Science.gov

Sample records for passive radar incoherent

  1. Incoherent Scatter Radar User Workshop

    NASA Astrophysics Data System (ADS)

    Richmond, A. D.

    1984-04-01

    The incoherent scatter radar technique has developed over the years into one of the most powerful tools for investigating physical processes in the upper atmosphere. The National Science Foundation (NSF) now supports a chain of four incoherent scatter facilities at Sondrestromfjord (Greenland), Millstone Hill (Massachusetts), Arecibo (Puerto Rico), and Jicamarca (PERU). Six European nations support the EISCAT facility in northern Scandinavia, and France also has a radar at St. Santin. Recently, the organizations reponsible for each of the six radars agreed to participate in a centralized data base being established at the National Center for Atmospheric Research (NCAR) to make their data more readily accessible to the scientific community at large.

  2. Incoherent scatter radar observations of the ionosphere

    NASA Technical Reports Server (NTRS)

    Hagfors, Tor

    1989-01-01

    Incoherent scatter radar (ISR) has become the most powerful means of studying the ionosphere from the ground. Many of the ideas and methods underlying the troposphere and stratosphere (ST) radars have been taken over from ISR. Whereas the theory of refractive index fluctuations in the lower atmosphere, depending as it does on turbulence, is poorly understood, the theory of the refractivity fluctuations in the ionosphere, which depend on thermal fluctuations, is known in great detail. The underlying theory is one of the most successful theories in plasma physics, and allows for many detailed investigations of a number of parameters such as electron density, electron temperature, ion temperature, electron mean velocity, and ion mean velocity as well as parameters pertaining to composition, neutral density and others. Here, the author reviews the fundamental processes involved in the scattering from a plasma undergoing thermal or near thermal fluctuations in density. The fundamental scattering properties of the plasma to the physical parameters characterizing them from first principles. He does not discuss the observation process itself, as the observational principles are quite similar whether they are applied to a neutral gas or a fluctuating plasma.

  3. Passive bistatic radar analysis

    NASA Astrophysics Data System (ADS)

    O'Hagan, Daniel W.; Kuschel, H.; Schiller, Joachim

    2009-06-01

    Passive Bistatic Radar (PBR) research is at its zenith with several notable PBR systems currently operational, or available for deployment. Such PBRs include the Manastash Ridge Radar (MRR) developed for and by academia; Silent Sentry developed as a commercial concern by Lockheed Martin; and Homeland Alerter (HA100) also a commercial system developed by Thales. However at present, despite the existence of numerous PBR prototypes, take up of commercial passive radar technology remains slow. This is due in part to technology immaturity, in part to politics, and particularly due to the fact that monostatic radars perform so well. If PBRs are to enjoy longevity as a viable technology then it is imperative that they address certain niche application areas, with the aforementioned MRR being one prime example of this. The focus of this paper will be an analysis of a PBR system that utilised FM radio signals of opportunity to detect aircraft targets with an RCS generally not lower than 20 m2. The paper will demonstrate the theoretical detection coverage of an FM based PBR operating in a severe interference environment.

  4. An effective method for incoherent scattering radar's detecting ability evaluation

    NASA Astrophysics Data System (ADS)

    Lu, Ziqing; Yao, Ming; Deng, Xiaohua

    2016-06-01

    Ionospheric incoherent scatter radar (ISR), which is used to detect ionospheric electrons and ions, generally, has megawatt class transmission power and hundred meter level antenna aperture. The crucial purpose of this detecting technology is to get ionospheric parameters by acquiring the autocorrelation function and power spectrum of the target ionospheric plasma echoes. Whereas the ISR's echoes are very weak because of the small radar cross section of its target, estimating detecting ability will be significantly instructive and meaningful for ISR system design. In this paper, we evaluate the detecting ability through signal-to-noise ratio (SNR). The soft-target radar equation is deduced to be applicable to ISR, through which we use data from International Reference Ionosphere model to simulate signal-to-noise ratio (SNR) of echoes, and then comparing the measured SNR from European Incoherent Scatter Scientific Association and Advanced Modular Incoherent Scatter Radar with the simulation. The simulation results show good consistency with the measured SNR. For ISR, the topic of this paper is the first comparison between the calculated SNR and radar measurements; the detecting ability can be improved through increasing SNR. The effective method for ISR's detecting ability evaluation provides basis for design of radar system.

  5. Fiftieth Anniversary of the First Incoherent Scatter Radar Experiment

    NASA Astrophysics Data System (ADS)

    Robinson, Robert M.; van Eyken, Anthony; Farley, Donald

    2009-08-01

    In the 11 November 2008 issue of Eos (89(46), 458), Henry Rishbeth asked whether the years 2008-2010 feature any important anniversaries in solar-terrestrial physics other than those he mentioned. One such milestone is the fiftieth anniversary of the first incoherent scatter radar (ISR) experiment. At a Cornell University (Ithaca, N. Y.) departmental seminar in the spring of 1958, William Gordon showed that a powerful radar system could detect the uncorrelated and extremely weak scattered signals from individual ionospheric electrons. This process is called incoherent scatter, and studying the properties of the resulting radar echoes can reveal information about the density, temperature, and velocity of ionospheric particles. Gordon discussed this idea with Ken Bowles, a recent Ph.D. graduate of Cornell, and in a few weeks Bowles built a large but inexpensive antenna array that he connected to an existing transmitter near Havana, Ill. Using this crude radar (the data processing consisted of taking a time exposure photograph of the signal amplitude displayed on an oscilloscope), Bowles successfully measured an incoherently scattered signal on 21 October 1958. By a happy coincidence, 21 October was also the day that Gordon gave his first formal talk on the ISR concept at an International Union of Radio Science (URSI) conference at Pennsylvania State University. After calling Bowles for an update on his experiment, Gordon presented his research and added the dramatic and newsworthy note to the end of his talk on the success of the first ISR experiment!

  6. First operations of the RISR-C incoherent scatter radar

    NASA Astrophysics Data System (ADS)

    Gillies, R. G.; Van Eyken, A. P.; Spanswick, E.; Nicolls, M. J.; Kelly, J. D.; Greffen, M. J.; Knudsen, D. J.; Connors, M. G.; Schutzer, M.; Valentic, T. A.; Malone, M.; St-Maurice, J. P.; Donovan, E.

    2015-12-01

    The Canadian face of the Resolute Bay Incoherent Scatter Radar (RISR-C), the newest Advanced Modular Incoherent Scatter Radar (AMISR), recently began routine operations and has been taking detailed measurements of the polar cap ionosphere. Like other AMISR radars, RISR-C has the ability to use electronic beam steering to simultaneously sample ionospheric plasma parameters in several different line-of-sight directions (over 4000 possible beam directions, of which, typically 10-50 are used in a given experiment). Electron density, electron and ion temperatures, and line-of-sight (LOS) plasma velocities are measured along these beam directions at several ranges in (typically) 1-minute intervals. Combining LOS velocity measurements from several different beam directions allows full 3-d ionospheric plasma velocities to be resolved within the field-of-view of the radar. Ionospheric measurements from the southward facing RISR-C are complemented by measurements by the co-located northward facing RISR-N radar operated by SRI International and the REGO redline optical camera operated by the University of Calgary. Initial comparisons between these instruments demonstrate that RISR-C is operating well and will provide vital new measurements of the polar cap ionosphere.

  7. First observations from the RISR-C incoherent scatter radar

    NASA Astrophysics Data System (ADS)

    Gillies, R. G.; Eyken, A.; Spanswick, E.; Nicolls, M.; Kelly, J.; Greffen, M.; Knudsen, D.; Connors, M.; Schutzer, M.; Valentic, T.; Malone, M.; Buonocore, J.; St.-Maurice, J.-P.; Donovan, E.

    2016-10-01

    First-light measurements from the Canadian face of the Resolute Bay Incoherent Scatter Radar (RISR-C) were taken in August of 2015. Data were taken for roughly 25 h on both RISR-C and the North face of the Resolute Bay radar (RISR-N) in an 11-beam World Day mode. Overall, the measurements from the RISR-C radar are of high quality and consistent with results from the RISR-N radar. During the 25 h period analyzed in this study, the ionosphere responded to changes in orientation of the interplanetary magnetic field . During one particular event, a change from Bz negative to positive and By positive to negative caused the antisunward flow to stall, and a strong dawn-to-dusk flow, with decreased electron density and increased ion temperature, replaced it in the RISR-C field of view. Overall, it is clear that measurements from the RISR-C radar will complement and greatly expand the scope of ionospheric polar cap measurements.

  8. The ionosphere disturbances observation on the Kharkiv incoherent scatter radar

    NASA Astrophysics Data System (ADS)

    Cherniak, Iu.; Lysenko, V.

    2009-04-01

    he ionosphere plasma characteristics are responding on variations of solar and magnetic activity. The research of an ionosphere structure and dynamics is important as for understanding physics of processes and for radiophysical problems solution. The method incoherent scatter (IS) of radio waves allows determining experimentally both regular variations of the basic parameters ionosphere, and their behavior during perturbation. The equipment and measurement technique, developed by authors, are allows obtaining certain data about behavior of an ionosphere during various origin and intensity ionosphere perturbations. The Institute of Ionsphere IS radar located near Kharkiv, Ukraine (geographic coordinates: 49.6oN, 36.3oE, geomagnetic coordinates: 45.7oN, 117.8oE) was used to observe the processes in the ionosphere. The radar is operate with 100-m zenith parabolic antenna at 158 MHz with peak transmitted power of ~2.0 MW. The double-frequency measuring channel mode with compound sounding signal was employed for experiments. That provided ~ 20-km resolution in range ~100-400 km and ~100-km in range ~200-1100 km. Over a period of series of experiment are obtained data about variations of electron density simultaneous in the heights interval 100-1000 km, including three sun eclipses, two superstrong and a few moderate magnetic storms, as well as disturbance, is caused by powerful rockets starts. During strong geomagnetic storm on November 8-12, 2004 was observed night time increasing of electronic temperature up to 3000 Љ and ions temperature up to 2000K. Usually at this time temperature of ions is equal to temperature of electrons. During negative ionosphere storm was observed decreasing of electronic density at maximum F2 layer. The height of a F2 layer maximum was increased by 150 km and 70 km at daytime. The interesting phenomenon - high-power backscatter signal coherent backscatter was observed first time during geogeomagnetic storm 29-30 may 2003. A usually

  9. Study of plasmasphere dynamics using incoherent scatter data from Chatanika, Alaska radar facility

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.

    1975-01-01

    Results of the study of Chatanika incoherent scatter radar data and Lockheed Palo Alto Research Laboratory satellite data are reported. Specific topics covered include: determination of the effective recombination coefficient in the auroral E region; determination of the location of the auroral oval; auroral boundary characteristics; and the relationship of auroral current systems, particle precipitation, visual aurora, and radar aurora.

  10. Observability of NEIALs with the Sondrestrom and Poker Flat incoherent scatter radars

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Samara, M.

    2013-12-01

    We present coordinated optical and radar observations using the Poker Flat Incoherent Scatter Radar (PFISR) in Alaska and the Sondrestrom radar in Greenland. Several cases were examined where intense, similar-looking dynamic auroral structures were observed in the magnetic zenith. The presence or absence of Naturally Enhanced Ion Acoustic Lines (NEIALs) was investigated in both sets of radar data. In all cases, the aurora exhibited small-scale (∼0.1-1 km), dynamic features that were observed with both all-sky and narrow-field of view (19°) imagers. In all of the cases examined, the PFISR radar observed NEIALs while the Sondrestrom radar did not, despite similar auroral morphology. The main difference between the radars, namely the probing wave number, provides strong evidence for a limiting spatial scale of between 10 and 15 cm for the enhanced wave activity responsible for NEIALs. This has implications for constraining the models of NEIAL generation mechanisms.

  11. The estimation of space debris distribution by Kharkiv incoherent scatter radar data

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii

    Currently in near space are a large number of artificial origin objects. Among them are operable spacecrafts and the so-called "space debris". The Kharkiv radar is a sole incoherent scatter instrument on the middle latitudes of European region. The radar located near Kharkiv, Ukraine (geographic coordinates: 49.6N, 36.3E, geomagnetic coordinates: 45.7N, 117.8E). This powerful radar facility operates with 100-m zenith parabolic antenna at 158 MHz with peak transmitted power 2.0 MW, and can registered scattering of electromagnetic waves from small volumes (about ten square centimeters at distance 500 km). During the ionosphere parameters measurement by incoherent scatter radar are received different radar signals, different by nature from the signal, incoherent scattered ionosphere plasma. The paper presents the results of data analysis of several measurements cycles. It was obtained the distribution characteristics of the radar reflections from objects on Earth orbit. There are two main peak reflections appearance intensity at distances 800 km and 1000 km. Two other peaks at the altitude of 600 km and 1400 km. It is from distance above 1700 km the number of reflections is insignificant. Based on the experimental data was constructed height-temporal distribution of reflection signals. The total analysis time was about 200 hours. The intensity of reflections and their peak distances not significantly changed during day. The average number of observed reflections per day was about 500.

  12. Study of auroral dynamics with combined spacecraft and incoherent scatter radar data

    NASA Technical Reports Server (NTRS)

    Thayer, Jeffrey P.; Delabeaujardiere, Odile; Watermann, Jurgen

    1994-01-01

    The objectives of this project were to study the coupling between the ionosphere and the magnetosphere, and to understand how this coupling was affected by changes in the solar wind. The data used consisted of satellite measurements coordinated with Sondrestrom incoherent scatter radar observations. We focused our efforts on the study of temporal and spatial changes in the dayside auroral precipitation and electric field.

  13. Interference detection and correction applied to incoherent-scatter radar power spectrum measurement

    NASA Technical Reports Server (NTRS)

    Ying, W. P.; Mathews, J. D.; Rastogi, P. K.

    1986-01-01

    A median filter based interference detection and correction technique is evaluated and the method applied to the Arecibo incoherent scatter radar D-region ionospheric power spectrum is discussed. The method can be extended to other kinds of data when the statistics involved in the process are still valid.

  14. EISCAT Incoherent Scatter Radars Probing High-Latitude Near-Earth Geospace for the EURIPOS Proposal

    NASA Astrophysics Data System (ADS)

    Turunen, E.

    2009-04-01

    EISCAT Scientific Association operates currently three incoherent scatter radars in Northern Scandinavia on behalf of its associate members in Finland, China, Germany, Japan, Norway, Sweden and United Kingdom, as well as currently supporting partners in France and Russia. The radar sites include transmitter/receiver site in Tromsø, Norway with a monostatic VHF radar and a tristatic UHF radar transmitter/receiver, UHF receiver sites in Kiruna, Sweden and Sodankylä, Finland and a 2-dish monostatic radar in Longyearbyen, Svalbard. Incoherent scatter radar method is known to be the most sophisticated radio method to remotely sense the ionosphere. The standard parameters analysed from the recorded scattered signals are the electron density, electron temperature, ion temperature, line-of-sight plasma velocity, ion-neutral collision frequency and ion mass. With more assumptions also information for example on neutral density and temperature, neutral velocity, Pedersen and Hall conductivities, electric current density and heat flux is available. Current applications of the radars include also interferometric applications for small-scale structures, mapping of meteroid orbits and monitoring space debris, as well as high-resolution mapping the radar reflectivity of the Moon surface. In addition to incoherent scatter radars, EISCAT also has a powerful HF heating facility for ionospheric modification experiments, and a dynasonde in Tromsø, as well as another dynasonde in Svalbard for routine ionospheric observations. All the current EISCAT facilities would serve the EURIPOS proposal quantifying the ionospheric variability and response to space weather events at high latitudes. Although the main ISR facilities cannot be run continuously, regular Common Programmes, measurement campaign modes - especially combined with coordinated satellite observations and specific model studies, and the continuous operation of supporting dynasondes, would greatly enhance the EURIPOS proposal

  15. Coherent and incoherent scatter radar observations during intense mid-latitude spread F

    NASA Astrophysics Data System (ADS)

    Swartz, Wesley E.; Kelley, Michael C.; Makela, Jonathan J.; Collins, Stephen C.; Kudeki, Erhan; Franke, Steve; Urbina, Julio; Aponte, Nestor; Sulzer, Michael P.; González, Sixto A.

    2000-09-01

    An intense mid-latitude spread-F event occurred over Puerto Rico during the night of February 17, 1998. Simultaneous observations were made with the Cornell University Portable Radar Interferometer (CUPRI) located near Isabela, PR, the University of Illinois VHF radar located at Salinas, PR, GPS receivers at Isabela and St. Croix, measuring total electron content, the Arecibo incoherent scatter radar, and the Cornell All-Sky imager located at the Arecibo Observatory. This was the first time that such a broad range of complementary instrumentation captured a mid-latitude spread-F space weather event. It was the first (and still only) time that a spread-F event over the Caribbean exhibited large Doppler shifts in the VHF spectra. This event was characterized with multiple filaments that initially produced receding Doppler velocities exceeding 300 m/s as seen by CUPRI and the Illinois radar. The Arecibo incoherent scatter radar recorded line-of-sight velocities exceeding 100 m/s that moved the F-layer peak to over 400-km altitude. Airglow images of 630.0 nm emissions from F-region heights showed depleted structures oriented southeast to northwest. The large velocities observed with the radars suggest that we caught this event in a stage of explosive development. It is interesting that the first fully documented Caribbean event occurred during a magnetically active period.

  16. Discriminating Sea Spikes in Incoherent Radar Measurements of Sea Clutter

    DTIC Science & Technology

    2008-03-01

    separate them from true target echoes . The most distinct characteristics of sea spikes are the sudden increase in Doppler speed and polarization ratio...included. Moreover, temporal and spatial correlation of sea clutter and typical characteristics of sea spikes may be exploited in detection and tracking ...strong at the VV-polarization. Individual waves can be clearly tracked as they roll in from the ocean towards the radar. At HH-polarization, some of

  17. E- and F- region incoherent scatter radar spectral measurements at mid and low-latitudes

    NASA Astrophysics Data System (ADS)

    Kudeki, Erhan; Milla, Marco

    2016-07-01

    In this talk we will contrast and compare incoherent scatter radar spectral measurements conducted using the Arecibo, ALTAIR, and Jicamarca incoherent scatter radars at ionospheric heights ranging from E-region into the topside F-region. Arecibo measurements from mid-latitudes exemplify high SNR ISR techniques utilized with large magnetic aspect angles. Low-latitude measurements at ALTAIR and Jicamarca make use of and combine large and small magnetic aspect angle techniques. Examples presented will include both natural and naturally enhanced electron and ion lines detected in the lower F region near the geomagnetic equator as well as the results of search for proton gyro-resonance peaks in the Jicamarca topside spectra.

  18. Incoherent scatter radar observations during August 4-7, 1972. [of E and lower F regions

    NASA Technical Reports Server (NTRS)

    Weddle, T.; Doupnik, J. R.; Banks, P. M.; Park, R. J.; Siren, J. C.

    1977-01-01

    E- and lower F-region data obtained by the incoherent scatter radar of Chatanika, Alaska were used to analyze the height-integrated Hall and Pedersen conductivities, electric fields, ionospheric currents, electron densities, and rate of heating of the neutral atmosphere by particle precipitation and by electric current dissipation during the period of intense solar flares, August 4-7, 1972. Although the magnetosphere was unusually disturbed magnetically, the radar data were in general not particularly larger than those seen during more quiet periods. Chatanika seemed to be in the auroral oval during nearly the whole of the time period studied, implying a greatly expanded size of the oval.

  19. Revolutionising incoherent scatter science with EISCAT_3D: A European three-dimensional imaging radar for atmospheric and geospace research

    NASA Astrophysics Data System (ADS)

    Turunen, Esa; McCrea, Ian; Kosch, Mike

    2010-05-01

    EISCAT_3D will be Europe's next-generation radar for the study of the high-latitude atmosphere and geospace, located in northern Fenno-Scandinavia, with capabilities going well beyond anything currently available to the international research community. The facility will consist of several very large active phased-array antenna transmitters/receivers, and multiple passive sites located in three countries. Depending on the available funding, EISCAT_3D will be comprised of tens of thousands, up to more than 100 000, individual antenna elements. EISCAT_3D combines several key attributes which have never before been available together in a single radar, such as volumetric imaging and tracking, aperture synthesis imaging, multistatic configuration, improved sensitivity and transmitter flexibility. The use of advanced beam-forming technology allows the beam direction to be switched in milliseconds, rather than the minutes which it can take to re-position dish-based radars. This allows very wide spatial coverage to be obtained, by interleaving multiple beam directions to carry out quasi-simultaneous volumetric imaging. It also allows objects such as satellites and space debris to be tracked across the sky. At the passive sites, the design allows for at least five simultaneous beams at full bandwidth, rising to over twenty beams if the bandwidth is limited to the ion line, allowing the whole range of the transmitted beam to be imaged from each passive site, using holographic radar techniques. EISCAT_3D has a modular configuration, which allows an active array to be split into smaller elements to be used for aperture synthesis imaging. The result will be an entirely new data product, consisting of range-dependent images of small sub-beamwidth scale structures, with sizes down to 20 m. EISCAT_3D will be the first phased array incoherent scatter radar to use a multistatic configuration. A minimum of five radar sites, consisting of two pairs located around 120 km and 250 km

  20. Radar Versus Stealth: Passive Radar and the Future of U.S. Military Power

    DTIC Science & Technology

    2009-01-01

    track . Although such pro- cessing requires significant computing power, most passive radar systems operate on com- mercial DOS-based computing technology ...receive-only system that uses transmitters of opportunity.1 Integrating a system of netted receivers, passive radar can detect, track , and target piloted...including intermittent signal strength and, at the time, irresolvable locating and tracking ambiguities due to the passive radar geometry.8 Passive radar

  1. Ionospheric footprint of magnetosheathlike particle precipitation observed by an incoherent scatter radar

    NASA Technical Reports Server (NTRS)

    Watermann, Jurgen; Lummerzheim, Dirk; De La Beaujardiere, Odile; Newell, Patrick T.; Rich, Frederic J.

    1994-01-01

    We have examined Sondrestrom incoherent scatter radar observations of ionospheric plasma density and temperature distributions and measurements of F region ion drifts that were made during a prenoon pass of the Defense Meteorological Satellite Program (DMSP)-F7 satellite through the radar field of view. The spacecraft traversed a region of intense electron precipitation with a characteristic energy below approximately 200 eV. Particles with such low characteristic energies are believed to be directly or indirectly of magnetosheath origin. The precipitation region had a width about 2 deg invariant latitude and covered the low-latitude boundary layer (LLBL), the cusp, and the equatorward section of the plasma mantle (PM). The corotating radar observed a patch of enhanced electron density and elevated electron temperature in the F2 region between about 10.5 and 12 magnetic local time in the same invariant latitude range where DMSP-F7 detected the soft-electron flux. The ion drift pattern, also obtained by radar, shows that it is unlikely that the plasma patch was produced by solar radiation and advected into the radar field of view. We suggest that the radar observed modifications of the ionospheric plasma distribution, which resulted from direct entry of magnetosheath electrons into the magnetosphere and down to ionospheric altitudes. Model calculations of the ionospheric response to the observed electron precipitation support our interpretation. The spectral characteristics of the electron flux in the LLBL, cusp, and equatorward section of the PM were in this case too similar to allow to distinguish between them by using incoherent scatter radar measurements only.

  2. The Science and Utility of Extended Runs and the Future Development of Incoherent Scatter Radar Observational Programs

    NASA Astrophysics Data System (ADS)

    van Eyken, T.

    2006-12-01

    Incoherent Scatter Radar (ISR) data represent the most comprehensive observations of the temporal behavior of the main parts of the ionosphere, and the associated atmosphere, available. As such, the radars are invaluable tools in characterizing the ionospheric response to energy flows in the Solar-Terrestrial system. Developments in radar operations and reliability now allow very extended data sets to be produced on a fairly routine basis and plans for the International Polar Year (IPY) include the continuous operation of at least one high latitude radar. Using data from two very different 30-day `World Day' co-ordinated observation periods in Autumn 2005 and Spring 2006, we illustrate the utility of such data sets for, inter alia, space weather observation and modeling and discuss the possible future development of such programs using the EISCAT Svalbard Radar, the soon to be completed Advanced Modular Incoherent Scatter Radar (AMISR), and the EISCAT_3D radar (currently being designed).

  3. EISCAT 3D - The Next Generation European Incoherent Scatter Radar System

    NASA Astrophysics Data System (ADS)

    Turunen, E.

    2009-04-01

    A major new research European infrastructure will be constructed in Northern Scandinavia, combining several very large phased-array transmitters/receivers with multiple receiver arrays. The new EISCAT 3D radar system has a design goal of ten times higher temporal and spatial resolution than the present radars, a volumetric radar imaging capability in an extended spatial area with simultaneous full-vector drift velocities, avoiding spatial and temporal ambiguities, having continuous operation modes, short baseline interferometry capability for imaging sub-beamwidth scales, real-time data access for applications and extensive data archiving facilities. Some arrays are very large, in the scale of 30 000 individual antenna elements. The receiver arrays will be located at 50-150 km distance from the illuminators, so that the total system will comprise in the order of 100 000 elements. These extremely large scale atmospheric and space environment radar arrays open up unprecedented science and technology application opportunities, well beyond the traditional ground-based ionospheric remote sensing role of the old incoherent scatter radars. EISCAT 3D was accepted on the European Roadmap for Research Infrastructures by the European Strategy Forum on Research Infrastructures in December 2008. The facility will be constructed as a modular concept by year 2015. The current status of the project is approaching the end of the first 4 MEUR design study, conducted during 2005-2009 by EISCAT Scientific Association, University of Tromsø, Luleå University of Technology, Swedish Institute of Space Physics, Rutherford Appleton Laboratory, and supported by EU FP6 funding. EISCAT Scientific Association operates currently three incoherent scatter radars in Northern Scandinavia on behalf of its associate members in Finland, China, Germany, Japan, Norway, Sweden and United Kingdom, as well as currently supporting partners in France and Russia.

  4. Study of auroral dynamics with combined spacecraft and incoherent-scatter radar data

    NASA Technical Reports Server (NTRS)

    Watermann, Juergen

    1993-01-01

    We have examined Sondrestrom incoherent-scatter radar observations of ionospheric plasma density and temperature distributions, as well as measurements of F-region ion drifts that were made during a prenoon pass by the DMSP-F7 satellite through the radar field of view. The spacecraft traversed a region of intense electron precipitation with a characteristic energy below approximately 200 eV. Particles with such low characteristic energies are believed to originate, either directly or indirectly, in the magnetosheath. The precipitation region had a width of about 2 deg invariant latitude. The corotating radar observed a patch of enhanced electron density and elevated electron temperature in the F2 region between about 10.5 and 12 magnetic local time in the same invariant latitude range where DMSP-F7 detected the soft-electron flux. The ion drift pattern, also obtained by radar, shows that it is unlikely that the plasma patch was produced by solar radiation and advected into the radar field of view. We suggest that the radar observed modifications of the ionospheric plasma distribution, which resulted from direct entry of magnetosheath electrons into the magnetosphere and down to ionospheric altitudes. Model calculations of the ionospheric response to the observed electron flux support our interpretation.

  5. Comparison of DMSP SSIES Density and Temperature Measurements With Ground-Based Incoherent Scatter Radar Data

    NASA Astrophysics Data System (ADS)

    Keyser, H. L.; Green, B. S.; della-Rose, D. J.; Sojka, J. J.; Erickson, P. J.; Hairston, M. R.; Rich, F. J.

    2003-12-01

    We have compared electron density and temperature data, measured aboard the Defense Meteorological Satellite Program (DMSP) spacecraft, against POLITE campaign data collected by the Millstone Hill incoherent scatter radar. The POLITE data span the period between February 1996 (near solar minimum) and July 2000 (near solar maximum). Following the work of Sultan and Rich [2000], we averaged the DMSP data within a five-degree circle of Millstone Hill, and averaged the corresponding radar data within +/-30 minutes of the satellite overflight time. Our study revealed that the average electron density difference between DMSP and Millstone data exceeds 20 percent, which is statistically significant compared to the published DMSP topside ionospheric plasma monitor (SSIES) instrument accuracy. Further, DMSP density values are typically lower than the corresponding radar measurements; this negative bias is largest near solar minimum. Conversely, DMSP electron temperature values are an average 23 percent higher than the radar-derived temperature. This difference is statistically significant compared to both the DMSP and radar errors. As with the electron density, the bias lessens toward solar maximum. This temperature bias appears to decrease as the DMSP zenith angle increases, and this suggests the possibility of increased photoelectron contamination of the Langmuir probe for smaller zenith angles. Apart from this, however, the root cause(s) for these density and temperature differences remain under study.

  6. Application of particle swarm optimization method to incoherent scatter radar measurement of ionosphere parameters

    NASA Astrophysics Data System (ADS)

    Wu, Li-Li; Zhou, Qihou H.; Chen, Tie-Jun; Liang, J. J.; Wu, Xin

    2015-09-01

    Simultaneous derivation of multiple ionospheric parameters from the incoherent scatter power spectra in the F1 region is difficult because the spectra have only subtle differences for different combinations of parameters. In this study, we apply a particle swarm optimizer (PSO) to incoherent scatter power spectrum fitting and compare it to the commonly used least squares fitting (LSF) technique. The PSO method is found to outperform the LSF method in practically all scenarios using simulated data. The PSO method offers the advantages of not being sensitive to initial assumptions and allowing physical constraints to be easily built into the model. When simultaneously fitting for molecular ion fraction (fm), ion temperature (Ti), and ratio of ion to electron temperature (γT), γT is largely stable. The uncertainty between fm and Ti can be described as a quadratic relationship. The significance of this result is that Ti can be retroactively corrected for data archived many years ago where the assumption of fm may not be accurate, and the original power spectra are unavailable. In our discussion, we emphasize the fitting for fm, which is a difficult parameter to obtain. PSO method is often successful in obtaining fm, whereas LSF fails. We apply both PSO and LSF to actual observations made by the Arecibo incoherent scatter radar. The results show that PSO method is a viable method to simultaneously determine ion and electron temperatures and molecular ion fraction when the last is greater than 0.3.

  7. Estimating the vector electric field using monostatic, multibeam incoherent scatter radar measurements

    NASA Astrophysics Data System (ADS)

    Nicolls, Michael J.; Cosgrove, Russell; Bahcivan, Hasan

    2014-11-01

    An algorithm has been developed to image the local structure in the convection electric field using multibeam incoherent scatter radar (ISR) data. The imaged region covers about 4° in magnetic latitude and 8° in magnetic longitude for the specific geometry considered (that of the Poker Flat ISR). The algorithm implements the Lagrange method of undetermined multipliers to regularize the underdetermined problem posed by the radar measurements. The error on the reconstructed image is estimated by mapping the mathematical form to a Bayesian estimate and observing that the Lagrangian method determines an effective a priori covariance matrix from a user-defined regularization metric. There exists a unique solution when the average measurement error is smaller than the average measurement amplitude. The algorithm is tested using synthetic and real data and appears surprisingly robust at estimating the divergence of the field. Future applications include imaging the current systems surrounding auroral arcs in order to distinguish physical mechanisms.

  8. Incoherent scatter radar and in situ and chemical release measurements of

    NASA Astrophysics Data System (ADS)

    Kudeki, Erhan; Pfaff, Robert; Larsen, Miguel

    2016-07-01

    Two sounding rockets collecting DC and AC electric field and plasma density measurements were launched into the equatorial ionosphere during an active E-region sunset event being monitored by ALTAIR and IRIS (UHF and VHF) radar systems. TMA and lithium vapor releases by the rockets climbing to 180 and 330 km apogees also enabled the measurements of E- and lower F-region neutral winds during this pre-reversal enhancement period followed by spread-F activity. E-region turbulence during sunset and F-region turbulence and plasma drifts that developed subsequently were monitored by ALTAIR and IRIS (a 50 MHz two-element fixed-beam radar interferometer) systems using a combination of coherent and incoherent scatter modes. Winds, drifts, and turbulence measurements of the post sunset ionosphere conducted during this equatorial vortex experiment (EVEX) and their implications for post-sunset spread-F development will be presented and discussed.

  9. Imaging of Vector Electric Fields Surrounding Auroral Arcs from Multibeam Incoherent Scatter Radar Measurements.

    NASA Astrophysics Data System (ADS)

    Maksimova, N.; Varney, R. H.; Cosgrove, R. B.; Kaeppler, S. R.; Nicolls, M. J.

    2015-12-01

    Evaluating the ionospheric electric fields and current systems surrounding auroral arcs aids in distinguishing physical mechanisms that drive arc generation and current closure. Auroral forms involve spatial scales that are small in comparison with the magnetosphere-ionosphere-thermosphere (MIT) system, and yet these forms are thought to be closely tied to the overall system response. Spatially resolved measurements of the horizontal ionospheric current can, in principle, be used to determine the field-aligned currents (FAC) that are responsible for energy transfer between the magnetosphere and the ionosphere/thermosphere, leading to heating and upwelling of the neutral gas and acceleration of ion upflows and outflows. Furthermore, the closure of FACs in the ionosphere regulates modes of magnetospheric convection and substorms. An algorithm has been developed to image the local structure in the convection electric field using multibeam incoherent scatter radar (ISR) measurements. Given the inherent difficulty of reconstructing vector quantities from line of sight (LOS) velocity measurements, the algorithm's aim is to select from the solution space for the possible field configurations a unique solution for the electric field distribution by constraining the reconstructed electric field to reproduce the LOS measurements within measurement errors while simultaneously minimizing a measure of the field's curvature and absolute gradient. Using the method of Lagrange multipliers, the algorithm regularizes the underdetermined problem defined by the LOS radar velocity measurements and guarantees a unique solution when the average measurement error is smaller than the average measurement amplitude. The algorithm is tested on a variety of simulated fields in a sensitivity study to determine the extent to which the solution depends on the a priori assumptions and the observation geometry. In addition, a case study of a quiescent auroral arc observed by the Poker Flat

  10. The Resolute Bay Incoherent Scatter Radar: Initial Results and Future Opportunities (Invited)

    NASA Astrophysics Data System (ADS)

    Semeter, J. L.; Dahlgren, H.; Sundberg, T.; Perry, G. W.; St-Maurice, J.; Shiokawa, K.; Hosokawa, K.; Zettergren, M. D.; Donovan, E.; Nicolls, M. J.

    2013-12-01

    The Resolute Bay Incoherent Scatter Radar (RISR) is the most recent facility developed under the NSF Advanced Modular ISR (AMISR) program, and the first ever ISR deployed to the geomagnetic polar cap region. The AMISR radars are electronically steerable, enabling the acquisition of three-dimensional, time-dependent, information over a significant regional volume. This paper provides a review of science results from the first two years of RISR operations. Of particular interest are studies that synthesize the new information about the intrinsic state variables (Ne, Te, Ti) with measurements by extant common-volume sensors (HF radar, all-sky imager, Fabry-Perot interferometer). The careful co-registration of these heterogeneous measurements is shown to provide new constraints on the nature of time-dependent solar wind-magnetosphere-ionosphere interactions in open magnetic-field regions. This capability will be further enhanced with the commissioning of the collocated Canadian facility (RISR-C) and the launch of the Enhanced Polar Outflow Probe (ePOP), both expected in 2013.

  11. Modeling of Ionospheric Responses to the Solar Flux Change Based on Millstone Hill Incoherent Scatter Radar

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Holt, J. M.

    2002-12-01

    In order to develop ionospheric empirical models of electron density Ne, plasma temperatures (Te and Ti) and ion drifts based on Millstone Hill incoherent scatter radar observations, we investigate an important issue of ionospheric responses to the solar flux changes that have to be quantitatively represented. The representation is associated with selecting a mathematical function where a suitable solar flux index at a proper time ahead the observing time has to be determined. Traditionally, the solar 10.7 cm flux F107 for the previous day is applied, and a linear function is used. However, the non-linear feature of Ne responses to the solar flux was discovered previously. This paper shows the development of the non-linear feature with altitude, season and local time, and also indicates the non-linear feature for the Te and Ti responses. A mathematical function is proposed. We also discuss the use of other solar flux indices, in addition to F107.

  12. Regional and local ionospheric models based on Millstone Hill incoherent scatter radar data

    NASA Astrophysics Data System (ADS)

    Holt, John M.; Zhang, Shun-Rong; Buonsanto, Michael J.

    2002-04-01

    Local and regional statistical models to describe Millstone Hill incoherent scatter radar observations of electron density, electron temperature and ion temperature since 1976 are developed using a bin-fit technique. The local models generate ionospheric variations with local time, day number, and altitude from 150-1000 km. The prior day's F107 and the Ap index from the previous 3 hour period are keyed inputs to specify solar and geomagnetic activity. The regional models have a latitude coverage of 32-55° geodetic and an altitude coverage of 200-600 km. These climatology models are capable of reproducing primary ionospheric variation features seen in previous studies as well as several newly revealed features, such as the semiannual variation of electron density. They are accessible through the World Wide Web at the URL http://www.openmadrigal.org.

  13. Effective subtraction technique at the Irkutsk Incoherent Scatter Radar: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Berngardt, Oleg I.; Kushnarev, Dmitrii S.

    2013-12-01

    We describe a sounding technique that allows us to improve spatial resolution at the Irkutsk Incoherent Scatter Radar (IISR) without losing spectral resolution. The technique also allows us to decrease temperature estimation errors caused by the Faraday effect. The technique is based on transmitting various duration pulses without any modulation and on subtracting correlation matrices of the received signal grouped by sounding pulse duration. We show theoretically and experimentally that the technique allows us to solve the problem of improving spatial resolution. Accumulation time for the technique is approximately four times longer than that for the alternating codes technique with the same spatial resolution. The number of lags in the correlation function with high spatial resolution does not depend on necessary spatial resolution. In the proposed technique, all the lags are obtained with the same spatial resolution and with the same signal-to-noise ratio. The technique is valid within the quasi-static ionospheric parameter approximation.

  14. Validation of Special Sensor Ultraviolet Limb Imager (SSULI) Ionospheric Tomography using ALTAIR Incoherent Scatter Radar Measurements

    NASA Astrophysics Data System (ADS)

    Dymond, K.; Nicholas, A. C.; Budzien, S. A.; Stephan, A. W.; Coker, C.; Hei, M. A.; Groves, K. M.

    2015-12-01

    The Special Sensor Ultraviolet Limb Imager (SSULI) instruments are ultraviolet limb scanning sensors flying on the Defense Meteorological Satellite Program (DMSP) satellites. The SSULIs observe the 80-170 nanometer wavelength range covering emissions at 91 and 136 nm, which are produced by radiative recombination of the ionosphere. We invert these emissions tomographically using newly developed algorithms that include optical depth effects due to pure absorption and resonant scattering. We present the details of our approach including how the optimal altitude and along-track sampling were determined and the newly developed approach we are using for regularizing the SSULI tomographic inversions. Finally, we conclude with validations of the SSULI inversions against ALTAIR incoherent scatter radar measurements and demonstrate excellent agreement between the measurements.

  15. Morphology of the Sporadic E layers over Arecibo derived from Incoherent Scatter Radar (ISR) measurements

    NASA Astrophysics Data System (ADS)

    Franco, E.; Brum, C. G. M.; Raizada, S.

    2014-12-01

    One of the interesting phenomena of the ionosphere is the occurrence of Sporadic E layers (Es), which is characterized by strong electron concentrations, and is related to the vertical tidal wind shear in the lower thermosphere. We will use the incoherent Scatter Radar (ISR) data from Arecibo to investigate the characteristics of the Es below 110km during nighttime. The goal of this project is to study the variability of the nighttime ionization using electron density profiles obtained at the Arecibo Observatory. We will focus on determining the strength of Es, their peak altitude and other parameters between the 90 - 110 km altitude ranges. Previous work has showed that the descending layers are dominated by the tidal influence that displays seasonal variability. To understand the reasons of this variability, we will fit Gaussian profiles to electron density concentrations to extract the layer parameters. Such analysis will allow us to study the role of solar activity, and geomagnetic indices on the layer distributions.

  16. Thermospheric Gravity Wave Characteristics Obtained Using the Poker Flat Incoherent Scatter Radar

    NASA Astrophysics Data System (ADS)

    Negale, M.; Nielsen, K.; Taylor, M. J.; Nicolls, M. J.

    2014-12-01

    Atmospheric gravity waves are known to play an important role in atmospheric circulation through momentum deposition in the mesosphere and lower thermosphere (MLT) region (~80 - 110 km). Over the past decade, modeling and observational studies have shown that these waves can penetrate to high altitudes and play similar roles in the thermospheric region (~110 - 400 km). Several case studies have revealed their presence in the thermosphere, but the distributions and variability of thermospheric gravity wave parameters are currently unknown. Using methods developed by Nicolls and Heinselman (2007), we present new high-latitude thermospheric wave characteristic distributions obtained using the Poker Flat Incoherent Scatter Radar (PFISR) during a one year period from August 2010 - July 2011. Their winter season distributions (January 2010 - April 2011) are compared to recent results obtained using a co-located all sky airglow imager measuring the MLT gravity wave field.

  17. Feasibility of an Incoherent-scatter Radar Aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Baron, M. J.; Tsunoda, R. T.; Petriceks, J.; Kunnes, H.

    1976-01-01

    The results of a preliminary study to investigate the feasibility of conducting an incoherent scatter radar experiment on board the space shuttle are presented. The results indicate that such an experiment is technically feasible. The more difficult questions to answer are whether the system can be made flexible enough to justify the problems and costs involved. The design parameters and the tradeoffs that are available in the consideration of these questions are evaluated. Some of the more serious limitations pertain to: (1) the presence of ground clutter and F region auroral clutter; (2) available average power; (3) weight and volume associated with required antenna size, transmitter, and energy storage devices; and (4) antenna breakdown associated with high power transmitter problems.

  18. Speed-dependent collision effects on radar back-scattering from the ionosphere. [incoherent scatter radar

    NASA Technical Reports Server (NTRS)

    Behl, Y. K.; Theimer, O. H.

    1982-01-01

    The question whether the differences between fluctuation spectra for linearly speed-dependent and speed-independent collision frequencies could account for disagreements between rocket and incoherent scatter estimate was addressed. The basic theory used for computing the fluctuation spectrum is outlined. The speed-dependence of the charge-neutral collision frequency is discussed, with special emphasis on its derivation from the mobility measurements. Various developments of the computer code used for the computation of the fluctuation spectrum are described. The range of values of input parameters typical to the collision-dominated ionosphere are briefly described. The computational results are presented, and the significance and limitation of these results and the future scope of the research are discussed.

  19. Validation of COSMIC radio occultation electron density profiles by incoherent scatter radar data

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Zakharenkova, Irina

    The COSMIC/FORMOSAT-3 is a joint US/Taiwan radio occultation mission consisting of six identical micro-satellites. Each microsatellite has a GPS Occultation Experiment payload to operate the ionospheric RO measurements. FS3/COSMIC data can make a positive impact on global ionosphere study providing essential information about height electron density distribu-tion. For correct using of the RO electron density profiles for geophysical analysis, modeling and other applications it is necessary to make validation of these data with electron density distributions obtained by another measurement techniques such as proven ground based facili-ties -ionosondes and IS radars. In fact as the ionosondes provide no direct information on the profile above the maximum electron density and the topside ionosonde profile is obtained by fitting a model to the peak electron density value, the COSMIC RO measurements can make an important contribution to the investigation of the topside part of the ionosphere. IS radars provide information about the whole electron density profile, so we can estimate the agreement of topside parts between two independent measurements. To validate the reliability of COS-MIC data we have used the ionospheric electron density profiles derived from IS radar located near Kharkiv, Ukraine (geographic coordinates: 49.6N, 36.3E, geomagnetic coordinates: 45.7N, 117.8E). The Kharkiv radar is a sole incoherent scatter facility on the middle latitudes of Eu-ropean region. The radar operates with 100-m zenith parabolic antenna at 158 MHz with peak transmitted power 2.0 MW. The Kharkiv IS radar is able to determine the heights-temporal distribution of ionosphere parameters in height range of 70-1500 km. At the ionosphere in-vestigation by incoherent scatter method there are directly measured the power spectrum (or autocorrelation function) of scattered signal. With using of rather complex procedure of the received signal processing it is possible to estimate the

  20. First Detection of Meteoric Smoke using the Poker Flat Incoherent Scatter Radar (PFISR)

    NASA Astrophysics Data System (ADS)

    Hsu, V. W.; Fentzke, J. T.; Brum, C. G.; Strelnikova, I.; Nicolls, M. J.

    2011-12-01

    In this work we present the first results of meteor smoke particles (MSPs) detected in the D-region plasma above the 449 MHz Poker Flat Incoherent Scatter Radar (PFISR) in Alaska (67°N, 149°W). MSPs are believed to be the major source of condensation nuclei for the formation of ice particles, the precursor for Polar Mesospheric Clouds (PMCs) and Polar Mesospheric Summer Echoes (PMSE). In addition, they are thought to contribute to D-region chemistry by providing a surface on which heterogeneous chemistry occurs (Summers and Siskand, 1999). Our results are obtained by utilizing a similar fitting method derived for use at other High Power Large Aperture Radar (HPLA) sites that treats the measured radar signal as the sum of two Lorentzian functions [Strelnikova et al., 2007]. This method allows us to determine particle size distributions and smoke densities (when calibrated electron density data is available) in the range of approximately 70 to 90 km altitude depending on background atmospheric composition. We present results from a period of strong D-Region ionization when the detected signal-to-noise (SNR) from the D-region is strongest (12 - 19 UT). Our results provide insight into the presence and distribution of charged meteoric dust in the polar mesopause region resulting from the condensation of ablated material of meteoric origin. Furthermore, we compare our results to other HPLA radar sites at high latitude (EISCAT) as well as low latitude (Arecibo) to verify our results and investigate any latitudinal variation that may exist.

  1. Optical aurora and its relationship to measurements from satellites, VHF radar and incoherent scatter radars

    NASA Technical Reports Server (NTRS)

    Romick, G. J.

    1974-01-01

    Examples are given of coordinated programs in Alaska which involve satellites, radars, ground optical instrumentation, and other types of observing satellites for the study of atmospheric and magnetospheric geophysics. Programs include coincidence data acquisition, scheduled data acquisition, and planned experiments. The use of optical triangulation techniques to determine the position of the aurora in order to place the other measurements in the perspective of the overall auroral morphology is detailed.

  2. Application of Near-Space Passive Radar for Homeland Security

    NASA Astrophysics Data System (ADS)

    Wang, Wenqin

    2007-03-01

    To protect the homeland from terrorist attacks employing explosive devices, revolutionary advances across a wide range of technologies are required. Inspired by recent advances in near-space (defined as the region between 20 km and 100 km), this paper proposes a new passive radar system using opportunistic transmitter as an illuminator and near-space platform as a receiver. This concept differs substantially from current radars. This system can be operated as a passive bistatic or multistatic radar and hence largely immune to jamming. By placing the receiver in near-space platforms, many functions that are currently performed with satellites or airplanes could be performed much more cheaply and with much greater operational utility. These advantages make near-space passive attractive for a variety of applications, many of which fit well with the needs of homeland security. This paper details the role of near-space passive radar as sensor system that can support homeland security applications. The strengths and weakness of near-space passive radar, compared to current spaceborne and airborne radars, are detailed. The signal models and processing algorithms for near-space passive radar are provided. It is shown that the use of cost effective near-space platforms can provide the solutions that were previously thought to be out of reach to remote sensing and government customers.

  3. The instrumental principles of MST radars and incoherent scatter radars and the configuration of radar system hardware

    NASA Technical Reports Server (NTRS)

    Roettger, Juergen

    1989-01-01

    The principle of pulse modulation used in the case of coherent scatter radars (MST radars) is discussed. Coherent detection and the corresponding system configuration is delineated. Antenna requirements and design are outlined and the phase-coherent transmitter/receiver system is described. Transmit/receive duplexers, transmitters, receivers, and quadrature detectors are explained. The radar controller, integrator, decoder and correlator design as well as the data transfer and the control and monitoring by the host computer are delineated. Typical operation parameters of some well-known radars are summarized.

  4. A statistical study of meteoroid fragmentation and differential ablation using the Resolute Bay Incoherent Scatter Radar

    NASA Astrophysics Data System (ADS)

    Malhotra, Akshay; Mathews, John D.

    2011-04-01

    There has been much interest in the meteor physics community recently regarding the detailed processes by which the meteoroid mass flux arrives in the upper atmosphere. Of particular interest are the relative roles of simple ablation, differential ablation, and fragmentation in interpretation of the meteor events observed by the high-power large-aperture (HPLA) radars. An understanding of the relative roles of these mechanisms is necessary to determine whether the considerable meteor mass flux arriving in the upper atmosphere arrives mostly in nanometer dust/smoke (via fragmentation) or atomic form (via ablation), which in turn has important consequences in understanding not only the aeronomy of the region but also the formation and evolution of various upper atmospheric phenomenon such as Polar Mesospheric Summer Echoes. Using meteor observations from the newly operational Resolute Bay Incoherent Scatter Radar (RISR), we present the first statistical study showing the relative contribution of these mechanisms. We find that RISR head echoes exhibited ˜48% fragmentation, ˜32% simple ablation, and ˜20% differential ablation. We also report existence of compound meteor events exhibiting signatures of more than one mass loss mechanism. These results emphasize that the processes by which the meteoroid mass is deposited into the upper atmosphere are complex and involve all three mechanisms described here. This conclusion is unlike the previously reported results that stress the importance of one or the other of these mechanisms. These results will also contribute in improving current meteoroid disintegration/ablation models.

  5. Neutral Winds through the Mesosphere and Thermosphere derived from Incoherent Scatter Radar: Variability and Climatology

    NASA Astrophysics Data System (ADS)

    Nicolls, M. J.

    2014-12-01

    Incoherent Scatter Radar (ISR) measurements of ion drifts in the ionosphere are sensitive to neutral motions through ion-neutral collisions. At D-region / mesospheric altitudes, the plasma is collisional on scales of the radar wavelength and thus ion drifts can be used as a direct proxy for neutral motions. At E-region / lower-thermospheric altitudes, the ions undergo a transition whereby the mean free path approaches the scale of the Bragg-scattering wavelength. In the F-region / upper thermosphere, the ions are collisionless and drift at the ExB velocity. The sensing of ion motions is thus extremely useful for the assessment of ionospheric electrodynamics. We utilize case studies from the Poker Flat and Arecibo ISRs to illustrate the utility of this feature of ion motions by showing (a) examples of neutral wind measurements from the mesosphere through the thermosphere, (b) the impact of derived neutral winds on the interpretation of gravity wave dissipation and forcing, and (c) climatological variations of the lower thermospheric winds and the response of the high-latitude lower thermospheric winds to forcing.

  6. Telescience capability for the Sondre Stromfjord, Greenland, incoherent-scatter radar facility

    NASA Technical Reports Server (NTRS)

    Zambre, Yadunath B.

    1993-01-01

    SRI International (SRI) operates an upper-atmospheric research facility in Sondre Stromfjord (Sondrestrom), Greenland. In the past, the facility's remote location and limited logistical support imposed constraints on the research that could be carried out at the site. Campaigns involving multiple instruments were often constrained due to limited space, and experiments requiring coordination with other geographically separated facilities, though possible, were difficult. To provide greater access to the facility, an electronic connection between Sondrestrom and the mainland U.S.A. was established, providing access to the National Science Internet. SRI developed telescience software that sends data from the incoherent scatter radar at the Sondrestrom facility to SRI's offices in Menlo Park, California. This software uses the transmission control protocol (TCP/IP) to transmit the data in near real time between the two locations and the X window system to generate displays of the data in Menlo Park. This is in contrast to using the X window system to display data remotely across a wide-area network. Using CP to transport data over the long distance network has resulted in significantly improved network throughput and latency. While currently used to transport radar data, the telescience software is designed and intended for simultaneous use with other instruments at Sondrestrom and other facilities. Work incorporating additional instruments is currently in progress.

  7. Detection of F-region electron density irregularities using incoherent-scatter radar

    NASA Astrophysics Data System (ADS)

    Gudivada, Krishna Prasad

    Incoherent-scatter radar data from Poker Flat, Alaska has been used to determine size distributions of electron density structures in the evening time sector of the auroral zone. At high latitudes ionospheric plasma typically moves east-west with speeds of several hundred meters per second. Density irregularities that rapidly move through the radar beam are therefore observed as time-varying power fluctuations. The new phased array radar used for this study has been operated with several antenna directions with successive pulses transmitted in each direction. It is therefore possible to observe plasma Doppler velocities in multiple directions and determine the vector direction of the plasma motion. This near-simultaneous observation of the plasma velocity in conjunction with the electron density height profile data enable a new technique to determine the scale sizes of electron density fluctuations that move horizontally through the radar beam. The study focuses on the collision-less F-region ionosphere where the plasma drift is approximately constant with altitude. The experimental technique limits the range of scale sizes that may be studied to relatively large-scale sizes (i.e. greater than few tens of km). Results show that during magnetically disturbed conditions (Kp ≥ 4) when westward plasma velocities are relatively high (500-1000 m/s) the scale sizes of irregularities (often called plasma blobs) are in the range of 100-300 km and predominantly originate from the polar cap and are transported over long distances (˜1000 km) due to the long chemical recombination times (30-90 minutes). Some irregularities are caused by local auroral particle precipitation and have been identified with associated electron temperature enhancements. For cases of low magnetic activity (Kp ≤ 1), when the radar is located in a region of low plasma velocities (100-500 m/s) well south of the auroral oval (essentially a mid-latitude type ionosphere), the density distribution is

  8. Conjugate In-situ and Incoherent Scatter Radar Observations of Radiation Belt Loss Mechanisms.

    NASA Astrophysics Data System (ADS)

    Kaeppler, S. R.; Jaynes, A. N.; Sanchez, E. R.; Nicolls, M. J.; Varney, R. H.; Marshall, R. A.

    2015-12-01

    We present results from conjugate observations between the Radiation Belt Storms Probe (RBSP) and the Poker Flat Incoherent Scatter Radar (PFISR) of energetic radiation belt precipitation. A key objective of the RBSP mission is to understand loss mechanisms of energetic particles from the radiation belt. The relative contribution from plasma waves (e.g., EMIC, hiss, chorus, and etc.) that pitch angle scatter particles into the loss cone remains an open scientific question. Rigorous experimental validation of these mechanisms is difficult to achieve because nearly simultaneous conjugate observations of in-situ pitch angle scattering and precipitation into the atmosphere are required. One ground-based signature of energetic precipitation is enhanced ionization and electron density at D-region altitudes. Incoherent scatter radar is a powerful remote sensing technique that is sensitive to electron density enhancements. By measuring the altitude profiles of ionization we infer the flux of particles precipitating into the atmosphere. PFISR observations show frequent occurrence of D-region ionization during both quiet-time and storm-time conditions. We present results from two events when the foot-points of the RBSP satellite were within 500 km of PFISR: a quiet-time event on January 13, 2015, and a storm-time event on April 16, 2015. PFISR observations of the D-region ionization signatures are presented, along with simultaneous conjugate RBSP observations of the magnetic field, electric field, and electron flux. Plasma waves are identified using the electric and magnetic field data, and evaluated as possible pitch angle scattering mechanisms. A direct comparison between the measured fluxes and loss cone fluxes predicted by theoretical wave-particle diffusion rates into the loss cone is used to test the validity of particle loss mechanisms predicted by the different theories. Preliminary results are presented of PFISR inversions of the D-region ionization to quantify the

  9. Nonlinear Interaction of Langmuir and Whistler Waves Observed with Incoherent Scatter Radar

    NASA Astrophysics Data System (ADS)

    Akbari, H.; Semeter, J. L.

    2016-12-01

    High-latitude ionosphere is characterized by particle precipitations of different origins. Among these are electron precipitation caused by quasi-static parallel electric fields and Alfven wave-particle interactions. In-situ measurements of fields and particles have commonly detected various plasma modes, such as Langmuir and whistler, enhanced by these precipitating electrons. The waves have been shown to undergo various nonlinear wave-wave and wave-particle interaction including parametric type instabilities. Detecting such processes with in-situ instruments however is not always straightforward and certain processes may remain undetected. We present new incoherent scatter radar data from the auroral F-region where strong echoes simultaneously appear in the ion- and both up- and down-shifted plasma lines channels. While aspects of these observations have been previously discussed in detail in terms of electron beam-generated Langmuir turbulence, some new aspects, namely the presence of two peaks separated by 300 kHz in both the up- and down-shifted plasma line channels are discussed in this paper. The unique and asymmetric displacement of the peaks with respect to the radar transmitting frequency suggests that the anomalous spectra are produced as a result of the existence of non-resonant waves generated by nonlinear beating between intense Langmuir and whistler modes. The results suggest that such nonlinear interactions contribute to the appearance of wave activities close to the plasma frequency as observed by in-situ electric field spectral measurements and that not all these wave activities are directly generated by the initial electron beam. The anomalous plasma lines spectra are often observed just above the altitude where Langmuir turbulence is observed. This altitudinal morphology and its implications are also discussed is this paper.

  10. Seasonal variations of lower thermospheric winds from the Millstone Hill incoherent scatter radar

    NASA Astrophysics Data System (ADS)

    Wand, R. H.

    1983-11-01

    Steerable (L band) and fixed (UHF) radars were used in making regular incoherent scatter observations of E and F region ion drifts between July 1976 and November 1977. The semidiurnal winds typically grew in amplitude, reaching a maximum in the vicinity of 125 km and having larger values at the equinoxes than the solstices. The wind field at 105 km exhibited a significant polarization, with southward and wind amplitudes larger than eastward amplitudes. It is noted that the seasonal variations in tidal phase were generally less than one hour. For the in situ tidal component, the amplitude and phase of the measured diurnal wind were in reasonable agreement with theoretical expectations, and there was no indication of the presence of an upward propagating diurnal component. However, the measured semidiurnal winds were consistent with being the result of the upward propagation of tidal energy from below 100 km rather than in situ tidal excitation. No definite mode identification is obtained from attempts to match the measured vertical wind structure with that expected for the different semidiurnal Hough mode extensions in the lower thermosphere.

  11. Momentum Flux Determination Using the Multi-beam Poker Flat Incoherent Scatter Radar

    NASA Technical Reports Server (NTRS)

    Nicolls, M. J.; Fritts, D. C.; Janches, Diego; Heinselman, C. J.

    2012-01-01

    In this paper, we develop an estimator for the vertical flux of horizontal momentum with arbitrary beam pointing, applicable to the case of arbitrary but fixed beam pointing with systems such as the Poker Flat Incoherent Scatter Radar (PFISR). This method uses information from all available beams to resolve the variances of the wind field in addition to the vertical flux of both meridional and zonal momentum, targeted for high-frequency wave motions. The estimator utilises the full covariance of the distributed measurements, which provides a significant reduction in errors over the direct extension of previously developed techniques and allows for the calculation of an error covariance matrix of the estimated quantities. We find that for the PFISR experiment, we can construct an unbiased and robust estimator of the momentum flux if sufficient and proper beam orientations are chosen, which can in the future be optimized for the expected frequency distribution of momentum-containing scales. However, there is a potential trade-off between biases and standard errors introduced with the new approach, which must be taken into account when assessing the momentum fluxes. We apply the estimator to PFISR measurements on 23 April 2008 and 21 December 2007, from 60-85 km altitude, and show expected results as compared to mean winds and in relation to the measured vertical velocity variances.

  12. Comparison of the UAF Ionosphere Model with Incoherent-Scatter Radar Data

    NASA Astrophysics Data System (ADS)

    McAllister, J.; Maurits, S.; Kulchitsky, A.; Watkins, B.

    2004-12-01

    The UAF Eulerian Parallel Polar Ionosphere Model (UAF EPPIM) is a first-principles three-dimensional time-dependent representation of the northern polar ionosphere (>50 degrees north latitude). The model routinely generates short-term (~2 hours) ionospheric forecasts in real-time. It may also be run in post-processing/batch mode for specific time periods, including long-term (multi-year) simulations. The model code has been extensively validated (~100k comparisons/model year) against ionosonde foF2 data during quiet and moderate solar activity in 2002-2004 with reasonable fidelity (typical relative RMS 10-20% for summer daytime, 30-50% winter nighttime). However, ionosonde data is frequently not available during geomagnetic disturbances. The objective of the work reported here is to compare model outputs with available incoherent-scatter radar data during the storm period of October-November 2003. Model accuracy is examined for this period and compared to model performance during geomagnetically quiet and moderate circumstances. Possible improvements are suggested which are likely to boost model fidelity during storm conditions.

  13. Theoretical and experimental study of gravity waves in the ionosphere observed with incoherent scatter radar

    SciTech Connect

    Sheen, D.R.

    1987-01-01

    In the Worldwide Atmospheric Gravity Wave Study (WAGS) campaign, the source-response relationship between the auroral activities and the gravity waves observed in the ionosphere was studied. Ionospheric parameters observed with the incoherent scatter radars at Sondrestrom and Millstone Hill were compared with predicted results based on gravity-wave theory. In the observed data, usually two types of disturbances can be identified. One is the distinct, semiperiodic traveling ionospheric disturbance. The other is the ever-present, semirandom perturbations. The first type is classified as the special event, and one which was observed on October 18, 1985 during a moderately magnetic-active period is analyzed. The second type is classified as the background wave spectra, and these spectra under various levels of magnetic activity are analyzed. The observed parameters used in this study are the ionization density and the line-of-sight ion velocity. This provides more information than in most of the previous investigations of traveling ionospheric disturbances, in which only electron-density perturbations were used.

  14. Validation of GRACE electron densities by incoherent scatter radar data and estimation of plasma scale height in the topside ionosphere

    NASA Astrophysics Data System (ADS)

    Xiong, Chao; Lühr, Hermann; Ma, ShuYing; Schlegel, Kristian

    2015-04-01

    This paper presents an effort of using incoherent scatter radar data for validating electron density (Ne) measurements performed by the GRACE satellites from year 2002 to 2012. For adjusting the bias of GRACE Ne data, the observations at high latitudes from EISCAT at Tromsø and Svalbard, as well as two incoherent scatter radars (ISR) at mid- and low latitudes, Millstone Hill and Arecibo, are used. The adjusted GRACE Ne data are further compared with the observations from the four ISRs. For EISCAT observations at Tromsø and Svalbard the comparison results are quite consistent, yielding correlation coefficients as high as 0.92, and an average bias value of about 3 · 1010 m-3 is obtained. For the radars at Millstone Hill and Arecibo the results show excellent agreement, yielding correlation coefficients as high as 0.97 and an average bias of 1 · 1010 m-3. The scale factor of adjusted GRACE Ne data is lower by 1% and 5% compared to Millstone Hill and Arecibo readings, respectively. We consider these differences as within the uncertainty of radar measurements. Using the adjusted GRACE Ne as well as CHAMP observations during four periods of coplanar orbits between 2003 and 2008, the plasma scale heights of the topside ionosphere are determined and further compared with IRI model predictions. We find significantly larger scale heights in particular at middle and high latitudes than expected from IRI. Outstanding are the regions of the mid-latitude electron density trough.

  15. A Narrow Band Imaging Technique for Passive Radar (Preprint)

    DTIC Science & Technology

    2014-10-09

    valuable role in narrowband imaging in concert with the Doppler technique as well as more conventional approaches [1]. Passive Bistatic Radar (PBR...targets at ranges of 2 and 2.5 m. A stationary X- band horn antenna with a 50°, 3 dB beamwidth was placed approximately 2.25 m from a linear target

  16. Comparison of incoherent scatter radar observations of SIMPLEX electron density depletion with SAMI2 and SAMI3 model results

    NASA Astrophysics Data System (ADS)

    Bhatt, A.; Huba, J. D.; Bernhardt, P. A.; Erickson, P. J.

    2010-12-01

    The Space Shuttle's Orbital Maneuvering System (OMS) engines have been used for active ionospheric modification experiments employing ground based ionospheric radars as diagnostic tools. These experiments initiated by the Naval Research Laboratory in 1995 have been scheduled as the Shuttle Ionospheric Modification with Pulsed Localized Exhaust or SIMPLEX through the US Dept. of Defense's Space Test Program. During 2009, two SIMPLEX experiments with the shuttles STS-119 and STS-128 were viewed by the Millstone Hill 440 MHz radar in Westford, MA operated by the MIT Haystack Observatory. The objectives of these experiments were to observe local ion-acoustic turbulence and the ionospheric density irregularities created by the exhaust injection across the magnetic field that present a Bragg scattering target for the radar. The exhaust also creates a depletion in the background electron density at F-region altitudes that persists for a relatively long time and is readily detected by an incoherent scatter radar. The OMS engine burns release 10 kg/s of H2O, CO2, H2, and N2 molecules that charge exchange with ambient O+ ions at the F region heights, producing molecular ions and the electron density depletion due to the recombination with the ambient electrons. 2009 was a year of deep solar minimum that saw the background electron density values 19% lower than were expected during a solar minimum. (Emmert et al., GRL, 2010). We believe that the long recovery time from density depletion in SIMPLEX experiments of 2009 may have a root in the unique nature of the deep solar minimum. The density whole production and recovery will be modeled using NRL SAMI2 and SAMI3 model and the results will be discussed along with the observations using the incoherent scatter radar.

  17. Passive synthetic aperture radar imaging of ground moving targets

    NASA Astrophysics Data System (ADS)

    Wacks, Steven; Yazici, Birsen

    2012-05-01

    In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.

  18. Ionospheric variability from an incoherent scatter radar long-duration experiment at Millstone Hill

    NASA Astrophysics Data System (ADS)

    Zhang, Shun-Rong; Holt, John M.

    2008-03-01

    An incoherent scatter radar experiment at Millstone Hill covering 30 consecutive days in September 2005 has enabled this study of day-to-day ionospheric variability. This was a period of low solar activity with few magnetically disturbed periods. Our discussion focuses on ionospheric variability during quiet magnetic activity in the 100-500 km height range, with emphasis on its height variation at noon. (1) Very large midday variability is present for the ion temperature Ti near 120 km, which is verified by two other 30-d experiments at Millstone Hill. This is not apparently associated with solar flux and magnetic activity. The percentage variability in the midday electron density Ne changes with height, being smaller between 150 and 250 km and larger in the topside. (2) With increasing solar flux, Ne decreases between 170 km and the F2 peak and increases elsewhere, being essentially unchanged near the F2 peak. With increasing magnetic activity, Ne decreases between 160 and 325 km. Ti increases with solar flux and magnetic activity, in particular in the F2 region. (3) There is a time lag of ionospheric responses, varying with height, to changes in solar-geophysical conditions: In the E region, the lag is almost zero; above the F2 peak, both Ne and Ti respond to F10.7 with a 2-3-d delay. The delay in response to 3-hourly ap index changes for Ne above the F2 peak can be 9-12 h and between 160 km and the F2 peak can be 0-3 h. The time delay for Ti is 6-9 h. (4) We estimate that the majority of the topside variability in Ti and Ne can be explained in terms of solar flux F107 and magnetic activity ap effects. Near the F2 peak, Ne variability seems to be complicated, and nearly one half (10%) of it cannot be ascribed directly to F10.7 and ap effects.

  19. Poker Flat Incoherent Scatter Radar investigations of the nighttime E-region

    NASA Astrophysics Data System (ADS)

    Whittier, Robin L.

    Plasma within the ionosphere affects technology, such as long distance communications and satellite navigation, by scattering and altering the propagation of radio waves sent through the ionosphere. Understanding the structure and dynamics of the ionosphere that may interfere with modern technology is therefore an important aspect of Space Weather research. In this thesis, the average characteristics and dynamics of the nighttime E-region (90-150 km in altitude) are investigated during auroral disturbances and near extreme solar minimum. The near-continuous data on electron density obtained with the Poker Flat Incoherent Scatter Radar (PFISR) near Fairbanks, Alaska are utilized. A number of correlation analyses between E-region electron content and AE index are performed in order to examine the influence of geomagnetic conditions on the E-region in relation to time of the day as well as seasonal and solar cycle effects. It is shown that E-region electron content and AE index exhibit significant positive correlation, particularly near local magnetic midnight, with greater correlation generally occurring in spring and autumn. The midnight feature is interpreted as an indication that the electrojet system near midnight is mostly controlled by electric conductance. The presented statistical results on the current-conductance relationship utilizing a new dataset strengthen conclusions derived from previous studies. The extent of E-region contribution to the total electron content (TEC) is also estimated and investigated for various conditions for the first time using the full altitude profile of PFISR. The estimates ranged between 5%-60% and more active periods generally displayed a more significant contribution from the E-region to TEC. Additionally, using the AE index as an indicator of auroral disturbance onset, the evolution of auroral density enhancements is explored using the superposed epoch analysis technique. The behavior of E-region electron content, peak

  20. Space-time sampling strategies for electronically steerable incoherent scatter radar

    NASA Astrophysics Data System (ADS)

    Swoboda, John

    ncoherent scatter radar (ISR) systems allow researchers to peer into the ionosphere via remote sensing of intrinsic plasma parameters. ISR sensors have been used since the 1950s and until the past decade were mainly equipped with a single mechanically steerable antenna. As such, the ability to develop a two or three dimensional picture of the plasma parameters in the ionosphere has been constrained by the relatively slow mechanical steering of the antennas. A newer class of systems using electronically steerable array (ESA) antennas have broken the chains of this constraint, allowing researchers to create 3-D reconstructions of plasma parameters. There have been many studies associated with reconstructing 3-D fields of plasma parameters, but there has not been a systematic analysis into the sampling issues that arise. Also, there has not been a systematic study as to how to reconstruct these plasma parameters in an optimum sense as opposed to just using different forms of interpolation. The research presented here forms a framework that scientists and engineers can use to plan experiments with ESA ISR capabilities and to better analyze the resulting data. This framework attacks the problem of space-time sampling by ESA ISR systems from the point of view of signal processing, simulation and inverse theoretic image reconstruction. We first describe a physics based model of incoherent scatter from the ionospheric plasma, along with processing methods needed to create the plasma parameter measurements. Our approach leads to development of the space-time ambiguity function, forming a theoretical foundation of the forward model for ISR. This forward model is novel in that it takes into account the shape of the antenna beam and scanning method along with integration time to develop the proper statistics for a desired measurement precision. Once the forward model is developed, we present the simulation method behind the Simulator for ISR (SimISR). SimISR uses input plasma

  1. The effects of Coulomb collisions on O+, H+, and He+ plasmas for topside incoherent scatter radar applications at Jicamarca

    NASA Astrophysics Data System (ADS)

    Milla, M. A.; Kudeki, E.; Chau, J. L.

    2012-12-01

    Coulomb collision effects on incoherent scatter radar signals become important when radar beams are pointed perpendicular to the Earth's magnetic field (B). To study these effects, Milla and Kudeki [2011] developed a procedure to estimate the spectrum of plasma density fluctuations (also known as incoherent scatter spectrum) based on simulations of collisional particle trajectories in single-ion component plasmas. In these simulations, collision effects on the particle motion are modeled using the standard Fokker-Planck model of Rosenbluth et al. [1957]. We have recently generalized the procedure of Milla and Kudeki to consider the case of multiple ion components in order to study the characteristics of the incoherent scatter spectrum in O+, H+, and He+ ionospheric plasmas, which is needed for the analysis of topside perpendicular-to-B observations at the Jicamarca Radio Observatory. In this presentation, we will report on the development of this new approach and on the characteristics of the spectrum models that were developed. The simulation results show that the ion collision process can be fairly well approximated as a Gaussian motion process, a model that has been previously studied in the literature by different authors. However, in the case of electron collisions, the process is not Gaussian having a complicated dependence on plasma parameters. As it will be discussed, electron collisions have a significant impact on the shape of the incoherent scatter spectrum. The ultimate application of the models that were developed is the simultaneous estimation of plasma drifts, densities, and temperatures of the topside equatorial ionosphere in perpendicular-to-B experiments at Jicamarca. This experimental evaluation will have a broader impact since the accuracy of the Fokker-Planck collision model will be tested. References: Milla, M. A., and E. Kudeki (2011), Incoherent scatter spectral theories-Part II: Modeling the spectrum for modes propagating perpendicular to B

  2. Automated target recognition using passive radar and coordinated flight models

    NASA Astrophysics Data System (ADS)

    Ehrman, Lisa M.; Lanterman, Aaron D.

    2003-09-01

    Rather than emitting pulses, passive radar systems rely on illuminators of opportunity, such as TV and FM radio, to illuminate potential targets. These systems are particularly attractive since they allow receivers to operate without emitting energy, rendering them covert. Many existing passive radar systems estimate the locations and velocities of targets. This paper focuses on adding an automatic target recognition (ATR) component to such systems. Our approach to ATR compares the Radar Cross Section (RCS) of targets detected by a passive radar system to the simulated RCS of known targets. To make the comparison as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. The estimated positions become inputs for an algorithm that uses a coordinated flight model to compute probable aircraft orientation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of several potential target classes as they execute the estimated maneuvers. The RCS is then scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. The Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, so that the RCS can be further scaled. The Rician model compares the RCS of the illuminated aircraft with those of the potential targets. This comparison results in target identification.

  3. Bistatic passive radar simulator with spatial filtering subsystem

    NASA Astrophysics Data System (ADS)

    Hossa, Robert; Szlachetko, Boguslaw; Lewandowski, Andrzej; Górski, Maksymilian

    2009-06-01

    The purpose of this paper is to briefly introduce the structure and features of the developed virtual passive FM radar implemented in Matlab system of numerical computations and to present many alternative ways of its performance. An idea of the proposed solution is based on analytic representation of transmitted direct signals and reflected echo signals. As a spatial filtering subsystem a beamforming network of ULA and UCA dipole configuration dedicated to bistatic radar concept is considered and computationally efficient procedures are presented in details. Finally, exemplary results of the computer simulations of the elaborated virtual simulator are provided and discussed.

  4. Variations of Substorm Electric-field Components Measured with the Poker-Flat Incoherent-Scatter Radar

    NASA Astrophysics Data System (ADS)

    Gudivada, K.; Watkins, B.

    2011-12-01

    North-South and East-West components of the auroral-zone electric field have been measured with the incoherent-scatter radar at Poker-Flat, Alaska. The phased-array technology incorporated with the radar system provides a new method to determine electric fields as a function of latitude with minimal spatial and temporal ambiguity. Successive radar pulses are transmitted in thirteen antenna directions. Doppler data are combined and integrated to determine electric field values from 66 to 68 degrees latitude in 0.25 degree steps. Data periods have been selected when substorm currents, as detected from the Alaskan magnetometer chain, are within range of the radar. Specific events near the onset of magnetic substorms have been examined to determine average variations of the electric field with respect to substorm onset time. The northward component of the field is typically about 20-30mV/m in the evening and transitions to values near zero about one hour before substorm onset (we identify this period as the substorm growth phase) and then adopts southward values about 20-30mV/m at the time of substorm onset. The east-west component values of the electric field are near zero in the evening, and then go to about 10mV/m directed westward during the growth phase and after substorm onset.

  5. Passive Synthetic Aperture Radar Imaging Using Commercial OFDM Communication Networks

    DTIC Science & Technology

    2012-09-13

    UL uplink UHF ultra high frequency UWB ultra-wideband WiMAX worldwide interoperability for microwave access WLAN wired local area network xvi PASSIVE...devised an az- imuth resolution improvement technique by coherently summing radar pulse returns from a sequence of flight path locations [12]. The concept...stripmap and spotlight. In stripmap mode, the beam remains at a constant look angle and observes a strip of terrain parallel to the flight path [86]. In

  6. A Study on Various Meteoroid Disintegration Mechanisms as Observed from the Resolute Bay Incoherent Scatter Radar (RISR)

    NASA Technical Reports Server (NTRS)

    Malhotra, A.; Mathews, J. D.

    2011-01-01

    There has been much interest in the meteor physics community recently regarding the form that meteoroid mass flux arrives in the upper atmosphere. Of particular interest are the relative roles of simple ablation, differential ablation, and fragmentation in the meteoroid mass flux observed by the Incoherent Scatter Radars (ISR). We present here the first-ever statistical study showing the relative contribution of the above-mentioned three mechanisms. These are also one of the first meteor results from the newly-operational Resolute Bay ISR. These initial results emphasize that meteoroid disintegration into the upper atmosphere is a complex process in which all the three above-mentioned mechanisms play an important role though fragmentation seems to be the dominant mechanism. These results prove vital in studying how meteoroid mass is deposited in the upper atmosphere which has important implications to the aeronomy of the region and will also contribute in improving current meteoroid disintegration/ablation models.

  7. Storm-induced changes of the topside ionosphere as deduced from incoherent-scatter radars. Master's thesis

    SciTech Connect

    Lunn, K.J.

    1990-01-01

    Incoherent scatter radar observations from Millstone Hill, Saint Santin, and Arecibo are used to illustrate changes of the topside ionosphere during a geomagnetic storm. These observations consist of electron density, electron and ion temperatures, and ion velocity components parallel and perpendicular to the magnetic field. These parameters can further describe changes in ion composition, electric fields, and neutral winds. Attention is given to a specific storm during the Equinox Transition Study (ETS) of September 1984. In order to isolate the storm effects in the topside ionosphere, a comparison will be made between a disturbed and quiet day. A novel result from this study is the finding of correlated oscillations between parallel and perpendicular ion velocity components which are apparently storm induced. Previously, these oscillations have been observed primarily at night, but now it's noticed that during storm conditions there are prominent oscillations during the day.

  8. Passive Multistatic Radar Imaging using an OFDM Based Signal of Opportunity

    DTIC Science & Technology

    2012-03-22

    PASSIVE MULTISTATIC RADAR IMAGING USING AN OFDM BASED SIGNAL OF OPPORTUNITY THESIS Matthew B.P. Rapson, Flight Lieutenant, Royal Australian Air Force...PASSIVE MULTISTATIC RADAR IMAGING USING AN OFDM BASED SIGNAL OF OPPORTUNITY THESIS Presented to the Faculty Department of Electrical and Computer...for use in radar ap- plications such as synthetic aperture radar (SAR). The orthogonal frequency divi- sion multiplexing ( OFDM ) specific Worldwide

  9. Climatology of the O+ temperatures over Arecibo for the historical deep solar minimum using Incoherent Scatter Radar and airglow data.

    NASA Astrophysics Data System (ADS)

    Santos, P. T.; Brum, C. G. M.; Kerr, R.; Noto, J.

    2014-12-01

    At Arecibo Observatory (AO) a comprehensive description of the ionosphere and thermosphere environment is achieved by the synergy between the Incoherent Scatter Radar (ISR) and the optical instruments nested on site. An example of this synergy is present in his work where optical and radar techniques were reconciled in order to obtain the O+ temperature variability for 2008 and 2009. During this period, a historical deep solar minimum condition was registered with a remarkable absence of sunspots for a long period (translated into a decreasing in the EUV-UV irradiance). This particular feature implies in an important tool to investigate the variability of O+ temperature, once that any variation can be related to season (modulated by the neutral atmosphere) and/or another modulator different than solar energy input. The OII 7320 Å twilight airglow data used in this work were obtained during new moon periods using a high-spectral resolution Fabry-Perot Interferometer (FPI) with CCD array detection. The FPI was configured with 0.9 cm plate spacing, which produced a free spectral range of 0.298Å and a spectral resolution of 0.03Å, sufficient to sample line width temperatures as low as 500K. A very narrow 3Å Full Width at Half Maximum (FWHM) three-cavity interference filter was also used.

  10. Imaging of Polar Mesosphere Summer Echoes with the 450 MHz Poker Flat Advanced Modular Incoherent Scatter Radar

    NASA Astrophysics Data System (ADS)

    Nicolls, M. J.; Heinselman, C. J.; Hope, E. A.; Ranjan, S.; Kelley, M. C.; Kelly, J. D.

    2007-10-01

    Polar Mesosphere Summer Echoes (PMSE) occur near the mesopause during the polar summer months. PMSE are primarily studied at VHF, however there have been some detections at higher frequencies. Here, we report on some of the first detections of PMSE with the 450 MHz (67 cm) Poker Flat Advanced Modular Incoherent Scatter Radar (PFISR). Echoes were observed with volume reflectivities (radar scattering cross section per unit volume) near 2-3 × 10-17 m-1. On 11 June 2007, PFISR was operating in a 26-beam position mode, with look directions spread over an approximately 80 by 80 km2 region at 85 km altitude with elevation angles as low as ~50°. The measurements showed patchy (tens of kilometer) irregularity regions drifting in from the north, in addition to smaller, more localized structures. There was no evidence for strong aspect sensitivity of these UHF echoes, as PMSE was observed in all look directions with relatively uniform intensity. The observations indicate the presence of fossilized irregularities drifting with the background wind field as well as areas of developing irregularities possibly associated with the presence of active neutral air turbulence.

  11. Detection of artificially created negative ion clouds with incoherent scatter radar

    NASA Technical Reports Server (NTRS)

    Sultan, Peter J.; Mendillo, Michael; Oliver, William L.; Holt, John M.

    1992-01-01

    The physical mechanisms by which negative ions change the shape of the incoherent scatter spectrum, and the way in which shape changes may be used to detect the presence of heavy positive and negative ions in an ambient ionosphere are investigated. In order to detect heavy negative ions, the temperature structure of the ionosphere is fixed to a prevent average measurement, and any changes in spectral shape during the experiment are interpreted as being caused by changes in composition, and not by changes in the temperature ratio Te/Ti. The spatial and temporal development of heavy negative ion plasma clouds created during four active chemical release experiments was observed. Concentrations of 10-40-percent SF6(-) were detected in SPINEX 1, SPINEX 2, and IMS data sets. An average uncertainty of +/-10-percent SF6(-) is present in all three experiments. Concentrations of 30-percent Br(-) were detected in the NICARE 1 release, with uncertainties of +/-4 percent.

  12. Machine Learning in Ionospheric Phenomena Detection Using Passive Radar

    NASA Astrophysics Data System (ADS)

    Pankratius, V.; Barari, S.; Lind, F. D.

    2015-12-01

    This work describes an approach to automate ionospheric feature detection in passive radar data using a tunable pipeline of Python-implemented algorithms for detection and classification. In particular, our detector is tuned to capture E-region irregularities and various other events such as meteors, aircraft, and ambiguities that result from poor transmission of signals or noise interference. The detection stage applies to passive radar images with pixels normalized to a defined value range. To separate the background, we apply a thresholding value and an area cuttoff to keep regions with connected pixels of a minimum size; for each particular image, these parameters can be determined algorithmically in two ways through our ExplainedEntropy (EE) and MaximumRegionArea (MRA) techniques. EE identifies the smallest set of regions that explain the most entropy of the image. MRA sets the area threshold to be a function of the largest region size. The classification stage picks up on these detected areas and applies neural networks and random forests to the image feature space. This way we are able categorize images based on their scientific content and make them searchable for scientists. A training set of real radar images was available to evaluate our approach and its adaptivity. Based on these labeled real images, we also evaluated the robustness of the detection with enhanced set of perturbed images that were generated through a model-based simulator. The simulator also allowed for controlled experiments in the amount of perturbation and noise added, to precisely characterize the operation ranges of our machine learning algorithms. We will discuss the performance of the algorithms and potential scientific applications. Acknowledgements. We would like to acknowledge support from the NSF ACI-1442997 (PI V. Pankratius).

  13. Influence of RF channels mismatch and mutual coupling phenomenon on performance of a multistatic passive radar

    NASA Astrophysics Data System (ADS)

    Hossa, Robert; Górski, Maksymilian

    2010-09-01

    In the paper we analyze the influence of RF channels mismatch and mutual coupling effect on the performance of the multistatic passive radar with Uniform Circular Array (UCA) configuration. The problem was tested intensively in numerous different scenarios with a reference virtual multistatic passive radar. Finally, exemplary results of the computer software simulations are provided and discussed.

  14. High-Latitude Incoherent-Scatter Radar Measurements for the ISTP Program

    NASA Technical Reports Server (NTRS)

    Kelly, John D.

    1999-01-01

    Over the course of this contract, the ISTP mission became a reality and proved to be one of NASA's success stories. SRI and the NSF-sponsored Sondrestrom radar contributed significantly to the success. We provided dedicated radar experiment time with operation modes specifically designed to complement the ISTP spacecraft. Data collected during coronal mass ejection events indicated that at times significant energy is fed from the ionosphere to the magnetosphere. A model of global conductance is emerging from combined POLAR and Sondrestrom data sets. We initiated a study to investigate the behavior of the global energy budget during the evolution of magnetospheric storms and substorms using a number of ground-based and satellite data sets.

  15. Monte Carlo computations of F-region incoherent radar spectra at high latitudes and the use of a simple method for non-Maxwellian spectral calculations

    NASA Technical Reports Server (NTRS)

    Kikuchi, K.; Barakat, A.; St-Maurice, J.-P.

    1989-01-01

    Monte Carlo simulations of ion velocity distributions in the high-latitude F region have been performed in order to improve the calculation of incoherent radar spectra in the auroral ionosphere. The results confirm that when the ion temperature becomes large due to frictional heating in the presence of collisions with the neutral background constituent, F region spectra evolve from a normal double hump, to a triple hump, to a spectrum with a single maximum. An empirical approach is developed to overcome the inadequacy of the Maxwellian assumption for the case of radar aspect angles of between 30 and 70 deg.

  16. Monte Carlo computations of F-region incoherent radar spectra at high latitudes and the use of a simple method for non-Maxwellian spectral calculations

    NASA Technical Reports Server (NTRS)

    Kikuchi, K.; Barakat, A.; St-Maurice, J.-P.

    1989-01-01

    Monte Carlo simulations of ion velocity distributions in the high-latitude F region have been performed in order to improve the calculation of incoherent radar spectra in the auroral ionosphere. The results confirm that when the ion temperature becomes large due to frictional heating in the presence of collisions with the neutral background constituent, F region spectra evolve from a normal double hump, to a triple hump, to a spectrum with a single maximum. An empirical approach is developed to overcome the inadequacy of the Maxwellian assumption for the case of radar aspect angles of between 30 and 70 deg.

  17. A novel technique for studying F-region ionization patches with the Resolute Bay Incoherent Scatter Radar - North

    NASA Astrophysics Data System (ADS)

    Perry, G. W.; Hosokawa, K.; St-Maurice, J.; Shiokawa, K.

    2013-12-01

    The northward facing Resolute Bay Incoherent Scatter Radar - North (RISR-N) and the soon to be operational southward facing RISR-Canada (RISR-C) systems are both exceptional platforms for investigating F-region ionization patches and the polar ionosphere. To advance patch research using these systems, an algorithm has been developed for detecting F-region ionization patches with the RISR-N system. The algorithm is based on the definition of a patch put forward by Crowley [1996]: a volume of F-region plasma with a density that is twice that of the background ionosphere. In this work, the algorithm is applied to the sizeable RISR-N dataset, providing valuable insight into the prevalence of patches over Resolute Bay over a time frame of several years. Additional questions concerning patches are also addressed using the algorithm, including: when compared to each other, do the occurrence rates of patches identified by the Optical Mesosphere and Thermosphere Imagers (OMTI), Polar Dual Auroral Radar Network (PolarDARN) and RISR-N instruments (whose fields-of-view overlap over Resolute Bay) agree? Namely, for every patch that is detected with RISR-N and/or PolarDARN, is there a corresponding patch seen optically? Lastly, using the algorithm, is it possible to advance our ability to distinguish patches from other coherent backscatter echoes detected by PolarDARN? Crowley, G. (1996), Critical review of ionospheric patches and blobs, in Review of Radio Science: 1993-1996, edited by W. R. Stone, pp. 619 648, Oxford Univ. Press, Oxford, U. K.

  18. Determination of auroral heat fluxes and thermal ion outflows using a numerical ionospheric model and incoherent-scatter radar data

    SciTech Connect

    Min, Q.L.; Watkins, B.J.

    1995-01-01

    A comprehensive one-dimensional model of the polar ionosphere has been used in conjunction with incoherent-scatter radar data from Sondrestrom, Greenland, to determine downward heat fluxes and thermal ion outflows at very high latitudes. For periods of very quiet geomagnetic activity the model closely simulates the observed time-dependent behavior of the electron density, ion and electron temperatures. To obtain this similarity between model and data, the upper boundary conditions of the model, namely downward heat flux, and magnetic field-aligned ion flows, are continually adjusted with time to provide a best fit with data. The heat fluxes and ion flows are determined indirectly from this fitting procedure. The technique has been applied to a 10-hour daytime data set for February 12, 1990, to search for enhanced downward heat fluxes and outward thermal ion fluxes associated with dayside auroral oval. Variations of heat flux ranged from about 2 x 10{sup 9} to 2 x 10{sup 10} eVcm{sup {minus}2}s{sup {minus}1}, and vertical outward fluxes of ionization ranged from about zero to 8 x 10{sup 8} cm{sup {minus}2}s{sup {minus}1}. For both quantities the peak values occurred when the radar site was located under the dayside auroral oval. It is suggested that these marked upward thermal ion flows in the dayside auroral ionosphere may be associated with energetic O{sup +} ion outflows that have been observed at high altitudes with spacecraft. 12 refs., 6 figs.

  19. Accuracy of IRI profiles of ionospheric density and temperatures derived from comparisons to Kharkov incoherent scatter radar measurements

    NASA Astrophysics Data System (ADS)

    Cherniak, Iu. V.; Zakharenkova, I. E.; Dzyubanov, D. A.

    2013-02-01

    The incoherent scatter radar (ISR) facility in Kharkov, Ukraine (49.6°N, 36.3°E) measures vertical profiles of electron density, electron and ion temperature, and ion composition of the ionospheric plasma up to 1100 km altitude. Acquired measurements constitute an accurate ionospheric reference dataset for validation of the variety of models and alternative measurement techniques. We describe preliminary results of comparing the Kharkov ISR profiles to the international reference ionosphere (IRI), an empirical model recognized for its reliable representation of the monthly-median climatology of the density and temperature profiles during quiet-time conditions, with certain extensions to the storm times. We limited our comparison to only quiet geomagnetic conditions during the autumnal equinoxes of 2007 and 2008. Overall, we observe good qualitative agreement between model and data both in time and with altitude. Magnitude-wise, the measured and modeled electron density and plasma temperatures profiles appear different. We discovered that representation accuracy improves significantly when IRI is driven by observed-averaged values of the solar activity index rather than their predictions. This result motivated us to study IRI performance throughout protracted solar minimum of the 24th cycle. The paper summarizes our observations and recommendations for optimal use of the IRI.

  20. Characteristics of Poker Flat Incoherent Scatter Radar (PFISR) naturally enhanced ion-acoustic lines (NEIALs) in relation to auroral forms

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Grydeland, T.; Samara, M.

    2014-10-01

    Naturally enhanced ion-acoustic lines (NEIALs) have been observed with the Poker Flat Incoherent Scatter Radar (PFISR) ever since it began operating in 2006. The nearly continuous operation of PFISR since then has led to a large number of NEIAL observations from there, where common-volume, high-resolution auroral imaging data are available. We aim to systematically distinguish the different types of auroral forms that are associated with different NEIAL features, including spectral shape and altitude extent. We believe that NEIALs occur with a continuum of morphological characteristics, although we find that most NEIALs observed with PFISR fall into two general categories. The first group occurs at fairly low altitudes - F region or below - and have power at, and spread between, the ion-acoustic peaks. The second group contains the type of NEIALs that have previously been observed with the EISCAT radars, those that extend to high altitudes (600 km or more) and often have large asymmetries in the power enhancements between the two ion-acoustic shoulders. We find that there is a correlation between the auroral structures and the type of NEIALs observed, and that the auroral structures present during NEIAL events are consistent with the likely NEIAL generation mechanisms inferred in each case. The first type of NEIAL - low altitude - is the most commonly observed with PFISR and is most often associated with active, structured auroral arcs, such as substorm growth phase, and onset arcs and are likely generated by Langmuir turbulence. The second type of NEIAL - high altitude - occurs less frequently in the PFISR radar and is associated with aurora that contains large fluxes of low-energy electrons, as can happen in poleward boundary intensifications as well as at substorm onset and is likely the result of current-driven instabilities and in some cases Langmuir turbulence as well. In addition, a preliminary auroral photometry analysis revealed that there is an

  1. The solar flare of 18 August 1979: Incoherent scatter radar data and photochemical model comparisons

    SciTech Connect

    Zinn, J.; Sutherland, C.D.; Fenimore, E.E.; Ganguly, S.

    1988-04-01

    Measurements of electron density at seven D-region altidues were made with the Arecibo radar during a Class-X solar flare on 18 August 1979. Measurements of solar x-ray fluxes during the same period were available from the GOES-2 satellite (0.5 to 4 /angstrom/ and 1 to 8 /angstrom/) and from ISEE-3 (in four bands between 26 and 400 keV). From the x-ray flux data we computed ionization rates in the D-region and the associated chemical changes, using a coupled atmospheric chemistry and diffusion model (with 836 chemical reactions and 19 vertical levels). The computed electron densities matched the data fairly well after we had adjusted the rate coefficients of two reactions. We discuss the hierarchies among the many flare-induced chemical reactions in two altitude ranges within the D-region and the effects of adjusting several other rate coefficients. 51 refs., 6 figs., 3 tabs.

  2. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar

    PubMed Central

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-01-01

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system’s capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications. PMID:27690051

  3. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar.

    PubMed

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-09-29

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system's capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.

  4. Recent Incoherent Scatter Radar Results with Artificial Ionospheric Heating at EISCAT

    NASA Astrophysics Data System (ADS)

    Rietveld, Michael

    2010-05-01

    During the last few years the solar minimum has made many HF heater-induced phenomena difficult to excite, particularly those where the heater frequency needs to be near or below the O-mode penetration frequency. This condition is even more difficult to meet at night. Consequently the types of experiments performed have been more mesospheric or D region heating experiments, more daytime F region experiments and X-mode heating of the F region. Experiments where electron temperature modulation of the D region affects mesospheric dust charging and thereby the backscatter cross-section of irregularities in the neutral gas, have been particularly fruitful in unraveling the physical processes involved. Four radars covering HF (8 MHz) to UHF (933 MHz) have been used to measure the effects at the various scales. X-mode transmission has also produced, at times, surprisingly strong heating in the F region. This allows us to extend some experiments to lower density conditions, as well as giving us more input to models of the ionospheric energy balance. Some highlights from these and other experiments will be shown.

  5. High-latitude E Region Ionosphere-thermosphere Coupling: A Comparative Study Using in Situ and Incoherent Scatter Radar Observations

    NASA Technical Reports Server (NTRS)

    Burchill, J. K.; Clemmons, J. H.; Knudsen, D. J.; Larsen, M.; Nicolls, M. J.; Pfaff, R. F.; Rowland, D.; Sangalli, L.

    2012-01-01

    We present in situ and ground-based measurements of the ratio k of ion cyclotronangular frequency to ion-neutral momentum transfer collision frequency to investigateionosphere-thermosphere (IT) coupling in the auroral E region. In situ observations were obtained by NASA sounding rocket 36.234, which was launched into the nightsideE region ionosphere at 1229 UT on 19 January 2007 from Poker Flat, AK. The payload carried instrumentation to determine ion drift angle and electric field vectors. Neutral winds were measured by triangulating a chemical tracer released from rocket 41.064 launched two minutes later. k is calculated from the rotation of the ion drift angle relative to the E-cross-B drift direction in a frame co-rotating with the payload. Between the altitudes of 118 km and 130 km k increases exponentially with a scale height of 9.3 +/- 0.7 km, deviating from an exponential above 130 km. k = 1 at an altitude z(sub0) of 119.9 +/- 0.5 km. The ratio was also estimated from Poker Flat Incoherent Scatter Radar (PFISR) measurements using the rotation of ion velocity with altitude. Exponential fits to the PFISR measurements made during the flight of 41.064 yield z(sub0) 115.9 +/- 1.2 km and a scale height of 9.1 +/- 1.0 km. Differences between in situ and ground-based measurements show that the E region atmospheric densities were structured vertically and/or horizontally on scales of 1 km to 10 km. There were no signs of ionospheric structure in ion density or ion temperature below scales of 1 km. The observations demonstrate the accuracy with which the in situ and PFISR data may be used as probes of IT coupling.

  6. Ion layers, tides, gravity waves, and electric fields in the upper atmosphere, inferred from Arecibo incoherent scatter radar measurements

    SciTech Connect

    Morton, Y.T.

    1991-01-01

    This thesis uses data accumulated during 1980-1989 by the Arecibo incoherent scatter radar to study the behavior and physics of ionization irregularities. Low latitude ionization irregularities, known as sporadic-E and intermediate layers, undergo a regular daily descent, convergence, and dumping of ion layers controlled by the neutral tidal wind. A useful way of studying ion layers and their motion is by ion layer trajectory maps which consist of points representing the altitude and time of ionization layers. Two types of maps were used which assigned either a uniform layer intensity or a gray level/pseudo-color to indicate different layer intensities. Important aspects of layer formation are revealed by map analysis. During January, intermediate layers consistently appeared four times per day instead of the normal twice per day pattern. Simulation of ion trajectories based on the ion momentum equation, which includes both Lorentzian and collisional forces, shows that a combination of diurnal, semidiurnal, and six-hour tides is necessary for such a feature to exist, whereas only diurnal and semidiurnal tides are needed to create the normal pattern. The six-hour period tide has not been previously reported. Extra or irregular layers appear frequently in layer trajectory maps, which can be simulated by the addition of gravity waves to the regular tidal wind system. Electric field effects are normally not a factor in low latitude ion layer formation because they are relatively weak and not commonly observed. Layer configurations during a geomagnetic storm, however, indicate that the electric field played an important role in controlling ion motion.

  7. Investigating the ionosphere response to exhaust products of ``Progress'' cargo spacecraft engines on the basis of Irkutsk Incoherent Scatter Radar data

    NASA Astrophysics Data System (ADS)

    Shpynev, Boris; Alsatkin, Sergei; Khakhinov, Vitaliy; Lebedev, Valentin

    2017-04-01

    The FSUE Central Research Institute of Machine Building (TsNIIMash), Rocket and Space Corporation "Energia", and Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS) jointly conducted the active space experiment "Radar-Progress" in 2007-2015. During this experiment, we used the Irkutsk Incoherent Scatter Ra-dar to study space-time characteristics of ionospheric disturbances generated by exhaust products of "Progress" cargo spacecraft engines. As the basic effect during exhaust product injection we consider the formation of new centers for recombination of ambient ionospheric ions O+ on molecules of water and carbon dioxide. This produces an ionization "hole" in the region of injection. In nighttime conditions when the majority of experiments were performed, this hole was filled by hydrogen ions from the plasmasphere, thus the ion composition in the vicinity of the hole and incoherent scatter spectra were changed. For successful obser-vation of the ionization hole dynamics, the critical fac-tors are the degree of radar antenna diagram filling by exhaust products and the velocity of the thermospheric neutral wind, which makes exhaust gases move from the antenna diagram. These two factors lead to poor repeatability of successful experiments. Successful experiments recorded a decrease in electron density up to 35 % in the hole that existed for 30 min. The lifetime of the region with high concentration of H+ ions can be as long as one hour.

  8. Clutter isolation and cardiac monitoring using harmonic doppler radar with heterodyne receiver and passive RF tags.

    PubMed

    Singh, Aditya; Lubecke, Victor

    2010-01-01

    A harmonic radar employing the use of harmonic passive RF tags can be successfully used to isolate the human respiration from environmental clutter. This paper describes the successful use of heterodyne receiver architecture with Doppler radar to track the heart-rate of a human being using passive body-worn harmonic tags in presence of a controlled noise generator at distances up to 120 cm. The heterodyne system results have been compared with those of a conventional Doppler radar for cardiopulmonary monitoring that fails to isolate the noise from heart-rate in presence of a noise source.

  9. The Soil Moisture Active/Passive (SMAP) Mission Radar: A Novel Conically Scanning SAR

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Chan, Samuel; Veilleux, Louise; Wheeler, Kevin

    2009-01-01

    The Soil Moisture Active/Passive (SMAP) mission is a NASA mission identified by the NRC "decadal survey" to measure both soil moisture and freeze/thaw state from space. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive chan-nels, an instrument architecture that uses a large rotating reflector is employed. The active radar will further utilize SAR processing in order to obtain the sub-footprint resolution necessary for the geophysical retrievals. The SMAP radar has a unique geometry where the antenna footprint is continuously rotated about nadir in a conical fashion, as opposed to the more common side-looking SAR design. In additional to the unconventional scan geometry, the SMAP radar must address the effects of Faraday rotation and radio frequency interference (RFI), both consequences of the L-Band frequency of operation.

  10. The Soil Moisture Active/Passive (SMAP) Mission Radar: A Novel Conically Scanning SAR

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Chan, Samuel; Veilleux, Louise; Wheeler, Kevin

    2009-01-01

    The Soil Moisture Active/Passive (SMAP) mission is a NASA mission identified by the NRC "decadal survey" to measure both soil moisture and freeze/thaw state from space. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive chan-nels, an instrument architecture that uses a large rotating reflector is employed. The active radar will further utilize SAR processing in order to obtain the sub-footprint resolution necessary for the geophysical retrievals. The SMAP radar has a unique geometry where the antenna footprint is continuously rotated about nadir in a conical fashion, as opposed to the more common side-looking SAR design. In additional to the unconventional scan geometry, the SMAP radar must address the effects of Faraday rotation and radio frequency interference (RFI), both consequences of the L-Band frequency of operation.

  11. Combined incoherent scatter radar and Fabry-Perot interferometer measurements of frictional heating effects over Millstone Hill during March 7-10, 1989

    SciTech Connect

    Hagan, M.E.; Sipler, D.P. )

    1991-01-01

    The authors introduce a methodology to calculate the effects of frictional heating associated with geomagnetic activity using simultaneous incoherent scatter radar and Fabry-Perot interferometer measurements. Vector measurements of ion drift from radar backscatter and neutral wind from optical shifts in the atomic oxygen red line over Millstone Hill, Massachusetts (43{degree}N) for the nights of March 7-10, 1989 are presented and are characterized by the magnetic storm activity which prevailed. They combine these measurements to calculate differences in the ion and neutral velocity fields which approach 350 m/s during the most geomagnetically active period that they monitored near 01 UT on March 9. This velocity difference results in a 110{degree}K heating of the ion gas at that time.

  12. The dynamic cusp at low altitudes: A case study utilizing Viking, DMSP-F7 and Sondrestrom incoherent scatter radar observations

    NASA Technical Reports Server (NTRS)

    Watermann, J.; De La Beaujardiere, O.; Lummerzheim, D.; Woch, J.; Newell, P. T.; Potemra, T. A.; Rich, F. J.; Shapshak, M.

    1994-01-01

    Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from the Earth-orbiting Viking and DMSP-F7 satellites, electric field measurements from Viking, interplanetary magnetic field and plasma data from IMP-8, and Sondrestrom incoherent scatter radar observations of the ionospheric plasma density, temperature, and convection. Viking detected cusp precipitation poleward of 75.5 deg invariant latitude. The ionospheric response to the observed electron precipitation was simulated using an auroral model. It predicts enhanced plasma density and elevated electron temperature in the upper E- and F- regions. Sondrestrom radar observations are in agreement with the predictions. The radar detected a cusp signature on each of five consecutive antenna elevation scans covering 1.2h local time. The cusp appeared to be about 2 deg invariant latitude wide, and its ionospheric footprint shifted equatorward by nearly 2 deg during this time, possibly influenced by an overall decrease in the interplanetary magnetic field (IMF) B(sub z) component. The radar plasma drift data and the Viking magnetic and electric field data suggest that the cusp was associated with a continuous, rather than a patchy, merging between the IMF and the geomagnetic field.

  13. Ionospheric incoherent scatter measurements with the middle and upper atmosphere radar: Observations during the large magnetic storm of February 6--8, 1986

    SciTech Connect

    Oliver, W.L.; Fukao, S.; Sato, T.; Tsuda, T.; Kato, S.; Kimura, I.; Ito, A.; Saryou, T.; Araki, T.

    1988-12-01

    The middle and upper atmosphere (MU) radar of Japan is a 46.5-MHz, pulse-modulated, monostatic, Doppler radar with an active phased-array antenna which consists of 475 crossed yagis. This system has been used primarily, since its initial observations with a partial system in 1983, to observe the coherent backscatter from irregularities in the troposphere, stratosphere, and mesosphere (MST radar). However, this system was also designed to be able to observe the weak incoherent scatter (IS) from the free electrons of the ionosphere. We report here the MU radar IS observations made during the strong geomagnetic storm of 6--8, February 1986. During this period the MU radar observed the echo power (an approximate measure of electron density) simultaneously in four antenna beam positions. Coincident with the rise in the K/sub p/ index from 3+ to 6- near 1800 LT (0900 UT) on February 7, the MU radar detected the beginning of several hours of wave activity having a period of 100 min. By correlating the density observations in the different beams and at different altitudes, we were able to compute the phase speed (410 m/s), direction of travel (9/sup 0/ west of south), and horizontal (2500 km) and vertical 290--490 km) wavelengths of the wave. The F layer peak density and height oscillated during this nighttime period, and we consider several mechanisms that might cause these effects. We find that the density oscillation was too large to be caused solely by wave dynamics. We suggest that an influx of ionization from the plasmasphere, and a wave-induced modulation of the assimilation of this plasma flux into the ambient density, may have been the cause of the observed density increases.

  14. A global search and rescue concept using synthetic aperture radar and passive user targets

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1976-01-01

    A terrestrial search and rescue concept is defined embodying the use of passive radio-frequency reflectors in conjunction with an orbiting synthetic aperture radar to detect, identify, and locate users. An airborne radar test was conducted to evaluate the basic concept. In this test simple corner-reflector targets were successfully imaged. Results from this investigation were positive and indicate that the concept can be used to investigate new approaches focused on the development of a global search and rescue system.

  15. The 4-8 GHz Microwave Active and Passive Spectrometer (MAPS). Volume 1: Radar section

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1973-01-01

    The performance characteristics of the radar section of the prototype 4-8 GHz Microwave Active and Passive Spectrometer system are reported. Active and passive spectral responses were measured of natural, cultivated, and human-made surfaces over the 4-18 GHz region of frequencies for look angles between zero and 70 degrees and for all possible linear polarization combinations. Soil and plant samples were collected to measure their dielectric properties and moisture content. The FORTRAN program for area calculation is provided.

  16. Universal software radio peripheral as a receiver and DSP platform for a passive radar

    NASA Astrophysics Data System (ADS)

    Szlachetko, Boguslaw; Lewandowski, Andrzej; Haza, Grzegorz

    2010-09-01

    In this paper we discuss the application of the Universal Software Radio Peripheral (USRP) as a multichannel receiver and DSP platform for an experimental multistatic passive radar. We present different approaches to achieve one goal: constructing the multichannel receiver and signal processing platform utilizing USRP devices and software defined radio (GNU Radio) techniques.

  17. The Planned Soil Moisture Active Passive (SMAP) Mission L-Band Radar/Radiometer Instrument

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Wheeler, Kevin; Chan, Samuel; Piepmeier, Jeffrey; Hudson, Derek; Medeiros, James

    2011-01-01

    The Soil Moisture Active/Passive (SMAP) mission is a NASA mission identified by the NRC 'decadal survey' to measure both soil moisture and freeze/thaw state from space. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. The instrument system has completed the preliminary design review (PDR) stage, and detailed instrument design has begun. In addition to providing an overview of the instrument design, two recent design modifications are discussed: 1) The addition of active thermal control to the instrument spun side to provide a more stable, settable thermal environment for the radiometer electronics, and 2) A 'sequential transmit' strategy for the two radar polarization channels which allows a single high-power amplifier to be used.

  18. The Planned Soil Moisture Active Passive (SMAP) Mission L-Band Radar/Radiometer Instrument

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Wheeler, Kevin; Chan, Samuel; Piepmeier, Jeffrey; Hudson, Derek; Medeiros, James

    2011-01-01

    The Soil Moisture Active/Passive (SMAP) mission is a NASA mission identified by the NRC 'decadal survey' to measure both soil moisture and freeze/thaw state from space. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. The instrument system has completed the preliminary design review (PDR) stage, and detailed instrument design has begun. In addition to providing an overview of the instrument design, two recent design modifications are discussed: 1) The addition of active thermal control to the instrument spun side to provide a more stable, settable thermal environment for the radiometer electronics, and 2) A 'sequential transmit' strategy for the two radar polarization channels which allows a single high-power amplifier to be used.

  19. Investigation of sudden electron density depletions observed in the dusk sector by the Poker Flat, Alaska incoherent scatter radar in summer

    NASA Astrophysics Data System (ADS)

    Richards, P. G.; Nicolls, M. J.; St.-Maurice, J.-P.; Goodwin, L.; Ruohoniemi, J. M.

    2014-12-01

    This paper investigates unusually deep and sudden electron density depletions (troughs) observed in the Poker Flat (Alaska) Incoherent Scatter Radar data in middle summer of 2007 and 2008. The troughs were observed in the premidnight sector during periods of weak magnetic and solar activity. The density recovered to normal levels around midnight. At the time when the electron density was undergoing its steep decrease, there was usually a surge of the order of 100 to 400 K in the ion temperature that lasted less than 1 h. The Ti surges were usually related to similar surges in the AE index, indicating that the high-latitude convection pattern was expanding and intensifying at the time of the steep electron density drop. The convection patterns from the Super Dual Auroral Radar Network also indicate that the density troughs were associated with the expansion of the convection pattern to Poker Flat. The sudden decreases in the electron density are difficult to explain in summer because the high-latitude region remains sunlit for most of the day. This paper suggests that the summer density troughs result from lower latitude plasma that had initially been corotating in darkness for several hours post sunset and brought back toward the sunlit side as the convection pattern expanded. The magnetic declination of ~22° east at 300 km at Poker Flat greatly facilitates the contrast between the plasma convecting from lower latitudes and the plasma that follows the high-latitude convection pattern.

  20. The dynamic cusp at low altitudes: A case study combining Viking, DMSP, and Sondrestrom incoherent scatter radar observations

    NASA Technical Reports Server (NTRS)

    Watermann, Jurgen; Delabeaujardiere, Odile; Lummerzheim, Dirk; Woch, Joachim; Newell, Patrick T.; Potemra, Thomas A.; Rich, Frederick J.; Shapshak, Mans

    1992-01-01

    A case study involving data from three satellites and a ground-based radar are presented. Focus is on a detailed discussion of observations of the dynamic cusp made on 24 Sep. 1986 in the dayside high-latitude ionosphere and interior magnetosphere. The relevant data from space-borne and ground-based sensors is presented. They include in-situ particle and field measurements from the DMSP-F7 and Viking spacecraft and Sondrestrom radar observations of the ionosphere. These data are augmented by observations of the IMF and the solar wind plasma. The observations are compared with predictions about the ionospheric response to the observed particle precipitation, obtained from an auroral model. It is shown that observations and model calculations fit well and provide a picture of the ionospheric footprint of the cusp in an invariant latitude versus local time frame. The combination of Viking, Sondrestrom radar, and IMP-8 data suggests that we observed an ionospheric signature of the dynamic cusp. Its spatial variation over time which appeared closely related to the southward component of the IMF was monitored.

  1. Multi-Frequency Target Detection Techniques for DVB-T Based Passive Radar Sensors.

    PubMed

    Martelli, Tatiana; Colone, Fabiola; Tilli, Enrico; Di Lallo, Annarita

    2016-09-28

    This paper investigates the possibility to improve target detection capability in a DVB-T- based passive radar sensor by jointly exploiting multiple digital television channels broadcast by the same transmitter of opportunity. Based on the remarkable results obtained by such a multi-frequency approach using other signals of opportunity (i.e., FM radio broadcast transmissions), we propose appropriate modifications to the previously devised signal processing techniques for them to be effective in the newly considered scenarios. The resulting processing schemes are extensively applied against experimental DVB-T-based passive radar data pertaining to different surveillance applications. The obtained results clearly show the effectiveness of the proposed multi-frequency approaches and demonstrate their suitability for application in the considered scenarios.

  2. A novel sequential algorithm for clutter and direct signal cancellation in passive bistatic radars

    NASA Astrophysics Data System (ADS)

    Ansari, Farzad; Taban, Mohammad Reza; Gazor, Saeed

    2016-12-01

    Cancellation of clutter and multipath is an important problem in passive bistatic radars. Some important recent algorithms such as the ECA, the SCA and the ECA-B project the received signals onto a subspace orthogonal to both clutter and pre-detected target subspaces. In this paper, we generalize the SCA algorithm and propose a novel sequential algorithm for clutter and multipath cancellation in the passive radars. This proposed sequential cancellation batch (SCB) algorithm has lower complexity and requires less memory than the mentioned methods. The SCB algorithm can be employed for static and non-static clutter cancellation. The proposed algorithm is evaluated by computer simulation under practical FM radio signals. Simulation results reveal that the SCB provides an admissible performance with lower computational complexity.

  3. Multi-Frequency Target Detection Techniques for DVB-T Based Passive Radar Sensors

    PubMed Central

    Martelli, Tatiana; Colone, Fabiola; Tilli, Enrico; Di Lallo, Annarita

    2016-01-01

    This paper investigates the possibility to improve target detection capability in a DVB-T- based passive radar sensor by jointly exploiting multiple digital television channels broadcast by the same transmitter of opportunity. Based on the remarkable results obtained by such a multi-frequency approach using other signals of opportunity (i.e., FM radio broadcast transmissions), we propose appropriate modifications to the previously devised signal processing techniques for them to be effective in the newly considered scenarios. The resulting processing schemes are extensively applied against experimental DVB-T-based passive radar data pertaining to different surveillance applications. The obtained results clearly show the effectiveness of the proposed multi-frequency approaches and demonstrate their suitability for application in the considered scenarios. PMID:27690036

  4. Global search and rescue - A new concept. [orbital digital radar system with passive reflectors

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1976-01-01

    A new terrestrial search and rescue concept is defined embodying the use of simple passive radiofreqeuncy reflectors in conjunction with a low earth-orbiting, all-weather, synthetic aperture radar to detect, identify, and position locate earth-bound users in distress. Users include ships, aircraft, small boats, explorers, hikers, etc. Airborne radar tests were conducted to evaluate the basic concept. Both X-band and L-band, dual polarization radars were operated simultaneously. Simple, relatively small, corner-reflector targets were successfully imaged and digital data processing approaches were investigated. Study of the basic concept and evaluation of results obtained from aircraft flight tests indicate an all-weather, day or night, global search and rescue system is feasible.

  5. Global search and rescue - A new concept. [orbital digital radar system with passive reflectors

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1976-01-01

    A new terrestrial search and rescue concept is defined embodying the use of simple passive radiofreqeuncy reflectors in conjunction with a low earth-orbiting, all-weather, synthetic aperture radar to detect, identify, and position locate earth-bound users in distress. Users include ships, aircraft, small boats, explorers, hikers, etc. Airborne radar tests were conducted to evaluate the basic concept. Both X-band and L-band, dual polarization radars were operated simultaneously. Simple, relatively small, corner-reflector targets were successfully imaged and digital data processing approaches were investigated. Study of the basic concept and evaluation of results obtained from aircraft flight tests indicate an all-weather, day or night, global search and rescue system is feasible.

  6. Sensitivity Analysis of Meteor Smoke Size and Derived Daytime Temperature Structure derived from the Poker Flat Incoherent Scatter Radar (PFISR)

    NASA Astrophysics Data System (ADS)

    Abe, G.; Fentzke, J.; Hsu, V. W.; Brum, C. G.

    2012-12-01

    This work describes the microphysical properties and variability of meteoric smoke particles (MSPs) at high latitude using the Poker Flat ISR (65.1N, 147.5W). In addition, we present a novel technique for determining height resolved daytime D region neutral temperatures, which takes into account the presence of charged dust. We discuss the temporal/spatial variability and the relation to meteoric input observed and MSP microphysical properties in the polar mesopause region. The derived nanometer sized MSPs are consistent with size profiles derived previously using radar/rocket techniques and we note that our results imply a lack of heavy cluster ions below 85 km during the observing period. We examine the sensitivity of the derived sizes and temperatures to background atmospheric models and compare the results with available data sets. We find that he sizes in the range of approximately 0.5 to 1.5nm are in good general agreement with previous radar/rocket studies, but that the variability both temporally and with altitude are greater than at lower latitudes. The observed neutral temperatures are in the nominal range of 130 - 160 K between 70-90 km with several instances of larger departures up to 200 K indicating that wave activity may be present. This work provides a template for potential use at many other radar sites for the determination of microphysical properties of MSPs and day-time neutral temperature in the D region that show good general agreement with NRL-MSISE-00 temperatures during the observing period.

  7. Diurnal variations of the ionospheric electron density height profiles over Irkutsk: Comparison of the incoherent scatter radar measurements, GSM TIP simulations and IRI predictions

    NASA Astrophysics Data System (ADS)

    Zherebtsov, G. A.; Ratovsky, K. G.; Klimenko, M. V.; Klimenko, V. V.; Medvedev, A. V.; Alsatkin, S. S.; Oinats, A. V.; Lukianova, R. Yu.

    2017-07-01

    The long-duration continuous Irkutsk incoherent scatter radar (ISR) measurements allowed us to obtain the monthly averaged height-diurnal variations of the electron density in the 180-600 km altitudinal range for 4 four seasons (winter, spring, summer, autumn) and for two solar activity levels (low and moderate). Considering these electron density variations as ;quiet ionosphere patterns; we compared them with the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) simulations and the International Reference Ionosphere (IRI) predictions. It was found that some observational features revealed from the ISR measurements are reproduced nicely by both the theoretical and empirical models, and some features agree better with the GSM TIP than with IRI. None of the models is able to reproduce a detailed multi-peak behavior of the electron density observed by ISR at ∼300 km and above for the spring and autumn under low solar activity, while for the spring the GSM TIP tends to reproduce the morning and daytime peaks at the same local times as they are seen from the ISR observations.

  8. Coherent and incoherent scatter radar study of the climatology and day-to-day variability of mean F region vertical drifts and equatorial spread F

    NASA Astrophysics Data System (ADS)

    Smith, J. M.; Rodrigues, F. S.; Fejer, B. G.; Milla, M. A.

    2016-02-01

    We conducted a comprehensive analysis of the vertical drifts and equatorial spread F (ESF) measurements made by the Jicamarca incoherent scatter radar (ISR) between 1994 and 2013. The ISR measurements allowed us to construct not only updated climatological curves of quiet-time vertical plasma drifts but also time-versus-height maps of ESF occurrence over the past two solar cycles. These curves and maps allowed us to better relate the observed ESF occurrence patterns to features in the vertical drift curves than previously possible. We identified an excessively high occurrence of post-midnight F region irregularities during December solstice and low solar flux conditions. More importantly, we also found a high occurrence of ESF events during sudden stratospheric warming (SSW) events. We also proposed and evaluated metrics of evening enhancement of the vertical drifts and ESF occurrence, which allowed us to quantify the relationship between evening drifts and ESF development. Based on a day-to-day analysis of these metrics, we offer estimates of the minimum pre-reversal enhancement (PRE) peak (and mean PRE) values observed prior to ESF development for different solar flux and seasonal conditions. We also found that ESF irregularities can reach the altitudes at least as high as 800 km at the magnetic equator even during low solar flux conditions.

  9. Comparison of IRI-2012 with JASON-1 TEC and incoherent scatter radar observations during the 2008-2009 solar minimum period

    NASA Astrophysics Data System (ADS)

    Ji, Eun-Young; Jee, Geonhwa; Lee, Changsup

    2016-08-01

    The 2008-2009 solar minimum period was unprecedentedly deep and extended. We compare the IRI-2012 with global TEC data from JASON-1 satellite and with electron density profiles observed from incoherent scatter radars (ISRs) at middle and high latitudes for this solar minimum period. Global daily mean TECs are calculated from JASON-1 TECs to compare with the corresponding IRI TECs during the 2008-2009 period. It is found that IRI underestimates the global daily mean TEC by about 20-50%. The comparison of global TEC maps further reveals that IRI overall underestimates TEC for the whole globe except for the low-latitude region around the equatorial anomaly, regardless of season. The underestimation is particularly strong in the nighttime winter hemisphere where the ionosphere seems to almost disappear in IRI. In the daytime equatorial region, however, the overestimation of IRI is mainly due to the misrepresentation of the equatorial anomaly in IRI. Further comparison with ISR electron density profiles confirms the significant underestimation of IRI at night in the winter hemisphere.

  10. An incoherent scatter radar study of the midnight temperature maximum that occurred at Arecibo during a sudden stratospheric warming event in January 2010

    NASA Astrophysics Data System (ADS)

    Gong, Yun; Zhou, Qihou; Zhang, Shaodong; Aponte, Nestor; Sulzer, Michael

    2016-06-01

    We present an analysis of the thermospheric midnight temperature maximum, a large increment of temperature around midnight. The analysis is based on data collected from the Arecibo incoherent scatter radar during 14-21 January 2010. The experiment overlaps with a major sudden stratospheric warming (SSW) event which commenced on 18 January 2010. Throughout the observation, the ion temperature exhibited moderate increase around postmidnight during 14-17 January, while it showed more intense increment during 18-21 January. In particular, on 20 January, the amplitude of the midnight temperature maximum (MTM) is 310 K, which is seldom seen at Arecibo. During the SSW, the meridional wind reverses toward the pole just before the commencement of the MTM. Then, the poleward wind and the ion temperature maximize almost at the same time. The variation of meridional wind and the MTM are consistent with the Whole Atmosphere Model (WAM) studies, which suggested that the variation is due to effects from an upward propagating terdiurnal tide. On the nights of 18-19 January, the MTM showed clear phase variation at the heights of 265, 303, and 342 km. A strong terdiurnal tide has been observed during the SSW and it is likely generated from low atmosphere and propagating upward. Our results provide direct observational evidence that the propagating upward terdiurnal tide plays an important role in causing the MTM, which supports the WAM simulations.

  11. High resolution general purpose D-layer experiment for EISCAT incoherent scatter radars using selected set of random codes

    NASA Astrophysics Data System (ADS)

    Turunen, T.; Westman, A.; Häggström, I.; Wannberg, G.

    2002-09-01

    The ionospheric D-layer is a narrow bandwidth radar target often with a very small scattering cross section. The target autocorrelation function can be obtained by transmitting a series of relatively short coded pulses and computing the correlation between data obtained from different pulses. The spatial resolution should be as high as possible and the spatial side lobes of the codes used should be as small as possible. However, due to the short pulse repetition period (in the order of milliseconds) at any instant, the radar receives detectable scattered signals not only from the pulse illuminating the D-region but also from 3 5 ambiguous-range pulses, which makes it difficult to produce a reliable estimate near zero lag of the autocorrelation function. A new experimental solution to this measurement problem, using a selected set of 40-bit random codes with 4 µs elements giving 600 m spatial resolution is presented. The zero lag is approximated by dividing the pulse into two 20-bit codes and computing the correlation between those two pulses. The lowest altitudes of the E-layer are measured by dividing the pulse into 5 pieces of 8 bits, which allows for computation of 4 lags. In addition, coherent integration of data from four pulses is used for obtaining separately the autocorrelation function estimate for the lowest altitudes and in cases when the target contains structures with a long coherence time. Design details and responses of the experiment are given, and analysed test data are shown.

  12. Millimeter-wave radar for brown-out landings using passive imager components

    NASA Astrophysics Data System (ADS)

    Martin, Christopher A.; Kolinko, Vladimir; Lovberg, John A.

    2010-04-01

    A millimeter-wave radar designed for landing helicopters in brown-out conditions is described and data is presented from an initial flight test. The radar operates in a frequency modulated continuous wave architecture, determining range to target by calculating the difference between transmitted and returned frequencies. The millimeter-wave frequency band provides sand and dust penetration and allows for small apertures appropriate for helicopter mounting. This radar also uses a flat panel phased-array receive antenna and phase processor to sample multiple antenna beams simultaneously, an architecture that has previously been successfully used in passive millimeter-wave imaging systems. The radar presents a wide field-of-view image to the operator at a 3 Hz frame rate where range to the ground and obstacles is depicted in grayscale. The flight test showed the radar to be capable of depicting terrain height variations and obstacles such as buildings, vehicles, building materials, and even power lines. Reductions in noise and symbology improvements are necessary developments for a viable landing system.

  13. The Soil Moisture Active Passive (SMAP): Radar Measurements at High Latitudes and of Freeze/Thaw State

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Dunbar, Scott; Chen, Curtis

    2013-01-01

    The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, a focus will be places on the radar design and associated data products at high latitudes. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used, among other things, to produce a surface freeze/thaw state data product.

  14. The Soil Moisture Active Passive (SMAP) Radar: Measurements at High Latitudes and of Surface Freeze/Thaw State

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Dunbar, Scott; Chen, Curtis

    2013-01-01

    The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band in order to achieve the science objectives of measuring soil moisture and land surface freeze-thaw state. To achieve requirements for a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, focus will be placed on the radar design. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used to produce a surface freeze/thaw state data product.

  15. An algorithm for automatic target recognition using passive radar and an EKF for estimating aircraft orientation

    NASA Astrophysics Data System (ADS)

    Ehrman, Lisa M.

    2005-07-01

    Rather than emitting pulses, passive radar systems rely on "illuminators of opportunity," such as TV and FM radio, to illuminate potential targets. These systems are attractive since they allow receivers to operate without emitting energy, rendering them covert. Until recently, most of the research regarding passive radar has focused on detecting and tracking targets. This dissertation focuses on extending the capabilities of passive radar systems to include automatic target recognition. The target recognition algorithm described in this dissertation uses the radar cross section (RCS) of potential targets, collected over a short period of time, as the key information for target recognition. To make the simulated RCS as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. An extended Kalman filter (EKF) estimates the target's orientation (and uncertainty in the estimate) from velocity measurements obtained from the passive radar tracker. Coupling the aircraft orientation and state with the known antenna locations permits computation of the incident and observed azimuth and elevation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of potential target classes as a function of these angles. Thus, the approximated incident and observed angles allow the appropriate RCS to be extracted from a database of FISC results. Using this process, the RCS of each aircraft in the target class is simulated as though each is executing the same maneuver as the target detected by the system. Two additional scaling processes are required to transform the RCS into a power profile (magnitude only) simulating the signal in the receiver. First, the RCS is scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. Then, the Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern

  16. Diurnal Variability of Vertical Structure from a TRMM Passive Microwave "Virtual Radar" Retrieval

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Petersen, Walter A.; Cecil, Daniel

    2006-01-01

    Robust description of the diurnal cycle from TRMM observations is complicated by the limitations of Low Earth Orbit (LEO) sampling; from a 'climatological' perspective, sufficient sampling must exist to control for both spatial and seasonal variability, before tackling an additional diurnal component (e.g., with 8 additional 3-hourly or 24 1-hourly bins). For documentation of vertical structure, the narrow sample swath of the TRMM Precipitation Radar limits the resolution of any of these components. A neural-network based 'virtual radar" retrieval has been trained and internally validated, using multifrequency / multipolarization passive microwave(TM1) brightness temperatures and textures parameters and lightning (LIS) observations, as inputs, and PR volumetric reflectivity as targets (outputs). By training the algorithms (essentially highly multivariate, nonlinear regressions) on a very large sample of high-quality co-located data from the center of the TRMM swath, 3D radar reflectivity and derived parameters (VIL, IWC, Echo Tops, etc.) can be retrieved across the entire TMI swath, good to 8-9% over the dynamic range of parameters. As a step in the retrieval (and as an output of the process), each TMI multifrequency pixel (at 85 GHz resolution) is classified into one of the 25 archetypal radar profile vertical structure "types", previously identified using cluster analysis. The dynamic range of retrieved vertical structure appears to have higher fidelity than the current (Version 6) experimental GPROF hydrometeor vertical structure retrievals. This is attributable to correct representation of the prior probabilities of vertical structure variability in the neural network training data, unlike the GPROF cloud-resolving model training dataset used in the V6 algorithms. The LIS lightning inputs are supplementary inputs, and a separate offline neural network has been trained to impute (predict) LIS lightning from passive-microwave-only data. The virtual radar

  17. Feasibility Study of EO SARs as Opportunity Illuminators in Passive Radars: PAZ-Based Case Study.

    PubMed

    Bárcena-Humanes, Jose-Luis; Gómez-Hoyo, Pedro-José; Jarabo-Amores, Maria-Pilar; Mata-Moya, David; Del-Rey-Maestre, Nerea

    2015-11-17

    Passive radars exploit the signal transmitted by other systems, known as opportunity illuminators (OIs), instead of using their own transmitter. Due to its almost total invulnerability to natural disasters or physical attacks, satellite OIs are of special interest. In this line, a feasibility study of Earth Observation Synthetic Aperture Radar (EO SAR) systems as OIs is carried out taking into consideration signal waveform, availability, bistatic geometry, instrumented coverage area and incident power density. A case study based on the use of PAZ, the first Spanish EO SAR, is presented. PAZ transmitted waveform, operation modes, orbit characteristics and antenna and transmitter parameters are analyzed to estimate potential coverages and resolutions. The study concludes that, due to its working in on-demand operating mode, passive radars based on PAZ-type illuminators can be proposed as complementing tools during the sensor commissioning phase, for system maintenance and for improving its performance by providing additional information about the area of interest and/or increasing the data updating speed, exploiting other sensors during the time PAZ is not available.

  18. Feasibility Study of EO SARs as Opportunity Illuminators in Passive Radars: PAZ-Based Case Study

    PubMed Central

    Bárcena-Humanes, Jose-Luis; Gómez-Hoyo, Pedro-José; Jarabo-Amores, Maria-Pilar; Mata-Moya, David; De-Rey-Maestre, Nerea

    2015-01-01

    Passive radars exploit the signal transmitted by other systems, known as opportunity illuminators (OIs), instead of using their own transmitter. Due to its almost total invulnerability to natural disasters or physical attacks, satellite OIs are of special interest. In this line, a feasibility study of Earth Observation Synthetic Aperture Radar (EO SAR) systems as OIs is carried out taking into consideration signal waveform, availability, bistatic geometry, instrumented coverage area and incident power density. A case study based on the use of PAZ, the first Spanish EO SAR, is presented. PAZ transmitted waveform, operation modes, orbit characteristics and antenna and transmitter parameters are analyzed to estimate potential coverages and resolutions. The study concludes that, due to its working in on-demand operating mode, passive radars based on PAZ-type illuminators can be proposed as complementing tools during the sensor commissioning phase, for system maintenance and for improving its performance by providing additional information about the area of interest and/or increasing the data updating speed, exploiting other sensors during the time PAZ is not available. PMID:26593921

  19. Mid-latitude ionospheric plasma temperature climatology and model based on Saint Santin incoherent scatter radar data from 1966-1987

    NASA Astrophysics Data System (ADS)

    Zhang, S. R.; Holt, J. M.; Zalucha, A. M.; Amory-Mazaudier, C.

    Zhang and Holt (2003, Ionospheric plasma temperatures during 1976-2001 over Millstone Hill, Adv. Space Res.) have reported the ionospheric plasma temperature variation based on incoherent scatter radar (ISR) observations between 1976 and 2001 at Millstone Hill, a typical sub-auroral mid-latitude site in North America. The French Saint Santin ISR, with a geographic latitude slightly higher but an apex latitude 7 degress lower than Millstone, collected bistatic and quadristatic measurements for 2 solar cycles beginning in September 1965.A database of these data from 1966 and 1987 has been used in this study in order to establish the mid-latitude ionospheric climatology, in particular that of the upper atmosphere thermal status, as well as empirical models for space weather applications. This paper presents, in comparison with the Millstone results, the variation of ion and electron temperature (Ti and Te) with solar activity, season, time of the day, and altitude. It is found that the F2 region Te at St Santin is not as high as in Millstone between May and September, when electron density (Ne) is relatively higher. The midday Te increases below 300 km with F107, as at Millstone Hill. However, above 300 km it tends to decrease with F107 at St Santin and increases between May and September at Millstone Hill. Ti between 250-350 km peaks not in summer but around May. Based on this database, Saint Saintin ionospheric models for Ne, Te, and Ti have also been created using a bin-fit technique similar to that used for the Millstone Hill models. Comparisions with corresponding IRI predications indicate good agreement in Ti at high solar activity, and IRI tends to give Te above the F2 peak higher than both the Saint Santin and Millstone Hill models.

  20. Identification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight

    NASA Astrophysics Data System (ADS)

    Forte, Biagio; Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary

    2017-01-01

    Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co-aligned GPS radio link. Large-scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large-scale structures did not cascade into smaller-scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large-scale to small-scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services.

  1. Identification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight

    PubMed Central

    Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary

    2017-01-01

    Abstract Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co‐aligned GPS radio link. Large‐scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large‐scale structures did not cascade into smaller‐scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large‐scale to small‐scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services. PMID:28331778

  2. Identification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight.

    PubMed

    Forte, Biagio; Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary

    2017-01-01

    Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co-aligned GPS radio link. Large-scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large-scale structures did not cascade into smaller-scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large-scale to small-scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services.

  3. Storm/Quiet Ratio Comparisons Between TIMED/SABER NO (sup +)(v) Volume Emission Rates and Incoherent Scatter Radar Electron Densities at E-Region Altitudes

    NASA Technical Reports Server (NTRS)

    Fernandez, J. R.; Mertens, C. J.; Bilitza, D.; Xu, X.; Russell, J. M., III; Mlynczak, M. G.

    2009-01-01

    Broadband infrared limb emission at 4.3 microns is measured by the TIMED/SABER instrument. At night, these emission observations at E-region altitudes are used to derive the so called NO+(v) Volume Emission Rate (VER). NO+(v) VER can be derived by removing the background CO2(v3) 4.3 microns radiance contribution using SABER-based non-LTE radiation transfer models, and by performing a standard Abel inversion on the residual radiance. SABER observations show that NO+(v) VER is significantly enhanced during magnetic storms in accordance with increased ionization of the neutral atmosphere by auroral electron precipitation, followed by vibrational excitation of NO+ (i.e., NO+(v)) from fast exothermic ion-neutral reactions, and prompt infrared emission at 4.3 m. Due to charge neutrality, the NO+(v) VER enhancements are highly correlated with electron density enhancements, as observed for example by Incoherent Scatter Radar (ISR). In order to characterize the response of the storm-time E-region from both SABER and ISR measurements, a Storm/Quiet ratio (SQR) quantity is defined as a function of altitude. For SABER, the SQR is the ratio of the storm-to-quiet NO+(v) VER. SQR is the storm-to-quiet ratio of electron densities for ISR. In this work, we compare SABER and ISR SQR values between 100 to 120 km. Results indicate good agreement between these measurements. SQR values are intended to be used as a correction factor to be included in an empirical storm-time correction to the International Reference Ionosphere model at E-region altitudes.

  4. Multi-Frequency Radar/Passive Microwave retrievals of Cold Season Precipitation from OLYMPEX data

    NASA Astrophysics Data System (ADS)

    Tridon, Frederic; Battaglia, Alessandro; Turk, Joe; Tanelli, Simone; Kneifel, Stefan; Leinonen, Jussi; Kollias, Pavlos

    2017-04-01

    Due to the large natural variability of its microphysical properties, the characterization of solid precipitation over the variety of Earth surface conditions remain a longstanding open issue for space-based radar and passive microwave (MW) observing systems, such those on board the current NASA-JAXA Global Precipitation measurement (GPM) core and constellation satellites. Observations from the NASA DC-8 including radar profiles from the triple frequency Advanced Precipitation Radar (APR-3) and brightness temperatures from PMW radiometers with frequencies ranging from 89 to 183 GHz were collected during November-December 2015 as part of the OLYMPEX-RADEX campaign in western Washington state. Observations cover orographically-driven precipitation events with flight transects over ocean, coastal areas, vegetated and snow-covered surfaces. This study presents results obtained by a retrieval optimal estimation technique capable of combining the various radar and radiometer measurements in order to retrieve the snow properties such as equivalent water mass and characteristic size. The retrieval is constrained by microphysical a-priori defined by in situ measurements whilst the most recent ice scattering models are used in the forward modelling. The vast dataset collected during OLYMPEX is particular valuable because it can provide very strong tests for the fidelity of ice scattering models deep in the non-Rayleigh regime. In addition, the various scattering tables of snow aggregates with different degrees of riming can be exploited to assess the potential of multi-wavelength active and passive microwave systems in identifying the primary ice growth process (i.e. aggregation vs riming vs deposition). First comparisons with in-situ observations from the coordinated flights of the Citation aircraft will also be presented.

  5. Estimation of ice thickness on large lakes from passive microwave and radar altimeter data

    NASA Astrophysics Data System (ADS)

    Duguay, Claude; Kang, Kyung-Kuk; Kouraev, Alexei; Mercier, Franck

    2010-05-01

    Lake ice grows steadily between the end of freeze-up period and the onset of break-up period as a result of the thermodynamics of freezing water as well as dynamic ice motion on the surface. In thermodynamic thickening, the conductive heat flow controls the ice growth rate and the ice thickness, and the ice thickens downward as a result of heat loss at the top of the ice cover. There has been some demonstration of the potential of brightness temperature from passive microwave airborne radiometers to estimate ice thickness. The value of passive microwave and radar altimeter data from current satellite missions merits to be examined in this respect. The major objective of this study was estimate ice thickness from brightness temperature (TB) at 10.65 and 18.70 GHz from AMSR-E channels and the 19.35 GHz frequency channel from SSM/I on large lakes of the Northern Hemisphere (e.g. Great Bear Lake, Great Slave Lake, Lake Baikal). The evolution of horizontally and vertically polarized TB derived from AMSR-E level 2A raw brightness temperature and EASE Grid Level-3 SSM/I products was compared with ice thicknesses obtained with a previously validated thermodynamic lake ice model and in situ observations over the course of seven winter seasons (2002 and 2009), as well as with recent estimates from the Jason-2 Ku-band radar altimeter data (since 2008). Results show that both passive microwave and radar altimeter data acquired in the 10-19 GHz frequency range offer a promising means for estimating ice thickness from large northern lakes.

  6. Note: A dual-chip stroboscopic pulsed RADAR for probing passive sensors

    NASA Astrophysics Data System (ADS)

    Minary, F.; Rabus, D.; Martin, G.; Friedt, J.-M.

    2016-09-01

    Stroboscopy provides an energy and computationally efficient means of sampling radiofrequency and microwave signals assumed to be reproducible under external excitation. While well known for impulse mode RADAR receivers, we here investigate its use for interrogating surface acoustic wave (SAW) transducers acting as passive cooperative targets. Amongst the originality of the implementation is the need to keep phase coherence between successive pulse generations which last up to tens of the radiofrequency periods to optimally transfer energy to the transducer. A two-chip receiver architecture is demonstrated, with a trigger signal compatible either with single-period avalanche transistor pulse excitation or frequency-agile direct digital synthesizer source.

  7. Passive radar tracking of a maneuvering target using variable structure multiple-model algorithm

    NASA Astrophysics Data System (ADS)

    Mao, Yunxiang; Zhou, Xiaohui; Zhang, Jin

    2013-03-01

    The variable structure multiple-model (VSMM) algorithm to passive radar maneuvering target tracking problem is considered. A new VSMM design, expected mode augmentation based on likely model set (LMS-EMA) algorithm is presented. The LMS-EMA algorithm adaptively determines the fixed grid model set using likely model set (LMS) algorithm, and generates the expected mode based on this set. Then, the union of fixed grid model set and expected model is used to perform multiple-model estimation. The performance of the LMS-EMA algorithm is evaluated via simulation of a highly maneuvering target tracking problem.

  8. Beamforming strategy of ULA and UCA sensor configuration in multistatic passive radar

    NASA Astrophysics Data System (ADS)

    Hossa, Robert

    2009-06-01

    A Beamforming Network (BN) concept of Uniform Linear Array (ULA) and Uniform Circular Array (UCA) dipole configuration designed to multistatic passive radar is considered in details. In the case of UCA configuration, computationally efficient procedure of beamspace transformation from UCA to virtual ULA configuration with omnidirectional coverage is utilized. If effect, the idea of the proposed solution is equivalent to the techniques of antenna array factor shaping dedicated to ULA structure. Finally, exemplary results from the computer software simulations of elaborated spatial filtering solutions to reference and surveillance channels are provided and discussed.

  9. A Comparison of Satellite-Based Radar and Passive Microwave Estimates of Global Wilson Current Source

    NASA Astrophysics Data System (ADS)

    Peterson, M. J.; Deierling, W.; Liu, C.; Mach, D. M.; Kalb, C. P.

    2014-12-01

    A passive microwave algorithm for estimating the electrical footprint of charged clouds has been developed and applied to satellite observations taken by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), which has a domain spanning the entire tropics up to 36 degrees latitude, and compared with lightning-based estimates of global electricity and the Carnegie curve. While these results show considerable agreement with historical observations for convective storms, this method has difficulty characterizing electricity in stratiform clouds and storms at different stages of the convective lifecycle. The algorithm also does not take advantage of the full suite of observations available in the 16-year TRMM dataset, which also includes Precipitation Radar (PR) observations of the structure of storms overflown by the satellite. As a first step towards building an algorithm that can characterize electrical input to the Global Electric Circuit (GEC) from a wide variety of storms across the globe, this study compares passive microwave-based approximations of global electricity with precipitation radar-based approximations in order to determine the relative skill each platform has in describing the "battery" of the GEC and to identify a possible pathway towards a combined metric that can use the strengths of both instruments to better describe electrified clouds.

  10. High Bandwidth, Multi-Purpose Passive Radar Receiver Design For Aerospace and Geoscience Targets

    NASA Astrophysics Data System (ADS)

    Vertatschitsch, Laura

    Passive radar permits inexpensive and stealthy detection and tracking of aerospace and geoscience targets. Transmitters of opportunity such as commercial FM broadcast, DTV broadcast, and cell phone towers are already illuminating many populated areas with continuous power. Passive radar receivers can be located at a distance from the transmitter, and can sense this direct transmission as well as any reflections from ground clutter, aircraft, ionospheric turbulence and meteor trails. The 100% duty cycle allows for long coherent integration, increasing the sensitivity of these instruments greatly. Traditional radar receivers employ analog front end downconverters to translate the radio frequency spectrum to an intermediate frequency (IF) for sampling and signal processing. Such downconverters limit the spectrum available for study, and can introduce nonlinearities which limit the detectability of weak signals in the presence of strong signals. With suitably fast digitizers one can bypass the downconversion stage completely. Very fast digitizers may have relatively few bits, but precision is recovered in subsequent signal processing. We present a new passive radar receiver designed to utilize a broad spectrum of commercial transmitters without the use of a front end analog downconverter. The receiver centers around a Reconfigurable Open Architecture Computing Hardware (ROACH) board developed by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) group. Fast sampling rates (8-bit samples as fast as 3 GSps) combined with 640 multiply/addition operations on the Virtex-5 FPGA centered on the ROACH allows for coherent processing of broad spectrum and dynamic decision-making on one device all while sharing a single front end, putting this device on the cutting edge of wideband receiver technology. The radar is also designed to support mobile operation. It fits within a 19'' rack, it is equipped with solid state hard drives, and can run off an

  11. Predictability of GNSS signal observations in support of Space Situational Awareness using passive radar

    NASA Astrophysics Data System (ADS)

    Mahmud, M. S.; Lambert, A.; Benson, C.

    2015-07-01

    GNSS signals have been proposed as emitters of opportunity to enhance Space Situational Awareness (SSA) by tracking small items of space debris using bistatic radar. Although the scattered GNSS signal levels from small items of space debris are incredibly low, the dynamic disturbances of the observed object are very small, and the phase of the scattered signals is well behaved. It is therefore plausible that coherent integration periods on the order of many minutes could be achieved. However, even with long integration periods, very large receiver arrays with extensive, but probably viable, processing are required to recover the scattered signal. Such large arrays will be expensive, and smaller more affordable arrays will collect insufficient signal power to detect the small objects (relative to wavelength) that are necessary to maintain the necessary phase coherency. The investments necessary to build a large receiver array are unlikely without substantial risk reduction. Pini and Akos have previously reported on use of very large radio telescopes to analyse the short-term modulation performance of GNSS satellite signals. In this work we report on tracking of GPS satellites with a radio-astronomy VLBI antenna system to assess the stability of the observed GPS signal over a time period indicative of that proposed for passive radar. We also confirm some of the processing techniques that may be used in both demonstrations and the final system. We conclude from the limited data set that the signal stability when observed by a high-gain tracking antenna and compared against a high quality, low phase-noise clock is excellent, as expected. We conclude by framing further works to reduce risk for a passive radar SSA capability using GNSS signals. http://www.ignss.org/Conferences/PastConferencePapers/2015ConferencePastPapers/2015PeerReviewedPapers/tabid/147/Default.aspx

  12. Cross Comparison of Electron Density and Electron Temperature Observations from the DICE CubeSat Langmuir Probes and the Millstone Hill Incoherent Scatter Radar.

    NASA Astrophysics Data System (ADS)

    Swenson, C.; Erickson, P. J.; Crowley, G.; Pilinski, M.; Barjatya, A.; Fish, C. S.

    2014-12-01

    The Dynamic Ionosphere CubeSat Experiment (DICE) consists of two identical 1.5U CubeSats deployed simultaneously from a single P-POD (Poly Picosatellite Orbital Deployer) into the same orbit. Several observational campaigns were planned between the DICE CubeSats and the mid-latitude Millstone Hill Incoherent Scatter Radar (ISR) in order to calibrate the DICE measurements of electron density and electron temperature. In this presentation, we compare in-situ observations from the Dynamic Ionosphere CubeSat Experiment (DICE) and from the Millstone Hill ISR. Both measurements are cross-calibrated against an assimilative model of the global ionospheric electron density. The electron density and electron temperature were obtained for three Millstone Hill DICE overflights (2013-03-12, 2013-03-15, 2013-03-17). We compare the data during quiet and geomagnetically disturbed conditions and find evidence of an storm enhanced density (SED) plume in the topside ionosphere on 2013-03-17 at 19? UTC. During this disturbed interval, American longitude sector high density plasma was convected near 15 SLT towards the noontime cusp. DICE was selected for flight under the NSF "CubeSat-based Science Mission for Space Weather and Atmospheric Research" program. The DICE twin satellites were launched on a Delta II rocket on October 28, 2011. The satellites are flying in a "leader-follower" formation in an elliptical orbit which ranges from 820 to 400 km in altitude. Each satellite carries a fixed-bias DC Langmuir Probe (DCP) to measure in-situ ionospheric plasma densities and a science grade magnetometer to measure DC and AC geomagnetic fields. The purpose of these measurements was to permit accurate identification of storm-time features such as the SED bulge and plume. The mission team combines expertise from ASTRA, Utah State University/Space Dynamics Laboratory (USU/SDL), and Embry-Riddle Aeronautical University. In this paper we present a comparison of data from DICE and Millstone Hill

  13. An Orbital "Virtual Radar" from TRMM Passive Microwave and Lightning Observations

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.

    2004-01-01

    The retrieval of vertical structure from joint passive microwave and lightning observations is demonstrated. Three years of data from the TRMM (Tropical Rainfall Measuring Mission) are used as a training dataset for regression and classification neural networks; the TMI (TRMM Microwave Imager) and LIS (Lightning Imaging Sensor) provide the inputs, the PR (Precipitation Radar) provides the training targets. Both vertical reflectivity profile categorization (into 9 convective, 7 stratiform, 2 mixed and 6 anvil types) and geophysical parameters (surface rainfall, vertically integrated liquid (VIL), ice water content (IWC) and echo tops) are retrieved. Retrievals are successful over both land and ocean surfaces. The benefit of using lightning observations as inputs to these retrievals is quantitatively demonstrated; lightning essentially provides an additional convective/stratiform discriminator, and is most important for isolation of midlevel (tops in the mixed phase region) convective profile types (this is because high frequency passive microwave observations already provide good convective/stratiform discrimination for deep convective profiles). This is highly relevant as midlevel convective profiles account for an extremely large fraction of tropical rainfall, and yet are most difficult to discriminate from comparable-depth stratiform profile types using passive microwave observations alone.

  14. Landscape freeze/thaw retrievals from soil moisture active passive (SMAP) L-band radar measurements

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Derksen, C.

    2015-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission produces a daily landscape freeze/thaw product (L3_FT_A) which provides categorical (frozen, thawed, or [inverse] transitional) classification of the surface state (for land areas north of 45°N) derived from ascending and descending orbits of SMAP high-resolution L-band radar measurements. The FT retrievals are output to 3 km resolution polar and global grids with temporal revisit of 2 days or better north of ~55°N and 3 days or better north of 45°N. The algorithm classifies the land surface freeze/thaw state based on the time series of L-band radar backscatter compared to frozen and thawed reference states. This presentation will describe pre-launch L3_FT_A algorithm implementation and evaluation using NASA/SAC-D Aquarius L-band radar data, and provide an update on the current status of the SMAP L3_FT_A product. In advance of SMAP measurements, the L3_FT_A algorithm was configured and evaluated using Aquarius measurements. While the temporal (weekly) and spatial (~100 km) resolution is much coarser than SMAP, Aquarius provides L-band radar measurements at an incidence angle (normalized to 40 degrees) which is close to SMAP. Evaluation of FT retrievals derived using both Aquarius freeze/thaw references and backscatter time series as inputs identified good agreement during the fall freeze-up period with FT flag agreement (Aquarius versus in situ) exceeding the 80% SMAP mission requirement when summarized on a monthly basis. Disagreement was greater during the spring thaw transition due in part to uncertainty in characterizing the surface state from in situ measurements and backscatter sensitivity to the onset of snow melt, independent of the soil temperature beneath the snowpack. Initial challenges for SMAP derived FT retrievals include the scale difference between the Aquarius references (~100 km) and the SMAP measurements (3 km) which is particularly problematic in areas of complex topography and/or mixed

  15. Synthesis of passive microwave and radar altimeter data for estimating accumulation rates of polar snow

    NASA Technical Reports Server (NTRS)

    Davis, Curt H.

    1993-01-01

    In this paper, we compare dry-snow extinction coefficients derived from radar altimeter data with brightness temperature data from passive microwave measurements over a portion of the East Antarctic plateau. The comparison between the extinction coefficients and the brightness temperatures shows a strong negative correlation, where the correlation coefficients ranged from -0.87 to -0.95. The extinction coefficient of the dry polar snow decreases with increasing surface elevation, while the average brightness temperature increases with surface elevation. Our analysis shows that the observed trends are related to geographic variations in scattering coefficient of snow, which in turn are controlled by variations in surface temperature and snow accumulation rate. By combining information present in the extinction coefficient and brightness temperature data sets, we develop a model that can be used to obtain quantitative estimates of the accumulation rate of dry polar snow.

  16. Use of Radar Vegetation Index (RVI) in Passive Microwave Algorithms for Soil Moisture Estimates

    NASA Astrophysics Data System (ADS)

    Rowlandson, T. L.; Berg, A. A.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) satellite will provide a unique opportunity for the estimation of soil moisture by having simultaneous radar and radiometer measurements available. As with the Soil Moisture and Ocean Salinity (SMOS) satellite, the soil moisture algorithms will need to account for the contribution of vegetation to the brightness temperature. Global maps of vegetation volumetric water content (VWC) are difficult to obtain, and the SMOS mission has opted to estimate the optical depth of standing vegetation by using a relationship between the VWC and the leaf area index (LAI). LAI is estimated from optical remote sensing or through soil-vegetation-atmosphere transfer modeling. During the growing season, the VWC of agricultural crops can increase rapidly, and if cloud cover exists during an optical acquisition, the estimation of LAI may be delayed, resulting in an underestimation of the VWC and overestimation of the soil moisture. Alternatively, the radar vegetation index (RVI) has shown strong correlation and linear relationship with VWC for rice and soybeans. Using the SMAP radar to produce RVI values that are coincident to brightness temperature measurements may eliminate the need for LAI estimates. The SMAP Validation Experiment 2012 (SMAPVEX12) was a cal/val campaign for the SMAP mission held in Manitoba, Canada, during a 6-week period in June and July, 2012. During this campaign, soil moisture measurements were obtained for 55 fields with varying soil texture and vegetation cover. Vegetation was sampled from each field weekly to determine the VWC. Soil moisture measurements were taken coincident to overpasses by an aircraft carrying the Passive and Active L-band System (PALS) instrumentation. The aircraft flew flight lines at both high and low altitudes. The low altitude flight lines provided a footprint size approximately equivalent to the size of the SMAPVEX12 field sites. Of the 55 field sites, the low altitude flight lines provided

  17. A passive seismic experiment and ground penetration radar to characterize subsurface cavities in Eastern Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Asmaidi Chan, Septriandi; Ismail Kaka, SanLinn

    2014-05-01

    We have carried out a small-scale passive seismic experiment over a known shallow cavity at King Fahd University of Petroleum & Minerals in an attempt to characterize the near surface cavities. This experiment was conducted as part of a larger study to develop an integrated geophysical approach (i.e. seismic, gravity, resistivity and ground penetration radar) in detecting and characterizing shallow subsurface cavities. Characterizing shallow cavities is of particular interest in the eastern province of Saudi Arabia where many cavities were discovered during a number of construction projects. We used a Geospace passive seismic recording system to collect continuous data over a partly dolomitized limestone bed with several fractures and cavities. Systematically selected time series data at different times of the day were processed using Geopsy software developed by the SESAME (Site Effects Assessment using Ambient Excitations) project. Data from the 10 Hz geophone was used in this experiment and we extracted part of the data recorded during the night as this has been found to exclude most of the anthropologic noise that usually masks signals on data recorded during the day time. We analyzed time series data and performed spectral analysis. Horizontal-to-vertical ratio (H/V) and power spectral density (PSD) were performed as an enhancement tool to determine the resonance frequencies possibly associated with the shallow cavity. Various processing windows with 5% cosine tapers were applied to reduce spectral leakage. To retain the analysis at frequency range of interest between 0.1 to 20 Hz, a band-pass-filter with smoothing procedure described by Kamo and Omachi (1998) was applied. Moreover, the same frequency peaks were picked at each measuring point to check the stability of the H/V curve. The preliminary results (frequency peaks in the spectral H/V ambient ground motions as well as PSD plots) do not uniquely define the near surface cavity. However, further

  18. Bayesian Estimation of Precipitation from Satellite Passive Microwave Observations Using Combined Radar-Radiometer Retrievals

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.

    2006-01-01

    Precipitation estimation from satellite passive microwave radiometer observations is a problem that does not have a unique solution that is insensitive to errors in the input data. Traditionally, to make this problem well posed, a priori information derived from physical models or independent, high-quality observations is incorporated into the solution. In the present study, a database of precipitation profiles and associated brightness temperatures is constructed to serve as a priori information in a passive microwave radiometer algorithm. The precipitation profiles are derived from a Tropical Rainfall Measuring Mission (TRMM) combined radar radiometer algorithm, and the brightness temperatures are TRMM Microwave Imager (TMI) observed. Because the observed brightness temperatures are consistent with those derived from a radiative transfer model embedded in the combined algorithm, the precipitation brightness temperature database is considered to be physically consistent. The database examined here is derived from the analysis of a month-long record of TRMM data that yields more than a million profiles of precipitation and associated brightness temperatures. These profiles are clustered into a tractable number of classes based on the local sea surface temperature, a radiometer-based estimate of the echo-top height (the height beyond which the reflectivity drops below 17 dBZ), and brightness temperature principal components. For each class, the mean precipitation profile, brightness temperature principal components, and probability of occurrence are determined. The precipitation brightness temperature database supports a radiometer-only algorithm that incorporates a Bayesian estimation methodology. In the Bayesian framework, precipitation estimates are weighted averages of the mean precipitation values corresponding to the classes in the database, with the weights being determined according to the similarity between the observed brightness temperature principal

  19. Bayesian Estimation of Precipitation from Satellite Passive Microwave Observations Using Combined Radar-Radiometer Retrievals

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.

    2006-01-01

    Precipitation estimation from satellite passive microwave radiometer observations is a problem that does not have a unique solution that is insensitive to errors in the input data. Traditionally, to make this problem well posed, a priori information derived from physical models or independent, high-quality observations is incorporated into the solution. In the present study, a database of precipitation profiles and associated brightness temperatures is constructed to serve as a priori information in a passive microwave radiometer algorithm. The precipitation profiles are derived from a Tropical Rainfall Measuring Mission (TRMM) combined radar radiometer algorithm, and the brightness temperatures are TRMM Microwave Imager (TMI) observed. Because the observed brightness temperatures are consistent with those derived from a radiative transfer model embedded in the combined algorithm, the precipitation brightness temperature database is considered to be physically consistent. The database examined here is derived from the analysis of a month-long record of TRMM data that yields more than a million profiles of precipitation and associated brightness temperatures. These profiles are clustered into a tractable number of classes based on the local sea surface temperature, a radiometer-based estimate of the echo-top height (the height beyond which the reflectivity drops below 17 dBZ), and brightness temperature principal components. For each class, the mean precipitation profile, brightness temperature principal components, and probability of occurrence are determined. The precipitation brightness temperature database supports a radiometer-only algorithm that incorporates a Bayesian estimation methodology. In the Bayesian framework, precipitation estimates are weighted averages of the mean precipitation values corresponding to the classes in the database, with the weights being determined according to the similarity between the observed brightness temperature principal

  20. Development of a passive VHF radar system using software-defined radio for equatorial plasma instability studies

    NASA Astrophysics Data System (ADS)

    Tuysuz, B.; Urbina, J.; Lind, F. D.

    2013-07-01

    In this paper, a bistatic passive radar receiver system named "Coherent-scatter Atmospheric Passive Radar Imager (CAPRI)" is described. It is primarily designed to study the dynamics of the upper atmosphere by utilizing "transmitters of opportunity" as the RF target illuminators. CAPRI is constructed using the open source software-defined radio toolkit, GNU Radio, to meet the signal processing requirements in combination with the open source hardware, Universal Software Radio Peripheral 2, for data acquisition. The resultant system is highly flexible, and we present the details of the design as well as a performance analysis. CAPRI will be deployed in Peru, near the magnetic equator, for long-term operations in the area. FM stations near Lima, Peru, will be utilized with the targets of interest being the equatorial electrojet and the spread F. The results will then be compared to the Jicamarca Unattended Long-term investigations of the Ionosphere and Atmosphere (JULIA) radar data, and CAPRI will be used to improve the simultaneous time and spatial coverage in the region in a more cost-effective manner.

  1. Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment

    PubMed Central

    Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E.

    2014-01-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%–18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment. PMID:24771566

  2. Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.

    PubMed

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E

    2014-09-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%-18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment.

  3. Multiparametric Airborne Radar observations of the melting layer during the Wakasa Bay Experiment and compairson to passive radiometric brightness temperatures

    NASA Astrophysics Data System (ADS)

    Tanelli, S.; Meagher, J. P.; Durden, S. L.; Im, E.

    2003-12-01

    The NASA/JPL airborne precipitation radar APR-2 (dual frequency - 14 and 35 GHz, Doppler and dual polarization) was operated on the NASA P-3 aircraft during the Wakasa Bay (Japan) experiment. The experiment conducted jointly by the U.S. AMSR-E and Japanese AMSR teams in Jan/Feb 2003, was designed to (1) validate both the AMSR and AMSR-E shallow rainfall and snowfall retrieval capabilities (2) extend the database of rainfall properties needed to implement a comprehensive physical validation scheme, and (3) extend our understanding of rainfall structures through the use of new remote sensing technology. On 12 flights, more than 30 hours worth of precipitation systems were observed, including rain and snow events, both over ocean and over land. The statistics of several melting layer parameters derived from the multiparametric radar observations of two stratiform rain events are presented and compaired to measured passive radiometric brightness temperatures.

  4. Characteristics and performance of L-band radar-based soil moisture retrievals using Soil Moisture Active Passive (SMAP) synthetic aperture radar observations

    NASA Astrophysics Data System (ADS)

    Kim, S.; Johnson, J. T.; Moghaddam, M.; Tsang, L.; Colliander, A.

    2016-12-01

    Surface soil moisture of the top 5-cm was estimated at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Radar observations of soil moisture offer the advantage of high spatial resolution, but have been challenging in the past due to the complicating factors of surface roughness and vegetation scattering. In this work, physically-based forward models of radar scattering for individual vegetation types are inverted using a time-series approach to retrieve soil moisture while correcting for the effects of roughness and dynamic vegetation. The predictions of the forward models used agree with SMAP measurements to within 0.5 dB unbiased-RMSE (root mean square error, ubRMSE) and -0.05 dB (bias). The forward models further allow the mechanisms of radar scattering to be examined to identify the sensitivity of radar scattering to soil moisture. Global patterns of the soil moistures retrieved by the algorithm generally match well with those from other satellite sensors. However biases exist in dry regions, and discrepancies are found in thick vegetation areas. The retrievals are compared with in situ measurements of soil moisture in locations characterized as cropland, grassland, and woody vegetation. Terrain slopes, subpixel heterogeneity, tillage practices, and vegetation growth influence the retrievals, but are largely corrected by the retrieval processes. Soil moisture retrievals agree with the in-situ measurements at 0.052 m3/m3 ubRMSE, -0.015 m3/m3 bias, and a correlation of 0.50. These encouraging retrieval results demonstrate the feasibility of a physically-based time-series retrieval with L-band SAR data for characterizing soil moisture over diverse conditions of soil moisture, surface roughness, and vegetation types. The findings are important for future L-band radar missions with frequent revisits that permit time

  5. Modified Cramér-Rao lower bounds for joint position and velocity estimation of a Rician target in OFDM-based passive radar networks

    NASA Astrophysics Data System (ADS)

    Shi, C. G.; Salous, S.; Wang, F.; Zhou, J. J.

    2017-01-01

    Owing to the increased deployment and the favorable range and Doppler resolutions, orthogonal frequency-division multiplexing (OFDM)-based L band digital aeronautical communication system type 1 (LDACS1) stations have become attractive systems for target surveillance in passive radar applications. This paper investigates the problem of joint parameter (position and velocity) estimation of a Rician target in OFDM-based passive radar network systems with multichannel receivers placed on moving platforms, which are composed of multiple OFDM-based LDACS1 transmitters of opportunity and multiple radar receivers. The modified Cramér-Rao lower bounds (MCRLBs) on the Cartesian coordinates of target position and velocity are computed, where the received signal from the target is composed of dominant scatterer (DS) component and weak isotropic scatterers (WIS) component. Simulation results are provided to demonstrate that the target parameter estimation accuracy can be improved by exploiting the DS component. It also shows that the joint MCRLB is not only a function of the transmitted waveform parameters, target radar cross section, and signal-to-noise ratio but also a function of the relative geometry between the target and the passive radar networks. The analytical expressions of MCRLB can be utilized as a performance metric to access the target parameter estimation in OFDM-based passive radar networks in that they enable the selection of optimal transmitter-receiver pairs for target estimation.

  6. Volume cross section of auroral radar backscatter and RMS plasma fluctuations inferred from coherent and incoherent scatter data: a response on backscatter volume parameters

    NASA Astrophysics Data System (ADS)

    Uspensky, M. V.; Janhunen, P.; Koustov, A. V.; Kauristie, K.

    2011-06-01

    Norway and Finland STARE radar measurements in the eastward auroral electrojet are combined with EISCAT CP-1 measurements of the electron density and electric field vector in the common scattering volume to investigate the variation of the auroral radar volume cross section (VCS) with the flow angle of observations (radar look direction with respect to the E×B electron drift). The data set available consists of ~6000 points for flow angles of 40-85° and electron drifts between 500 and 2000 m s-1. The EISCAT electron density N(h)-profile data are used to estimate the effective electron density, aspect angle and thickness of the backscattering layer. It is shown that the flow angle variation of the VCS is rather weak, only ~5 dB within the range of the considered flow angles. The VCS values themselves respond almost linearly to the square of both the electron drift velocity magnitude and the effective electron density. By adopting the inferred shape of the VCS variation with the flow angle and the VCS dependence upon wavelength, the relative amplitude of electrostatic electron density fluctuations over all scales is estimated. Inferred values of 2-4 percent react nearly linearly to the electron drift velocity in the range of 500-1000 m s-1 but the rate of increase slows down at electron drifts >1000 m s-1 and density fluctuations of ~5.5 percent due to, perhaps, progressively growing nonlinear wave losses.

  7. Use of TRMM Precipitation Radar for Calibrating Overland Passive Microwave Rain Retrieval

    NASA Astrophysics Data System (ADS)

    Dinku, T.; Anagnostou, E. N.

    2006-05-01

    The precipitation radar (PR) on board the TRMM satellite provides definitive measurements of the 3D structure of precipitation. However, its narrow swath (215km) limits the use of this dataset. On the other hand, TMI and SSM/I provide wider swath coverage (760 km for TMI and 1400 km SSM/I) and higher sampling frequency. Thus, combining the higher accuracy of PR with the better spatial coverage and sampling frequency of TMI and SSM/I would be of great value in a number of applications in meteorology, hydrology, and water resources. One approach is to use PR to calibrate passive microwave (PM) rain retrieval algorithms. Relationship between PR rain estimates and PM observations may vary from one rainfall regime to another and from one season to another. Consequently, this research aims at developing a PR-calibrated TMI (PR-TMI) overland rain retrieval algorithm, investigating its regional and seasonal differences, and extending the PR-TMI algorithm to an SSM/I rain retrieval. Application of the PR-based calibration to SSM/I is particularly important because this sensor has long historical data going back to 1987 and a better sampling than TMI due to the more frequent overpasses and its wider swath. The algorithm developed here consists of rain/no-rain screening, convective/stratiform classification, and non-linear (linear) brightness temperature-rain rate relationship for stratiform (convective) rain type. Four geographic regions from Central Africa (AFC), Amazon (AMZ), continental US (USA), and South Asia (SAS) are selected for these investigations. The algorithm is shown to be associated with significant decrease in both random and systematic error relative to the TRMM-2A12 V6 product. Regional calibration is shown to introduce only moderate improvement compared to global calibration for the SAS region, while insignificant improvement for the other (AFC, AMZ and USA) regions. Seasonal calibration is significant only over USA. However, it was observed that the

  8. Analysis of polarimetric synthetic aperture radar and passive visible light polarimetric imaging data fusion for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Maitra, Sanjit

    The recent launch of spaceborne (TerraSAR-X, RADARSAT-2, ALOS-PALSAR, RISAT) and airborne (SIRC, AIRSAR, UAVSAR, PISAR) polarimetric radar sensors, with capability of imaging through day and night in almost all weather conditions, has made polarimetric synthetic aperture radar (PolSAR) image interpretation and analysis an active area of research. PolSAR image classification is sensitive to object orientation and scattering properties. In recent years, significant work has been done in many areas including agriculture, forestry, oceanography, geology, terrain analysis. Visible light passive polarimetric imaging has also emerged as a powerful tool in remote sensing for enhanced information extraction. The intensity image provides information on materials in the scene while polarization measurements capture surface features, roughness, and shading, often uncorrelated with the intensity image. Advantages of visible light polarimetric imaging include high dynamic range of polarimetric signatures and being comparatively straightforward to build and calibrate. This research is about characterization and analysis of the basic scattering mechanisms for information fusion between PolSAR and passive visible light polarimetric imaging. Relationships between these two modes of imaging are established using laboratory measurements and image simulations using the Digital Image and Remote Sensing Image Generation (DIRSIG) tool. A novel low cost laboratory based S-band (2.4GHz) PolSAR instrument is developed that is capable of capturing 4 channel fully polarimetric SAR image data. Simple radar targets are formed and system calibration is performed in terms of radar cross-section. Experimental measurements are done using combination of the PolSAR instrument with visible light polarimetric imager for scenes capturing basic scattering mechanisms for phenomenology studies. The three major scattering mechanisms studied in this research include single, double and multiple bounce. Single

  9. Joint Variability of Airborne Passive Microwave and Ground-based Radar Observations Obtained in the TRMM Kwajalein Experiment

    NASA Astrophysics Data System (ADS)

    Yuter, S. E.; Kingsmill, D. E.

    2007-12-01

    The Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX) held July-September 1999 in the west Pacific was designed to obtain an empirical physical characterization of precipitating convective clouds over the tropical ocean. The majority of the precipitation was from mixed-phase clouds. Coordinated data sets were obtained from aircraft and ground-based sensors including passive microwave measurements by the Advanced Microwave Precipitation Radiometer (AMPR) instrument on the NASA DC-8 aircraft and S-band volumetric radar data by the KPOL radar. The AMPR and KPOL data sets were processed to yield a set of 25,049 matching observations at ~ 2 km x 2 km horizontal spatial resolution and within 6 min. The TRMM satellite Microwave Imager (TMI) has a similar set of channels to AMPR but coarser spatial resolution (19 GHz: 35 km, 85 GHz: 7.7 km). During KWAJEX, the 0 deg C level height was nearly constant at ~ 4800 m. Hence, two potential sources of uncertainty in relating passive microwave brightness temperatures (Tbs) to surface precipitation, inhomogeneous beam filling and variations in depth of the rain layer are much smaller sources of error in the KWAJEX data set than for TMI. TRMM was originally designed to yield monthly rainfall estimates over 5 deg x 5 deg grid boxes. The use of these data to yield instantaneous rainrate products at smaller spatial scales is more sensitive to the detailed characteristics of the joint distributions of passive microwave Tbs versus rain rate. KWAJEX data sets reveal poor correlations, very wide scatter, and weak modes in these distributions. The spread of emission Tb values for a given rain-layer reflectivity (e.g., 75 K at 30 dBZ for 19 GHz) is similar or larger within convective compared to stratiform precipitation regions. This result implies that the enhancement in emission Tbs associated with partially melted ice particles can occur whether the particles are concentrated within a thin layer in stratiform

  10. Surface soil moisture retrieval using the L-band synthetic aperture radar onboard the Soil Moisture Active Passive satellite and evaluation at core validation sites

    USDA-ARS?s Scientific Manuscript database

    This paper evaluates the retrieval of soil moisture in the top 5-cm layer at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Surface soil moisture ...

  11. Hydrogen ion study by incoherent scatter (IS) method: comparison of results taken by Kharkov IS radar with data from Arecibo and Millstone Hill radars, atmosphere explorer satellites and model

    NASA Astrophysics Data System (ADS)

    Taran, V. I.; Grigorenko, Ye. I.

    2003-04-01

    Investigation of hydrogen ion behavior in topside ionosphere with the Kharkov IS radar is conducted by the POLITE CEDAR program. Program aim is the study of flight ion morphology and dynamics for refinement of the global topside ionosphere models and forecast of the 'space weather'. In this paper, the H+ density data of radars at Kharkov, Arecibo and Millstone Hill are compared at altitudes up to 1000-1300 km for winter and summer, minimum and maximum of solar activity. The measurements showed that height and diurnal variations of H+ concentration over eastern and western hemispheres were generally in close agreement, It is revealed a strong longitudinal variation of H+ ion fraction that is accounted for different magnetic flux tube volumes due to the offset between the geographic and geomagnetic poles. The Kharkov radar data are also compared with results taken from the Atmosphere Explorer (AE) database and FLIP model calculations, for midlatitude region, noon and midnight local time, at solar minimum. Comparisons show that H+ height distributions good agrees and corresponds close conditions of ionosphere-plasmasphere interaction. At the same time the model and AE data are lower than mesaured densities at Kharkov that can be explained by geophysical condition difference.

  12. MST radar data-base management

    NASA Technical Reports Server (NTRS)

    Wickwar, V. B.

    1983-01-01

    Data management for Mesospheric-Stratospheric-Tropospheric, (MST) radars is addressed. An incoherent-scatter radar data base is discussed in terms of purpose, centralization, scope, and nature of the data base management system.

  13. Combining In-situ Measurements, Passive Satellite Imagery, and Active Radar Retrievals for the Detection of High Ice Water Content

    NASA Astrophysics Data System (ADS)

    Yost, C. R.; Minnis, P.; Bedka, K. M.; Nguyen, L.; Palikonda, R.; Spangenberg, D.; Strapp, J. W.; Delanoë, J.; Protat, A.

    2016-12-01

    At least one hundred jet engine power loss events since the 1990s have been attributed to the phenomenon known as ice crystal icing (ICI). Ingestion of high concentrations of ice particles into aircraft engines is thought to cause these events, but it is clear that the use of current on-board weather radar systems alone is insufficient for detecting conditions that might cause ICI. Passive radiometers in geostationary orbit are valuable for monitoring systems that produce high ice water content (HIWC) and will play an important role in nowcasting, but are incapable of making vertically resolved measurements of ice particle concentration, i.e., ice water content (IWC). Combined radar, lidar, and in-situ measurements are essential for developing a skilled satellite-based HIWC nowcasting technique. The High Altitude Ice Crystals - High Ice Water Content (HAIC-HIWC) field campaigns in Darwin, Australia, and Cayenne, French Guiana, have produced a valuable dataset of in-situ total water content (TWC) measurements with which to study conditions that produce HIWC. The NASA Langley Satellite ClOud and Radiative Property retrieval System (SatCORPS) was used to derive cloud physical and optical properties such cloud top height, temperature, optical depth, and ice water path from multi-spectral satellite imagery acquired throughout the HAIC-HIWC campaigns. These cloud properties were collocated with the in-situ TWC measurements in order to characterize cloud properties in the vicinity of HIWC. Additionally, a database of satellite-derived overshooting cloud top (OT) detections was used to identify TWC measurements in close proximity to convective cores likely producing large concentrations of ice crystals. Certain cloud properties show some sensitivity to increasing TWC and a multivariate probabilistic indicator of HIWC was developed from these datasets. This paper describes the algorithm development and demonstrates the HIWC indicator with imagery from the HAIC

  14. Passive Microwave Soil Moisture Retrieval through Combined Radar/Radiometer Ground Based Simulator with Special Reference to Dielectric Schemes

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K., ,, Dr.; O'Neill, Peggy, ,, Dr.

    2014-05-01

    Soil moisture is an important element for weather and climate prediction, hydrological sciences, and applications. Hence, measurements of this hydrologic variable are required to improve our understanding of hydrological processes, ecosystem functions, and the linkages between the Earth's water, energy, and carbon cycles (Srivastava et al. 2013). The retrieval of soil moisture depends not only on parameterizations in the retrieval algorithm but also on the soil dielectric mixing models used (Behari 2005). Although a number of soil dielectric mixing models have been developed, testing these models for soil moisture retrieval has still not been fully explored, especially with SMAP-like simulators. The main objective of this work focuses on testing different dielectric models for soil moisture retrieval using the Combined Radar/Radiometer (ComRAD) ground-based L-band simulator developed jointly by NASA/GSFC and George Washington University (O'Neill et al., 2006). The ComRAD system was deployed during a field experiment in 2012 in order to provide long active/passive measurements of two crops under controlled conditions during an entire growing season. L-band passive data were acquired at a look angle of 40 degree from nadir at both horizontal & vertical polarization. Currently, there are many dielectric models available for soil moisture retrieval; however, four dielectric models (Mironov, Dobson, Wang & Schmugge and Hallikainen) were tested here and found to be promising for soil moisture retrieval (some with higher performances). All the above-mentioned dielectric models were integrated with Single Channel Algorithms using H (SCA-H) and V (SCA-V) polarizations for the soil moisture retrievals. All the ground-based observations were collected from test site-United States Department of Agriculture (USDA) OPE3, located a few miles away from NASA GSFC. Ground truth data were collected using a theta probe and in situ sensors which were then used for validation. Analysis

  15. A new technique to characterize foliage attenuation using passive radar in the L-band

    NASA Astrophysics Data System (ADS)

    Lesturgie, Marc; Thirion-Lefèvre, Laetitia; Saillant, Stéphane; Dorey, Philippe

    2016-11-01

    The goal of the experiment proposed in this paper is to give rapidly and with a limited equipment the attenuation level in the L-band for various elevation angles, between 20 and 70 degrees. The original principle is to use the L-band signal transmitted from an airport radar. The signal backscattered by a plane flying over the forest next to the airport is received on many antennas: some are over the canopy; others are on the ground under the foliage. The direct path signal transmitted by the airport radar is received by the antennas located above the forest. This signal is used to synchronize the temporal signals by detecting the waveform of the transmitting pulses. The signal backscattered by the plane is received by two H and V polar antennas located over the forest and by two other antennas placed under the foliage. The signals received by these antennas are digitized and processed to extract the plots of the opportunistic targets that approach the airport. The magnitudes of each plane echo are measured on each channel, and a comparison of the level of signal is made between the antenna above and under the forest. The ratio of magnitude between the two measurements on each polarization component gives the absorption factor of the foliage at the place of experiment. The position of the plane is given by an ADS-B receiver. For each elevation position of the antennas, the pattern of the chosen target will describe all the angles of arrival. This experiment has been deployed on two forested sites near an airport in South-East Asia. xml:lang="fr"

  16. Frequency domain and full waveform time domain inversion of ground based magnetometer, electrometer and incoherent scattering radar arrays to image strongly heterogenous 3-D Earth structure, ionospheric structure, and to predict the intensity of GICs in the power grid

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Imamura, N.; Bonner, L. R., IV; Cosgrove, R. B.

    2016-12-01

    Ground-based magnetometer and electrometer arrays provide the means to probe the structure of the Earth's interior, the interactions of space weather with the ionosphere, and to anticipate the intensity of geomagnetically induced currents (GICs) in power grids. We present a local-to-continental scale view of a heterogeneous 3-D crust and mantle as determined from magnetotelluric (MT) observations across arrays of ground-based electric and magnetic field sensors. MT impedance tensors describe the relationship between electric and magnetic fields at a given site, thus implicitly they contain all known information on the 3-D electrical resistivity structure beneath and surrounding that site. By using multivariate transfer functions to project real-time magnetic observatory network data to areas surrounding electric power grids, and by projecting those magnetic fields through MT impedance tensors, the projected magnetic field can be transformed into predictions of electric fields along the path of the transmission lines, an essential element of predicting the intensity of GICs in the grid. Finally, we explore GICs, i.e. Earth-ionosphere coupling directly in the time-domain. We consider the fully coupled EM system, where we allow for a non-stationary ionospheric source field of arbitrary complexity above a 3-D Earth. We solve the simultaneous inverse problem for 3-D Earth conductivity and source field structure directly in the time domain. In the present work, we apply this method to magnetotelluric data obtained from a synchronously operating array of 25 MT stations that collected continuous MT waveform data in the interior of Alaska during the autumn and winter of 2015 under the footprint of the Poker Flat (Alaska) Incoherent Scattering Radar (PFISR). PFISR data yield functionals of the ionospheric electric field and ionospheric conductivity that constrain the MT source field. We show that in this region conventional robust MT processing methods struggle to produce

  17. Passive position-adaptive radar modes for non-LOS interrogation of embedded targets

    NASA Astrophysics Data System (ADS)

    Mitra, Atindra K.

    2004-08-01

    A position-adaptive radar system concept is presented for purposes of interrogating difficult and obscured targets via the application of low-altitude smart or robotic-type UAV platforms. Under this concept, a high-altitude radiating platform is denoted as a HUAV and a low-altitude "position-adaptive" platform is denoted as a LUAV. The system concept is described by two modes. In Mode-1, real-time onboard LUAV computation of a phase parameter denoted as "signal differential path length" allows the LUAV to position-adaptively isolate a "signal leakage point", for example, between two buildings. After the LUAV position-adaptively converges to an optimum location, the system enters Mode-2. Under this Mode-2 concept, a technique denoted as "exploitation of leakage signals via path trajectory diversity" (E-LS-PTD) is developed. This technique is based on modulating scattering centers on embedded objects by implementing a fast trajectory on the HUAV while the LUAV is hovering in front of an "obscuration channel." Analytical results include sample outputs from an initial set numerical electromagnetic simulations.

  18. Spatially incoherent Fourier digital holography

    NASA Astrophysics Data System (ADS)

    Nomura, Takanori; Watanabe, Kaho

    2017-05-01

    The possibility of incoherent digital holography has been widely studied because it is free from coherent light sources. Here spatially incoherent Fourier digital holography is described. The incoherent hologram is obtained by a rotational shearing interferometer. The hologram obtained by the interferometer is a cosine transform of a spatially incoherent object. After describing the principle of a rotational shearing interferometer, methods to obtain Fourier transform of an object presented.

  19. Incoherent Light Sources

    NASA Astrophysics Data System (ADS)

    Bertram, Dietrich; Born, Matthias; Jüstel, Thomas

    Since the invention and industrialization of incandescent lamps at the end radiation of the 19th century electrical lighting has become a commodity in our daily life. Today, incoherent light sources are used for numerous application areas. Major improvements have been achieved over the past decades with respect to lamp efficiency (Fig. 10.1), lifetime and color properties.

  20. Incoherent Light Sources

    NASA Astrophysics Data System (ADS)

    Bertram, Dietrich; Born, Matthias; Jüstel, Thomas

    Since the invention and industrialization of incandescent lamps at the end of the 19th century electrical lighting has become a commodity in our daily life. Today, incoherent light sources are used for numerous application areas. Major improvements have been achieved over the past decades with respect to lamp efficiency Fig. 10.1, lifetime and color properties.

  1. Plasma parameter estimation from multistatic, multibeam incoherent scatter data

    NASA Astrophysics Data System (ADS)

    Virtanen, I. I.; McKay-Bukowski, D.; Vierinen, J.; Aikio, A.; Fallows, R.; Roininen, L.

    2014-12-01

    Multistatic incoherent scatter radars are superior to monostatic facilities in the sense that multistatic systems can measure plasma parameters from multiple directions in volumes limited by beam dimensions and measurement range resolution. We propose a new incoherent scatter analysis technique that uses data from all receiver beams of a multistatic, multibeam radar system and produces, in addition to the plasma parameters typically measured with monostatic radars, estimates of ion velocity vectors and ion temperature anisotropies. Because the total scattered energy collected with remote receivers of a modern multistatic, multibeam radar system may even exceed the energy collected with the core transmit-and-receive site, the remote data improve the accuracy of all plasma parameter estimates, including those that could be measured with the core site alone. We apply the new multistatic analysis method for data measured by the tristatic European Incoherent Scatter VHF radar and the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) multibeam receiver and show that a significant improvement in accuracy is obtained by adding KAIRA data in the multistatic analysis. We also demonstrate the development of a pronounced ion temperature anisotropy during high-speed ionospheric plasma flows in substorm conditions.

  2. The upper transition height over the Kharkiv incoherent scatter radar before, during and after the extreme minimum of the solar activity: Observational results and comparison with the IRI-2012 model

    NASA Astrophysics Data System (ADS)

    Kotov, Dmytro; Truhlik, Vladimir; Richards, Philipp; Huba, Joseph; Chernogor, Leonid; Bogomaz, Oleksandr; Domnin, Igor

    2014-05-01

    Variations in the diurnal minimum of upper transition height (height at which total light ions fraction is 50%) over Kharkiv, Ukraine are considered for vernal and autumnal equinoxes from 2006 to 2010. The data were obtained using the incoherent scatter radar of the Institute of ionosphere [1]. It was found that the decrease of daily F10.7 values approximately by 22 % (from 82 for spring 2006 to 67 for autumn 2007) was accompanied by a decrease in the upper transition height approximately by 19% too (from 518 km to 436 km). The linear correlation coefficient between the upper transition height and daily F10.7 was approximately 0.81. It should be noted that according to our knowledge such low values of upper transition height is the minimum ever recorded. In 2008-2009, the upper transition height over Kharkiv was up to 40 km lower than over the equator [2] and even up to 10-15 km lower than over Arecibo [3]. A comparison of the observational results with the IRI-2012 model [4] was made. It was found that the IRI-2012 model overestimates upper transition height up to 100 km in 2006, and 2010. The model also overestimates the upper transition height up to 150 km during the extreme solar minimum (2008-2009). It is clearly seen that for solar minimum under consideration latitudinal dependence of upper transition height according to observational data have decreasing character in contrast to the model dependence. Such behavior can be called latitudinal inversion of upper transition height. Strong dependence of upper transition height on Ap index was found for the conditions under consideration. It is suggested that model values for 2006 and 2010 are overestimated due to a higher geomagnetic activity during the satellite measurements (1974) underlying the model for the low level of solar activity compared with geomagnetic conditions for 2006 and 2010. Perhaps this led to the fact that the model does not show latitudinal inversion, which occurs only at very low geomagnetic

  3. Historical aspects of radar atmospheric dynamics

    NASA Technical Reports Server (NTRS)

    Kato, Susumu

    1989-01-01

    A review of the history of radar techniques which have been applied to atmospheric observation is given. The author starts with ionosphere observation with the ionosonde, symbolizing as it does the earliest history of radar observation, and proceeds to later developments in radar observation such as the use of partial reflection, meteor, and incoherent scatter radars. Mesosphere stratosphere troposphere (MST) radars are discussed in terms of lower atmosphere observation.

  4. Passive MIMO Radar Detection

    DTIC Science & Technology

    2013-09-01

    for Frobenius norm ‖Girr‖F . . . . . . . . . . . . . . . . . . . . . . . . . 73 F irs abbreviation for Frobenius norm ‖ Girs ‖F...ΦiHs Φis ΦiHs Φir Φi H r Φ i s Φ iH r Φ i r  ,  Giss Gisr Girs G i rr  (161) where ( Girs ) H = Gisr. Accordingly, ∥∥Gi1∥∥F = √‖Giss‖2F + 2 ‖ Girs ...2F + ‖Girr‖2F (162) 72 Let F iss = ‖Giss‖F , F irs = ‖ Girs ‖F , and F irr = ‖Girr‖F . Then, letting F̃ irs = F irs/F irr, ∥∥Gi1∥∥F = F irr √ 1 + F

  5. Radar Cross Section Measurements

    DTIC Science & Technology

    1986-09-30

    Radar 54 17. Measured Range Sidelobe Performance of Chirp Radar 56 18. Range and Cross Range Image of Target Dror.’ŕ Vehicle 57 19. Incoherent rms...the measured range resolution, 4.9 in, closely agrees with the theoretical performance for this weighting. The measured range sidelobe performance...Interval 4.89in. 2% kHz 300 kHz 310 kHz (b) Expanded Scale + 5 ft from Target Figure 17. Measured Range Sidelobe Performance of

  6. W-band real-time passive millimeter-wave imager for helicopter collision avoidance

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.

    1999-07-01

    A w-band passive millimeter imager is proposed for use on a helicopter platform. The atmospheric transmission through fog and rain is much higher in the millimeter wave band than it is in the visible or infrared regions of the spectrum. This property enables passive millimeter wave imaging systems to offer recognizable imagery in adverse weather conditions. Furthermore, as the technique is based on incoherent imaging, it can be used in environments where it may be difficult for radar to process data into recognizable imagery. The 30 cm diameter real-time passive millimeter wave imager described here will have a radiometric sensitivity of around 1 degree(s)C and a radiation bandwidth of 80 GHz to 105 GHz. The system is based on the DERA mechanical scanning passive millimeter wave imager architecture.

  7. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  8. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  9. Middle Atmosphere Program. Handbook for MAP. Volume 30: International School on Atmospheric Radar

    NASA Technical Reports Server (NTRS)

    Fukao, Shoichiro (Editor)

    1989-01-01

    Broad, tutorial coverage is given to the technical and scientific aspects of mesosphere stratosphere troposphere (MST) meteorological radar systems. Control issues, signal processing, atmospheric waves, the historical aspects of radar atmospheric dynamics, incoherent scatter radars, radar echoes, radar targets, and gravity waves are among the topics covered.

  10. Accelerating incoherent dedispersion

    NASA Astrophysics Data System (ADS)

    Barsdell, B. R.; Bailes, M.; Barnes, D. G.; Fluke, C. J.

    2012-05-01

    Incoherent dedispersion is a computationally intensive problem that appears frequently in pulsar and transient astronomy. For current and future transient pipelines, dedispersion can dominate the total execution time, meaning its computational speed acts as a constraint on the quality and quantity of science results. It is thus critical that the algorithm be able to take advantage of trends in commodity computing hardware. With this goal in mind, we present an analysis of the 'direct', 'tree' and 'sub-band' dedispersion algorithms with respect to their potential for efficient execution on modern graphics processing units (GPUs). We find all three to be excellent candidates, and proceed to describe implementations in C for CUDA using insight gained from the analysis. Using recent CPU and GPU hardware, the transition to the GPU provides a speed-up of nine times for the direct algorithm when compared to an optimized quad-core CPU code. For realistic recent survey parameters, these speeds are high enough that further optimization is unnecessary to achieve real-time processing. Where further speed-ups are desirable, we find that the tree and sub-band algorithms are able to provide three to seven times better performance at the cost of certain smearing, memory consumption and development time trade-offs. We finish with a discussion of the implications of these results for future transient surveys. Our GPU dedispersion code is publicly available as a C library at .

  11. Path-Integrated Attenuation from Airborne X-Band Radar and Passive Radiometer Measurements: Implication for Rainfall Measurements

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, Gerry; Weinman, Jim; Starr, David OC. (Technical Monitor)

    2002-01-01

    This study compares path-integrated attenuation (PIA), in precipitation over the ocean, derived from a single-frequency X-band radar, using the surface reference technique (SRT), with that deduced from a radiometer also operating at X band. The data were collected during TRMM field campaigns. The PIA derived from radar using the SRT does not involve any assumptions regarding the precipitation but it assumes that the cross-section of the surface is stable, that is, it is not significantly altered by factors such as surface roughness. The PIA deduced from the radiometer, however, involves assumptions regarding the temperature and emissivity of the surface and absorption and scattering by the intervening precipitation, which in turn depend upon the size, concentration and composition of the precipitation particles. The comparison of the PIA from the two instruments serves not only as a check between the radar and the radiometer but also may yield insights into the structure of the intervening precipitation. Such study can provide valuable information for TRMM in which both radar and radiometers are used for rain measurements. The radiometer PIA was first deduced from the brightness temperature using a simple one-layer radiative transfer model assuming no scattering, an isothermal atmosphere. The initial results show a general agreement between the PIAs deduced from the two instruments. Largo disagreement was found at high values of PIAs that may have been caused saturation of the X-band brightness temperature or by uncertainties in wind roughening of the sea surface that affects the SRT. Further results including the effects of scattering and a non-isothermal atmosphere will be shown at the conference.

  12. Modeling Incoherent Electron Cloud Effects

    SciTech Connect

    Vay, Jean-Luc; Benedetto, E.; Fischer, W.; Franchetti, G.; Ohmi, K.; Schulte, D.; Sonnad, K.; Tomas, R.; Vay, J.-L.; Zimmermann, F.; Rumolo, G.; Pivi, M.; Raubenheimer, T.

    2007-06-18

    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e+e- scattering processes is also estimated. Options for future code development are reviewed.

  13. Modeling Incoherent Electron Cloud Effects

    SciTech Connect

    Fischer, W.; Benedetto, E.; Rumolo, G.; Schulte, D.; Tomas, R.; Zimmermann, Frank; Franchetti, G.; Ohmi, Kazuhito; Sonnad, K.G.; Vay, Jean-Luc; Pivi, M.T.F.; Raubenheimer, Tor O.; /SLAC

    2008-01-24

    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e{sup +}e{sup -} scattering processes is also estimated. Options for future code development are reviewed.

  14. On the optimum polarizations of incoherently reflected waves

    NASA Technical Reports Server (NTRS)

    Van Zyl, Jakob J.; Elachi, Charles; Papas, Charles H.

    1987-01-01

    The Stokes scattering operator is noted to be the most useful characterization of incoherent scattering in radar imaging; the polarization that would yield an optimum amount of power received from the scatterer is obtained by assuming a knowledge of the Stokes scattering operator instead of the 2x2 scattering matrix with complex elements. It is thereby possible to find the optimum polarizations for the case in which the scatterers can only be fully characterized by their Stokes scattering operator, and the case in which the scatterer can be fully characterized by the complex 2x2 scattering matrix. It is shown that the optimum polarizations reported in the literature form the solution for a subset of a more general class of problems, so that six optimum polarizations can exist for incoherent scattering.

  15. Passive Wake Vortex Control

    SciTech Connect

    Ortega, J M

    2001-10-18

    The collapse of the Soviet Union and ending of the Cold War brought about many significant changes in military submarine operations. The enemies that the US Navy faces today and in the future will not likely be superpowers armed with nuclear submarines, but rather smaller, rogue nations employing cheaper diesel/electric submarines with advanced air-independent propulsion systems. Unlike Cold War submarine operations, which occurred in deep-water environments, future submarine conflicts are anticipated to occur in shallow, littoral regions that are complex and noisy. Consequently, non-acoustic signatures will become increasingly important and the submarine stealth technology designed for deep-water operations may not be effective in these environments. One such non-acoustic signature is the surface detection of a submarine's trailing vortex wake. If a submarine runs in a slightly buoyant condition, its diving planes must be inclined at a negative angle of attack to generate sufficient downforce, which keeps the submarine from rising to the surface. As a result, the diving planes produce a pair of counter-rotating trailing vortices that propagate to the water surface. In previous deep-water operations, this was not an issue since the submarines could dive deep enough so that the vortex pair became incoherent before it reached the water surface. However, in shallow, littoral environments, submarines do not have the option of diving deep and, hence, the vortex pair can rise to the surface and leave a distinct signature that might be detectable by synthetic aperture radar. Such detection would jeopardize not only the mission of the submarine, but also the lives of military personnel on board. There has been another attempt to solve this problem and reduce the intensity of trailing vortices in the wakes of military submarines. The research of Quackenbush et al. over the past few years has been directed towards an idea called ''vortex leveraging.'' This active concept

  16. Prototyping a GNSS-Based Passive Radar for UAVs: An Instrument to Classify the Water Content Feature of Lands

    PubMed Central

    Troglia Gamba, Micaela; Marucco, Gianluca; Pini, Marco; Ugazio, Sabrina; Falletti, Emanuela; Lo Presti, Letizia

    2015-01-01

    Global Navigation Satellite Systems (GNSS) broadcast signals for positioning and navigation, which can be also employed for remote sensing applications. Indeed, the satellites of any GNSS can be seen as synchronized sources of electromagnetic radiation, and specific processing of the signals reflected back from the ground can be used to estimate the geophysical properties of the Earth’s surface. Several experiments have successfully demonstrated GNSS-reflectometry (GNSS-R), whereas new applications are continuously emerging and are presently under development, either from static or dynamic platforms. GNSS-R can be implemented at a low cost, primarily if small devices are mounted on-board unmanned aerial vehicles (UAVs), which today can be equipped with several types of sensors for environmental monitoring. So far, many instruments for GNSS-R have followed the GNSS bistatic radar architecture and consisted of custom GNSS receivers, often requiring a personal computer and bulky systems to store large amounts of data. This paper presents the development of a GNSS-based sensor for UAVs and small manned aircraft, used to classify lands according to their soil water content. The paper provides details on the design of the major hardware and software components, as well as the description of the results obtained through field tests. PMID:26569242

  17. Prototyping a GNSS-Based Passive Radar for UAVs: An Instrument to Classify the Water Content Feature of Lands.

    PubMed

    Gamba, Micaela Troglia; Marucco, Gianluca; Pini, Marco; Ugazio, Sabrina; Falletti, Emanuela; Lo Presti, Letizia

    2015-11-10

    Global Navigation Satellite Systems (GNSS) broadcast signals for positioning and navigation, which can be also employed for remote sensing applications. Indeed, the satellites of any GNSS can be seen as synchronized sources of electromagnetic radiation, and specific processing of the signals reflected back from the ground can be used to estimate the geophysical properties of the Earth's surface. Several experiments have successfully demonstrated GNSS-reflectometry (GNSS-R), whereas new applications are continuously emerging and are presently under development, either from static or dynamic platforms. GNSS-R can be implemented at a low cost, primarily if small devices are mounted on-board unmanned aerial vehicles (UAVs), which today can be equipped with several types of sensors for environmental monitoring. So far, many instruments for GNSS-R have followed the GNSS bistatic radar architecture and consisted of custom GNSS receivers, often requiring a personal computer and bulky systems to store large amounts of data. This paper presents the development of a GNSS-based sensor for UAVs and small manned aircraft, used to classify lands according to their soil water content. The paper provides details on the design of the major hardware and software components, as well as the description of the results obtained through field tests.

  18. SEASAT Synthetic Aperture Radar Data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1981-01-01

    The potential of radar imagery from space altitudes is discussed and the advantages of radar over passive sensor systems are outlined. Specific reference is made to the SEASAT synthetic aperture radar. Possible applications include oil spill monitoring, snow and ice reconnaissance, mineral exploration, and monitoring phenomena in the urban environment.

  19. Incoherence-Mediated Remote Synchronization

    NASA Astrophysics Data System (ADS)

    Zhang, Liyue; Motter, Adilson E.; Nishikawa, Takashi

    2017-04-01

    In previously identified forms of remote synchronization between two nodes, the intermediate portion of the network connecting the two nodes is not synchronized with them but generally exhibits some coherent dynamics. Here we report on a network phenomenon we call incoherence-mediated remote synchronization (IMRS), in which two noncontiguous parts of the network are identically synchronized while the dynamics of the intermediate part is statistically and information-theoretically incoherent. We identify mirror symmetry in the network structure as a mechanism allowing for such behavior, and show that IMRS is robust against dynamical noise as well as against parameter changes. IMRS may underlie neuronal information processing and potentially lead to network solutions for encryption key distribution and secure communication.

  20. Strong correlations between incoherent vortices.

    PubMed

    Jesus-Silva, A J; Hickmann, J M; Fonseca, E J S

    2012-08-27

    We establish a correlation rule of which the value of the topological charge obtained in intensity correlation between two coherence vortices is such that this value is bounded by the topological charge of each coherence vortex. The original phase information is scrambled in each speckle pattern and unveiled using numerical intensity correlation. According to this rule, it is also possible to obtain a coherence vortex stable, an integer vortex, even when each incoherent vortex beam is instable, non-integer vortex.

  1. Incoherent method for rotation-invariant recognition.

    PubMed

    Arsenault, H H; Hsu, Y N; Yang, Y

    1982-02-15

    An optodigital hybrid system using an incoherent circular correlator that has features suitable for space and industrial applications is introduced. The incoherent circular correlator uses a fiber-optics sampler and carries out the correlations in white light. The trade offs involved for efficient detection of objects are discussed. The system has been built, and experimental results on a real air photograph are presented.

  2. Equatorial MU Radar project

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system

  3. D-region incoherent scatter spectra: Discrepancies between observations and current theory

    NASA Astrophysics Data System (ADS)

    Hoppe, Ulf-Peter; Hansen, Georg; Turunen, Esa; Pollari, Paivio

    Extended D region observations were performed with the EISCAT UHF radar during the Aug. 1989 PCA (Polar Cap Absorption) event. The excellent quality of this data, together with temperature measurements by lidar about 130 km from Tromso (Norway) makes it possible to compare the observed incoherent scatter spectra with current theory. The discrepancy found, (also in data collected before the PCA event), leads to examination of other published observed D region spectral measurements. In the absence of temperature or density observations together with these earlier measurements, the new CIRA 86 model is used. The spectra of incoherent scatter from the D region are generally found to be narrower than current theory predicts, independent of radar frequency, latitude, or season. Some possible reasons for this discrepancy are discussed.

  4. EISCAT (European Incoherent Scatter Radar) Electron Density Studies.

    DTIC Science & Technology

    1987-09-08

    lists the corresponding measurements of electron content made by HILAT and calculated from SPI03 measurements for each of the 7 coincident runs. The...TEC measured by HILAT and TEC calculated from EISCAT measurements, the HILAT values being always larger than those from EISCAT. The measurements...HILAT results could be due to several factors. The EISCAT value was calculated by integrating electron density over the range gates 184 km to 746.5

  5. Analysis of incoherent scatter during ionospheric heating near the fifth electron gyrofrequency

    NASA Astrophysics Data System (ADS)

    Jun, WU; Jian, WU; Haisheng, ZHAO; Zhengwen, XU

    2017-04-01

    The observation of ultra-high frequency radar during an ionospheric heating experiment carried out at Tromsø site of European Incoherent Scatter Scientific Association, Norway, is analyzed. When pump is operating slightly above the fifth electron gyrofrequency, some strong enhancements in radar echo and electron density occur in a wide altitude range and are in sync with the shifting and spread of plasma line around the reflection altitude, which may be due to the focusing or collimating of radar wave by irregularities. While some strong enhancements in electron density and radar echo around the reflection altitude do not correspond to the true increase in electron density, but due to the enhanced ion acoustic wave by parametric decay instability and oscillation two stream instability. In addition, the different heating rates and cooling rates at the pump frequencies below, around and above fifth gyrofrequency respectively result in the dependence of the enhancements in electron temperature on the pump frequency.

  6. Description and catalog of ionospheric F-region data, Jicamarca Radar Observatory, November 1966 - April 1969

    NASA Technical Reports Server (NTRS)

    Clark, W. L.; Mcclure, J. P.; Vanzandt, T. E.

    1976-01-01

    Equatorial ionospheric F-region data reduced from the Jicamarca Radar Observatory (JRO) incoherent scatter observations for particular periods is described. It lists in catalog form the times of the observations made during those periods. These F-region data include the electron concentration and the electron and ion temperatures. The data were inferred from the incoherent scatter observations of JRO.

  7. Toward A Research Framework to Bridge Cross-platform Error Characterization of Spaceborne Passive/Active Sensors using NOAA/NSSL Ground Radar-based National Mosaic QPE Products over CONUS

    NASA Astrophysics Data System (ADS)

    Kirstetter, P.; Hong, Y.; Gourley, J. J.; Cao, Q.; Schwaller, M.; Petersen, W. A.; Zhang, J.; Anagnostou, E. N.; Maggioni, V.; Seyyedi, H.; Chen, S.

    2012-12-01

    A characterization of the error associated to satellite rainfall estimates arises as major information for applications in evolving from deterministic to probabilistic frameworks. We focus here on the error structure of TRMM Precipitation Radar (PR) and Microwave Imager (TMI) quantitative precipitation estimation (QPE) at ground, a major issue for applications of derived products in rainfall estimation from space, water budget studies and hydrological modeling. Due to the variety of sources of error in spaceborne QPE the problem is addressed by comparison of satellite QPEs with reference values derived from ground-based measurements using NOAA/NSSL Ground Radar-based National Mosaic QPE (NMQ). Investigations have been carried out at fine scale (e.g. instantaneous and 5 km for PR) on the basis of several month data samples that explore the effects of regional climatology of the southern part of US. A significant effort has been carried out to derive a trustworthy reference rainfall from bias-corrected NMQ at fine spatial and temporal scales. A comparison framework has been developed to examine the consistency of the ground and space-based sensors in term of precipitation detection, characterization (e.g. convective, stratiform) and quantification. Specific error factors for passive (e.g. surface conditions for TMI) and active (e.g. attenuation of the radar signal, non uniform beam filling for PR) sensors are investigated. Systematic biases and random errors quantified at the satellite estimation scale are useful for satellite-based rainfall products. This cross-platform error characterization will ultimately act as a bridge to intercalibrate active and passive microwave measurements from the GPM core satellite to the constellation satellites.

  8. Millimeter-wave beamrider and radar systems

    NASA Astrophysics Data System (ADS)

    McMillan, R. W.; Shackelford, R. G.; Gallagher, J. J.

    1981-02-01

    This paper discusses three brassboard millimeter wave systems which are being built for the Army by Georgia Tech. These systems are: (1) a 94 GHz coherent transmitter/receiver, (2) a 140 GHz incoherent transmitter/receiver, and (3) a 220 GHz radar. The first two systems are to be used primarily for evaluation of millimeter guidance techniques, and the third will be used to evaluate performance of a 220 GHz radar system in a tank-mounted, target acquisition application. All of the systems use extended interaction oscillator transmitters and Schottky-barrier mixer receivers, and the radar employs a unique quasi-optical duplexer, and an all solid-state receiver.

  9. Self-trapping of incoherent light beams

    NASA Astrophysics Data System (ADS)

    Mitchell, Matthew L.

    1998-09-01

    This thesis presents an experimental and theoretical study of self-trapping beams of light from incoherent sources such as light emitting diodes and sunlight. The self-trapping of an optical beam occurs when a beam of light induces a change in the index of refraction through a nonlinear interaction. This induced index change can then fully compensate for diffraction of the optical beam in both transverse directions. When this process occurs, the trapped light is called a soliton. Until 1996, all experimental and theoretical studies of optical spatial solitons in nature employed a coherent beam, either in space, time, or both. In 1996 I demonstrated for the first time that self-trapping of beams upon which the phase varied randomly in time/space across any plane was possible. The optical beams were self-trapped by making use of the photorefractive nonlinearity. The self-trapping of these incoherent light sources has opened up a new subfield in the study of optical spatial solitons. Experimental and theoretical results of self-trapping both bright and dark incoherent solitons will be presented. In the first experiment, a quasi-monochromatic partially spatially-incoherent light beam was self-trapped, while the second experiment shows the self-trapping of an incoherent white light beam originating from an incandescent light bulb. In this second experiment, the self-trapped beam contained wavelengths between 380 and 720 nm. Theoretical work has shown that these incoherent light sources create effective multi-mode solitons. Existence conditions and the resulting coherence properties of such self-trapped beams have been examined. The theoretical methods used in describing these effects are general and can be extended for use with any form of nonlinearity. Experimental and theoretical results of creating dark incoherent solitons shows the possibility of self- trapping a dark notch sitting upon an incoherent background beam. Theoretical work shows that such dark incoherent

  10. Can Compressed Sensing Be Applied To Dual-Polarimetric Weather Radars?

    NASA Astrophysics Data System (ADS)

    Mishra, K.; Kruger, A.; Krajewski, W. F.

    2013-12-01

    The recovery of sparsely-sampled signals has long attracted considerable research interest in various fields such as reflection seismology, microscopy, and astronomy. Recently, such recovery techniques have been formalized as a sampling method called compressed sensing (CS) which uses few linear and non-adaptive measurements to reconstruct a signal that is sparse in a known domain. Many radar and remote sensing applications require efficient and rapid data acquisition. CS techniques have, therefore, enormous potential in dramatically changing the way the radar samples and processes data. A number of recent studies have investigated CS for radar applications with emphasis on point target radars, and synthetic aperture radar (SAR) imaging. CS radar holds the promise of compressing-while-sampling, and may yield simpler receiver hardware which uses low-rate ADCs and eliminates pulse compression/matched filter. The need of fewer measurements also implies that a CS radar may need smaller dwell times without significant loss of information. Finally, CS radar data could be used for improving the quality of low-resolution radar observations. In this study, we explore the feasibility of using CS for dual-polarimetric weather radars. In order to recover a signal in CS framework, two conditions must be satisfied: sparsity and incoherence. The sparsity of weather radar measurements can be modeled in several domains such as time, frequency, joint time-frequency domain, or polarimetric measurement domains. The condition of incoherence relates to the measurement process which, in a radar scenario, would imply designing an incoherent transmit waveform or an equivalent scanning strategy with an existing waveform. In this study, we formulate a sparse signal model for precipitation targets as observed by a polarimetric weather radar. The applicability of CS for such a signal model is then examined through simulations of incoherent measurements along with real weather data obtained

  11. Rapidly pulsed, high intensity, incoherent light source

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1974-01-01

    A rapid pulsing, high intensity, incoherent light is produced by selectively energizing a plurality of discharge lamps with a triggering circuit. Each lamp is connected to a capacitor, and a power supply is electrically connected to all but one of the capacitors. This last named capacitor is electrically connected to a discharge lamp which is connected to the triggering circuit.

  12. Incoherent Multifocus Hololens Design and Fabrication

    NASA Astrophysics Data System (ADS)

    Rallison, Richard D.

    1990-04-01

    Several 5 x 5 multifocus Hololenses have been produced with diffraction efficiencies between 20% and 75%. Low intermodulation noise was achieved by going off axis 16 degrees and using SHG and DCG materials to record the master and copies respectively. Astigmatism and Bragg tilt errors were minimized but images showed more coma than prior art. Both coherent and incoherent copies were made, the oherent copies were always low in efficiency because of very high intermodulation noise or because beam ratios were made high to avoid intermodulation noise. Incoherent copies proved to be only a little more difficult to fabricate and the master copy process in an index matching fluid proved to be more versatile as well as optically cleaner. Problems with uniformity from exposure to exposure were found and cured or probable causes were found. A limit to uniformity probably exists that relates to random coherent phasing of overlapping Bragg structures added to very small thermal and mechanical instabilities during exposure. All copies are made in a contact copy jig with each exposure running about 2 seconds. The process for obtaining an unaberrated master at 633 nm while making copies at 488 nm is described for both the coherent and incoherent methods. Test results for an incoherent 5x5 array working at 633 nm are given including an intensity profile of a spot, power distribution and output with crosstalk. Suggestions for further improvements are given.

  13. Image encryption under spatially incoherent illumination

    NASA Astrophysics Data System (ADS)

    Xie, Zhenwei; Zang, Jinliang; Zhang, Yan

    2013-06-01

    A novel method for image encryption under spatially incoherent illumination is proposed. The LED array is used as the spatially incoherent source. Both the encryption process and decryption process are numerically simulated. Experiments are carried out to demonstrate the basic ideal of the proposed method. The incoherent light is modulated by the spatial light modulator on the input plane as the input image to be encrypted. Then a random phase only mask is used as the key to encode the image, finally a Fourier lens is adopted to image the encrypted image on the output plane. The encrypted intensity distribution is recorded by a CCD. In the numerical simulations, the random phase only mask is generated by a rand function. The incoherent image is composed of many source points, and any two points of these sources are spatially incoherent, but each point is self-spatially coherent. Under this property, the point spread function for the encryption system can be considered as the interference of two beams, one is the spherical beam and the other is the random phase beam. Once the point spread function is given, the system's optical transfer function can be calculated easily. Then the encryption system can be considered as a decryption system, and the output image is the same as the original image. The encrypted image can be calculated with the system's optical transfer function and the output image. The random phase mask, the distance between the random phase mask and the SLM, and the wavelength of the laser can be seen as the keys of the encryption systems. Only when all these parameters are correct, can one get the right decrypted image. The factors which could affect the practical experiment, such as quantization noise and displacement tolerances are also investigated. Compared with the conventional coherent encryption system, the incoherent encryption system proposed in this paper is free of the flaws of the optical elements, the dust particles on the elements, and

  14. Expressive Incoherence and Alexithymia in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Costa, Andreia P.; Steffgen, Georges; Samson, Andrea C.

    2017-01-01

    Expressive incoherence can be implicated in socio-emotional communicative problems in autism spectrum disorder (ASD). The present study examined expressive incoherence in 37 children with ASD and 41 typically developing (TD) children aged 3-13 years old during a frustration task. The role of alexithymia in expressive incoherence was also assessed.…

  15. Operation of the DREO (Defence Research Establishment Ottawa) Synthetic Aperture Radar Optical Correlator.

    DTIC Science & Technology

    1983-09-01

    Defence Research Establishment Ottawa and Canadian industry . This instrument was designed to correlate interferograms produced by synthetic aperture radar...incoherents. These de doctorat , Universit& Laval, 1975. 5. C.J. Brochu and N. Brousseau, Simulation of a Synthetic Aperture Radar Optical Correlator using a...optical correlator developed by the Defence Research Establishment Ottawa and Canadian industry . This instrument was designed to correlate

  16. Incoherent neutral pion photoproduction on 12C.

    PubMed

    Tarbert, C M; Watts, D P; Aguar, P; Ahrens, J; Annand, J R M; Arends, H J; Beck, R; Bekrenev, V; Boillat, B; Braghieri, A; Branford, D; Briscoe, W J; Brudvik, J; Cherepnya, S; Codling, R; Downie, E J; Föhl, K; Glazier, D I; Grabmayr, P; Gregor, R; Heid, E; Hornidge, D; Jahn, O; Kashevarov, V L; Knezevic, A; Kondratiev, R; Korolija, M; Kotulla, M; Krambrich, D; Krusche, B; Lang, M; Lisin, V; Livingston, K; Lugert, S; Macgregor, I J D; Manley, D M; Martinez, M; McGeorge, J C; Mekterovic, D; Metag, V; Nefkens, B M K; Nikolaev, A; Novotny, R; Owens, R O; Pedroni, P; Polonski, A; Prakhov, S N; Price, J W; Rosner, G; Rost, M; Rostomyan, T; Schadmand, S; Schumann, S; Sober, D; Starostin, A; Supek, I; Thomas, A; Unverzagt, M; Walcher, Th; Zehr, F

    2008-04-04

    We present the first detailed measurement of incoherent photoproduction of neutral pions to a discrete state of a residual nucleus. The 12C(gamma,pi(0))(12)C*(4.4 MeV) reaction has been studied with the Glasgow photon tagger at MAMI employing a new technique which uses the large solid angle Crystal Ball detector both as a pi(0) spectrometer and to detect decay photons from the excited residual nucleus. The technique has potential applications to a broad range of future nuclear measurements with the Crystal Ball and similar detector systems elsewhere. Such data are sensitive to the propagation of the Delta in the nuclear medium and will give the first information on matter transition form factors from measurements with an electromagnetic probe. The incoherent cross sections are compared to two theoretical predictions including a Delta-hole model.

  17. Incoherently pumped continuous wave dye laser

    NASA Astrophysics Data System (ADS)

    Thiel, E.; Zander, C.; Drexhage, K. H.

    1987-05-01

    Continuous wave operation of a dye laser, pumped by an incoherent light source, is reported. A jet of a water-based solution of Rhodamine 6G is used as the laser medium in a spherical cavity with high reflectivity mirrors. Two high pressure arcs generated by electrical discharge between tungsten electrodes serve as pump source. They produce a power density of 0.5-10 kW/cm 2 in the jet causing the dye to lase at 615 nm.

  18. Polar mesosphere summer echoes observed with the EISCAT 933-MHz radar and the CUPRI 46.9-MHz radar, their similarity to 224-MHz radar echoes, and their relation to turbulence and electron density profiles

    NASA Astrophysics Data System (ADS)

    Roettger, J.; Rietveld, M. T.; La Hoz, C.; Hall, T.; Kelley, M. C.

    1990-08-01

    The relation of the coherent echoes from the mesosphere detected by an incoherent scatter UHF radar to the echoes registered simultaneously with a portable radar interferometer is analyzed. It is demonstrated that these 933-MHz echoes are of the same character as the VHF radar polar mesosphere summer echoes. It is also noted that a narrow electron density observed in the incoherent scatter UHF radar data occurs at the comparable altitude as the portable radar interferometer polar mesosphere summer echoes (PMSE). Potential origins of the scattering process of the PMSEs observed in VHF and UHF are discussed, with focus placed on enhanced electron density fluctuations as well as steep electron density gradients in the presence of cluster ions in the cold polar mesosphere.

  19. Incidence angle normalization of radar backscatter data

    USDA-ARS?s Scientific Manuscript database

    NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...

  20. Radar principles

    NASA Technical Reports Server (NTRS)

    Sato, Toru

    1989-01-01

    Discussed here is a kind of radar called atmospheric radar, which has as its target clear air echoes from the earth's atmosphere produced by fluctuations of the atmospheric index of refraction. Topics reviewed include the vertical structure of the atmosphere, the radio refractive index and its fluctuations, the radar equation (a relation between transmitted and received power), radar equations for distributed targets and spectral echoes, near field correction, pulsed waveforms, the Doppler principle, and velocity field measurements.

  1. Whither radar?

    NASA Astrophysics Data System (ADS)

    Radford, M. F.

    The evolution of radar technology in the future is examined with respect to both civilian and military applications. Consideration is given to four broad categories of radar technology where improvements in the state of the art are expected. The categories include: antenna design; transmitter design; receiver/signal processor design; and data handling/radar management technology. The influence of CAD/CAM techniques and very high performance ICs on radar system design is evaluated. A formula is presented for calculating the performance requirements of a radar system with respect to sensitivity, resolution, and optimum data rate.

  2. Airborne bistatic radar applications

    NASA Astrophysics Data System (ADS)

    Foster, James A.

    1987-09-01

    Applications of bistatic radar when one or both of the units are airborne are discussed. Scenarios that merit deeper consideration are covert strike and head-on SAR using a stand-off illuminator, either airborne or space-based; area air defense with passive ground-based receivers and stand-off illuminators; an airborne picket line to detect stealth aircraft and missiles; AWACS aircraft providing mutual support in ECM environments; and passive surveillance of hostile air space using illuminators of opportunity and an airborne receiver. Scenarios considered impractical are bistatic air-to-air missile guidance using an aircraft other than the launch aircraft as illuminator; passive interdiction using illuminators of opportunity; and scenarios involving a ground based illuminator and an aircraft as the receiver.

  3. Incoherent and Laser Photodeposition on Thin Films.

    DTIC Science & Technology

    1980-09-01

    wavelength, an incoherent Oriel Mercury arc lamp (model HR-l) with a 1000 watt u-v out- a put centered at 2537A was used. This source emitted o down...Royal Society of London Series A, 156: 108-129 (1936). 18. Gutowsky, H.S.. "The Infra-Red and Raman Spectra of Dimethyl Mercury and Dimethyl Zinc," The...II), - Cadmium (II) and - Mercury (II)," Spectrochimica Acta, 33A: 669-680 (1977). 20. Bakke, A.M.W.. "A Molecular Structure Study of Dimethylmercury

  4. Spontaneous Pattern Formation with Incoherent White Light

    NASA Astrophysics Data System (ADS)

    Schwartz, Tal; Carmon, Tal; Buljan, Hrvoje; Segev, Mordechai

    2004-11-01

    We present the first experimental observation of modulation instability and spontaneous pattern formation with incoherent white light emitted from an incandescent light bulb. We show experimentally that modulation instability of white light propagating in a noninstantaneous self-focusing medium is a collective effect, where the entire temporal spectrum of the light beam becomes unstable at the same threshold value and collectively forms a pattern with a single periodicity. We experimentally demonstrate that the temporal spectrum of the evolving perturbation self-adjusts to match the collective pattern formation phenomenon.

  5. Universal diffusion in incoherent black holes

    NASA Astrophysics Data System (ADS)

    Blake, Mike

    2016-10-01

    We study charge and energy diffusion in simple holographic theories with broken translational symmetry. We find that when the effects of momentum relaxation are very strong the diffusion constants take universal values Dc˜De˜ℏvB2/(kBT ) . Here vB is the velocity of the butterfly effect and the coefficients of proportionality depend only on the scaling exponents of the infra-red fixed point. Our results suggest that diffusion in these incoherent black holes is controlled by τ ˜ℏ/(kBT ) independently of the mechanism of momentum relaxation.

  6. Investigations of the lower and middle atmosphere at the Arecibo Observatory and a description of the new VHF radar project

    NASA Technical Reports Server (NTRS)

    Rottger, J.; Ierkic, H. M.; Zimmerman, R. K.; Hagen, J.

    1986-01-01

    The atmospheric science research at the Arecibo Observatory is performed by means of (active) radar methods and (passive) optical methods. The active methods utilize the 430 NHz radar, the S-band radar on 2380 MHz, and a recently constructed Very High Frequency (VHF) radar. The passive methods include measurements of the mesopause temperature by observing the rotational emissions from OH-bands. The VHF radar design is discussed.

  7. Is the Precautionary Principle Really Incoherent?

    PubMed

    Boyer-Kassem, Thomas

    2017-02-28

    The Precautionary Principle has been an increasingly important principle in international treaties since the 1980s. Through varying formulations, it states that when an activity can lead to a catastrophe for human health or the environment, measures should be taken to prevent it even if the cause-and-effect relationship is not fully established scientifically. The Precautionary Principle has been critically discussed from many sides. This article concentrates on a theoretical argument by Peterson (2006) according to which the Precautionary Principle is incoherent with other desiderata of rational decision making, and thus cannot be used as a decision rule that selects an action among several ones. I claim here that Peterson's argument fails to establish the incoherence of the Precautionary Principle, by attacking three of its premises. I argue (i) that Peterson's treatment of uncertainties lacks generality, (ii) that his Archimedian condition is problematic for incommensurability reasons, and (iii) that his explication of the Precautionary Principle is not adequate. This leads me to conjecture that the Precautionary Principle can be envisaged as a coherent decision rule, again.

  8. Nordic Snow Radar Experiment

    NASA Astrophysics Data System (ADS)

    Lemmetyinen, Juha; Kontu, Anna; Pulliainen, Jouni; Vehviläinen, Juho; Rautiainen, Kimmo; Wiesmann, Andreas; Mätzler, Christian; Werner, Charles; Rott, Helmut; Nagler, Thomas; Schneebeli, Martin; Proksch, Martin; Schüttemeyer, Dirk; Kern, Michael; Davidson, Malcolm W. J.

    2016-09-01

    The objective of the Nordic Snow Radar Experiment (NoSREx) campaign was to provide a continuous time series of active and passive microwave observations of snow cover at a representative location of the Arctic boreal forest area, covering a whole winter season. The activity was a part of Phase A studies for the ESA Earth Explorer 7 candidate mission CoReH2O (Cold Regions Hydrology High-resolution Observatory). The NoSREx campaign, conducted at the Finnish Meteorological Institute Arctic Research Centre (FMI-ARC) in Sodankylä, Finland, hosted a frequency scanning scatterometer operating at frequencies from X- to Ku-band. The radar observations were complemented by a microwave dual-polarization radiometer system operating from X- to W-bands. In situ measurements consisted of manual snow pit measurements at the main test site as well as extensive automated measurements on snow, ground and meteorological parameters. This study provides a summary of the obtained data, detailing measurement protocols for each microwave instrument and in situ reference data. A first analysis of the microwave signatures against snow parameters is given, also comparing observed radar backscattering and microwave emission to predictions of an active/passive forward model. All data, including the raw data observations, are available for research purposes through the European Space Agency and the Finnish Meteorological Institute. A consolidated dataset of observations, comprising the key microwave and in situ observations, is provided through the ESA campaign data portal to enable easy access to the data.

  9. Study to investigate and evaluate means of optimizing the radar function. [systems engineering of pulse radar for the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The investigations for a rendezvous radar system design and an integrated radar/communication system design are presented. Based on these investigations, system block diagrams are given and system parameters are optimized for the noncoherent pulse and coherent pulse Doppler radar modulation types. Both cooperative (transponder) and passive radar operation are examined including the optimization of the corresponding transponder design for the cooperative mode of operation.

  10. Radar Polarimetry

    DTIC Science & Technology

    2004-12-01

    RADAR CROSS SECTION (RCS) σ.................................................. 15 D. THE RADAR SYSTEM...spherical surface, as [13]: rV V s iV rH H s iH E D E E D E ρ ρ = Γ = Γ (2.27) 15 C. RADAR CROSS SECTION (RCS) σ The radar cross section is...Interpretation ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ 10 01 Odd- bounce Surface, sphere, corner reflectors ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ −10 01 Even-bounce Dihedral ⎥

  11. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  12. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  13. Incoherent η-electroproduction off the deuteron

    NASA Astrophysics Data System (ADS)

    Tammam, Mahmoud

    2009-10-01

    Incoherent eta meson electroproduction off the deuteron is studied in the impulse approximation (IA) or spectator model in which the eta production takes place on a single nucleon inside the deuteron while the other nucleon acts as a spectator only, i.e., neglecting eta rescattering on the spectator nucleon and nucleon two-body effects. The elementary operator for eta electroproduction off a nucleon is taken from the MAID analysis. The semi-exclusive structure functions, determining the differential cross section of the outgoing eta meson without detection of the final nucleons, are calculated and their dependence on the squared four momentum transfer K and the lab energy transfer k0lab are studied.

  14. Coherent and incoherent processes in resonant photoemission

    SciTech Connect

    Magnuson, M.; Karis, O.; Weinelt, M.

    1997-04-01

    In this contribution the authors present the distinction between coherent and incoherent processes in resonant photoemission. As a first step they determine whether an autoionization process is photoemission-like or Auger-like. The discussion is based on measurements for a weakly bonded adsorption system, Ar/Pt(111). This type of system is well adapted to investigate these effects since it yields distinctly shifted spectral features depending on the nature of the process. After this, the question of resonance photoemission in metallic systems is addressed. This is done in connection with measurements at the 2p edges for Ni metal. Ni has been one of the prototype systems for resonant photoemission. The resonances have been discussed in connection with the strong correlation and d-band localization effects in this system. Based on the results some general comments about the appearance of resonant effects in metallic systems are made.

  15. Electromagnetically induced absorption via incoherent collisions

    SciTech Connect

    Yang Xihua; Sheng Jiteng; Xiao Min

    2011-10-15

    We conduct theoretical studies on electromagnetically induced absorption via incoherent collisions in an inhomogeneously broadened ladder-type three-level system with the density-matrix approach. The effects of the collision-induced coherence decay rates as well as the probe laser field intensity on the probe field absorption are examined. It is shown that with the increase of the collisional decay rates in a moderate range, a narrow dip due to electromagnetically induced transparency superimposed on the Doppler-broadened absorption background can be turned into a narrow peak under the conditions that the probe field intensity is not very weak as compared to the pump field, which results from the enhancement of constructive interference and suppression of destructive interference between one-photon and multiphoton transition pathways. The physical origin of the collision-assisted electromagnetically induced absorption is analyzed with a power-series solution of the density-matrix equations.

  16. Robust incoherent fiber optic bundle decoder

    NASA Technical Reports Server (NTRS)

    Roberts, Hilary E. (Inventor); DePlachett, Charles P. (Inventor); Deason, Brent E. (Inventor); Pilgrim, Robert A. (Inventor); Sanford, Harold S. (Inventor)

    2003-01-01

    Apparatus and method for calibrating an incoherent fiber optic bundle for use in transmitting visual or infrared coherent images. The apparatus includes a computer, a computer video monitor, an objective lens adjacent to the input end of the bundle, a second lens adjacent the output end of the bundle, and a CCD camera. The camera transmits video data to the monitor to produce an illuminated fiber optic image. The coordinates for the center of each fiber is found through an imaging process and the output fibers coordinates are related to the input fiber coordinates and processed in the computer to produce a mapping lookup-table (LUT) unique to the specific fiber bundle. Remapping of the LUT due to changes in the lens focus, CCD camera, or the addition of an infrared filter is accomplished by a software utility in the computer.

  17. Incoherent correlator system for satellite orientation control

    NASA Astrophysics Data System (ADS)

    Kouris, Aristodemos; Young, Rupert C. D.; Chatwin, Christopher R.; Birch, Philip M.

    2002-03-01

    An incoherent correlator configuration is proposed and experimentally demonstrated that is capable of recognizing star patterns. The device may thus be employed for the orientation and navigation of a satellite or spacecraft. The correlator employs starlight directly and requires no laser or input spatial light modulator for operation. The filter is constructed form an array of mirrors that may be individually appropriately tilted so as recognize a particular star arrangement. The only other components of the system are a converging lens and CCD array detector. The device is capable of determining the pointing direction and rotation of a satellite or space vehicle. Experimental results employing the mirror array device illuminated with a point source early to simulate starlight are presented.

  18. Dephasing-assisted selective incoherent quantum transport.

    PubMed

    Behzadi, Naghi; Ahansaz, Bahram; Kasani, Hadi

    2015-10-01

    Selective energy transport throughout a quantum network connected to more than one reaction center can play an important role in many natural and technological considerations in photosystems. In this work, we propose a method in which an excitation can be transported from the original site of the network to one of the reaction centers arbitrarily using independent sources of dephasing noises. We demonstrate that in the absence of dephasing noises, the coherent evolution of the system does not have any role in energy transport in the network. Therefore, incoherent evolution via application of dephasing noises throughout a selected path of the network leads to complete transferring of the excitation to a desired reaction center.

  19. Long working distance incoherent interference microscope

    DOEpatents

    Sinclair, Michael B.; De Boer, Maarten P.

    2006-04-25

    A full-field imaging, long working distance, incoherent interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. A long working distance greater than 10 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-dimensional height profiles of MEMS test structures to be acquired across an entire wafer while being actively probed, and, optionally, through a transparent window. An optically identical pair of sample and reference arm objectives is not required, which reduces the overall system cost, and also the cost and time required to change sample magnifications. Using a LED source, high magnification (e.g., 50.times.) can be obtained having excellent image quality, straight fringes, and high fringe contrast.

  20. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  1. Radar imaging of E region plasma irregularities over Arecibo

    NASA Astrophysics Data System (ADS)

    Hysell, D.; Larsen, M.; Zhou, Q.

    2003-04-01

    A 30 MHz coherent scatter radar imager was deployed on St. Croix in June and July, 2002, in support of observations of sporadic E layers made with the Arecibo incoherent scatter radar. The Arecibo radar was operated in dual beam azimuth scan mode and used long coded pulses to observe sporadic E layers with fine spatial resolution. At times, these layers were structured and unstable and produced intense field-aligned irregularities and coherent scatter. The locus of perpendicularity from St. Croix passes directly over Arecibo, permitting common volume coherent and incoherent scatter radar experiments. Furthermore, the radar imager employs interferometry with multiple baselines to construct images of the coherent scatter in three dimensions (range and bearing). This makes it possible to precisely collocate features in the ionization detected by Arecibo with meter-scale irregularities. This paper examines data from the evening of June 14 when an intense QP echo event exhibiting both type 1 and type 2 echoes took place. We show that the coherent backscatter sometimes arrived from localized, patchy, polarized regions of space that drifted southwestward through the radar beam, giving the radar RTI map its characteristically streaked appearance. At other times, the patches merged, forming large-scale waves or fronts that were also polarized and propagating to the southwest. In both cases, the coherent backscatter arrived mainly from altitudes between about 95 and 110 km, the altitudes of the sporadic E layers, although echoes from higher altitudes were sometimes received. A companion paper examines the relationship between the coherent and incoherent scatter data in the context of theories of sporadic E layer formation and deformation.

  2. Comparison of F-region electron density observations by satellite radio tomography and incoherent scatter methods

    NASA Astrophysics Data System (ADS)

    Nygrén, T.; Markkanen, M.; Lehtinen, M.; Tereshchenko, E. D.; Khudukon, B. Z.; Evstafiev, O. V.; Pollari, P.

    1996-12-01

    In November 1995 a campaign of satellite radiotomography supported by the EISCAT incoherent scatter radar and several other instruments was arranged in Scandinavia. A chain of four satellite receivers extending from the north of Norway to the south of Finland was installed approximately along a geomagnetic meridian. The receivers carried out difference Doppler measurements using signals from satellites flying along the chain. The EISCAT UHF radar was simultaneously operational with its beam swinging either in geomagnetic or in geographic meridional plane. With this experimental set-up latitudinal scans of F-region electron density are obtained both from the radar observations and by tomographic inversion of the phase observations given by the difference Doppler experiment. This paper shows the first results of the campaign and compares the electron densities given by the two methods. Acknowledgements. This work has been supported by the UK Particle-Physics and Astronomy Research Council. The assistance of the director and staff of the EISCAT Scientific Association, the staff of the Norsk Polarinstitutt and the director and staff of the Swedish Institute of Space Physics is gratefully acknowledged. In addition the authors would like to thank Professor Evgeny Tereshchenko of the Polar Geophysical Institute in Mumansk, Russia and Dr Tuomo Nygrén of the University of Oulu, Finland for provision of data from EISCAT special program time during the November 1995 campaign. Topical Editor D. Alcaydé thanks E. J. Fremouw and another referee for their help in evaluating this paper.--> Correspondence to: I. K. Walker-->

  3. The new Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for the cross-track scanning ATMS radiometer: description and verification study over Europe and Africa using GPM and TRMM spaceborne radars

    NASA Astrophysics Data System (ADS)

    Sanò, Paolo; Panegrossi, Giulia; Casella, Daniele; Marra, Anna C.; Di Paola, Francesco; Dietrich, Stefano

    2016-11-01

    The objective of this paper is to describe the development and evaluate the performance of a completely new version of the Passive microwave Neural network Precipitation Retrieval (PNPR v2), an algorithm based on a neural network approach, designed to retrieve the instantaneous surface precipitation rate using the cross-track Advanced Technology Microwave Sounder (ATMS) radiometer measurements. This algorithm, developed within the EUMETSAT H-SAF program, represents an evolution of the previous version (PNPR v1), developed for AMSU/MHS radiometers (and used and distributed operationally within H-SAF), with improvements aimed at exploiting the new precipitation-sensing capabilities of ATMS with respect to AMSU/MHS. In the design of the neural network the new ATMS channels compared to AMSU/MHS, and their combinations, including the brightness temperature differences in the water vapor absorption band, around 183 GHz, are considered. The algorithm is based on a single neural network, for all types of surface background, trained using a large database based on 94 cloud-resolving model simulations over the European and the African areas. The performance of PNPR v2 has been evaluated through an intercomparison of the instantaneous precipitation estimates with co-located estimates from the TRMM Precipitation Radar (TRMM-PR) and from the GPM Core Observatory Ku-band Precipitation Radar (GPM-KuPR). In the comparison with TRMM-PR, over the African area the statistical analysis was carried out for a 2-year (2013-2014) dataset of coincident observations over a regular grid at 0.5° × 0.5° resolution. The results have shown a good agreement between PNPR v2 and TRMM-PR for the different surface types. The correlation coefficient (CC) was equal to 0.69 over ocean and 0.71 over vegetated land (lower values were obtained over arid land and coast), and the root mean squared error (RMSE) was equal to 1.30 mm h-1 over ocean and 1.11 mm h-1 over vegetated land. The results showed a

  4. Radar Enhancement of Small Aircraft in the Air Traffic Control (ATC) System

    DTIC Science & Technology

    1975-09-01

    reflectors are available for small aircraft which will increase the aircraft’s radar cross sections , thereby enhancing their reflective capability to...Passive Enhancement, Active Enhancement, Radar Cross Section 19. Security Claisif. (of this report) UNCLASSIFIED „ s—miCFS SUBJEO 10 CH...analysis will include s discussion of small aircraft radar cross section , free space (theoretical) radar ’ietecticn, and radar

  5. Passive millimeter wave imaging

    NASA Astrophysics Data System (ADS)

    Pergande, Al; Dean, Donald D.; O'Donnell, Daniel J.

    1996-05-01

    Passive millimeter wave (MMW) imaging provides a breakthrough capability for driver vision enhancement to counter the blinding effects of inclement weather. This type of sensor images in a manner analogous to an infrared or visible camera, but receives its energy from the MMW portion of the electromagnetic spectrum. Technology has progressed to the point where MMW radiometric systems offer advantages to a number of vision applications. We report on our developmental 94 GHz radiometric testbed, and the eventual technological evolutions that will help MMW radiometers and radars meet military and commercial market needs.

  6. Passive Bistatic Radar and Waveform Diversity

    DTIC Science & Technology

    2009-11-01

    Defence Academy of the United Kingdom Shrivenham, Swindon SN6 8LA, UK Tel: +44 1793 785436; fax: +44 1793 782546; email: hgriffiths.cu...Cranfield University Defence Academy of the United Kingdom Shrivenham, Swindon SN6 8LA, UK 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING

  7. Approaching 80 Years of Passive Radar (PREPRINT)

    DTIC Science & Technology

    2014-10-09

    9) and ERA as well as research institutions like NC3A [8] and ONERA joined in with experimental systems or demonstrators. The handling of vast...were developed, first by ONERA and starting in 1999 by FGAN-FHR. The first PCR-system to demonstrate air and maritime target detection in multi...like Celldar by Roke Manor [9] and experiments by ONERA [10] and Fraunhofer-FKIE [11] using GSM signals may offer some additional fields of

  8. Investigating nearby exoplanets via interstellar radar

    NASA Astrophysics Data System (ADS)

    Scheffer, Louis K.

    2014-01-01

    Interstellar radar is a potential intermediate step between passive observation of exoplanets and interstellar exploratory missions. Compared with passive observation, it has the traditional advantages of radar astronomy. It can measure surface characteristics, determine spin rates and axes, provide extremely accurate ranges, construct maps of planets, distinguish liquid from solid surfaces, find rings and moons, and penetrate clouds. It can do this even for planets close to the parent star. Compared with interstellar travel or probes, it also offers significant advantages. The technology required to build such a radar already exists, radar can return results within a human lifetime, and a single facility can investigate thousands of planetary systems. The cost, although too high for current implementation, is within the reach of Earth's economy.

  9. RADAR WARNING SYSTEM,

    DTIC Science & Technology

    RADAR TRACKING, *AIRCRAFT DEFENSE SYSTEMS, RADAR EQUIPMENT, AIR TO AIR, SEARCH RADAR, GUIDED MISSILES, HIGH SPEED BOMBING, EARLY WARNING SYSTEMS, FIRE CONTROL SYSTEM COMPONENTS, AIRCRAFT, TIME, CHINA.

  10. Ultraviolet-excimer laser-based incoherent Doppler lidar system

    NASA Technical Reports Server (NTRS)

    Mcdermid, I. Stuart; Laudenslager, James B.; Rees, David

    1985-01-01

    The topics covered include the following: principles of Doppler measurements, laser backscatter, eye safety, demonstration concepts, the wavelength-meter, the interferometer detector, return signal model, and comparison of incoherent and coherent lidars.

  11. Introduction to Wave Turbulence Formalisms for Incoherent Optical Waves

    NASA Astrophysics Data System (ADS)

    Picozzi, Antonio; Garnier, Josselin; Xu, Gang; Rica, Sergio

    We provide an introduction to different wave turbulence formalisms describing the propagation of partially incoherent optical waves in nonlinear media. We consider the nonlinear Schrödinger equation as a representative model accounting for a nonlocal or a noninstantaneous nonlinearity, as well as higher-order dispersion effects. We discuss the wave turbulence kinetic equation describing, e.g., wave condensation or wave thermalization through supercontinuum generation; the Vlasov formalism describing incoherent modulational instabilities and the formation of large scale incoherent localized structures in analogy with long-range gravitational systems; and the weak Langmuir turbulence formalism describing spectral incoherent solitons, as well as spectral shock or collapse singularities. Finally, recent developments and some open questions are discussed, in particular in relation with a wave turbulence formulation of laser systems and different mechanisms of breakdown of thermalization.

  12. Incidental experiences of affective coherence and incoherence influence persuasion.

    PubMed

    Huntsinger, Jeffrey R

    2013-06-01

    When affective experiences are inconsistent with activated evaluative concepts, people experience what is called affective incoherence; when affective experiences are consistent with activated evaluative concepts, people experience affective coherence. The present research asked whether incidental feelings of affective coherence and incoherence would regulate persuasion. Experiences of affective coherence and incoherence were predicted and found to influence the processing of persuasive messages when evoked prior to receipt of such messages (Experiments 1 and 3), and to influence the confidence with which thoughts generated by persuasive messages were held when evoked after presentation of such messages (Experiments 2 and 3). These results extend research on affective coherence and incoherence by showing that they exert a broader impact on cognitive activity than originally assumed.

  13. Processing oscillatory signals by incoherent feedforward loops

    NASA Astrophysics Data System (ADS)

    Zhang, Carolyn; Wu, Feilun; Tsoi, Ryan; Shats, Igor; You, Lingchong

    From the timing of amoeba development to the maintenance of stem cell pluripotency,many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression.While networks underlying this signal decoding are diverse,many are built around a common motif, the incoherent feedforward loop (IFFL),where an input simultaneously activates an output and an inhibitor of the output.With appropriate parameters,this motif can generate temporal adaptation,where the system is desensitized to a sustained input.This property serves as the foundation for distinguishing signals with varying temporal profiles.Here,we use quantitative modeling to examine another property of IFFLs,the ability to process oscillatory signals.Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints.The kinetics of IFFL components dictate the input range for which the network can decode pulsatile dynamics.In addition,a match between the network parameters and signal characteristics is required for optimal ``counting''.We elucidate one potential mechanism by which information processing occurs in natural networks with implications in the design of synthetic gene circuits for this purpose. This work was partially supported by the National Science Foundation Graduate Research Fellowship (CZ).

  14. Incoherent coincidence imaging of space objects

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Gu, Guohua

    2016-10-01

    Incoherent Coincidence Imaging (ICI), which is based on the second or higher order correlation of fluctuating light field, has provided great potentialities with respect to standard conventional imaging. However, the deployment of reference arm limits its practical applications in the detection of space objects. In this article, an optical aperture synthesis with electronically connected single-pixel photo-detectors was proposed to remove the reference arm. The correlation in our proposed method is the second order correlation between the intensity fluctuations observed by any two detectors. With appropriate locations of single-pixel detectors, this second order correlation is simplified to absolute-square Fourier transform of source and the unknown object. We demonstrate the image recovery with the Gerchberg-Saxton-like algorithms and investigate the reconstruction quality of our approach. Numerical experiments has been made to show that both binary and gray-scale objects can be recovered. This proposed method provides an effective approach to promote detection of space objects and perhaps even the exo-planets.

  15. Persistent misconceptions about incoherence in electron microscopy.

    PubMed

    Van Dyck, D

    2011-06-01

    Incoherence in electron microscopic imaging occurs when during the observation the microscope and the object are subject to fluctuations. In order to speed up the computer simulation of the images, approximations are used that are considered as valid. In this paper we will question the validity of these approximations and show that in specific cases they can lead to erroneous results. It is shown in particular in the case of one single vibrating atom that the thermal diffuse scattering that causes the signal in HAADF STEM is not only dependent on Z but also on the mean square displacement of the atom so that it can even be large for light atoms in soft matter, provided the right HAADF aperture is used. In HREM imaging the diffuse scattering leaks out of the coherent (elastic) wave and is redistributed in the background. This might explain the mismatch in elastic contrast (Stobbs factor) especially for crystals with a thickness beyond the extinction distance, where also the HAADF signal saturates and the elastic (coherent) component vanishes. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Incoherent digital holography with phase-only spatial light modulators

    NASA Astrophysics Data System (ADS)

    Rosen, Joseph; Kelner, Roy; Kashter, Yuval

    2015-10-01

    Today, spatial light modulators (SLMs) offer the world of digital holography a robust technology that can be incorporated into hologram recorders. This review surveys recent developments related to the role of SLMs in a family of incoherent digital hologram recorders termed Fresnel incoherent correlation holography (FINCH). Two systems branching out from FINCH, and discussed herein, are a confocal version of FINCH and a synthetic aperture FINCH-based system.

  17. Coherent and incoherent beam combination using thick holographic substrates

    NASA Astrophysics Data System (ADS)

    Shahriar, M. S.; Riccobono, J.; Kleinschmit, M.; Shen, J. T.

    2003-05-01

    We present a mathematical model of coherent and incoherent beam combination in a thick hologram. We also derive the formulae relating the read and write angles to the read and write wavelengths for the combiner. Furthermore, we present a new technique for determining the M#, and establish that the M# required for a coherent combiner is substantially less than that needed for an incoherent one.

  18. Three-dimensional imaging spectrometry by fully passive interferometry

    NASA Astrophysics Data System (ADS)

    Sasamoto, Masumi; Yoshimori, Kyu

    2012-01-01

    We have developed a method to obtain a set of spectral components of three-dimensional (3D) images for a spatially incoherent, polychromatic light source distribution by a fully passive interferometric technique. The principle of the method is based on the measurement of a five-dimensional (5D) spatial coherence function and signal processing including the synthetic aperture technique and spectral decomposition. This paper gives a mathematical formulation illustrating the principle of the method, and we report an experimental demonstration in which the measured object is composed of two statistically uncorrelated point sources. The experimental results verify the applicability of our method to conventional spatially incoherent, polychromatic objects.

  19. First Measurements of Polar Mesospheric Summer Echoes by a Tri-static Radar System

    NASA Astrophysics Data System (ADS)

    La Hoz, C.

    2015-12-01

    Polar Mesospheric Summer Echoes (PMSE) have been observed for the first time by a tri-static radar system comprising the EISCAT VHF (224 MHz, 0.67 m Bragg wavelength) active radar in Tromso (Norway) and passive receiving stations in Kiruna, (Sweden) and Sodankyla (Finland). The antennas at the receiving stations, originally part of the EISCAT tri-static UHF radar system at 930 MHz, have been refitted with new feeder systems at the VHF frequency of the transmitter in Tromso. The refitted radar system opens new opportunities to study PMSE for its own sake and as a tracer of the dynamics of the polar mesosphere, a region that is difficult to investigate by other means. The measurements show that very frequently both remote receiving antennas detect coherent signals that are much greater than the regular incoherent scattering due to thermal electrons and coinciding in time and space with PMSE measured by the transmitter station in Tromso. This represents further evidence that PMSE is not aspect sensitive, as was already indicated by a less sensitive radar system in a bi-static configuration, and implying that the underlying atmospheric turbulence, at least at sub-meter scales, is isotropic in agreement with Kolmogorov's hypothesis. Measurements also show that the vertical rate of fall of persistent features of PMSE is the same as the vertical line of sight velocity inferred from the doppler shift of the PMSE signals. This equivalence forms the basis for using PMSE as a tracer of the dynamics of the background mesosphere. Thus, it is possible to measure the 3-dimensional velocity field in the PMSE layer over the intersection volume of the three antennas. Since the signals have large signal-to-noise ratios (up to 30 dB), the inferred velocities have high accuracies and good time resolutions. This affords the possibility to make estimates of momentum flux in the mesosphere deposited by overturning gravity waves. Gravity wave momentum flux is believed to be the engine of a

  20. Propagation behavior of incoherent beams in one-dimensional photonic crystals.

    PubMed

    Ding, Fei-Na; Chen, Yuan-Yuan; Shi, Jie-Long

    2010-03-01

    The propagation properties of Gaussian Schell-model spatially incoherent beams through a one-dimensional photonic crystal (1DPC) are investigated. The dynamical evolution of incoherent beams in 1DPC and the Goos-Hänchen lateral shift of the transmitted beams are obtained. The mutual effects of coherence and bandgap of the PC on the evolution of incoherent beams are analyzed. The incidence angle of the incoherent beam also has an influence on the incoherent electric field and the lateral shift.

  1. Surface emitting distributed feedback laser as a source for laser radar

    NASA Astrophysics Data System (ADS)

    Akkapeddi, P.; Macomber, S. H.

    1991-08-01

    The requirements for a diode source for a laser radar system are presented. It is shown how microcollimation of incoherent diode laser arrays can produce a usable beam divergence. A unique diode source under development and the associated technologies required for a compact, efficient, reliable and low divergence source are described.

  2. Passive Asteroid Radio Tomography with the Jupiter-Io CMI

    NASA Astrophysics Data System (ADS)

    Eubanks, T. M.

    2015-01-01

    A new solution for determining the interior structure of small asteroids, Passive Asteroid Radio Tomography (PART), is introduced. PART would use a natural radio source, the Jovian Io-DAM, to provide a lightweight alternative to penetrating radar.

  3. European near-Earth object radar

    NASA Astrophysics Data System (ADS)

    Zaitsev, Alexander L.

    2002-11-01

    Radar astronomy paradox (RAP): practically everybody agree with essential contributions of active radar observations to Solar System and especially to near-Earth object (NEO) explorations, but despite everything prefer to develop new and new passive telescopes and disposable space missions, only, and nobody want to build at least one dedicated multipurpose radar telescope (neither Arecibo nor Goldstone and Evpatoria radars were created as dedicated radar astronomy instruments). Also, as of June 2002, among of 188 radar detected asteroids and comets there are only 3 NEOs, which were investigated in Europe, with single European radar facility, sited in Evpatoria. The main reason of such deep gap is a low sensitivity of Evpatoria radar, which is in 10 and 300 times less powerful than Goldstone and Arecibo. Therefore, I guess the first dedicated European NEO Radar (ENEOR) is earnestly needful now. From time to time we discuss this problem, but it is not solve for the present moment, perhaps because of above formulated RAP. Origin and concept of the ENEOR, as well as the ENEOR project, based on the being under construction 64-m Sardinia Radio Telescope, will be presented below.

  4. Enlightened Use of Passive Voice in Technical Writing

    NASA Technical Reports Server (NTRS)

    Trammell, M. K.

    1981-01-01

    The passive voice as a normal, acceptable, and established syntactic form in technical writing is defended. Passive/active verb ratios, taken from sources including 'antipassivist' text books, are considered. The suitability of the passive voice in technical writing which involves unknown or irrelevant agents is explored. Three 'myths' that the passive (1) utilizes an abnormal and artificial word order, (2) is lifeless, and (3) is indirect are considered. Awkward and abnormal sounding examples encountered in text books are addressed in terms of original context. Unattractive or incoherent passive sentences are explained in terms of inappropriate conversion from active sentences having (1) short nominal or pronominal subjects or (2) verbs with restrictions on their passive use.

  5. SMAP RADAR Calibration and Validation

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  6. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental

  7. Incoherent shock waves in long-range optical turbulence

    NASA Astrophysics Data System (ADS)

    Xu, G.; Garnier, J.; Faccio, D.; Trillo, S.; Picozzi, A.

    2016-10-01

    Considering the nonlinear Schrödinger (NLS) equation as a representative model, we report a unified presentation of different forms of incoherent shock waves that emerge in the long-range interaction regime of a turbulent optical wave system. These incoherent singularities can develop either in the temporal domain through a highly noninstantaneous nonlinear response, or in the spatial domain through a highly nonlocal nonlinearity. In the temporal domain, genuine dispersive shock waves (DSW) develop in the spectral dynamics of the random waves, despite the fact that the causality condition inherent to the response function breaks the Hamiltonian structure of the NLS equation. Such spectral incoherent DSWs are described in detail by a family of singular integro-differential kinetic equations, e.g. Benjamin-Ono equation, which are derived from a nonequilibrium kinetic formulation based on the weak Langmuir turbulence equation. In the spatial domain, the system is shown to exhibit a large scale global collective behavior, so that it is the fluctuating field as a whole that develops a singularity, which is inherently an incoherent object made of random waves. Despite the Hamiltonian structure of the NLS equation, the regularization of such a collective incoherent shock does not require the formation of a DSW - the regularization is shown to occur by means of a different process of coherence degradation at the shock point. We show that the collective incoherent shock is responsible for an original mechanism of spontaneous nucleation of a phase-space hole in the spectrogram dynamics. The robustness of such a phase-space hole is interpreted in the light of incoherent dark soliton states, whose different exact solutions are derived in the framework of the long-range Vlasov formalism.

  8. Application of theoretical models to active and passive remote sensing of saline ice

    NASA Technical Reports Server (NTRS)

    Han, H. C.; Kong, J. A.; Shin, R. T.; Nghiem, S. V.; Kwok, R.

    1992-01-01

    The random medium model is used to interpret the polarimetric active and passive measurements of saline ice. The ice layer is described as a host ice medium embedded with randomly distributed inhomogeneities, and the underlying sea water is considered as a homogeneous half-space. The scatterers in the ice layer are modeled with an ellipsoidal correlation function. The orientation of the scatterers is vertically aligned and azimuthally random. The strong permittivity fluctuation theory is used to calculate the effective permittivity and the distorted Born approximation is used to obtain the polarimetric scattering coefficients. Thermal emissions based on the reciprocity and energy conservation principles are calculated. The effects of the random roughness at the air-ice, and ice-water interfaces are explained by adding the surface scattering to the volume scattering return incoherently. The theoretical model, which has been successfully applied to analyze the radar backscatter data of first-year sea ice, is used to interpret the measurements performed in the Cold Regions Research and Engineering Laboratory's CRRELEX program.

  9. Application of theoretical models to active and passive remote sensing of saline ice

    NASA Technical Reports Server (NTRS)

    Han, H. C.; Kong, Jin AU; Shin, Robert T.; Nghiem, Son V.; Kwok, R.

    1992-01-01

    The random medium model is used to interpret the polarimetric active and passive measurements of saline ice. The ice layer is described as a host ice medium embedded with randomly distributed inhomogeneities, and the underlying sea water is considered as a homogeneous half-space. The scatterers in the ice layer are modeled with an ellipsoidal correlation function. The orientation of the scatterers is vertically aligned and azimuthally random. The strong permittivity fluctuation theory is employed to calculate the effective permittivity and the distorted Born approximation is used to obtain the polarimetric scattering coefficients. We also calculate the thermal emissions based on the reciprocity and energy conservation principles. The effects of the random roughness at the air-ice, and ice-water interfaces are accounted for by adding the surface scattering to the volume scattering return incoherently. The above theoretical model, which has been successfully applied to analyze the radar backscatter data of the first-year sea ice near Point Barrow, AK, is used to interpret the measurements performed in the CRRELEX program.

  10. Wavelength conversion of incoherent light by sum-frequency generation.

    PubMed

    Arahira, Shin; Murai, Hitoshi

    2014-06-02

    In this paper, we reveal that some kinds of optical nonlinearities are further enhanced when incoherent light, instead of a laser, is used as a pump light. This idea was confirmed both theoretically and experimentally in the case of sum-frequency generation (SFG) using the optical second nonlinearity. The conversion efficiency of the SFG with incoherent light pumping increased as the bandwidth of the incoherent pump light decreased, finally reaching twice the conversion efficiency of conventional second harmonic generation (SHG) by laser pumping. This method dramatically relaxes the severe requirements of phase matching in the nonlinear optical process. The conversion efficiency became less sensitive to misalignment of the wavelength of pump light and also of device operation temperature when the bandwidth of the incoherent pump light was sufficiently broad, although the improvement of the conversion efficiency had an inverse relationship with the insensitivity to the phase-matching condition. The temperature tuning range was enhanced by more than two orders of magnitude in comparison with the conventional SHG method. As an example of a promising application of this new idea, we performed the generation of quantum entangled photon-pairs using cascaded optical nonlinearities (SFG and the subsequent spontaneous parametric down conversion) in a single periodically poled LiNbO3 waveguide device, in which the incoherent light was used as the pump source for both the parametric processes. We have achieved high fidelity exceeding 99% in quantum-state tomography experiments.

  11. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography)

    PubMed Central

    Siegel, Nisan; Storrie, Brian; Bruce, Marc

    2016-01-01

    FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called “CINCH”. An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution. PMID:26839443

  12. Planetary radar

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.

    1980-01-01

    The radar astronomy activities supported by the Deep Space Network during June, July, and August 1980 are reported. The planetary bodies observed were Venus, Mercury, and the asteroid Toro. Data were obtained at both S and X band, and the observations were considered successful.

  13. Beam cleaning of an incoherent laser via plasma Raman amplification

    DOE PAGES

    Edwards, Matthew R.; Qu, Kenan; Mikhailova, Julia M.; ...

    2017-09-25

    We show that backward Raman amplification in plasma can efficiently compress a temporally incoherent pump laser into an intense coherent amplified seed pulse, provided that the correlation time of the pump is longer than the inverse plasma frequency. One analytical theory for Raman amplification using pump beams with different correlation functions is developed and compared to numerical calculations and particle-in-cell simulations. Since incoherence on scales shorter than the instability growth time suppresses spontaneous noise amplification, we point out a broad regime where quasi-coherent sources may be used as efficient low-noise Raman amplification pumps. As the amplified seed is coherent, Ramanmore » amplification provides an additional a beam-cleaning mechanism for removing incoherence. At near-infrared wavelengths, finite coherence times as short as 50 fs allow amplification with only minor losses in efficiency.« less

  14. Spotlight-mode incoherently synthetic aperture imaging ladar: fundamentals

    NASA Astrophysics Data System (ADS)

    Liu, Liren

    2010-08-01

    In this paper, a concept of spotlight-mode incoherently-synthetic aperture imaging ladar (SAIL) is proposed on the basis of computer tomography (CT). This incoherent SAIL has three operations of conventional, inverse and CT spotlight-modes with two sensing techniques of range and Doppler resolutions, and supplies a variety of dimensional transformations for 2-D range- and Doppler-resolved imaging of 2-D objects and for 3-D range-resolved imaging or in the depth compressed 2-D range- and Doppler-resolved imaging of 3-D objects. Due to the simplification in both the construction and the algorithm the difficulties in the signal collection and data processing are importantly relaxed. The incoherent SAIL provides a great potential for applications in the extensive fields. The paper gives the detailed analysis.

  15. Beam cleaning of an incoherent laser via plasma Raman amplification

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew R.; Qu, Kenan; Mikhailova, Julia M.; Fisch, Nathaniel J.

    2017-10-01

    We show that backward Raman amplification in plasma can efficiently compress a temporally incoherent pump laser into an intense coherent amplified seed pulse, provided that the correlation time of the pump is longer than the inverse plasma frequency. An analytical theory for Raman amplification using pump beams with different correlation functions is developed and compared to numerical calculations and particle-in-cell simulations. Since incoherence on scales shorter than the instability growth time suppresses spontaneous noise amplification, we point out a broad regime where quasi-coherent sources may be used as efficient low-noise Raman amplification pumps. As the amplified seed is coherent, Raman amplification additionally provides a beam-cleaning mechanism for removing incoherence. At near-infrared wavelengths, finite coherence times as short as 50 fs allow amplification with only minor losses in efficiency.

  16. Electromagnetically Induced Grating Without Absorption Using Incoherent Pump

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang

    2017-10-01

    We propose a scheme for creating electromagnetically induced grating in a four-level double- Λ atomic system driven by a coupling field and an incoherent pump field. Owing to the incoherent pumping process, large refractivity accompanied with vanishing absorption or even gain across the probe field can be built up in the atoms, thus phase grating or gain-phase grating, which diffracts a probe light into different directions, can be formed with the help of a standing-wave coupling field. The diffraction efficiency of the gratings can be tuned by the coupling field intensity and the incoherent pump rate, hence the proposed gratings should be suitable for beam splitter and optical switching in optical communication and networking.

  17. Affective Incoherence: When Affective Concepts and Embodied Reactions Clash

    PubMed Central

    Centerbar, David B.; Clore, Gerald L.; Schnall, Simone; Garvin, Erika

    2008-01-01

    In five studies, we examined the effects on cognitive performance of coherence and incoherence between conceptual and experiential sources of affective information. The studies crossed the priming of happy and sad concepts with affective experiences. In different experiments, these included: approach or avoidance actions, happy or sad feelings, and happy or sad expressive behaviors. In all studies, coherence between affective concepts and affective experiences led to better recall of a story than affective incoherence. We suggested that the experience of such experiential affective cues serves as evidence of the appropriateness of affective concepts that come to mind. The results suggest that affective coherence has epistemic benefits, and that incoherence is costly, for cognitive performance. PMID:18361672

  18. Incoherent Diffractive Imaging via Intensity Correlations of Hard X Rays

    NASA Astrophysics Data System (ADS)

    Classen, Anton; Ayyer, Kartik; Chapman, Henry N.; Röhlsberger, Ralf; von Zanthier, Joachim

    2017-08-01

    Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures, or even single molecules. While these techniques rely on coherent scattering, incoherent processes like fluorescence emission—often the predominant scattering mechanism—are generally considered detrimental for imaging applications. Here, we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D arrangement of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.

  19. Affective incoherence: when affective concepts and embodied reactions clash.

    PubMed

    Centerbar, David B; Schnall, Simone; Clore, Gerald L; Garvin, Erika D

    2008-04-01

    In five studies, the authors examined the effects on cognitive performance of coherence and incoherence between conceptual and experiential sources of affective information. The studies crossed the priming of happy and sad concepts with affective experiences. In different experiments, these included approach or avoidance actions, happy or sad feelings, and happy or sad expressive behaviors. In all studies, coherence between affective concepts and affective experiences led to better recall of a story than did affective incoherence. The authors suggest that the experience of such experiential affective cues serves as evidence of the appropriateness of affective concepts that come to mind. The results suggest that affective coherence has epistemic benefits and that incoherence is costly in terms of cognitive performance. (c) 2008 APA, all rights reserved.

  20. Electromagnetically Induced Grating Without Absorption Using Incoherent Pump

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang

    2017-07-01

    We propose a scheme for creating electromagnetically induced grating in a four-level double- Λ atomic system driven by a coupling field and an incoherent pump field. Owing to the incoherent pumping process, large refractivity accompanied with vanishing absorption or even gain across the probe field can be built up in the atoms, thus phase grating or gain-phase grating, which diffracts a probe light into different directions, can be formed with the help of a standing-wave coupling field. The diffraction efficiency of the gratings can be tuned by the coupling field intensity and the incoherent pump rate, hence the proposed gratings should be suitable for beam splitter and optical switching in optical communication and networking.

  1. Incoherent synchrotron emission of laser-driven plasma edge

    SciTech Connect

    Serebryakov, D. A. Nerush, E. N.; Kostyukov, I. Yu.

    2015-12-15

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau–Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  2. The science case for the EISCAT_3D radar

    NASA Astrophysics Data System (ADS)

    McCrea, Ian; Aikio, Anita; Alfonsi, Lucilla; Belova, Evgenia; Buchert, Stephan; Clilverd, Mark; Engler, Norbert; Gustavsson, Björn; Heinselman, Craig; Kero, Johan; Kosch, Mike; Lamy, Hervé; Leyser, Thomas; Ogawa, Yasunobu; Oksavik, Kjellmar; Pellinen-Wannberg, Asta; Pitout, Frederic; Rapp, Markus; Stanislawska, Iwona; Vierinen, Juha

    2015-12-01

    The EISCAT (European Incoherent SCATer) Scientific Association has provided versatile incoherent scatter (IS) radar facilities on the mainland of northern Scandinavia (the EISCAT UHF and VHF radar systems) and on Svalbard (the electronically scanning radar ESR (EISCAT Svalbard Radar) for studies of the high-latitude ionised upper atmosphere (the ionosphere). The mainland radars were constructed about 30 years ago, based on technological solutions of that time. The science drivers of today, however, require a more flexible instrument, which allows measurements to be made from the troposphere to the topside ionosphere and gives the measured parameters in three dimensions, not just along a single radar beam. The possibility for continuous operation is also an essential feature. To facilitatefuture science work with a world-leading IS radar facility, planning of a new radar system started first with an EU-funded Design Study (2005-2009) and has continued with a follow-up EU FP7 EISCAT_3D Preparatory Phase project (2010-2014). The radar facility will be realised by using phased arrays, and a key aspect is the use of advanced software and data processing techniques. This type of software radar will act as a pathfinder for other facilities worldwide. The new radar facility will enable the EISCAT_3D science community to address new, significant science questions as well as to serve society, which is increasingly dependent on space-based technology and issues related to space weather. The location of the radar within the auroral oval and at the edge of the stratospheric polar vortex is also ideal for studies of the long-term variability in the atmosphere and global change. This paper is a summary of the EISCAT_3D science case, which was prepared as part of the EU-funded Preparatory Phase project for the new facility. Three science working groups, drawn from the EISCAT user community, participated in preparing this document. In addition to these working group members, who

  3. Short-time-interaction quantum measurement through an incoherent mediator

    SciTech Connect

    Casanova, J.; Romero, G.; Lizuain, I.; Muga, J. G.; Retamal, J. C.; Roos, C. F.; Solano, E.

    2010-06-15

    We propose a method of indirect measurements where a probe is able to read, in short interaction times, the quantum state of a remote system through an incoherent third party, hereafter called a mediator. The probe and system can interact briefly with the mediator in an incoherent state but not directly among themselves and, nevertheless, the transfer of quantum information can be achieved with robustness. We exemplify our measurement scheme with a paradigmatic example of this tripartite problem--a qubit-oscillator-qubit setup--and discuss different physical scenarios, pointing out the associated advantages and limitations.

  4. Single-shot phase-shifting incoherent digital holography

    NASA Astrophysics Data System (ADS)

    Tahara, Tatsuki; Kanno, Takeya; Arai, Yasuhiko; Ozawa, Takeaki

    2017-06-01

    We propose single-shot incoherent digital holography in which a single-path in-line configuration and phase-shifting interferometry are adopted. Space-division multiplexing and polarization states of the waves are utilized to implement parallel phase-shifting holography. A single-path setup in parallel phase-shifting is constructed to capture an incoherent hologram easily with a compact system. An instantaneous and three-dimensional (3D) object image is obtained without undesired diffraction waves using parallel phase-shifting. The validity of the proposed technique is experimentally demonstrated for both transparent and reflective objects.

  5. The Interaction of Intense Incoherent Light and Matter

    NASA Astrophysics Data System (ADS)

    van Wagenen, Lindsey Gay

    One of the long standing difficulties in working with intense incoherent light has been the lack of a theory for predicting and explaining experimental results. This thesis investigates the diagrammatic theory of Freidberg and Hartmann which provides a solution to this problem. Photon echo experiments are performed with intense incoherent light in atomic sodium vapor, the dependence of the resulting echo signal on the intensity of the constituent pulses is studied and experimental results are then compared with theoretical predictions. When the finite lifetimes of the sodium sample are included in the calculations, experimental results show good qualitative agreement with the theoretical predictions for the two and three-pulse echo.

  6. Analysis of off-axis incoherent digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro

    2017-05-01

    Off-axis incoherent digital holography that enables single-shot three-dimensional (3D) distribution is introduced in the paper. Conventional fluorescence microscopy images 3D fields by sectioning, this prevents instant imaging of fast reactions of living cells. In order to realize digital holography from incoherent light, we adapted common path configuration to achieve the best temporal coherence. And by introducing gratings, we shifted the direction of each light to achieve off-axis interference. Simulations and preliminary experiments using LED light have confirmed the results. We expect to use this method to realize 3D phase imaging and fluorescent imaging at the same time from the same biological sample.

  7. Method of locating persons in distress. [by using radar imagery from radar reflectors

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr. (Inventor)

    1977-01-01

    A method for locating any person in distress in a selected area on the surface of the earth who has deployed passive radio frequency (RF) reflectors in a predetermined arrangement is analyzed. A first transparency is made in the spatial frequency domain of an image of said predetermined arrangement of said RF reflectors. The said selected area of the surface of the earth is scanned by means of a side-looking radar, on board a satellite or aircraft, to produce radar images. Second transparencies in the conventional image domain are produced from the radar images. It is then determined from the first and second transparencies, by means of complex spatial filtering.

  8. Passive euthanasia

    PubMed Central

    Garrard, E; Wilkinson, S

    2005-01-01

    The idea of passive euthanasia has recently been attacked in a particularly clear and explicit way by an "Ethics Task Force" established by the European Association of Palliative Care (EAPC) in February 2001. It claims that the expression "passive euthanasia" is a contradiction in terms and hence that there can be no such thing. This paper critically assesses the main arguments for the Task Force's view. Three arguments are considered. Firstly, an argument based on the (supposed) wrongness of euthanasia and the (supposed) permissibility of what is often called passive euthanasia. Secondly, the claim that passive euthanasia (so-called) cannot really be euthanasia because it does not cause death. And finally, a consequence based argument which appeals to the (alleged) bad consequences of accepting the category of passive euthanasia. We conclude that although healthcare professionals' nervousness about the concept of passive euthanasia is understandable, there is really no reason to abandon the category provided that it is properly and narrowly understand and provided that "euthanasia reasons" for withdrawing or withholding life-prolonging treatment are carefully distinguished from other reasons. PMID:15681666

  9. Assessment of the SMAP level 2 passive soil moisture product

    USDA-ARS?s Scientific Manuscript database

    The NASA Soil Moisture Active Passive (SMAP) satellite mission was launched on Jan 31, 2015. The observatory was developed to provide global mapping of high-resolution soil moisture and freeze-thaw state every 2–3 days using an L-band (active) radar and an L-band (passive) radiometer. SMAP provides ...

  10. Radars in space

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E.

    1990-01-01

    The capabilities of active microwave devices operating from space (typically, radar, scatterometers, interferometers, and altimeters) are discussed. General radar parameters and basic radar principles are explained. Applications of these parameters and principles are also explained. Trends in space radar technology, and where space radars and active microwave sensors in orbit are going are discussed.

  11. Electric fields and neutral winds from monostatic incoherent scatter measurements by means of stochastic inversion

    NASA Astrophysics Data System (ADS)

    Nygrén, T.; Aikio, A. T.; Kuula, R.; Voiculescu, M.

    2011-05-01

    A new method utilizing stochastic inversion in determining the electric field and neutral wind from monostatic beam swing incoherent scatter measurements is described. The method consists of two stages. In the first stage, beam-aligned ion velocities from a chosen F region height interval and a set of subsequent beam directions are taken as measurements. The unknowns are the two electric field components and the field-aligned ion velocity profile. The solution gives the most probable values of the unknowns with error estimates. In the second stage, the measurements consist of beam-aligned ion velocities from the E region, and the electric fields given by the first inversion problem are also used as measurements. The number of applied beam directions may be greater than in the first inversion problem. This is a feasible approach since the neutral wind usually changes more slowly than the electric field. The solution of the second inversion problem gives the most probable values of the three neutral wind components. Results of the method are shown for 11 September 2005, when the European Incoherent Scatter (EISCAT) UHF radar was running in the CP2 experiment mode, which is a four-position 6 min monostatic cycle. In addition, from each beam direction a tristatic measurement at one F region range gate was made using two additional receivers. That allowed comparison between the monostatic and tristatic electric field results, which were in excellent agreement. The calculated neutral wind components were in good accordance with previous measurements during disturbed conditions from the same site.

  12. TRMM radar

    NASA Technical Reports Server (NTRS)

    Okamoto, Kenichi

    1993-01-01

    The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) radar are presented. The radar, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.

  13. Radar Sounder

    DTIC Science & Technology

    1988-09-01

    over the shorter time period (resulting in a multilook SAR ) with the result that spatial resolution, the usual r~ason for using SAR techniques, degrades...Field - - - ALT 21. Sea Surface Topography - - - SAR , ALT 22. Ocean Waves (sea, swell, surf) V. Good Some V. Good SAR , ALT * with additional lower freq...OLS - Operational Line-scan System radiometer (4-6 GHz?) ALT - Altimeter •* good at low microwave SAR - Synthetic Aperture frequencies Radar + over

  14. Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects

    NASA Astrophysics Data System (ADS)

    Xu, Jiangming; Lou, Zhaokai; Ye, Jun; Wu, Jian; Leng, Jinyong; Xiao, Hu; Zhang, Hanwei; Zhou, Pu

    2017-03-01

    We present a hundred-watt-level linearly-polarized random fiber laser (RFL) pumped by incoherent broadband amplified spontaneous emission (ASE) source and prospect the power scaling potential theoretically. The RFL employs half-opened cavity structure which is composed by a section of 330 m polarization maintained (PM) passive fiber and two PM high reflectivity fiber Bragg gratings. The 2nd order Stokes light centered at 1178 nm reaches the pump limited maximal power of 100.7 W with a full width at half-maximum linewidth of 2.58 nm and polarization extinction ratio of 23.5 dB. The corresponding ultimate quantum efficiency of pump to 2nd order Stokes light is 89.01%. To the best of our knowledge, this is the first demonstration of linearly-polarized high-order RFL with hundred-watt output power. Furthermore, the theoretical investigation indicates that 300 W-level linearly-polarized single-mode 1st order Stokes light can be obtained from incoherently pumped RFL with 100 m PM passive fiber.

  15. Random FM-CW radar and its ECCM

    NASA Astrophysics Data System (ADS)

    Liu, Guosui; Shi, Xiangquan; Lu, Jinhui

    The principle of a random FM-CW radar system is introduced, and the range cutoff charactertistic (RCC) for the system is derived. In a fuze radar system, this radar can be used against passive jamming away from the point of range cutoff as well as against active jamming. Experimental results are presented which show that the random FM-CW radar system has RCC and ECCM properties. The system can be used as a short-range detection system, a low-altitude altimeter, and a blind landing device.

  16. Detection of Marine Radar Targets

    NASA Astrophysics Data System (ADS)

    Briggs, John N.

    A radar must detect targets before it can display them. Yet manufacturers' data sheets rarely tell us what the products will detect at what range. Many of the bigger radars are Type Approved so we consult the relevant IMO performance standard A 477 (XII). Paraphrasing Section 3.1 of the draft forthcoming revision (NAV 41/6): under normal propagation conditions with the scanner at height of 15 m, in the absence of clutter, the radar is required to give clear indication of an object such as a navigational buoy having a radar cross section area (RCS) of 10 m2 at 2 n.m. and, as examples, coastlines whose ground rises to 60/6 m at ranges of 20/7 n.m., a ship of 5000 tons at any aspect at 7 n.m. and a small vessel 10 m long at 3 n.m.This helps, but suppose we must pick up a 5 m2 buoy at g km? What happens in clutter? Should we prefer S- or X-band? To answer such questions we use equations which define the performance of surveillance radars, but the textbooks and specialist papers containing them often generalize with aeronautical and defence topics, making life difficult for the nonspecialist.This paper attempts a concise and self-contained engineering account of all main factors affecting detection of passive and active targets on civil marine and vessel traffic service (VTS) radars. We develop a set of equations for X- and S-band (3 and 10 cm, centred on 9400 and 3000 MHz respectively), suited for spreadsheet calculation.Sufficient theory is sketched in to indicate where results should be valid. Some simplifications of conventional treatments have been identified.

  17. Coherent and incoherent ultrasound backscatter from cell aggregates.

    PubMed

    de Monchy, Romain; Destrempes, François; Saha, Ratan K; Cloutier, Guy; Franceschini, Emilie

    2016-09-01

    The effective medium theory (EMT) was recently developed to model the ultrasound backscatter from aggregating red blood cells [Franceschini, Metzger, and Cloutier, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 2668-2679 (2011)]. The EMT assumes that aggregates can be treated as homogeneous effective scatterers, which have effective properties determined by the aggregate compactness and the acoustical characteristics of the cells and the surrounding medium. In this study, the EMT is further developed to decompose the differential backscattering cross section of a single cell aggregate into coherent and incoherent components. The coherent component corresponds to the squared norm of the average scattering amplitude from the effective scatterer, and the incoherent component considers the variance of the scattering amplitude (i.e., the mean squared norm of the fluctuation of the scattering amplitude around its mean) within the effective scatterer. A theoretical expression for the incoherent component based on the structure factor is proposed and compared with another formulation based on the Gaussian direct correlation function. This theoretical improvement is assessed using computer simulations of ultrasound backscatter from aggregating cells. The consideration of the incoherent component based on the structure factor allows us to approximate the simulations satisfactorily for a product of the wavenumber times the aggregate radius krag around 2.

  18. Ghost imaging of phase objects with classical incoherent light

    SciTech Connect

    Shirai, Tomohiro; Setaelae, Tero; Friberg, Ari T.

    2011-10-15

    We describe an optical setup for performing spatial Fourier filtering in ghost imaging with classical incoherent light. This is achieved by a modification of the conventional geometry for lensless ghost imaging. It is shown on the basis of classical coherence theory that with this technique one can realize what we call phase-contrast ghost imaging to visualize pure phase objects.

  19. Incoherent vector vortex-mode solitons in self-focusing nonlinear media.

    PubMed

    Motzek, Kristian; Kaiser, Friedemann; Salgueiro, José R; Kivshar, Yuri; Denz, Cornelia

    2004-10-01

    We suggest a novel type of composite spatial optical soliton created by a coherent vortex beam guiding a partially incoherent light beam in a self-focusing nonlinear medium. We show that the incoherence of the guided mode may enhance, rather than suppress, the vortex azimuthal instability, and we also demonstrate strong destabilization of dipole-mode solitons by partially incoherent light.

  20. SMAP Radar Processing and Calibration

    NASA Technical Reports Server (NTRS)

    West, R.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M.

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission is part of the NASA space-based Earth observation program, and consists of an L-band radar and radiometer scheduled for launch into sun synchronous orbit in late 2014. A joint effort of the Jet Propulsion Laboratory (JPL) and the Goddard Space Flight Center (GSFC), the SMAP mission draws heavily on the design and risk reduction heritage of the Hydrosphere State (Hydros) mission [1], [2]. The SMAP science and applications objectives are to: 1) understand processes that link the terrestrial water, energy and carbon cycles, 2) estimate global water and energy fluxes at the land surface, 3) quantify net carbon flux in boreal landscapes, 4) enhance weather and climate forecast skill, and 5) develop improved flood prediction and drought monitoring capability. To meet these science objectives, SMAP ground processing will combine the attributes of the radar and radiometer observations (in terms of their spatial resolution and sensitivity to soil moisture, surface roughness, and vegetation) to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a radar backscatter accuracy of 1 dB (1 sigma) at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This paper will describe the level 1 radar processing and calibration challenges and the choices made so far for the algorithms and software implementation.

  1. SMAP Radar Processing and Calibration

    NASA Technical Reports Server (NTRS)

    West, R.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M.

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission is part of the NASA space-based Earth observation program, and consists of an L-band radar and radiometer scheduled for launch into sun synchronous orbit in late 2014. A joint effort of the Jet Propulsion Laboratory (JPL) and the Goddard Space Flight Center (GSFC), the SMAP mission draws heavily on the design and risk reduction heritage of the Hydrosphere State (Hydros) mission [1], [2]. The SMAP science and applications objectives are to: 1) understand processes that link the terrestrial water, energy and carbon cycles, 2) estimate global water and energy fluxes at the land surface, 3) quantify net carbon flux in boreal landscapes, 4) enhance weather and climate forecast skill, and 5) develop improved flood prediction and drought monitoring capability. To meet these science objectives, SMAP ground processing will combine the attributes of the radar and radiometer observations (in terms of their spatial resolution and sensitivity to soil moisture, surface roughness, and vegetation) to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a radar backscatter accuracy of 1 dB (1 sigma) at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This paper will describe the level 1 radar processing and calibration challenges and the choices made so far for the algorithms and software implementation.

  2. Chatanika radar measurements of the electrical properties of auroral arcs

    NASA Astrophysics Data System (ADS)

    Vondrak, R. R.

    Ionospheric parameters measured in the presence of auroral arcs by the incoherent scatter Chatanika radar are used to define properties of the arcs. The radar broadcasts at 3-5 MW with a range resolution of 4.5 km along the radar line-of-sight, and has yielded auroral measurements on the variation of electron density, Hall and Pederson conductivity, horizontal electric fields, electrojet currents, precipitating electron energy flux, and the Joule heating rate. Elevation-scan techniques have been utilized to study the latitude and altitude variation of the ionospheric plasma parameters, and fixed-position scans allow determination of ionization conditions, including the electric fields and the acceleration of precipitating auroral electrons. Arcs in the diffuse aurora have been found to be local conductivity enhancements, while discrete arcs correspond to the boundary plasma sheet and have an asymmetric electric field pattern reduced on the northward side.

  3. Calculations of radar backscattering coefficient of vegetation-covered soils

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.; Jackson, T. J. (Principal Investigator)

    1983-01-01

    A model for simulating the measured backscattering coefficient of vegetation-covered soil surfaces includes both coherent and incoherent components of the backscattered radar pulses from a rough sil surface. The effect of vegetation canopy scattering is also incorporated into the model by making the radar pulse subject to two-way attenuation and volume scattering when it passes through the vegetation layer. Model results agree well with the measured angular distributions of the radar backscattering coefficient for HH polarization at the 1.6 GHz and 4.75 GHz frequencies over grass-covered fields. It was found that the coherent scattering component is very important at angles near nadir, while the vegetation volume scattering is dominant at incident angles 30 degrees.

  4. Coherent and incoherent inference in phylogeography and human evolution.

    PubMed

    Templeton, Alan R

    2010-04-06

    A hypothesis is nested within a more general hypothesis when it is a special case of the more general hypothesis. Composite hypotheses consist of more than one component, and in many cases different composite hypotheses can share some but not all of these components and hence are overlapping. In statistics, coherent measures of fit of nested and overlapping composite hypotheses are technically those measures that are consistent with the constraints of formal logic. For example, the probability of the nested special case must be less than or equal to the probability of the general model within which the special case is nested. Any statistic that assigns greater probability to the special case is said to be incoherent. An example of incoherence is shown in human evolution, for which the approximate Bayesian computation (ABC) method assigned a probability to a model of human evolution that was a thousand-fold larger than a more general model within which the first model was fully nested. Possible causes of this incoherence are identified, and corrections and restrictions are suggested to make ABC and similar methods coherent. Another coalescent-based method, nested clade phylogeographic analysis, is coherent and also allows the testing of individual components of composite hypotheses, another attribute lacking in ABC and other coalescent-simulation approaches. Incoherence is a highly undesirable property because it means that the inference is mathematically incorrect and formally illogical, and the published incoherent inferences on human evolution that favor the out-of-Africa replacement hypothesis have no statistical or logical validity.

  5. The detection of the ionospheric irregularities by GNSS signal and the incoherent scatter radio measurements

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Shagimuratov, Irk; Krankowski, Andrzej; Sieradsky, Rafal; Zakharenkova, Irina; Rietveld, Michael; Kapcia, Jacek

    2013-04-01

    The high-latitude ionosphere has a very complicated structure and high dynamics. The ionospheric irregularities can produce scintillations of radio waves that occur predominantly in the ionosphere F-layer. The strong fluctuations can influence on the performance of the different space communication and navigation radio systems. The fluctuations of GPS/GLONASS signals are caused by the ionospheric irregularities with spatial dimensions more than 10 km. These structures can be detected by high potential incoherent scatter radars. It was proposed and carried out at the beginning of June 2012 experiment for a detailed study of the nature of the ionospheric irregularities, influencing on GPS/GLONASS signals parameters, by incoherent scatter and trans-ionospheric radio measurements simultaneously. The EISCAT facilities position provides the unique opportunity to study the ionospheric irregularities' parameters associated with TEC fluctuations and GPS/GLONASS signals scintillations. The EISCAT heating facility provides unique possibility to generate the artificial ionospheric irregularities and to estimate the impact factor of these irregularities on GPS/GLONASS signals transionospheric propagation. In order to detect the ionosphere irregularities it is used the IS radar measurements (electron density and plasma temperatures profiles) and simultaneously registered on EISCAT site amplitude and phase fluctuations in GPS/GLONASS signals by use of the Javad multi-constellation GPS/GLONASS receiver with high samples rate (100 Hz) and special scintillation GPS receiver PolaRxS PRO that dedicated to ionospheric monitoring and space weather applications and provides TEC and S4 scintillation index measurements. The low frequency fluctuations can be directly measured due to the electron density changes along the radio ray path between a GPS/GLONASS satellite and a ground-based receiver on EISCAT site. The raw data (under scintillating conditions) obtained by use of the high samples

  6. Storm Induced Changes of the Topside Ionosphere as Deduced from Incoherent Scatter Radars

    DTIC Science & Technology

    1990-01-01

    11484 Sep 18 05 16 to 1q84 Sep1, 9 05.16 UT Millstone Hill Ion teOMPO’dture (Til (K 2 4 6 8 10 12 14 16 18 20 22 24 LT 600 550 (b) j 500 450 350 b B 10 2...l 350 320 L/ 2 4 6 8 10 12 Id 16. )s 20 22 24 -1 1q84 Oct 17 00 08 o 19)84 Oct 18 00 08 UT Arecibo 22 24 2 4 6 8 0 12 14 16 8 20L 600 I (b) 450 400Y...22 24 UT 19B4 Sep iq 00.08 to 1q84 Sop 20 eZ.OB UT Arecibo Ion, tomp.o-atw-. IT1 K 1 22 24 2 4 6 8 10 12 14 16 18 20 LT 550 500J.50 (b) 45 400 350

  7. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas

    PubMed Central

    Chen, Zhenwei; Zhang, Lei; Zhang, Guo

    2016-01-01

    Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR) data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR) thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level. PMID:27649207

  8. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas.

    PubMed

    Chen, Zhenwei; Zhang, Lei; Zhang, Guo

    2016-09-17

    Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR) data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR) thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level.

  9. Study to investigate and evaluate means of optimizing the radar function for the space shuttle

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A detailed analysis of the spiral scan was performed for antenna sizes ranging from 20 inches to 36 inches in diameter and for search angles characteristic of both the radar and the communication acquisition modes. The power budgets for passive target radar detection were calculated for antenna diameters ranging from 20 to 36 inches. Dwell times commensurate with spiral scan were used for these budget calculations. The signal design for the candidate pulse Doppler system is summarized. Ground return analysis carried out for the passive target radar mode is examined, and the details are presented. A concluding description of the proposed candidate radar/communication system configuration is given.

  10. Capabilities and limitations of the Sondrestrom radar for ST observations

    NASA Technical Reports Server (NTRS)

    Watkins, B. J.

    1983-01-01

    The Sondrestrom radar is located on the western side of Greenland near the U.S. air base and Danish community at Sondre Stromfjord. The radar was previously located at Chatanika, Alaska where its primary role was incoherent-scatter studies of the auroral ionosphere. Stratosphere/troposphere studies have occupied a very small portion of the radar observing schedule. The high operating frequency (1290 MHz) implies that the radar may only be used for turbulence-scatter studies in the troposphere and lower stratosphere. While the inner scale sizes of turbulence imply that the radar should be able to obtain data up to at least 20 km, in practice about 15 km seems to be the usual limit, due to lack of system sensitivity. However, this upper height limit varies from day to day and data have been obtained up to 23 km when a long (50 micro sec) pulse has been used. At high latitudes the tropopause is typically about 8 to 11 km altitude, therefore the radar is particularly suited to studies at tropopause heights. Additionally capabilities and limitations are discussed along with transmitter, receiver and antenna characteristics.

  11. Incoherent holography to obtain depth information by a rotational shearing interferometer

    NASA Astrophysics Data System (ADS)

    Watanabe, Kaho; Nomura, Takanori

    2015-09-01

    The system to record incoherent holograms using a rotational shearing interferometer is proposed. It enables us to record a hologram without coherent illumination such as a laser. The systems can record an incoherent hologram by self-interference. A rotational shearing interferometer to record incoherent cosine hologram is described. Furthermore, a rotational shearing interferometer with lenses to record incoherent hologram is described. It has the advantage of obtaining depth information by the reconstruction owing to lenses for the shear which is parallel to the optical axis. The preliminary experiments were performed. An LED and a liquid crystal display with an LED backlight were used as incoherent objects. The incoherent holograms were recorded. The object images were reconstructed numerically. The experimental results confirm the proposed incoherent holography using a rotational shearing interferometer.

  12. SMAP RADAR Processing and Calibration

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M. J.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) mission uses L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a radar backscatter accuracy of 1 dB at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This presentation will describe the level 1 radar processing and calibration challenges and the choices made so far for the algorithms and software implementation. To obtain the desired high spatial resolution the level 1 radar ground processor employs synthetic aperture radar (SAR) imaging techniques. Part of the challenge of the SMAP data processing comes from doing SAR imaging on a conically scanned system with rapidly varying squint angles. The radar echo energy will be divided into range/Doppler bins using time domain processing algorithms that can easily follow the varying squint angle. For SMAP, projected range resolution is about 250 meters, while azimuth resolution varies from 400 meters to 1.2 km. Radiometric calibration of the SMAP radar means measuring, characterizing, and where necessary correcting the gain and noise contributions from every part of the system from the antenna radiation pattern all the way to the ground processing algorithms. The SMAP antenna pattern will be computed using an accurate antenna model, and then validated post-launch using homogeneous external targets such as the Amazon rain forest to look for uncorrected gain variation. Noise subtraction is applied after image processing using measurements from a noise only channel. Variations of the internal electronics are tracked by a loopback measurement which will capture most of the time and temperature variations of the transmit power and receiver gain. Long-term variations of system performance due to component aging will be tracked and corrected using stable external reference

  13. Radar Absorbing Material Design

    DTIC Science & Technology

    2003-09-01

    simulations of coated plates were performed to estimate the effectiveness of the absorbing layers in reducing radar cross section . The reduction in monostatic... radar cross section value is shown by plotting the radar cross section of the plate with and without radar absorbing material. ε t 15. NUMBER OF

  14. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  15. Incoherent pair generation in a beam-beam interaction simulation

    NASA Astrophysics Data System (ADS)

    Rimbault, C.; Bambade, P.; Mönig, K.; Schulte, D.

    2006-03-01

    This paper deals with two topics: the generation of incoherent pairs in two beam-beam simulation programs, GUINEA-PIG and CAIN, and the influence of the International Linear Collider (ILC) beam parameter choices on the background in the micro vertex detector (VD) induced by direct hits. One of the processes involved in incoherent pair creation (IPC) is equivalent to a four fermions interaction and its cross section can be calculated exactly with a dedicated generator, BDK. A comparison of GUINEA-PIG and CAIN results with BDK allows to identify and quantify the uncertainties on IPC background predictions and to benchmark the GUINEA-PIG calculation. Based on this simulation and different VD designs, the five currently suggested ILC beam parameter sets have been compared regarding IPC background induced in the VD by direct IPC hits. We emphasize that the high luminosity set, as it is currently defined, would constrain both the choices of magnetic field and VD inner layer radius.

  16. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang

    2017-04-01

    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication.

  17. Revealing proton shape fluctuations with incoherent diffraction at high energy

    SciTech Connect

    Mantysaari, H.; Schenke, B.

    2016-08-30

    The di erential cross section of exclusive di ractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More speci cally, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent, or proton dissociative cross section is sensitive to uctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of J= mesons are very well reproduced within the color glass condensate framework when strong geometric uctuations of the gluon distribution in the proton are included. For meson production we also nd reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the e ect of saturation scale and color charge uctuations and constrain the degree of geometric uctuations.

  18. Revealing proton shape fluctuations with incoherent diffraction at high energy

    SciTech Connect

    Mantysaari, H.; Schenke, B.

    2016-08-30

    The di erential cross section of exclusive di ractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More speci cally, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent, or proton dissociative cross section is sensitive to uctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of J= mesons are very well reproduced within the color glass condensate framework when strong geometric uctuations of the gluon distribution in the proton are included. For meson production we also nd reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the e ect of saturation scale and color charge uctuations and constrain the degree of geometric uctuations.

  19. Spectrum of second-harmonic radiation generated from incoherent light

    SciTech Connect

    Stabinis, A.; Pyragaite, V.; Tamosauskas, G.; Piskarskas, A.

    2011-10-15

    We report on the development of the theory of second-harmonic generation by an incoherent pump with broad angular and frequency spectra. We show that spatial as well as temporal walk-off effects in a nonlinear crystal result in angular dispersion of the second-harmonic radiation. We demonstrate that the acceptance angle in second-harmonic generation by incoherent light is caused by the width of the pump angular spectrum and the resulting angular dispersion of second-harmonic radiation but does not depend on crystal length. In this case the frequency spectrum of second-harmonic radiation is determined by its angular dispersion and the pump angular spectrum. The theory is supported by an experiment in which a LiIO{sub 3} crystal was pumped by a tungsten halogen lamp.

  20. Phase diagram of incoherently driven strongly correlated photonic lattices

    NASA Astrophysics Data System (ADS)

    Biella, Alberto; Storme, Florent; Lebreuilly, José; Rossini, Davide; Fazio, Rosario; Carusotto, Iacopo; Ciuti, Cristiano

    2017-08-01

    We explore theoretically the nonequilibrium photonic phases of an array of coupled cavities in presence of incoherent driving and dissipation. In particular, we consider a Hubbard model system where each site is a Kerr nonlinear resonator coupled to a two-level emitter, which is pumped incoherently. Within a Gutzwiller mean-field approach, we determine the steady-state phase diagram of such a system. We find that, at a critical value of the intercavity photon hopping rate, a second-order nonequilibrium phase transition associated with the spontaneous breaking of the U(1 ) symmetry occurs. The transition from an incompressible Mott-like photon fluid to a coherent delocalized phase is driven by commensurability effects and not by the competition between photon hopping and optical nonlinearity. The essence of the mean-field predictions is corroborated by finite-size simulations obtained with matrix product operators and corner-space renormalization methods.

  1. Incoherent magnetization reversal in 30-nm Ni particles

    NASA Astrophysics Data System (ADS)

    Ross, C. A.; Chantrell, R.; Hwang, M.; Farhoud, M.; Savas, T. A.; Hao, Y.; Smith, Henry I.; Ross, F. M.; Redjdal, M.; Humphrey, F. B.

    2000-12-01

    The magnetic properties of a 100-nm-period large-area array of regular, 30-nm polycrystalline nickel particles have been studied. The particles are found to reverse incoherently, and their hysteresis behavior has been compared with a computational model over a range of temperatures. Excellent agreement with the model is obtained, indicating that switching of the particles is dominated by the reversal of approximately 10-nm-diameter volumes within each particle. These switching volumes are identified with the columnar grains in the polycrystalline nickel, showing that the microstructure determines the magnetic behavior of the particles. This explains the anisotropy distribution and the onset of superparamagnetism in the sample. Incoherent reversal occurs even though the particles are only 1.5 times the exchange length in nickel, a size at which nearly uniform rotation is expected to occur if the particles were homogeneous.

  2. Coherent and incoherent structural dynamics in laser-excited antimony

    NASA Astrophysics Data System (ADS)

    Waldecker, Lutz; Vasileiadis, Thomas; Bertoni, Roman; Ernstorfer, Ralph; Zier, Tobias; Valencia, Felipe H.; Garcia, Martin E.; Zijlstra, Eeuwe S.

    2017-02-01

    We investigate the excitation of phonons in photoexcited antimony and demonstrate that the entire electron-lattice interactions, in particular coherent and incoherent electron-phonon coupling, can be probed simultaneously. Using femtosecond electron diffraction (FED) with high temporal resolution, we observe the coherent excitation of the fully symmetric A1 g optical phonon mode via the shift of the minimum of the atomic potential energy surface. Ab initio molecular dynamics simulations on laser excited potential energy surfaces are performed to quantify the change in lattice potential and the associated real-space amplitude of the coherent atomic oscillations. Good agreement is obtained between the parameter-free calculations and the experiment. In addition, our experimental configuration allows observing the energy transfer from electrons to phonons via incoherent electron-lattice scattering events. The electron-phonon coupling is determined as a function of electronic temperature from our DFT calculations and the data by applying different models for the energy transfer.

  3. Axial asymmetry in holographic and incoherent correlation imaging

    NASA Astrophysics Data System (ADS)

    Běhal, Jaromír.; Bouchal, Petr; Schovánek, Petr; Fordey, Tomáš; Bouchal, Zdeněk

    2016-12-01

    In optical lens imaging, the main attention has traditionally been paid to the lateral resolution roughly estimated by a two-dimensional point spread function (PSF) describing sharp image of a point object. In three-dimensional (3D) imaging and methods based on depth information, an axial profile of the PSF becomes of particular importance. In studies on the 3D PSF, the axial image asymmetry and shift of the intensity maximum out of the focal plane were revealed for optical systems characterized by low Fresnel numbers. In this paper, the 3D PSF is examined in terms of digital imaging, where a point object is recorded optically and its image reconstructed numerically. The analysis includes methods of digital holography, in which the axial image asymmetry is examined in relation to different geometries of coherent recording waves. Attention is also devoted to the Fresnel incoherent correlation imaging that enables recording of 3D objects in spatially incoherent light.

  4. Revealing proton shape fluctuations with incoherent diffraction at high energy

    DOE PAGES

    Mantysaari, H.; Schenke, B.

    2016-08-30

    The di erential cross section of exclusive di ractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More speci cally, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent, or proton dissociative cross section is sensitive to uctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of J= mesons are very well reproduced within the color glass condensate framework when strongmore » geometric uctuations of the gluon distribution in the proton are included. For meson production we also nd reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the e ect of saturation scale and color charge uctuations and constrain the degree of geometric uctuations.« less

  5. Quantum-electrodynamical parametric instability in the incoherent photon gas.

    PubMed

    Wang, Yunliang; Shukla, P K; Eliasson, B

    2013-02-01

    We present a theory for the quantum-electrodynamical (QED) parametric scattering instability of an intense photon pulse in an incoherent radiation background. The pump electromagnetic (EM) wave can decay into a scattered daughter EM wave and an acousticlike wave due to the QED vacuum polarization nonlinearity. By a linear instability analysis we obtain a nonlinear dispersion relation for the growth rate of the scattering instability. The nonlinear QED scattering instability can give rise to the exchange of orbital angular momentum between intense Laguerre-Gaussian mode photon pulses and the two daughter waves, which may be a useful method to detect the highly energetic photon gases existing in the vicinity of rotating dense bodies in the Universe, such as pulsars and magnetars. The observation of the scattered waves may reveal information about the twisted acoustic waves in the incoherent photon gas.

  6. Radar backscatter from the sea: Controlled experiments

    NASA Astrophysics Data System (ADS)

    Moore, R. K.

    1992-04-01

    The subwindowing method of modelling synthetic-aperture-radar (SAR) imaging of ocean waves was extended to allow wave propagation in arbitrary directions. Simulated images show that the SAR image response to swells that are imaged by velocity bunching is reduced by random smearing due to wind-generated waves. The magnitude of this response is not accurately predicted by introducing a finite coherence time in the radar backscatter. The smearing does not affect the imaging of waves by surface radar cross-section modulation, and is independent of the wind direction. Adjusting the focus of the SAR processor introduces an offset in the image response of the surface scatters. When adjusted by one-half the azimuthal phase velocity of the wave, this compensates the incoherent advance of the wave being imaged, leading to a higher image contrast. The azimuthal cut-off and range rotation of the spectral peak are predicted when the imaging of wind-generated wave trains is simulated. The simulated images suggest that velocity bunching and azimuthal smearing are strongly interdependent, and cannot be included in a model separately.

  7. Incoherent scatter measurements of ring-ion beam distributions produced by space shuttle exhaust injections into the ionosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Sulzer, M. P.

    2004-02-01

    When the space shuttle Orbiting Maneuver Subsystem (OMS) engines burn in the ionosphere, two types of effects are produced. First, charge exchange between the exhaust molecules and the ambient O+-ions yields beams of high-speed molecular ions that can excite plasma turbulence. Second, the molecular ions eventually recombine with electrons to yield a plasma hole. The ion-beam interactions and the formation of artificial plasma holes in the ionosphere have been studied with ground-based, incoherent-scatter radars (ISRs) during the Shuttle Ionospheric Modification with Pulsed Localized Exhaust (SIMPLEX) series of experiments. The SIMPLEX II experiment took place in late July 1999 during the STS-93 flight of the Space Shuttle Columbia. The Orbital Maneuver Subsystem (OMS) engines provided controlled ion injections over the incoherent scatter radar (ISR) facilities located at Arecibo, Puerto Rico to excite unusual radar signatures. After charge exchange between the exhaust and the ambient plasma, pickup ions were produced with velocities near 10 km/s using a ram-burn orientation of the OMS engines relative to the vehicle orbit vector. During the SIMPLEX II experiment, the ISR spectra of the exhaust-modified plasma were obtained for the first time. The formation of ring-ion beam distributions was determined from curve fitting to the radar spectra. These spectra show the presence of the nonthermal ion distributions and enhanced scatter from electrons for thermal ion distributions with elevated ion temperatures. Analysis of the ion distributions in the modified ionosphere indicates that they were unstable and may have quickly generated plasma waves that along with ion-neutral collisions changed the ion-velocity distributions. The observations show that the perpendicular ion speed was rapidly reduced from 10 km/s to about 1 km/s. These observations open up the possibility of conducting a new series of experiments studying ring-ion beam instabilities that occur naturally in

  8. Time-frequency signal processing techniques for radar remote sensing

    NASA Astrophysics Data System (ADS)

    Wen, Chun-Hsien

    The Arecibo 430 MHz Incoherent Scatter Radar (ISR) has been used to observe the vertical ionospheric electron concentration profiles for many years. Earlier studies are dated back to 1970s. The meteor observations grew from the ISR observations of the ionosphere in the last 10 years. The techniques for meteor observation have evolved significantly since then. It has become a regular observation at Arecibo Observatory (AO). In this work we introduce signal processing techniques to detect meteor events and determine their parameters for the meteor observation data. We also propose techniques to separate the meteor and the incoherent scatter signals for the ISR observation data. The large aperture AO radar is susceptible to the interference from other communication systems because of its sensitivity. The interference contaminates the radar data and sometimes seriously degrades the performance of the meteor detection. We introduce signal processing techniques to remove the interference for both the meteor and the ISR observation data in this work. Other applications for proposed techniques are introduced in this work too.

  9. Preliminary results toward injection locking of an incoherent laser array

    NASA Technical Reports Server (NTRS)

    Daher, J.

    1986-01-01

    The preliminary results of phase locking an incoherent laser array to a master source in an attempt to achieve coherent operation are presented. The techniques necessary to demonstrate phase locking are described along with some topics for future consideration. As expected, the results obtained suggest that injection locking of an array, where the spacing between adjacent longitudinal modes of its elements is significantly larger than the locking bandwidth, may not be feasible.

  10. Incoherent Neutron Scattering Measurements of Hydrogen-Charged Zircaloy-4

    SciTech Connect

    Garlea, Elena; Choo, Hahn; Garlea, Vasile O; Liaw, Peter K; Hubbard, Camden R

    2007-01-01

    Qualitative and quantitative phase measurements were conducted on Zircaloy-4 round bars using neutron scattering techniques. The mapping through the thickness of the specimens using neutron diffraction showed the presence of the face-centered-cubic delta zirconium hydride ({delta}-ZrH{sub 2}) phase on the surface. To determine the relative amount of hydrogen in the Zircaloy-4 samples, the increase of the incoherent scattering with the hydrogen content was calibrated using standard samples for which the hydrogen content was known.

  11. Incoherent blocker soliton interactions in Kerr waveguide arrays.

    PubMed

    Meier, J; Stegeman, G I; Christodoulides, D N; Morandotti, R; Salamo, G; Yang, H; Sorel, M; Silberberg, Y; Aitchison, J S

    2005-12-01

    We have observed the incoherent interaction between a highly confined (blocker) soliton and wide, moving signal beams of a different wavelength in a one-dimensional discrete Kerr medium. Digital switching of the blocker solitons to successive adjacent channels was measured with increasing signal power via both one and two cascaded interactions in an AlGaAs waveguide array, operations equivalent to a reconfigurable three-output router.

  12. Incoherent GaAlAs/GaAs semiconductor laser arrays

    NASA Technical Reports Server (NTRS)

    Hwang, C. J.; Chen, J. S.; Fu, R. J.; Wu, D. H.; Wang, C. S.

    1988-01-01

    The fabrication of an incoherent laser array is reported. The main features of the arrays are low threshold index-guided laser elements, single-lobe far-field pattern, low astigmatism, low current operation, dense packing, and total electrical and optical isolation. With further development, this device should have applications in multihead optical-disk reading and writing, multifiber optical communications, and line-of-sight communications.

  13. Evidence of strong proton shape fluctuations from incoherent diffraction

    SciTech Connect

    Mantysaari, H.; Schenke, B.

    2016-07-25

    We show within the saturation framework that measurements of exclusive vector meson production at high energy provide evidence for strong geometric fluctuations of the proton. In comparison, the effect of saturation scale and color charge fluctuations is weak. This knowledge will allow detailed future measurements of the incoherent cross section to tightly constrain the fluctuating geometry of the proton as a function of the parton momentum fraction x.

  14. Evidence of strong proton shape fluctuations from incoherent diffraction

    DOE PAGES

    Mantysaari, H.; Schenke, B.

    2016-07-25

    We show within the saturation framework that measurements of exclusive vector meson production at high energy provide evidence for strong geometric fluctuations of the proton. In comparison, the effect of saturation scale and color charge fluctuations is weak. This knowledge will allow detailed future measurements of the incoherent cross section to tightly constrain the fluctuating geometry of the proton as a function of the parton momentum fraction x.

  15. Incoherent GaAlAs/GaAs semiconductor laser arrays

    NASA Technical Reports Server (NTRS)

    Hwang, C. J.; Chen, J. S.; Fu, R. J.; Wu, D. H.; Wang, C. S.

    1988-01-01

    The fabrication of an incoherent laser array is reported. The main features of the arrays are low threshold index-guided laser elements, single-lobe far-field pattern, low astigmatism, low current operation, dense packing, and total electrical and optical isolation. With further development, this device should have applications in multihead optical-disk reading and writing, multifiber optical communications, and line-of-sight communications.

  16. Absolute Bunch Length Measurements by Incoherent Radiation Fluctuation Analysis

    SciTech Connect

    Sannibale, F.; Stupakov, G.V.; Zolotorev, M.S.; Filippetto, D.; Jagerhofer, L.; /Vienna, Tech. U.

    2009-12-09

    By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and successfully tested a simple scheme based on this principle that allows for the absolute measurement of the rms bunch length. A description of the method and the experimental results are presented.

  17. Absolute bunch length measurements by incoherent radiation fluctuation analysis

    SciTech Connect

    Sannibale, Fernando; Stupakov, Gennady; Zolotorev, Max; Filippetto, Daniele; Jagerhofer, Lukas

    2008-09-29

    By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and successfully tested a simple scheme based on this principle that allows for the absolute measurement of the rms bunch length. A description of the method and the experimental results are presented.

  18. Robust Mapping of Incoherent Fiber-Optic Bundles

    NASA Technical Reports Server (NTRS)

    Roberts, Harry E.; Deason, Brent E.; DePlachett, Charles P.; Pilgrim, Robert A.; Sanford, Harold S.

    2007-01-01

    A method and apparatus for mapping between the positions of fibers at opposite ends of incoherent fiber-optic bundles have been invented to enable the use of such bundles to transmit images in visible or infrared light. The method is robust in the sense that it provides useful mapping even for a bundle that contains thousands of narrow, irregularly packed fibers, some of which may be defective. In a coherent fiber-optic bundle, the input and output ends of each fiber lie at identical positions in the input and output planes; therefore, the bundle can be used to transmit images without further modification. Unfortunately, the fabrication of coherent fiber-optic bundles is too labor-intensive and expensive for many applications. An incoherent fiber-optic bundle can be fabricated more easily and at lower cost, but it produces a scrambled image because the position of the end of each fiber in the input plane is generally different from the end of the same fiber in the output plane. However, the image transmitted by an incoherent fiber-optic bundle can be unscrambled (or, from a different perspective, decoded) by digital processing of the output image if the mapping between the input and output fiber-end positions is known. Thus, the present invention enables the use of relatively inexpensive fiber-optic bundles to transmit images.

  19. Neutron Incoherent Scattering Measurements on Hydrogen-Charged Zircaloy-4

    SciTech Connect

    Garlea, Elena; Garlea, Vasile O; Choo, Hahn; Hubbard, Camden R; Liaw, Peter K

    2006-01-01

    Neutron incoherent scattering measurements were conducted on Zircaloy-4 round bars. The specimens were charged in a tube furnace at 430 C, using a 12.5 vol. % hydrogen in an argon mixture for 30, 60, and 90 minutes at 13.8 kPa pressure. The volume-average neutron diffraction measurements showed the presence of the face-centered-cubic delta zirconium hydride ({delta}.ZrH{sub 2}) phase in the hydrogenated specimens. The assessment of the background in the diffraction profiles due to the incoherent scattering from the hydrogen atoms was carried out by performing inelastic scans around zero energy transfer and at a fixed two-theta value for which there was only flat background and no coherent scattering. To estimate the relative amount of hydrogen in the Zircaloy-4 samples, the increase in incoherent scattering intensities with hydrogen content was calibrated using samples for which the hydrogen content was known. Measurement of the background scattering from locations within the round bar was also performed to map the distribution of hydrogen content.

  20. Fresnel incoherent correlation holography and its imaging properties

    NASA Astrophysics Data System (ADS)

    Wang, Zhipeng; Ma, Haotong; Ren, Ge; Xie, Zongliang; Yu, Huan

    2016-09-01

    The incoherent digital holography makes it possible to record holograms under incoherent illumination, which lowers requirement for the coherence of light sources and results in expanding its application to white-light and fluorescence illuminating circumstances. The Fresnel Incoherent Correlation Holography (FINCH) technology achieves diverging the incident beam and shifting phase by mounting phase masks on the phase modulator. Then it obtains holograms with phase difference and reconstructs the image. In this paper, we explain the principles of the FINCH technology, and introduce the n-step phase-shifting method which is utilized to eliminate the twin image and bias term in holograms. During the research, we studied what impact the term n may have on imaging performance, compared imaging performances when different phase masks are mounted on SLM, and established simulation system on imaging with which imaging performances are deeply inspected. At last, it is shown in the research that the FINCH technology could record holograms of objects, from which clear images could be reconstructed digitally.

  1. Incoherent acousto-optic image correlator with the kinoform

    NASA Astrophysics Data System (ADS)

    Starikov, Sergey N.; Rodin, Vladislav G.; Solyakin, Ivan V.; Shapkarina, Ekaterina A.; Chervonkin, Alexander P.

    2004-04-01

    Fourier holograms are commonly used for reference images storing in diffraction correlators with spatially coherent or spatially incoherent illumination. Kinoforms can be a real alternative to Fourier holograms in the correlators. The kinoform represents a computer-synthesized optical element which performs only a phase modulation of a light wave. The kinoform restores true intensity of the recorded image and random distribution of phase. Therefore, it can be utilized for storing reference images, first of all, in correlators with spatially incoherent illumination. The absence of carrier frequency reduces demanded number of pixels of the spatial light modulator being used. Since the kinoform provides reconstruction of reference image in zero diffraction order, requirement on monochromaticity of illumination are decreased as well. The diffraction correlator with the kinoform used as spatial frequency filter is considered. The 2-D acoustooptic deflector was employed to form input images in real time by monochromatic spatially incoherent light. The reference images were recorded on the commercially available kinoforms. The input and reference images were of 256×256 pixels and 200×200 pixels respectively. Since input images were consisted of approximately 400 pixels with non-zero brightness, the image update frequency was gained at 200 Hz. The experimental setup and experimental results on images recognition are presented.

  2. Coherent imaging with incoherent light in digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Chmelik, Radim

    2012-01-01

    Digital holographic microscope (DHM) allows for imaging with a quantitative phase contrast. In this way it becomes an important instrument, a completely non-invasive tool for a contrast intravital observation of living cells and a cell drymass density distribution measurement. A serious drawback of current DHMs is highly coherent illumination which makes the lateral resolution worse and impairs the image quality by a coherence noise and a parasitic interference. An uncompromising solution to this problem can be found in the Leith concept of incoherent holography. An off-axis hologram can be formed with arbitrary degree of light coherence in systems equipped with an achromatic interferometer and thus the resolution and the image quality typical for an incoherent-light wide-field microscopy can be achieved. In addition, advanced imaging modes based on limited coherence can be utilized. The typical example is a coherence-gating effect which provides a finite axial resolution and makes DHM image similar to that of a confocal microscope. These possibilities were described theoretically using the formalism of three-dimensional coherent transfer functions and proved experimentally by the coherence-controlled holographic microscope which is DHM based on the Leith achromatic interferometer. Quantitative-phase-contrast imaging is demonstrated with incoherent light by the living cancer cells observation and their motility evaluation. The coherence-gating effect was proved by imaging of model samples through a scattering layer and living cells inside an opalescent medium.

  3. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    PubMed

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  4. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy

    PubMed Central

    Brooker, Gary; Siegel, Nisan; Wang, Victor; Rosen, Joseph

    2011-01-01

    Fresnel Incoherent Correlation Holography (FINCH) enables holograms and 3D images to be created from incoherent light with just a camera and spatial light modulator (SLM). We previously described its application to microscopic incoherent fluorescence wherein one complex hologram contains all the 3D information in the microscope field, obviating the need for scanning or serial sectioning. We now report experiments which have led to the optimal optical, electro-optic, and computational conditions necessary to produce holograms which yield high quality 3D images from fluorescent microscopic specimens. An important improvement from our previous FINCH configurations capitalizes on the polarization sensitivity of the SLM so that the same SLM pixels which create the spherical wave simulating the microscope tube lens, also pass the plane waves from the infinity corrected microscope objective, so that interference between the two wave types at the camera creates a hologram. This advance dramatically improves the resolution of the FINCH system. Results from imaging a fluorescent USAF pattern and a pollen grain slide reveal resolution which approaches the Rayleigh limit by this simple method for 3D fluorescent microscopic imaging. PMID:21445140

  5. Blind separation of incoherent and spatially disjoint sound sources

    NASA Astrophysics Data System (ADS)

    Dong, Bin; Antoni, Jérôme; Pereira, Antonio; Kellermann, Walter

    2016-11-01

    Blind separation of sound sources aims at reconstructing the individual sources which contribute to the overall radiation of an acoustical field. The challenge is to reach this goal using distant measurements when all sources are operating concurrently. The working assumption is usually that the sources of interest are incoherent - i.e. statistically orthogonal - so that their separation can be approached by decorrelating a set of simultaneous measurements, which amounts to diagonalizing the cross-spectral matrix. Principal Component Analysis (PCA) is traditionally used to this end. This paper reports two new findings in this context. First, a sufficient condition is established under which "virtual" sources returned by PCA coincide with true sources; it stipulates that the sources of interest should be not only incoherent but also spatially orthogonal. A particular case of this instance is met by spatially disjoint sources - i.e. with non-overlapping support sets. Second, based on this finding, a criterion that enforces both statistical and spatial orthogonality is proposed to blindly separate incoherent sound sources which radiate from disjoint domains. This criterion can be easily incorporated into acoustic imaging algorithms such as beamforming or acoustical holography to identify sound sources of different origins. The proposed methodology is validated on laboratory experiments. In particular, the separation of aeroacoustic sources is demonstrated in a wind tunnel.

  6. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.

    2015-11-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: self­interference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  7. Monitoring by holographic radar systems

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Crocco, Lorenzo; Affinito, Antonio; Gennarelli, Gianluca; Soldovieri, Francesco

    2013-04-01

    Nowadays, radar technology represents a significant opportunity to collect useful information for the monitoring and conservation of critical infrastructures. Radar systems exploit the non-invasive interaction between the matter and the electromagnetic waves at microwave frequencies. Such an interaction allows obtaining images of the region under test from which one can infer the presence of potential anomalies such as deformations, cracks, water infiltrations, etc. This information turns out to be of primary importance in practical scenarios where the probed structure is in a poor state of preservation and renovation works must be planned. In this framework, the aim of this contribution is to describe the potentialities of the holographic radar Rascan 4/4000, a holographic radar developed by Remote Sensing Laboratory of Bauman Moscow State Technical University, as a non-destructive diagnostic tool capable to provide, in real-time, high resolution subsurface images of the sounded structure [1]. This radar provides holograms of hidden anomalies from the amplitude of the interference signal arising between the backscattered signal and a reference signal. The performance of the holographic radar is appraised by means of several experiments. Preliminary tests concerning the imaging below the floor and inside wood structures are carried out in controlled conditions at the Electromagnetic Diagnostic Laboratory of IREA-CNR. After, with reference to bridge monitoring for security aim, the results of a measurement campaign performed on the Musmeci bridge are presented [2]. Acknowledgments This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157). REFERENCES [1] S. Ivashov, V. Razevig, I. Vasilyev, A. Zhuravlev, T. Bechtel, L. Capineri, The holographic principle in subsurface radar technology, International Symposium to

  8. Fusion of radar and satellite target measurements

    NASA Astrophysics Data System (ADS)

    Moy, Gabriel; Blaty, Donald; Farber, Morton; Nealy, Carlton

    2011-06-01

    A potentially high payoff for the ballistic missile defense system (BMDS) is the ability to fuse the information gathered by various sensor systems. In particular, it may be valuable in the future to fuse measurements made using ground based radars with passive measurements obtained from satellite-based EO/IR sensors. This task can be challenging in a multitarget environment in view of the widely differing resolution between active ground-based radar and an observation made by a sensor at long range from a satellite platform. Additionally, each sensor system could have a residual pointing bias which has not been calibrated out. The problem is further compounded by the possibility that an EO/IR sensor may not see exactly the same set of targets as a microwave radar. In order to better understand the problems involved in performing the fusion of metric information from EO/IR satellite measurements with active microwave radar measurements, we have undertaken a study of this data fusion issue and of the associated data processing techniques. To carry out this analysis, we have made use of high fidelity simulations to model the radar observations from a missile target and the observations of the same simulated target, as gathered by a constellation of satellites. In the paper, we discuss the improvements seen in our tests when fusing the state vectors, along with the improvements in sensor bias estimation. The limitations in performance due to the differing phenomenology between IR and microwave radar are discussed as well.

  9. Simulations of Aperture Synthesis Imaging Radar for the EISCAT_3D Project

    NASA Astrophysics Data System (ADS)

    La Hoz, C.; Belyey, V.

    2012-12-01

    EISCAT_3D is a project to build the next generation of incoherent scatter radars endowed with multiple 3-dimensional capabilities that will replace the current EISCAT radars in Northern Scandinavia. Aperture Synthesis Imaging Radar (ASIR) is one of the technologies adopted by the EISCAT_3D project to endow it with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. This ability will open new research opportunities to map small structures associated with non-homogeneous, unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris, and others. To demonstrate the feasibility of the antenna configurations and the imaging inversion algorithms a simulation of synthetic incoherent scattering data has been performed. The simulation algorithm incorporates the ability to control the background plasma parameters with non-homogeneous, non-stationary components over an extended 3-dimensional space. Control over the positions of a number of separated receiving antennas, their signal-to-noise-ratios and arriving phases allows realistic simulation of a multi-baseline interferometric imaging radar system. The resulting simulated data is fed into various inversion algorithms. This simulation package is a powerful tool to evaluate various antenna configurations and inversion algorithms. Results applied to realistic design alternatives of EISCAT_3D will be described.

  10. Prospective IS-MST radar. Potential and diagnostic capabilities

    NASA Astrophysics Data System (ADS)

    Potehin, Aleksandr; Medvedev, Andrey; Kushnarev, Dmitriy; Setov, Artyom; Lebedev, Valentin

    2016-09-01

    In the next few years, a new radar is planned to be built near Irkutsk. It should have capabilities of incoherent scatter (IS) radars and mesosphere-stratosphere-troposphere (MST) radars [Zherebtsov et al., 2011]. The IS-MST radar is a phased array of two separated antenna panels with a multichannel digital receiving system, which allows detailed space-time processing of backscattered signal. This paper describes characteristics, configuration, and capabilities of the antenna and transceiver systems of this radar. We estimate its potential in basic operating modes to study the ionosphere by the IS method at heights above 100 km and the atmosphere with the use of signals scattered from refractive index fluctuations, caused by turbulent mixing at heights below 100 km. The modeling shows that the radar will allow us to regularly measure neutral atmosphere parameters at heights up to 26 km as well as to observe mesosphere summer echoes at heights near 85 km in the presence of charged ice particles (an increase in Schmidt number) and mesosphere winter echoes at heights near 65 km with increasing background electron density. Evaluation of radar resources at the IS mode in two height ranges 100-600 and 600-2000 km demonstrates that in the daytime and with the accumulation time of 10 min, the upper boundaries of electron density and ionospheric plasma temperature are ~1500 and ~1300 km respectively, with the standard deviation of no more than 10 %. The upper boundary of plasma drift velocity is ~1100 km with the standard deviation of 45 m/s. The estimation of interferometric capabilities of the MST radar shows that it has a high sensitivity to objects of angular size near 7.5 arc min, and its potential accuracy in determining target angles can reach 40 arc sec.

  11. The proposed flatland radar

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Gage, K. S.; Vanzandt, T. E.; Nastrom, G. D.

    1986-01-01

    A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information.

  12. Reduction of Stationary Clutter in Radar,

    DTIC Science & Technology

    1980-10-30

    desired object. In radar, such interference is called passive interference. Since this interrerence is derived from stationary objects or rrom objects...conjunction with IAGC) is the so- called detector balance bias 2 [2.1;2.2]. Also, detectors with logarithmic characterisitics are used. Application of...considerable area in space. Thus, applying the so- called discriminator of pulse length, which lets through only pulses of length similar to that of the

  13. Radar Detectability Studies of Slow and Small Zodiacal Dust Cloud Particles: II. A Study of Three Radars with Different Sensitivity

    NASA Astrophysics Data System (ADS)

    Janches, D.; Swarnalingam, N.; Plane, J. M. C.; Nesvorný, D.; Feng, W.; Vokrouhlický, D.; Nicolls, M. J.

    2015-07-01

    The sensitivity of radar systems to detect different velocity populations of the incoming micrometeoroid flux is often the first argument considered to explain disagreements between models of the Near-Earth dust environment and observations. Recently, this was argued by Nesvorný et al. to support the main conclusions of a Zodiacal Dust Cloud (ZDC) model which predicts a flux of meteoric material into the Earth’s upper atmosphere mostly composed of small and very slow particles. In this paper, we expand on a new methodology developed by Janches et al. to test the ability of powerful radars to detect the meteoroid populations in question. In our previous work, we focused on Arecibo 430 MHz observations since it is the most sensitive radar that has been used for this type of observation to date. In this paper, we apply our methodology to two other systems, the 440 MHz Poker Flat Incoherent Scatter Radar and the 46.5 Middle and Upper Atmosphere radar. We show that even with the less sensitive radars, the current ZDC model over-predicts radar observations. We discuss our results in light of new measurements by the Planck satellite which suggest that the ZDC particle population may be characterized by smaller sizes than previously believed. We conclude that the solution to finding agreement between the ZDC model and sensitive high power and large aperture meteor observations must be a combination of a re-examination not only of our knowledge of radar detection biases, but also the physical assumptions of the ZDC model itself.

  14. Performance Comparison between Stereausis and Incoherent Wideband Music for Localization of Ground Vehicles

    DTIC Science & Technology

    1999-09-01

    PERFORMANCE COMPARISON BETWEEN STEREAUSIS AND INCOHERENT WIDEBAND MUSIC FOR LOCALIZATION OF GROUND VEHICLES September 1999 Tien Pham U.S. Army...present experimental results comparing the incoherent wideband MUSIC (IWM) algorithm developed by the Army Research Laboratory (ARL)1, 2 and the...Type N/A Dates Covered (from... to) ("DD MON YYYY") Title and Subtitle Performance Comparison Between Stereausis and Incoherent Wideband Music for

  15. Antenna array geometry optimization for a passive coherent localisation system

    NASA Astrophysics Data System (ADS)

    Knott, Peter; Kuschel, Heiner; O'Hagan, Daniel

    2012-11-01

    Passive Coherent Localisation (PCL), also known as Passive Radar, making use of RF sources of opportunity such as Radio or TV Broadcasting Stations, Cellular Phone Network Base Stations, etc. is an advancing technology for covert operation because no active radar transmitter is required. It is also an attractive addition to existing active radar stations because it has the potential to discover low-flying and low-observable targets. The CORA (Covert Radar) experimental passive radar system currently developed at Fraunhofer-FHR features a multi-channel digital radar receiver and a circular antenna array with separate elements for the VHF- and the UHF-range and is used to exploit alternatively Digital Audio (DAB) or Video Broadcasting (DVB-T) signals. For an extension of the system, a wideband antenna array is being designed for which a new discone antenna element has been developed covering the full DVB-T frequency range. The present paper describes the outline of the system and the numerical modelling and optimisation methods applied to solve the complex task of antenna array design: Electromagnetic full wave analysis is required for the parametric design of the antenna elements while combinatorial optimization methods are applied to find the best array positions and excitation coefficients for a regular omni-directional antenna performance. The different steps are combined in an iterative loop until the optimum array layout is found. Simulation and experimental results for the current system will be shown.

  16. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Byoungho; Kim, Myung K.

    2015-03-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: wavefront sensor, wavefront corrector and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, e.g., lenslet arrays for sensing or multi-acuator deformable mirrors for correcting. We have previously introduced an alternate approach to adaptive optics based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile is possible not only with the conventional coherent type of digital holography, but also with a new type of digital holography using incoherent light: self-interference incoherent digital holography (SIDH). The SIDH generates complex - i.e. amplitude plus phase - hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using a guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. The adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  17. Separation of Coherent and Incoherent Scattering Components from Delay/Doppler Altimeter Waveforms over Sea-Ice

    NASA Astrophysics Data System (ADS)

    Egido, A.; Smith, W. H. F.

    2015-12-01

    One of the main benefits of the delay-Doppler altimeter (DDA) is the improved resolution of the system along the satellite track. By means of an unfocussed Synthetic Aperture Radar (SAR) processing technique, the altimeter footprint along the flight direction can be reduced by an order of magnitude with respect to conventional altimeters. However, with the delay-Doppler processing the resolution improvement occurs only on the along-track direction, while the across-track direction remains pulse-limited. The result is an elongated footprint perpendicular to the satellite flight path. The combination of the effects of several scatterers within the footprint can lead to random variations of the DDA waveforms, preventing conventional retracking techniques from retrieving geophysical parameters from altimeter data. This is particularly significant in the case of sea ice, where the coherent response from leads can completely exceed the response from the actual ice surface. We have developed a processing technique that allows the separation of the coherent and incoherent scattering components from SAR altimetry waveforms. The technique is similar to the one used in imaging SAR systems, and is based in the exploitation of the phase history of coherent targets during their illumination period with the antenna beam. For the development of the technique we have used the CryoSat-2 SAR Mode data. The starting point of our processing is the full bit rate (FBR) I/Q complex echo samples. By accounting for the phase evolution of the static targets in the scene, it is possible to correct the phase of the FBR complex echoes along the aperture, which allows to perform an inter-burst coherent averaging, potentially, as long as the target illumination time. This reduces the incoherent components of the radar signal, which results in a radar waveform that contains only the coherent scattering component. The coherent component can later be removed from the original delay-Doppler waveform

  18. Piezoelectric radiofrequency transducers as passive buried sensors

    NASA Astrophysics Data System (ADS)

    Rétornaz, T.; Friedt, J.-M.; Alzuaga, S.; Baron, T.; Lebrasseur, É.; Martin, G.; Laroche, T.; Ballandras, S.; Griselin, M.; Simonnet, J.-P.

    2012-09-01

    We demonstrate that single-piezoelectric substrate-based acoustic transducers act as ideal sensors for probing with various RADAR strategies. Because these sensors are intrinsically passive devices working in the radiofrequency range, they exhibit improved interrogation range and robustness with respect to silicon-based radio frequency identification tags. Both wideband (acoustic delay lines) and narrowband (acoustic resonators) transducers are shown to be compatible with pulse-mode and frequency-modulated continuous-wave RADAR strategies, respectively. We particularly focus on the ground-penetrating RADAR (GPR) application in which the lack of local energy source makes these sensors suitable candidates for buried applications in roads, building or civil engineering monitoring. A novel acoustic sensor concept - high-overtone bulk acoustic resonator - is especially suited as sensor interrogated by a wide range of antenna set, as demonstrated with GPR units working in the 100 and 200 MHz range.

  19. Two-step phase-shifting fluorescence incoherent holographic microscopy

    PubMed Central

    Qin, Wan; Yang, Xiaoqi; Li, Yingying; Peng, Xiang; Yao, Hai; Qu, Xinghua; Gao, Bruce Z.

    2014-01-01

    Abstract. Fluorescence holographic microscope (FINCHSCOPE) is a motionless fluorescence holographic imaging technique based on Fresnel incoherent correlation holography (FINCH) that shows promise in reconstructing three-dimensional fluorescence images of biological specimens with three holograms. We report a developing two-step phase-shifting method that reduces the required number of holograms from three to two. Using this method, we resolved microscopic fluorescent beads that were three-dimensionally distributed at different depths with two interferograms captured by a CCD camera. The method enables the FINCHSCOPE to work in conjunction with the frame-straddling technique and significantly enhance imaging speed. PMID:24972355

  20. Characterization of a space orbited incoherent fiber optic bundle

    NASA Technical Reports Server (NTRS)

    Dewalt, Stephen A.; Taylor, Edward W.

    1993-01-01

    The results of a study performed to determine the effects of adverse space environments on a bundle of over 1800 optical fibers orbited for 69 months are reported. Experimental results are presented on an incoherent fiber optic bundle oriented in low Earth orbit aboard the Long Duration Exposure Facility (LDEF) satellite as part of the Space Environment Effects Experiment (M0006). Measurements were performed to determine if space induced radiation effects changed the fiber bundle characteristics. Data demonstrating the success of light transmitting fibers to withstand the adverse space environment are presented.

  1. Two-step phase-shifting fluorescence incoherent holographic microscopy.

    PubMed

    Qin, Wan; Yang, Xiaoqi; Li, Yingying; Peng, Xiang; Yao, Hai; Qu, Xinghua; Gao, Bruce Z

    2014-06-01

    Fluorescence holographic microscope (FINCHSCOPE) is a motionless fluorescence holographic imaging technique based on Fresnel incoherent correlation holography (FINCH) that shows promise in reconstructing three-dimensional fluorescence images of biological specimens with three holograms. We report a developing two-step phase-shifting method that reduces the required number of holograms from three to two. Using this method, we resolved microscopic fluorescent beads that were three-dimensionally distributed at different depths with two interferograms captured by a CCD camera. The method enables the FINCHSCOPE to work in conjunction with the frame-straddling technique and significantly enhance imaging speed.

  2. Speed and efficiency limits of multilevel incoherent heat engines

    NASA Astrophysics Data System (ADS)

    Mukherjee, V.; Niedenzu, W.; Kofman, A. G.; Kurizki, G.

    2016-12-01

    We present a comprehensive theory of heat engines (HE) based on a quantum-mechanical "working fluid" (WF) with periodically modulated energy levels. The theory is valid for any periodicity of driving Hamiltonians that commute with themselves at all times and do not induce coherence in the WF. Continuous and stroke cycles arise in opposite limits of this theory, which encompasses hitherto unfamiliar cycle forms, dubbed here hybrid cycles. The theory allows us to discover the speed, power, and efficiency limits attainable by incoherently operating multilevel HE depending on the cycle form and the dynamical regimes.

  3. Weather Radar Technology Development

    DTIC Science & Technology

    1990-08-15

    uelocitV WMs ) data processing systems such as NEXRAD to have a reliable technique for removing ambiguities due to velocity aliasing. Performance of many...intended for automated implementation on radar systems such as the NEXt generation weather RADar ( NEXRAD ) system. Several research areas were addressed...with Doppler radar will soon be realized with the deployment of the NEXRAD radar systems. Some of these large scale storms can have devastating wind

  4. Radar Observations of Meteor Interactions in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Mann, I.; Pellinen-Wannberg, A.; Tjulin, A.

    2011-12-01

    Solid particles entering the Earth's atmosphere produce meteors in the ionosphere, typically at 80 to 120 km altitude, but also beyond. The major process causing the meteor is the vaporization of the solid after heating by collision with the atmospheric particles; sputtering also occurs. A fraction of the material that is ablated from the entering objects re-condenses into meteoric smoke particles. Meteors are actively detected by backscattering of radar signals and they are observed, for instance, with the EISCAT (European Incoherent Scatter Scientific Association) radars. Meteor trail and headecho observations detect the ionisation that is associated with the meteor. They allow for studying the properties of the entering solid objects (dust and meteors) and the subsequent ionospheric interactions. We discuss the range of objects that can be detected with EISCAT and the capability of the measurements to find the formation of the meteoric smoke. We then consider the possibilities for measurements with the future EISCAT 3D.

  5. Capabilities and limitations of EISCAT as an MST radar

    NASA Technical Reports Server (NTRS)

    Rottger, J.; Baron, M.; Folkestad, K.

    1983-01-01

    The European Incoherent Scatter Radar Facility also has facilities which can be used for coherent scatter research of the middle atmosphere. The observatory consists of two independent systems which allow observations of the upper, middle, and lower atmosphere: a tristatic UHF radar capable of vector drift measurements, and a monostatic VHF system. The characteristics of the components are are described including inter-site communication, on-line displays, and the real-time operating system. Analysis of about 60 hours of middle atmosphere observations in 1982 indicate that EISCAT's capabilities to measure mesospheric parameters should improve during moderately or strongly disturbed conditions, enabling measurement of profiles of wind velocity, electron density, and temperature/collision frequency, and in some instances, ion masses. Because of not yet optimized transmit-receive switching, some limitations exist in the monostatic mode when observing coherent scattering in the stratosphere at short ranges.

  6. Tropical Rainfall Measuring Mission (TRMM) project. VI - Spacecraft, scientific instruments, and launching rocket. Part 4 - TRMM rain radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Atlas, David; Awaka, Jun; Okamoto, Ken'ichi; Ihara, Toshio; Nakamura, Kenji; Kozu, Toshiaki; Manabe, Takeshi

    1990-01-01

    The basic system parameters for the Tropical Rainfall Measuring Mission (TRMM) radar system are frequency, beamwidth, scan angle, resolution, number of independent samples, pulse repetition frequency, data rate, and so on. These parameters were chosen to satisfy NASA's mission requirements. Six candidates for the TRMM rain radar were studied. The study considered three major competitive items: (1) a pulse-compression radar vs. a conventional radar; (2) an active-array radar with a solid state power amplifier vs. a passive-array radar with a traveling-wave-tube amplifier; and (3) antenna types (planar-array antenna vs. cylindrical parabolic antenna). Basic system parameters such as radar sensitivities, power consumption, weight, and size of these six types are described. Trade-off studies of these cases show that the non-pulse-compression active-array radar with a planar array is considered to be the most suitable candidate for the TRMM rain radar at 13.8 GHz.

  7. Lunar radar backscatter studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.

    1979-01-01

    The lunar surface material in the Plato area is characterized using Earth based visual, infrared, and radar signatures. Radar scattering in the lunar regolith with an existing optical scattering computer program is modeled. Mapping with 1 to 2 km resolution of the Moon using a 70 cm Arecibo radar is presented.

  8. Radar: Human Safety Net

    ERIC Educational Resources Information Center

    Ritz, John M.

    2016-01-01

    Radar is a technology that can be used to detect distant objects not visible to the human eye. A predecessor of radar, called the telemobiloscope, was first used to detect ships in the fog in 1904 off the German coast. Many scientists have worked on the development and refinement of radar (Hertz with electromagnetic waves; Popov with determining…

  9. Radar: Human Safety Net

    ERIC Educational Resources Information Center

    Ritz, John M.

    2016-01-01

    Radar is a technology that can be used to detect distant objects not visible to the human eye. A predecessor of radar, called the telemobiloscope, was first used to detect ships in the fog in 1904 off the German coast. Many scientists have worked on the development and refinement of radar (Hertz with electromagnetic waves; Popov with determining…

  10. Solar Radar Experiments

    DTIC Science & Technology

    1998-01-01

    communications satellites and electric power grids. RELATED PROJECTS Studies with the HAARP radar facility being constructed in Alaska are conducted with...on wave-plasma interactions and also are assessing the possible use of HAARP as a solar radar. REFERENCES James, J. C., Radar studies of the sun, in

  11. Incoherent {pi}{sup 0} photoproduction from complex nuclei

    SciTech Connect

    Rodrigues, T.E.; Mesa, J.; Garcia, C.; Arruda-Neto, J.D.T.; Dale, D.; Nakagawa, I.

    2005-05-01

    Incoherent {pi}{sup 0} photoproduction from nuclei is evaluated via a multicollisional intranuclear cascade framework. In-medium modifications are taken into account, including a realistic dynamical treatment of multiple {pi}N and {delta}N scattering processes throughout the cascade. This time-dependent analysis yields structures in the {sup 12}C {pi}{sup 0} differential cross section both in the {delta} region and in the photon energy range from 5 to 6 GeV, with the former in very nice agreement with recent results from Mainz Microton. For heavy nuclei, however, such structures disappear because of a more effective Fermi motion and a relatively higher final state interaction of the produced pions as they exit the nucleus. The calculation of the incoherent part of the total {pi}{sup 0} photoproduction propitiates a clean and powerful kinematical separation from competitive (electromagnetic/nuclear) production processes, which currently is a theoretical challenge for the PrimEx experiment at the Jefferson Lab.

  12. QR code optical encryption using spatially incoherent illumination

    NASA Astrophysics Data System (ADS)

    Cheremkhin, P. A.; Krasnov, V. V.; Rodin, V. G.; Starikov, R. S.

    2017-02-01

    Optical encryption is an actively developing field of science. The majority of encryption techniques use coherent illumination and suffer from speckle noise, which severely limits their applicability. The spatially incoherent encryption technique does not have this drawback, but its effectiveness is dependent on the Fourier spectrum properties of the image to be encrypted. The application of a quick response (QR) code in the capacity of a data container solves this problem, and the embedded error correction code also enables errorless decryption. The optical encryption of digital information in the form of QR codes using spatially incoherent illumination was implemented experimentally. The encryption is based on the optical convolution of the image to be encrypted with the kinoform point spread function, which serves as an encryption key. Two liquid crystal spatial light modulators were used in the experimental setup for the QR code and the kinoform imaging, respectively. The quality of the encryption and decryption was analyzed in relation to the QR code size. Decryption was conducted digitally. The successful decryption of encrypted QR codes of up to 129  ×  129 pixels was demonstrated. A comparison with the coherent QR code encryption technique showed that the proposed technique has a signal-to-noise ratio that is at least two times higher.

  13. Off-axis self-interference incoherent digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Jeon, Philjun; Lee, Heejung; So, Byunghwy; Hwang, Wonsang; Bae, Yoonsung; Kim, Dugyoung

    2017-03-01

    3D imaging is demanding technology required in fluorescence microscopy. Even though holography is a powerful technique, it could not be used easily in fluorescence microscopy because of low coherence of fluorescence light. Lately, several incoherent holographic methods such as scanning holography, Fresnel in coherent correlation holography (FINCH), and self-interference incoherent digital holography (SIDH) have been proposed. However, these methods have many problems to be overcome for practical applications. For example, DC term removal, twin image ambiguity, and phase unwrapping problems need to be resolved. Off-axis holography is a straightforward solution which can solve most of these problems. We built an off-axis SIDH system for fluorescence imaging, and investigated various conditions and requirements for practical holographic fluorescence microscopy. Our system is based on a modified Michelson interferometer with a flat mirror at one arm and a curved mirror at the other arm of the interferometer. We made a phantom 3D fluorescence object made of 2 single-mode fibers coupled to a single red LED source to mimic 2 fluorescence point sources distributed by a few tens of micrometers apart. A cooled EM-CCD was used to take holograms of these fiber ends which emit only around 180 nW power.

  14. Coherence and incoherence collective behavior in financial market

    NASA Astrophysics Data System (ADS)

    Zhao, Shangmei; Xie, Qiuchao; Lu, Qing; Jiang, Xin; Chen, Wei

    2015-10-01

    Financial markets have been extensively studied as highly complex evolving systems. In this paper, we quantify financial price fluctuations through a coupled dynamical system composed of phase oscillators. We find that a Financial Coherence and Incoherence (FCI) coexistence collective behavior emerges as the system evolves into the stable state, in which the stocks split into two groups: one is represented by coherent, phase-locked oscillators, the other is composed of incoherent, drifting oscillators. It is demonstrated that the size of the coherent stock groups fluctuates during the economic periods according to real-world financial instabilities or shocks. Further, we introduce the coherent characteristic matrix to characterize the involvement dynamics of stocks in the coherent groups. Clustering results on the matrix provides a novel manifestation of the correlations among stocks in the economic periods. Our analysis for components of the groups is consistent with the Global Industry Classification Standard (GICS) classification and can also figure out features for newly developed industries. These results can provide potentially implications on characterizing the inner dynamical structure of financial markets and making optimal investment into tragedies.

  15. Large reverse saturable absorption under weak continuous incoherent light.

    PubMed

    Hirata, Shuzo; Totani, Kenro; Yamashita, Takashi; Adachi, Chihaya; Vacha, Martin

    2014-10-01

    In materials showing reverse saturable absorption (RSA), the optical absorbance increases as the power of the light incident on them increases. To date, RSA has only been observed when very intense light sources, such as short-pulse lasers, are used. Here, we show that hydroxyl steroidal matrices embedding properly designed aromatic molecules as acceptors and transition-metal complexes as donors exhibit high RSA on exposure to weak incoherent light at room temperature and in air. Accumulation by photosensitization of long-lived room-temperature triplet excitons in acceptors with a large triplet-triplet absorption coefficient allows a nonlinear increase in absorbance also under low-power irradiation conditions. As a consequence, continuous exposure to weak light significantly decreases the transmittance of thin films fabricated with these compounds. These optical limiting properties may be used to protect eyes and light sensors from exposure to intense radiation generated by incoherent sources and for other light-absorption applications that have not been realized with conventional RSA materials.

  16. Visual resolution in incoherent and coherent light: preliminary investigation

    NASA Astrophysics Data System (ADS)

    Sarnowska-Habrat, Katarzyna; Dubik, Boguslawa; Zajac, Marek

    2001-05-01

    In ophthalmology and optometry a number of measures are used for describing quality of human vision such as resolution, visual acuity, contrast sensitivity function, etc. In this paper we will concentrate on the vision quality understood as a resolution of periodic object being a set of equidistant parallel lines of given spacing and direction. The measurement procedure is based on presenting the test to the investigated person and determining the highest spatial frequency he/she can still resolve. In this paper we describe a number of experiments in which we use test tables illuminated with light both coherent and incoherent of different spectral characteristics. Our experiments suggest that while considering incoherent polychromatic illumination the resolution in blue light is substantially worse than in white light. In coherent illumination speckling effect causes worsening of resolution. While using laser light it is easy to generate a sinusoidal interference pattern which can serve as test object. In the paper we compare the results of resolution measurements with test tables and interference fringes.

  17. Radar stage uncertainty

    USGS Publications Warehouse

    Fulford, J.M.; Davies, W.J.

    2005-01-01

    The U.S. Geological Survey is investigating the performance of radars used for stage (or water-level) measurement. This paper presents a comparison of estimated uncertainties and data for radar water-level measurements with float, bubbler, and wire weight water-level measurements. The radar sensor was also temperature-tested in a laboratory. The uncertainty estimates indicate that radar measurements are more accurate than uncorrected pressure sensors at higher water stages, but are less accurate than pressure sensors at low stages. Field data at two sites indicate that radar sensors may have a small negative bias. Comparison of field radar measurements with wire weight measurements found that the radar tends to measure slightly lower values as stage increases. Copyright ASCE 2005.

  18. [Passive euthanasia].

    PubMed

    Trube-Becker, E

    1977-01-01

    After having been acquainted with the historical development of euthanasia, the following steps for assitance in dying, called passive euthanasia are being discussed. a) Assistance during dying without speeding up death is the self-evident duty of a doctor. b) Assistance during death and speeding up the same as an unavoidable result of therapeutical treatment, more or less desired or more or less unavoidable. c) Assistance through letting the patient die by abandoning all therapeutical means, when these would only lead to a short extension of life time. No doctor is compelled to take measures to extend life if it is against the will of the patient. He is not even entitled to do so. A special problem is the abandoning of extended operative treatment, this borders on the so called active enthanasia. The dying patient always has the same right of treatment by a docter as well as nursing like all other suffering human beings. The decision to let a patient die should not result in leaving him by himself and to abandon all nursing as well. Such steps would include letting him lie in dirty linen, not sucking off the mucous secretion from the trachea, refusal to assist during mealtimes, non-assistance during cathetering, and the removal of the dying person to the bathroom, or any other remote orner of the hospital. No dying person should stay without help Loneliness especially is the greatest pain of a dying patient.

  19. Comparison of atomic oxygen measurements by incoherent scatter and satellite-borne mass spectrometer techniques

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.; Alcayde, D.

    1974-01-01

    Atomic oxygen densities determined by the incoherent scatter technique are compared to densities deduced from satellite-borne mass spectrometer measurements and are found to agree within experimental error. The diurnal variations inferred from the incoherent scatter measurements do show, however, some departure from diurnal variations found by modeling the mass spectrometer results. Some implications of these departures are briefly discussed.

  20. Comparison of atomic oxygen measurements by incoherent scatter and satellite-borne mass spectrometer techniques

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.; Alcayde, D.

    1974-01-01

    Atomic oxygen densities determined by the incoherent scatter technique are compared to densities deduced from satellite-borne mass spectrometer measurements and are found to agree within experimental error. The diurnal variations inferred from the incoherent scatter measurements do show, however, some departure from diurnal variations found by modeling the mass spectrometer results. Some implications of these departures are briefly discussed.

  1. Autonomous system for initializing synthetic aperture radar seeker acquisition

    SciTech Connect

    Hamilton, P.C.

    1993-08-03

    A method is described of guiding a missile having an active seeker including a synthetic aperture radar operating in a squint mode to a target aircraft having a search radar therein the maximum range of active seeker acquisition being within said missile's maneuver capability to intercept, and the maximum range of active seeker acquisition not exceeding the capability of the active seeker, said method comprising the steps of: launching said missile in response to detection of the search radar; implementing a passive seeker mode of operation to passively guide said missile towards said target aircraft in a manner to avoid detection of said missile by said target aircraft; transferring from said passive seeker mode to an active seeker mode in response to detected shutdown of said search radar; maneuvering said missile to execute a turn angle away from said target aircraft such that the search field of said synthetic aperture radar sweeps through an entire target uncertainty volume, said turn angle being within a first preselected limit and a second preselected limit such that said target aircraft does not cross over said missile's terminal flight path; and intercepting said target aircraft within a lethal range of said missile.

  2. Radar and optical measurements of ionospheric processes associated with intense subauroral electric fields

    SciTech Connect

    Providakes, J.F.; Kelley, M.C.; Swartz, W.E. ); Mendillo, M. ); Holt, J.M. )

    1989-05-01

    Observations of very large poleward directed electric fields were obtained with a clustered set of instrumentation that included the Millstone Hill incoherent scatter radar, the Boston University Mobile Ionospheric Observatory, and the HILAT and Defense Meteorological Satellite Program (DMSP) F6 and F7 satellites. In this paper the authors concentrate on data from the Millstone Hill incoherent scatter radar which was operated on selected evenings in a rapid azimuthal scan, centered on magnetic west. The mode was designed with the express purpose of measuring line-of-sight drift velocity and electron density as a function of latitude during events with large localized electric fields. On the evenings of April 20 and 21, 1985, during an intense magnetic storm, large ionospheric electric fields (E > 80 mV/m) were detected along the edge of the auroral oval with the Millstone Hill incoherent scatter radar. These constitute the first definitive incoherent scatter observations of this phenomenon. An L shell-aligned (zero order) deep trough in electron density was colocated with these large electric fields at L shells as low as L = 2.8. These data indicate that the trough develops much more quickly than present theories predict, at least near the F peak. They also report elevated ion and electron temperatures in the trough and conjecture that these may contribute to the rapid decay. They also show that the associated field-aligned currents are very weak. They also discuss the data set in light of competing theories for the production of large electric fields and for undulations of the edge of the diffuse aurora.

  3. Studies of polar mesosphere summer echoes with the EISCAT VHF and UHF radars: Information contained in the spectral shape

    NASA Astrophysics Data System (ADS)

    Strelnikova, Irina; Rapp, Markus

    2010-01-01

    The nature of PMSE in the VHF and UHF frequency range is considered taking into account the shape of corresponding Doppler spectra. Assuming a turbulence-based model of PMSE it is argued that for cases where a VHF radar detects strong PMSE, the UHF radar could either detect enhanced coherent scattering caused by the same physical process as in the VHF (i.e., turbulence with large charged ice particles), there could be incoherent scattering modified by the charged ice particles, or there could be a mixture of both. In order to distinguish these cases a simple but robust method is introduced to characterize the shape of the Doppler spectra derived from observations at both frequencies. Spectral shapes are quantified with one simple fitting parameter of a generalized fit to the autocorrelation function (=Fourier transform of the Doppler spectrum). This parameter takes a value of 1 for a Lorentzian spectrum indicative of pure incoherent scatter from the D-region, a value of 2 for coherent scatter owing to turbulence, and a value of less than 1 for incoherent scatter modified by the presence of charged aerosol particles. This method is applicable to observations at altitudes between ˜70 and ˜90 km. Simultaneous observations with the EISCAT VHF and UHF radar are presented in which all three cases mentioned above are identified. For the case of incoherent scatter modified by the presence of charged aerosol particles we quantify the radius of the involved ice particles to exceed ˜5 nm. Most importantly, however, for the case where the UHF-signal exceeded the incoherent scatter signal significantly, the spectrum revealed a clear Gaussian shape indicative of a coherent scattering process with identical spectral width as for the VHF-observations. This finding gives strong support that both echoes are created by the same turbulence-based mechanism and not by different mechanisms as speculated by several previous authors.

  4. 2. VIEW SOUTHWEST, prime search radar tower, height finder radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTHWEST, prime search radar tower, height finder radar towards, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  5. Measurement of Polar Cap Ionospheric Velocities Using the RISR-C and SuperDARN Radars

    NASA Astrophysics Data System (ADS)

    Gillies, R. G.; Spanswick, E.; Varney, R. H.; Perry, G. W.; Koustov, A. V.; Donovan, E.

    2016-12-01

    The Canadian face of the Resolute Bay Incoherent Scatter Radar (RISR-C) began operations in 2015 and since then has been making highly detailed measurements of the polar ionosphere. The operations of RISR-C are often complemented by measurements from the co-located northward facing RISR-N radar which is operated by SRI International. RISR-C (and RISR-N), like other Advanced Modular Incoherent Scatter (AMISR) radars, are able to sample multiple look directions effectively simultaneously using electronic beam steering. Measurements of electron density, electron temperature, ion temperature, and line-of-sight (LOS) velocity are made along each of these beams in (typically) 1- or 5-minute intervals. Analysis of LOS velocity measurements in multiple directions allows estimation of full 3-D flow vectors assuming a mostly uniform velocity field exists in the field-of-view of the radar. In this study, these RISR velocity vectors are compared to conjugate measurements of ionospheric velocity from overlapping Super Dual Auroral Radar Network (SuperDARN) measurements at Rankin Inlet, Inuvik, and Clyde River. Accurate measurement of ionospheric velocities by the RISR and SuperDARN radars require several assumptions be made in analyzing both datasets. For example, measurement challenges for the SuperDARN radars include; E-region and groundscatter contamination, the non-unity refractive index in the scattering volume, and wave propagation effects. The overall goal of this study is to identify and solve possible issues in using the different techniques/instruments in order to produce the most accurate measurements of polar cap ionospheric velocities.

  6. Mesospheric turbulence detection and characterization with AMISR-class radars under consistent meteorological conditions

    NASA Astrophysics Data System (ADS)

    Li, J.; Collins, R. L.; Newman, D.; Nicolls, M. J.; Varney, R. H.; Thurairajah, B.

    2015-12-01

    A recent study has shown the ability of the Advanced Modular Incoherent Scatter Radar (AMISR) at Poker Flat Research Range (PFRR, PFISR) to characterize turbulence in the mesosphere (D-Region) [Nicolls et. al, 2011]. We present case studies of AMISR measurements of turbulence where the meteorological conditions are defined by the presence of persistent Mesospheric Inversion Layers (MILs). We consider MILs that are detected by satellite over a day and are also detected by Rayleigh lidar at PFRR [Irving et. al, 2014]. MILs are a signature of large-scale planetary wave breaking in the upper atmosphere, where a region with a temperature inversion lies below a region with an adiabatic lapse rate. The region with the inversion allows small-scale waves to become unstable, break, and generate turbulence. The region with the adiabatic lapse rate is indicative of a well-mixed layer and the presence of turbulence. AMISR-class radars have a steerable narrow beam (1°) and high vertical resolution (750 m). We review the principles and practices of incoherent scatter radar with a focus on detection of D-region turbulence using radar spectra. We present the geometry of the turbulence and the radar, comparing the turbulent, plasma, and radar spatial scales. We develop a turbulence retrieval algorithm using a Voigt function spectral line. We fit the spectra to a Voigt function using the Levenberg-Marquardt method and use the Gaussian component of the Voigt spectra to calculate the RMS velocity, and hence the turbulent energy dissipation rate. With the environmental conditions characterized by satellite and lidar and the turbulence characterized by radar data, we can test the ability of PFISR to characterize mesospheric turbulence under consistent meteorological conditions and develop robust technique for turbulence measurements.

  7. Bistatic synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  8. RFI Mitigation and Detection for the SMAP Radar

    NASA Technical Reports Server (NTRS)

    Chan, Samuel; Fischman, Mark; Spencer, Michael

    2011-01-01

    The planned Soil Moisture Active Passive (SMAP) mission will use both active radar and passive radiometer instruments at L-Band to measure and monitor both soilmoisture and freeze/thaw state globally. The frequency band allocated for the SMAP radar is shared with the Global Navigation Satellite Systems and ground-basedradiolocation services. Signals from those users present significant sources of anthropogenic radio frequency interference (RFI) which contaminate the radarmeasurements. To mitigate RFI, the radar is designed with tunable operating frequency, which allows the center frequency to be tuned to avoid RFI. The filtering scheme in the receiver is configured to get a high level of RFI suppression. To meet the high accuracy measurement requirements, RFI detection and correction will be required during ground data processing. Some candidate algorithms have been evaluated, and they have been tested against simulated SMAP data derived from the PALSAR data.

  9. Fully Passive Wireless Acquisition of Neuropotentials

    NASA Astrophysics Data System (ADS)

    Schwerdt, Helen N.

    The ability to monitor electrophysiological signals from the sentient brain is requisite to decipher its enormously complex workings and initiate remedial solutions for the vast amount of neurologically-based disorders. Despite immense advancements in creating a variety of instruments to record signals from the brain, the translation of such neurorecording instrumentation to real clinical domains places heavy demands on their safety and reliability, both of which are not entirely portrayed by presently existing implantable recording solutions. In an attempt to lower these barriers, alternative wireless radar backscattering techniques are proposed to render the technical burdens of the implant chip to entirely passive neurorecording processes that transpire in the absence of formal integrated power sources or powering schemes along with any active circuitry. These radar-like wireless backscattering mechanisms are used to conceive of fully passive neurorecording operations of an implantable microsystem. The fully passive device potentially manifests inherent advantages over current wireless implantable and wired recording systems: negligible heat dissipation to reduce risks of brain tissue damage and minimal circuitry for long term reliability as a chronic implant. Fully passive neurorecording operations are realized via intrinsic nonlinear mixing properties of the varactor diode. These mixing and recording operations are directly activated by wirelessly interrogating the fully passive device with a microwave carrier signal. This fundamental carrier signal, acquired by the implant antenna, mixes through the varactor diode along with the internal targeted neuropotential brain signals to produce higher frequency harmonics containing the targeted neuropotential signals. These harmonics are backscattered wirelessly to the external interrogator that retrieves and recovers the original neuropotential brain signal. The passive approach removes the need for internal power

  10. Incoherent dynamics in the toric code subject to disorder

    NASA Astrophysics Data System (ADS)

    Röthlisberger, Beat; Wootton, James R.; Heath, Robert M.; Pachos, Jiannis K.; Loss, Daniel

    2012-02-01

    We numerically study the effects of two forms of quenched disorder on the anyons of the toric code. First, a class of codes based on random lattices of stabilizer operators is presented and shown to be superior to the standard square-lattice toric code for certain forms of biased noise. It is further argued that these codes are close to optimal, in that they tightly reach the upper bound of error thresholds beyond which no correctable Calderbank-Shore-Steane codes can exist. Additionally, we study the classical motion of anyons in toric codes with randomly distributed on-site potentials. In the presence of repulsive long-range interaction between the anyons, a surprising increase in the lifetime of encoded states with disorder strength is reported and explained by an entirely incoherent mechanism. Finally, the coherent transport of the anyons in the presence of both forms of disorder is investigated and a significant suppression of the anyon motion is found.

  11. Fast full resolution saliency detection based on incoherent imaging system

    NASA Astrophysics Data System (ADS)

    Lin, Guang; Zhao, Jufeng; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting

    2016-08-01

    Image saliency detection is widely applied in many tasks in the field of the computer vision. In this paper, we combine the saliency detection with the Fourier optics to achieve acceleration of saliency detection algorithm. An actual optical saliency detection system is constructed within the framework of incoherent imaging system. Additionally, the application of our system to implement the bottom-up rapid pre-saliency process of primate visual saliency is discussed with dual-resolution camera. A set of experiments over our system are conducted and discussed. We also demonstrate the comparisons between our method and pure computer methods. The results show our system can produce full resolution saliency maps faster and more effective.

  12. Lineshape analysis of coherent multidimensional optical spectroscopy using incoherent light

    SciTech Connect

    Ulness, Darin J.; Turner, Daniel B.

    2015-06-07

    Coherent two-dimensional electronic spectroscopy using incoherent (noisy) light, I{sup (4)} 2D ES, holds intriguing challenges and opportunities. One challenge is to determine how I{sup (4)} 2D ES compares to femtosecond 2D ES. Here, we merge the sophisticated energy-gap Hamiltonian formalism that is often used to model femtosecond 2D ES with the factorized time-correlation formalism that is needed to describe I{sup (4)} 2D ES. The analysis reveals that in certain cases the energy-gap Hamiltonian is insufficient to model the spectroscopic technique correctly. The results using a modified energy-gap Hamiltonian show that I{sup (4)} 2D ES can reveal detailed lineshape information, but, contrary to prior reports, does not reveal dynamics during the waiting time.

  13. Anti-Stokes Fluorescent Probe with Incoherent Excitation

    PubMed Central

    Li, Yang; Zhou, Shifeng; Dong, Guoping; Peng, Mingying; Wondraczek, Lothar; Qiu, Jianrong

    2014-01-01

    Although inorganic anti-Stokes fluorescent probes have long been developed, the operational mode of today's most advanced examples still involves the harsh requirement of coherent laser excitation, which often yields unexpected light disturbance or even photon-induced deterioration during optical imaging. Here, we demonstrate an efficient anti-Stokes fluorescent probe with incoherent excitation. We show that the probe can be operated under light-emitting diode excitation and provides tunable anti-Stokes energy shift and decay kinetics, which allow for rapid and deep tissue imaging over a very large area with negligible photodestruction. Charging of the probe can be achieved by either X-rays or ultraviolet-visible light irradiation, which enables multiplexed detection and function integration with standard X-ray medical imaging devices. PMID:24518662

  14. Fault Tolerant Algorithm for Structured Illumination Microscopy with Incoherent Light

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Heidingsfelder, Philipp; Gao, Jun; Yu, Liandong; Ott, Peter

    2015-04-01

    In this contribution we present a new algorithm for structured illumination microscopy with incoherent light. Existing algorithms for determining the contrast values of the focal depth response require a high accurate phase shift of the fringe pattern illumination. The presented algorithm, which is robust against inaccurate phase shift of the fringe pattern, reduces significantly the requirements for the phase shift and consequently the costs of the microscope. The new algorithm was tested by a preliminary experiment, whereby the grating was shifted by an elastic guided micro-motion mechanism employing a low-cost stepper motor replacing the conventional expensive piezo drive. The determined focal depth response is very smooth and corresponds very well to the theoretical focal depth response.

  15. Weak value measurement with an incoherent measuring device

    NASA Astrophysics Data System (ADS)

    Cho, Young-Wook; Lim, Hyang-Tag; Ra, Young-Sik; Kim, Yoon-Ho

    2010-02-01

    In the Aharonov-Albert-Vaidman (AAV) weak measurement, it is assumed that the measuring device or the pointer is in a quantum mechanical pure state. In reality, however, it is often not the case. In this paper, we generalize the AAV weak measurement scheme to include more generalized situations in which the measuring device is in a mixed state. We also report an optical implementation of the weak value measurement in which the incoherent pointer is realized with the pseudo-thermal light. The theoretical and experimental results show that the measuring device under the influence of partial decoherence could still be used for amplified detection of minute physical changes and is applicable for implementing the weak value measurement for massive particles.

  16. Incoherent neutron scattering in acetanilide and three deuterated derivatives

    NASA Astrophysics Data System (ADS)

    Barthes, Mariette; Almairac, Robert; Sauvajol, Jean-Louis; Moret, Jacques; Currat, Roland; Dianoux, José

    1991-03-01

    Incoherent-neutron-scattering measurements of the vibrational density of states of acetanilide and three deuterated derivatives are presented. These data allow one to identify an intense maximum, assigned to the N-H out-of-plane bending mode. The data display the specific behavior of the methyl torsional modes: large isotopic shift and strong low-temperature intensity; confirm our previous inelastic-neutron-scattering studies, indicating no obvious anomalies in the range of frequency of the acoustic phonons. In addition, the data show the existence of thermally activated quasielastic scattering above 100 K, assigned to the random diffusive motion of the methyl protons. These results are discussed in the light of recent theoretical models proposed to explain the anomalous optical properties of this crystal.

  17. Incoherent twin boundary migration induced by ion irradiation in Cu

    NASA Astrophysics Data System (ADS)

    Li, N.; Wang, J.; Wang, Y. Q.; Serruys, Y.; Nastasi, M.; Misra, A.

    2013-01-01

    Grain boundaries can act as sinks for radiation-induced point defects. The sink capability is dependent on the atomic structures and varies with the type of point defects. Using high-resolution transmission electron microscopy, we observed that Σ3{112} incoherent twin boundary (ITB) in Cu films migrates under Cu3+ ion irradiation. Using atomistic modeling, we found that Σ3{112} ITB has the preferred sites for adsorbing interstitials and the preferential diffusion channels along the Shockley partial dislocations. Coupling with the high mobility of grain boundary Shockley dislocations within Σ3{112} ITB, we infer that Σ3{112} ITB migrates through the collective glide of grain boundary Shockley dislocations, driven by a concurrent reduction in the density of radiation-induced defects, which is demonstrated by the distribution of nearby radiation-induced defects.

  18. Delineating incoherent non-Markovian dynamics using quantum coherence

    SciTech Connect

    Chanda, Titas Bhattacharya, Samyadeb

    2016-03-15

    We introduce a method of characterization of non-Markovianity using coherence of a system interacting with the environment. We show that under the allowed incoherent operations, monotonicity of a valid coherence measure is affected due to non-Markovian features of the system–environment evolution. We also define a measure to quantify non-Markovianity of the underlying dynamics based on the non-monotonic behavior of the coherence measure. We investigate our proposed non-Markovianity marker in the behavior of dephasing and dissipative dynamics for one and two qubit cases. We also show that our proposed measure captures the back-flow of information from the environment to the system and compatible with well known distinguishability criteria of non-Markovianity.

  19. Regimes of strong light-matter coupling under incoherent excitation

    SciTech Connect

    Valle, E. del; Laussy, F. P.

    2011-10-15

    We study a two-level system (atom, superconducting qubit, or quantum dot) strongly coupled to a single photonic mode of a cavity, in the presence of incoherent pumping and including detuning and dephasing. This system displays a striking quantum-to-classical transition. On the grounds of several approximations that reproduce to various degrees exact results obtained numerically, we separate five regimes of operations, that we term ''linear,''''quantum,''''lasing,''''quenching,'' and ''thermal.'' In the fully quantized picture, the lasing regime arises as a condensation of dressed states and manifests itself as a Mollow triplet structure in the direct emitter photoluminescence spectrum, which embeds fundamental features of the full-field quantization description of light-matter interaction.

  20. Two-dimensional electronic spectroscopy using incoherent light: theoretical analysis.

    PubMed

    Turner, Daniel B; Howey, Dylan J; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J

    2013-07-25

    Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I((4)) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and new opportunities.

  1. Incoherent systems and coverings in finite dimensional Banach spaces

    SciTech Connect

    Temlyakov, V N

    2014-05-31

    We discuss the construction of coverings of the unit ball of a finite dimensional Banach space. There is a well-known technique based on comparing volumes which gives upper and lower bounds on covering numbers. However, this technique does not provide a method for constructing good coverings. Here we study incoherent systems and apply them to construct good coverings. We use the following strategy. First, we build a good covering using balls with a radius close to one. Second, we iterate this construction to obtain a good covering for any radius. We shall concentrate mainly on the first step of this strategy. Bibliography: 14 titles.

  2. Generation and detection of incoherent phonons in picosecond ultrasonics.

    PubMed

    Perrin, B; Péronne, E; Belliard, L

    2006-12-22

    In picosecond ultrasonics experiments the absorption of a femtosecond laser pulse in a thin metallic transducer is used to generate very short acoustic pulses. These pulses are made of coherent longitudinal waves with a frequency spectrum that can reach 100-200 GHz. The laser pulse absorption gives rise to a heating of the film of a few Kelvin within a typical time of 1 ps. Later on, the heat goes in the substrate through an interface thermal resistance and is diffused by thermal conduction. At very low temperature and in pure crystals the thermal phonons emitted by the heated metallic film can propagate ballistically over large distances and produce a so-called heat pulse. We report on the experimental evidence of the coexistence of the coherent acoustic pulse and the incoherent heat pulse generated and detected by laser ultrasonics.

  3. Report on coordinated satellite and incoherent scatter observations

    NASA Technical Reports Server (NTRS)

    Calderon, C. H. J.

    1975-01-01

    Measurements taken at the Jicamarca Radar Observatory at Lima, Peru during the cooperative sounding rocket program are reported. The following types of data were acquired: (1) electron density and temperature; (2) vertical plasma drift, (3) electrojet relative echo power density; (4) electrojet doppler shift and condition; and (5) 150 km echoing region.

  4. Coordinated satellite and incoherent scatter observations. [of the ionosphere

    NASA Technical Reports Server (NTRS)

    Calderon, C. H. J.

    1975-01-01

    Measurements taken at the Jicamarca Radar Observatory at Lima, Peru during the Cooperative Sounding Rocket Program are reported. The following types of data were acquired: (1) electron density and temperature, (2) vertical plasma drift, (3) electrojet relative echo power density, (4) electrojet Doppler shift and condition, and (5) 150 km echoing region.

  5. Overview of the NASA soil moisture active/passive mission

    USDA-ARS?s Scientific Manuscript database

    The NASA Soil Moisture Active Passive (SMAP) Mission is currently in design Phase C and scheduled for launch in October 2014. Its mission concept is based on combined L-band radar and radiometry measurements obtained from a shared, rotating 6-meter antennae. These measurements will be used to retrie...

  6. Passive Ranging Using a Dispersive Spectrometer and Optical Filters

    DTIC Science & Technology

    2012-12-20

    sending a number of light rays , from the same point in the scene, into the optical system. Then it traces them through to find where they hit on the focal...55 Appendix A. MATLAB Code Used... radar . First, since no signal is emitted, a passive sensor is much more difficult to detect, which is especially important on stealth platforms

  7. The Soil Moisture Active/Passive Mission (SMAP)

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active/Passive (SMAP) mission will deliver global views of soil moisture content and its freeze/thaw state that are critical terrestrial water cycle state variables. Polarized measurements obtained with a shared antenna L-band radar and radiometer system will allow accurate estima...

  8. Reconstruction of cloud geometry using a scanning cloud radar

    NASA Astrophysics Data System (ADS)

    Ewald, F.; Winkler, C.; Zinner, T.

    2015-06-01

    Clouds are one of the main reasons of uncertainties in the forecasts of weather and climate. In part, this is due to limitations of remote sensing of cloud microphysics. Present approaches often use passive spectral measurements for the remote sensing of cloud microphysical parameters. Large uncertainties are introduced by three-dimensional (3-D) radiative transfer effects and cloud inhomogeneities. Such effects are largely caused by unknown orientation of cloud sides or by shadowed areas on the cloud. Passive ground-based remote sensing of cloud properties at high spatial resolution could be crucially improved with this kind of additional knowledge of cloud geometry. To this end, a method for the accurate reconstruction of 3-D cloud geometry from cloud radar measurements is developed in this work. Using a radar simulator and simulated passive measurements of model clouds based on a large eddy simulation (LES), the effects of different radar scan resolutions and varying interpolation methods are evaluated. In reality, a trade-off between scan resolution and scan duration has to be found as clouds change quickly. A reasonable choice is a scan resolution of 1 to 2°. The most suitable interpolation procedure identified is the barycentric interpolation method. The 3-D reconstruction method is demonstrated using radar scans of convective cloud cases with the Munich miraMACS, a 35 GHz scanning cloud radar. As a successful proof of concept, camera imagery collected at the radar location is reproduced for the observed cloud cases via 3-D volume reconstruction and 3-D radiative transfer simulation. Data sets provided by the presented reconstruction method will aid passive spectral ground-based measurements of cloud sides to retrieve microphysical parameters.

  9. Multi-instrument and network observations with the middle and upper atmosphere (MU) radar

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Tsuda, T.; Yamamoto, M.; Hashiguchi, H.

    2009-05-01

    The MU radar of RISH (Research Institute of Sustainable Humanosphere), Kyoto University, Japan, located at Shigaraki (136E, 35N) is a 46.5 MHz VHF radar with 1 MW output power. It has been used as an MST (Mesosphere/Stratosphere/Troposphere) and an IS (Incoherent Scatter) radar, since 1984 for 25 years. The radar and Shigaraki MU observatory is open for both domestic and international researchers as a collaborative research facility. Although the system has been upgraded every 5 ∼E10 years and the radar is still one of the most capable atmospheric radar in the world, simultaneous observations with other instruments (both radio and optical) as well as network observations with remote places has been becoming more and more important. A review on such cooperative observations carried out recently by use of the MU radar will be presented in this paper. Also a new collaborative project of creating database of ground-based upper atmosphere observations among five institutions in Japan (National Institute of Polar Research and four universities (Kyoto, Kyushu, Nagoya, Tohoku), starting in 2009 for six years, will be briefly introduced.

  10. Passive solar technology

    SciTech Connect

    Watson, D

    1981-04-01

    The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

  11. 3. VIEW NORTHWEST, height finder radar towers, and radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  12. 30. Perimeter acquisition radar building room #318, showing radar control. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Perimeter acquisition radar building room #318, showing radar control. Console and line printers - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  13. Cassini RADAR Observations of Enceladus, Tethys, Dione, Rhea, Iapetus, Hyperion, and Phoebe

    NASA Technical Reports Server (NTRS)

    Ostro, Steven J.; West, Richard D.; Janssen, Michael A.; Lorenz, Ralph D.; Zebker, Howard A.; Black, Gregory J.; Lunine, Jonathan I.; Wye, Lauren C; Lopes, Rosaly M.; Wall, Stephen D.; Elachi, Charles; Roth, Laci; Hensley, Scott; Kelleher, Kathleen; Hamilton, Gary A.; Gim, Yonggyu; Anderson, Yanhua Z.; Boehmer, Rudy A; Johnson, William T. K.

    2006-01-01

    The Cassini mission includes 34 investigations of Saturn's icy satellites by the 2.2-cm-wavelength (13.8-GHz) RADAR instrument, operating both as a scatterometric radar and a passive radiometer. These measurements are sensitive to near-surface electrical properties and structure at scales about six times smaller than the only groundbased radar wavelength available to study the satellites (13 cm) and 22 times longer than the millimeter wavelengths at the limit of Cassini's Composite Infrared Spectrometer (CIRS). Here we present Cassini's first radar results for seven of the satellites.

  14. Cassini RADAR Observations of Enceladus, Tethys, Dione, Rhea, Iapetus, Hyperion, and Phoebe

    NASA Technical Reports Server (NTRS)

    Ostro, Steven J.; West, Richard D.; Janssen, Michael A.; Lorenz, Ralph D.; Zebker, Howard A.; Black, Gregory J.; Lunine, Jonathan I.; Wye, Lauren C; Lopes, Rosaly M.; Wall, Stephen D.; hide

    2006-01-01

    The Cassini mission includes 34 investigations of Saturn's icy satellites by the 2.2-cm-wavelength (13.8-GHz) RADAR instrument, operating both as a scatterometric radar and a passive radiometer. These measurements are sensitive to near-surface electrical properties and structure at scales about six times smaller than the only groundbased radar wavelength available to study the satellites (13 cm) and 22 times longer than the millimeter wavelengths at the limit of Cassini's Composite Infrared Spectrometer (CIRS). Here we present Cassini's first radar results for seven of the satellites.

  15. Localization of an air target by means of GNSS-based multistatic radar

    NASA Astrophysics Data System (ADS)

    Akhmedov, Daulet Sh.; Raskaliyev, Almat S.

    2016-08-01

    The possibility of utilizing transmitters of opportunity for target detection, tracking and positioning is of great interest to the radar community. In particular the optional use of Global Navigation Satellite System (GNSS) has lately triggered scientific research that has purpose to take advantage of this source of signal generation for passive radar. Number of studies have been conducted previously on development of GNSS-based bistatic and multistatic radars for detection and range estimation to the object located in the close atmosphere. To further enrich research in this area, we present a novel method for coordinate determination of the air target by means of the GNSS-based multistatic radar.

  16. Planetary radar studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Cutts, J. A.

    1981-01-01

    A catalog of lunar and radar anomalies was generated to provide a base for comparison with Venusian radar signatures. The relationships between lunar radar anomalies and regolith processes were investigated, and a consortium was formed to compare lunar and Venusian radar images of craters. Time was scheduled at the Arecibo Observatory to use the 430 MHz radar to obtain high resolution radar maps of six areas of the lunar suface. Data from 1978 observations of Mare Serenitas and Plato are being analyzed on a PDP 11/70 computer to construct the computer program library necessary for the eventual reduction of the May 1981 and subsequent data acquisitions. Papers accepted for publication are presented.

  17. Laser radar in robotics

    SciTech Connect

    Carmer, D.C.; Peterson, L.M.

    1996-02-01

    In this paper the authors describe the basic operating principles of laser radar sensors and the typical algorithms used to process laser radar imagery for robotic applications. The authors review 12 laser radar sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser radar data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser radar technology and suggest trends seen in the application of laser radar sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.

  18. Historical sketch: Radar geology

    NASA Technical Reports Server (NTRS)

    Macdonald, H.

    1980-01-01

    A chronological assessment is given of the broad spectra of technology associated with radar geology. Particular attention is given to the most recent developments made in the areas of microwave Earth resources applications and geologic remote sensing from aircraft and satellite. The significance of space derived radar in geologic investigations is discussed and the scientific basis for exploiting the sensitivity of radar signals to various aspects of geologic terrain is given.

  19. Bistatic-radar investigation

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Tyler, G. L.

    1972-01-01

    A bistatic-radar study during the Apollo 15 flight is reviewed, with the orbiting command module as one terminal. Bistatic-radar slopes are compared to geological maps of Copernicus and Riphaeus mountain regions and Kepler region. Basic theory is discussed, including the radar echoes composed of the sum of the reflections from the moon area that is mutually visible from the spacecraft and earth. A signal receiving system and data processing system are outlined schematically.

  20. Space shuttle search and rescue experiment using synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.; Larson, R. W.; Zelenka, J. S.

    1977-01-01

    Langley Research Center, NASA, is developing a concept for using a spaceborne synthetic aperture radar with passive reflectors for search and rescue applications. The feasibility of a synthetic aperture radar for search and rescue applications has been demonstrated with aircraft experiments. One experiment was conducted using the ERIM four-channel radar and several test sites in the Michigan area. In this test simple corner-reflector targets were successfully imaged. Results from this investigation were positive and indicate that the concept can be used to investigate new approaches focused on the development of a global search and rescue system. An orbital experiment to demonstrate the application of synthetic aperture radar to search and rescue is proposed using the space shuttle.

  1. Introduction to Radar Polarimetry

    DTIC Science & Technology

    1991-04-23

    to VI° - SSýSh = fSMI2. But according to the radar formula [143, the power is proportional to the radar cross section , in this case af. Hence we are...knowledge the scattering matrix S can be rewritten as where the phases 4 of the measured voltages and the radar cross sections are made explicit. c...absolute phase the scattering matrix consists ef 8 - 2 - 1 = 5 independent parameters: three radar cross sections and two phase ]ifferences (see Eq.(5.6

  2. Origins of radar

    NASA Astrophysics Data System (ADS)

    Hill, R. D.

    Sessions on the history of thunderstorm and lightning research were held December 11, 1985, at the AGU Fall Meeting in San Francisco, Calif. At that time, since it was well known that lightning researchers were intimately involved in the development of radar and since the 50th anniversary of radar in the United States was at hand, it was suggested that a session on the history of meteorological radar would be appropriate and interesting. The following contribution was presented in the History of Meteorological Radar session May 22, 1986, at the AGU Spring Meeting in Baltimore, Md.

  3. Decoupling of Getting Up Detection Device Using Ultrasonic Radar by Changing Duty Ratio of Transmission Wave

    NASA Astrophysics Data System (ADS)

    Yamada, Yo; Tanaka, Kanya; Haruyama, Kazuo; Wakasa, Yuji; Akashi, Takuya

    The decline in the quality of patient's safety control is a problem, because the number of caretakers is reduced by the acceleration of demographic aging in an elder care facility. Especially, the detection of getting up from the bed is very important for preventing patients from falling and wandering unbreakable. In our previous study, we have developed the getting up detection device with an ultrasonic radar, which is safe, cheap, and break-proof. However, if there are many patients in a ward, it is difficult to use some ultrasonic radars. The reason is that if some ultrasonic radars, which have the same frequency, are used in same ward, the ultrasonic signals are coherent with each other. To solve this problem, we propose a novel incoherent method. This method is achieved by improving the software in the device at a low cost.

  4. The determination of time-stationary two-dimensional convection patterns with single-station radars

    NASA Technical Reports Server (NTRS)

    Freeman, M. P.; Ruohoniemi, J. M.; Greenwald, R. A.

    1991-01-01

    A critical examination of the accuracy of ionospheric vector velocity determinations, using realistic modeled flow patterns that are time-stationary but not spatially uniform, is presented. Under certain circumstances the actual and inferred flow fields are found to exhibit considerable discrepancy, sometimes not even agreeing in the sense of flow direction. It is shown that the natural curvature present in ionospheric convection on varying spatial scales can introduce significant error in the velocity estimate, particularly when the radius of curvature of the flow structure is less than or equal to the radar range to the scattering volume. It is argued that the ionospheric convection should be measured by bidirectional or multidirectional observations of a common ionospheric volume and that a synthesis of coherent and incoherent radar observations from different sites is preferable to multidirectional single-station observations using either radar alone.

  5. Combined radar and telemetry system

    DOEpatents

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina; Hsieh, Lung-Hwa; Conover, Kurt; Heintzleman, Richard

    2017-08-01

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  6. Transform-limited-pulse representation of excitation with natural incoherent light

    SciTech Connect

    Chenu, Aurélia Brumer, Paul

    2016-01-28

    The excitation of molecular systems by natural incoherent light relevant, for example, to photosynthetic light-harvesting is examined. We show that the result of linear excitation with natural incoherent light can be obtained using incident light described in terms of transform limited pulses, as opposed to conventional classical representations with explicit random character. The derived expressions allow for computations to be done directly for any thermal light spectrum using a simple wave function formalism and provide a route to the experimental determination of natural incoherent excitation using pulsed laser techniques. Pulses associated with solar and cosmic microwave background radiation are provided as examples.

  7. Single-shot self-interference incoherent digital holography using off-axis configuration.

    PubMed

    Hong, Jisoo; Kim, Myung K

    2013-12-01

    We propose a single-shot incoherent holographic imaging technique that adopts self-interference incoherent digital holography (SIDH) with slight tilt of the plane mirror in the optical configuration. The limited temporal coherence length of the illumination leads the guide-star hologram of the proposed system to have a Gaussian envelope of elliptical ring shape. The observation shows that the reconstruction by cross correlation with the guide-star hologram achieves better quality than the usual propagation methods. Experimentally, we verify that the hologram and 3D reconstruction can be implemented incoherently with the proposed single-shot off-axis SIDH.

  8. Incoherent vector mesons production in PbPb ultraperipheral collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Xie, Ya-Ping; Chen, Xurong

    2017-03-01

    The incoherent rapidity distributions of vector mesons are computed in dipole model in PbPb ultraperipheral collisions at the CERN Large Hadron Collider (LHC). The IIM model fitted from newer data is employed in the dipole amplitude. The Boosted Gaussian and Gaus-LC wave functions for vector mesons are implemented in the calculations as well. Predictions for the J / ψ, ψ (2 s), ρ and ϕ incoherent rapidity distributions are evaluated and compared with experimental data and other theoretical predictions in this paper. We obtain closer predictions of the incoherent rapidity distributions for J / ψ than previous calculations in the IIM model.

  9. Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light

    SciTech Connect

    Piskarskas, A.; Pyragaite, V.; Stabinis, A.

    2010-11-15

    It is revealed that the generation of a coherent wave by frequency conversion of incoherent waves is a characteristic feature of three-wave interaction in a nonlinear medium when angular dispersion of input waves is properly chosen. In this case the combining action of the pairs of spectral components of incoherent waves may result in the cumulative driving of a single plane monochromatic wave in up-conversion and down-conversion processes. As a fundamental result we point out an enhancement of the spectral radiance of the generated wave in comparison with incoherent waves.

  10. Single-shot self-interference incoherent digital holography using off-axis configuration

    PubMed Central

    Hong, Jisoo; Kim, Myung K.

    2015-01-01

    We propose a single-shot incoherent holographic imaging technique that adopts self-interference incoherent digital holography (SIDH) with slight tilt of the plane mirror in the optical configuration. The limited temporal coherence length of the illumination leads the guide-star hologram of the proposed system to have a Gaussian envelope of elliptical ring shape. The observation shows that the reconstruction by cross correlation with the guide-star hologram achieves better quality than the usual propagation methods. Experimentally, we verify that the hologram and 3D reconstruction can be implemented incoherently with the proposed single-shot off-axis SIDH. PMID:24281544

  11. Display of the complex degree of coherence due to quasi-monochromatic spatially incoherent sources.

    PubMed

    Michalski, M; Sicre, E E; Rabal, H J

    1985-12-01

    A method for displaying the complex degree of coherence (CDC) of a quasi-monochromatic spatially incoherent source is proposed. The phase of the CDC is encoded in a method similar to that used in interferometric imaging with incoherent light. The method is based on Fourier analysis of the speckle pattern that appears when a diffuser is illuminated with the partially coherent field whose CDC is to be displayed. In addition, an intensity pattern that resembles the spatial distribution of the incoherent source can also be obtained.

  12. Control of transient gain absorption via tunneling and incoherent pumping in triple quantum dots

    NASA Astrophysics Data System (ADS)

    Tian, Si-Cong; Zhang, Xiao-Jun; Wan, Ren-Gang; Wang, Li-Jie; Shu, Shi-Li; Wang, Tao; Lu, Ze-Feng; Sun, Fang-Yuan; Tong, Cun-Zhu

    2017-01-01

    The transient gain-absorption properties of the probe field in vertical triple quantum dots assisted by double tunneling and incoherent pumping are investigated. With a proper intensity value and detuning of the second tunneling, the transient gain in triple quantum dots with incoherent pumping can be completely eliminated. In addition, the incoherent pumping affects both the amplitude of the transient absorption and the steady-state value. The dependence of transient behaviors on other parameters, such as the radiative decay rate and the pure dephasing decay rate of the quantum dots, is also discussed. The scheme may have important applications in quantum information networks and communication.

  13. Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Omel'chenko, O. E.

    2013-09-01

    We consider a paradigmatic spatially extended model of non-locally coupled phase oscillators which are uniformly distributed within a one-dimensional interval and interact depending on the distance between their sites' modulo periodic boundary conditions. This model can display peculiar spatio-temporal patterns consisting of alternating patches with synchronized (coherent) or irregular (incoherent) oscillator dynamics, hence the name coherence-incoherence pattern, or chimera state. For such patterns we formulate a general bifurcation analysis scheme based on a hierarchy of continuum limit equations. This provides the possibility of classifying known coherence-incoherence patterns and of suggesting directions for the search for new ones.

  14. Toward full exploitation of coherent and incoherent information in Sentinel-1 TOPS data for retrieving surface displacement: Application to the 2016 Kumamoto (Japan) earthquake

    NASA Astrophysics Data System (ADS)

    Jiang, Houjun; Feng, Guangcai; Wang, Teng; Bürgmann, Roland

    2017-02-01

    Sentinel-1's continuous observation program over all major plate boundary regions makes it well suited for earthquake studies. However, decorrelation due to large displacement gradients and limited azimuth resolution of the Terrain Observation by Progressive Scan (TOPS) data challenge acquiring measurements in the near field of many earthquake ruptures and prevent measurements of displacements in the along-track direction. Here we propose to fully exploit the coherent and incoherent information of TOPS data by using standard interferometric synthetic aperture radar (InSAR), split-bandwidth interferometry in range and azimuth, swath/burst-overlap interferometry, and amplitude cross correlation to map displacements in both the line-of-sight and the along-track directions. Application to the 2016 Kumamoto earthquake sequence reveals the coseismic displacements from the far field to the near field. By adding near-field constraints, the derived slip model reveals more shallow slip than obtained when only using far-field data from InSAR, highlighting the importance of exploiting all coherent and incoherent information in TOPS data.

  15. Passive coherent location direct signal suppression using hardware mixing techniques

    NASA Astrophysics Data System (ADS)

    Kaiser, Sean A.; Christianson, Andrew J.; Narayanan, Ram M.

    2017-05-01

    Passive coherent location (PCL) is a radar technique, in which the system uses reflections from opportunistic illumination sources in the environment for detection and tracking. Typically, PCL uses civilian communication transmitters not ideally suited for radar. The physical geometry of PCL is developed on the basis of bistatic radar without control of the transmitter antenna or waveform design. This poses the problem that often the receiver is designed with two antennas and channels, one for reference and one for surveillance. The surveillance channel is also contaminated with the direct signal and thus direct signal suppression (DSS) techniques must be used. This paper proposes an analytical solution based around hardware for DSS which is compared to other methods available in the literature. The methods are tested in varying bistatic geometries and with varying target radar cross section (RCS) and signal-to-noise ratio (SNR).

  16. Precipitation Estimation Using Combined Radar and Microwave Radiometer Observations from - Improvements and Initial Validation

    NASA Astrophysics Data System (ADS)

    Olson, W. S.; Grecu, M.; Munchak, S. J.; Kuo, K. S.; Johnson, B. T.; Haddad, Z. S.; Tian, L.; Liao, L.; Kelley, B. L.; Ringerud, S.

    2015-12-01

    In recent satellite missions, spaceborne radar observations, sometimes in combination with passive microwave radiometer measurements, are being used to estimate vertical profiles of precipitation rates. Launched in 2014, the Global Precipitation Measurement (GPM) mission core satellite observatory features a dual-frequency radar operating at 13.6 and 35.5 GHz (Ku and Ka bands) and a microwave radiometer with thirteen channels from 10 - 183 GHz. The use of combined radar and radiometer observations should yield the most accurate estimates of precipitation profiles from space, and these estimates will ultimately serve as a crucial reference for cross-calibrating passive microwave precipitation estimates from the GPM radiometer constellation. And through the microwave radiometer estimates, the combined algorithm calibration will ultimately be propagated to GPM infrared-microwave multisatellite estimates of surface rainfall. The GPM combined precipitation estimation algorithm performs initial estimates (an "ensemble") of precipitation profiles based upon an observed Ku-band reflectivity profile and different a priori assumptions concerning the size distributions of the precipitation particles and the profiles of cloud water and water vapor in the atmospheric column. The initial ensemble of profiles is then updated using a filter that embodies the physics relating precipitation to the observed Ka reflectivity profile, Ku and Ka path-integrated attenuation (derived from radar surface backscatter measurements), and microwave radiances. The final, filtered ensemble of profiles is consistent with all the available radar-radiometer data and a priori information. Since the GPM launch, the combined radar-radiometer algorithm has been improved to more specifically account for the effects of radar non-uniform beamfilling, multiple-scattering of radar pulses, the different resolutions of the radar and radiometer observations, interrelated radar and passive microwave surface

  17. The HYDROS Radiometer/Radar Instrument

    NASA Technical Reports Server (NTRS)

    Spencer, Michael W.; Njoku, Eni; Entekhabi, Dara; Doiron, Terence; Piepmeier, Jeffrey; Girard, Ralph

    2004-01-01

    The science objectives of the HYDROS mission are to provide frequent, global measurements of surface soil moisture and surface freeze/thaw state. In order to adequately measure these geophysical quantities, the key instrument requirements were determined by the HYDROS science team to be: 1) Dual-polarization L-Band passive radiometer measurements at 40 km resolution, 2) Dual-polarization L-Band active radar measurements at 3 km resolution, and 3) A wide swath to insure global three day refresh time for these measurements (1000 km swath at the selected orbit altitude of 670 km). As a solution to this challenging set of instrument requirements, a relatively large, 6 meter, conically-scanning reflector antenna architecture was selected for the instrument design. The deployable mesh antenna is shared by both the radiometer and radar electronics by employing a single L-Band feed.

  18. The PROUST radar

    NASA Technical Reports Server (NTRS)

    Bertin, F.; Glass, M.; Ney, R.; Petitdidier, M.

    1986-01-01

    The Stratosphere-Troposphere (ST) radar called PROUST works at 935 MHz using the same klystron and antenna as the coherent-scatter radar. The use of this equipment for ST work has required some important modifications of the transmitting system and the development of receiving, data processing and acquisition (1984,1985) equipment. The modifications are discussed.

  19. Synchronization in multistatic radar

    NASA Astrophysics Data System (ADS)

    Jubrink, H. G.

    1993-08-01

    This report gives a summary of multistatic radar principles and synchronization methods. Different methods are described using direct and indirect synchronization. The report also presents a general review of synchronization methods for the future. Two LORAN C receivers have been analyzed for use as local reference oscillators in multistatic radar.

  20. Quantum radar cross sections

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco

    2010-06-01

    The radar cross section σC is an objective measure of the "radar visibility" of an object. As such, σC is an important concept for the correct characterization of the operational performance of radar systems. Furthermore, σC is equally essential for the design and development of stealth weapon systems and platforms. Recent years have seen the theoretical development of quantum radars, that is, radars that operate with a small number of photons. In this regime, the radar-target interaction is described through photon-atom scattering processes governed by the laws of quantum electrodynamics. As such, it is theoretically inconsistent to use the same σC to characterize the performance of a quantum radar. In this paper we define a quantum radar cross section σQ based on quantum electrodynamics and interferometric considerations. We discuss the theoretical challenges of defining σQ, as well as computer simulations of σC and σQ for simple targets.

  1. Polarization Radar Processing Technology

    DTIC Science & Technology

    1989-10-01

    Oi"C FILE ( J qII RADC-TR-89-144 In-House Report October 1989 AD-A215 242 POLARIZATION RADAR PROCESSING TECHNOLOGY Kenneth C. Stiefvater, Russell D...NO. NO. NO. ACCESSION NO. 62702F 4506 11 58 11. TITLE (Include Security Classification) POLARIZATION RADAR PROCESSING TECHNOLOGY 12. PERSONAL AUTHOR(S

  2. Radar illusion via metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei Xiang; Cui, Tie Jun

    2011-02-01

    An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results.

  3. Noncooperative rendezvous radar system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fire control radar system was developed, assembled, and modified. The baseline system and modified angle tracking system are described along with the performance characteristics of the baseline and modified systems. Proposed changes to provide additional techniques for radar evaluation are presented along with flight test data.

  4. Java Radar Analysis Tool

    NASA Technical Reports Server (NTRS)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  5. Determination of radar MTF

    SciTech Connect

    Chambers, D.

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  6. Laser Radar Analyses.

    DTIC Science & Technology

    1983-07-15

    back-propagated aperture radius, Rm , in the corresponding expression (Equations (79)-(72)) of Reference 1. It should also be noted that Equation (18...incoherent detection efficiency approaches unity as Rm goes to zero and approaches zero in a limiting fashion as Rm goes to infinity, as required from the...the first two integrations reduce to the case previously treated, Equations (18) and (20), with Rm replaced by Rmi and RMO respectively. For the

  7. Intelligent radar data processing

    NASA Astrophysics Data System (ADS)

    Holzbaur, Ulrich D.

    The application of artificial intelligence principles to the processing of radar signals is considered theoretically. The main capabilities required are learning and adaptation in a changing environment, processing and modeling information (especially dynamics and uncertainty), and decision-making based on all available information (taking its reliability into account). For the application to combat-aircraft radar systems, the tasks include the combination of data from different types of sensors, reacting to electronic counter-countermeasures, evaluation of how much data should be acquired (energy and radiation management), control of the radar, tracking, and identification. Also discussed are related uses such as monitoring the avionics systems, supporting pilot decisions with respect to the radar system, and general applications in radar-system R&D.

  8. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  9. Spaceborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  10. Meteorological radar calibration

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.

    1978-01-01

    A meteorological radar calibration technique is developed. It is found that the integrated, range corrected, received power saturates under intense rain conditions in a manner analogous to that encountered for the radiometric path temperature. Furthermore, it is found that this saturation condition establishes a bound which may be used to determine an absolution radar calibration for the case of radars operating at attenuating wavelengths. In the case of less intense rainfall or for radars at nonattenuating wavelengths, the relationship for direct calibration in terms of an independent measurement of radiometric path temperature is developed. This approach offers the advantage that the calibration is in terms of an independent measurement of the rainfall through the same elevated region as that viewed by the radar.

  11. Fundamental studies on passivity and passivity breakdown

    SciTech Connect

    Macdonald, D.D.; Urquidi-Macdonald, M.

    1993-06-01

    Using photoelectrochemical impedance and admittance spectroscopies, a fundamental and quantitative understanding of the mechanisms for the growth and breakdown of passive films on metal and alloy surfaces in contact with aqueous environments is being developed. A point defect model has been extended to explain the breakdown of passive films, leading to pitting and crack growth and thus development of damage due to localized corrosion.

  12. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries

    NASA Astrophysics Data System (ADS)

    Bufford, D.; Liu, Y.; Wang, J.; Wang, H.; Zhang, X.

    2014-09-01

    Nanotwinned metals have been the focus of intense research recently, as twin boundaries may greatly enhance mechanical strength, while maintaining good ductility, electrical conductivity and thermal stability. Most prior studies have focused on low stacking-fault energy nanotwinned metals with coherent twin boundaries. In contrast, the plasticity of twinned high stacking-fault energy metals, such as aluminium with incoherent twin boundaries, has not been investigated. Here we report high work hardening capacity and plasticity in highly twinned aluminium containing abundant Σ3{112} incoherent twin boundaries based on in situ nanoindentation studies in a transmission electron microscope and corresponding molecular dynamics simulations. The simulations also reveal drastic differences in deformation mechanisms between nanotwinned copper and twinned aluminium ascribed to stacking-fault energy controlled dislocation-incoherent twin boundary interactions. This study provides new insight into incoherent twin boundary-dominated plasticity in high stacking-fault energy twinned metals.

  13. Incoherent holography by a Michelson type interferometer with a lens for a radial shear

    NASA Astrophysics Data System (ADS)

    Watanabe, Kaho; Nomura, Takanori

    2016-06-01

    The modified Michelson type interferometer with lenses for a radial shear to record incoherent holograms is proposed. It enables us to record a hologram by self-interference without coherent illumination such as a laser. The interferometer has two wave plates which can realize phase-shifting incoherent holography. The feature can avoid a very large bias term and the twin image, which are the inherent problem of incoherent holography by self-interference. The advantages of the proposed method using lenses and wave plates are easy adjustment of the zone plate and simplification of the optical system. A preliminary experiment using an LED as an incoherent object was performed to confirm the four step phase-shifting by wave plates.

  14. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries.

    PubMed

    Bufford, D; Liu, Y; Wang, J; Wang, H; Zhang, X

    2014-09-10

    Nanotwinned metals have been the focus of intense research recently, as twin boundaries may greatly enhance mechanical strength, while maintaining good ductility, electrical conductivity and thermal stability. Most prior studies have focused on low stacking-fault energy nanotwinned metals with coherent twin boundaries. In contrast, the plasticity of twinned high stacking-fault energy metals, such as aluminium with incoherent twin boundaries, has not been investigated. Here we report high work hardening capacity and plasticity in highly twinned aluminium containing abundant Σ3{112} incoherent twin boundaries based on in situ nanoindentation studies in a transmission electron microscope and corresponding molecular dynamics simulations. The simulations also reveal drastic differences in deformation mechanisms between nanotwinned copper and twinned aluminium ascribed to stacking-fault energy controlled dislocation-incoherent twin boundary interactions. This study provides new insight into incoherent twin boundary-dominated plasticity in high stacking-fault energy twinned metals.

  15. Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings.

    PubMed

    Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro

    2017-02-01

    A new optical configuration of incoherent digital holography is presented to improve the quality of reconstructed images when the random polarization state of incoherent light is used. The proposed system improves the signal-to-noise ratio of the holograms by suppressing the unmodulated terms of a spatial light modulator. To generate the self-interference of a quasi-incoherent point-like source, we use a dual-focusing lens with diffraction gratings. The preliminary experimental results confirm the validity of the proposed method by reconstructing two point-like sources generated by a LED light source. When the pixel pitch of the phase-mode SLM is small enough, the off-axis hologram can be generated. The single-shot recording of the incoherent digital holography is expected.

  16. Intuitive (in)coherence judgments are guided by processing fluency, mood and affect.

    PubMed

    Sweklej, Joanna; Balas, Robert; Pochwatko, Grzegorz; Godlewska, Małgorzata

    2014-01-01

    Recently proposed accounts of intuitive judgments of semantic coherence assume that processing fluency results in a positive affective response leading to successful assessment of semantic coherence. The present paper investigates whether processing fluency may indicate semantic incoherence as well. In two studies, we employ a new paradigm in which participants have to detect an incoherent item among semantically coherent words. In Study 1, we show participants accurately indicating an incoherent item despite not being able to provide an accurate solution to coherent words. Further, this effect is modified by affective valence of solution words that are not retrieved from memory. Study 2 replicates those results and extend them by showing that mood moderates incoherence judgments independently of affective valence of solutions. The results support processing fluency account of intuitive semantic coherence judgments and show that it is not fluency per se but fluency variations that drive judgments.

  17. Multistatic passive coherent location resource optimization

    NASA Astrophysics Data System (ADS)

    Kaiser, Sean A.; Christianson, Andrew J.; Narayanan, Ram M.

    2017-05-01

    Passive Coherent Location (PCL) is a developing radar technique, in which the system processes reflections from opportunistic illumination sources in the environment for detection and tracking. Many developments and improvements of PCL implement pseudo-monostatic and bistatic radar configurations; however, with the proliferation of commercial communication systems, the spectrally dense environment suggests the use of a heterogenous multistatic PCL system. This paper develops error minimization criteria to adjust and optimize available resources to a wideband PCL receiver. The method introduces the concept of self ambiguity as an error metric and implements this as a criterion to test varying PCL scenarios with differing transmitter modulation waveforms. The paper compares this to available techniques and the global minimum error available.

  18. 4. VIEW NORTHEAST, radar tower (unknown function), prime search radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW NORTHEAST, radar tower (unknown function), prime search radar tower, emergency power building, and height finder radar tower - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  19. 5. VIEW EAST, height finder radar towers, radar tower (unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW EAST, height finder radar towers, radar tower (unknown function), prime search radar tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  20. Incoherent optical processor for nondirectional edge enhancement of color images.

    PubMed

    Flores, Jorge L; Ayubi, Gastón A; Alonso, Julia R; Fernández, Ariel; Di Martino, J Matías; Ferrari, José A

    2011-12-01

    We present an optical method for nondirectional edge extraction/enhancement in color images. The method is based on the capability of twisted-nematic LCDs to traduce the image information in changes of the state of polarization of light, which allows us to generate simultaneously two replicas of the digital image displayed on the LCD: a true-color ("positive") image and a complementary-color ("negative") one. In our setup the imaging system consists of a lens plus a pupil mask formed with concentric apertures and orthogonal polarizers. This layout allows us to simultaneously image a well-focused positive replica (due to the circular aperture) superimposed to a slightly defocused negative one (due to the annular aperture). It is not difficult to demonstrate that this generates a nondirectional (Laplacian) edge enhancement. Unlike Fourier, our proposal works with incoherent illumination and does not require precise alignment, and thus, it could be a useful tool for edge extraction/enhancement in large images in real-time applications. Validation experiments are presented. © 2011 Optical Society of America

  1. Higher derivative corrections to incoherent metallic transport in holography

    NASA Astrophysics Data System (ADS)

    Baggioli, Matteo; Goutéraux, Blaise; Kiritsis, Elias; Li, Wei-Jia

    2017-03-01

    Transport in strongly-disordered, metallic systems is governed by diffusive processes. Based on quantum mechanics, it has been conjectured that these diffusivities obey a lower bound D/v 2 ≳ ℏ /k B T , the saturation of which provides a mechanism for the T-linear resistivity of bad metals. This bound features a characteristic velocity v, which was later argued to be the butterfly velocity v B , based on holographic models of transport. This establishes a link between incoherent metallic transport, quantum chaos and Planckian timescales. Here we study higher derivative corrections to an effective holographic action of homogeneous disorder. The higher derivative terms involve only the charge and translation symmetry breaking sector. We show that they have a strong impact on the bound on charge diffusion D c / ν B 2 ≳ ℏ/ k B T, by potentially making the coefficient of its right-hand side arbitrarily small. On the other hand, the bound on energy diffusion is not affected.

  2. Strategical incoherence regulates cooperation in social dilemmas on multiplex networks.

    PubMed

    Matamalas, Joan T; Poncela-Casasnovas, Julia; Gómez, Sergio; Arenas, Alex

    2015-04-27

    Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network within the population is known to affect the outcome of cooperative dynamics, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multiplex networks has yet again modified the expectations for the outcome of the Prisoner's Dilemma game, compared to the monoplex case. However, much remains unstudied regarding other social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically study the evolution of cooperation in all four games in the T-S plane on multiplex. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are responsible for the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy in all layers (coherent), and others that don't (incoherent). This second group of players is responsible for the surprising fact of a non full-cooperation in the Harmony Game on multiplex, never observed before, as well as a higher-than-expected cooperation rates in some regions of the other three social dilemmas.

  3. Long-working-distance incoherent-light interference microscope.

    PubMed

    Sinclair, Michael B; de Boer, Maarten P; Corwin, Alex D

    2005-12-20

    We describe the design and operation of a long-working-distance, incoherent light interference microscope that has been developed to address the growing demand for new microsystem characterization tools. The design of the new microscope is similar to that of a Linnik interference microscope and thus preserves the full working distance of the long-working-distance objectives utilized. However, in contrast to a traditional Linnik microscope, the new microscope does not rely on the use of matched objectives in the sample and the reference arms of the interferometer. An adjustable optical configuration has been devised that allows the total optical path length, wavefront curvature, and dispersion of the reference arm to be matched to the sample arm of the interferometer. The reference arm configuration can be adjusted to provide matching for 5x, 10x, and 20x long-working-distance objectives in the sample arm. In addition to retaining the full working distance of the sample arm objectives, the new design allows interference images to be acquired in situations in which intervening windows are necessary, such as occur with packaged microsystems, microfluidic devices, and cryogenic, vacuum, or environmental chamber studies of microsystem performance. The interference microscope is compatible with phase-shifting interferometry, vertical scanning interferometry, and stroboscopic measurement of dynamic processes.

  4. Long working-distance, incoherent light interference microscope

    SciTech Connect

    Sinclair, Michael B.; de Boer, Maarten Pieter; Corwin, Alex David

    2005-06-01

    We describe the design and operation of a long-working-distance, incoherent light interference microscope that has been developed to address the growing demand for new microsystem characterization tools. The design of the new microscope is similar to that of a Linnik interference microscope and thus preserves the full working distance of the long-working-distance objectives utilized. However, in contrast to a traditional Linnik microscope, the new microscope does not rely on the use of matched objectives in the sample and the reference arms of the interferometer. An adjustable optical configuration has been devised that allows the total optical path length, wavefront curvature, and dispersion of the reference arm to be matched to the sample arm of the interferometer. The reference arm configuration can be adjusted to provide matching for 5x, 10x, and 20x long-working-distance objectives in the sample arm. In addition to retaining the full working distance of the sample arm objectives, the new design allows interference images to be acquired in situations in which intervening windows are necessary, such as occur with packaged microsystems, microfluidic devices, and cryogenic, vacuum, or environmental chamber studies of microsystem performance. The interference microscope is compatible with phase-shifting interferometry, vertical scanning interferometry, and stroboscopic measurement of dynamic processes.

  5. Incoherent single pion electroproduction on the deuteron with polarization effects

    NASA Astrophysics Data System (ADS)

    Tammam, M.; Fix, A.; Arenhövel, H.

    2006-10-01

    Incoherent pion electroproduction on the deuteron is studied from threshold up to the second resonance region with special emphasis on the influence of the final-state interaction, in particular on polarization observables. The elementary γN→πN amplitude is taken from the MAID-2003 model. The final-state interaction is included by considering complete rescattering in the final NN and πN subsystems. Investigated in detail is their influence on the structure functions governing the semi-exclusive differential cross section, where besides the scattered electron only the produced pion is detected. For charged pion-production the effect of NN rescattering is moderate whereas πN rescattering is almost negligible, except very close to threshold. NN rescattering appears much stronger in neutral pion production for which the primary mechanism is the elimination of a significant spurious coherent contribution in the impulse approximation. Sizeable effects are also found in some of the polarization structure functions for beam and/or target polarizations.

  6. Concentration of hydrogen in titanium measured by neutron incoherent scattering

    SciTech Connect

    Chen-Mayer, H.H.; Mildner, D.F.R.; Lamaze, G.P.; Lindstrom, R.M.; Paul, R.L.; Kvardakov, V.V.; Richards, W.J.

    1998-12-31

    Mass fractions of hydrogen in titanium matrices have been measured using neutron incoherent scattering (NIS) and compared with results from prompt gamma activation analysis (PGAA). Qualitatively, NIS is a more efficient technique than PGAA which involves neutron absorption, and the former may be suitable for on-line analysis. However, for NIS the scattering contribution comes from both the hydrogen and the matrix, whereas prompt gamma emission has minimal matrix effect. To isolate the signal due to hydrogen scattering, a set of polypropylene films is used to simulate the increasing amount of hydrogen, and the scattered intensity is monitored. From this response, an unknown amount of the hydrogen can be deduced empirically. The authors have further attempted a first principle calculation of the intensity of the scattered signal from the experimental systems, and have obtained good agreement between calculation and the measurements. The study can be used as a reference for future applications of the scattering method to other hydrogen-in-metal systems.

  7. Enhanced detection of broadband incoherent light with nanoridge plasmonics.

    PubMed

    Kim, Jeong-Hyeon; Yeo, Jong-Souk

    2015-04-08

    Emerging photonic integrated circuit technologies require integrative functionality at ultrahigh speed and dimensional compatibility with ultrasmall electronics. Plasmonics offers a promise of addressing these challenges with novel nanophotonic approaches for on-chip information processing or sensing applications. Short communication range and strong light-matter interaction enabled by on-chip plasmonics allow us to extend beyond a conventional approach of integrating coherent and narrowband light source. Such hybrid electronic and photonic interconnection desires a on-chip photodetector that is highly responsive to broadband incoherent light, yet provides elegant design for nanoscale integration. Here we demonstrate an ultracompact broadband photodetection with greatly enhanced photoresponsivity using plasmonic nanoridge geometry. The nanoridge photodetector confines a wide spectrum of electromagnetic energy in a nanostructure through the excitation of multiple plasmons, which thus enables the detection of weak and broadband light. With nanoscale design, material, and dimensional compatibility for the integration, the nanoridge photodetector opens up a new possibility of highly sensitive on-chip photodetection for future integrated circuits and sensing applications.

  8. Incoherent scattering can favorably influence energy filtering in nanostructured thermoelectrics.

    PubMed

    Singha, Aniket; Muralidharan, Bhaskaran

    2017-08-11

    Investigating in detail the physics of energy filtering through a single planar energy barrier in nanostructured thermoelectric generators, we reinforce the non-trivial result that the anticipated enhancement in generated power at a given efficiency via energy filtering is a characteristic of systems dominated by incoherent scattering and is absent in ballistic devices. In such cases, assuming an energy dependent relaxation time τ(E) = kE (r) , we show that there exists a minimum value r min beyond which generation can be enhanced by embedding nanobarriers. For bulk generators with embedded nanobarriers, we delve into the details of inter sub-band scattering and show that it has finite contribution to the enhancement in generation. We subsequently discuss the realistic aspects, such as the effect of smooth transmission cut-off and show that for r > r min , the optimized energy barrier is just sufficiently wide enough to scatter off low energy electrons, a very wide barrier being detrimental to the performance. Analysis of the obtained results should provide general design guidelines for enhancement in thermoelectric generation via energy filtering. Our non-equilibrium approach is typically valid in the absence of local quasi-equilibrium and hence sets the stage for future advancements in thermoelectric device analysis, for example, Peltier cooling near a barrier interface.

  9. Probe and object function reconstruction in incoherent stem imaging

    SciTech Connect

    Nellist, P.D.; Pennycook, S.J.

    1996-09-01

    Using the phase-object approximation it is shown how an annular dark- field (ADF) detector in a scanning transmission electron microscope (STEM) leads to an image which can be described by an incoherent model. The point spread function is found to be simply the illuminating probe intensity. An important consequence of this is that there is no phase problem in the imaging process, which allows various image processing methods to be applied directly to the image intensity data. Using an image of a GaAs<110>, the probe intensity profile is reconstructed, confirming the existence of a 1.3 {Angstrom} probe in a 300kV STEM. It is shown that simply deconvolving this reconstructed probe from the image data does not improve its interpretability because the dominant effects of the imaging process arise simply from the restricted resolution of the microscope. However, use of the reconstructed probe in a maximum entropy reconstruction is demonstrated, which allows information beyond the resolution limit to be restored and does allow improved image interpretation.

  10. Strategical incoherence regulates cooperation in social dilemmas on multiplex networks

    NASA Astrophysics Data System (ADS)

    Matamalas, Joan T.; Poncela-Casasnovas, Julia; Gómez, Sergio; Arenas, Alex

    2015-04-01

    Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network within the population is known to affect the outcome of cooperative dynamics, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multiplex networks has yet again modified the expectations for the outcome of the Prisoner's Dilemma game, compared to the monoplex case. However, much remains unstudied regarding other social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically study the evolution of cooperation in all four games in the T - S plane on multiplex. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are responsible for the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy in all layers (coherent), and others that don't (incoherent). This second group of players is responsible for the surprising fact of a non full-cooperation in the Harmony Game on multiplex, never observed before, as well as a higher-than-expected cooperation rates in some regions of the other three social dilemmas.

  11. Comment on ``Observation of anticorrelation in incoherent thermal light fields''

    NASA Astrophysics Data System (ADS)

    Shapiro, Jeffrey H.; Lantz, Eric

    2012-05-01

    Recently, Chen [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.84.033835 84, 033835 (2011)] reported observation of anticorrelated photon coincidences in a Mach-Zehnder interferometer whose input light came from a mode-locked Ti:sapphire laser that had been rendered spatially incoherent by passage through a rotating ground-glass diffuser. They provided a quantum-mechanical explanation of their results, which ascribes the anticorrelation to two-photon interference. They also developed a classical-light treatment of the experiment and showed that it was incapable of explaining the anticorrelation behavior. Here we show that semiclassical photodetection theory, i.e., classical electromagnetic fields plus photodetector shot noise, does indeed explain the anticorrelation found by Chen The key to our analysis is properly accounting for the disparate time scales associated with the laser's pulse duration, the speckle-correlation time, the interferometer's differential delay, and the duration of the photon-coincidence gate. Our result is consistent with the long-accepted dictum that laser light which has undergone linear-optical transformations is classical-state light, so that the quantum and semiclassical theories of photodetection yield quantitatively identical results for its measurement statistics. The interpretation provided by Chen for their observations implicitly contradicts that dictum.

  12. Incoherent exciton trapping in self-similar aperiodic lattices

    SciTech Connect

    Dominguez-Adame, F.; Macia, E. ); Sanchez, A. Escuela Politecnica Superior, Universidad Carlos III de Madrid, C./Butarque 15, E-28911 Leganes, Madrid )

    1995-01-01

    Incoherent exciton dynamics in one-dimensional perfect lattices with traps at sites arranged according to aperiodic deterministic sequences is studied. We focus our attention on Thue-Morse and Fibonacci systems as canonical examples of self-similar aperiodic systems. Solving numerically the corresponding master equation we evaluate the survival probability and the mean-square displacement of an exciton initially created at a single site. Results are compared to systems of the same size with the same concentration of traps randomly as well as periodically distributed over the whole lattice. Excitons progressively extend over the lattice on increasing time and, in this sense, they act as a probe of the particular arrangements of traps in each system considered. The analysis of the characteristic features of their time decay indicates that exciton dynamics in self-similar aperiodic arrangements of traps is quite close to that observed in periodic ones, but differs significantly from that corresponding to random lattices. We also report on characteristic features of exciton motion suggesting that Fibonacci and Thue-Morse orderings might be clearly observed by appropriate experimental measurements. In the conclusions we comment on the implications of our work on the way towards a unified theory of the ordering of matter.

  13. Passive storage technologies

    NASA Technical Reports Server (NTRS)

    Kittel, P.

    1984-01-01

    Advances in storage technology and how passive techniques could be applied to the storage of propellants at the space station are described. The devices considered are passive orbital disconnect struts, cooled shield optimization, liftweight shields and catalytic converters.

  14. Tropospheric Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr. (Editor)

    1982-01-01

    The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.

  15. Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing.

    PubMed

    Rius, Manuel; Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2015-05-18

    We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing.

  16. Comparative Characteristics Of Coherent And Incoherent Radiation In The Photography Of Ulcer

    NASA Astrophysics Data System (ADS)

    Novikov, V. F.; Paramonov, L. V.

    1985-01-01

    The efficiency of He-Ne laser radiation and incoherent radiation by red light sources with different spectral bandwidths is compared for the endoscopic phototherapy of gastric and duodenal ulcers. Coherent and incoherent radiation is determined to result in the same theraputic effect when doing the treatment of ulcer deseases. The methods of ulcer treatment is suggested with a conventional fibrogastroscope fitted with red glass filter.

  17. Sparse Modeling with Universal Priors and Learned Incoherent Dictionaries(PREPRINT)

    DTIC Science & Technology

    2009-09-09

    SPARSE MODELING WITH UNIVERSAL PRIORS AND LEARNED INCOHERENT DICTIONARIES By Ignacio Ramı́rez Federico Lecumberry and Guillermo Sapiro IMA Preprint...Priors and Learned Incoherent Dictionaries Ignacio Ramı́rez University of Minnesota ramir048@umn.edu, Federico Lecumberry Universidad de la República...Self-taught learning: transfer learning from unlabeled data. In ICML, pages 759–766, 2007. [26] I. Ramirez, F. Lecumberry , , and G. Sapiro. Universal

  18. Reprint of : Effect of incoherent scattering on three-terminal quantum Hall thermoelectrics

    NASA Astrophysics Data System (ADS)

    Sánchez, Rafael; Sothmann, Björn; Jordan, Andrew N.

    2016-08-01

    A three-terminal conductor presents peculiar thermoelectric and thermal properties in the quantum Hall regime: it can behave as a symmetric rectifier and as an ideal thermal diode. These properties rely on the coherent propagation along chiral edge channels. We investigate the effect of breaking the coherent propagation by the introduction of a probe terminal. It is shown that chiral effects not only survive the presence of incoherence but they can even improve the thermoelectric performance in the totally incoherent regime.

  19. Alternate Theories of Belief and the Implications for Incoherence, Reconciliation, and Sensitivity Analysis

    DTIC Science & Technology

    1981-11-01

    R.R. Possibilistic decisions. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9, 388-342. Zadeh, L.A. Fuzzy sets. Information and Control...Lower Probabilities Belief Functions Fuzzy Probabilities Incoherence Sensitivity Analysis Z2 ABSTRACT (Conflmm art UKevm e alde it notCo ry and fdoimttfy...axioms, and define incoherence as the potential for forming incon- sistent judgments. We propose that decision analysis is a means for reducing

  20. Signatures of strong Langmuir turbulence in the auroral ionosphere: Observations with the EISCAT Svalbard radar during the IPY

    NASA Astrophysics Data System (ADS)

    Schlatter, Nicola; Ivchenko, Nickolay; Häggström, Ingemar

    2014-05-01

    We present the first statistical study of Strong Langmuir Turbulence (SLT) signatures observed in the auroral ionosphere with a incoherent scatter radar. Langmuir turbulence is known to occur in laboratory plasma as well as in space plasmas. In the turbulence regime of SLT Langmuir modes are trapped in dynamic density cavities. Artificially created Langmuir turbulence and SLT were extensively studied with incoherent scatter radars in the ionosphere since the 90s. Recent research shows that SLT occurs also naturally in the ionosphere during aurora in regions of electron precipitation. Data obtained with the EISCAT Svalbard radar during the international polar year (IPY, 2007-08) were searched for signatures of SLT. In incoherent scatter radar experiments signatures of SLT are observed as enhanced backscattered radar power at the ion line frequencies, plasma line frequencies, and at zero Doppler shift. The power enhancement at zero Doppler shift arises due to Bragg scattering from non-propagating density cavities. In the IPY data set ~ 0.02% of the data comply with our search criteria based on the ion line signature. The event occurrence frequency peaks in the pre-midnight sector and increases with local geomagnetic disturbance. Enhanced backscattered power is often observed with limited altitude extent and the altitude distribution of SLT signatures in the ion line channel has a peak at 220 km. Enhancement of the plasma line is consistently observed with the ion line enhancements. Two classes of enhanced plasma lines occur. The first localized in frequency and altitude occur at altitudes of ion line enhancements. At times these plasma line enhancements show cascade-like structure. The second wide in frequency and range is observed at altitudes further below, 170 km, and at frequencies close to 3 MHz. Optical data available indicate the identified events to occur during auroral breakup with high energetic electrons precipitating.

  1. Passive Microwave Rainfall Estimates from the GPM Mission

    NASA Astrophysics Data System (ADS)

    Kummerow, Christian; Petkovic, Veljko

    2017-04-01

    The Global Precipitation Measurement (GPM) mission was launched in February 2014 as a joint mission between JAXA from Japan and NASA from the United States. GPM carries a state of the art dual-frequency precipitation radar and a multi-channel passive microwave radiometer that acts not only to enhance the radar's retrieval capability, but also as a reference for a constellation of existing satellites carrying passive microwave sensors. In March of 2016, GPM released Version 4 of its precipitation products that consists of radar, radiometer, and combined radar/radiometer products. The precipitation products from these sensors or sensor combination are consistent by design and show relatively minor differences in the mean global sense. Closer examination of the biases, however, reveals regional biases between active and passive sensors that can be directly related top the nature of the convection. By looking at cloud systems instead of individual satellite pixels, the relationship between biases and the large scale environmental state become obvious. Organized convection, which occurs more readily in regimes with large Convective Available Potential Energy (CAPE) and shear tend to drive biases in different directions than isolated convection. This is true over both land and ocean. This talk will present the latest findings and explore these discrepancies from a physical perspective in order to gain some understanding between cloud structures, information content, and retrieval differences. This analysis will be used to then drive a bigger picture of how GPM's latest results inform the Global Water and Energy budgets.

  2. Quantifying incoherence in speech: An automated methodology and novel application to schizophrenia

    PubMed Central

    Elvevåg, Brita; Foltz, Peter W.; Weinberger, Daniel R.; Goldberg, Terry E.

    2007-01-01

    Incoherent discourse, with a disjointed flow of ideas, is a cardinal symptom in several psychiatric and neurological conditions. However, measuring incoherence has often been complex and subjective. We sought to validate an objective, intrinsically reliable, computational approach to quantifying speech incoherence. Patients with schizophrenia and healthy control volunteers were administered a variety of language tasks. The speech generated was transcribed and the coherence computed using Latent Semantic Analysis (LSA). The discourse was also analyzed with a standard clinical measure of thought disorder. In word association and generation tasks LSA derived coherence scores were sensitive to differences between patients and controls, and correlated with clinical measures of thought disorder. In speech samples LSA could be used to localize where in sentence production incoherence occurs, predict levels of incoherence as well as whether discourse “belonged” to a patient or control. In conclusion, LSA can be used to assay disordered language production so as to both complement human clinical ratings as well as experimentally parse this incoherence in a theory-driven manner. PMID:17433866

  3. Effects of Oscillatory Deformations on the Coherent and Incoherent Quantum Transport

    NASA Astrophysics Data System (ADS)

    Behzadi, Naghi; Ahansaz, Bahram

    2017-08-01

    Inspired by the works of Caruso (New J. Phys. 16, 055015 (2014) and Scholak et al. (J. Phys. B: At. Mol. Opt. Phys. 44, 184012 2011), which state that for a large class of complex noisy networks, the optimal efficiency of quantum transport is universally obtained by mixing coherent (Hamiltonian) and incoherent (noisy) parts where the contribution of the coherent part is strictly more than the incoherent one, we examine the effect of oscillatory deformations on two simple prototypes in order to study their effects on the efficiency of coherent and incoherent energy transport. The prototypes are interchangeable to each other only by a simple phase modulation, such that the dynamics for the first type is only coherent, while for the second one the coherent evolution is completely suppressed and the evolution of the system is only incoherent (noisy). In this regard, it is shown that there exist a special deformation by which the efficiency of incoherent transport becomes better than the coherent one. This result suggests that in the noisy networks with collective harmonic motions, the optimality of transport can be occurred in such a way that the contribution of incoherent term is more than the coherent one.

  4. Radar Imaging with a Network of Digital Noise Radar Systems

    DTIC Science & Technology

    2009-03-01

    III. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 Radar Range Equation and Radar Cross Section . . . . . 29 3.2 UWB...noise radar system. This particular ap- plication tracked a corner reflector that moved from a range of 40 ft to 185 ft from the radar while using an...target scenario and the resulting SAR image. In this test, a radar was placed outside a room with a trihedral reflector placed on the other side of the

  5. Modeling the Meteoroid Input Function at Mid-Latitude Using Meteor Observations by the MU Radar

    NASA Technical Reports Server (NTRS)

    Pifko, Steven; Janches, Diego; Close, Sigrid; Sparks, Jonathan; Nakamura, Takuji; Nesvorny, David

    2012-01-01

    The Meteoroid Input Function (MIF) model has been developed with the purpose of understanding the temporal and spatial variability of the meteoroid impact in the atmosphere. This model includes the assessment of potential observational biases, namely through the use of empirical measurements to characterize the minimum detectable radar cross-section (RCS) for the particular High Power Large Aperture (HPLA) radar utilized. This RCS sensitivity threshold allows for the characterization of the radar system s ability to detect particles at a given mass and velocity. The MIF has been shown to accurately predict the meteor detection rate of several HPLA radar systems, including the Arecibo Observatory (AO) and the Poker Flat Incoherent Scatter Radar (PFISR), as well as the seasonal and diurnal variations of the meteor flux at various geographic locations. In this paper, the MIF model is used to predict several properties of the meteors observed by the Middle and Upper atmosphere (MU) radar, including the distributions of meteor areal density, speed, and radiant location. This study offers new insight into the accuracy of the MIF, as it addresses the ability of the model to predict meteor observations at middle geographic latitudes and for a radar operating frequency in the low VHF band. Furthermore, the interferometry capability of the MU radar allows for the assessment of the model s ability to capture information about the fundamental input parameters of meteoroid source and speed. This paper demonstrates that the MIF is applicable to a wide range of HPLA radar instruments and increases the confidence of using the MIF as a global model, and it shows that the model accurately considers the speed and sporadic source distributions for the portion of the meteoroid population observable by MU.

  6. Multiple-wavelength radar perspectives of mixed-phase convective precipitation in MC3E

    NASA Astrophysics Data System (ADS)

    Nesbitt, S. W.; Gleicher, K. J.; Petersen, W. A.; Schwaller, M.

    2011-12-01

    During the NASA/DOE Midlatitude Continental Convective Clouds Experiment (MC3E), conducted in April-June 2011 near the Southern Great Plains (SGP) site in northern Oklahoma, multiple wavelength aircraft radar observations of a spectra of convective events were collected from ground based scanning and vertically pointing radars and airborne radars. Ground based radars ranged from W to S band (NASA NPOL dual-polarization (S), NASA D3R dual-polarization (Ku/Ka, DOE C-SAPR dual-polarization (C), DOE dual-polarization (X), DOE Ka/W-SACR dual polarization), while the NASA HIWRAP Ku/Ka band Doppler radar flew aboard the NASA ER-2 high altitude aircraft. In-situ microphysics were provided in weak convection from the University of North Dakota Citation aircraft. From an incoherent spaceborne radar perspective, in order to accurately attenuation-correct the profile of radar reflectivity and rainfall rate, it is important to distinguish amongst ice-phase, mixed-phase, and liquid precipitation in convection. In this study, we will investigate whether height (as is done for the Tropical Rainfall Measuring Mission precipitation radar), temperature, reflectivity, dual-frequency ratio, or other assumptions are best at delineating mixed phase precipitation in convection for application in TRMM and GPM measurements. Using D3R and HIWRAP measurements as a test bed, validation data in the form of spatiotemporally matched data sets from dual-polarization radar variables and hydrometeor identification at longer wavelengths, as well as in situ microphysics data will be used to discriminate mixed phase precipitation zones and as an attenuation reference to examine dual-frequency ratio methods for identification of mixed precipitation and attenuation correction in such zones. Statistical methods for evaluating and correcting single-frequency methods and assumptions in identifying mixed precipitation for TRMM applications will also be discussed.

  7. Radar remote sensing in biology

    USGS Publications Warehouse

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  8. Spaceborne meteorological radar studies

    NASA Technical Reports Server (NTRS)

    Meneghini, R.

    1988-01-01

    Various radar designs and methods are studied for the estimation of rainfall parameters from space. An immediate goal is to support the development of the spaceborne radar that has been proposed for the Tropical Rain Measuring Mission (TRMM). The effort is divided into two activities: a cooperative airborne rain measuring experiment with the Radio Research Laboratory of Japan (RRL), and the modelling of spaceborne weather radars. An airborne rain measuring experiment was conducted at Wallops Flight Facility in 1985 to 1986 using the dual-wavelength radar/radiometer developed by RRL. The data are presently being used to test a number of methods that are relevant to spaceborne weather radars. An example is shown of path-averaged rain rates as estimated from three methods: the standard reflectivity rain rate method (Z-R), a dual-wavelength method, and a surface reference method. The results from the experiment shows for the first time the feasibility of using attenuation methods from space. The purposes of the modelling are twofold: to understand in a quantitative manner the relationships between a particular radar design and its capability for estimating precipitation parameters and to help devise and test new methods. The models are being used to study the impact of various TRMM radar designs on the accuracy of rain rate estimation as well as to test the performance of range-profiling algorithms, the mirror-image method, and some recently devised graphical methods for the estimation of the drop size distribution.

  9. Radar applications overview

    NASA Astrophysics Data System (ADS)

    Greenspan, Marshall

    1996-06-01

    During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, radar systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, radar systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology radars can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these radar applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band radars designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne radar systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated radar design impacts will be contrasted with those of radar systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart radar sensors.

  10. Radar frequency radiation

    NASA Astrophysics Data System (ADS)

    Malowicki, E.

    1981-11-01

    A method is presented for the determination of radar frequency radiation power densities that the PAVE PAWS radar system could produce in its air and ground environment. The effort was prompted by the concern of the people in the vicinity of OTIS AFB MA and BEALE AFB CA about the possible radar frequency radiation hazard of the PAVE PAWS radar. The method is based on the following main assumptions that: (a) the total field can be computed as the vector summation of the individual fields due to each antenna element; (b) the individual field can be calculated using distances for which the field point is in the far field of the antenna element. An RFR computer program was coded for the RADC HE 6180 digital computer and exercised to calculate the radiation levels in the air and ground space for the present baseline and the possible Six DB and 10 DB growth systems of the PAVE PAWS radar system at OTIS AFB MA. The average radiation levels due to the surveillance fence were computed for three regions: in the air space in front of the radar, at the radar hazard fence at OTIS AFB MA and at representative ground points in the OTIS AFB vicinity. It was concluded that the radar frequency radiation of PAVE PAWS does not present a hazard to personnel provided there is no entry to the air hazard zone or to the area within the hazard fence. The method developed offers a cost effective way to determine radiation levels from a phased array radar especially in the near field and transition regions.

  11. Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser.

    PubMed

    Albota, Marius A; Heinrichs, Richard M; Kocher, David G; Fouche, Daniel G; Player, Brian E; O'Brien, Michael E; Aull, Brian F; Zayhowski, John J; Mooney, James; Willard, Berton C; Carlson, Robert R

    2002-12-20

    We have developed a threedimensional imaging laser radar featuring 3-cm range resolution and single-photon sensitivity. This prototype direct-detection laser radar employs compact, all-solid-state technology for the laser and detector array. The source is a Nd:YAG microchip laser that is diode pumped, passively Q-switched, and frequency doubled. The detector is a gated, passively quenched, two-dimensional array of silicon avalanche photodiodes operating in Geigermode. After describing the system in detail, we present a three-dimensional image, derive performance characteristics, and discuss our plans for future imaging three-dimensional laser radars.

  12. Radar studies of turbulence and lidar studies of the nickel layer in the arctic mesosphere

    NASA Astrophysics Data System (ADS)

    Li, Jintai

    This thesis presents studies of the Arctic middle atmosphere using Incoherent Scatter Radar (ISR) and resonance lidar at Poker Flat Research Range (PFRR), Chatanika, Alaska. The Poker Flat Incoherent Scatter Radar (PFISR) provides measurements of mesospheric turbulence and the resonance lidar provides measurements of mesospheric nickel layer. We develop retrieval and analysis techniques to determine the characteristics of the turbulence and the nickel layer. We present measurements of mesospheric turbulence with PFISR on 23 April 2008 and 18 February 2013. We characterize mesospheric turbulence in terms of the energy dissipation rate as a function of altitude and time on these days. We present an extensive analysis of the radar measurements to show that the use of high quality PFISR data and an accurate characterization of the geophysical conditions are essential to achieve accurate turbulent measurements. We find that the retrieved values of the energy dissipation rate vary significantly based on how the data is selected. We present measurements of mesospheric nickel layer with resonance lidar on the night of 27-28 November 2012 and 20-21 December 2012. We characterize the mesospheric nickel layer in terms of the nickel concentration as a function of altitude on these days. We find that our nickel concentrations are significantly higher than expected from studies of meteors. We present an extensive analysis of the lidar measurements to show that these measurements of unexpectedly high values of the nickel concentrations are accurate and not biased by the lidar measurements.

  13. Program of the Antarctic Syowa MST/IS radar (PANSY)

    NASA Astrophysics Data System (ADS)

    Sato, Kaoru; Tsutsumi, Masaki; Sato, Toru; Nakamura, Takuji; Saito, Akinori; Tomikawa, Yoshihiro; Nishimura, Koji; Kohma, Masashi; Yamagishi, Hisao; Yamanouchi, Takashi

    2014-10-01

    The PANSY radar is the first Mesosphere-Stratosphere-Troposphere/Incoherent Scatter (MST/IS) radar in the Antarctic region. It is a large VHF monostatic pulse Doppler radar operating at 47 MHz, consisting of an active phased array of 1045 Yagi antennas and an equivalent number of transmit-receive (TR) modules with a total peak output power of 500 kW. The first stage of the radar was installed at Syowa Station (69°00‧S, 39°35‧E) in early 2011, and is currently operating with 228 antennas and modules. This paper reports the project's scientific objectives, technical descriptions, and the preliminary results of observations made to date. The radar is designed to clarify the role of atmospheric gravity waves at high latitudes in the momentum budget of the global circulation in the troposphere, stratosphere and mesosphere, and to explore the dynamical aspects of unique polar phenomena such as polar mesospheric clouds (PMC) and polar stratospheric clouds (PSC). The katabatic winds as a branch of Antarctic tropospheric circulation and as an important source of gravity waves are also of special interest. Moreover, strong and sporadic energy inputs from the magnetosphere by energetic particles and field-aligned currents can be quantitatively assessed by the broad height coverage of the radar which extends from the lower troposphere to the upper ionosphere. From engineering points of view, the radar had to overcome restrictions related to the severe environments of Antarctic research, such as very strong winds, limited power availability, short construction periods, and limited manpower availability. We resolved these problems through the adoption of specially designed class-E amplifiers, light weight and tough antenna elements, and versatile antenna arrangements. Although the radar is currently operating with only about a quarter of its full designed system components, we have already obtained interesting results on the Antarctic troposphere, stratosphere and

  14. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1981-01-01

    Software to support all stages of asteroid radar observation and data analysis is developed. First-order analysis of all data in hand is complete. Estimates of radar cross sections, circular polarization ratios, and limb-to-limb echo spectral bandwidths for asteroids 7 Iris, 16 Psyche, 97 Klotho, 1862 Apollo, and 1915 Quetzalcoatl are reported. Radar observations of two previously unobserved asteroids were conducted. An Aten asteroid, 2100 Ra-Shalom, with the smallest known semimajor axis (0.83) was detected. Preliminary data reduction indicates a circular polarization ratio comparable to those of Apollo, Quetzalcoatl, and Toro.

  15. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    The initial radar observations of the mainbelt asteroids 9 Metis, 27 Euterpe, and 60 Echo are examined. For each target, data are taken simultaneously in the same sense of circular polarization as transmitted as well as in the opposite (OC) sense. Estimates of the radar cross sections provide estimates of the circular polarization ratio, and the normalized OC radar cross section. The circular polarization ratio, is comparable to values measured for other large S type asteroids and for a few much smaller, Earth approaching objects, most of the echo is due to single reflection backscattering from smooth surface elements.

  16. Radar investigation of asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1981-11-01

    Software to support all stages of asteroid radar observation and data analysis is developed. First-order analysis of all data in hand is complete. Estimates of radar cross sections, circular polarization ratios, and limb-to-limb echo spectral bandwidths for asteroids 7 Iris, 16 Psyche, 97 Klotho, 1862 Apollo, and 1915 Quetzalcoatl are reported. Radar observations of two previously unobserved asteroids were conducted. An Aten asteroid, 2100 Ra-Shalom, with the smallest known semimajor axis (0.83) was detected. Preliminary data reduction indicates a circular polarization ratio comparable to those of Apollo, Quetzalcoatl, and Toro.

  17. Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  18. Micropower impulse radar

    SciTech Connect

    Azevedo, S.; McEwan, T.E.

    1996-01-01

    Invented and developed at Lawrence Livermore National Laboratory is an inexpensive and highly sensitive, low-power radar system that produces and samples extremely short pulses of energy at the rate of 2 million per second. Called micropower impulse radar (MIR), it can detect objects at a greater variety of distances with greater sensitivity than conventional radar. Its origins in the Laboratory`s Laser Directorate stem from Nova`s transient digitizer. The MIR`s extraordinary range of applications include security, search and rescue, life support, nondestructive evaluation, and transportation.

  19. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1981-01-01

    Efforts were focused on: (1) acquisition of radar data at Arecibo; (2) examination of raw data; (3) reduction of the unmodulated data to background-free, calibrated spectra; (4) integration and coherent analyses of the phase-coded data; and (5) calculation of Doppler shifts and preliminary values for echo limb-to-limb bandwidths, radar cross sections, and circular polarization ratios. Asteroids observed to data have radar properties distinct from those of the rocky terrestrial planets and those of the icy Galilean satellites.

  20. EISCAT Svalbard radar

    NASA Astrophysics Data System (ADS)

    Lehtinen, Markku; Kangas, Jorma

    1992-02-01

    The main fields of interest of the Finnish scientists in EISCAT research are listed. Finnish interests in the Polar Cap Radar (PMR) and areas where the Finnish contribution could be important are addressed: radar techniques; sporadic E layers in the polar cap; atmospheric models; auroral studies in the polar cap; nonthermal plasmas in the F region; coordinated measurements with the Cluster satellites; studies of the ionospheric traveling; convection vortices; polar cap absorption; studies of lower atmosphere; educational program. A report on the design specification of an ionospheric and atmospheric radar facility based on the archipelago of Svalbard (Norway) is summarized.

  1. Asteroid radar astrometry

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.; Jurgens, R. F.; Rosema, K. D.; Winkler, R.; Yeomans, D. K.; Campbell, D. B.; Chandler, J. F.; Shapiro, I. I.; Hine, A. A.; Velez, R.

    1991-01-01

    Measurements of time delay and Doppler frequency are reported for asteroid-radar echoes obtained at Arecibo and Goldstone during 1980-1990. Radar astrometry is presented for 23 near-earth asteroids and three mainbelt asteroids. These measurements, which are orthogonal to optical, angular-position measurements, and typically have a fractional precision between 10 to the -5th and 10 to the -8th, permit significant improvement in estimates of orbits and hence in the accuracy of prediction ephemerides. Estimates are also reported of radar cross-section and circular polarization ratio for all asteroids observed astrometrically during 1980-1990.

  2. A microprogrammable radar controller

    NASA Technical Reports Server (NTRS)

    Law, D. C.

    1986-01-01

    The Wave Propagation Lab. has completed the design and construction of a microprogrammable radar controller for atmospheric wind profiling. Unlike some radar controllers using state machines or hardwired logic for radar timing, this design is a high speed programmable sequencer with signal processing resources. A block diagram of the device is shown. The device is a single 8 1/2 inch by 10 1/2 inch printed circuit board and consists of three main subsections: (1) the host computer interface; (2) the microprogram sequencer; and (3) the signal processing circuitry. Each of these subsections are described in detail.

  3. Passive Multistatic Detection of Maritime Targets using Opportunistic Radars

    DTIC Science & Technology

    2014-03-01

    due to receiver’s DF error. .......................25 Figure 12. Monostatic RCS of RSN’s Formidable-class frigate simulated at 3050 MHz using FEKO ...15. Monostatic RCS of RSN’s Formidable-class frigate’s model simulated at 9410 MHz using FEKO ...origin and single Tx at ( 5000,0). ........35 Figure 17. SNR detection plot (dB) using simulated median monostatic RCS from FEKO at X-band with Rx at

  4. Ambiguity Function Analysis for UMTS-Based Passive Multistatic Radar

    DTIC Science & Technology

    2014-04-16

    Process., vol. 59, pp. 5538–5557, Nov. 2011. [23] D. E. Hack , L. K. Patton, A. D. Kerrick, and M. A. Saville, “Direct Cartesian detection, localization, and...Paper Selection Committee Member, Tutorial Lecturer). He served as the Publicity Chair for the First IEEE International Conference on Waveform Diversity

  5. Methods And System Suppressing Clutter In A Gain-Block, Radar-Responsive Tag System

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2006-04-18

    Methods and systems reduce clutter interference in a radar-responsive tag system. A radar transmits a series of linear-frequency-modulated pulses and receives echo pulses from nearby terrain and from radar-responsive tags that may be in the imaged scene. Tags in the vicinity of the radar are activated by the radar's pulses. The tags receive and remodulate the radar pulses. Tag processing reverses the direction, in time, of the received waveform's linear frequency modulation. The tag retransmits the remodulated pulses. The radar uses a reversed-chirp de-ramp pulse to process the tag's echo. The invention applies to radar systems compatible with coherent gain-block tags. The invention provides a marked reduction in the strength of residual clutter echoes on each and every echo pulse received by the radar. SAR receiver processing effectively whitens passive-clutter signatures across the range dimension. Clutter suppression of approximately 14 dB is achievable for a typical radar system.

  6. Studies on Radar Sensor Networks

    DTIC Science & Technology

    2007-08-08

    through-foliage target detection using UWB radar sensor network based on real-world data; 2. Foliage clutter modeling using UWB radars; 3. Outdoor UWB...channel modeling based on field data; 4. Multi-target detection using radar sensor networks (theoretical studies); 5. SVD-QR and graph theory for MIMO...Foliage clutter modeling using UWB radars; 3. Outdoor UWB channel modeling based on field data; 4. Multi-target detection using radar sensor networks

  7. Laser Radar Animation

    NASA Image and Video Library

    Laser and radar instruments aboard NASA aircraft provide measurements of the snow and ice surface and down to the bedrock under the ice. Lasers, with a shorter wavelength, measure the surface eleva...

  8. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1983-01-01

    For 80 Sappho, 356 Liguria, 694 Ekard, and 2340 Hathor, data were taken simultaneously in the same sense of circular polarization as transmitted (SC) as well as in the opposite (OC) sense. Graphs show the average OC and SC radar echo power spectra soothed to a resolution of EFB Hz and plotted against Doppler frequency. Radar observations of the peculiar object 2201 Oljato reveal an unusual set of echo power spectra. The albedo and polarization ratio remain fairly constant but the bandwidths range from approximately 0.8 Hz to 1.4 Hz and the spectral shapes vary dramatically. Echo characteristics within any one date's approximately 2.5-hr observation period do not fluctuate very much. Laboratory measurements of the radar frequency electrical properties of particulate metal-plus-silicate mixtures can be combined with radar albedo estimates to constrain the bulk density and metal weight, fraction in a hypothetical asteroid regolith having the same particle size distribution as lab samples.

  9. Multispectral imaging radar

    NASA Technical Reports Server (NTRS)

    Porcello, L. J.; Rendleman, R. A.

    1972-01-01

    A side-looking radar, installed in a C-46 aircraft, was modified to provide it with an initial multispectral imaging capability. The radar is capable of radiating at either of two wavelengths, these being approximately 3 cm and 30 cm, with either horizontal or vertical polarization on each wavelength. Both the horizontally- and vertically-polarized components of the reflected signal can be observed for each wavelength/polarization transmitter configuration. At present, two-wavelength observation of a terrain region can be accomplished within the same day, but not with truly simultaneous observation on both wavelengths. A multiplex circuit to permit this simultaneous observation has been designed. A brief description of the modified radar system and its operating parameters is presented. Emphasis is then placed on initial flight test data and preliminary interpretation. Some considerations pertinent to the calibration of such radars are presented in passing.

  10. A comparative study of the SMAP passive soil moisture product with existing satellite-based soil moisture products

    USDA-ARS?s Scientific Manuscript database

    NASA Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015 to provide global mapping of high-resolution soil moisture and freeze thaw state every 2-3 days using an L-band (active) radar and an L-band (passive) radiometer. The radiometer-only soil moisture product (L2...

  11. Study on the shipboard radar reconnaissance equipment azimuth benchmark method

    NASA Astrophysics Data System (ADS)

    Liu, Zhenxing; Jiang, Ning; Ma, Qian; Liu, Songtao; Wang, Longtao

    2015-10-01

    The future naval battle will take place in a complex electromagnetic environment. Therefore, seizing the electromagnetic superiority has become the major actions of the navy. Radar reconnaissance equipment is an important part of the system to obtain and master battlefield electromagnetic radiation source information. Azimuth measurement function is one of the main function radar reconnaissance equipments. Whether the accuracy of direction finding meets the requirements, determines the vessels successful or not active jamming, passive jamming, guided missile attack and other combat missions, having a direct bearing on the vessels combat capabilities . How to test the performance of radar reconnaissance equipment, while affecting the task as little as possible is a problem. This paper, based on radar signal simulator and GPS positioning equipment, researches and experiments on one new method, which povides the azimuth benchmark required by the direction-finding precision test anytime anywhere, for the ships at jetty to test radar reconnaissance equipment performance in direction-finding. It provides a powerful means for the naval radar reconnaissance equipments daily maintenance and repair work[1].

  12. Planetary benchmarks. [structural design criteria for radar reference devices on planetary surfaces

    NASA Technical Reports Server (NTRS)

    Uphoff, C.; Staehle, R.; Kobrick, M.; Jurgens, R.; Price, H.; Slade, M.; Sonnabend, D.

    1978-01-01

    Design criteria and technology requirements for a system of radar reference devices to be fixed to the surfaces of the inner planets are discussed. Offshoot applications include the use of radar corner reflectors as landing beacons on the planetary surfaces and some deep space applications that may yield a greatly enhanced knowledge of the gravitational and electromagnetic structure of the solar system. Passive retroreflectors with dimensions of about 4 meters and weighing about 10 kg are feasible for use with orbiting radar at Venus and Mars. Earth-based observation of passive reflectors, however, would require very large and complex structures to be delivered to the surfaces. For Earth-based measurements, surface transponders offer a distinct advantage in accuracy over passive reflectors. A conceptual design for a high temperature transponder is presented. The design appears feasible for the Venus surface using existing electronics and power components.

  13. Naturally Enhanced Ion Acoustic Lines with the Poker Flat AMISR radar.

    NASA Astrophysics Data System (ADS)

    Stromme, A.; Semeter, J.; Zettergren, M.

    2007-12-01

    The study of Naturally Enhanced Ion Acoustic Lines (NEIALs) have become one of the key studies for EISCAT both in the polar cusp using the EISCAT Svalbard Radar (ESR), and in the auroral zone, using the EISCAT UHF and VHF systems. Still many questions regarding the temporal and spatial extent of the NEIAL events remain unanswered. The new Advanced Modular Incoherent Scatter Radar (AMISR) in Poker Flat, Alaska is the first phased array Incoherent Scatter Radar at high latitudes, and by taking advantage of its possibility of (almost) simultaneous looking directions, we can resolve some of the space time ambiguity associated with NEIALs. During the night of the 23. March 2007, a period of NEIALs occurred. The radar ran in a 10 position mode with 9 beams in a narrow quadratic grid spaced by 3 degrees, plus a 10th position up B - slightly offset from the grid. Raw voltage data were sampled to allow for very high time resolution ACFs and spectra. Combining high time resolution data from multiple positions, we have the opportunity for the first time to look at the space-time ambiguity in the development of NEIALs. During the campaign a narrow field of view imager from university of Boston were operational at the Davis science center close by the AMISR array. The night of the 23. March, the imager was pointed field aligned, and at around 11:20 UT - at the time of the radar NEIALs - a field of dynamic rays occurred at and near the zenith. High time resolution multi position data from AMISR will be shown to follow the space and time development of the NEIAL event. This will also be correlated with high time resolution data from the imager.

  14. SMAP RADAR Calibration and Validation

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, J.

    2014-12-01

    The Soil Moisture Active Passive (SMAP) mission is planned to launch on Jan 8, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there will be a 3 month instrument checkout period, followed by 6 months of level 1 (L1) calibration and validation. In this presentation, we will discuss the plans and preparations for the calibration and validation of L1 radar data from SMAP. At the start of the L1 cal/val period, we will validate the operation of the instrument and of the ground processing using tools that look at readily identifiable surface features such as coast lines and corner reflectors. Geometric biases will be fit and removed. Radiometric cross-calibration with PALSAR and Aquarius will also be performed using target regions in the Amazon rain forest selected for their stability and uniformity. As the L1 cal/val period progresses, the performance of the automated short and long term calibration modules in ground processing will be tracked and verified using data from stable reference targets such as the wind corrected ocean and selected areas of rain forest that have shown good temporal stability. The performance of the radio frequency interference (RFI) removal algorithm will be validated by processing data with the algorithm turned on and off, and using different parameter settings. Additional information on the extent of RFI will be obtained from a special RFI survey conducted early in the L1 cal/val period. Radar transmissions are turned off during the RFI survey, and receive only data are collected over a variety of operating frequencies. The model based Faraday rotation corrections will also be checked during the L1 cal/val by comparing the model Faraday rotation with the measured Faraday rotation obtained by the SMAP Radiometer. This work is supported by the SMAP project at the Jet

  15. Statistical MIMO Radar

    DTIC Science & Technology

    2004-12-20

    improve the radar’s performance. MIMO radar utilizes multiple antennas at both the transmitter and receiver. It can be applied in monostatic or bistatic...signal at the output of the beamformer equals , , HE t x y x y t t M E y t x y x M r a b s n a b        20y s t n t S- MIMO Radar

  16. Active radar stealth device

    NASA Astrophysics Data System (ADS)

    Cain, R. N.; Corda, Albert J.

    1991-07-01

    This patent discloses an active radar stealth device mounted on a host platform for minimizing the radar cross-section of the host platform. A coating which is essentially microwave transparent is attached to the surface of a host platform and is exposed to an incident microwave field. A plurality of detector/emitter pairs contained within the coating detect and actively cancel, respectively, the microwave field at each respective detector/emitter pair.

  17. Airborne MIMO GMTI Radar

    DTIC Science & Technology

    2011-03-31

    applications [1], [2], [3], [4]. [5]. [6]. [7]. [8]. [9]. [10]. [11]. [12]. Conventional phased array radars form a single coherent transmit beam and...intentionally left blank. 1. INTRODUCTION Conventional phased - array radars form a single coherent transmit beam and measure the backscattered response... steering vector for a SI MO array with nr"/? receiver phase centers located at positions xm + y„. This is how the MIMO virtual array arises. The waveforms

  18. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  19. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1989-01-01

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

  20. Cassini Radar hardware technologies

    SciTech Connect

    Wheeler, K.; Renick, P.

    1996-03-01

    The hardware development portion of the Cassini Radar task is complete. The flight model Digital Assembly and Energy Storage Assembly have been integrated and tested, as has the engineering/qualification model Radio Frequency Electronics Assembly. Integration of the flight model Radio Frequency Electronics Assembly is ready to begin. The intent of this paper is to describe some of the more interesting technologies implemented in the electronics to achieve the requirements of the Cassini Radar experiment. {copyright} {ital 1996 American Institute of Physics.}