drive voltage (V π) have been fabricated with CLD- and FTC- type high performance electro-optic chromophores. A silicon-bench architecture has been used in fabricating high gain low noise transceivers with high optical power while maintaining the spectral quality and long lifetime. Gyro bias stability of less than 0.02 deg/hr has been demonstrated with these components. A review of the novel concepts introduced, fabrication and integration techniques developed and performance achieved are presented.
Haji, Mohsin; Hou, Lianping; Kelly, Anthony E; Akbar, Jehan; Marsh, John H; Arnold, John M; Ironside, Charles N
2012-01-30
Optical self seeding feedback techniques can be used to improve the noise characteristics of passively mode-locked laser diodes. External cavities such as fiber optic cables can increase the memory of the phase and subsequently improve the timing jitter. In this work, an improved optical feedback architecture is proposed using an optical fiber loop delay as a cavity extension of the mode-locked laser. We investigate the effect of the noise reduction as a function of the loop length and feedback power. The well known composite cavity technique is also implemented for suppressing supermode noise artifacts presented due to harmonic mode locking effects. Using this method, we achieve a record low radio frequency linewidth of 192 Hz for any high frequency (>1 GHz) passively mode-locked laser to date (to the best of the authors' knowledge), making it promising for the development of high frequency optoelectronic oscillators.
Filter Bank Multicarrier (FBMC) for long-reach intensity modulated optical access networks
NASA Astrophysics Data System (ADS)
Saljoghei, Arsalan; Gutiérrez, Fernando A.; Perry, Philip; Barry, Liam P.
2017-04-01
Filter Bank Multi Carrier (FBMC) is a modulation scheme which has recently attracted significant interest in both wireless and optical communications. The interest in optical communications arises due to FBMC's capability to operate without a Cyclic Prefix (CP) and its high resilience to synchronisation errors. However, the operation of FBMC in optical access networks has not been extensively studied either in downstream or upstream. In this work we use experimental work to investigate the operation of FBMC in intensity modulated Passive Optical Networks (PONs) employing direct detection in conjunction with both direct and external modulation schemes. The data rates and propagation lengths employed here vary from 8.4 to 14.8 Gb/s and 0-75 km. The results suggest that by using FBMC it is possible to accomplish CP-Less transmission up to 75 km of SSMF in passive links using cost effective intensity modulation and detection schemes.
Passive unmanned sky spectroscopy for remote bird classification
NASA Astrophysics Data System (ADS)
Lundin, Patrik; Brydegaard, Mikkel; Cocola, Lorenzo; Runemark, Anna; Åkesson, Susanne; Svanberg, Sune
2011-11-01
We present a method based on passive spectroscopy with aim to remotely study flying birds. A compact spectrometer is continuously recording spectra of a small section of the sky, waiting for birds to obscure part of the field-of-view when they pass the field in flight. In such situations the total light intensity received through the telescope, looking straight up, will change very rapidly as compared to the otherwise slowly varying sky light. On passage of a bird, both the total intensity and the spectral shape of the captured light changes notably. A camera aimed in the same direction as the telescope, although with a wider field-of-view, is triggered by the sudden intensity changes in the spectrometer to record additional information, which may be used for studies of migration and orientation. Example results from a trial are presented and discussed. The study is meant to explore the information that could be gathered and extracted with the help of a spectrometer connected to a telescope. Information regarding the color, size and height of flying birds is discussed. Specifically, an application for passive distance determination utilizing the atmospheric oxygen A-band absorption at around 760 nm is discussed.
NASA Astrophysics Data System (ADS)
Kim, Byung-Ho; Hwang, Jonghee; Lee, Young Jin; Kim, Jin-Ho; Jeon, Dae-Woo; Lee, Mi Jai
2016-08-01
We developed a fabrication method for remote phosphor by a screen-printing process, using green phosphor, red phosphor, and thermally stable glass frit. The glass frit was introduced for long-term stability. The optical properties of the remote phosphor were observed via an integrating sphere; the photoluminescence spectrum dramatically changed on incorporating a minor amount of the red phosphor. These unique optical properties were elucidated using four factors: phosphor ratio, scattering induced by packing density, light intensity per unit volume, and reabsorption. The thermal stability of the remote phosphor was investigated at 500°C, demonstrating its outstanding thermal properties.
Beaufort/Bering 1979 microwave remote sensing data catalog report, 14-24 March 1979
NASA Technical Reports Server (NTRS)
Hirstein, W. S.; Hennigar, H. F.; Schaffner, S. K.; Delnore, V. E.; Grantham, W. L.
1983-01-01
The airborne microwave remote sending measurements obtained by the Langley Research Center in support of the 1979 Sea-Ice Radar Experiment (SIRE) in the Beaufort and Bering Seas are discussed. The remote sensing objective of SIRE was to define correlations between both active and passive microwave signatures and ice phenomena assocated with practical applications in the Arctic. The instruments used by Langley during SIRE include the stepped frequency microwave radiometer (SFMR), the airborne microwave scatterometer (AMSCAT), the precision radiation thermometer (PRT-5), and metric aerial photography. Remote sensing data are inventoried and cataloged in a user-friendly format. The data catalog is presented as time-history plots when and where data were obtained as well as the sensor configuration.
Optical sampling of the flux tower footprint
NASA Astrophysics Data System (ADS)
Gamon, J. A.
2015-03-01
The purpose of this review is to address the reasons and methods for conducting optical remote sensing within the flux tower footprint. Fundamental principles and conclusions gleaned from over two decades of proximal remote sensing at flux tower sites are reviewed. An organizing framework is the light-use efficiency (LUE) model, both because it is widely used, and because it provides a useful theoretical construct for integrating optical remote sensing with flux measurements. Multiple ways of driving this model, ranging from meteorological measurements to remote sensing, have emerged in recent years, making it a convenient conceptual framework for comparative experimental studies. New interpretations of established optical sampling methods, including the Photochemical Reflectance Index (PRI) and Solar-Induced Fluorescence (SIF), are discussed within the context of the LUE model. Multi-scale analysis across temporal and spatial axes is a central theme, because such scaling can provide links between ecophysiological mechanisms detectable at the level of individual organisms and broad patterns emerging at larger scales, enabling evaluation of emergent properties and extrapolation to the flux footprint and beyond. Proper analysis of sampling scale requires an awareness of sampling context that is often essential to the proper interpretation of optical signals. Additionally, the concept of optical types, vegetation exhibiting contrasting optical behavior in time and space, is explored as a way to frame our understanding of the controls on surface-atmosphere fluxes. Complementary NDVI and PRI patterns across ecosystems are offered as an example of this hypothesis, with the LUE model and light-response curve providing an integrating framework. We conclude that experimental approaches allowing systematic exploration of plant optical behavior in the context of the flux tower network provides a unique way to improve our understanding of environmental constraints and ecophysiological function. In addition to an enhanced mechanistic understanding of ecosystem processes, this integration of remote sensing with flux measurements offers many rich opportunities for upscaling, satellite validation, and informing practical management objectives ranging form assessing ecosystem health and productivity to quantifying biospheric carbon sequestration.
Physical-mathematical model of optical radiation interaction with biological tissues
NASA Astrophysics Data System (ADS)
Kozlovska, Tetyana I.; Kolisnik, Peter F.; Zlepko, Sergey M.; Titova, Natalia V.; Pavlov, Volodymyr S.; Wójcik, Waldemar; Omiotek, Zbigniew; Kozhambardiyeva, Miergul; Zhanpeisova, Aizhan
2017-08-01
Remote photoplethysmography (PPG) imaging is an optical technique to remotely assess the local coetaneous microcirculation. In this paper, we present a model and supporting experiments confirming the contribution of skin inhomogeneity to the morphology of PPG waveforms. The physical-mathematical model of distribution of optical radiation in biological tissues was developed. It allows determining the change of intensity of optical radiation depending on such parameters as installation angle of the sensor, biological tissue thickness and the wavelength. We obtained graphics which represent changes of the optical radiation intensity that is registered by photodetector depending on installation angle of the sensor, biological tissue thickness and the extinction coefficient.
This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPA′s Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...
Passive microwave remote sensing for sea ice research
NASA Technical Reports Server (NTRS)
1984-01-01
Techniques for gathering data by remote sensors on satellites utilized for sea ice research are summarized. Measurement of brightness temperatures by a passive microwave imager converted to maps of total sea ice concentration and to the areal fractions covered by first year and multiyear ice are described. Several ancillary observations, especially by means of automatic data buoys and submarines equipped with upward looking sonars, are needed to improve the validation and interpretation of satellite data. The design and performance characteristics of the Navy's Special Sensor Microwave Imager, expected to be in orbit in late 1985, are described. It is recommended that data from that instrument be processed to a form suitable for research applications and archived in a readily accessible form. The sea ice data products required for research purposes are described and recommendations for their archival and distribution to the scientific community are presented.
NASA Astrophysics Data System (ADS)
Riedi, J.; Labonnote, L. C.; Contaut, F.; Platnick, S. E.; Yang, P.
2016-12-01
Realistic assumptions for representation of ice crystal optical properties are key in deriving meaningful information on ice clouds from spaceborne observations. With the increasing number of multi-sensor analysis it is also of paramount importance that ice crystal models be consistents for the interpretation of both passive and active observations in the solar and thermal infrared spectral domains. There has been significant evidences in the past few years that roughened particles might represent an overall good proxy for ice crystal models being able to simultaneously explain visible and infrared observations obtained from either active or passive sensors (Holz et al, 2016). Nevertheless, details of the exact phase function remain very informative fingerprints of ice crystal shapes and can also be critical parameters for retrievals performed under specific viewing geometries. Analysis of lidar observation for instance remains very sensitive to details of phase function in and around the backscatter direction. The relative magnitude and width of the backscatter peak intensity that appears in phase functions of ice crystal has been shown to carry useful information for characterization of ice crystal habits (Zhou & Yang, 2015). Based on these theoretical results we are revisiting here our previous analysis of coincident POLDER, MODIS and CALIOP observations whereby we were able to study the angular variability of ice clouds reflectance in and around the exact backscatter direction. Statistics from 5 years of observations of peak intensities derived from POLDER have been established in relation to coincident MODIS cloud optical thickness and effective radius retrievals as well as CALIOP layer integrated depolarization ratio and attenuated backscatter. Those are analyzed in view of the theoretical results from Zhou & Yang (2015). In particular, correlation of peak intensity and width with particle size retrieved from MODIS will be presented and implications for ice cloud microphysical properties and remote sensing applications will be discussed. Chen Zhou and Ping Yang : Backscattering peak of ice cloud particles, Opt. Express 23, 11995-12003 (2015) Holz, R. E. et al : Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals, Atmos. Chem. Phys., 16, 5075-5090 (2016)
Remote Monitoring of Cardiac Implantable Electronic Devices.
Cheung, Christopher C; Deyell, Marc W
2018-01-08
Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi; Wang, Chun-Cheng
2015-11-01
To protect patient privacy and ensure authorized access to remote medical services, many remote user authentication schemes for the integrated electronic patient record (EPR) information system have been proposed in the literature. In a recent paper, Das proposed a hash based remote user authentication scheme using passwords and smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various passive and active attacks. However, in this paper, we found that Das's authentication scheme is still vulnerable to modification and user duplication attacks. Thereafter we propose a secure and efficient authentication scheme for the integrated EPR information system based on lightweight hash function and bitwise exclusive-or (XOR) operations. The security proof and performance analysis show our new scheme is well-suited to adoption in remote medical healthcare services.
Evaluating ESA CCI soil moisture in East Africa.
McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R; Wang, Shugong; Peters-Lidard, Christa D; Verdin, James P
2016-06-01
To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASA's Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R>0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.
Top/bottom multisensor remote sensing of Arctic sea ice
NASA Technical Reports Server (NTRS)
Comiso, J. C.; Wadhams, P.; Krabill, W. B.; Swift, R. N.; Crawford, J. P.
1991-01-01
Results are presented on the Aircraft/Submarine Sea Ice Project experiment carried out in May 1987 to investigate concurrently the top and the bottom features of the Arctic sea-ice cover. Data were collected nearly simultaneously by instruments aboard two aircraft and a submarine, which included passive and active (SAR) microwave sensors, upward looking and sidescan sonars, a lidar profilometer, and an IR sensor. The results described fall into two classes of correlations: (1) quantitative correlations between profiles, such as ice draft (sonar), ice elevation (laser), SAR backscatter along the track line, and passive microwave brightness temperatures; and (2) qualitative and semiquantitative correlations between corresponding areas of imagery (i.e., passive microwave, AR, and sidescan sonar).
Ong, Keat G.; Paulose, Maggie; Grimes, Craig A.
2003-01-01
A wireless, passive, remote-query sensor for monitoring sodium hypochlorite (bleach) solutions is reported. The sensor is comprised of a magnetically-soft ferromagnetic ribbon, coated with a layer of polyurethane and alumina, having a large and nonlinear permeability that supports higher-order harmonics in response to a time varying magnetic field. The hypochlorite ions induce swelling in the coating, with the resultant stress altering the harmonic signature of the sensor from which the sodium hypochlorite concentration can be determined. The wireless, passive nature of the sensor platform enables long-term monitoring of bleach concentrations in the environment. The sensor platform can be extended to other chemical analytes of interest as desired.
RFI Detection and Mitigation using Independent Component Analysis as a Pre-Processor
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Gholian, Armen; Bradley, Damon C.; Wong, Mark; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.
2016-01-01
Radio-frequency interference (RFI) has negatively impacted scientific measurements of passive remote sensing satellites. This has been observed in the L-band radiometers Soil Moisture and Ocean Salinity (SMOS), Aquarius and more recently, Soil Moisture Active Passive (SMAP). RFI has also been observed at higher frequencies such as K band. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements. This work explores the use of Independent Component Analysis (ICA) as a blind source separation (BSS) technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.
NASA Astrophysics Data System (ADS)
Su, Jinlong; Tian, Yan; Hu, Fei; Gui, Liangqi; Cheng, Yayun; Peng, Xiaohui
2017-10-01
Dielectric constant is an important role to describe the properties of matter. This paper proposes This paper proposes the concept of mixed dielectric constant(MDC) in passive microwave radiometric measurement. In addition, a MDC inversion method is come up, Ratio of Angle-Polarization Difference(RAPD) is utilized in this method. The MDC of several materials are investigated using RAPD. Brightness temperatures(TBs) which calculated by MDC and original dielectric constant are compared. Random errors are added to the simulation to test the robustness of the algorithm. Keywords: Passive detection, microwave/millimeter, radiometric measurement, ratio of angle-polarization difference (RAPD), mixed dielectric constant (MDC), brightness temperatures, remote sensing, target recognition.
Dynamic Analysis with Fibre Optic Sensors for Structural Health Monitoring
2006-10-01
cracked thick aluminum plate repaired with a bonded composite patch using transmission-type extrinsic Fabry – Perot interferometric optical fiber...and optical filtering have been used to demodulate returned Bragg signals. Due to the passive nature of the interrogation unit, system bandwidth is
Application of velocity filtering to optical-flow passive ranging
NASA Technical Reports Server (NTRS)
Barniv, Yair
1992-01-01
The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.
NASA Astrophysics Data System (ADS)
Shaw, J. A.; Nugent, P. W.
2016-12-01
Ground-based longwave-infrared (LWIR) cloud imaging can provide continuous cloud measurements in the Arctic. This is of particular importance during the Arctic winter when visible wavelength cloud imaging systems cannot operate. This method uses a thermal infrared camera to observe clouds and produce measurements of cloud amount and cloud optical depth. The Montana State University Optical Remote Sensor Laboratory deployed an infrared cloud imager (ICI) at the Atmospheric Radiation Monitoring North Slope of Alaska site at Barrow, AK from July 2012 through July 2014. This study was used to both understand the long-term operation of an ICI in the Arctic and to study the consistency of the ICI data products in relation to co-located active and passive sensors. The ICI was found to have a high correlation (> 0.92) with collocated cloud instruments and to produce an unbiased data product. However, the ICI also detects thin clouds that are not detected by most operational cloud sensors. Comparisons with high-sensitivity actively sensed cloud products confirm the existence of these thin clouds. Infrared cloud imaging systems can serve a critical role in developing our understanding of cloud cover in the Arctic by provided a continuous annual measurement of clouds at sites of interest.
Integrated coding-aware intra-ONU scheduling for passive optical networks with inter-ONU traffic
NASA Astrophysics Data System (ADS)
Li, Yan; Dai, Shifang; Wu, Weiwei
2016-12-01
Recently, with the soaring of traffic among optical network units (ONUs), network coding (NC) is becoming an appealing technique for improving the performance of passive optical networks (PONs) with such inter-ONU traffic. However, in the existed NC-based PONs, NC can only be implemented by buffering inter-ONU traffic at the optical line terminal (OLT) to wait for the establishment of coding condition, such passive uncertain waiting severely limits the effect of NC technique. In this paper, we will study integrated coding-aware intra-ONU scheduling in which the scheduling of inter-ONU traffic within each ONU will be undertaken by the OLT to actively facilitate the forming of coding inter-ONU traffic based on the global inter-ONU traffic distribution, and then the performance of PONs with inter-ONU traffic can be significantly improved. We firstly design two report message patterns and an inter-ONU traffic transmission framework as the basis for the integrated coding-aware intra-ONU scheduling. Three specific scheduling strategies are then proposed for adapting diverse global inter-ONU traffic distributions. The effectiveness of the work is finally evaluated by both theoretical analysis and simulations.
Remote Sensing of Cloud Properties using Ground-based Measurements of Zenith Radiance
NASA Technical Reports Server (NTRS)
Chiu, J. Christine; Marshak, Alexander; Knyazikhin, Yuri; Wiscombe, Warren J.; Barker, Howard W.; Barnard, James C.; Luo, Yi
2006-01-01
An extensive verification of cloud property retrievals has been conducted for two algorithms using zenith radiances measured by the Atmospheric Radiation Measurement (ARM) Program ground-based passive two-channel (673 and 870 nm) Narrow Field-Of-View Radiometer. The underlying principle of these algorithms is that clouds have nearly identical optical properties at these wavelengths, but corresponding spectral surface reflectances (for vegetated surfaces) differ significantly. The first algorithm, the RED vs. NIR, works for a fully three-dimensional cloud situation. It retrieves not only cloud optical depth, but also an effective radiative cloud fraction. Importantly, due to one-second time resolution of radiance measurements, we are able, for the first time, to capture detailed changes in cloud structure at the natural time scale of cloud evolution. The cloud optical depths tau retrieved by this algorithm are comparable to those inferred from both downward fluxes in overcast situations and microwave brightness temperatures for broken clouds. Moreover, it can retrieve tau for thin patchy clouds, where flux and microwave observations fail to detect them. The second algorithm, referred to as COUPLED, couples zenith radiances with simultaneous fluxes to infer 2. In general, the COUPLED and RED vs. NIR algorithms retrieve consistent values of tau. However, the COUPLED algorithm is more sensitive to the accuracies of measured radiance, flux, and surface reflectance than the RED vs. NIR algorithm. This is especially true for thick overcast clouds where it may substantially overestimate z.
Method and device for remotely monitoring an area using a low peak power optical pump
Woodruff, Steven D.; Mcintyre, Dustin L.; Jain, Jinesh C.
2014-07-22
A method and device for remotely monitoring an area using a low peak power optical pump comprising one or more pumping sources, one or more lasers; and an optical response analyzer. Each pumping source creates a pumping energy. The lasers each comprise a high reflectivity mirror, a laser media, an output coupler, and an output lens. Each laser media is made of a material that emits a lasing power when exposed to pumping energy. Each laser media is optically connected to and positioned between a corresponding high reflectivity mirror and output coupler along a pumping axis. Each output coupler is optically connected to a corresponding output lens along the pumping axis. The high reflectivity mirror of each laser is optically connected to an optical pumping source from the one or more optical pumping sources via an optical connection comprising one or more first optical fibers.
Shortwave infrared 512 x 2 line sensor for earth resources applications
NASA Astrophysics Data System (ADS)
Tower, J. R.; Pellon, L. E.; McCarthy, B. M.; Elabd, H.; Moldovan, A. G.; Kosonocky, W. F.; Kalshoven, J. E., Jr.; Tom, D.
1985-08-01
As part of the NASA remote-sensing Multispectral Linear Array Program, an edge-buttable 512 x 2 IRCCD line image sensor with 30-micron Pd2Si Schottky-barrier detectors is developed for operation with passive cooling at 120 K in the 1.1-2.5 micron short infrared band. On-chip CCD multiplexers provide one video output for each 512 detector band. The monolithic silicon line imager performance at a 4-ms optical integration time includes a signal-to-noise ratio of 241 for irradiance of 7.2 microwatts/sq cm at 1.65 microns wavelength, a 5000 dynamic range, a modulation transfer function, greater than 60 percent at the Nyquist frequency, and an 18-milliwatt imager chip total power dissipation. Blemish-free images with three percent nonuniformity under illumination and nonlinearity of 1.25 percent are obtained. A five SWIR imager hybrid focal plane was constructed, demonstrating the feasibility of arrays with only a two-detector loss at each joint.
Comparison of the MODIS Collection 5 Multilayer Cloud Detection Product with CALIPSO
NASA Technical Reports Server (NTRS)
Platnick, Steven; Wind, Gala; King, Michael D.; Holz, Robert E.; Ackerman, Steven A.; Nagle, Fred W.
2010-01-01
CALIPSO, launched in June 2006, provides global active remote sensing measurements of clouds and aerosols that can be used for validation of a variety of passive imager retrievals derived from instruments flying on the Aqua spacecraft and other A-Train platforms. The most recent processing effort for the MODIS Atmosphere Team, referred to as the Collection 5 scream, includes a research-level multilayer cloud detection algorithm that uses both thermodynamic phase information derived from a combination of solar and thermal emission bands to discriminate layers of different phases, as well as true layer separation discrimination using a moderately absorbing water vapor band. The multilayer detection algorithm is designed to provide a means of assessing the applicability of 1D cloud models used in the MODIS cloud optical and microphysical product retrieval, which are generated at a 1 km resolution. Using pixel-level collocations of MODIS Aqua, CALIOP, we investigate the global performance of multilayer cloud detection algorithms (and thermodynamic phase).
Remote detection of buried land-mines and IEDs using LWIR polarimetric imaging.
Gurton, Kristan P; Felton, Melvin
2012-09-24
We report results of an ongoing study designed to assess the ability for enhanced detection of recently buried land-mines and/or improvised explosive devices (IED) devices using passive long-wave infrared (LWIR) polarimetric imaging. Polarimetric results are presented for a series of field tests conducted at various locations and soil types. Well-calibrated Stokes images, S0, S1, S2, and the degree-of-linear-polarization (DoLP) are recorded for different line-of-sight (LOS) slant paths at varying distances. Results span a three-year time period in which three different LWIR polarimetric camera systems are used. All three polarimetric imaging platforms used a spinning-achromatic-retarder (SAR) design capable of achieving high polarimetric frame rates and good radiometric throughput without the loss of spatial resolution inherent in other optical designs. Receiver-operating-characteristic (ROC) analysis and a standardized contrast parameter are used to compare detectability between conventional LWIR thermal and polarimetric imagery. Results suggest improved detectability, regardless of geographic location or soil type.
Campaign datasets for Two-Column Aerosol Project (TCAP)
Berg,Larry; Mei,Fan; Cairns,Brian; Chand,Duli; Comstock,Jennifer; Cziczo,Daniel; Hostetler,Chris; Hubbe,John; Long,Chuck; Michalsky,Joseph; Pekour,Mikhail; Russell,Phil; Scott,Herman; Sedlacek,Arthur; Shilling,John; Springston,Stephen; Tomlinson,Jason; Watson,Thomas; Zelenyuk-Imre,Alla
2013-12-30
This campaign was designed to provide a detailed set of observations with which to 1) perform radiative and cloud condensation nuclei (CCN) closure studies, 2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing 3) extend a previously developed technique to investigate aerosol indirect effects, and 4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) was deployed on Cape Cod, Massachusetts for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation and cloud characteristics at a location subject to both clear- and cloudy- conditions, and clean- and polluted-conditions. These observations were supplemented by two aircraft intensive observation periods (IOPS), one in the summer and a second in the winter. Each IOP required two aircraft.
NASA Astrophysics Data System (ADS)
Zhou, L.; Xu, S.; Liu, J.
2017-12-01
The retrieval of sea ice thickness mainly relies on satellite altimetry, and the freeboard measurements are converted to sea ice thickness (hi) under certain assumptions over snow loading. The uncertain in snow depth (hs) is a major source of uncertainty in the retrieved sea ice thickness and total volume for both radar and laser altimetry. In this study, novel algorithms for the simultaneous retrieval of hi and hs are proposed for the data synergy of L-band (1.4 GHz) passive remote sensing and both types of active altimetry: (1) L-band (1.4GHz) brightness temperature (TB) from Soil Moisture Ocean Salinity (SMOS) satellite and sea ice freeboard (FBice) from radar altimetry, (2) L-band TB data and snow freeboard (FBsnow) from laser altimetry. Two physical models serve as the forward models for the retrieval: L-band radiation model, and the hydrostatic equilibrium model. Verification with SMOS and Operational IceBridge (OIB) data is carried out, showing overall good retrieval accuracy for both sea ice parameters. Specifically, we show that the covariability between hs and FBsnow is crucial for the synergy between TB and FBsnow. Comparison with existing algorithms shows lower uncertainty in both sea ice parameters, and that the uncertainty in the retrieved sea ice thickness as caused by that of snow depth is spatially uncorrelated, with the potential reduction of the volume uncertainty through spatial sampling. The proposed algorithms can be applied to the retrieval of sea ice parameters at basin-scale, using concurrent active and passive remote sensing data based on satellites.
Closed-loop motor control using high-speed fiber optics
NASA Technical Reports Server (NTRS)
Dawson, Reginald (Inventor); Rodriquiz, Dagobert (Inventor)
1991-01-01
A closed-loop control system for controlling the operation of one or more servo motors or other controllable devices is described. The system employs a fiber optics link immune to electromagnetic interference, for transmission of control signals from a controller or controllers at a remote station to the power electronics located in proximity to the motors or other devices at the local station. At the remote station the electrical control signals are time-multiplexed, converted to a formatted serial bit stream, and converted to light signals for transmission over a single fiber of the fiber optics link. At the local station, the received optical signals are reconstructed as electrical control signals for the controlled motors or other devices. At the local station, an encoder sensor linked to the driven device generates encoded feedback signals which provide information as to a condition of the controlled device. The encoded signals are placed in a formatted serial bit stream, multiplexed, and transmitted as optical signals over a second fiber of the fiber optic link which closes the control loop of the closed-loop motor controller. The encoded optical signals received at the remote station are demultiplexed, reconstructed and coupled to the controller(s) as electrical feedback signals.
Albert, A; Mobley, C
2003-11-03
Subsurface remote sensing signals, represented by the irradiance re fl ectance and the remote sensing re fl ectance, were investigated. The present study is based on simulations with the radiative transfer program Hydrolight using optical properties of Lake Constance (German: Bodensee) based on in-situ measurements of the water constituents and the bottom characteristics. Analytical equations are derived for the irradiance re fl ectance and remote sensing re fl ectance for deep and shallow water applications. The input of the parameterization are the inherent optical properties of the water - absorption a(lambda) and backscattering bb(lambda). Additionally, the solar zenith angle thetas, the viewing angle thetav , and the surface wind speed u are considered. For shallow water applications the bottom albedo RB and the bottom depth zB are included into the parameterizations. The result is a complete set of analytical equations for the remote sensing signals R and Rrs in deep and shallow waters with an accuracy better than 4%. In addition, parameterizations of apparent optical properties were derived for the upward and downward diffuse attenuation coefficients Ku and Kd.
Interannual variation of the surface temperature of tropical forests from satellite observations
Gao, Huilin; Zhang, Shuai; Fu, Rong; ...
2016-01-01
Land surface temperatures (LSTs) within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS), providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability ofmore » cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Lastly, the differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP) reanalysis data).« less
Navigation of military and space unmanned ground vehicles in unstructured terrains
NASA Technical Reports Server (NTRS)
Lescoe, Paul; Lavery, David; Bedard, Roger
1991-01-01
Development of unmanned vehicles for local navigation in terrains unstructured by humans is reviewed. Modes of navigation include teleoperation or remote control, computer assisted remote driving (CARD), and semiautonomous navigation (SAN). A first implementation of a CARD system was successfully tested using the Robotic Technology Test Vehicle developed by Jet Propulsion Laboratory. Stereo pictures were transmitted to a remotely located human operator, who performed the sensing, perception, and planning functions of navigation. A computer provided range and angle measurements and the path plan was transmitted to the vehicle which autonomously executed the path. This implementation is to be enhanced by providing passive stereo vision and a reflex control system for autonomously stopping the vehicle if blocked by an obstacle. SAN achievements include implementation of a navigation testbed on a six wheel, three-body articulated rover vehicle, development of SAN algorithms and code, integration of SAN software onto the vehicle, and a successful feasibility demonstration that represents a step forward towards the technology required for long-range exploration of the lunar or Martian surface. The vehicle includes a passive stereo vision system with real-time area-based stereo image correlation, a terrain matcher, a path planner, and a path execution planner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Huilin; Zhang, Shuai; Fu, Rong
Land surface temperatures (LSTs) within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS), providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability ofmore » cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Lastly, the differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP) reanalysis data).« less
Method and apparatus for preloading a joint by remotely operable means
NASA Technical Reports Server (NTRS)
Kahn, Jon B. (Inventor)
1993-01-01
The invention is a method and apparatus for joining structures, an active structure and a passive structure, and imposing a tensile pre-load on the joint by a remotely operable mechanism comprising a heat contractible joining element. The method and apparatus include mounting on the structure, a probe shaft of material which is transformable from an expanded length to a contracted length when heated to a specific temperature range. The shaft is provided with a probe head which is receivable in a receptacle opening formed in the passive structure, when the active structure is moved into engagement therewith by an appropriate manipulator mechanism. A latching system mounted on the structure adjacent to the receptacle opening captures the probe head, when the probe head is inserted a predetermined amount. A heating coil on the shaft is energizable by remote control for heating the shaft to a temperature range which transforms the shaft to its contracted length, whereby a latching shoulder thereof engages latching elements of the latching system and imposes a tensile preload on the structural joint. Provision is also made for manually adjusting the probe head on the shaft to allow for manual detachment of the structures or manual preloading of the structural joint.
Method and apparatus for preloading a joint by remotely operable means
NASA Technical Reports Server (NTRS)
Shelton, Robert O. (Inventor)
1992-01-01
The invention is a method and apparatus for joining structures, an active structure and a passive structure, and imposing a tensile pre-load on the joint by a remotely operable mechanism comprising a heat contractible joining element. The method and apparatus include mounting on the structure, a probe shaft of material which is transformable from an expanded length to a contracted length when heated to a specific temperature range. The shaft is provided with a probe head which is receivable in a receptacle opening formed in the passive structure, when the active structure is moved into engagement therewith by an appropriate manipulator mechanism. A latching system mounted on the structure adjacent to the receptacle opening captures the probe head, when the probe head is inserted a predetermined amount. A heating coil on the shaft is energizable by remote control for heating the shaft to a temperature range which transforms the shaft to its contracted length, whereby a latching shoulder thereof engages latching elements of the latching system and imposes a tensile preload on the structural joint. Provision is also made for manually adjusting the probe head on the shaft to allow for manual detachment of the structures or manual preloading of the structural joint.
Remote measurement of pollution from aircraft
NASA Technical Reports Server (NTRS)
Reichle, H. G., Jr.
1976-01-01
This paper discusses the problem of the remote measurement of tropospheric air pollution from aircraft platforms. Following a discussion of the energy sources available for passive remote sensing and the location of the absorption bands of the gases, it describes the spectral resolution that would be required and the relative merits of the shorter and longer infrared wavelengths. It then traces the evolution of one instrument concept (the gas filter correlation radiometer) to its present state, and describes flight results that show the technique to be capable of measuring carbon monoxide over water. A new instrument is described that will allow the measurements to be extended to areas over land.
Walter, W. David; Anderson, Charles W.; VerCauteren, Kurt C.
2012-01-01
Methods to individually mark and identify free-ranging wildlife without trapping and handling would be useful for a variety of research and management purposes. The use of Passive Integrated Transponder technology could be an efficient method for collecting data for mark-recapture analysis and other strategies for assessing characteristics about populations of various wildlife species. Passive Integrated Transponder tags (PIT) have unique numbered frequencies and have been used to successfully mark and identify mammals. We tested for successful injection of PIT and subsequent functioning of PIT into gelatin blocks using 4 variations of a prototype dart. We then selected the prototype dart that resulted in the least depth of penetration in the gelatin block to assess the ability of PIT to be successfully implanted into muscle tissue of white-tailed deer (Odocoileus virginianus) post-mortem and long-term in live, captive Rocky Mountain elk (Cervus elaphus). The prototype dart with a 12.7 mm (0.5 inch) needle length and no powder charge resulted in the shallowest mean (± SD) penetration depth into gelatin blocks of 27.0 mm (±5.6 mm) with 2.0 psi setting on the Dan-Inject CO2-pressured rifle. Eighty percent of PIT were successfully injected in the muscle mass of white-tailed deer post-mortem with a mean (± SD) penetration depth of 22.2 mm (±3.8 mm; n = 6). We injected PIT successfully into 13 live, captive elk by remote delivery at about 20 m that remained functional for 7 months. We successfully demonstrated that PIT could be remotely delivered in darts into muscle mass of large mammals and remain functional for >6 months. Although further research is warranted to fully develop the technique, remote delivery of PIT technology to large mammals is possible using prototype implant darts. PMID:22984572
NASA Technical Reports Server (NTRS)
Crowell, Sean M. R.; Kawa, S. Randolph; Browell, Edward V.; Hammerling, Dorit M.; Moore, Berrien; Schaefer, Kevin; Doney, Scott C.
2018-01-01
Space-borne observations of CO2 are vital to gaining understanding of the carbon cycle in regions of the world that are difficult to measure directly, such as the tropical terrestrial biosphere, the high northern and southern latitudes, and in developing nations such as China. Measurements from passive instruments such as GOSAT (Greenhouse Gases Observing Satellite) and OCO-2 (Orbiting Carbon Observatory 2), however, are constrained by solar zenith angle limitations as well as sensitivity to the presence of clouds and aerosols. Active measurements such as those in development for the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission show strong potential for making measurements in the high-latitude winter and in cloudy regions. In this work we examine the enhanced flux constraint provided by the improved coverage from an active measurement such as ASCENDS. The simulation studies presented here show that with sufficient precision, ASCENDS will detect permafrost thaw and fossil fuel emissions shifts at annual and seasonal time scales, even in the presence of transport errors, representativeness errors, and biogenic flux errors. While OCO-2 can detect some of these perturbations at the annual scale, the seasonal sampling provided by ASCENDS provides the stronger constraint. Plain Language Summary: Active and passive remote sensors show the potential to provide unprecedented information on the carbon cycle. With the all-season sampling, active remote sensors are more capable of constraining high-latitude emissions. The reduced sensitivity to cloud and aerosol also makes active sensors more capable of providing information in cloudy and polluted scenes with sufficient accuracy. These experiments account for errors that are fundamental to the top-down approach for constraining emissions, and even including these sources of error, we show that satellite remote sensors are critical for understanding the carbon cycle.
The Use of Remote Sensing to Resolve the Aerosol Radiative Forcing
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Tanre, D.; Remer, Lorraine
1999-01-01
Satellites are used for remote sensing of aerosol optical thickness and optical properties in order to derive the aerosol direct and indirect radiative forcing of climate. Accuracy of the derived aerosol optical thickness is used as a measure of the accuracy in deriving the aerosol radiative forcing. Several questions can be asked to challenge this concept. Is the accuracy of the satellite-derived aerosol direct forcing limited to the accuracy of the measured optical thickness? What are the spectral bands needed to derive the total aerosol forcing? Does most of the direct or indirect aerosol forcing of climate originate from regions with aerosol concentrations that are high enough to be detected from space? What should be the synergism ground-based and space-borne remote sensing to solve the problem? We shall try to answer some of these questions, using AVIRIS airborne measurements and simulations.
Where size does matter: foldable telescope design for microsat application
NASA Astrophysics Data System (ADS)
Segert, Tom; Danziger, Björn; Lieder, Matthias
2017-11-01
The DOBSON SPACE TELESCOPE Project (DST) at the Technical University of Berlin (TUB) believes that micro satellites can be a challenging competitor in the high resolution remote sensing market. Using a micro satellite as basis for a remote sensing platform will dramatically reduce the cost for the end users thereby initiating the predicted remote sensing boom. The Challenging task is that an optic required for a GSD smaller than 1m is much bigger than the given room for secondary payload. In order to break the volume limits of hitchhiker payloads the DST team develops an optical telescope with deployable structures. The core piece of DST is a 20 inch modified Cassegrain optic. Stored during ascend the instrument fits in a box measuring 60 x 60 x 30cm (including telescope and optical plane assembly). After the satellite was released into free space the telescope unfolds and collimates automatically.
Optical Energy Transfer and Conversion System
NASA Technical Reports Server (NTRS)
Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)
2018-01-01
An optical energy transfer and conversion system comprising a fiber spooler and an electrical power extraction subsystem connected to the spooler with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy. The fiber spooler may reside on the remote mobility platform which may be a vehicle, or apparatus that is either self-propelled or is carried by a secondary mobility platform either on land, under the sea, in the air or in space.
NASA Astrophysics Data System (ADS)
Henry, Mary Catherine
The use of active and passive remote sensing systems for relating forest spatial patterns to fire history was tested over one of the Arizona Sky Islands. Using Landsat Thematic Mapper (TM), Shuttle Imaging Radar (SIR-C), and data fusion I examined the relationship between landscape metrics and a range of fire history characteristics. Each data type (TM, SIR-C, and fused) was processed in the following manner: each band, channel, or derived feature was simplified to a thematic layer and landscape statistics were calculated for plots with known fire history. These landscape metrics were then correlated with fire history characteristics, including number of fire-free years in a given time period, mean fire-free interval, and time since fire. Results from all three case studies showed significant relationships between fire history and forest spatial patterns. Data fusion performed as well or better than Landsat TM alone, and better than SIR-C alone. These comparisons were based on number and strength of significant correlations each method achieved. The landscape metric that was most consistent and obtained the greatest number of significant correlations was Shannon's Diversity Index. Results also agreed with field-based research that has linked higher fire frequency to increased landscape diversity and patchiness. An additional finding was that the fused data seem to detect fire-related spatial patterns over a range of scales.
Passive and electro-optic polymer photonics and InP electronics integration
NASA Astrophysics Data System (ADS)
Zhang, Z.; Katopodis, V.; Groumas, P.; Konczykowska, A.; Dupuy, J.-.; Beretta, A.; Dede, A.; Miller, E.; Choi, J. H.; Harati, P.; Jorge, F.; Nodjiadjim, V.; Dinu, R.; Cangini, G.; Vannucci, A.; Felipe, D.; Maese-Novo, A.; Keil, N.; Bach, H.-.; Schell, Martin; Avramopoulos, H.; Kouloumentas, Ch.
2015-05-01
Hybrid photonic integration allows individual components to be developed at their best-suited material platforms without sacrificing the overall performance. In the past few years a polymer-enabled hybrid integration platform has been established, comprising 1) EO polymers for constructing low-complexity and low-cost Mach-Zehnder modulators (MZMs) with extremely high modulation bandwidth; 2) InP components for light sources, detectors, and high-speed electronics including MUX drivers and DEMUX circuits; 3) Ceramic (AIN) RF board that links the electronic signals within the package. On this platform, advanced optoelectronic modules have been demonstrated, including serial 100 Gb/s [1] and 2x100 Gb/s [2] optical transmitters, but also 400 Gb/s optoelectronic interfaces for intra-data center networks [3]. To expand the device functionalities to an unprecedented level and at the same time improve the integration compatibility with diversified active / passive photonic components, we have added a passive polymer-based photonic board (polyboard) as the 4th material system. This passive polyboard allows for low-cost fabrication of single-mode waveguide networks, enables fast and convenient integration of various thin-film elements (TFEs) to control the light polarization, and provides efficient thermo-optic elements (TOEs) for wavelength tuning, light amplitude regulation and light-path switching.
Hybridization of active and passive elements for planar photonic components and interconnects
NASA Astrophysics Data System (ADS)
Pearson, M.; Bidnyk, S.; Balakrishnan, A.
2007-02-01
The deployment of Passive Optical Networks (PON) for Fiber-to-the-Home (FTTH) applications currently represents the fastest growing sector of the telecommunication industry. Traditionally, FTTH transceivers have been manufactured using commodity bulk optics subcomponents, such as thin film filters (TFFs), micro-optic collimating lenses, TO-packaged lasers, and photodetectors. Assembling these subcomponents into a single housing requires active alignment and labor-intensive techniques. Today, the majority of cost reducing strategies using bulk subcomponents has been implemented making future reductions in the price of manufacturing FTTH transceivers unlikely. Future success of large scale deployments of FTTH depends on further cost reductions of transceivers. Realizing the necessity of a radically new packaging approach for assembly of photonic components and interconnects, we designed a novel way of hybridizing active and passive elements into a planar lightwave circuit (PLC) platform. In our approach, all the filtering components were monolithically integrated into the chip using advancements in planar reflective gratings. Subsequently, active components were passively hybridized with the chip using fully-automated high-capacity flip-chip bonders. In this approach, the assembly of the transceiver package required no active alignment and was readily suitable for large-scale production. This paper describes the monolithic integration of filters and hybridization of active components in both silica-on-silicon and silicon-on-insulator PLCs.
This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPAs Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...
Remote Spectroscopy in the Visible Using Fibers on the Optical Internet Network
ERIC Educational Resources Information Center
Ribeiro, Rafael A. S.; de Oliveira, Anderson R.; Zilio, Sergio C.
2010-01-01
The work presented here demonstrates the feasibility of using the single-mode fibers of an optical Internet network to deliver visible light between separate laboratories as a way to perform remote spectroscopy in the visible for teaching purposes. The coupling of a broadband light source into the single-mode fiber (SMF) and the characterization…
NASA Astrophysics Data System (ADS)
Barraza Bernadas, V.; Grings, F.; Ferrazzoli, P.; Carbajo, A.; Fernandez, R.; Karszenbaum, H.
2012-12-01
Evapotranspiration (ET) is a key component of water cycle, which is strongly linked with environmental condition and vegetation functioning. Since it is very difficult to robustly estimate it from remote sensing data at regional scale it is usually inferred from other proxies using water balance. This work describes a procedure to estimate ET in a dry forest by monitoring diurnal variation of leaf water content (LWC), using multitemporal passive microwave remote sensing observations. Hourly observations provide the opportunity to monitor repetitive diurnal variations of passive microwave observations, which can only be accounted by changes in LWC (which is itself related to water vapor that enters to the atmosphere from land surface). To this end, we calculated the vegetation frequency index (FI) as FI= 2*(TBKa-TBX)/ ((TBKa +TBX)), where TBKa and TBX indicate brightness temperatures at 37 and 10.6 GHz respectively. There is both theoretical and experimental evidence that link this index to microwave to LWC. The index was computed for vertical polarization, because it presents higher correlation with vegetation state. At diurnal temporal scale, changes in LWC are commonly very small. Nevertheless, it was previously shown that passive remote sensing data (FI computed using Ku and Ka bands) acquired at different hours can be used to estimate the seasonal changes in ET. In this work, we present a procedure based on the hourly changes of FI, which are interpreted as changes in LWC. In order to present a quantitative estimation, the discrete forest model described in (Ferrazzoli and Guerriero, 1996) has been used to simulate the variations of FI with LWC. To illustrate the procedure, AMSR-E and WINDSAT data from 2007-2009 at X and Ka bands were used, and up to four observations per day at four different local times (2.30 am, 7.00 am, 2.30 pm and 7.00 pm) were analyzed. The region addressed is the area of the Dry Chaco forest located in Bermejo River Basin in Argentina (22-27°S, and 58-66°W).This area is characterized for being an open dry forest (20% of tree crown cover), with mean annual temperatures between 20 and 22 °C, mean summer temperatures between 24 and 27 °C and minimal annual rainfall (500 mm). The annual behavior of diurnal LWC shows a range increase in summer and a decrease in winter, being correlated with vegetation annual growing season (foliation/defoliation). For summertime, our results show a decrease of FI values from 7.00 am to 2.30 pm and an increase between 2.30 pm to 7.00 pm. According to the interaction model, these observed changes of FI corresponded to an increase in LWC from ~0.4 g/g to 0.5 g/g in six hours (7.00 am - 2.30 pm) and then a similar decrease for the 2.30 pm to 7.00 pm period. We hypothesize that this daily variations (an increase of LWC during the sunny hours) could be related to more water being available at the leaves, to cope with evaporation needs in order to achieve positive diurnal water balance during the hot diurnal hours. This could be a specific adaptation to high temperature and drought environmental conditions, like the ones present in Chaco. Ferrazzoli P., Guerriero L.,(1996)"Passive microwave remote sensing of forests: a model investigation", IEEE Transactions on Geoscience and Remote Sensing, vol.34, n. 2, pp.433-443.
Fiber-optic push-pull sensor systems
NASA Technical Reports Server (NTRS)
Gardner, David L.; Brown, David A.; Garrett, Steven L.
1991-01-01
Fiber-optic push-pull sensors are those which exploit the intrinsically differential nature of an interferometer with concommitant benefits in common-mode rejection of undesired effects. Several fiber-optic accelerometer and hydrophone designs are described. Additionally, the recent development at the Naval Postgraduate School of a passive low-cost interferometric signal demodulator permits the development of economical fiber-optic sensor systems.
Optical Spatial integration methods for ambiguity function generation
NASA Technical Reports Server (NTRS)
Tamura, P. N.; Rebholz, J. J.; Daehlin, O. T.; Lee, T. C.
1981-01-01
A coherent optical spatial integration approach to ambiguity function generation is described. It uses one dimensional acousto-optic Bragg cells as input tranducers in conjunction with a space variant linear phase shifter, a passive optical element, to generate the two dimensional ambiguity function in one exposure. Results of a real time implementation of this system are shown.
Optical filter finesses enhancement based on nested coupled cavities and active medium
NASA Astrophysics Data System (ADS)
Adib, George A.; Sabry, Yasser M.; Khalil, Diaa
2016-04-01
Optical filters with relatively large FSR and narrow linewidth are simultaneously needed for different applications. The ratio between the FSR and the 3-dB linewidth is given by finesse of the filter, which is solely determined by the different energy loss mechanisms limited by the technology advancement. In this work, we present a novel coupled-cavity configuration embedding an optical filter and a gain medium; allowing an overall finesse enhancement and simultaneous FSR and 3-dB linewidth engineering beyond the technological limits of the filter fabrication method. The configuration consists of two resonators. An active ring resonator comprises an optical gain medium and a passive resonator. In one configuration, the optical filter is the passive resonator itself. In a second configuration, the passive resonator is another ring resonator that embeds the optical filter. The presented configurations using a semiconductor optical amplifier are applied one time to a mechanically Fabry-Perot filter in the first presented configuration; and a second time to a fiber ring filter in the second presented configuration. The mechanical filter has an original 3-dB linewidth of 1nm and an FSR that is larger than 100nm while the enhanced linewidth is about 0.3nm. The fiber ring filter length is 4 m and directional coupler ratios of 90/10corresponding to a 3-dBlinewidth of about 4MHz and an FSR of 47 MHz. The enhanced 3- dBlinewidth of the overall filter configuration is 200kHz, demonstrating finesse enhancement up to20 times the original finesse of the filter.
Inertial navigation sensor integrated obstacle detection system
NASA Technical Reports Server (NTRS)
Bhanu, Bir (Inventor); Roberts, Barry A. (Inventor)
1992-01-01
A system that incorporates inertial sensor information into optical flow computations to detect obstacles and to provide alternative navigational paths free from obstacles. The system is a maximally passive obstacle detection system that makes selective use of an active sensor. The active detection typically utilizes a laser. Passive sensor suite includes binocular stereo, motion stereo and variable fields-of-view. Optical flow computations involve extraction, derotation and matching of interest points from sequential frames of imagery, for range interpolation of the sensed scene, which in turn provides obstacle information for purposes of safe navigation.
Physical-layer network coding for passive optical interconnect in datacenter networks.
Lin, Rui; Cheng, Yuxin; Guan, Xun; Tang, Ming; Liu, Deming; Chan, Chun-Kit; Chen, Jiajia
2017-07-24
We introduce physical-layer network coding (PLNC) technique in a passive optical interconnect (POI) architecture for datacenter networks. The implementation of the PLNC in the POI at 2.5 Gb/s and 10Gb/s have been experimentally validated while the gains in terms of network layer performances have been investigated by simulation. The results reveal that in order to realize negligible packet drop, the wavelengths usage can be reduced by half while a significant improvement in packet delay especially under high traffic load can be achieved by employing PLNC over POI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edner, H.; Ragnarson, P.; Svanberg, S.
The authors present measurements of the total flux of sulfur dioxide from three Italian volcanoes Etna, Stromboli, and Vulcano, measured in a three day period in Sept, 1992. The fluxes were measured from shipboard by means of an active differential absorption lidar technique, and a passive differential optical absorption spectroscopy technique. Corrections had to be applied to the passive optical technique because the light source paths were not well defined. The total fluxes were found to be roughly 25, 180, and 1300 tons/day for Vulcano, Stromboli, and Etna, respectively. 43 refs., 10 figs., 6 tabs.
Passive Optical Link Budget for LEO Space Surveillance
NASA Astrophysics Data System (ADS)
Wagner, P.; Hasenohr, T.; Hampf, D.; Sproll, F.; Humbert, L.; Rodmann, J.; Riede, W.
The rising space debris population is becoming an increasing risk for space assets. Even objects with the size of 10mm can cause major damages to active spacecraft. Especially the orbits around 800km high are densely populated with space debris objects. To assess the risk of collisions with active satellites, the Earth orbits need to be surveyed permanently. Space debris laser ranging systems for example can deliver highly accurate positional data for precise orbit determination. Therefor a priori information about the objects coarse trajectory is needed. Such initial orbit information can be provided by wide angle optical sensors. The Institute of Technical Physics at the German Aerospace Center in Stuttgart runs an observatory to perform passive as well as laser optical measurements to LEO objects. In order to detect unknown objects, a wide-angle imaging system with a field of view in the range of 5° to 15° equipped with an astronomical CCD camera and a commercial off the shelf (COTS) lens was designed to continuously observe the night sky for LEO objects. This paper presents the passive optical link budget for observing LEO objects to show the benefits and limits of the physical performance of an optical surveillance system. A compact COTS system is able to detect objects with a couple of decimeters in size while a large aperture telescope can detect objects with diameters below 10cm. Additionally, data captured by a passive optical staring system with a 10 cm aperture was analyzed. It is shown that 90% of all objects with a radar cross section larger than 2m² are detected with such a system during twilight conditions. The smallest detected LEO object with this system has a size of 0.32m x 0.32m x 0.26m. These measurements are compared to the developed link budget which allows an estimation of the performance of larger systems.
NASA Astrophysics Data System (ADS)
Naim, Nani Fadzlina; Ab-Rahman, Mohammad Syuhaimi; Kamaruddin, Nur Hasiba; Bakar, Ahmad Ashrif A.
2013-09-01
Nowadays, optical networks are becoming dense while detecting faulty branches in the tree-structured networks has become problematic. Conventional methods are inconvenient as they require an engineer to visit the failure site to check the optical fiber using an optical time-domain reflectometer. An innovative monitoring technique for tree-structured network topology in Ethernet passive optical networks (EPONs) by using the erbium-doped fiber amplifier to amplify the traffic signal is demonstrated, and in the meantime, a residual amplified spontaneous emission spectrum is used as the input signal to monitor the optical cable from the central office. Fiber Bragg gratings with distinct center wavelengths are employed to reflect the monitoring signals. Faulty branches of the tree-structured EPONs can be identified using a simple and low-cost receiver. We will show that this technique is capable of providing monitoring range up to 32 optical network units using a power meter with a sensitivity of -65 dBm while maintaining the bit error rate of 10-13.
Chip-integrated optical power limiter based on an all-passive micro-ring resonator
NASA Astrophysics Data System (ADS)
Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang
2014-10-01
Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.
Remote in-situ laser-induced breakdown spectroscopy using optical fibers
NASA Astrophysics Data System (ADS)
Marquardt, Brian James
The following dissertation describes the development of methods for performing remote Laser-Induced Breakdown Spectroscopy (LIBS) using optical fibers. Studies were performed to determine the optimal excitation and collection parameters for remote LIBS measurements of glasses, soils and paint. A number of fiber-optic LIBS probes were developed and used to characterize various samples by plasma emission spectroscopy. A novel method for launching high-power laser pulses into optical fibers without causing catastrophic failure is introduced. A systematic study of a number of commercially available optical fibers was performed to determine which optical fibers were best suited for delivering high-power laser pulses. The general design of an all fiber-optic LIBS probe is described and applied to the determination of Pb in soil. A fiber-optic probe was developed for the microanalysis of solid samples remotely by LIBS, Raman spectroscopy and Raman imaging. The design of the probe allows for real-time sample imaging in-situ using coherent imaging fibers. This allows for precise atomic emission and Raman measurements to be performed remotely on samples in hostile or inaccessible environments. A novel technique was developed for collecting spectral plasma images using an acousto-optic tunable filter (AOTF). The spatial and temporal characteristics of the plasma were studied as a function of delay time. From the plasma images the distribution of Pb emission could be determined and fiber-optic designs could be optimized for signal collection. The performance of a two fiber LIBS probe is demonstrated for the determination of the amount of lead in samples of dry paint. It is shown that dry paint samples can be analyzed for their Pb content in-situ using a fiber-optic LIBS probe with detection limits well below the levels currently regulated by the Consumer Products Safety Commission. It is also shown that these measurements can be performed on both latex and enamel paints, and that Pb containing paint can be detected even under layers of non-lead containing paint. Experiments were performed to determine the optimal measurement parameters for performing LIBS studies of Department of Energy "waste" glasses. Calibration data for a Al and Ti metals contained in the waste glass is presented. The effects of laser power on plasma temperature, emission intensity and mass of sample ablated are introduced.
Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives
Li, Zhaoqin; Xu, Dandan; Guo, Xulin
2014-01-01
Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges. PMID:25386759
Coastal High-resolution Observations and Remote Sensing of Ecosystems (C-HORSE)
NASA Technical Reports Server (NTRS)
Guild, Liane
2016-01-01
Coastal benthic marine ecosystems, such as coral reefs, seagrass beds, and kelp forests are highly productive as well as ecologically and commercially important resources. These systems are vulnerable to degraded water quality due to coastal development, terrestrial run-off, and harmful algal blooms. Measurements of these features are important for understanding linkages with land-based sources of pollution and impacts to coastal ecosystems. Challenges for accurate remote sensing of coastal benthic (shallow water) ecosystems and water quality are complicated by atmospheric scattering/absorption (approximately 80+% of the signal), sun glint from the sea surface, and water column scattering (e.g., turbidity). Further, sensor challenges related to signal to noise (SNR) over optically dark targets as well as insufficient radiometric calibration thwart the value of coastal remotely-sensed data. Atmospheric correction of satellite and airborne remotely-sensed radiance data is crucial for deriving accurate water-leaving radiance in coastal waters. C-HORSE seeks to optimize coastal remote sensing measurements by using a novel airborne instrument suite that will bridge calibration, validation, and research capabilities of bio-optical measurements from the sea to the high altitude remote sensing platform. The primary goal of C-HORSE is to facilitate enhanced optical observations of coastal ecosystems using state of the art portable microradiometers with 19 targeted spectral channels and flight planning to optimize measurements further supporting current and future remote sensing missions.
Monitoring boreal ecosystem phenology with integrated active/passive microwave remote sensing
NASA Technical Reports Server (NTRS)
McDonald, K. C.; Njoku, E.; Kimball, J.; Running, S.; Thompson, C.; Lee, J. K.
2002-01-01
The important role of the high latitudes in the functioning of global processes is becoming well established. The size and remoteness of arctic and boreal ecosystems, however, pose a challenge to quantification of both terrestrial ecosystem processes and their feedbacks to regional and global climate conditions. Boreal and arctic regions form a complex land cover mosaic where vegetation structure, condition and distribution are strongly regulated by environmental factors such as moisture availability, permafrost, growing season length, disturbance and soil nutrients.
Studying turbulence by remote sensing systems during slope-2016 campaign
NASA Astrophysics Data System (ADS)
Moreira, Gregori de A.; Guerrero-Rascado, Juan L.; Benavent-Oltra, Jose A.; Ortiz-Amezcua, Pablo; Róman, Roberto; Landulfo, Eduardo; Alados-Arboledas, Lucas
2018-04-01
The Planetary Boundary Layer (PBL) is the lowermost part of the troposphere. In this work, we analysed some high order moments and PBL height detected continuously by three remote sensing systems: an elastic lidar, a Doppler lidar and a passive Microwave Radiometer, during the SLOPE-2016 campaign, which was held in Granada from May to August 2016. This study confirms the feasibility of these systems for the characterization of the PBL, helping us to justify and understand its behaviour along the day.
Waveguide infrared spectrometer platform for point and standoff chemical sensing
NASA Astrophysics Data System (ADS)
Chadha, Suneet; Henning, Pat; Landers, Frank; Weling, Ani
2004-03-01
Advanced autonomous detection of chemical warfare agents and toxic industrial chemicals has long been a major military concern. At present, our capability to rapidly assess the immediate environment is severely limited and our domestic infrastructure is burdened by the meticulous procedures required to rule out false threats. While significant advances have recently been accomplished in remote spectral sensing using rugged FTIRs and point detectors, efforts towards low cost chemical discrimination have been lacking. Foster-Miller has developed a unique waveguide spectrometer which is a paradigm shift from the conventional FTIR approach. The spectrometer provides spectral discrimination over the 3-14 μm range and will be the spectrometer platform for both active and passive detection. Foster-Miller has leveraged its innovations in infrared fiber-optic probes and the recent development of a waveguide spectrometer to build a novel infrared sensor platform for both point and stand-off chemical sensing. A monolithic wedge-grating optic provides the spectral dispersion with low cost thermopile point or array detectors picking off the diffracted wavelengths from the optic. The integrated optic provides spectral discrimination between 3-12 μm with resolution at 16 cm-1 or better and overall optical throughput approaching 35%. The device has a fixed cylindrical grating bonded to the edge of a ZnSe conditioning "wedge". The conditioning optic overcomes limitations of concave gratings as it accepts high angle (large FOV) light at the narrow end of the wedge and progressively conditions it to be near normal to the grating. On return, the diffracted wavelengths are concentrated on the discrete or array detector (pixel) elements by the wedge, providing throughput comparable to that of an FTIR. The waveguide spectrometer coupled to ATR probes, flow through liquid cells or multipass gas cells provides significant cost advantage over conventional sampling methodologies. We will present the enabling innovations along with present performance, sensitivity expectations and discrimination algorithm strategy.
NASA Astrophysics Data System (ADS)
Davis, A. B.; Xu, F.; Diner, D. J.
2017-12-01
Two perennial problems in applied theoretical and computational radiative transfer (RT) are: (1) the impact of unresolved spatial variability on large-scale fluxes (in climate models) or radiances (in remote sensing); and (2) efficient-yet-accurate estimation of broadband spectral integrals in radiant energy budget estimation as well as in remote sensing, in particular, of trace gases.Generalized RT (GRT) is a modification of classic RT in an optical medium with uniform extinction where Beer's exponential law for direct transmission is replaced by a monotonically decreasing function with a slower power-law decay. In a convenient parameterized version of GRT, mean extinction replaces the uniform value and just one new property is introduced. As a non-dimensional metric for the unresolved variability, we use the square of the mean extinction coefficient divided by its variance. This parameter is also the exponent of the power-law tail of the modified transmission law.This specific form of sub-exponential transmission has explored for almost two decades in application to spatial variability in the presence of long-range correlations, much like in turbulent media such as clouds, with a focus on multiple scattering. It has also been proposed by Conley and Collins (JQSRT, 112, 1525-, 2011) to improve on the standard (weak-line) implementation of the correlated-k technique for efficient spectral integration.We have merged these two applications within a rigorous formulation of the combined problem, and solve the new integral RT equations in the single-scattering limit. The result is illustrated by addressing practical problems in multi-angle remote sensing of aerosols using the O2 A-band, an emerging methodology for passive profiling of coarse aerosols and clouds.
NASA Astrophysics Data System (ADS)
Lopez-Baeza, Ernesto
2016-07-01
In this paper, the SOMOSTA (Soil Moisture Monitoring Station) experiment on soil moisture monitoring byGlobal Navigation Satellite System Reflected signals(GNSS-R) at the Valencia Anchor Station is introduced. L-band microwaves have very good advantages in soil moisture remote sensing, for being unaffected by clouds and the atmosphere, and for the ability to penetrate vegetation. During this experimental campaign, the ESA GNSS-R Oceanpal antenna was installed on the same tower as the ESA ELBARA-II passive microwave radiometer, both measuring instruments having similar field of view. This experiment is fruitfully framed within the ESA - China Programme of Collaboration on GNSS-R. The GNSS-R instrument has an up-looking antenna for receiving direct signals from satellites, and two down-looking antennas for receiving LHCP (left-hand circular polarisation) and RHCP (right-hand circular polarisation) reflected signals from the soil surface. We could collect data from the three different antennas through the two channels of Oceanpal and, in addition, calibration could be performed to reduce the impact from the differing channels. Reflectivity was thus measured and soil moisture could be retrieved by the L- MEB (L-band Microwave Emission of the Biosphere) model considering the effect of vegetation optical thickness and soil roughness. By contrasting GNSS-R and ELBARA-II radiometer data, a negative correlation existed between reflectivity measured by GNSS-R and brightness temperature measured by the radiometer. The two parameters represent reflection and absorption of the soil. Soil moisture retrieved by both L-band remote sensing methods shows good agreement. In addition, correspondence with in-situ measurements and rainfall is also good.