Sample records for passive sensor platform

  1. A Wireless, Passive, Magnetically-soft Harmonic Sensor for Monitoring Sodium Hypochlorite Concentrations in Water

    PubMed Central

    Ong, Keat G.; Paulose, Maggie; Grimes, Craig A.

    2003-01-01

    A wireless, passive, remote-query sensor for monitoring sodium hypochlorite (bleach) solutions is reported. The sensor is comprised of a magnetically-soft ferromagnetic ribbon, coated with a layer of polyurethane and alumina, having a large and nonlinear permeability that supports higher-order harmonics in response to a time varying magnetic field. The hypochlorite ions induce swelling in the coating, with the resultant stress altering the harmonic signature of the sensor from which the sodium hypochlorite concentration can be determined. The wireless, passive nature of the sensor platform enables long-term monitoring of bleach concentrations in the environment. The sensor platform can be extended to other chemical analytes of interest as desired.

  2. Small Business Innovation Research (SBIR) Program. FY 1991 Program Solicitation 91.2

    DTIC Science & Technology

    1991-07-01

    Based Robotic Control Systems Technology A91-034 Passive Sensor Self- Interference Cancellation A91-035 High Performance Propelling Charges A91-036...laboratory tests. A91-034 TITLE: Passive Sensor Self- Interference Cancellation CATEGORY: Exploratory Development OBJECTIVE: Develop practical and effective...acoustic sensor to detect, classify, identify, and locate targets is ARMY 19 degraded by own-platform noise and local interference . Elementary

  3. Passive hybrid sensing tag with flexible substrate saw device

    DOEpatents

    Skinner, Jack L.; Chu, Eric Y.; Ho, Harvey

    2012-12-25

    The integration of surface acoustic wave (SAW) filters, microfabricated transmission lines, and sensors onto polymer substrates in order to enable a passive wireless sensor platform is described herein. Incident microwave pulses on an integrated antenna are converted to an acoustic wave via a SAW filter and transmitted to an impedance based sensor, which for this work is a photodiode. Changes in the sensor state induce a corresponding change in the impedance of the sensor resulting in a reflectance profile. Data collected at a calibrated receiver is used to infer the state of the sensor. Based on this principal, light levels were passively and wirelessly demonstrated to be sensed at distances of up to about 12 feet.

  4. Analysis and experimental evaluation of a Stewart platform-based force/torque sensor

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Antrazi, Sami S.

    1992-01-01

    The kinematic analysis and experimentation of a force/torque sensor whose design is based on the mechanism of the Stewart Platform are discussed. Besides being used for measurement of forces/torques, the sensor also serves as a compliant platform which provides passive compliance during a robotic assembly task. It consists of two platforms, the upper compliant platform (UCP) and the lower compliant platform (LCP), coupled together through six spring-loaded pistons whose length variations are measured by six linear voltage differential transformers (LVDT) mounted along the pistons. Solutions to the forward and inverse kinematics of the force sensor are derived. Based on the known spring constant and the piston length changes, forces/torques applied to the LCP gripper are computed using vector algebra. Results of experiments conducted to evaluate the sensing capability of the force sensor are reported and discussed.

  5. Novel remote sensor systems: design, prototyping, and characterization

    NASA Astrophysics Data System (ADS)

    Kayastha, V.; Gibbons, S.; Lamb, J. E.; Giedd, R. E.

    2014-06-01

    We have designed and tested a prototype TRL4 radio-frequency (RF) sensing platform containing a transceiver that interrogates a passive carbon nanotube (CNT)-based sensor platform. The transceiver can be interfaced to a server technology such as a Bluetooth® or Wi-Fi device for further connectivity. The novelty of a very-low-frequency (VLF) implementation in the transceiver design will ultimately enable deep penetration into the ground or metal structures to communicate with buried sensing platforms. The sensor platform generally consists of printed electronic devices made of CNTs on flexible poly(ethylene terephthalate) (PET) and Kapton® substrates. This novel remote sensing system can be integrated with both passive and active sensing platforms. It offers unique characteristics suitable for a variety of sensing applications. The proposed sensing platforms can take on different form factors and the RF output of the sensing platforms could be modulated by humidity, temperature, pressure, strain, or vibration signals. Resonant structures were designed and constructed to operate in the very-high-frequency (VHF) and VLF ranges. In this presentation, we will report results of our continued effort to develop a commercially viable transceiver capable of interrogating the conformally mounted sensing platforms made from CNTs or silver-based nanomaterials on polyimide substrates over a broad range of frequencies. The overall performance of the sensing system with different sensing elements and at different frequency ranges will be discussed.

  6. A Review on Passive and Integrated Near-Field Microwave Biosensors

    PubMed Central

    Guha, Subhajit; Jamal, Farabi Ibne

    2017-01-01

    In this paper we review the advancement of passive and integrated microwave biosensors. The interaction of microwave with biological material is discussed in this paper. Passive microwave biosensors are microwave structures, which are fabricated on a substrate and are used for sensing biological materials. On the other hand, integrated biosensors are microwave structures fabricated in standard semiconductor technology platform (CMOS or BiCMOS). The CMOS or BiCMOS sensor technology offers a more compact sensing approach which has the potential in the future for point of care testing systems. Various applications of the passive and the integrated sensors have been discussed in this review paper. PMID:28946617

  7. Target detection using microwave irradiances from natural sources: A passive, local and global surveillance system

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1984-01-01

    Detection of metal objects on or near the Earth's surface was investigated using existing, passive, microwave sensors operating from Earth orbit. The range equations are derived from basic microwave principles and theories and the expressions are given explicitly to estimate the signal to noise ratio for detecting metal targets operating as bistatic scatterers. Actual measurements are made on a range of metal objects observed from orbit using existing passive microwave receiving systems. The details of the measurements and the results are tabulated and discussed. The advantages of a passive microwave sensor as it is applied to surveillance of metal objects as viewed from aerial platforms or from orbit, are examined.

  8. NSIDC's passive microwave satellite record: The story behind 30 years of data across multiple satellite platforms

    NASA Astrophysics Data System (ADS)

    Scott, D. J.; Brandt, M.; Savoie, M. H.; Stewart, J. S.

    2016-12-01

    The National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) has been producing and distributing passive microwave snow and ice data sets from the Special Sensor Microwave Imager (SSM/I) and Special Sensor Microwave Imager/Sounder (SSMIS) for over two decades. Aboard the Defense Meteorological Satellite Program (DMSP) platforms, SSM/I and SSMIS have been operating across eight different orbiting DMSP satellites since 1987, providing an invaluable 30 year record for snow and ice climate data studies. Each sensor has performed within or beyond its expected life cycle, ultimately resulting in a transition across platforms to continue the data record. On occasion the satellites have failed unexpectedly, requiring an unplanned need for science and data management to come together and adjust production code and services to get the data back online in a timely fashion. In recent years, this has become a greater importance as climate blogging sites have increased the visibility of near-real-time passive microwave products to communicate the current changes in the Polar Regions. This presentation summarizes the history and most recent activities surrounding satellite transitions, including the scientific assessment and development required in maintaining a streamlined data record across multiple sensors. In addition, we examine challenges in long-term provenance as well as the considerations and decisions made based on value added products utilizing these data, as well as cryospheric research and general public needs.

  9. System considerations for detection and tracking of small targets using passive sensors

    NASA Astrophysics Data System (ADS)

    DeBell, David A.

    1991-08-01

    Passive sensors provide only a few discriminants to assist in threat assessment of small targets. Tracking of the small targets provides additional discriminants. This paper discusses the system considerations for tracking small targets using passive sensors, in particular EO sensors. Tracking helps establish good versus bad detections. Discussed are the requirements to be placed on the sensor system's accuracy, with respect to knowledge of the sightline direction. The detection of weak targets sets a requirement for two levels of tracking in order to reduce processor throughput. A system characteristic is the need to track all detections. For low thresholds, this can mean a heavy track burden. Therefore, thresholds must be adaptive in order not to saturate the processors. Second-level tracks must develop a range estimate in order to assess threat. Sensor platform maneuvers are required if the targets are moving. The need for accurate pointing, good stability, and a good update rate will be shown quantitatively, relating to track accuracy and track association.

  10. Assessment of space sensors for ocean pollution monitoring

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R.; Tomiyasu, K.; Gulatsi, R. L.

    1980-01-01

    Several passive and active microwave, as well as passive optical remote sensors, applicable to the monitoring of oil spills and waste discharges at sea, are considered. The discussed types of measurements relate to: (1) spatial distribution and properties of the pollutant, and (2) oceanic parameters needed to predict the movement of the pollutants and their impact upon land. The sensors, operating from satellite platforms at 700-900 km altitudes, are found to be useful in mapping the spread of oil in major oil spills and in addition, can be effective in producing wind and ocean parameters as inputs to oil trajectory and dispersion models. These capabilities can be used in countermeasures.

  11. A Passive Wireless Multi-Sensor SAW Technology Device and System Perspectives

    PubMed Central

    Malocha, Donald C.; Gallagher, Mark; Fisher, Brian; Humphries, James; Gallagher, Daniel; Kozlovski, Nikolai

    2013-01-01

    This paper will discuss a SAW passive, wireless multi-sensor system under development by our group for the past several years. The device focus is on orthogonal frequency coded (OFC) SAW sensors, which use both frequency diversity and pulse position reflectors to encode the device ID and will be briefly contrasted to other embodiments. A synchronous correlator transceiver is used for the hardware and post processing and correlation techniques of the received signal to extract the sensor information will be presented. Critical device and system parameters addressed include encoding, operational range, SAW device parameters, post-processing, and antenna-SAW device integration. A fully developed 915 MHz OFC SAW multi-sensor system is used to show experimental results. The system is based on a software radio approach that provides great flexibility for future enhancements and diverse sensor applications. Several different sensor types using the OFC SAW platform are shown. PMID:23666124

  12. Survey of Meteorological Remote Sensors

    DOT National Transportation Integrated Search

    1971-05-01

    The preliminary results of a survey are presented which identify techniques for determining meteorological data by remote sensing, applicable to automatic data buoy platforms. Both passive and active techniques are reviewed with emphasis on the forme...

  13. Functional design for operational earth resources ground data processing

    NASA Technical Reports Server (NTRS)

    Baldwin, C. J. (Principal Investigator); Bradford, L. H.; Hutson, D. E.; Jugle, D. R.

    1972-01-01

    The author has identified the following significant results. Study emphasis was on developing a unified concept for the required ground system, capable of handling data from all viable acquisition platforms and sensor groupings envisaged as supporting operational earth survey programs. The platforms considered include both manned and unmanned spacecraft in near earth orbit, and continued use of low and high altitude aircraft. The sensor systems include both imaging and nonimaging devices, operated both passively and actively, from the ultraviolet to the microwave regions of the electromagnetic spectrum.

  14. Annual Industrial Capabilities Report to Congress

    DTIC Science & Technology

    2013-10-01

    platform concepts for airframe, propulsion, sensors , weapons integration, avionics, and active and passive survivability features will all be explored...for full integration into the National Airspace System. Greater computing power, combined with developments in miniaturization, sensors , and...the design engineering skills for missile propulsion systems is at risk. The Department relies on the viability of a small number of SRM and turbine

  15. Overview of the NASA tropospheric environmental quality remote sensing program

    NASA Technical Reports Server (NTRS)

    Allario, F.; Ayers, W. G.; Hoell, J. M.

    1979-01-01

    This paper will summarize the current NASA Tropospheric Environmental Quality Remote Sensing Program for studying the global and regional troposphere from space, airborne and ground-based platforms. As part of the program to develop remote sensors for utilization from space, NASA has developed a series of passive and active remote sensors which have undergone field test measurements from airborne and ground platforms. Recent measurements with active lidar and passive gas filter correlation and infrared heterodyne techniques will be summarized for measurements of atmospheric aerosols, CO, SO2, O3, and NH3. These measurements provide the data base required to assess the sensitivity of remote sensors for applications to urban and regional field measurement programs. Studies of Earth Observation Satellite Systems are currently being performed by the scientific community to assess the capability of satellite imagery to detect regions of elevated pollution in the troposphere. The status of NASA sponsored research efforts in interpreting satellite imagery for determining aerosol loadings over land and inland bodies of water will be presented, and comments on the potential of these measurements to supplement in situ and airborne remote sensors in detecting regional haze will be made.

  16. Tracking the harmonic response of magnetically-soft sensors for wireless temperature, stress, and corrosive monitoring.

    PubMed

    Ong, Keat G; Grimes, Craig A

    2002-09-30

    This paper describes the application of magnetically-soft ribbon-like sensors for measurement of temperature and stress, as well as corrosive monitoring, based upon changes in the amplitudes of the higher-order harmonics generated by the sensors in response to a magnetic interrogation signal. The sensors operate independently of mass loading, and so can be placed or rigidly embedded inside nonmetallic, opaque structures such as concrete or plastic. The passive harmonic-based sensor is remotely monitored through a single coplanar interrogation and detection coil. Effects due to the relative location of the sensor are eliminated by tracking harmonic amplitude ratios, thereby, enabling wide area monitoring. The wireless, passive, mass loading independent nature of the described sensor platform makes it ideally suited for long-term structural monitoring applications, such as measurement of temperature and stress inside concrete structures. A theoretical model is presented to explain the origin and behavior of the higher-order harmonics in response to temperature and stress. c2002 Elsevier Science B.V. All rights reserved.

  17. Tracking the harmonic response of magnetically-soft sensors for wireless temperature, stress, and corrosive monitoring

    NASA Technical Reports Server (NTRS)

    Ong, Keat G.; Grimes, Craig A.

    2002-01-01

    This paper describes the application of magnetically-soft ribbon-like sensors for measurement of temperature and stress, as well as corrosive monitoring, based upon changes in the amplitudes of the higher-order harmonics generated by the sensors in response to a magnetic interrogation signal. The sensors operate independently of mass loading, and so can be placed or rigidly embedded inside nonmetallic, opaque structures such as concrete or plastic. The passive harmonic-based sensor is remotely monitored through a single coplanar interrogation and detection coil. Effects due to the relative location of the sensor are eliminated by tracking harmonic amplitude ratios, thereby, enabling wide area monitoring. The wireless, passive, mass loading independent nature of the described sensor platform makes it ideally suited for long-term structural monitoring applications, such as measurement of temperature and stress inside concrete structures. A theoretical model is presented to explain the origin and behavior of the higher-order harmonics in response to temperature and stress. c2002 Elsevier Science B.V. All rights reserved.

  18. Advanced radiometric and interferometric milimeter-wave scene simulations

    NASA Technical Reports Server (NTRS)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-01-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  19. Image Processing Occupancy Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Image Processing Occupancy Sensor, or IPOS, is a novel sensor technology developed at the National Renewable Energy Laboratory (NREL). The sensor is based on low-cost embedded microprocessors widely used by the smartphone industry and leverages mature open-source computer vision software libraries. Compared to traditional passive infrared and ultrasonic-based motion sensors currently used for occupancy detection, IPOS has shown the potential for improved accuracy and a richer set of feedback signals for occupant-optimized lighting, daylighting, temperature setback, ventilation control, and other occupancy and location-based uses. Unlike traditional passive infrared (PIR) or ultrasonic occupancy sensors, which infer occupancy based only onmore » motion, IPOS uses digital image-based analysis to detect and classify various aspects of occupancy, including the presence of occupants regardless of motion, their number, location, and activity levels of occupants, as well as the illuminance properties of the monitored space. The IPOS software leverages the recent availability of low-cost embedded computing platforms, computer vision software libraries, and camera elements.« less

  20. Phase Interrogation Used for a Wireless Passive Pressure Sensor in an 800 °C High-Temperature Environment

    PubMed Central

    Zhang, Huixin; Hong, Yingping; Liang, Ting; Zhang, Hairui; Tan, Qiulin; Xue, Chenyang; Liu, Jun; Zhang, Wendong; Xiong, Jijun

    2015-01-01

    A wireless passive pressure measurement system for an 800 °C high-temperature environment is proposed and the impedance variation caused by the mutual coupling between a read antenna and a LC resonant sensor is analyzed. The system consists of a ceramic-based LC resonant sensor, a readout device for impedance phase interrogation, heat insulating material, and a composite temperature-pressure test platform. Performances of the pressure sensor are measured by the measurement system sufficiently, including pressure sensitivity at room temperature, zero drift from room temperature to 800 °C, and the pressure sensitivity under the 800 °C high temperature environment. The results show that the linearity of sensor is 0.93%, the repeatability is 6.6%, the hysteretic error is 1.67%, and the sensor sensitivity is 374 KHz/bar. The proposed measurement system, with high engineering value, demonstrates good pressure sensing performance in a high temperature environment. PMID:25690546

  1. Fibre optic portable rail vehicle detector

    NASA Astrophysics Data System (ADS)

    Kepak, Stanislav; Cubik, Jakub; Zavodny, Petr; Hejduk, Stanislav; Nedoma, Jan; Davidson, Alan; Vasinek, Vladimir

    2016-12-01

    During track maintenance operations, the early detection of oncoming rail vehicles is critical for the safety of maintenance personnel. In addition, the detection system should be simple to install at the trackside by minimally qualified personnel. Fibre optic based sensor systems have the inherent advantages of being passive, unaffected by radio frequency interference (RFI) and suffering very low signal attenuation. Such a system therefore represents a good alternative to conventional approaches such as ultrasonic based sensor systems. The proposed system consists of one or more passive fibre trackside sensors and an x86 processing unit located at the work site. The solid fibre connection between sensors and processing unit eliminates the risk of RFI. In addition, the detection system sensors are easy to install with no requirement for electrical power at the sensor site. The system was tested on a tram line in Ostrava with the results obtained indicating the successful detection of all the trams in the monitoring windows using a single sensor. However, the platform allows flexibility in configuring multiple sensors where required by system users.

  2. A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring

    NASA Astrophysics Data System (ADS)

    Huang, Haiyu; Chen, Pai-Yen; Hung, Cheng-Hsien; Gharpurey, Ranjit; Akinwande, Deji

    2016-01-01

    Autonomous liquid-volume monitoring is crucial in ubiquitous healthcare. However, conventional approach is based on either human visual observation or expensive detectors, which are costly for future pervasive monitoring. Here we introduce a novel approach based on passive harmonic transponder antenna sensor and frequency hopping spread spectrum (FHSS) pattern analysis, to provide a very low cost wireless μL-resolution liquid-volume monitoring without battery or digital circuits. In our conceptual demonstration, the harmonic transponder comprises of a passive nonlinear frequency multiplier connected to a metamaterial-inspired 3-D antenna designed to be highly sensitive to the liquid-volume within a confined region. The transponder first receives some FHSS signal from an interrogator, then converts such signal to its harmonic band and re-radiates through the antenna sensor. The harmonic signal is picked up by a sniffer receiver and decoded through pattern analysis of the high dimensional FHSS signal strength data. A robust, zero power, absolute accuracy wireless liquid-volume monitoring is realized in the presence of strong direct coupling, background scatters, distance variance as well as near-field human-body interference. The concepts of passive harmonic transponder sensor, metamaterial-inspired antenna sensor, and FHSS pattern analysis based sensor decoding may help establishing cost-effective, energy-efficient and intelligent wireless pervasive healthcare monitoring platforms.

  3. A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring.

    PubMed

    Huang, Haiyu; Chen, Pai-Yen; Hung, Cheng-Hsien; Gharpurey, Ranjit; Akinwande, Deji

    2016-01-06

    Autonomous liquid-volume monitoring is crucial in ubiquitous healthcare. However, conventional approach is based on either human visual observation or expensive detectors, which are costly for future pervasive monitoring. Here we introduce a novel approach based on passive harmonic transponder antenna sensor and frequency hopping spread spectrum (FHSS) pattern analysis, to provide a very low cost wireless μL-resolution liquid-volume monitoring without battery or digital circuits. In our conceptual demonstration, the harmonic transponder comprises of a passive nonlinear frequency multiplier connected to a metamaterial-inspired 3-D antenna designed to be highly sensitive to the liquid-volume within a confined region. The transponder first receives some FHSS signal from an interrogator, then converts such signal to its harmonic band and re-radiates through the antenna sensor. The harmonic signal is picked up by a sniffer receiver and decoded through pattern analysis of the high dimensional FHSS signal strength data. A robust, zero power, absolute accuracy wireless liquid-volume monitoring is realized in the presence of strong direct coupling, background scatters, distance variance as well as near-field human-body interference. The concepts of passive harmonic transponder sensor, metamaterial-inspired antenna sensor, and FHSS pattern analysis based sensor decoding may help establishing cost-effective, energy-efficient and intelligent wireless pervasive healthcare monitoring platforms.

  4. A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring

    PubMed Central

    Huang, Haiyu; Chen, Pai-Yen; Hung, Cheng-Hsien; Gharpurey, Ranjit; Akinwande, Deji

    2016-01-01

    Autonomous liquid-volume monitoring is crucial in ubiquitous healthcare. However, conventional approach is based on either human visual observation or expensive detectors, which are costly for future pervasive monitoring. Here we introduce a novel approach based on passive harmonic transponder antenna sensor and frequency hopping spread spectrum (FHSS) pattern analysis, to provide a very low cost wireless μL-resolution liquid-volume monitoring without battery or digital circuits. In our conceptual demonstration, the harmonic transponder comprises of a passive nonlinear frequency multiplier connected to a metamaterial-inspired 3-D antenna designed to be highly sensitive to the liquid-volume within a confined region. The transponder first receives some FHSS signal from an interrogator, then converts such signal to its harmonic band and re-radiates through the antenna sensor. The harmonic signal is picked up by a sniffer receiver and decoded through pattern analysis of the high dimensional FHSS signal strength data. A robust, zero power, absolute accuracy wireless liquid-volume monitoring is realized in the presence of strong direct coupling, background scatters, distance variance as well as near-field human-body interference. The concepts of passive harmonic transponder sensor, metamaterial-inspired antenna sensor, and FHSS pattern analysis based sensor decoding may help establishing cost-effective, energy-efficient and intelligent wireless pervasive healthcare monitoring platforms. PMID:26732251

  5. Beta Testing of Persistent Passive Acoustic Monitors

    DTIC Science & Technology

    2012-10-01

    three platforms provide the capability to work over a wide range of spatial and temporal scales. Hardware and software integration of the DMONs in...closely with Richard M. Ead (Sensors and Sonar Systems Department, Naval Undersea Warfare Center, NUWC Code 1535), Ted Ioannides (PS 4013) and Dave

  6. Debris mapping sensor technology project summary: Technology flight experiments program area of the space platforms technology program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The topics presented are covered in viewgraph form. Programmatic objectives are: (1) to improve characterization of the orbital debris environment; and (2) to provide a passive sensor test bed for debris collision detection systems. Technical objectives are: (1) to study LEO debris altitude, size and temperature distribution down to 1 mm particles; (2) to quantify ground based radar and optical data ambiguities; and (3) to optimize debris detection strategies.

  7. Improvements to the swath-level near-surface atmospheric state parameter retrievals within the NRL Ocean Surface Flux System (NFLUX)

    NASA Astrophysics Data System (ADS)

    May, J. C.; Rowley, C. D.; Meyer, H.

    2017-12-01

    The Naval Research Laboratory (NRL) Ocean Surface Flux System (NFLUX) is an end-to-end data processing and assimilation system used to provide near-real-time satellite-based surface heat flux fields over the global ocean. The first component of NFLUX produces near-real-time swath-level estimates of surface state parameters and downwelling radiative fluxes. The focus here will be on the satellite swath-level state parameter retrievals, namely surface air temperature, surface specific humidity, and surface scalar wind speed over the ocean. Swath-level state parameter retrievals are produced from satellite sensor data records (SDRs) from four passive microwave sensors onboard 10 platforms: the Special Sensor Microwave Imager/Sounder (SSMIS) sensor onboard the DMSP F16, F17, and F18 platforms; the Advanced Microwave Sounding Unit-A (AMSU-A) sensor onboard the NOAA-15, NOAA-18, NOAA-19, Metop-A, and Metop-B platforms; the Advanced Technology Microwave Sounder (ATMS) sensor onboard the S-NPP platform; and the Advanced Microwave Scannin Radiometer 2 (AMSR2) sensor onboard the GCOM-W1 platform. The satellite SDRs are translated into state parameter estimates using multiple polynomial regression algorithms. The coefficients to the algorithms are obtained using a bootstrapping technique with all available brightness temperature channels for a given sensor, in addition to a SST field. For each retrieved parameter for each sensor-platform combination, unique algorithms are developed for ascending and descending orbits, as well as clear vs cloudy conditions. Each of the sensors produces surface air temperature and surface specific humidity retrievals. The SSMIS and AMSR2 sensors also produce surface scalar wind speed retrievals. Improvement is seen in the SSMIS retrievals when separate algorithms are used for the even and odd scans, with the odd scans performing better than the even scans. Currently, NFLUX treats all SSMIS scans as even scans. Additional improvement in all of the surface retrievals comes from using a 3-hourly SST field, as opposed to a daily SST field.

  8. COBALT: Development of a Platform to Flight Test Lander GN&C Technologies on Suborbital Rockets

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Seubert, Carl R.; Amzajerdian, Farzin; Bergh, Chuck; Kourchians, Ara; Restrepo, Carolina I.; Villapando, Carlos Y.; O'Neal, Travis V.; Robertson, Edward A.; Pierrottet, Diego; hide

    2017-01-01

    The NASA COBALT Project (CoOperative Blending of Autonomous Landing Technologies) is developing and integrating new precision-landing Guidance, Navigation and Control (GN&C) technologies, along with developing a terrestrial fight-test platform for Technology Readiness Level (TRL) maturation. The current technologies include a third- generation Navigation Doppler Lidar (NDL) sensor for ultra-precise velocity and line- of-site (LOS) range measurements, and the Lander Vision System (LVS) that provides passive-optical Terrain Relative Navigation (TRN) estimates of map-relative position. The COBALT platform is self contained and includes the NDL and LVS sensors, blending filter, a custom compute element, power unit, and communication system. The platform incorporates a structural frame that has been designed to integrate with the payload frame onboard the new Masten Xodiac vertical take-o, vertical landing (VTVL) terrestrial rocket vehicle. Ground integration and testing is underway, and terrestrial fight testing onboard Xodiac is planned for 2017 with two flight campaigns: one open-loop and one closed-loop.

  9. A droplet-based passive force sensor for remote tactile sensing applications

    NASA Astrophysics Data System (ADS)

    Nie, Baoqing; Yao, Ting; Zhang, Yiqiu; Liu, Jian; Chen, Xinjian

    2018-01-01

    A droplet-based flexible wireless force sensor has been developed for remote tactile-sensing applications. By integration of a droplet-based capacitive sensing unit and two circular planar coils, this inductor-capacitor (LC) passive sensor offers a platform for the mechanical force detection in a wireless transmitting mode. Under external loads, the membrane surface of the sensor deforms the underlying elastic droplet uniformly, introducing a capacitance response in tens of picofarads. The LC circuit transduces the applied force into corresponding variations of its resonance frequency, which is detected by an external electromagnetic coupling coil. Specifically, the liquid droplet features a mechanosensitive plasticity, which results in an increased device sensitivity as high as 2.72 MHz N-1. The high dielectric property of the droplet endows our sensor with high tolerance for noise and large capacitance values (20-40 pF), the highest value in the literature for the LC passive devices in comparable dimensions. It achieves excellent reproducibility under periodical loads ranging from 0 to 1.56 N and temperature fluctuations ranging from 10 °C to 55 °C. As an interesting conceptual demonstration, the flexible device has been configured into a fingertip-amounted setting in a highly compact package (of 11 mm × 11 mm × 0.25 mm) for remote contact force sensing in the table tennis game.

  10. Peptide–Nanowire Hybrid Materials for Selective Sensing of Small Molecules

    PubMed Central

    McAlpine, Michael C.; Agnew, Heather D.; Rohde, Rosemary D.; Blanco, Mario; Ahmad, Habib; Stuparu, Andreea D.; Goddard, William A.

    2013-01-01

    The development of a miniaturized sensing platform for the selective detection of chemical odorants could stimulate exciting scientific and technological opportunities. Oligopeptides are robust substrates for the selective recognition of a variety of chemical and biological species. Likewise, semiconducting nanowires are extremely sensitive gas sensors. Here we explore the possibilities and chemistries of linking peptides to silicon nanowire sensors for the selective detection of small molecules. The silica surface of the nanowires is passivated with peptides using amide coupling chemistry. The peptide/nanowire sensors can be designed, through the peptide sequence, to exhibit orthogonal responses to acetic acid and ammonia vapors, and can detect traces of these gases from “chemically camouflaged” mixtures. Through both theory and experiment, we find that this sensing selectivity arises from both acid/base reactivity and from molecular structure. These results provide a model platform for what can be achieved in terms of selective and sensitive “electronic noses.” PMID:18576642

  11. Wireless contactless pressure measurement of an LC passive pressure sensor with a novel antenna for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Li, Chen; Tan, Qiu-Lin; Xue, Chen-Yang; Zhang, Wen-Dong; Li, Yun-Zhi; Xiong, Ji-Jun

    2015-04-01

    In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature of 600 °C. The design parameters of the antenna are similar to those of the sensor, which will increase the coupling strength between the sensor and testing antenna. The antenna is fabricated in thick film integrated technology, and the properties of the alumina ceramic and silver ensure the feasibility of the antenna in high-temperature environments. The sensor, coupled with the ceramic antenna, is investigated using a high-temperature pressure testing platform. The experimental measurement results show that the pressure signal in a harsh environment can be detected by the frequency diversity of the sensor. Project supported by the National Natural Science Foundation for Distinguished Young Scholars, China (Grant No. 51425505), the National Natural Science Foundation of China (Grant No. 61471324), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province, China (Grant No. 2013-077), and the Graduate Students Outstanding Innovation Project of Shanxi Province, China (Grant No. 20143020).

  12. A Passive and Wireless Sensor for Bone Plate Strain Monitoring.

    PubMed

    Tan, Yisong; Hu, Jiale; Ren, Limin; Zhu, Jianhua; Yang, Jiaqi; Liu, Di

    2017-11-16

    This paper reports on a sensor for monitoring bone plate strain in real time. The detected bone plate strain could be used for judging the healing state of fractures in patients. The sensor consists of a magnetoelastic material, which can be wirelessly connected and passively embedded. In order to verify the effectiveness of the sensor, a tibia-bone plate-screw (TBS) model was established using the finite element analysis method. A variation of the bone plate strain was obtained via this model. A goat hindquarter tibia was selected as the bone fracture model in the experiment. The tibia was fixed on a high precision load platform and an external force was applied. Bone plate strain variation during the bone fracture healing process was acquired with sensing coils. Simulation results indicated that bone plate strain decreases as the bone gradually heals, which is consistent with the finite element analysis results. This validated the soundness of the sensor reported here. This sensor has wireless connections, no in vivo battery requirement, and long-term embedding. These results can be used not only for clinical practices of bone fracture healing, but also for bone fracture treatment and rehabilitation equipment design.

  13. A new strategy toward Internet of Things: structural health monitoring using a combined fiber optic and acoustic emission wireless sensor platform

    NASA Astrophysics Data System (ADS)

    Nguyen, A. D.; Page, C.; Wilson, C. L.

    2016-04-01

    This paper investigates a new low-power structural health monitoring (SHM) strategy where fiber Bragg grating (FBG) rosettes can be used to continuously monitor for changes in a host structure's principal strain direction, suggesting damage and thus enabling the immediate triggering of a higher power acoustic emissions (AE) sensor to provide for better characterization of the damage. Unlike traditional "always on" AE platforms, this strategy has the potential for low power, while the wireless communication between different sensor types supports the Internet of Things (IoT) approach. A combination of fiber-optic sensor rosettes for strain monitoring and a fiber-optic sensor for acoustic emissions monitoring was attached to a sample and used to monitor crack initiation. The results suggest that passive principal strain direction monitoring could be used as a damage initiation trigger for other active sensing elements such as acoustic emissions. In future work, additional AE sensors can be added to provide for damage location; and a strategy where these sensors can be powered on periodically to further establish reliability while preserving an energy efficient scheme can be incorporated.

  14. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remotemore » power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.« less

  15. Cloud and Radiation Mission with Active and Passive Sensing from the Space Station

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1998-01-01

    A cloud and aerosol radiative forcing and physical process study involving active laser and radar profiling with a combination of passive radiometric sounders and imagers would use the space station as an observation platform. The objectives are to observe the full three dimensional cloud and aerosol structure and the associated physical parameters leading to a complete measurement of radiation forcing processes. The instruments would include specialized radar and lidar for cloud and aerosol profiling, visible, infrared and microwave imaging radiometers with comprehensive channels for cloud and aerosol observation and specialized sounders. The low altitude,. available power and servicing capability of the space station are significant advantages for the active sensors and multiple passive instruments.

  16. SAW Sensors for Chemical Vapors and Gases

    PubMed Central

    Devkota, Jagannath; Ohodnicki, Paul R.; Greve, David W.

    2017-01-01

    Surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identify new opportunities and needs for additional research in this area moving into the future. PMID:28397760

  17. SAW Sensors for Chemical Vapors and Gases

    DOE PAGES

    Devkota, Jagannath; Ohodnicki, Paul R.; Greve, David W.

    2017-04-08

    Here, surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identifymore » new opportunities and needs for additional research in this area moving into the future.« less

  18. SAW Sensors for Chemical Vapors and Gases.

    PubMed

    Devkota, Jagannath; Ohodnicki, Paul R; Greve, David W

    2017-04-08

    Surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identify new opportunities and needs for additional research in this area moving into the future.

  19. An NFC-Enabled CMOS IC for a Wireless Fully Implantable Glucose Sensor.

    PubMed

    DeHennis, Andrew; Getzlaff, Stefan; Grice, David; Mailand, Marko

    2016-01-01

    This paper presents an integrated circuit (IC) that merges integrated optical and temperature transducers, optical interface circuitry, and a near-field communication (NFC)-enabled digital, wireless readout for a fully passive implantable sensor platform to measure glucose in people with diabetes. A flip-chip mounted LED and monolithically integrated photodiodes serve as the transduction front-end to enable fluorescence readout. A wide-range programmable transimpedance amplifier adapts the sensor signals to the input of an 11-bit analog-to-digital converter digitizing the measurements. Measurement readout is enabled by means of wireless backscatter modulation to a remote NFC reader. The system is able to resolve current levels of less than 10 pA with a single fluorescent measurement energy consumption of less than 1 μJ. The wireless IC is fabricated in a 0.6-μm-CMOS process and utilizes a 13.56-MHz-based ISO15693 for passive wireless readout through a NFC interface. The IC is utilized as the core interface to a fluorescent, glucose transducer to enable a fully implantable sensor-based continuous glucose monitoring system.

  20. Image science team

    NASA Technical Reports Server (NTRS)

    Ando, K.

    1982-01-01

    A substantial technology base of solid state pushbroom sensors exists and is in the process of further evolution at both GSFC and JPL. Technologies being developed relate to short wave infrared (SWIR) detector arrays; HgCdTe hybrid detector arrays; InSb linear and area arrays; passive coolers; spectral beam splitters; the deposition of spectral filters on detector arrays; and the functional design of the shuttle/space platform imaging spectrometer (SIS) system. Spatial and spectral characteristics of field, aircraft and space multispectral sensors are summaried. The status, field of view, and resolution of foreign land observing systems are included.

  1. Got Point Clouds: Characterizing Canopy Structure With Active and Passive Sensors

    NASA Astrophysics Data System (ADS)

    Popescu, S. C.; Malambo, L.; Sheridan, R.; Putman, E.; Murray, S.; Rooney, W.; Rajan, N.

    2016-12-01

    Unmanned Aerial Systems (UAS) provide the means to acquire highly customized aerial data at local scale with a multitude of sensors. UAS allow us to obtain affordably repeated observations of canopy structure for agricultural and natural resources applications by using passive optical sensors, such as cameras and photogrammetric techniques, and active sensors, such as lidar (Light Detection and Ranging). The objectives of this presentation are to: (1) offer a brief overview of UAS used for agriculture and natural resources studies, (2) describe experiences in conducting agriculture phenotyping and forest vegetation measurements, and (3) give details on the methodology developed for image and lidar data processing for characterizing the three dimensional structure of plant canopies. The UAS types used for this purpose included rotary platforms, such as quadcopters, hexacopters, and octocopters, with a payload capacity of up to 19 lbs. The sensors that collected data over two crop seasons include multispectral cameras in the visible color spectrum and near infrared, and UAS-lidar. For ground reference data we used terrestrial lidar scanners and field measurements. Results comparing UAS and terrestrial measurements show high correlation and open new areas of scientific investigation of crop canopies previously not possible with affordable techniques.

  2. A platform for European CMOS image sensors for space applications

    NASA Astrophysics Data System (ADS)

    Minoglou, K.; San Segundo Bello, D.; Sabuncuoglu Tezcan, D.; Haspeslagh, L.; Van Olmen, J.; Merry, B.; Cavaco, C.; Mazzamuto, F.; Toqué-Trésonne, I.; Moirin, R.; Brouwer, M.; Toccafondi, M.; Preti, G.; Rosmeulen, M.; De Moor, P.

    2017-11-01

    Both ESA and the EC have identified the need for a supply chain of CMOS imagers for space applications which uses solely European sources. An essential requirement on this supply chain is the platformization of the process modules, in particular when it comes to very specific processing steps, such as those required for the manufacturing of backside illuminated image sensors. This is the goal of the European (EC/FP7/SPACE) funded project EUROCIS. All EUROCIS partners have excellent know-how and track record in the expertise fields required. Imec has been leading the imager chip design and the front side and backside processing. LASSE, as a major player in the laser annealing supplier sector, has been focusing on the optimization of the process related to the backside passivation of the image sensors. TNO, known worldwide as a top developer of instruments for scientific research, including space research and sensors for satellites, has contributed in the domain of optical layers for space instruments and optimized antireflective coatings. Finally, Selex ES, as a world-wide leader for manufacturing instruments with expertise in various space missions and programs, has defined the image sensor specifications and is taking care of the final device characterization. In this paper, an overview of the process flow, the results on test structures and imagers processed using this platform will be presented.

  3. Acoustic Source Localization via Time Difference of Arrival Estimation for Distributed Sensor Networks Using Tera-Scale Optical Core Devices

    DOE PAGES

    Imam, Neena; Barhen, Jacob

    2009-01-01

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot bemore » readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.« less

  4. Next generation sensing platforms for extended deployments in large-scale, multidisciplinary, adaptive sampling and observational networks

    NASA Astrophysics Data System (ADS)

    Cross, J. N.; Meinig, C.; Mordy, C. W.; Lawrence-Slavas, N.; Cokelet, E. D.; Jenkins, R.; Tabisola, H. M.; Stabeno, P. J.

    2016-12-01

    New autonomous sensors have dramatically increased the resolution and accuracy of oceanographic data collection, enabling rapid sampling over extremely fine scales. Innovative new autonomous platofrms like floats, gliders, drones, and crawling moorings leverage the full potential of these new sensors by extending spatiotemporal reach across varied environments. During 2015 and 2016, The Innovative Technology for Arctic Exploration Program at the Pacific Marine Environmental Laboratory tested several new types of fully autonomous platforms with increased speed, durability, and power and payload capacity designed to deliver cutting-edge ecosystem assessment sensors to remote or inaccessible environments. The Expendable Ice-Tracking (EXIT) gloat developed by the NOAA Pacific Marine Environmental Laboratory (PMEL) is moored near bottom during the ice-free season and released on an autonomous timer beneath the ice during the following winter. The float collects a rapid profile during ascent, and continues to collect critical, poorly-accessible under-ice data until melt, when data is transmitted via satellite. The autonomous Oculus sub-surface glider developed by the University of Washington and PMEL has a large power and payload capacity and an enhanced buoyancy engine. This 'coastal truck' is designed for the rapid water column ascent required by optical imaging systems. The Saildrone is a solar and wind powered ocean unmanned surface vessel (USV) developed by Saildrone, Inc. in partnership with PMEL. This large-payload (200 lbs), fast (1-7 kts), durable (46 kts winds) platform was equipped with 15 sensors designed for ecosystem assessment during 2016, including passive and active acoustic systems specially redesigned for autonomous vehicle deployments. The senors deployed on these platforms achieved rigorous accuracy and precision standards. These innovative platforms provide new sampling capabilities and cost efficiencies in high-resolution sensor deployment, including reconnaissance for annual fisheries and marine mammal surveys; better linkages between sustained observing platforms; and adaptive deployments that can easily target anomalies as they arise.

  5. Design of the flame detector based on pyroelectric infrared sensor

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yu, Benhua; Dong, Lei; Li, Kai

    2017-10-01

    As a fire detection device, flame detector has the advantages of short reaction time and long distance. Based on pyroelectric infrared sensor working principle, the passive pyroelectric infrared alarm system is designed, which is mainly used for safety of tunnel to detect whether fire occurred or not. Modelling and Simulation of the pyroelectric Detector Using Labview. An attempt was made to obtain a simple test platform of a pyroelectric detector which would make an excellent basis for the analysis of its dynamic behaviour. After many experiments, This system has sensitive response, high anti-interference ability and safe and reliable performance.

  6. Research of hydroelectric generating set low-frequency vibration monitoring system based on optical fiber sensing

    NASA Astrophysics Data System (ADS)

    Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang

    2017-10-01

    In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.

  7. Irma 5.2 multi-sensor signature prediction model

    NASA Astrophysics Data System (ADS)

    Savage, James; Coker, Charles; Thai, Bea; Aboutalib, Omar; Chow, Anthony; Yamaoka, Neil; Kim, Charles

    2007-04-01

    The Irma synthetic signature prediction code is being developed by the Munitions Directorate of the Air Force Research Laboratory (AFRL/MN) to facilitate the research and development of multi-sensor systems. There are over 130 users within the Department of Defense, NASA, Department of Transportation, academia, and industry. Irma began as a high-resolution, physics-based Infrared (IR) target and background signature model for tactical weapon applications and has grown to include: a laser (or active) channel (1990), improved scene generator to support correlated frame-to-frame imagery (1992), and passive IR/millimeter wave (MMW) channel for a co-registered active/passive IR/MMW model (1994). Irma version 5.0 was released in 2000 and encompassed several upgrades to both the physical models and software; host support was expanded to Windows, Linux, Solaris, and SGI Irix platforms. In 2005, version 5.1 was released after an extensive verification and validation of an upgraded and reengineered active channel. Since 2005, the reengineering effort has focused on the Irma passive channel. Field measurements for the validation effort include the unpolarized data collection. Irma 5.2 is scheduled for release in the summer of 2007. This paper will report the validation test results of the Irma passive models and discuss the new features in Irma 5.2.

  8. Design and Development of VHF Antennas for Space Borne Signal of Opportunity Receivers for Cubesat Platforms

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar; Piepmeier, Jeffrey

    2015-01-01

    Design and Development of VHF Antennas for Space Borne Signal of Opportunity Receivers for Cubesat Platforms. Space borne microwave remote sensors at VHF/UHF frequencies are important instruments to observe reflective properties of land surfaces through thick and heavy forestation on a global scale. One of the most cost effective ways of measuring land reflectivity at VHF/UHF frequencies is to use signals transmitted by existing communication satellites (operating at VHF/UHF band) as a signal of opportunity (SoOp) signal and passive receivers integrated with airborne/space borne platforms operating in the Low Earth Orbit (LEO). One of the critical components of the passive receiver is two antennas (one to receive only direct signal and other to receive only reflected signal) which need to have ideally high (>30dB) isolation. However, because of small size of host platforms and broad beam width of dipole antennas, achieving adequate isolation between two channels is a challenging problem and need to be solved for successful implementation of space borne SoOp technology for remote sensing. In this presentation a novel enabling VHF antenna technology for Cubesat platforms is presented to receive direct as well as reflected signal with needed isolation. The novel scheme also allows enhancing the gain of individual channels by factor of 2 without use of reflecting ground plane

  9. Passive Sensor Materials Based on Liquid Crystals

    DTIC Science & Technology

    2011-03-12

    REPORT Passive Sensor Materials based on Liquid Crystals 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Research supported by this grant entitled “Passive...Sensor Materials Based on Liquid Crystals” revolved around an investigation of liquid crystalline materials for use in passive sensors for chemical... based on Liquid Crystals Report Title ABSTRACT Research supported by this grant entitled “Passive Sensor Materials Based on Liquid Crystals” revolved

  10. Design VHF Antennas for Space Borne Receivers for SmallSats

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar

    2017-01-01

    Space borne microwave remote sensors at VHF/UHF frequencies are important instruments to observe reflective properties of land surfaces through thick and heavy forestation on a global scale. One of the most cost effective ways of measuring land reflectivity at VHF/UHF frequencies is to use signals transmitted by existing communication satellites (operating at VHF/UHF band) as a signal of opportunity (SoOp) signal and passive receivers integrated with airborne/space borne platforms operating in the Low Earth Orbit (LEO). One of the critical components of the passive receiver is two antennas (one to receive only direct signal and other to receive only reflected signal) which need to have ideally high (>30dB) isolation. However, because of small size of host platforms and broad beam width of dipole antennas, achieving adequate isolation between two channels is a challenging problem and need to be solved for successful implementation of space borne SoOp technology for remote sensing. In this presentation a novel enabling VHF antenna technology for Cubesat platforms is presented to receive direct as well as reflected signal with needed isolation. The novel scheme also allows enhancing the gain of individual channels by factor of 2 without use of reflecting ground plane.

  11. Solid state gas sensors for detection of explosives and explosive precursors

    NASA Astrophysics Data System (ADS)

    Chu, Yun

    The increased number of terrorist attacks using improvised explosive devices (IEDs) over the past few years has made the trace detection of explosives a priority for the Department of Homeland Security. Considerable advances in early detection of trace explosives employing spectroscopic detection systems and other sensing devices have been made and have demonstrated outstanding performance. However, modern IEDs are not easily detectable by conventional methods and terrorists have adapted to avoid using metallic or nitro groups in the manufacturing of IEDs. Instead, more powerful but smaller compounds, such as TATP are being more frequently used. In addition, conventional detection techniques usually require large capital investment, labor costs and energy input and are incapable of real-time identification, limiting their application. Thus, a low cost detection system which is capable of continuous online monitoring in a passive mode is needed for explosive detection. In this dissertation, a thermodynamic based thin film gas sensor which can reliably detect various explosive compounds was developed and demonstrated. The principle of the sensors is based on measuring the heat effect associated with the catalytic decomposition of explosive compounds present in the vapor phase. The decomposition mechanism is complicated and not well known, but it can be affected by many parameters including catalyst, reaction temperature and humidity. Explosives that have relatively high vapor pressure and readily sublime at room temperature, like TATP and 2, 6-DNT, are ideal candidate for vapor phase detection using the thermodynamic gas sensor. ZnO, W2O 3, V2O5 and SnO2 were employed as catalysts. This sensor exhibited promising sensitivity results for TATP, but poor selectivity among peroxide based compounds. In order to improve the sensitivity and selectivity of the thermodynamic sensor, a Pd:SnO2 nanocomposite was fabricated and tested as part of this dissertation. A combinatorial chemistry techniques were used for catalyst discovery. Specially, a series of tin oxide catalysts with continuous varying composition of palladium were fabricated to screen for the optimum Pd loading to maximize specificity. Experimental results suggested that sensors with a 12 wt.% palladium loading generated the highest sensitivity while a 8 wt.% palladium loading provided greatest selectivity. XPS and XRD were used to study how palladium doping level affects the oxidation state and crystal structure of the nanocomposite catalyst. As with any passive detection system, a necessary theme of this dissertation was the mitigation of false positive. Toward this end, an orthogonal detection system comprised of two independent sensing platforms sharing one catalyst was demonstrated using TATP, 2, 6-DNT and ammonium nitrate as target molecules. The orthogonal sensor incorporated a thermodynamic based sensing platform to measure the heat effect associated with the decomposition of explosive molecules, and a conductometric sensing platform that monitors the change in electrical conductivity of the same catalyst when exposed to the explosive substances. Results indicate that the orthogonal sensor generates an effective response to explosives presented at part per billion level. In addition, with two independent sensing platforms, a built-in redundancy of results could be expected to minimize false positive.

  12. Underwater thrust and power generation using flexible piezoelectric composites: an experimental investigation toward self-powered swimmer-sensor platforms

    NASA Astrophysics Data System (ADS)

    Erturk, Alper; Delporte, Ghislain

    2011-12-01

    Fiber-based flexible piezoelectric composites offer several advantages to use in energy harvesting and biomimetic locomotion. These advantages include ease of application, high power density, effective bending actuation, silent operation over a range of frequencies, and light weight. Piezoelectric materials exhibit the well-known direct and converse piezoelectric effects. The direct piezoelectric effect has received growing attention for low-power generation to use in wireless electronic applications while the converse piezoelectric effect constitutes an alternative to replace the conventional actuators used in biomimetic locomotion. In this paper, underwater thrust and electricity generation are investigated experimentally by focusing on biomimetic structures with macro-fiber composite piezoelectrics. Fish-like bimorph configurations with and without a passive caudal fin (tail) are fabricated and compared. The favorable effect of having a passive caudal fin on the frequency bandwidth is reported. The presence of a passive caudal fin is observed to bring the second bending mode close to the first one, yielding a wideband behavior in thrust generation. The same smart fish configuration is tested for underwater piezoelectric power generation in response to harmonic excitation from its head. Resonant piezohydroelastic actuation is reported to generate milli-newton level hydrodynamic thrust using milli-watt level actuation power input. The average actuation power requirement for generating a mean thrust of 19 mN at 6 Hz using a 10 g piezoelastic fish with a caudal fin is measured as 120 mW. This work also discusses the feasibility of thrust generation using the harvested energy toward enabling self-powered swimmer-sensor platforms with comparisons based on the capacity levels of structural thin-film battery layers as well as harvested solar and vibrational energy.

  13. Nanotechnology Propellant Health Monitoring Sensors; Success Through Multi-Stakeholder Interests

    DTIC Science & Technology

    2014-11-01

    Passive AgeAlert sensors integrate well with passive (no battery!) RFID technology: • RFID reader provides rf energy to read tag providing tag...be added • Reader access to secure server means real time updates Propellant aging sensor Shock sensor Passive RFID tag RFID reader Polymer Aging...Aging Concepts, Inc., Distribution A: Approved for Public Release; Distribution Unlimited Integration of AgeAlert Sensors and Passive RFID 12

  14. New strategies for SHM based on a multichannel wireless AE node

    NASA Astrophysics Data System (ADS)

    Godinez-Azcuaga, Valery; Ley, Obdulia

    2014-03-01

    This paper discusses the development of an Acoustic Emission (AE) wireless node and its application for SHM (Structural Health Monitoring). The instrument development was planned for applications monitoring steel and concrete bridges components. The final product, now commercially available, is a sensor node which includes multiple sensing elements, on board signal processing and analysis capabilities, signal conditioning electronics, power management circuits, wireless data transmission element and energy harvesting unit. The sensing elements are capable of functioning in both passive and active modes, while the multiple parametric inputs are available for connecting various sensor types to measure external characteristics affecting the performance of the structure under monitoring. The output of all these sensors are combined and analyzed at the node in order to minimize the data transmission rate, which consumes significant amount of power. Power management circuits are used to reduce the data collection intervals through selective data acquisition strategies and minimize the sensor node power consumption. This instrument, known as the 1284, is an excellent platform to deploy SHM in the original bridge applications, but initial prototypes has shown significant potential in monitoring composite wind turbine blades and composites mockups of Unmanned Autonomous Vehicles (UAV) components; currently we are working to extend the use of this system to fields such as coal flow, power transformer, and off-shore platform monitoring.

  15. Open-Loop Performance of COBALT Precision Landing Payload on a Commercial Sub-Orbital Rocket

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina I.; Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Lovelace, Ronney S.; McCarthy, Megan M.; Tse, Teming; Stelling, Richard; Collins, Steven M.

    2018-01-01

    An open-loop flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuses the NDL and LVS data in real time to produce a navigation solution that is independent of GPS and suitable for future, autonomous, planetary, landing systems. COBALT was a passive payload during the open loop tests. COBALT's sensors were actively taking data and processing it in real time, but the Xodiac rocket flew with its own GPS-navigation system as a risk reduction activity in the maturation of the technologies towards space flight. A future closed-loop test campaign is planned where the COBALT navigation solution will be used to fly its host vehicle.

  16. Aircraft remote sensing of soil moisture and hydrologic parameters, Taylor Creek, Florida, and Little River, Georgia, 1979 data report

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Schmugge, T. J.; Allen, L. H., Jr.; Oneill, P.; Slack, R.; Wang, J.; Engman, E. T.

    1981-01-01

    Experiments were conducted to evaluate aircraft remote sensing techniques for hydrology in a wide range of physiographic and climatic regions using several sensor platforms. The data were collected in late 1978 and during 1979 in two humid areas--Taylor Creek, Fla., and Little River, Ga. Soil moisture measurements and climatic observations are presented as well as the remote sensing data collected using thermal infrared, passive microwave, and active microwave systems.

  17. Mapping with Small UAS: A Point Cloud Accuracy Assessment

    NASA Astrophysics Data System (ADS)

    Toth, Charles; Jozkow, Grzegorz; Grejner-Brzezinska, Dorota

    2015-12-01

    Interest in using inexpensive Unmanned Aerial System (UAS) technology for topographic mapping has recently significantly increased. Small UAS platforms equipped with consumer grade cameras can easily acquire high-resolution aerial imagery allowing for dense point cloud generation, followed by surface model creation and orthophoto production. In contrast to conventional airborne mapping systems, UAS has limited ground coverage due to low flying height and limited flying time, yet it offers an attractive alternative to high performance airborne systems, as the cost of the sensors and platform, and the flight logistics, is relatively low. In addition, UAS is better suited for small area data acquisitions and to acquire data in difficult to access areas, such as urban canyons or densely built-up environments. The main question with respect to the use of UAS is whether the inexpensive consumer sensors installed in UAS platforms can provide the geospatial data quality comparable to that provided by conventional systems. This study aims at the performance evaluation of the current practice of UAS-based topographic mapping by reviewing the practical aspects of sensor configuration, georeferencing and point cloud generation, including comparisons between sensor types and processing tools. The main objective is to provide accuracy characterization and practical information for selecting and using UAS solutions in general mapping applications. The analysis is based on statistical evaluation as well as visual examination of experimental data acquired by a Bergen octocopter with three different image sensor configurations, including a GoPro HERO3+ Black Edition, a Nikon D800 DSLR and a Velodyne HDL-32. In addition, georeferencing data of varying quality were acquired and evaluated. The optical imagery was processed by using three commercial point cloud generation tools. Comparing point clouds created by active and passive sensors by using different quality sensors, and finally, by different commercial software tools, provides essential information for the performance validation of UAS technology.

  18. Testing of FTS fingers and interface using a passive compliant robot manipulator. [flight telerobot servicer

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Antrazi, Sami S.

    1992-01-01

    This report deals with testing of a pair of robot fingers designed for the Flight Telerobotic Servicer (FTS) to grasp a cylinder type of Orbital Replaceable Unit (ORU) interface. The report first describes the objectives of the study and then the testbed consisting of a Stewart Platform-based manipulator equipped with a passive compliant platform which also serves as a force/torque sensor. Kinematic analysis is then performed to provide a closed-form solution for the force inverse kinematics and iterative solution for the force forward kinematics using the Newton's Raphson Method. Mathematical expressions are then derived to compute force/torques applied to the FTS fingers during the mating/demating with the interface. The report then presents the three parts of the experimental study on the feasibility and characteristics of the fingers. The first part obtains data of forces applied by the fingers to the interface under various misalignments, the second part determines the maximum allowable capture angles for mating, and the third part processes and interprets the obtained force/torque data.

  19. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOEpatents

    Britton, Jr., Charles L.; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN

    2011-05-03

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  20. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOEpatents

    Britton, Jr; Charles, L [Alcoa, TN; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  1. Computerized data reduction techniques for nadir viewing remote sensors

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Gormsen, Barbara B.

    1985-01-01

    Computer resources have been developed for the analysis and reduction of MAPS experimental data from the OSTA-1 payload. The MAPS Research Project is concerned with the measurement of the global distribution of mid-tropospheric carbon monoxide. The measurement technique for the MAPS instrument is based on non-dispersive gas filter radiometer operating in the nadir viewing mode. The MAPS experiment has two passive remote sensing instruments, the prototype instrument which is used to measure tropospheric air pollution from aircraft platforms and the third generation (OSTA) instrument which is used to measure carbon monoxide in the mid and upper troposphere from space platforms. Extensive effort was also expended in support of the MAPS/OSTA-3 shuttle flight. Specific capabilities and resources developed are discussed.

  2. Wireless sensors and sensor networks for homeland security applications.

    PubMed

    Potyrailo, Radislav A; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M; Kelley-Loughnane, Nancy; Naik, Rajesh R

    2012-11-01

    New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers.

  3. New Tools for New Research in Psychiatry: A Scalable and Customizable Platform to Empower Data Driven Smartphone Research.

    PubMed

    Torous, John; Kiang, Mathew V; Lorme, Jeanette; Onnela, Jukka-Pekka

    2016-05-05

    A longstanding barrier to progress in psychiatry, both in clinical settings and research trials, has been the persistent difficulty of accurately and reliably quantifying disease phenotypes. Mobile phone technology combined with data science has the potential to offer medicine a wealth of additional information on disease phenotypes, but the large majority of existing smartphone apps are not intended for use as biomedical research platforms and, as such, do not generate research-quality data. Our aim is not the creation of yet another app per se but rather the establishment of a platform to collect research-quality smartphone raw sensor and usage pattern data. Our ultimate goal is to develop statistical, mathematical, and computational methodology to enable us and others to extract biomedical and clinical insights from smartphone data. We report on the development and early testing of Beiwe, a research platform featuring a study portal, smartphone app, database, and data modeling and analysis tools designed and developed specifically for transparent, customizable, and reproducible biomedical research use, in particular for the study of psychiatric and neurological disorders. We also outline a proposed study using the platform for patients with schizophrenia. We demonstrate the passive data capabilities of the Beiwe platform and early results of its analytical capabilities. Smartphone sensors and phone usage patterns, when coupled with appropriate statistical learning tools, are able to capture various social and behavioral manifestations of illnesses, in naturalistic settings, as lived and experienced by patients. The ubiquity of smartphones makes this type of moment-by-moment quantification of disease phenotypes highly scalable and, when integrated within a transparent research platform, presents tremendous opportunities for research, discovery, and patient health.

  4. New Tools for New Research in Psychiatry: A Scalable and Customizable Platform to Empower Data Driven Smartphone Research

    PubMed Central

    Torous, John; Kiang, Mathew V; Lorme, Jeanette

    2016-01-01

    Background A longstanding barrier to progress in psychiatry, both in clinical settings and research trials, has been the persistent difficulty of accurately and reliably quantifying disease phenotypes. Mobile phone technology combined with data science has the potential to offer medicine a wealth of additional information on disease phenotypes, but the large majority of existing smartphone apps are not intended for use as biomedical research platforms and, as such, do not generate research-quality data. Objective Our aim is not the creation of yet another app per se but rather the establishment of a platform to collect research-quality smartphone raw sensor and usage pattern data. Our ultimate goal is to develop statistical, mathematical, and computational methodology to enable us and others to extract biomedical and clinical insights from smartphone data. Methods We report on the development and early testing of Beiwe, a research platform featuring a study portal, smartphone app, database, and data modeling and analysis tools designed and developed specifically for transparent, customizable, and reproducible biomedical research use, in particular for the study of psychiatric and neurological disorders. We also outline a proposed study using the platform for patients with schizophrenia. Results We demonstrate the passive data capabilities of the Beiwe platform and early results of its analytical capabilities. Conclusions Smartphone sensors and phone usage patterns, when coupled with appropriate statistical learning tools, are able to capture various social and behavioral manifestations of illnesses, in naturalistic settings, as lived and experienced by patients. The ubiquity of smartphones makes this type of moment-by-moment quantification of disease phenotypes highly scalable and, when integrated within a transparent research platform, presents tremendous opportunities for research, discovery, and patient health. PMID:27150677

  5. Passive alcohol sensors tested in 3 states for youth alcohol enforcement

    DOT National Transportation Integrated Search

    1996-05-01

    Passive alcohol sensors were tested in three states to determine their effectiveness in enforcing zero tolerance or low BAC laws for under 21 age drivers. The passive alcohol sensor was designed to sample the air immediately around the suspect for si...

  6. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  7. Microwave remote sensing from space for earth resource surveys

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The concepts of radar remote sensing and microwave radiometry are discussed and their utility in earth resource sensing is examined. The direct relationship between the character of the remotely sensed data and the level of decision making for which the data are appropriate is considered. Applications of active and a passive microwave sensing covered include hydrology, land use, mapping, vegetation classification, environmental monitoring, coastal features and processes, geology, and ice and snow. Approved and proposed microwave sensors are described and the use of space shuttle as a development platform is evaluated.

  8. Arctic and Antarctic Sea Ice Concentrations from Multichannel Passive-Microwave Satellite Data Sets: October 1978-September 1995 User's Guide

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Parkinson, Claire L.; Gloersen, Per; Zwally, H. Jay

    1997-01-01

    Satellite multichannel passive-microwave sensors have provided global radiance measurements with which to map, monitor, and study the Arctic and Antarctic polar sea ice covers. The data span over 18 years (as of April 1997), starting with the launch of the Scanning Multichannel Microwave Radiometer (SMMR) on NASA's SeaSat A and Nimbus 7 in 1978 and continuing with the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSMI) series beginning in 1987. It is anticipated that the DMSP SSMI series will continue into the 21st century. The SSMI series will be augmented by new, improved sensors to be flown on Japanese and U.S. space platforms. This User's Guide provides a description of a new sea ice concentration data set generated from observations made by three of these multichannel sensors. The data set includes gridded daily ice concentrations (every-other-day for the SMMR data) for both the north and south polar regions from October 26, 1978 through September 30, 1995, with the one exception of a 6-week data gap from December 3, 1987 through January 12, 1988. The data have been placed on two CD-ROMs that include a ReadMeCD file giving the technical details on the file format, file headers, north and south polar grids, ancillary data sets, and directory structure of the CD-ROM. The CD-ROMS will be distributed by the National Snow and Ice Data Center in Boulder, CO.

  9. A Study of Tropical thin Cirrus Clouds with Supervised Learning

    NASA Astrophysics Data System (ADS)

    Rodier, S. D.; Hu, Y.; Vaughan, M. A.

    2007-12-01

    ABSTRACT Accurate knowledge of the temporal frequency and spatial extent of optically thin cirrus is crucial to climate feedback analysis. Current global warming theory asserts that when the atmospheric concentration of CO2 increases, the outgoing longwave radiation at non-window wavelengths is reduced. If the Earth's net radiative balance is to remain stable, ground temperatures must rise in response, thereby increasing thermal emission to space. Current models do not account for subsequent changes in cloud cover, because this aspect of the climate feedback system is so poorly understood. One possible response of the cloud-climate feedback process is an increase in the global occurrence of thin cirrus clouds, driven by the increase in longwave cooling in the upper troposphere that results from higher CO2 concentrations. Exacerbating the difficulty of assessing the situation is the fact that passive remote sensing instruments cannot reliably detect cirrus clouds with optical depths less than ~0.3, because these clouds do not reflect enough sunlight to create a sufficient contrast with the Earth's surface. Now, however, the presence of thin cirrus can for the first time be accurately detected and systematically monitored by the combination of active and passive sensors onboard the CALIPSO satellite. Nevertheless, the data record is still quite limited, as CALIPSO has been in orbit for only 16 months. We have therefore initiated a multi-platform data fusion study to establish a methodology for extending the limited set of CALIPSO measurements to the existing 30-year record of passive remote sensing data, and thus improve our understanding of cloud feedback mechanisms. Using nighttime data from the first 10 days in April 2007 as a training set, we applied a general regression neural network (GRNN) to collocated samples of sea surface temperature (SST) reported by AMSR, brightness temperatures (BT) from the CALIPSO imaging infrared radiometer (IIR), and optical depths (OD) derived from the CALIPSO lidar measurements. The result is an accurate mapping of the optical depths derived from the active sensors to the brightness temperatures computed from the passive sensor measurements. Applying the trained network to this combination of passive sensor parameters, optical depths as small as 0.1 can be reliably retrieved. The relative uncertainties in the retrieval are reasonable, and can be improved significantly by use of a much larger training set.

  10. Biomechanical Comparison of 3 Ankle Braces With and Without Free Rotation in the Sagittal Plane

    PubMed Central

    Alfuth, Martin; Klein, Dieter; Koch, Raphael; Rosenbaum, Dieter

    2014-01-01

    Context: Various designs of braces including hinged and nonhinged models are used to provide external support of the ankle. Hinged ankle braces supposedly allow almost free dorsiflexion and plantar flexion of the foot in the sagittal plane. It is unclear, however, whether this additional degree of freedom affects the stabilizing effect of the brace in the other planes of motion. Objective: To investigate the dynamic and passive stabilizing effects of 3 ankle braces, 2 hinged models that provide free plantar flexion–dorsiflexion in the sagittal plane and 1 ankle brace without a hinge. Design: Crossover study. Setting: University Movement Analysis Laboratory. Patients or Other Participants: Seventeen healthy volunteers (5 women, 12 men; age = 25.4 ± 4.8 years; height = 180.3 ± 6.5 cm; body mass = 75.5 ± 10.4 kg). Intervention(s): We dynamically induced foot inversion on a tilting platform and passively induced foot movements in 6 directions via a custom-built apparatus in 3 brace conditions and a control condition (no brace). Main Outcome Measure(s): Maximum inversion was determined dynamically using an in-shoe electrogoniometer. Passively induced maximal joint angles were measured using a torque and angle sensor. We analyzed differences among the 4 ankle-brace conditions (3 braces, 1 control) for each of the dependent variables with Friedman and post hoc tests (P < .05). Results: Each ankle brace restricted dynamic foot-inversion movements on the tilting platform as compared with the control condition, whereas only the 2 hinged ankle braces differed from each other, with greater movement restriction caused by the Ankle X model. Passive foot inversion was reduced with all ankle braces. Passive plantar flexion was greater in the hinged models as compared with the nonhinged brace. Conclusions: All ankle braces showed stabilizing effects against dynamic and passive foot inversion. Differences between the hinged braces and the nonhinged brace did not appear to be clinically relevant. PMID:25098661

  11. Indium phosphide-based monolithically integrated PIN waveguide photodiode readout for resonant cantilever sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siwak, N. P.; Laboratory for the Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740; Fan, X. Z.

    2014-10-06

    An integrated photodiode displacement readout scheme for a microelectromechanical cantilever waveguide resonator sensing platform is presented. III-V semiconductors are used to enable the monolithic integration of passive waveguides with active optical components. This work builds upon previously demonstrated results by measuring the displacement of cantilever waveguide resonators with on-chip waveguide PIN photodiodes. The on-chip integration of the readout provides an additional 70% improvement in mass sensitivity compared to off-chip photodetector designs due to measurement stability and minimized coupling loss. In addition to increased measurement stability, reduced packaging complexity is achieved due to the simplicity of the readout design. We havemore » fabricated cantilever waveguides with integrated photodetectors and experimentally characterized these cantilever sensors with monolithically integrated PIN photodiodes.« less

  12. Advances in Remote Sensing of Vegetation Merging NDVI, Soil Moisture, and Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Tucker, Compton

    2016-04-01

    I will describe an advance in remote sensing of vegetation in the time domain that combines simultaneous measurements of the normalized difference vegetation index, soil moisture, and chlorophyll fluorescence, all from different satellite sensors but acquired for the same areas at the same time step. The different sensor data are MODIS NDVI data from both Terra and Aqua platforms, soil moisture data from SMOS & SMP (aka SMAP but with only the passive radiometer), and chlorophyll fluorescence data from GOME-2. The complementary combination of these data provide important crop yield information for agricultural production estimates at critical phenological times in the growing season, provide a scientific basis to map land degradation, and enable quantitative determination of the end of the growing season in temperate zones.

  13. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  14. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  15. Fiber-optic sensing in cryogenic environments. [for rocket propellant tank monitoring

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Brooks, R. E.

    1980-01-01

    Passive optical sensors using fiber-optic signal transmission to a remote monitoring station are explored as an alternative to electrical sensors used to monitor the status of explosive propellants. The designs of passive optical sensors measuring liquid level, pressure, and temperature in cryogenic propellant tanks are discussed. Test results for an experimental system incorporating these sensors and operating in liquid nitrogen demonstrate the feasibility of passive sensor techniques and indicate that they can serve as non-hazardous replacements for more conventional measuring equipment in explosive environments.

  16. Autonomous chemical and biological miniature wireless-sensor

    NASA Astrophysics Data System (ADS)

    Goldberg, Bar-Giora

    2005-05-01

    The presentation discusses a new concept and a paradigm shift in biological, chemical and explosive sensor system design and deployment. From large, heavy, centralized and expensive systems to distributed wireless sensor networks utilizing miniature platforms (nodes) that are lightweight, low cost and wirelessly connected. These new systems are possible due to the emergence and convergence of new innovative radio, imaging, networking and sensor technologies. Miniature integrated radio-sensor networks, is a technology whose time has come. These network systems are based on large numbers of distributed low cost and short-range wireless platforms that sense and process their environment and communicate data thru a network to a command center. The recent emergence of chemical and explosive sensor technology based on silicon nanostructures, coupled with the fast evolution of low-cost CMOS imagers, low power DSP engines and integrated radio chips, has created an opportunity to realize the vision of autonomous wireless networks. These threat detection networks will perform sophisticated analysis at the sensor node and convey alarm information up the command chain. Sensor networks of this type are expected to revolutionize the ability to detect and locate biological, chemical, or explosive threats. The ability to distribute large numbers of low-cost sensors over large areas enables these devices to be close to the targeted threats and therefore improve detection efficiencies and enable rapid counter responses. These sensor networks will be used for homeland security, shipping container monitoring, and other applications such as laboratory medical analysis, drug discovery, automotive, environmental and/or in-vivo monitoring. Avaak"s system concept is to image a chromatic biological, chemical and/or explosive sensor utilizing a digital imager, analyze the images and distribute alarm or image data wirelessly through the network. All the imaging, processing and communications would take place within the miniature, low cost distributed sensor platforms. This concept however presents a significant challenge due to a combination and convergence of required new technologies, as mentioned above. Passive biological and chemical sensors with very high sensitivity and which require no assaying are in development using a technique to optically and chemically encode silicon wafers with tailored nanostructures. The silicon wafer is patterned with nano-structures designed to change colors ad patterns when exposed to the target analytes (TICs, TIMs, VOC). A small video camera detects the color and pattern changes on the sensor. To determine if an alarm condition is present, an on board DSP processor, using specialized image processing algorithms and statistical analysis, determines if color gradient changes occurred on the sensor array. These sensors can detect several agents simultaneously. This system is currently under development by Avaak, with funding from DARPA through an SBIR grant.

  17. Wireless passive radiation sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  18. Sequence Learning with Passive RFID Sensors for Real-Time Bed-Egress Recognition in Older People.

    PubMed

    Wickramasinghe, Asanga; Ranasinghe, Damith C; Fumeaux, Christophe; Hill, Keith D; Visvanathan, Renuka

    2017-07-01

    Getting out of bed and ambulating without supervision is identified as one of the major causes of patient falls in hospitals and nursing homes. Therefore, increased supervision is proposed as a key strategy toward falls prevention. An emerging generation of batteryless, lightweight, and wearable sensors are creating new possibilities for ambulatory monitoring, where the unobtrusive nature of such sensors makes them particularly adapted for monitoring older people. In this study, we investigate the use of a batteryless radio-frequency identification (RFID) tag response to analyze bed-egress movements. We propose a bed-egress movement detection framework that includes a novel sequence learning classifier with a set of features derived from bed-egress motion analysis. We analyzed data from 14 healthy older people (66-86 years old) who wore a wearable embodiment of a batteryless accelerometer integrated RFID sensor platform loosely attached over their clothes at sternum level, and undertook a series of activities including bed-egress in two clinical room settings. The promising results indicate the efficacy of our batteryless bed-egress monitoring framework.

  19. Study on rejection characteristic of current loop to the base disturbance of optical communication system

    NASA Astrophysics Data System (ADS)

    Mao, Yao; Deng, Chao; Liu, Qiong; Cao, Zheng

    2016-10-01

    As laser has narrow transmitting beam and small divergence angle, the LOS (Line of Sight) stabilization of optical communication system is a primary precondition of laser communication links. Compound axis control is usually adopted in LOS stabilization of optical communication system, in which coarse tracking and fine tracking are included. Rejection against high frequency disturbance mainly depends on fine tracking LOS stabilization platform. Limited by different factors such as mechanical characteristic of the stabilization platform and bandwidth/noise of the sensor, the control bandwidth of LOS stabilization platform is restricted so that effective rejection of high frequency disturbance cannot be achieved as it mainly depends on the isolation characteristic of the platform itself. It is proposed by this paper that current loop may reject the effect of back-EMF. By adopting the method of electric control, high frequency isolation characteristic of the platform can be improved. The improvement effect is similar to increasing passive vibration reduction devices. Adopting the double closed loop control structure of velocity and current with the combining of the rejection effect of back-EMF caused by current loop is equivalent to reducing back-EMF coefficient, which can enhance the isolation ability of the LOS stabilization platform to high frequency disturbance.

  20. Wireless SAW passive tag temperature measurement in the collision case

    NASA Astrophysics Data System (ADS)

    Sorokin, A.; Shepeta, A.; Wattimena, M.

    2018-04-01

    This paper describes temperature measurement in the multisensor systems based on the radio-frequency identification SAW passive tags which are currently applied in the electric power systems and the switchgears. Different approaches of temperature measurement in the collision case are shown here. The study is based on the tag model with specific topology, which allows us to determine temperature through the response signal with time-frequency information. This research considers the collision case for several passive tags as the temperature sensors which are placed in the switchgear. This research proposal is to analyze the possibility of using several SAW passive sensors in the collision case. We consider the using of the different typical elements for passive surface acoustic wave tag which applies as an anticollision passive sensor. These wireless sensors based on the surface acoustic waves tags contain specifically coded structures. This topology makes possible the reliability of increasing tag identification and the temperature measurement in the collision case. As the results for this case we illustrate simultaneous measurement of at least six sensors.

  1. Intelligent On-Board Processing in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Tanner, S.

    2005-12-01

    Most existing sensing systems are designed as passive, independent observers. They are rarely aware of the phenomena they observe, and are even less likely to be aware of what other sensors are observing within the same environment. Increasingly, intelligent processing of sensor data is taking place in real-time, using computing resources on-board the sensor or the platform itself. One can imagine a sensor network consisting of intelligent and autonomous space-borne, airborne, and ground-based sensors. These sensors will act independently of one another, yet each will be capable of both publishing and receiving sensor information, observations, and alerts among other sensors in the network. Furthermore, these sensors will be capable of acting upon this information, perhaps altering acquisition properties of their instruments, changing the location of their platform, or updating processing strategies for their own observations to provide responsive information or additional alerts. Such autonomous and intelligent sensor networking capabilities provide significant benefits for collections of heterogeneous sensors within any environment. They are crucial for multi-sensor observations and surveillance, where real-time communication with external components and users may be inhibited, and the environment may be hostile. In all environments, mission automation and communication capabilities among disparate sensors will enable quicker response to interesting, rare, or unexpected events. Additionally, an intelligent network of heterogeneous sensors provides the advantage that all of the sensors can benefit from the unique capabilities of each sensor in the network. The University of Alabama in Huntsville (UAH) is developing a unique approach to data processing, integration and mining through the use of the Adaptive On-Board Data Processing (AODP) framework. AODP is a key foundation technology for autonomous internetworking capabilities to support situational awareness by sensors and their on-board processes. The two primary research areas for this project are (1) the on-board processing and communications framework itself, and (2) data mining algorithms targeted to the needs and constraints of the on-board environment. The team is leveraging its experience in on-board processing, data mining, custom data processing, and sensor network design. Several unique UAH-developed technologies are employed in the AODP project, including EVE, an EnVironmEnt for on-board processing, and the data mining tools included in the Algorithm Development and Mining (ADaM) toolkit.

  2. Seasat-A and the commercial ocean community

    NASA Technical Reports Server (NTRS)

    Montgomery, D. R.; Wolff, P.

    1977-01-01

    The Seasat-A program has been initiated as a 'proof-of-concept' mission to evaluate the effectiveness of remotely sensing oceanology and related meteorological phenomena from a satellite platform in space utilizing sensors developed on previous space and aircraft test programs. The sensors include three active microwave sensors; a radar altimeter, a windfield scatterometer, and a synthetic aperture radar. A passive scanning multifrequency microwave radiometer, visual and infrared radiometer are also included. All weather, day-night measurements of sea surface temperature, surface wind speed/direction and sea state and directional wave spectra will be made. Two key programs are planned for data utilization with users during the mission. Foremost is a program with the commercial ocean community to test the utility of Seasat-A data and to begin the transfer of ocean remote sensing technology to the civil sector. A second program is a solicitation of investigations, led by NOAA, to involve the ocean science community in a series of scientific investigations.

  3. Multivariate Statistical Inference of Lightning Occurrence, and Using Lightning Observations

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis

    2004-01-01

    Two classes of multivariate statistical inference using TRMM Lightning Imaging Sensor, Precipitation Radar, and Microwave Imager observation are studied, using nonlinear classification neural networks as inferential tools. The very large and globally representative data sample provided by TRMM allows both training and validation (without overfitting) of neural networks with many degrees of freedom. In the first study, the flashing / or flashing condition of storm complexes is diagnosed using radar, passive microwave and/or environmental observations as neural network inputs. The diagnostic skill of these simple lightning/no-lightning classifiers can be quite high, over land (above 80% Probability of Detection; below 20% False Alarm Rate). In the second, passive microwave and lightning observations are used to diagnose radar reflectivity vertical structure. A priori diagnosis of hydrometeor vertical structure is highly important for improved rainfall retrieval from either orbital radars (e.g., the future Global Precipitation Mission "mothership") or radiometers (e.g., operational SSM/I and future Global Precipitation Mission passive microwave constellation platforms), we explore the incremental benefit to such diagnosis provided by lightning observations.

  4. Technologies for Positioning and Placement of Underwater Structures

    DTIC Science & Technology

    2000-03-01

    for imaging the bottom immediately before placement of the structure. c. Use passive sensors (such as tiltmeters , inclinometers, and gyrocompasses...4 Acoustic Sensors .................................................................... 5 Multibeamn and Side-Scan Sonar Transducers...11.I Video Camera....................................................................11. Passive Sensors

  5. Consistent radiative transfer modeling of active and passive observations of precipitation

    NASA Astrophysics Data System (ADS)

    Adams, Ian

    2016-04-01

    Spaceborne platforms such as the Tropical Rainfall Measurement Mission (TRMM) and the Global Precipitation Measurement (GPM) mission exploit a combination of active and passive sensors to provide a greater understanding of the three-dimensional structure of precipitation. While "operationalized" retrieval algorithms require fast forward models, the ability to perform higher fidelity simulations is necessary in order to understand the physics of remote sensing problems by testing assumptions and developing parameterizations for the fast models. To ensure proper synergy between active and passive modeling, forward models must be consistent when modeling the responses of radars and radiometers. This work presents a self-consistent transfer model for simulating radar reflectivities and millimeter wave brightness temperatures for precipitating scenes. To accomplish this, we extended the Atmospheric Radiative Transfer Simulator (ARTS) version 2.3 to solve the radiative transfer equation for active sensors and multiple scattering conditions. Early versions of ARTS (1.1) included a passive Monte Carlo solver, and ARTS is capable of handling atmospheres of up to three dimensions with ellipsoidal planetary geometries. The modular nature of ARTS facilitates extensibility, and the well-developed ray-tracing tools are suited for implementation of Monte Carlo algorithms. Finally, since ARTS handles the full Stokes vector, co- and cross-polarized reflectivity products are possible for scenarios that include nonspherical particles, with or without preferential alignment. The accuracy of the forward model will be demonstrated with precipitation events observed by TRMM and GPM, and the effects of multiple scattering will be detailed. The three-dimensional nature of the radiative transfer model will be useful for understanding the effects of nonuniform beamfill and multiple scattering for spatially heterogeneous precipitation events. The targets of this forward model are GPM (the Dual-wavelength Precipitation Radar (DPR) and GPM Microwave Imager (GMI)).

  6. Passive range estimation using dual baseline triangulation

    NASA Astrophysics Data System (ADS)

    Pieper, Ronald J.; Cooper, Alfred W.; Pelegris, G.

    1996-03-01

    Modern combat systems based on active radar sensing suffer disadvantages against low-flying targets in cluttered backgrounds. Use of passive infrared sensors with these systems, either in cooperation or as an alternative, shows potential for improving target detection and declaration range for targets crossing the horizon. Realization of this potential requires fusion of target position data from dissimilar sensors, or passive sensor measurement of target range. The availability of passive sensors that can supply both range and bearing data on such targets would significantly extend the robustness of an integrated ship self-defense system. This paper considers a new method of range determination with passive sensors based on the principle of triangulation, extending the principle to two orthogonal baselines. The performance of single or double baseline triangulation depends on sensor bearing precision and direction to target. An expression for maximum triangulation range at a required accuracy is derived as a function of polar angle relative to the center of the dual-baseline system. Limitations in the dual- baseline model due to the geometrically assessed horizon are also considered.

  7. Design optimization of the sensor spatial arrangement in a direct magnetic field-based localization system for medical applications.

    PubMed

    Marechal, Luc; Shaohui Foong; Zhenglong Sun; Wood, Kristin L

    2015-08-01

    Motivated by the need for developing a neuronavigation system to improve efficacy of intracranial surgical procedures, a localization system using passive magnetic fields for real-time monitoring of the insertion process of an external ventricular drain (EVD) catheter is conceived and developed. This system operates on the principle of measuring the static magnetic field of a magnetic marker using an array of magnetic sensors. An artificial neural network (ANN) is directly used for solving the inverse problem of magnetic dipole localization for improved efficiency and precision. As the accuracy of localization system is highly dependent on the sensor spatial location, an optimization framework, based on understanding and classification of experimental sensor characteristics as well as prior knowledge of the general trajectory of the localization pathway, for design of such sensing assemblies is described and investigated in this paper. Both optimized and non-optimized sensor configurations were experimentally evaluated and results show superior performance from the optimized configuration. While the approach presented here utilizes ventriculostomy as an illustrative platform, it can be extended to other medical applications that require localization inside the body.

  8. Detection and Classification of UXO Using Unmanned Undersea Electromagnetic Sensing Platforms

    NASA Astrophysics Data System (ADS)

    Schultz, G.; Keranen, J.; McNinch, J.; Miller, J.

    2017-12-01

    Important seafloor applications, including mine countermeasures, unexploded ordnance (UXO) surveys, salvage, and underwater hazards, require the detection, geo-registration, and characterization of man-made targets on, or below, the seafloor. Investigations in littoral environments can be time-consuming and expensive due to the challenges of accurately tracking underwater assets, the difficulty of quick or effective site reconnaissance activities, high levels of clutter in nearshore areas, and lack of situational awareness and real-time feedback to operators. Consequently, a high payoff exists for effective methods using sensor and data fusion, feature extraction, and effective payload integration and deployment for improved assessments of littoral infrastructure. We present technology development and demonstration results from multiple technology research, development, and demonstration projects over the last 3 years that have been focused on advancing seafloor target detection, tracking, and classification for specific environmental and defense missions. We focus on challenges overcome in integrating and testing new miniaturized passive magnetic and controlled-source electromagnetic sensors on a variety of remotely and autonomously operated sensing platforms (ROVs, AUVs and bottom crawling systems). In particular, we present aspects of the design, development, and testing of array configurations of miniaturized atomic magnetometers/gradiometers and multi-dimensional electromagnetic (EM) sensor arrays. Results from nearshore (surf zone and marsh in North Carolina) and littoral experiments (bays and reef areas of Florida Gulf and Florida Keys) are presented.

  9. Dense range map reconstruction from a versatile robotic sensor system with an active trinocular vision and a passive binocular vision.

    PubMed

    Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck

    2008-04-10

    One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.

  10. Sensor Failure Detection of FASSIP System using Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.

  11. Earth Observations from the International Space Station: Benefits for Humanity

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2015-01-01

    The International Space Station (ISS) is a unique terrestrial remote sensing platform for observation of the Earth's land surface, oceans, and atmosphere. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted active and passive remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous, sun-synchronous sensor systems in higher altitude polar orbits. Beginning in May 2012, NASA ISS sensor systems have been available to respond to requests for data through the International Charter, Space and Major Disasters, also known as the "International Disaster Charter" or IDC. Data from digital handheld cameras, multispectral, and hyperspectral imaging systems has been acquired in response to IDC activations and delivered to requesting agencies through the United States Geological Survey. The characteristics of the ISS for Earth observation will be presented, including past, current, and planned NASA, International Partner, and commercial remote sensing systems. The role and capabilities of the ISS for humanitarian benefit, specifically collection of remotely sensed disaster response data, will be discussed.

  12. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications †

    PubMed Central

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori

    2017-01-01

    Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954

  13. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications.

    PubMed

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori

    2017-08-28

    Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.

  14. Recent Advances in Paper-Based Sensors

    PubMed Central

    Liana, Devi D.; Raguse, Burkhard; Gooding, J. Justin; Chow, Edith

    2012-01-01

    Paper-based sensors are a new alternative technology for fabricating simple, low-cost, portable and disposable analytical devices for many application areas including clinical diagnosis, food quality control and environmental monitoring. The unique properties of paper which allow passive liquid transport and compatibility with chemicals/biochemicals are the main advantages of using paper as a sensing platform. Depending on the main goal to be achieved in paper-based sensors, the fabrication methods and the analysis techniques can be tuned to fulfill the needs of the end-user. Current paper-based sensors are focused on microfluidic delivery of solution to the detection site whereas more advanced designs involve complex 3-D geometries based on the same microfluidic principles. Although paper-based sensors are very promising, they still suffer from certain limitations such as accuracy and sensitivity. However, it is anticipated that in the future, with advances in fabrication and analytical techniques, that there will be more new and innovative developments in paper-based sensors. These sensors could better meet the current objectives of a viable low-cost and portable device in addition to offering high sensitivity and selectivity, and multiple analyte discrimination. This paper is a review of recent advances in paper-based sensors and covers the following topics: existing fabrication techniques, analytical methods and application areas. Finally, the present challenges and future outlooks are discussed. PMID:23112667

  15. Collegial Activity Learning between Heterogeneous Sensors.

    PubMed

    Feuz, Kyle D; Cook, Diane J

    2017-11-01

    Activity recognition algorithms have matured and become more ubiquitous in recent years. However, these algorithms are typically customized for a particular sensor platform. In this paper we introduce PECO, a Personalized activity ECOsystem, that transfers learned activity information seamlessly between sensor platforms in real time so that any available sensor can continue to track activities without requiring its own extensive labeled training data. We introduce a multi-view transfer learning algorithm that facilitates this information handoff between sensor platforms and provide theoretical performance bounds for the algorithm. In addition, we empirically evaluate PECO using datasets that utilize heterogeneous sensor platforms to perform activity recognition. These results indicate that not only can activity recognition algorithms transfer important information to new sensor platforms, but any number of platforms can work together as colleagues to boost performance.

  16. Real-time assessment of surface interactions with titanium passivation layer by surface plasmon resonance

    PubMed Central

    Hirata, Isao; Yoshida, Yasuhiro; Nagaoka, Noriyuki; Hiasa, Kyou; Abe, Yasuhiko; Maekawa, Kenji; Kuboki, Takuo; Akagawa, Yasumasa; Suzuki, Kazuomi; Van Meerbeek, Bart; Messersmith, Phillip B.; Okazaki, Masayuki

    2011-01-01

    The high corrosion resistance and strength-to-density ratio makes titanium widely used in major industry, but also in a gamut of medical applications. Here we report for the first time on our development of a titanium passivation layer sensor that makes use of surface plasmon resonance (SPR). The deposited titanium metal layer on the sensor was passivated in air, like titanium medical devices. Our ‘Ti-SPR sensor’ enables analysis of biomolecules interactions with the passivated surface of titanium in real time. As a proof of concept, corrosion of titanium passivation layer exposed to acid was monitored in real time. Also, the Ti-SPR sensor can accurately measure the time-dependence of protein adsorption onto titanium passivation layer with a sub-nanogram per square millimeter accuracy. Besides such SPR analyses, an SPR-imaging (SPRI) enables real-time assessment of chemical surface processes that occur simultaneously at ‘multiple independent spots’ on the Ti-SPR sensor, such as acid-corrosion or adhesion of cells. Our Ti-SPR sensor will therefore be very useful to study titanium-corrosion phenomena and biomolecular titanium-surface interactions with application in a broad range of industrial and biomedical fields. PMID:22154862

  17. Real-time depth processing for embedded platforms

    NASA Astrophysics Data System (ADS)

    Rahnama, Oscar; Makarov, Aleksej; Torr, Philip

    2017-05-01

    Obtaining depth information of a scene is an important requirement in many computer-vision and robotics applications. For embedded platforms, passive stereo systems have many advantages over their active counterparts (i.e. LiDAR, Infrared). They are power efficient, cheap, robust to lighting conditions and inherently synchronized to the RGB images of the scene. However, stereo depth estimation is a computationally expensive task that operates over large amounts of data. For embedded applications which are often constrained by power consumption, obtaining accurate results in real-time is a challenge. We demonstrate a computationally and memory efficient implementation of a stereo block-matching algorithm in FPGA. The computational core achieves a throughput of 577 fps at standard VGA resolution whilst consuming less than 3 Watts of power. The data is processed using an in-stream approach that minimizes memory-access bottlenecks and best matches the raster scan readout of modern digital image sensors.

  18. Advanced Smart Structures Flight Experiments for Precision Spacecraft

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Erwin, R. Scott; Ninneman, R. Rory

    2000-07-01

    This paper presents an overview as well as data from four smart structures flight experiments directed by the U.S. Air Force Research Laboratory's Space Vehicles Directorate in Albuquerque, New Mexico. The Middeck Active Control Experiment $¯Flight II (MACE II) is a space shuttle flight experiment designed to investigate modeling and control issues for achieving high precision pointing and vibration control of future spacecraft. The Advanced Controls Technology Experiment (ACTEX-I) is an experiment that has demonstrated active vibration suppression using smart composite structures with embedded piezoelectric sensors and actuators. The Satellite Ultraquiet Isolation Technology Experiment (SUITE) is an isolation platform that uses active piezoelectric actuators as well as damped mechanical flexures to achieve hybrid passive/active isolation. The Vibration Isolation, Suppression, and Steering Experiment (VISS) is another isolation platform that uses viscous dampers in conjunction with electromagnetic voice coil actuators to achieve isolation as well as a steering capability for an infra-red telescope.

  19. Novel Concrete Temperature Monitoring Method Based on an Embedded Passive RFID Sensor Tag.

    PubMed

    Liu, Yongsheng; Deng, Fangming; He, Yigang; Li, Bing; Liang, Zhen; Zhou, Shuangxi

    2017-06-22

    This paper firstly introduces the importance of temperature control in concrete measurement, then a passive radio frequency identification (RFID) sensor tag embedded for concrete temperature monitoring is presented. In order to reduce the influences of concrete electromagnetic parameters during the drying process, a T-type antenna is proposed to measure the concrete temperature at the required depth. The proposed RFID sensor tag is based on the EPC generation-2 ultra-high frequency (UHF) communication protocol and operates in passive mode. The temperature sensor can convert the sensor signals to corresponding digital signals without an external reference clock due to the adoption of phase-locked loop (PLL)-based architecture. Laboratory experimentation and on-site testing demonstrate that our sensor tag embedded in concrete can provide reliable communication performance in passive mode. The maximum communicating distance between reader and tag is 7 m at the operating frequency of 915 MHz and the tested results show high consistency with the results tested by a thermocouple.

  20. Novel Concrete Temperature Monitoring Method Based on an Embedded Passive RFID Sensor Tag

    PubMed Central

    Liu, Yongsheng; Deng, Fangming; He, Yigang; Li, Bing; Liang, Zhen; Zhou, Shuangxi

    2017-01-01

    This paper firstly introduces the importance of temperature control in concrete measurement, then a passive radio frequency identification (RFID) sensor tag embedded for concrete temperature monitoring is presented. In order to reduce the influences of concrete electromagnetic parameters during the drying process, a T-type antenna is proposed to measure the concrete temperature at the required depth. The proposed RFID sensor tag is based on the EPC generation-2 ultra-high frequency (UHF) communication protocol and operates in passive mode. The temperature sensor can convert the sensor signals to corresponding digital signals without an external reference clock due to the adoption of phase-locked loop (PLL)-based architecture. Laboratory experimentation and on-site testing demonstrate that our sensor tag embedded in concrete can provide reliable communication performance in passive mode. The maximum communicating distance between reader and tag is 7 m at the operating frequency of 915 MHz and the tested results show high consistency with the results tested by a thermocouple. PMID:28640188

  1. Irma 5.1 multisensor signature prediction model

    NASA Astrophysics Data System (ADS)

    Savage, James; Coker, Charles; Edwards, Dave; Thai, Bea; Aboutalib, Omar; Chow, Anthony; Yamaoka, Neil; Kim, Charles

    2006-05-01

    The Irma synthetic signature prediction code is being developed to facilitate the research and development of multi-sensor systems. Irma was one of the first high resolution, physics-based Infrared (IR) target and background signature models to be developed for tactical weapon applications. Originally developed in 1980 by the Munitions Directorate of the Air Force Research Laboratory (AFRL/MN), the Irma model was used exclusively to generate IR scenes. In 1988, a number of significant upgrades to Irma were initiated including the addition of a laser (or active) channel. This two-channel version was released to the user community in 1990. In 1992, an improved scene generator was incorporated into the Irma model, which supported correlated frame-to-frame imagery. A passive IR/millimeter wave (MMW) code was completed in 1994. This served as the cornerstone for the development of the co-registered active/passive IR/MMW model, Irma 4.0. In 2000, Irma version 5.0 was released which encompassed several upgrades to both the physical models and software. Circular polarization was added to the passive channel, and a Doppler capability was added to the active MMW channel. In 2002, the multibounce technique was added to the Irma passive channel. In the ladar channel, a user-friendly Ladar Sensor Assistant (LSA) was incorporated which provides capability and flexibility for sensor modeling. Irma 5.0 runs on several platforms including Windows, Linux, Solaris, and SGI Irix. Irma is currently used to support a number of civilian and military applications. The Irma user base includes over 130 agencies within the Air Force, Army, Navy, DARPA, NASA, Department of Transportation, academia, and industry. In 2005, Irma version 5.1 was released to the community. In addition to upgrading the Ladar channel code to an object oriented language (C++) and providing a new graphical user interface to construct scenes, this new release significantly improves the modeling of the ladar channel and includes polarization effects, time jittering, speckle effect, and atmospheric turbulence. More importantly, the Munitions Directorate has funded three field tests to verify and validate the re-engineered ladar channel. Each of the field tests was comprehensive and included one month of sensor characterization and a week of data collection. After each field test, the analysis included comparisons of Irma predicted signatures with measured signatures, and if necessary, refining the model to produce realistic imagery. This paper will focus on two areas of the Irma 5.1 development effort: report on the analysis results of the validation and verification of the Irma 5.1 ladar channel, and the software development plan and validation efforts of the Irma passive channel. As scheduled, the Irma passive code is being re-engineered using object oriented language (C++), and field data collection is being conducted to validate the re-engineered passive code. This software upgrade will remove many constraints and limitations of the legacy code including limits on image size and facet counts. The field test to validate the passive channel is expected to be complete in the second quarter of 2006.

  2. Review of Research Status and Development Trends of Wireless Passive LC Resonant Sensors for Harsh Environments.

    PubMed

    Li, Chen; Tan, Qiulin; Jia, Pinggang; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Xiong, Jijun

    2015-06-04

    Measurement technology for various key parameters in harsh environments (e.g., high-temperature and biomedical applications) continues to be limited. Wireless passive LC resonant sensors offer long service life and can be suitable for harsh environments because they can transmit signals without battery power or wired connections. Consequently, these devices have become the focus of many current research studies. This paper addresses recent research, key technologies, and practical applications relative to passive LC sensors used to monitor temperature, pressure, humidity, and harmful gases in harsh environments. The advantages and disadvantages of various sensor types are discussed, and prospects and challenges for future development of these sensors are presented.

  3. Review of Research Status and Development Trends of Wireless Passive LC Resonant Sensors for Harsh Environments

    PubMed Central

    Li, Chen; Tan, Qiulin; Jia, Pinggang; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Xiong, Jijun

    2015-01-01

    Measurement technology for various key parameters in harsh environments (e.g., high-temperature and biomedical applications) continues to be limited. Wireless passive LC resonant sensors offer long service life and can be suitable for harsh environments because they can transmit signals without battery power or wired connections. Consequently, these devices have become the focus of many current research studies. This paper addresses recent research, key technologies, and practical applications relative to passive LC sensors used to monitor temperature, pressure, humidity, and harmful gases in harsh environments. The advantages and disadvantages of various sensor types are discussed, and prospects and challenges for future development of these sensors are presented. PMID:26053753

  4. A multisensor approach to sea ice classification for the validation of DMSP-SSM/I passive microwave derived sea ice products

    NASA Technical Reports Server (NTRS)

    Steffen, K.; Schweiger, A. J.

    1990-01-01

    The validation of sea ice products derived from the Special Sensor Microwave Imager (SSM/I) on board a DMSP platform is examined using data from the Landsat MSS and NOAA-AVHRR sensors. Image processing techniques for retrieving ice concentrations from each type of imagery are developed and results are intercompared to determine the ice parameter retrieval accuracy of the SSM/I NASA-Team algorithm. For case studies in the Beaufort Sea and East Greenland Sea, average retrieval errors of the SSM/I algorithm are between 1.7 percent for spring conditions and 4.3 percent during freeze up in comparison with Landsat derived ice concentrations. For a case study in the East Greenland Sea, SSM/I derived ice concentration in comparison with AVHRR imagery display a mean error of 9.6 percent.

  5. Design of sensor node platform for wireless biomedical sensor networks.

    PubMed

    Xijun, Chen; -H Meng, Max; Hongliang, Ren

    2005-01-01

    Design of low-cost, miniature, lightweight, ultra low-power, flexible sensor platform capable of customization and seamless integration into a wireless biomedical sensor network(WBSN) for health monitoring applications presents one of the most challenging tasks. In this paper, we propose a WBSN node platform featuring an ultra low-power microcontroller, an IEEE 802.15.4 compatible transceiver, and a flexible expansion connector. The proposed solution promises a cost-effective, flexible platform that allows easy customization, energy-efficient computation and communication. The development of a common platform for multiple physical sensors will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of an ECG (Electrocardiogram) sensor.

  6. An Audio Jack-Based Electrochemical Impedance Spectroscopy Sensor for Point-of-Care Diagnostics.

    PubMed

    Jiang, Haowei; Sun, Alex; Venkatesh, A G; Hall, Drew A

    2017-02-01

    Portable and easy-to-use point-of-care (POC) diagnostic devices hold high promise for dramatically improving public health and wellness. In this paper, we present a mobile health (mHealth) immunoassay platform based on audio jack embedded devices, such as smartphones and laptops, that uses electrochemical impedance spectroscopy (EIS) to detect binding of target biomolecules. Compared to other biomolecular detection tools, this platform is intended to be used as a plug-and-play peripheral that reuses existing hardware in the mobile device and does not require an external battery, thereby improving upon its convenience and portability. Experimental data using a passive circuit network to mimic an electrochemical cell demonstrate that the device performs comparably to laboratory grade instrumentation with 0.3% and 0.5° magnitude and phase error, respectively, over a 17 Hz to 17 kHz frequency range. The measured power consumption is 2.5 mW with a dynamic range of 60 dB. This platform was verified by monitoring the real-time formation of a NeutrAvidin self-assembled monolayer (SAM) on a gold electrode demonstrating the potential for POC diagnostics.

  7. Assessment and Prediction of Natural Hazards from Satellite Imagery

    PubMed Central

    Gillespie, Thomas W.; Chu, Jasmine; Frankenberg, Elizabeth; Thomas, Duncan

    2013-01-01

    Since 2000, there have been a number of spaceborne satellites that have changed the way we assess and predict natural hazards. These satellites are able to quantify physical geographic phenomena associated with the movements of the earth’s surface (earthquakes, mass movements), water (floods, tsunamis, storms), and fire (wildfires). Most of these satellites contain active or passive sensors that can be utilized by the scientific community for the remote sensing of natural hazards over a number of spatial and temporal scales. The most useful satellite imagery for the assessment of earthquake damage comes from high-resolution (0.6 m to 1 m pixel size) passive sensors and moderate resolution active sensors that can quantify the vertical and horizontal movement of the earth’s surface. High-resolution passive sensors have been used to successfully assess flood damage while predictive maps of flood vulnerability areas are possible based on physical variables collected from passive and active sensors. Recent moderate resolution sensors are able to provide near real time data on fires and provide quantitative data used in fire behavior models. Limitations currently exist due to atmospheric interference, pixel resolution, and revisit times. However, a number of new microsatellites and constellations of satellites will be launched in the next five years that contain increased resolution (0.5 m to 1 m pixel resolution for active sensors) and revisit times (daily ≤ 2.5 m resolution images from passive sensors) that will significantly improve our ability to assess and predict natural hazards from space. PMID:25170186

  8. A Wireless, Passive Sensor for Quantifying Packaged Food Quality.

    PubMed

    Tan, Ee Lim; Ng, Wen Ni; Shao, Ranyuan; Pereles, Brandon D; Ong, Keat Ghee

    2007-09-05

    This paper describes the fabrication of a wireless, passive sensor based on aninductive-capacitive resonant circuit, and its application for in situ monitoring of thequality of dry, packaged food such as cereals, and fried and baked snacks. The sensor ismade of a planar inductor and capacitor printed on a paper substrate. To monitor foodquality, the sensor is embedded inside the food package by adhering it to the package'sinner wall; its response is remotely detected through a coil connected to a sensor reader. Asfood quality degrades due to increasing humidity inside the package, the paper substrateabsorbs water vapor, changing the capacitor's capacitance and the sensor's resonantfrequency. Therefore, the taste quality of the packaged food can be indirectly determined bymeasuring the change in the sensor's resonant frequency. The novelty of this sensortechnology is its wireless and passive nature, which allows in situ determination of foodquality. In addition, the simple fabrication process and inexpensive sensor material ensure alow sensor cost, thus making this technology economically viable.

  9. Analysis of passive acoustic ranging of helicopters from the joint acoustic propagation experiment

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Morgan, John C.

    1993-01-01

    For more than twenty years, personnel of the U.S.A.E. Waterways Experiment Station (WES) have been performing research dealing with the application of sensors for detection of military targets. The WES research has included the use of seismic, acoustic, magnetic, and other sensors to detect, track, and classify military ground targets. Most of the WES research has been oriented toward the employment of such sensors in a passive mode. Techniques for passive detection are of particular interest in the Army because of the advantages over active detection. Passive detection methods are not susceptible to interception, detection, jamming, or location of the source by the threat. A decided advantage for using acoustic and seismic sensors for detection in tactical situations is the non-line-of-sight capability; i.e., detection of low flying helicopters at long distances without visual contact. This study was conducted to analyze the passive acoustic ranging (PAR) concept using a more extensive data set from the Joint Acoustic Propagation Experiment (JAPE).

  10. Wireless sensor platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  11. Development and Implementation of Low-Cost Mobile Sensor Platforms Within a Wireless Sensor Network

    DTIC Science & Technology

    2010-09-01

    WIRELESS SENSOR NETWORK by Michael Jay Tozzi September 2010 Thesis Advisor: Rachel Goshorn Second Reader: Duane Davis Approved for...Platforms Within a Wireless Sensor Network 6. AUTHOR(S) Tozzi, Michael Jay 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...IMPLEMENTATION OF LOW-COST MOBILE SENSOR PLATFORMS WITHIN A WIRELESS SENSOR NETWORK Michael Jay Tozzi Lieutenant, United States Navy B.S., United

  12. Implantable Sensors for Regenerative Medicine

    PubMed Central

    Klosterhoff, Brett S.; Tsang, Melissa; She, Didi; Ong, Keat Ghee; Allen, Mark G.; Willett, Nick J.; Guldberg, Robert E.

    2017-01-01

    The translation of many tissue engineering/regenerative medicine (TE/RM) therapies that demonstrate promise in vitro are delayed or abandoned due to reduced and inconsistent efficacy when implemented in more complex and clinically relevant preclinical in vivo models. Determining mechanistic reasons for impaired treatment efficacy is challenging after a regenerative therapy is implanted due to technical limitations in longitudinally measuring the progression of key environmental cues in vivo. The ability to acquire real-time measurements of environmental parameters of interest including strain, pressure, pH, temperature, oxygen tension, and specific biomarkers within the regenerative niche in situ would significantly enhance the information available to tissue engineers to monitor and evaluate mechanisms of functional healing or lack thereof. Continued advancements in material and fabrication technologies utilized by microelectromechanical systems (MEMSs) and the unique physical characteristics of passive magnetoelastic sensor platforms have created an opportunity to implant small, flexible, low-power sensors into preclinical in vivo models, and quantitatively measure environmental cues throughout healing. In this perspective article, we discuss the need for longitudinal measurements in TE/RM research, technical progress in MEMS and magnetoelastic approaches to implantable sensors, the potential application of implantable sensors to benefit preclinical TE/RM research, and the future directions of collaborative efforts at the intersection of these two important fields. PMID:27987300

  13. Quantitative method for gait pattern detection based on fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Tong, Xinglin; Yu, Lie

    2017-03-01

    This paper presents a method that uses fiber Bragg grating (FBG) sensors to distinguish the temporal gait patterns in gait cycles. Unlike most conventional methods that focus on electronic sensors to collect those physical quantities (i.e., strains, forces, pressure, displacements, velocity, and accelerations), the proposed method utilizes the backreflected peak wavelength from FBG sensors to describe the motion characteristics in human walking. Specifically, the FBG sensors are sensitive to external strain with the result that their backreflected peak wavelength will be shifted according to the extent of the influence of external strain. Therefore, when subjects walk in different gait patterns, the strains on FBG sensors will be different such that the magnitude of the backreflected peak wavelength varies. To test the reliability of the FBG sensor platform for gait pattern detection, the gold standard method using force-sensitive resistors (FSRs) for defining gait patterns is introduced as a reference platform. The reliability of the FBG sensor platform is determined by comparing the detection results between the FBG sensors and FSRs platforms. The experimental results show that the FBG sensor platform is reliable in gait pattern detection and gains high reliability when compared with the reference platform.

  14. Smart Sensor Systems for Aerospace Applications: From Sensor Development to Application Testing

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J. C.; Dungan, L. K.; Ward, B. J.; Rowe, S.; Williams, J.; Makel, D. B.; Liu, C. C.; Chang, C. W.

    2008-01-01

    The application of Smart Sensor Systems for aerospace applications is a multidisciplinary process consisting of sensor element development, element integration into Smart Sensor hardware, and testing of the resulting sensor systems in application environments. This paper provides a cross-section of these activities for multiple aerospace applications illustrating the technology challenges involved. The development and application testing topics discussed are: 1) The broadening of sensitivity and operational range of silicon carbide (SiC) Schottky gas sensor elements; 2) Integration of fire detection sensor technology into a "Lick and Stick" Smart Sensor hardware platform for Crew Exploration Vehicle applications; 3) Extended testing for zirconia based oxygen sensors in the basic "Lick and Stick" platform for environmental monitoring applications. It is concluded that that both core sensor platform technology and a basic hardware platform can enhance the viability of implementing smart sensor systems in aerospace applications.

  15. High-Throughput Field Phenotyping of Leaves, Leaf Sheaths, Culms and Ears of Spring Barley Cultivars at Anthesis and Dough Ripeness.

    PubMed

    Barmeier, Gero; Schmidhalter, Urs

    2017-01-01

    To optimize plant architecture (e.g., photosynthetic active leaf area, leaf-stem ratio), plant physiologists and plant breeders rely on destructively and tediously harvested biomass samples. A fast and non-destructive method for obtaining information about different plant organs could be vehicle-based spectral proximal sensing. In this 3-year study, the mobile phenotyping platform PhenoTrac 4 was used to compare the measurements from active and passive spectral proximal sensors of leaves, leaf sheaths, culms and ears of 34 spring barley cultivars at anthesis and dough ripeness. Published vegetation indices (VI), partial least square regression (PLSR) models and contour map analysis were compared to assess these traits. Contour maps are matrices consisting of coefficients of determination for all of the binary combinations of wavelengths and the biomass parameters. The PLSR models of leaves, leaf sheaths and culms showed strong correlations ( R 2 = 0.61-0.76). Published vegetation indices depicted similar coefficients of determination; however, their RMSEs were higher. No wavelength combination could be found by the contour map analysis to improve the results of the PLSR or published VIs. The best results were obtained for the dry weight and N uptake of leaves and culms. The PLSR models yielded satisfactory relationships for leaf sheaths at anthesis ( R 2 = 0.69), whereas only a low performance for all of sensors and methods was observed at dough ripeness. No relationships with ears were observed. Active and passive sensors performed comparably, with slight advantages observed for the passive spectrometer. The results indicate that tractor-based proximal sensing in combination with optimized spectral indices or PLSR models may represent a suitable tool for plant breeders to assess relevant morphological traits, allowing for a better understanding of plant architecture, which is closely linked to the physiological performance. Further validation of PLSR models is required in independent studies. Organ specific phenotyping represents a first step toward breeding by design.

  16. High-Throughput Field Phenotyping of Leaves, Leaf Sheaths, Culms and Ears of Spring Barley Cultivars at Anthesis and Dough Ripeness

    PubMed Central

    Barmeier, Gero; Schmidhalter, Urs

    2017-01-01

    To optimize plant architecture (e.g., photosynthetic active leaf area, leaf-stem ratio), plant physiologists and plant breeders rely on destructively and tediously harvested biomass samples. A fast and non-destructive method for obtaining information about different plant organs could be vehicle-based spectral proximal sensing. In this 3-year study, the mobile phenotyping platform PhenoTrac 4 was used to compare the measurements from active and passive spectral proximal sensors of leaves, leaf sheaths, culms and ears of 34 spring barley cultivars at anthesis and dough ripeness. Published vegetation indices (VI), partial least square regression (PLSR) models and contour map analysis were compared to assess these traits. Contour maps are matrices consisting of coefficients of determination for all of the binary combinations of wavelengths and the biomass parameters. The PLSR models of leaves, leaf sheaths and culms showed strong correlations (R2 = 0.61–0.76). Published vegetation indices depicted similar coefficients of determination; however, their RMSEs were higher. No wavelength combination could be found by the contour map analysis to improve the results of the PLSR or published VIs. The best results were obtained for the dry weight and N uptake of leaves and culms. The PLSR models yielded satisfactory relationships for leaf sheaths at anthesis (R2 = 0.69), whereas only a low performance for all of sensors and methods was observed at dough ripeness. No relationships with ears were observed. Active and passive sensors performed comparably, with slight advantages observed for the passive spectrometer. The results indicate that tractor-based proximal sensing in combination with optimized spectral indices or PLSR models may represent a suitable tool for plant breeders to assess relevant morphological traits, allowing for a better understanding of plant architecture, which is closely linked to the physiological performance. Further validation of PLSR models is required in independent studies. Organ specific phenotyping represents a first step toward breeding by design. PMID:29163629

  17. Contactless and absolute linear displacement detection based upon 3D printed magnets combined with passive radio-frequency identification

    NASA Astrophysics Data System (ADS)

    Windl, Roman; Abert, Claas; Bruckner, Florian; Huber, Christian; Vogler, Christoph; Weitensfelder, Herbert; Suess, Dieter

    2017-11-01

    Within this work a passive and wireless magnetic sensor, to monitor linear displacements, is proposed. We exploit recent advances in 3D printing and fabricate a polymer bonded magnet with a spatially linear magnetic field component corresponding to the length of the magnet. Regulating the magnetic compound fraction during printing allows specific shaping of the magnetic field distribution. A giant magnetoresistance magnetic field sensor is combined with a radio-frequency identification tag in order to passively monitor the exerted magnetic field of the printed magnet. Due to the tailored magnetic field, a displacement of the magnet with respect to the sensor can be detected within the sub-mm regime. The sensor design provides good flexibility by controlling the 3D printing process according to application needs. Absolute displacement detection using low cost components and providing passive operation, long term stability, and longevity renders the proposed sensor system ideal for structural health monitoring applications.

  18. Standoff chemical D and Id with extended LWIR hyperspectral imaging spectroradiometer

    NASA Astrophysics Data System (ADS)

    Prel, Florent; Moreau, Louis; Lavoie, Hugo; Bouffard, François; Thériault, Jean-Marc; Vallieres, Christian; Roy, Claude; Dubé, Denis

    2013-05-01

    Standoff detection and identification (D and Id) of unknown volatile chemicals such as chemical pollutants and consequences of industrial incidents has been increasingly desired for first responders and for environmental monitoring. On site gas detection sensors are commercially available and several of them can even detect more than one chemical species, however only few of them have the capabilities of detecting a wide variety of gases at long and safe distances. The ABB Hyperspectral Imaging Spectroradiometer (MR-i), configured for gas detection detects and identifies a wide variety of chemical species including toxic industrial chemicals (TICs) and surrogates several kilometers away from the sensor. This configuration is called iCATSI for improved Compact Atmospheric Sounding Interferometer. iCATSI is a standoff passive system. The modularity of the MR-i platform allows optimization of the detection configuration with a 256 x 256 Focal Plane Array imager or a line scanning imager both covering the long wave IR atmospheric window up to 14 μm. The uniqueness of its extended LWIR cut off enables to detect more chemicals as well as provide higher probability of detection than usual LWIR sensors.

  19. Munitions Detection Using Unmanned Underwater Vehicles Equipped with Advanced Sensors

    DTIC Science & Technology

    2012-06-29

    buried target. The RTG is a small passive magnetic sensor using fluxgate magnetometers measuring 3- orthogonal magnetic-field vector components at 3...surveys. Figure 6 shows the RTG magnetic sensor in both an open (showing the fluxgate magnetometers ) and enclosed state (mode for integration onto...7.6 Real-time Tracking Gradiometer (RTG) System The RTG is a small passive magnetic sensor using fluxgate magnetometers measuring 3- orthogonal

  20. Effectiveness of passive alcohol sensors

    DOT National Transportation Integrated Search

    1996-03-01

    Author's abstract: The purpose of this study was to evaluate the effectiveness of passive alcohol sensors for youth alcohol enforcement conducted as part of normal or typical police operations. Three municipal police departments of 100 or more sworn ...

  1. Inductive passive sensor for intraparenchymal and intraventricular monitoring of intracranial pressure.

    PubMed

    Behfar, Mohammad H; Abada, Emily; Sydanheimo, Lauri; Goldman, Ken; Fleischman, Aaron J; Gupta, Nalin; Ukkonen, Leena; Roy, Shuvo

    2016-08-01

    Accurate measurement of intracranial hypertension is crucial for the management of elevated intracranial pressure (ICP). Catheter-based intraventricular ICP measurement is regarded as the gold standard for accurate ICP monitoring. However, this method is invasive, time-limited, and associated with complications. In this paper, we propose an implantable passive sensor that could be used for continuous intraparenchymal and intraventricular ICP monitoring. Moreover, the sensor can be placed simultaneously along with a cerebrospinal fluid shunt system in order to monitor its function. The sensor consists of a flexible coil which is connected to a miniature pressure sensor via an 8-cm long, ultra-thin coaxial cable. An external orthogonal-coil RF probe communicates with the sensor to detect pressure variation. The performance of the sensor was evaluated in an in vitro model for intraparenchymal and intraventricular ICP monitoring. The findings from this study demonstrate proof-of-concept of intraparenchymal and intraventricular ICP measurement using inductive passive pressure sensors.

  2. A Wireless, Passive Sensor for Quantifying Packaged Food Quality

    PubMed Central

    Tan, Ee Lim; Ng, Wen Ni; Shao, Ranyuan; Pereles, Brandon D.; Ong, Keat Ghee

    2007-01-01

    This paper describes the fabrication of a wireless, passive sensor based on an inductive-capacitive resonant circuit, and its application for in situ monitoring of the quality of dry, packaged food such as cereals, and fried and baked snacks. The sensor is made of a planar inductor and capacitor printed on a paper substrate. To monitor food quality, the sensor is embedded inside the food package by adhering it to the package's inner wall; its response is remotely detected through a coil connected to a sensor reader. As food quality degrades due to increasing humidity inside the package, the paper substrate absorbs water vapor, changing the capacitor's capacitance and the sensor's resonant frequency. Therefore, the taste quality of the packaged food can be indirectly determined by measuring the change in the sensor's resonant frequency. The novelty of this sensor technology is its wireless and passive nature, which allows in situ determination of food quality. In addition, the simple fabrication process and inexpensive sensor material ensure a low sensor cost, thus making this technology economically viable. PMID:28903195

  3. ULTOR(Registered TradeMark) Passive Pose and Position Engine For Spacecraft Relative Navigation

    NASA Technical Reports Server (NTRS)

    Hannah, S. Joel

    2008-01-01

    The ULTOR(Registered TradeMark) Passive Pose and Position Engine (P3E) technology, developed by Advanced Optical Systems, Inc (AOS), uses real-time image correlation to provide relative position and pose data for spacecraft guidance, navigation, and control. Potential data sources include a wide variety of sensors, including visible and infrared cameras. ULTOR(Registered TradeMark) P3E has been demonstrated on a number of host processing platforms. NASA is integrating ULTOR(Registerd TradeMark) P3E into its Relative Navigation System (RNS), which is being developed for the upcoming Hubble Space Telescope (HST) Servicing Mission 4 (SM4). During SM4 ULTOR(Registered TradeMark) P3E will perform realtime pose and position measurements during both the approach and departure phases of the mission. This paper describes the RNS implementation of ULTOR(Registered TradeMark) P3E, and presents results from NASA's hardware-in-the-loop simulation testing against the HST mockup.

  4. Optical electric field sensor sensitivity direction rerouting and enhancement using a passive integrated dipole antenna.

    PubMed

    Seng, Frederick; Yang, Zhenchao; King, Rex; Shumway, LeGrand; Stan, Nikola; Hammond, Alec; Warnick, Karl F; Schultz, Stephen

    2017-06-10

    This work introduces a passive dipole antenna integrated into the packaging of a slab-coupled optical sensor to enhance the directional sensitivity of electro-optic electric field measurements parallel to the fiber axis. Using the passive integrated dipole antenna described in this work, a sensor that can typically only sense fields transverse to the fiber direction is able to sense a 1.25 kV/m field along the fiber direction with a gain of 17.5. This is verified through simulation and experiment.

  5. A magnetic/fluorometric bimodal sensor based on a carbon dots-MnO2 platform for glutathione detection

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Chen, Xi; Chai, Ran; Xing, Chengfen; Li, Huanrong; Yin, Xue-Bo

    2016-07-01

    A novel magnetic/fluorometric bimodal sensor was built from carbon dots (CDs) and MnO2. The resulting sensor was sensitive to glutathione (GSH), leading to apparent enhancement of magnetic resonance (MR) and fluorescence signals along with visual changes. The bimodal detection strategy is based on the decomposition of the CDs-MnO2 through a redox reaction between GSH and MnO2. This process causes the transformation from non-MR-active MnO2 to MR-active Mn2+, and is accompanied by fluorescence restoration of CDs. Compared with a range of other CDs, the polyethylenimine (PEI) passivated CDs (denoted as pCDs) were suitable for detection due to their positive surface potential. Cross-validation between MR and fluorescence provided detailed information regarding the MnO2 reduction process, and revealed the three distinct stages of the redox process. Thus, the design of a CD-based sensor for the magnetic/fluorometric bimodal detection of GSH was emphasized for the first time. This platform showed a detection limit of 0.6 μM with a linear range of 1-200 μM in the fluorescence mode, while the MR mode exhibited a linear range of 5-200 μM and a GSH detection limit of 2.8 μM with a visible change being observed rapidly at 1 μM in the MR images. Furthermore, the introduction of the MR mode allowed the biothiols to be easily identified. The integration of CD fluorescence with an MR response was demonstrated to be promising for providing detailed information and discriminating power, and therefore extend the application of CDs in sensing and imaging.A novel magnetic/fluorometric bimodal sensor was built from carbon dots (CDs) and MnO2. The resulting sensor was sensitive to glutathione (GSH), leading to apparent enhancement of magnetic resonance (MR) and fluorescence signals along with visual changes. The bimodal detection strategy is based on the decomposition of the CDs-MnO2 through a redox reaction between GSH and MnO2. This process causes the transformation from non-MR-active MnO2 to MR-active Mn2+, and is accompanied by fluorescence restoration of CDs. Compared with a range of other CDs, the polyethylenimine (PEI) passivated CDs (denoted as pCDs) were suitable for detection due to their positive surface potential. Cross-validation between MR and fluorescence provided detailed information regarding the MnO2 reduction process, and revealed the three distinct stages of the redox process. Thus, the design of a CD-based sensor for the magnetic/fluorometric bimodal detection of GSH was emphasized for the first time. This platform showed a detection limit of 0.6 μM with a linear range of 1-200 μM in the fluorescence mode, while the MR mode exhibited a linear range of 5-200 μM and a GSH detection limit of 2.8 μM with a visible change being observed rapidly at 1 μM in the MR images. Furthermore, the introduction of the MR mode allowed the biothiols to be easily identified. The integration of CD fluorescence with an MR response was demonstrated to be promising for providing detailed information and discriminating power, and therefore extend the application of CDs in sensing and imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03129c

  6. Open-WiSe: a solar powered wireless sensor network platform.

    PubMed

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.

  7. Passive absolute age and temperature history sensor

    DOEpatents

    Robinson, Alex; Vianco, Paul T.

    2015-11-10

    A passive sensor for historic age and temperature sensing, including a first member formed of a first material, the first material being either a metal or a semiconductor material and a second member formed of a second material, the second material being either a metal or a semiconductor material. A surface of the second member is in contact with a surface of the first member such that, over time, the second material of the second member diffuses into the first material of the first member. The rate of diffusion for the second material to diffuse into the first material depends on a temperature of the passive sensor. One of the electrical conductance, the electrical capacitance, the electrical inductance, the optical transmission, the optical reflectance, or the crystalline structure of the passive sensor depends on the amount of the second material that has diffused into the first member.

  8. Integrated approach using multi-platform sensors for enhanced high-resolution daily ice cover product

    NASA Astrophysics Data System (ADS)

    Bonev, George; Gladkova, Irina; Grossberg, Michael; Romanov, Peter; Helfrich, Sean

    2016-09-01

    The ultimate objective of this work is to improve characterization of the ice cover distribution in the polar areas, to improve sea ice mapping and to develop a new automated real-time high spatial resolution multi-sensor ice extent and ice edge product for use in operational applications. Despite a large number of currently available automated satellite-based sea ice extent datasets, analysts at the National Ice Center tend to rely on original satellite imagery (provided by satellite optical, passive microwave and active microwave sensors) mainly because the automated products derived from satellite optical data have gaps in the area coverage due to clouds and darkness, passive microwave products have poor spatial resolution, automated ice identifications based on radar data are not quite reliable due to a considerable difficulty in discriminating between the ice cover and rough ice-free ocean surface due to winds. We have developed a multisensor algorithm that first extracts maximum information on the sea ice cover from imaging instruments VIIRS and MODIS, including regions covered by thin, semitransparent clouds, then supplements the output by the microwave measurements and finally aggregates the results into a cloud gap free daily product. This ability to identify ice cover underneath thin clouds, which is usually masked out by traditional cloud detection algorithms, allows for expansion of the effective coverage of the sea ice maps and thus more accurate and detailed delineation of the ice edge. We have also developed a web-based monitoring system that allows comparison of our daily ice extent product with the several other independent operational daily products.

  9. Two-layer Lab-on-a-chip (LOC) with passive capillary valves for mHealth medical diagnostics.

    PubMed

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2015-01-01

    There is a new potential to address needs for medical diagnostics in Point-of-Care (PoC) applications using mHealth (Mobile computing, medical sensors, and communications technologies for health care), a mHealth based lab test will require a LOC to perform clinical analysis. In this work, we describe the design of a simple Lab-on-a-chip (LOC) platform for mHealth medical diagnostics. The LOC utilizes a passive capillary valve with no moving parts for fluid control using channels with very low aspect ratios cross sections (i.e., channel width ≫ height) achieved through transitions in the channel geometry via that arrest capillary flow. Using a CO2 laser in raster engraving mode, we have designed and fabricated an eight-channel LOC for fluorescence signal detection fabricated by engraving and combining just two polymer layers. Each of the LOC channels is capable of mixing two reagents (e.g., enzyme and substrate) for various assays. For mHealth detection, we used a mobile CCD detector equipped with LED multispectral illumination in the red, green, blue, and white range. This technology enables the development of low-cost LOC platforms for mHealth whose fabrication is compatible with standard industrial plastic fabrication processes to enable mass production of mHealth diagnostic devices, which may broaden the use of LOCs in PoC applications, especially in global health settings.

  10. Hybrid integration of VCSELs onto a silicon photonic platform for biosensing application

    NASA Astrophysics Data System (ADS)

    Lu, Huihui; Lee, Jun Su; Zhao, Yan; Cardile, Paolo; Daly, Aidan; Carroll, Lee; O'Brien, Peter

    2017-02-01

    This paper presents a technology of hybrid integration vertical cavity surface emitting lasers (VCSELs) directly on silicon photonics chip. By controlling the reflow of the solder balls used for electrical and mechanical bonding, the VCSELs were bonded at 10 degree to achieve the optimum angle-of-incidence to the planar grating coupler through vision based flip-chip techniques. The 1 dB discrepancy between optical loss values of flip-chip passive assembly and active alignment confirmed that the general purpose of the flip-chip design concept is achieved. This hybrid approach of integrating a miniaturized light source on chip opens the possibly of highly compact sensor system, which enable future portable and wearable diagnostics devices.

  11. A Review of Passive RFID Tag Antenna-Based Sensors and Systems for Structural Health Monitoring Applications.

    PubMed

    Zhang, Jun; Tian, Gui Yun; Marindra, Adi M J; Sunny, Ali Imam; Zhao, Ao Bo

    2017-01-29

    In recent few years, the antenna and sensor communities have witnessed a considerable integration of radio frequency identification (RFID) tag antennas and sensors because of the impetus provided by internet of things (IoT) and cyber-physical systems (CPS). Such types of sensor can find potential applications in structural health monitoring (SHM) because of their passive, wireless, simple, compact size, and multimodal nature, particular in large scale infrastructures during their lifecycle. The big data from these ubiquitous sensors are expected to generate a big impact for intelligent monitoring. A remarkable number of scientific papers demonstrate the possibility that objects can be remotely tracked and intelligently monitored for their physical/chemical/mechanical properties and environment conditions. Most of the work focuses on antenna design, and significant information has been generated to demonstrate feasibilities. Further information is needed to gain deep understanding of the passive RFID antenna sensor systems in order to make them reliable and practical. Nevertheless, this information is scattered over much literature. This paper is to comprehensively summarize and clearly highlight the challenges and state-of-the-art methods of passive RFID antenna sensors and systems in terms of sensing and communication from system point of view. Future trends are also discussed. The future research and development in UK are suggested as well.

  12. Open-WiSe: A Solar Powered Wireless Sensor Network Platform

    PubMed Central

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators. PMID:22969396

  13. A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web

    PubMed Central

    de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández

    2014-01-01

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678

  14. A ubiquitous sensor network platform for integrating smart devices into the semantic sensor web.

    PubMed

    de Vera, David Díaz Pardo; Izquierdo, Alvaro Sigüenza; Vercher, Jesús Bernat; Hernández Gómez, Luis Alfonso

    2014-06-18

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs.

  15. EO system concepts in the littoral

    NASA Astrophysics Data System (ADS)

    Schwering, Piet B. W.; van den Broek, Sebastiaan P.; van Iersel, Miranda

    2007-04-01

    In recent years, operations executed by naval forces have taken place at many different locations. At present, operations against international terrorism and asymmetric warfare in coastal environments are of major concern. In these scenarios, the threat caused by pirates on-board of small surface targets, such as jetskis and fast inshore attack crafts, is increasing. In the littoral environment, the understanding of its complexity and the efficient use of the limited reaction time, are essential for successful operations. Present-day electro-optical sensor suites, also incorporating Infrared Search and Track systems, can be used for varying tasks as detection, classification and identification. By means of passive electro-optical systems, infrared and visible light sensors, improved situational awareness can be achieved. For long range capability, elevated sensor masts and flying platforms are ideally suited for the surveillance task and improve situational awareness. A primary issue is how to incorporate new electro-optical technology and signal processing into the new sensor concepts, to improve system performance. It is essential to derive accurate information from the high spatial-resolution imagery created by the EO sensors. As electro-optical sensors do not have all-weather capability, the performance degradation in adverse scenarios must be understood, in order to support the operational use of adaptive sensor management techniques. In this paper we discuss the approach taken at TNO in the design and assessment of system concepts for future IRST development. An overview of our maritime programme in future IRST and EO system concepts including signal processing is presented.

  16. Platform for a Hydrocarbon Exhaust Gas Sensor Utilizing a Pumping Cell and a Conductometric Sensor

    PubMed Central

    Biskupski, Diana; Geupel, Andrea; Wiesner, Kerstin; Fleischer, Maximilian; Moos, Ralf

    2009-01-01

    Very often, high-temperature operated gas sensors are cross-sensitive to oxygen and/or they cannot be operated in oxygen-deficient (rich) atmospheres. For instance, some metal oxides like Ga2O3 or doped SrTiO3 are excellent materials for conductometric hydrocarbon detection in the rough atmosphere of automotive exhausts, but have to be operated preferably at a constant oxygen concentration. We propose a modular sensor platform that combines a conductometric two-sensor-setup with an electrochemical pumping cell made of YSZ to establish a constant oxygen concentration in the ambient of the conductometric sensor film. In this paper, the platform is introduced, the two-sensor-setup is integrated into this new design, and sensing performance is characterized. Such a platform can be used for other sensor principles as well. PMID:22423212

  17. SERS diagnostic platforms, methods and systems microarrays, biosensors and biochips

    DOEpatents

    Vo-Dinh, Tuan [Knoxville, TN

    2007-09-11

    A Raman integrated sensor system for the detection of targets including biotargets includes at least one sampling platform, at least one receptor probe disposed on the sampling platform, and an integrated circuit detector system communicably connected to the receptor. The sampling platform is preferably a Raman active surface-enhanced scattering (SERS) platform, wherein the Raman sensor is a SERS sensor. The receptors can include at least one protein receptor and at least one nucleic acid receptor.

  18. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    PubMed

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-07-22

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  19. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor

    PubMed Central

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-01-01

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations. PMID:27455271

  20. Microfabricated Nickel Based Sensors for Hostile and High Pressure Environments

    NASA Astrophysics Data System (ADS)

    Holt, Christopher Michael Bjustrom

    This thesis outlines the development of two platforms for integrating microfabricated sensors with high pressure feedthroughs for application in hostile high temperature high pressure environments. An application in oil well production logging is explored and two sensors were implemented with these platforms for application in an oil well. The first platform developed involved microfabrication directly onto a cut and polished high pressure feedthrough. This technique enables a system that is more robust than the wire bonded silicon die technique used for MEMS integration in pressure sensors. Removing wire bonds from the traditional MEMS package allows for direct interface of a microfabricated sensor with a hostile high pressure fluid environment which is not currently possible. During the development of this platform key performance metrics included pressure testing to 70MPa and temperature cycling from 20°C to 200°C. This platform enables electronics integration with a variety of microfabricated electrical and thermal based sensors which can be immersed within the oil well environment. The second platform enabled free space fabrication of nickel microfabricated devices onto an array of pins using a thick tin sacrificial layer. This technique allowed microfabrication of metal MEMS that are released by distances of 1cm from their substrate. This method is quite flexible and allows for fabrication to be done on any pin array substrate regardless of surface quality. Being able to place released MEMS sensors directly onto traditional style circuit boards, ceramic circuit boards, electrical connectors, ribbon cables, pin headers, or high pressure feedthroughs greatly improves the variety of possible applications and reduces fabrication costs. These two platforms were then used to fabricate thermal conductivity sensors that showed excellent performance for distinguishing between oil, water, and gas phases. Testing was conducted at various flow rates and performance of the released platform was shown to be better than the performance seen in the anchored sensors while both platforms were significantly better than a simply fabricated wrapped wire sensor. The anchored platform was also used to demonstrate a traditional capacitance based fluid dielectric sensor which was found to work similarly to conventional commercial capacitance probes while being significantly smaller in size.

  1. Soil moisture downscaling using a simple thermal based proxy

    NASA Astrophysics Data System (ADS)

    Peng, Jian; Loew, Alexander; Niesel, Jonathan

    2016-04-01

    Microwave remote sensing has been largely applied to retrieve soil moisture (SM) from active and passive sensors. The obvious advantage of microwave sensor is that SM can be obtained regardless of atmospheric conditions. However, existing global SM products only provide observations at coarse spatial resolutions, which often hamper their applications in regional hydrological studies. Therefore, various downscaling methods have been proposed to enhance the spatial resolution of satellite soil moisture products. The aim of this study is to investigate the validity and robustness of a simple Vegetation Temperature Condition Index (VTCI) downscaling scheme over different climates and regions. Both polar orbiting (MODIS) and geostationary (MSG SEVIRI) satellite data are used to improve the spatial resolution of the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative (ESA CCI) soil moisture, which is a merged product based on both active and passive microwave observations. The results from direct validation against soil moisture in-situ measurements, spatial pattern comparison, as well as seasonal and land use analyses show that the downscaling method can significantly improve the spatial details of CCI soil moisture while maintain the accuracy of CCI soil moisture. The application of the scheme with different satellite platforms and over different regions further demonstrate the robustness and effectiveness of the proposed method. Therefore, the VTCI downscaling method has the potential to facilitate relevant hydrological applications that require high spatial and temporal resolution soil moisture.

  2. The asthma mobile health study, smartphone data collected using ResearchKit.

    PubMed

    Chan, Yu-Feng Yvonne; Bot, Brian M; Zweig, Micol; Tignor, Nicole; Ma, Weiping; Suver, Christine; Cedeno, Rafhael; Scott, Erick R; Gregory Hershman, Steven; Schadt, Eric E; Wang, Pei

    2018-05-22

    Widespread adoption of smart mobile platforms coupled with a growing ecosystem of sensors including passive location tracking and the ability to leverage external data sources create an opportunity to generate an unprecedented depth of data on individuals. Mobile health technologies could be utilized for chronic disease management as well as research to advance our understanding of common diseases, such as asthma. We conducted a prospective observational asthma study to assess the feasibility of this type of approach, clinical characteristics of cohorts recruited via a mobile platform, the validity of data collected, user retention patterns, and user data sharing preferences. We describe data and descriptive statistics from the Asthma Mobile Health Study, whereby participants engaged with an iPhone application built using Apple's ResearchKit framework. Data from 6346 U.S. participants, who agreed to share their data broadly, have been made available for further research. These resources have the potential to enable the research community to work collaboratively towards improving our understanding of asthma as well as mobile health research best practices.

  3. Overview of the joint services lightweight standoff chemical agent detector (JSLSCAD)

    NASA Astrophysics Data System (ADS)

    Hammond, Barney; Popa, Mirela

    2005-05-01

    This paper presents a system-level description of the Joint Services Lightweight Standoff Chemical Agent Detector (JSLSCAD). JSLSCAD is a passive Fourier Transform InfraRed (FTIR) based remote sensing system for detecting chemical warfare agents. Unlike predecessor systems, JSLSCAD is capable of operating while on the move to accomplish reconnaissance, surveillance, and contamination avoidance missions. Additionally, the system is designed to meet the needs for application on air and sea as well as ground mobile and fixed site platforms. The core of the system is a rugged Michelson interferometer with a flexure spring bearing mechanism and bi-directional data acquisition capability. The sensor is interfaced to a small, high performance spatial scanner that provides high-speed, two-axis area coverage. Command, control, and processing electronics have been coupled with real time control software and robust detection/discrimination algorithms. Operator interfaces include local and remote options in addition to interfaces to external communications networks. The modular system design facilitates interfacing to the many platforms targeted for JSLSCAD.

  4. South Philadelphia Passive Sampler and Sensor Study

    EPA Science Inventory

    From June 2013 to March 2015, a total of 41 two-week duration passive sampler deployments were conducted at 17 sites in South Philadelphia, with results for benzene discussed here. Complementary time-resolved measurements with lower cost prototype fenceline sensors and an open-pa...

  5. Trace-gas Spectroscopy of Methane on a Silicon Photonic Chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Eric; Xiong, Chi; Martin, Yves

    Recent advances in hybrid integrated silicon photonic (SiPh) technologies are enabling the migration of conventional free-space optical spectroscopic sensors onto a compact on-chip platform [1-3]. In addition to the small spatial footprint and power efficiency, we envision such sensors to be scalably manufactured using existing CMOS-compatible foundry processes, thus providing disruptive SWaP-C (size, weight, power, and cost) benefits in contrast to commercially available optical sensors. Initial demonstration of evanescent TDLAS (tunable diode laser absorption spectroscopy) of methane (CH4) on a passive SiPh waveguide has indicated minimum fractional absorption of (αL)min = 3.3×10-5 Hz-1/2, which is on-par with state-of-art open-path TDLASmore » sensor systems [4]. Given the general recent movement toward cleaner fuels, CH4 fugitive emissions monitoring is of significant interest given the extremely high radiative forcing potential [5]. For a nominal waveguide length of 30 cm with Γ = 25 % evanescent exposure, this corresponds to ~ 10 ppmv detection sensitivity at 1 s integration time, and further sensitivity enhancement is expected with even longer waveguides, as the laser RIN typically dominates our measurements at nominal waveguide lengths. Despite the excellent sensitivities for short-term integration periods, long-term measurements (> 10 s) are potentially limited on a silicon platform due to the high material thermo-optic coefficient, resulting in significant susceptibility of Fabry-Perot etalons to drift in the presence of even small (~ 1 mK) thermal fluctuations. To this end, customized spectral fitting algorithms have played a significant role in both fringe drift mitigation and peak detection fidelity (e.g. in the presence of a passing CH4 plume), which are crucial for enhancing long-term stability without the need for frequent sensor recalibration. A variety of spectral algorithms have been designed for this purpose, and details will be presented at the meeting.« less

  6. South Philadelphia Passive Sampler and Sensor Study - Interim Report

    EPA Science Inventory

    Starting in the June 2013, the U.S. EPA and the City of Philadelphia Air Measurements Services (AMS) began a collaborative research project to investigate how sensor-based, stand-alone air measurements (SAMs) and passive samplers (PSs) can help improve information on air pollutan...

  7. The NASA Airborne Earth Science Microwave Imaging Radiometer (AESMIR): A New Sensor for Earth Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2003-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer recently developed by NASA. The AESMIR design is unique in that it performs dual-polarized imaging at all standard passive microwave frequency bands (6-89 GHz) using only one sensor headscanner package, providing an efficient solution for Earth remote sensing applications (snow, soil moisture/land parameters, precipitation, ocean winds, sea surface temperature, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, C-130s and ground-based deployments. Thus AESMIR can provide low-, mid-, and high- altitude microwave imaging. Parallel filter banks allow AESMIR to simultaneously simulate the exact passbands of multiple satellite radiometers: SSM/I, TMI, AMSR, Windsat, SSMI/S, and the upcoming GPM/GMI and NPOESS/CMIS instruments --a unique capability among aircraft radiometers. An L-band option is also under development, again using the same scanner. With this option, simultaneous imaging from 1.4 to 89 GHz will be feasible. And, all receivers except the sounding channels will be configured for 4-Stokes polarimetric operation using high-speed digital correlators in the near future. The capabilities and unique design features of this new sensor will be described, and example imagery will be presented.

  8. Therapeutic drug monitoring of flucytosine in serum using a SERS-active membrane system

    NASA Astrophysics Data System (ADS)

    Berger, Adam G.; White, Ian M.

    2017-02-01

    A need exists for near real-time therapeutic drug monitoring (TDM), in particular for antibiotics and antifungals in patient samples at the point-of-care. To truly fit the point-of-care need, techniques must be rapid and easy to use. Here we report a membrane system utilizing inkjet-fabricated surface enhanced Raman spectroscopy (SERS) sensors that allows sensitive and specific analysis despite the elimination of sophisticated chromatography equipment, expensive analytical instruments, and other systems relegated to the central lab. We utilize inkjet-fabricated paper SERS sensors as substrates for 5FC detection; the use of paper-based SERS substrates leverages the natural wicking ability and filtering properties of microporous membranes. We investigate the use of microporous membranes in the vertical flow assay to allow separation of the flucytosine from whole blood. The passive vertical flow assay serves as a valuable method for physical separation of target analytes from complex biological matrices. This work further establishes a platform for easy, sensitive, and specific TDM of 5FC from whole blood.

  9. Evaluation of Smartphone Inertial Sensor Performance for Cross-Platform Mobile Applications

    PubMed Central

    Kos, Anton; Tomažič, Sašo; Umek, Anton

    2016-01-01

    Smartphone sensors are being increasingly used in mobile applications. The performance of sensors varies considerably among different smartphone models and the development of a cross-platform mobile application might be a very complex and demanding task. A publicly accessible resource containing real-life-situation smartphone sensor parameters could be of great help for cross-platform developers. To address this issue we have designed and implemented a pilot participatory sensing application for measuring, gathering, and analyzing smartphone sensor parameters. We start with smartphone accelerometer and gyroscope bias and noise parameters. The application database presently includes sensor parameters of more than 60 different smartphone models of different platforms. It is a modest, but important start, offering information on several statistical parameters of the measured smartphone sensors and insights into their performance. The next step, a large-scale cloud-based version of the application, is already planned. The large database of smartphone sensor parameters may prove particularly useful for cross-platform developers. It may also be interesting for individual participants who would be able to check-up and compare their smartphone sensors against a large number of similar or identical models. PMID:27049391

  10. A CMOS Pressure Sensor Tag Chip for Passive Wireless Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Li, Bing; Zuo, Lei; Wu, Xiang; Fu, Zhihui

    2015-01-01

    This paper presents a novel monolithic pressure sensor tag for passive wireless applications. The proposed pressure sensor tag is based on an ultra-high frequency RFID system. The pressure sensor element is implemented in the 0.18 µm CMOS process and the membrane gap is formed by sacrificial layer release, resulting in a sensitivity of 1.2 fF/kPa within the range from 0 to 600 kPa. A three-stage rectifier adopts a chain of auxiliary floating rectifier cells to boost the gate voltage of the switching transistors, resulting in a power conversion efficiency of 53% at the low input power of −20 dBm. The capacitive sensor interface, using phase-locked loop archietcture, employs fully-digital blocks, which results in a 7.4 bits resolution and 0.8 µW power dissipation at 0.8 V supply voltage. The proposed passive wireless pressure sensor tag costs a total 3.2 µW power dissipation. PMID:25806868

  11. A CMOS pressure sensor tag chip for passive wireless applications.

    PubMed

    Deng, Fangming; He, Yigang; Li, Bing; Zuo, Lei; Wu, Xiang; Fu, Zhihui

    2015-03-23

    This paper presents a novel monolithic pressure sensor tag for passive wireless applications. The proposed pressure sensor tag is based on an ultra-high frequency RFID system. The pressure sensor element is implemented in the 0.18 µm CMOS process and the membrane gap is formed by sacrificial layer release, resulting in a sensitivity of 1.2 fF/kPa within the range from 0 to 600 kPa. A three-stage rectifier adopts a chain of auxiliary floating rectifier cells to boost the gate voltage of the switching transistors, resulting in a power conversion efficiency of 53% at the low input power of -20 dBm. The capacitive sensor interface, using phase-locked loop archietcture, employs fully-digital blocks, which results in a 7.4 bits resolution and 0.8 µW power dissipation at 0.8 V supply voltage. The proposed passive wireless pressure sensor tag costs a total 3.2 µW power dissipation.

  12. Multi-Sensor Methods for Mobile Radar Motion Capture and Compensation

    NASA Astrophysics Data System (ADS)

    Nakata, Robert

    Remote sensing has many applications, including surveying and mapping, geophysics exploration, military surveillance, search and rescue and counter-terrorism operations. Remote sensor systems typically use visible image, infrared or radar sensors. Camera based image sensors can provide high spatial resolution but are limited to line-of-sight capture during daylight. Infrared sensors have lower resolution but can operate during darkness. Radar sensors can provide high resolution motion measurements, even when obscured by weather, clouds and smoke and can penetrate walls and collapsed structures constructed with non-metallic materials up to 1 m to 2 m in depth depending on the wavelength and transmitter power level. However, any platform motion will degrade the target signal of interest. In this dissertation, we investigate alternative methodologies to capture platform motion, including a Body Area Network (BAN) that doesn't require external fixed location sensors, allowing full mobility of the user. We also investigated platform stabilization and motion compensation techniques to reduce and remove the signal distortion introduced by the platform motion. We evaluated secondary ultrasonic and radar sensors to stabilize the platform resulting in an average 5 dB of Signal to Interference Ratio (SIR) improvement. We also implemented a Digital Signal Processing (DSP) motion compensation algorithm that improved the SIR by 18 dB on average. These techniques could be deployed on a quadcopter platform and enable the detection of respiratory motion using an onboard radar sensor.

  13. Using paired visual and passive acoustic surveys to estimate passive acoustic detection parameters for harbor porpoise abundance estimates.

    PubMed

    Jacobson, Eiren K; Forney, Karin A; Barlow, Jay

    2017-01-01

    Passive acoustic monitoring is a promising approach for monitoring long-term trends in harbor porpoise (Phocoena phocoena) abundance. Before passive acoustic monitoring can be implemented to estimate harbor porpoise abundance, information about the detectability of harbor porpoise is needed to convert recorded numbers of echolocation clicks to harbor porpoise densities. In the present study, paired data from a grid of nine passive acoustic click detectors (C-PODs, Chelonia Ltd., United Kingdom) and three days of simultaneous aerial line-transect visual surveys were collected over a 370 km 2 study area. The focus of the study was estimating the effective detection area of the passive acoustic sensors, which was defined as the product of the sound production rate of individual animals and the area within which those sounds are detected by the passive acoustic sensors. Visually estimated porpoise densities were used as informative priors in a Bayesian model to solve for the effective detection area for individual harbor porpoises. This model-based approach resulted in a posterior distribution of the effective detection area of individual harbor porpoises consistent with previously published values. This technique is a viable alternative for estimating the effective detection area of passive acoustic sensors when other experimental approaches are not feasible.

  14. A Review of Passive RFID Tag Antenna-Based Sensors and Systems for Structural Health Monitoring Applications

    PubMed Central

    Zhang, Jun; Tian, Gui Yun; Marindra, Adi M. J.; Sunny, Ali Imam; Zhao, Ao Bo

    2017-01-01

    In recent few years, the antenna and sensor communities have witnessed a considerable integration of radio frequency identification (RFID) tag antennas and sensors because of the impetus provided by internet of things (IoT) and cyber-physical systems (CPS). Such types of sensor can find potential applications in structural health monitoring (SHM) because of their passive, wireless, simple, compact size, and multimodal nature, particular in large scale infrastructures during their lifecycle. The big data from these ubiquitous sensors are expected to generate a big impact for intelligent monitoring. A remarkable number of scientific papers demonstrate the possibility that objects can be remotely tracked and intelligently monitored for their physical/chemical/mechanical properties and environment conditions. Most of the work focuses on antenna design, and significant information has been generated to demonstrate feasibilities. Further information is needed to gain deep understanding of the passive RFID antenna sensor systems in order to make them reliable and practical. Nevertheless, this information is scattered over much literature. This paper is to comprehensively summarize and clearly highlight the challenges and state-of-the-art methods of passive RFID antenna sensors and systems in terms of sensing and communication from system point of view. Future trends are also discussed. The future research and development in UK are suggested as well. PMID:28146067

  15. Satellite remote sensing of the ocean

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Liu, W. T.; Abbott, Mark R.

    1990-01-01

    A concise description of the principles and applications of several selected instruments that have been utilized most frequently in remote sensing of the ocean from satellites is presented. Emphasis is placed on the current progress in oceanographic applications and the outlook of the instruments in future oceanographic satellite missions is discussed. The instruments under discussion are placed into three groups: active microwave sensors, passive ocean color and infrared sensors, and passive microwave sensors.

  16. National Aeronautics and Space Administration's research program in earth remote sensing instrumentation

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.; Sokoloski, Martin M.; Rubin, Bernard

    1991-01-01

    Terrestrial and atmospheric missions of NASA's program to develop remote sensing instrumentation are described along with several of the instruments and related mission. Systems such as lidar and radar, passive coherent sensors, passive noncoherent sensors, as well as cryogenic cooler technology are discussed.

  17. An Energy-Efficient ASIC for Wireless Body Sensor Networks in Medical Applications.

    PubMed

    Xiaoyu Zhang; Hanjun Jiang; Lingwei Zhang; Chun Zhang; Zhihua Wang; Xinkai Chen

    2010-02-01

    An energy-efficient application-specific integrated circuit (ASIC) featured with a work-on-demand protocol is designed for wireless body sensor networks (WBSNs) in medical applications. Dedicated for ultra-low-power wireless sensor nodes, the ASIC consists of a low-power microcontroller unit (MCU), a power-management unit (PMU), reconfigurable sensor interfaces, communication ports controlling a wireless transceiver, and an integrated passive radio-frequency (RF) receiver with energy harvesting ability. The MCU, together with the PMU, provides quite flexible communication and power-control modes for energy-efficient operations. The always-on passive RF receiver with an RF energy harvesting block offers the sensor nodes the capability of work-on-demand with zero standby power. Fabricated in standard 0.18-¿m complementary metal-oxide semiconductor technology, the ASIC occupies a die area of 2 mm × 2.5 mm. A wireless body sensor network sensor-node prototype using this ASIC only consumes < 10-nA current under the passive standby mode, and < 10 ¿A under the active standby mode, when supplied by a 3-V battery.

  18. Passive Sensors for Long Duration Internet of Things Networks.

    PubMed

    Pereira, Felisberto; Correia, Ricardo; Carvalho, Nuno Borges

    2017-10-03

    In this work, three different concepts are used to develop a fully passive sensor that is capable of measuring different types of data. The sensor was supplied by Wireless Power Transmission (WPT). Communication between the sensor and reader is established by a backscatter, and to ensure minimum energy consumption, low power techniques are used. In a simplistic way, the process starts by the transmission of two different waves by the reader to the sensor, one of which is used in power transmission and the other of which is used to communicate. Once the sensor is powered, the monitoring process starts. From the monitoring state, results from after processing are used to modulate the incoming wave, which is the information that is sent back from the reader to the tag. This new combination of technologies enables the possibility of using sensors without any cables or batteries to operate 340 cm from the reader. The developed prototype measures acceleration and temperature. However, it is scalable. This system enables a new generation of passive Internet of Things (IoT) devices.

  19. Passive Sensors for Long Duration Internet of Things Networks

    PubMed Central

    Correia, Ricardo; Carvalho, Nuno Borges

    2017-01-01

    In this work, three different concepts are used to develop a fully passive sensor that is capable of measuring different types of data. The sensor was supplied by Wireless Power Transmission (WPT). Communication between the sensor and reader is established by a backscatter, and to ensure minimum energy consumption, low power techniques are used. In a simplistic way, the process starts by the transmission of two different waves by the reader to the sensor, one of which is used in power transmission and the other of which is used to communicate. Once the sensor is powered, the monitoring process starts. From the monitoring state, results from after processing are used to modulate the incoming wave, which is the information that is sent back from the reader to the tag. This new combination of technologies enables the possibility of using sensors without any cables or batteries to operate 340 cm from the reader. The developed prototype measures acceleration and temperature. However, it is scalable. This system enables a new generation of passive Internet of Things (IoT) devices. PMID:28972554

  20. Fusion of radar and satellite target measurements

    NASA Astrophysics Data System (ADS)

    Moy, Gabriel; Blaty, Donald; Farber, Morton; Nealy, Carlton

    2011-06-01

    A potentially high payoff for the ballistic missile defense system (BMDS) is the ability to fuse the information gathered by various sensor systems. In particular, it may be valuable in the future to fuse measurements made using ground based radars with passive measurements obtained from satellite-based EO/IR sensors. This task can be challenging in a multitarget environment in view of the widely differing resolution between active ground-based radar and an observation made by a sensor at long range from a satellite platform. Additionally, each sensor system could have a residual pointing bias which has not been calibrated out. The problem is further compounded by the possibility that an EO/IR sensor may not see exactly the same set of targets as a microwave radar. In order to better understand the problems involved in performing the fusion of metric information from EO/IR satellite measurements with active microwave radar measurements, we have undertaken a study of this data fusion issue and of the associated data processing techniques. To carry out this analysis, we have made use of high fidelity simulations to model the radar observations from a missile target and the observations of the same simulated target, as gathered by a constellation of satellites. In the paper, we discuss the improvements seen in our tests when fusing the state vectors, along with the improvements in sensor bias estimation. The limitations in performance due to the differing phenomenology between IR and microwave radar are discussed as well.

  1. Active/passive microwave sensor comparison of MIZ-ice concentration estimates. [Marginal Ice Zone (MIZ)

    NASA Technical Reports Server (NTRS)

    Burns, B. A.; Cavalieri, D. J.; Keller, M. R.

    1986-01-01

    Active and passive microwave data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait (MIZEX 84) are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) data to those obtained from passive microwave imagery at several frequencies. The comparison is carried out to evaluate SAR performance against the more established passive microwave technique, and to investigate discrepancies in terms of how ice surface conditions, imaging geometry, and choice of algorithm parameters affect each sensor. Active and passive estimates of ice concentration agree on average to within 12%. Estimates from the multichannel passive microwave data show best agreement with the SAR estimates because the multichannel algorithm effectively accounts for the range in ice floe brightness temperatures observed in the MIZ.

  2. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare.

    PubMed

    Trung, Tran Quang; Lee, Nae-Eung

    2016-06-01

    Flexible and stretchable physical sensors that can measure and quantify electrical signals generated by human activities are attracting a great deal of attention as they have unique characteristics, such as ultrathinness, low modulus, light weight, high flexibility, and stretchability. These flexible and stretchable physical sensors conformally attached on the surface of organs or skin can provide a new opportunity for human-activity monitoring and personal healthcare. Consequently, in recent years there has been considerable research effort devoted to the development of flexible and stretchable physical sensors to fulfill the requirements of future technology, and much progress has been achieved. Here, the most recent developments of flexible and stretchable physical sensors are described, including temperature, pressure, and strain sensors, and flexible and stretchable sensor-integrated platforms. The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed first. In the next section, recent progress regarding sensor-integrated wearable platforms is overviewed in detail. Some of the latest achievements regarding self-powered sensor-integrated wearable platform technologies are also reviewed. Further research direction and challenges are also proposed to develop a fully sensor-integrated wearable platform for monitoring human activity and personal healthcare in the near future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor.

    PubMed

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-02-10

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.

  4. Target-type probability combining algorithms for multisensor tracking

    NASA Astrophysics Data System (ADS)

    Wigren, Torbjorn

    2001-08-01

    Algorithms for the handing of target type information in an operational multi-sensor tracking system are presented. The paper discusses recursive target type estimation, computation of crosses from passive data (strobe track triangulation), as well as the computation of the quality of the crosses for deghosting purposes. The focus is on Bayesian algorithms that operate in the discrete target type probability space, and on the approximations introduced for computational complexity reduction. The centralized algorithms are able to fuse discrete data from a variety of sensors and information sources, including IFF equipment, ESM's, IRST's as well as flight envelopes estimated from track data. All algorithms are asynchronous and can be tuned to handle clutter, erroneous associations as well as missed and erroneous detections. A key to obtain this ability is the inclusion of data forgetting by a procedure for propagation of target type probability states between measurement time instances. Other important properties of the algorithms are their abilities to handle ambiguous data and scenarios. The above aspects are illustrated in a simulations study. The simulation setup includes 46 air targets of 6 different types that are tracked by 5 airborne sensor platforms using ESM's and IRST's as data sources.

  5. Inertial navigation sensor integrated obstacle detection system

    NASA Technical Reports Server (NTRS)

    Bhanu, Bir (Inventor); Roberts, Barry A. (Inventor)

    1992-01-01

    A system that incorporates inertial sensor information into optical flow computations to detect obstacles and to provide alternative navigational paths free from obstacles. The system is a maximally passive obstacle detection system that makes selective use of an active sensor. The active detection typically utilizes a laser. Passive sensor suite includes binocular stereo, motion stereo and variable fields-of-view. Optical flow computations involve extraction, derotation and matching of interest points from sequential frames of imagery, for range interpolation of the sensed scene, which in turn provides obstacle information for purposes of safe navigation.

  6. Remote sensing systems – Platforms and sensors: Aerial, satellites, UAVs, optical, radar, and LiDAR: Chapter 1

    USGS Publications Warehouse

    Panda, Sudhanshu S.; Rao, Mahesh N.; Thenkabail, Prasad S.; Fitzerald, James E.

    2015-01-01

    The American Society of Photogrammetry and Remote Sensing defined remote sensing as the measurement or acquisition of information of some property of an object or phenomenon, by a recording device that is not in physical or intimate contact with the object or phenomenon under study (Colwell et al., 1983). Environmental Systems Research Institute (ESRI) in its geographic information system (GIS) dictionary defines remote sensing as “collecting and interpreting information about the environment and the surface of the earth from a distance, primarily by sensing radiation that is naturally emitted or reflected by the earth’s surface or from the atmosphere, or by sending signals transmitted from a device and reflected back to it (ESRI, 2014).” The usual source of passive remote sensing data is the measurement of reflected or transmitted electromagnetic radiation (EMR) from the sun across the electromagnetic spectrum (EMS); this can also include acoustic or sound energy, gravity, or the magnetic field from or of the objects under consideration. In this context, the simple act of reading this text is considered remote sensing. In this case, the eye acts as a sensor and senses the light reflected from the object to obtain information about the object. It is the same technology used by a handheld camera to take a photograph of a person or a distant scenic view. Active remote sensing, however, involves sending a pulse of energy and then measuring the returned energy through a sensor (e.g., Radio Detection and Ranging [RADAR], Light Detection and Ranging [LiDAR]). Thermal sensors measure emitted energy by different objects. Thus, in general, passive remote sensing involves the measurement of solar energy reflected from the Earth’s surface, while active remote sensing involves synthetic (man-made) energy pulsed at the environment and the return signals are measured and recorded.

  7. Detection of person borne IEDs using multiple cooperative sensors

    NASA Astrophysics Data System (ADS)

    MacIntosh, Scott; Deming, Ross; Hansen, Thorkild; Kishan, Neel; Tang, Ling; Shea, Jing; Lang, Stephen

    2011-06-01

    The use of multiple cooperative sensors for the detection of person borne IEDs is investigated. The purpose of the effort is to evaluate the performance benefits of adding multiple sensor data streams into an aided threat detection algorithm, and a quantitative analysis of which sensor data combinations improve overall detection performance. Testing includes both mannequins and human subjects with simulated suicide bomb devices of various configurations, materials, sizes and metal content. Aided threat recognition algorithms are being developed to test detection performance of individual sensors against combined fused sensors inputs. Sensors investigated include active and passive millimeter wave imaging systems, passive infrared, 3-D profiling sensors and acoustic imaging. The paper describes the experimental set-up and outlines the methodology behind a decision fusion algorithm-based on the concept of a "body model".

  8. Technology review: prototyping platforms for monitoring ambient conditions.

    PubMed

    Afolaranmi, Samuel Olaiya; Ramis Ferrer, Borja; Martinez Lastra, Jose Luis

    2018-05-08

    The monitoring of ambient conditions in indoor spaces is very essential owing to the amount of time spent indoors. Specifically, the monitoring of air quality is significant because contaminated air affects the health, comfort and productivity of occupants. This research work presents a technology review of prototyping platforms for monitoring ambient conditions in indoor spaces. It involves the research on sensors (for CO 2 , air quality and ambient conditions), IoT platforms, and novel and commercial prototyping platforms. The ultimate objective of this review is to enable the easy identification, selection and utilisation of the technologies best suited for monitoring ambient conditions in indoor spaces. Following the review, it is recommended to use metal oxide sensors, optical sensors and electrochemical sensors for IAQ monitoring (including NDIR sensors for CO 2 monitoring), Raspberry Pi for data processing, ZigBee and Wi-Fi for data communication, and ThingSpeak IoT platform for data storage, analysis and visualisation.

  9. Humidity Sensing Properties of Paper Substrates and Their Passivation with ZnO Nanoparticles for Sensor Applications

    PubMed Central

    Niarchos, Georgios; Dubourg, Georges; Afroudakis, Georgios; Georgopoulos, Markos; Tsouti, Vasiliki; Makarona, Eleni; Crnojevic-Bengin, Vesna; Tsamis, Christos

    2017-01-01

    In this paper, we investigated the effect of humidity on paper substrates and propose a simple and low-cost method for their passivation using ZnO nanoparticles. To this end, we built paper-based microdevices based on an interdigitated electrode (IDE) configuration by means of a mask-less laser patterning method on simple commercial printing papers. Initial resistive measurements indicate that a paper substrate with a porous surface can be used as a cost-effective, sensitive and disposable humidity sensor in the 20% to 70% relative humidity (RH) range. Successive spin-coated layers of ZnO nanoparticles then, control the effect of humidity. Using this approach, the sensors become passive to relative humidity changes, paving the way to the development of ZnO-based gas sensors on paper substrates insensitive to humidity. PMID:28273847

  10. Reducing the effect of parasitic capacitance on implantable passive resonant sensors.

    PubMed

    Drazan, John F; Abdoun, Omar T; Wassick, Michael T; Marcus, George A; Dahle, Reena; Beardslee, Luke A; Cady, Nathaniel C; Ledet, Eric H

    2016-08-01

    Passive, LC resonators have the potential to serve as small, robust, low cost, implantable sensors to wirelessly monitor implants following orthopedic surgery. One significant barrier to using LC sensors is the influence on the sensor's resonance of the surrounding conductive high permittivity media in vivo. The surrounding media can detune the resonant frequency of the LC sensor resulting in a bias. To mitigate the effects of the surrounding media, we added a "capping layer" to LC sensors to isolate them from the surrounding media. Several capping materials and thicknesses were tested to determine effectiveness at reducing the sensor's interaction with the surrounding media. Results show that a 1 mm glass capping layer on the outer surfaces of the sensor was sufficient to reduce the effects of the media on sensor signal to less than 1%.

  11. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.

    PubMed

    Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2017-07-01

    A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Efficient Sensor Integration on Platforms (NeXOS)

    NASA Astrophysics Data System (ADS)

    Memè, S.; Delory, E.; Del Rio, J.; Jirka, S.; Toma, D. M.; Martinez, E.; Frommhold, L.; Barrera, C.; Pearlman, J.

    2016-12-01

    In-situ ocean observing platforms provide power and information transmission capability to sensors. Ocean observing platforms can be mobile, such as ships, autonomous underwater vehicles, drifters and profilers, or fixed, such as buoys, moorings and cabled observatories. The process of integrating sensors on platforms can imply substantial engineering time and resources. Constraints range from stringent mechanical constraints to proprietary communication and control firmware. In NeXOS, the implementation of a PUCK plug and play capability is being done with applications to multiple sensors and platforms. This is complemented with a sensor web enablement that addresses the flow of information from sensor to user. Open standards are being tested in order to assess their costs and benefits in existing and future observing systems. Part of the testing implied open-source coding and hardware prototyping of specific control devices in particular for closed commercial platforms where firmware upgrading is not straightforward or possible without prior agreements or service fees. Some platform manufacturers such as European companies ALSEAMAR[1] and NKE Instruments [2] are currently upgrading their control and communication firmware as part of their activities in NeXOS. The sensor development companies Sensorlab[3] SMID[4] and TRIOS [5]upgraded their firmware with this plug and play functionality. Other industrial players in Europe and the US have been sent NeXOS sensors emulators to test the new protocol on their platforms. We are currently demonstrating that with little effort, it is also possible to have such middleware implemented on very low-cost compact computers such as the open Raspberry Pi[6], and have a full end-to-end interoperable communication path from sensor to user with sensor plug and play capability. The result is an increase in sensor integration cost-efficiency and the demonstration will be used to highlight the benefit to users and ocean observatory operators. [1] http://www.alseamar-alcen.com [2] http://www.nke-instrumentation.com [3] http://sensorlab.es [4] http://www.smidtechnology.it/ [5] http://www.trios.de/en/products/ [6] Raspberry Pi is a trademark of the Raspberry Pi Foundation

  13. A Piezoelectric Passive Wireless Sensor for Monitoring Strain

    NASA Technical Reports Server (NTRS)

    Zou, Xiyue; Ferri, Paul N.; Hogan, Ben; Mazzeo, Aaron D.; Hull. Patrick V.

    2017-01-01

    Interest in passive wireless sensing has grown over the past few decades to meet demands in structural health monitoring.(Deivasigamani et al., 2013; Wilson and Juarez, 2014) This work describes a passive wireless sensor for monitoring strain, which does not have an embedded battery or chip. Without an embedded battery, the passive wireless sensor has the potential to maintain its functionality over long periods in remote/harsh environments. This work also focuses on monitoring small strain (less than 1000 micro-?). The wireless sensing system includes a reader unit, a coil-like transponder, and a sensing unit. It operates in the Megahertz (MHz) frequency range, which allows for a few centimeters of separation between the reader and sensing unit during measurements. The sensing unit is a strain-sensitive piezoelectric resonator that maximizes the energy efficiency at the resonance frequency, so it converts nanoscale mechanical variations to detectable differences in electrical signal. In response to an external loading, the piezoelectric sensor breaks from its original electromechanical equilibrium, and the resonant frequency shifts as the system reaches a new balanced equilibrium. In this work, the fixture of the sensing unit is a small, sticker-like package that converts the surface strain of a test material to measurable shifts in resonant frequencies. Furthermore, electromechanical modeling provides a lumped-parameter model of the system to describe and predict the measured wireless signals of the sensor. Detailed characterization demonstrates how this wireless sensor has resolution comparable to that of conventional wired strain sensors for monitoring small strain.

  14. Generic Helicopter-Based Testbed for Surface Terrain Imaging Sensors

    NASA Technical Reports Server (NTRS)

    Alexander, James; Goldberg, Hannah; Montgomery, James; Spiers, Gary; Liebe, Carl; Johnson, Andrew; Gromov, Konstantin; Konefat, Edward; Lam, Raymond; Meras, Patrick

    2008-01-01

    To be certain that a candidate sensor system will perform as expected during missions, we have developed a field test system and have executed test flights with a helicopter-mounted sensor platform over desert terrains, which simulate Lunar features. A key advantage to this approach is that different sensors can be tested and characterized in an environment relevant to the flight needs prior to flight. Testing the various sensors required the development of a field test system, including an instrument to validate the truth of the sensor system under test. The field test system was designed to be flexible enough to cover the test needs of many sensors (lidar, radar, cameras) that require an aerial test platform, including helicopters, airplanes, unmanned aerial vehicles (UAV), or balloons. To validate the performance of the sensor under test, the dynamics of the test platform must be known with sufficient accuracy to provide accurate models for input into algorithm development. The test system provides support equipment to measure the dynamics of the field test sensor platform, and allow computation of the truth position, velocity, attitude, and time.

  15. A passive and active microwave-vector radiative transfer (PAM-VRT) model

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Min, Qilong

    2015-11-01

    A passive and active microwave vector radiative transfer (PAM-VRT) package has been developed. This fast and accurate forward microwave model, with flexible and versatile input and output components, self-consistently and realistically simulates measurements/radiation of passive and active microwave sensors. The core PAM-VRT, microwave radiative transfer model, consists of five modules: gas absorption (two line-by-line databases and four fast models); hydrometeor property of water droplets and ice (spherical and nonspherical) particles; surface emissivity (from Community Radiative Transfer Model (CRTM)); vector radiative transfer of successive order of scattering (VSOS); and passive and active microwave simulation. The PAM-VRT package has been validated against other existing models, demonstrating good accuracy. The PAM-VRT not only can be used to simulate or assimilate measurements of existing microwave sensors, but also can be used to simulate observation results at some new microwave sensors.

  16. An intercomparison of available soil moisture estimates from thermal-infrared and passive microwave remote sensing and land-surface modeling

    USDA-ARS?s Scientific Manuscript database

    Remotely-sensed soil moisture studies have mainly focused on retrievals using active and passive microwave (MW) sensors whose measurements provided a direct relationship to soil moisture (SM). MW sensors present obvious advantages such as the ability to retrieve through non-precipitating cloud cover...

  17. Frequency band justifications for passive sensors 10.0 to 385 GHz, chapter 2. [for monitoring earth resources and the environment

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Sensitivity requirements of the various measurements obtained by microwave sensors, and radiometry techniques are described. Analytical techniques applied to detailed sharing analyses are discussed. A bibliography of publications pertinent to the scientific justification of frequency requirements for passive microwave remote sensing is included.

  18. Multifunctional Web Enabled Ocean Sensor Systems for the Monitoring of a Changing Ocean

    NASA Astrophysics Data System (ADS)

    Pearlman, Jay; Castro, Ayoze; Corrandino, Luigi; del Rio, Joaquin; Delory, Eric; Garello, Rene; Heuermann, Rudinger; Martinez, Enoc; Pearlman, Francoise; Rolin, Jean-Francois; Toma, Daniel; Waldmann, Christoph; Zielinski, Oliver

    2016-04-01

    As stated in the 2010 "Ostend Declaration", a major challenge in the coming years is the development of a truly integrated and sustainably funded European Ocean Observing System for supporting major policy initiatives such as the Integrated Maritime Policy and the Marine Strategy Framework Directive. This will be achieved with more long-term measurements of key parameters supported by a new generation of sensors whose costs and reliability will enable broad and consistent observations. Within the NeXOS project, a framework including new sensors capabilities and interface software has been put together that embraces the key technical aspects needed to improve the temporal and spatial coverage, resolution and quality of marine observations. The developments include new, low-cost, compact and integrated sensors with multiple functionalities that will allow for the measurements useful for a number of objectives, ranging from more precise monitoring and modeling of the marine environment to an improved assessment of fisheries. The project is entering its third year and will be demonstrating initial capabilities of optical and acoustic sensor prototypes that will become available for a number of platforms. For fisheries management, there is also a series of sensors that support an Ecosystem Approach to Fisheries (EAF). The greatest capabilities for comprehensive operations will occur when these sensors can be integrated into a multisensory capability on a single platform or multiply interconnected and coordinated platforms. Within NeXOS the full processing steps starting from the sensor signal all the way up to distributing collected environmental information will be encapsulated into standardized new state of the art Smart Sensor Interface and Web components to provide both improved integration and a flexible interface for scientists to control sensor operation. The use of the OGC SWE (Sensor Web Enablement) set of standards like OGC PUCK and SensorML at the instrument to platform integration phase will provide standard mechanisms for a truly plug'n'work connection. Through this, NeXOS Instruments will maintain within themselves specific information about how a platform (buoy controller, AUV controller, Observatory controller) has to configure and communicate with the instrument without the platform needing previous knowledge about the instrument. This mechanism is now being evaluated in real platforms like a Slocum Glider from Teledyne Web research, SeaExplorer Glider from Alseamar, Provor Float from NKE, and others including non commercial platforms like Obsea seafloor cabled observatory. The latest developments in the NeXOS sensors and the integration into an observation system will be discussed, addressing demonstration plans both for a variety of platforms and scientific objectives supporting marine management.

  19. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor

    PubMed Central

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-01-01

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor’s working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from −40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz/°C℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications. PMID:29439393

  20. Passive fetal monitoring sensor

    NASA Astrophysics Data System (ADS)

    Zuckerwar, Allan J.; Hall, Earl T.; Baker, Donald A.; Bryant, Timothy D.

    1992-08-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  1. Passive fetal monitoring sensor

    NASA Astrophysics Data System (ADS)

    1990-07-01

    The invention is an ambulatory, passive sensor for use in a fetal monitoring system. The invention incorporates piezoelectric polymer film combined with a metallic mounting plate fastened to a belt and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted from a fetus inside an expectant mother and to provide means for filtering out pressure pulses arising from other sources, such as the maternal heart.

  2. Passive fetal monitoring sensor

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Hall, Earl T. (Inventor); Baker, Donald A. (Inventor); Bryant, Timothy D. (Inventor)

    1992-01-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  3. Applications of the Integrated High-Performance CMOS Image Sensor to Range Finders — from Optical Triangulation to the Automotive Field

    PubMed Central

    Wu, Jih-Huah; Pen, Cheng-Chung; Jiang, Joe-Air

    2008-01-01

    With their significant features, the applications of complementary metal-oxide semiconductor (CMOS) image sensors covers a very extensive range, from industrial automation to traffic applications such as aiming systems, blind guidance, active/passive range finders, etc. In this paper CMOS image sensor-based active and passive range finders are presented. The measurement scheme of the proposed active/passive range finders is based on a simple triangulation method. The designed range finders chiefly consist of a CMOS image sensor and some light sources such as lasers or LEDs. The implementation cost of our range finders is quite low. Image processing software to adjust the exposure time (ET) of the CMOS image sensor to enhance the performance of triangulation-based range finders was also developed. An extensive series of experiments were conducted to evaluate the performance of the designed range finders. From the experimental results, the distance measurement resolutions achieved by the active range finder and the passive range finder can be better than 0.6% and 0.25% within the measurement ranges of 1 to 8 m and 5 to 45 m, respectively. Feasibility tests on applications of the developed CMOS image sensor-based range finders to the automotive field were also conducted. The experimental results demonstrated that our range finders are well-suited for distance measurements in this field. PMID:27879789

  4. CATSI EDM: recent advances in the development and validation of a ruggedized passive standoff CWA sensor

    NASA Astrophysics Data System (ADS)

    Lavoie, Hugo; Thériault, Jean-Marc; Bouffard, François; Puckrin, Eldon; Turcotte, Caroline S.; Lacasse, Paul

    2008-04-01

    Defence Research and Development Canada (DRDC) - Valcartier is currently developing a ruggedized passive standoff sensor for the detection of chemical warfare agents (CWAs) based on differential Fourier-transform infrared (FTIR) radiometry. This system is referred to as the Compact ATmospheric Sounding Interferometer (CATSI) Engineering Development Model (EDM). The CATSI EDM sensor is based on the use of a double-beam FTIR spectrometer that is optimized for optical subtraction. A description of the customized sensor is given along with a discussion on the detection and identification approaches that have been developed. Preliminary results of validation from a number of laboratory measurements and open-air trials are analyzed to establish the capability of detection and identification of various toxic and non-toxic chemical vapor plumes. These results clearly demonstrate the capability of the passive differential radiometric approach for the standoff detection and identification of chemical vapors at distances up to a few kilometers from the sensor.

  5. A study of the feasibility and performance of an active/passive imager using silicon focal plane arrays and incoherent continuous wave laser diodes

    NASA Astrophysics Data System (ADS)

    Vollmerhausen, Richard H.

    This dissertation describes an active/passive imager (API) that provides reliable, nighttime, target acquisition in a man-portable package with effective visual range of about 4 kilometers. The reflective imagery is easier to interpret than currently used thermal imagery. Also, in the active mode, the API provides performance equivalent to the big-aperture, thermal systems used on weapons platforms like tanks and attack helicopters. This dissertation describes the research needed to demonstrate both the feasibility and utility of the API. Part of the research describes implementation of a silicon focal plane array (SFPA) capable of both active and passive imaging. The passive imaging mode exceeds the nighttime performance of currently fielded, man-portable sensors. Further, when scene illumination is insufficient for passive imaging, the low dark current of SFPA makes it possible to use continuous wave laser diodes (CWLD) to add an active imaging mode. CWLD have advantages of size, efficiency, and improved eye safety when compared to high peak-power diodes. Because of the improved eye safety, the API provides user-demanded features like video output and extended range gates in the active as well as passive imaging modes. Like any other night vision device, the API depends on natural illumination of the scene for passive operation. Although it has been known for decades that "starlight" illumination is actually from diffuse airglow emissions, the research described in this dissertation provides the first estimates of the global and temporal variation of ground illumination due to airglow. A third related element of the current research establishes the impact of atmospheric aerosols on API performance. We know from day experience that atmospheric scattering of sunlight into the imager line-of-sight can blind the imager and drastically degrade performance. Atmospheric scattering of sunlight is extensively covered in the literature. However, previous literature did not cover the impact of atmospheric scattering when the target is diffusely illuminated by airglow.

  6. A low cost, high precision extreme/harsh cold environment, autonomous sensor data gathering and transmission platform.

    NASA Astrophysics Data System (ADS)

    Chetty, S.; Field, L. A.

    2014-12-01

    SWIMS III, is a low cost, autonomous sensor data gathering platform developed specifically for extreme/harsh cold environments. Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally inert materials that when deployed will increase the albedo, enabling the formation and/preservation of multi-year ice. SWIMS III's sophisticated autonomous sensors are designed to measure the albedo, weather, water temperature and other environmental parameters. This platform uses low cost, high accuracy/precision sensors, extreme environment command and data handling computer system using satellite and terrestrial wireless solution. The system also incorporates tilt sensors and sonar based ice thickness sensors. The system is light weight and can be deployed by hand by a single person. This presentation covers the technical, and design challenges in developing and deploying these platforms.

  7. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring.

    PubMed

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-09-20

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods.

  8. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring

    PubMed Central

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-01-01

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods. PMID:27657070

  9. An Innovative Technology to Support Independent Living: The Smarter Safer Homes Platform.

    PubMed

    Karunanithi, Mohanraj; Zhang, Qing

    2018-01-01

    Australian population aged over 65 years is 14% (3.3 million) and this expected to increase to 21% by 2053 (8.3 million), of which 1.9% to 4.2% is attributed to Australians over 85 years. With increase in ageing, there is high prevalence in long-term health conditions and more likely multiple visits to the doctors or the hospitals, particularly when one's functional condition declines. This adds burden to the already stretched health system such as the overcrowding of emergency departments in hospitals. This is partly due to many ageing patients with high care needs occupying significant number of hospital beds because they are waiting for entry to the limited placements in residential care. To address this increase in ageing population and its impact in the society, the Australian government has funded aged care reforms for initiatives for older community stay at home longer. Recently, this was implemented through consumer directed age care reform. Advances in information and communication technologies, particularly in the advancement of lifestyle technologies and its increased use, show promise in the uptake of telehealth approach to support older people to live longer in their homes. In 2011, CSIRO took the initiative to a develop consumer designed innovative platform that would assist and support the older community in their functional ability and health for day to day living in their home environment. This platform was called the Smarter Safer Homes technology. The Smarter Safer Homes platform infers the Activities of Daily Living information from a passive sensor-enabled environment and correlates the information with home-based health monitoring measurements. The use of sensors enables the information to be captured in an unobtrusive manner. This information is then provided to the individual in the household through an iPad application while information can also be shared with formal and informal carers. The platform has undergone a few pilot studies to explore an objective and individualised approach to Activities of daily living based on an individual's profile and its applicability in multi-resident home setting in individual's in regional Queensland. Furthermore, the platform is being validated in a clinical study for its application in the aged care service in various geographical settings such as in urban and remote communities. This paper describes the platform, outcomes of pilot studies, and its future application.

  10. Investigation on micromachining technologies for the realization of LTCC devices and systems

    NASA Astrophysics Data System (ADS)

    Haas, T.; Zeilmann, C.; Bittner, A.; Schmid, U.

    2011-06-01

    Low temperature co-fired ceramics (LTCC) has established as a widespread platform for advanced functional ceramic devices in different applications, such as in the space and aviation sector, for micro machined sensors as well as in micro fluidics. This is due to high reliability, excellent physical properties, especially in the high frequency range, and the possibility to integrate passive components in the monolithic LTCC body, offering the potential for a high degree of miniaturisation. However, for further improvement of this technology and for an ongoing increase of the integration level, the realization of miniaturized structures is of utmost importance. Therefore, novel techniques for micro-machining are required providing channel structures and cavities inside the glass-ceramic body, enabling for further application scenarios. Those techniques are punching, laser cutting and embossing. One of the most limitations of LTCC is the poor thermal conductivity. Hence, the possibility to integrate channels enables innovative active cooling approaches using fluidic media for heat critical devices. Doing so, a by far better cooling effect can be achieved than by passive devices as heat spreaders or heat sinks. Furthermore, the realization of mechanic devices as integrated pressure sensors for operation under harsh environmental conditions can be realized by integrating the membrane directly into the ceramic body. Finally, for high power devices substantial improvement can be provided by filling those channel structures with electrical conductive material, so that the resistivity can be decreased drastically without affecting the topography of the ceramics.

  11. Development of a handheld widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical, and narcotic residues

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew P.; Basta, Andrew; Patil, Raju; Klueva, Oksana; Treado, Patrick J.

    2013-05-01

    The utility of Hyper Spectral Imaging (HSI) passive chemical detection employing wide field, standoff imaging continues to be advanced in detection applications. With a drive for reduced SWaP (Size, Weight, and Power), increased speed of detection and sensitivity, developing a handheld platform that is robust and user-friendly increases the detection capabilities of the end user. In addition, easy to use handheld detectors could improve the effectiveness of locating and identifying threats while reducing risks to the individual. ChemImage Sensor Systems (CISS) has developed the HSI Aperio™ sensor for real time, wide area surveillance and standoff detection of explosives, chemical threats, and narcotics for use in both government and commercial contexts. Employing liquid crystal tunable filter technology, the HSI system has an intuitive user interface that produces automated detections and real-time display of threats with an end user created library of threat signatures that is easily updated allowing for new hazardous materials. Unlike existing detection technologies that often require close proximity for sensing and so endanger operators and costly equipment, the handheld sensor allows the individual operator to detect threats from a safe distance. Uses of the sensor include locating production facilities of illegal drugs or IEDs by identification of materials on surfaces such as walls, floors, doors, deposits on production tools and residue on individuals. In addition, the sensor can be used for longer-range standoff applications such as hasty checkpoint or vehicle inspection of residue materials on surfaces or bulk material identification. The CISS Aperio™ sensor has faster data collection, faster image processing, and increased detection capability compared to previous sensors.

  12. A Passive Radio-Frequency Identification (RFID) Gas Sensor With Self-Correction Against Fluctuations of Ambient Temperature

    PubMed Central

    Potyrailo, Radislav A.; Surman, Cheryl

    2013-01-01

    Uncontrolled fluctuations of ambient temperature in the field typically greatly reduce accuracy of gas sensors. In this study, we developed an approach for the self-correction against fluctuations of ambient temperature of individual gas and vapor sensors. The main innovation of our work is in the temperature correction which is accomplished without the need for a separate uncoated reference sensor or a separate temperature sensor. Our sensors are resonant inductor-capacitor-resistor (LCR) transducers coated with sensing materials and operated as multivariable passive (battery-free) radio-frequency identification (RFID) sensors. Using our developed approach, we performed quantitation of an exemplary vapor over the temperature range from 25 to 40 °C. This technical solution will be attractive in numerous applications where temperature stabilization of a gas sensor or addition of auxiliary temperature or uncoated reference sensors is prohibitive. PMID:23956496

  13. Passive wireless antenna sensor for strain and crack sensing—electromagnetic modeling, simulation, and testing

    NASA Astrophysics Data System (ADS)

    Yi, Xiaohua; Cho, Chunhee; Cooper, James; Wang, Yang; Tentzeris, Manos M.; Leon, Roberto T.

    2013-08-01

    This research investigates a passive wireless antenna sensor designed for strain and crack sensing. When the antenna experiences deformation, the antenna shape changes, causing a shift in the electromagnetic resonance frequency of the antenna. A radio frequency identification (RFID) chip is adopted for antenna signal modulation, so that a wireless reader can easily distinguish the backscattered sensor signal from unwanted environmental reflections. The RFID chip captures its operating power from an interrogation electromagnetic wave emitted by the reader, which allows the antenna sensor to be passive (battery-free). This paper first reports the latest simulation results on radiation patterns, surface current density, and electromagnetic field distribution. The simulation results are followed with experimental results on the strain and crack sensing performance of the antenna sensor. Tensile tests show that the wireless antenna sensor can detect small strain changes lower than 20 με, and can perform well at large strains higher than 10 000 με. With a high-gain reader antenna, the wireless interrogation distance can be increased up to 2.1 m. Furthermore, an array of antenna sensors is capable of measuring the strain distribution in close proximity. During emulated crack and fatigue crack tests, the antenna sensor is able to detect the growth of a small crack.

  14. Passive Standoff Detection of Chemical Warfare Agents on Surfaces

    NASA Astrophysics Data System (ADS)

    Thériault, Jean-Marc; Puckrin, Eldon; Hancock, Jim; Lecavalier, Pierre; Lepage, Carmela Jackson; Jensen, James O.

    2004-11-01

    Results are presented on the passive standoff detection and identification of chemical warfare (CW) liquid agents on surfaces by the Fourier-transform IR radiometry. This study was performed during surface contamination trials at Defence Research and Development Canada-Suffield in September 2002. The goal was to verify that passive long-wave IR spectrometric sensors can potentially remotely detect surfaces contaminated with CW agents. The passive sensor, the Compact Atmospheric Sounding Interferometer, was used in the trial to obtain laboratory and field measurements of CW liquid agents, HD and VX. The agents were applied to high-reflectivity surfaces of aluminum, low-reflectivity surfaces of Mylar, and several other materials including an armored personnel carrier. The field measurements were obtained at a standoff distance of 60 m from the target surfaces. Results indicate that liquid contaminant agents deposited on high-reflectivity surfaces can be detected, identified, and possibly quantified with passive sensors. For low-reflectivity surfaces the presence of the contaminants can usually be detected; however, their identification based on simple correlations with the absorption spectrum of the pure contaminant is not possible.

  15. Sensor deployment on unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Gerhart, Grant R.; Witus, Gary

    2007-10-01

    TARDEC has been developing payloads for small robots as part of its unmanned ground vehicle (UGV) development programs. These platforms typically weigh less than 100 lbs and are used for various physical security and force protection applications. This paper will address a number of technical issues including platform mobility, payload positioning, sensor configuration and operational tradeoffs. TARDEC has developed a number of robots with different mobility mechanisms including track, wheel and hybrid track/wheel running gear configurations. An extensive discussion will focus upon omni-directional vehicle (ODV) platforms with enhanced intrinsic mobility for positioning sensor payloads. This paper also discusses tradeoffs between intrinsic platform mobility and articulated arm complexity for end point positioning of modular sensor packages.

  16. Characteristics of active spectral sensor for plant sensing

    USDA-ARS?s Scientific Manuscript database

    Plant stress has been estimated by spectral signature using both passive and active sensors. As optical sensors measure reflected light from a target, changes in illumination conditions critically affect sensor response. Active spectral sensors minimize the illumination effects by producing their ...

  17. Active spectral sensor evaluation under varying conditions

    USDA-ARS?s Scientific Manuscript database

    Plant stress has been estimated by spectral signature using both passive and active sensors. As optical sensors measure reflected light from a target, changes in illumination characteristics critically affect sensor response. Active sensors are of benefit in minimizing uncontrolled illumination effe...

  18. Real-time GIS data model and sensor web service platform for environmental data management.

    PubMed

    Gong, Jianya; Geng, Jing; Chen, Zeqiang

    2015-01-09

    Effective environmental data management is meaningful for human health. In the past, environmental data management involved developing a specific environmental data management system, but this method often lacks real-time data retrieving and sharing/interoperating capability. With the development of information technology, a Geospatial Service Web method is proposed that can be employed for environmental data management. The purpose of this study is to determine a method to realize environmental data management under the Geospatial Service Web framework. A real-time GIS (Geographic Information System) data model and a Sensor Web service platform to realize environmental data management under the Geospatial Service Web framework are proposed in this study. The real-time GIS data model manages real-time data. The Sensor Web service platform is applied to support the realization of the real-time GIS data model based on the Sensor Web technologies. To support the realization of the proposed real-time GIS data model, a Sensor Web service platform is implemented. Real-time environmental data, such as meteorological data, air quality data, soil moisture data, soil temperature data, and landslide data, are managed in the Sensor Web service platform. In addition, two use cases of real-time air quality monitoring and real-time soil moisture monitoring based on the real-time GIS data model in the Sensor Web service platform are realized and demonstrated. The total time efficiency of the two experiments is 3.7 s and 9.2 s. The experimental results show that the method integrating real-time GIS data model and Sensor Web Service Platform is an effective way to manage environmental data under the Geospatial Service Web framework.

  19. A quasi-global approach to improve day-time satellite surface soil moisture anomalies through land surface temperature input

    USDA-ARS?s Scientific Manuscript database

    Passive microwave observations from various space borne sensors have been linked to soil moisture of the Earth’s surface layer. The new generation passive microwave sensors are dedicated to retrieving this variable and make observations in the single, theoretically optimal L-band frequency (1-2 GHz)...

  20. Assessment of Spacecraft Operational Status Using Electro-Optical Predictive Techniques

    DTIC Science & Technology

    2010-09-01

    panel appendages, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical sensors...observing and characterizing key spacecraft features. The simulation results are based on electro-optical signatures apparent to nonimaging sensors, along...and communication equipment, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical

  1. Remote Sensing of the Arctic Seas.

    ERIC Educational Resources Information Center

    Weeks, W. F.; And Others

    1986-01-01

    Examines remote sensing of the arctic seas by discussing: (1) passive microwave sensors; (2) active microwave sensors; (3) other types of sensors; (4) the future deployment of sensors; (5) data buoys; and (6) future endeavors. (JN)

  2. A Bluetooth-Based Device Management Platform for Smart Sensor Environment

    NASA Astrophysics Data System (ADS)

    Lim, Ivan Boon-Kiat; Yow, Kin Choong

    In this paper, we propose the use of Bluetooth as the device management platform for the various embedded sensors and actuators in an ambient intelligent environment. We demonstrate the ease of adding Bluetooth capability to common sensor circuits (e.g. motion sensor circuit based on a pyroelectric infrared (PIR) sensor). A central logic application is proposed which controls the operation of controller devices, based on values returned by sensors via Bluetooth. The operation of devices depends on rules that are learnt from user behavior using an Elman recurrent neural network. Overall, Bluetooth has shown its potential in being used as a device management platform in an ambient intelligent environment, which allows sensors and controllers to be deployed even in locations where power sources are not readily available, by using battery power.

  3. Sensor Web Dynamic Measurement Techniques and Adaptive Observing Strategies

    NASA Technical Reports Server (NTRS)

    Talabac, Stephen J.

    2004-01-01

    Sensor Web observing systems may have the potential to significantly improve our ability to monitor, understand, and predict the evolution of rapidly evolving, transient, or variable environmental features and events. This improvement will come about by integrating novel data collection techniques, new or improved instruments, emerging communications technologies and protocols, sensor mark-up languages, and interoperable planning and scheduling systems. In contrast to today's observing systems, "event-driven" sensor webs will synthesize real- or near-real time measurements and information from other platforms and then react by reconfiguring the platforms and instruments to invoke new measurement modes and adaptive observation strategies. Similarly, "model-driven" sensor webs will utilize environmental prediction models to initiate targeted sensor measurements or to use a new observing strategy. The sensor web concept contrasts with today's data collection techniques and observing system operations concepts where independent measurements are made by remote sensing and in situ platforms that do not share, and therefore cannot act upon, potentially useful complementary sensor measurement data and platform state information. This presentation describes NASA's view of event-driven and model-driven Sensor Webs and highlights several research and development activities at the Goddard Space Flight Center.

  4. Gas-cell measurements for evaluating longwave-infrared passive-sensor performance

    NASA Astrophysics Data System (ADS)

    Cummings, Alan S.; Combs, Roger J.; Thomas, Mark J.; Curry, Timothy; Kroutil, Robert T.

    2006-10-01

    A longwave-infrared (LWIR) passive-spectrometer performance was evaluated with a short-pathlength gas cell. This cell was accurately positioned between the sensor and a NIST-traceable blackbody radiance source. Cell contents were varied over the Beer's Law absorbance range from the limit of detection to saturation for the gas analytes of sulfur hexafluoride and hexafluoroethane. The spectral impact of saturation on infrared absorbance was demonstrated for the passive sensor configuration. The gas-cell contents for all concentration-pathlength products was monitored with an active traditional-laboratory Fourier Transform Infrared (FTIR) spectrometer and was verified by comparison with the established PNNL/DOE vapor-phase infrared (IR) spectral database. For the passive FTIR measurements, the blackbody source employed a range of background temperatures from 5 °C to 50 °C. The passive measurements without the presence of a gas cell permitted a determination of the noise equivalent spectral noise (NESR) for each set of passive gas-cell measurements. In addition, the no-cell condition allowed the evaluation of the effect of gas cell window materials of low density poly(ethylene), potassium chloride, potassium bromide, and zinc selenide. The components of gas cell, different window materials, temperature differentials, and absorbances of target-analyte gases supplied the means of evaluating the LWIR performance of a passive FTIR spectrometer. The various LWIR-passive measurements were found to simulate those often encountered in open-air scenarios important to both industrial and environmental monitoring applications.

  5. Four decades of microwave satellite soil moisture observations: Part 2. Product validation and inter-satellite comparisons

    NASA Astrophysics Data System (ADS)

    Karthikeyan, L.; Pan, Ming; Wanders, Niko; Kumar, D. Nagesh; Wood, Eric F.

    2017-11-01

    Soil moisture is widely recognized as an important land surface variable that provides a deeper knowledge of land-atmosphere interactions and climate change. Space-borne passive and active microwave sensors have become valuable and essential sources of soil moisture observations at global scales. Over the past four decades, several active and passive microwave sensors have been deployed, along with the recent launch of two fully dedicated missions (SMOS and SMAP). Signifying the four decades of microwave remote sensing of soil moisture, this Part 2 of the two-part review series aims to present an overview of how our knowledge in this field has improved in terms of the design of sensors and their accuracy for retrieving soil moisture. The first part discusses the developments made in active and passive microwave soil moisture retrieval algorithms. We assess the evolution of the products of various sensors over the last four decades, in terms of daily coverage, temporal performance, and spatial performance, by comparing the products of eight passive sensors (SMMR, SSM/I, TMI, AMSR-E, WindSAT, AMSR2, SMOS and SMAP), two active sensors (ERS-Scatterometer, MetOp-ASCAT), and one active/passive merged soil moisture product (ESA-CCI combined product) with the International Soil Moisture Network (ISMN) in-situ stations and the Variable Infiltration Capacity (VIC) land surface model simulations over the Contiguous United States (CONUS). In the process, the regional impacts of vegetation conditions on the spatial and temporal performance of soil moisture products are investigated. We also carried out inter-satellite comparisons to study the roles of sensor design and algorithms on the retrieval accuracy. We find that substantial improvements have been made over recent years in this field in terms of daily coverage, retrieval accuracy, and temporal dynamics. We conclude that the microwave soil moisture products have significantly evolved in the last four decades and will continue to make key contributions to the progress of hydro-meteorological and climate sciences.

  6. A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots.

    PubMed

    Pan, Jiahong; Zheng, Zengyao; Yang, Jianying; Wu, Yaoyu; Lu, Fushen; Chen, Yaowen; Gao, Wenhua

    2017-05-01

    A novel fluorescence sensor based on controlling the surface passivation degree of carbon quantum dots (CQDs) was developed for glutathione (GSH) detection. First, we found that the fluorescence intensity of the CQDs which was obtained by directly pyrolyzing citric acid would increased largely after the surface passivation treatment by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). In the light of this phenomenon, we designed a simple, rapid and selective fluorescence sensor based on the surface passivated CQDs. A certain and excess amount of EDC were mixed with GSH, part of EDC would form a stable complex with GSH owing to the exposed sulfhydryl group of GSH. As the synthesized CQDs were added into the above mixture solution, the fluorescence intensity of the (EDC/GSH)/CQDs mixture solution could be directly related to the amount of GSH. Compared to other fluorescence analytical methods, the fluorescence sensor we design is neither the traditional fluorescent "turn on" probes nor "turn off" probes. It is a new fluorescence analytical method that target object indirectly control the surface passivation degree of CQDs so that it can realize the detection of the target object. Moreover, the proposed method manifested great advantages including short analysis time, low cost and ease of operation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Development of Photoacoustic Sensing Platforms at the US Army Research Laboratory

    DTIC Science & Technology

    2016-09-01

    RDX and TNT explosives with carbon dioxide laser. J Appl Spectrosc. 2006;73(1):123–129. 45. Petzold A, Niessner R. Photoacoustic soot sensor for in...Development of Photoacoustic Sensing Platforms at the US Army Research Laboratory by Ellen L Holthoff and Paul M Pellegrino Sensors and Electron Devices...NOTES 14. ABSTRACT Traditionally, chemical sensing platforms have been hampered by the opposing concerns of increasing sensor capability while

  8. Recovering Signals from Optical Fiber Interferometric Sensors

    DTIC Science & Technology

    1991-06-01

    GROUP SUB* GROUp Demodulation-, optical fiber, fi ber optic, sensors, passive -homodyne demodulation, symmetric demodul -ation, asymmetric demodulation...interferomeler without feedback control or modulation ofl th laser itself and without requiring the use of electronics withi -n the interferometer. One of...the 3x3 coupler permits Passive Homodyne Demodulation -of the phase-modulated signals provided by the interferometcr without feedback control or

  9. KENNEDY SPACE CENTER, FLA. - Researchers conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - Researchers conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  10. High Resolution UAV-based Passive Microwave L-band Imaging of Soil Moisture

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Stachura, M.; Elston, J.; McIntyre, E. M.

    2013-12-01

    Due to long electrical wavelengths and aperture size limitations the scaling of passive microwave remote sensing of soil moisture from spaceborne low-resolution applications to high resolution applications suitable for precision agriculture requires use of low flying aerial vehicles. This presentation summarizes a project to develop a commercial Unmanned Aerial Vehicle (UAV) hosting a precision microwave radiometer for mapping of soil moisture in high-value shallow root-zone crops. The project is based on the use of the Tempest electric-powered UAV and a compact digital L-band (1400-1427 MHz) passive microwave radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated UAV/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a lobe-correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAV above the ground while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer incorporates digital sampling and radio frequency interference mitigation along with infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction. This NASA-sponsored project is being developed both for commercial application in cropland water management, L-band satellite validation, and estuarian plume studies.

  11. EPMOSt: An Energy-Efficient Passive Monitoring System for Wireless Sensor Networks

    PubMed Central

    Garcia, Fernando P.; Andrade, Rossana M. C.; Oliveira, Carina T.; de Souza, José Neuman

    2014-01-01

    Monitoring systems are important for debugging and analyzing Wireless Sensor Networks (WSN). In passive monitoring, a monitoring network needs to be deployed in addition to the network to be monitored, named the target network. The monitoring network captures and analyzes packets transmitted by the target network. An energy-efficient passive monitoring system is necessary when we need to monitor a WSN in a real scenario because the lifetime of the monitoring network is extended and, consequently, the target network benefits from the monitoring for a longer time. In this work, we have identified, analyzed and compared the main passive monitoring systems proposed for WSN. During our research, we did not identify any passive monitoring system for WSN that aims to reduce the energy consumption of the monitoring network. Therefore, we propose an Energy-efficient Passive MOnitoring SysTem for WSN named EPMOSt that provides monitoring information using a Simple Network Management Protocol (SNMP) agent. Thus, any management tool that supports the SNMP protocol can be integrated with this monitoring system. Experiments with real sensors were performed in several scenarios. The results obtained show the energy efficiency of the proposed monitoring system and the viability of using it to monitor WSN in real scenarios. PMID:24949639

  12. A review of the development of optical countermeasures

    NASA Astrophysics Data System (ADS)

    Titterton, David H.

    2004-12-01

    Optical countermeasures have been used for several millenia to provide a defensive capability capability. The fundamental approach is to use an intense optical source to dazzle a sensor or distract an operator or target tracking system causing a weapon to miss its intended target. The development of the laser has provided a stimulus for anumber of soft-kill weapon systems used to enhance platform survivability and anti-air missile applications; in this case the laser may cause dazzle, or if the beam is sufficiently intense it may cause damage. Laser technology is also crucial for an aspect of directed energy weapons. The various aspects of optical countermeasures are considered in this paper, including defeat mechanisms of active and passive techniques. The review includes a historical perspective through to prospects for the future.

  13. Passive Wireless SAW Sensors for IVHM

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Perey, Daniel F.; Atkinson, Gary M.; Barclay, Rebecca O.

    2008-01-01

    NASA aeronautical programs require integrated vehicle health monitoring (IVHM) to ensure the safety of the crew and the vehicles. Future IVHM sensors need to be small, light weight, inexpensive, and wireless. Surface acoustic wave (SAW) technology meets all of these constraints. In addition it operates in harsh environments and over wide temperature ranges, and it is inherently radiation hardened. This paper presents a survey of research opportunities for universities and industry to develop new sensors that address anticipated IVHM needs for aerospace vehicles. Potential applications of passive wireless SAW sensors from ground testing to high altitude aircraft operations are presented, along with some of the challenges and issues of the technology.

  14. Design, Fabrication, and Implementation of a Wireless, Passive Implantable Pressure Sensor Based on Magnetic Higher-Order Harmonic Fields

    PubMed Central

    Tan, Ee Lim; DeRouin, Andrew J.; Pereles, Brandon D.; Ong, Keat Ghee

    2011-01-01

    A passive and wireless sensor was developed for monitoring pressure in vivo. Structurally, the pressure sensor, referred to as the magneto-harmonic pressure sensor, is an airtight chamber sealed with an elastic pressure membrane. A strip of magnetically-soft material is attached to the bottom of the chamber and a permanent magnet strip is embedded inside the membrane. Under the excitation of an externally applied AC magnetic field, the magnetically-soft strip produces a higher-order magnetic signature that can be remotely detected with an external receiving coil. As ambient pressure varies, the pressure membrane deflects, altering the separation distance between the magnetically-soft strip and the permanent magnet. This shifts the higher-order harmonic signal, allowing for detection of pressure change as a function of harmonic shifting. The wireless, passive nature of this sensor technology allows for continuous long-term pressure monitoring, particularly useful for biomedical applications such as monitoring pressure in aneurysm sac and sphincter of Oddi. In addition to demonstrating its pressure sensing capability, an animal model was used to investigate the efficacy and feasibility of the pressure sensor in a biological environment. PMID:25585564

  15. Four Decades of Microwave Satellite Soil Moisture Observations: Product validation and inter-satellite comparisons

    NASA Astrophysics Data System (ADS)

    Lanka, K.; Pan, M.; Wanders, N.; Kumar, D. N.; Wood, E. F.

    2017-12-01

    The satellite based passive and active microwave sensors enhanced our ability to retrieve soil moisture at global scales. It has been almost four decades since the first passive microwave satellite sensor was launched in 1978. Since then soil moisture has gained considerable attention in hydro-meteorological, climate, and agricultural research resulting in the deployment of two dedicated missions in the last decade, SMOS and SMAP. Signifying the four decades of microwave remote sensing of soil moisture, this work aims to present an overview of how our knowledge in this field has improved in terms of the design of sensors and their accuracy of retrieving soil moisture. We considered daily coverage, temporal performance, and spatial performance to assess the accuracy of products corresponding to eight passive sensors (SMMR, SSM/I, TMI, AMSR-E, WindSAT, AMSR2, SMOS and SMAP), two active sensors (ERS-Scatterometer, MetOp-ASCAT), and one active/passive merged soil moisture product (ESA-CCI combined product), using 1058 ISMN in-situ stations and the VIC LSM soil moisture simulations (VICSM) over the CONUS. Our analysis indicated that the daily coverage has increased from 30 % during 1980s to 85 % (during non-winter months) with the launch of dedicated soil moisture missions SMOS and SMAP. The temporal validation of passive and active soil moisture products with the ISMN data place the range of median RMSE as 0.06-0.10 m3/m3 and median correlation as 0.20-0.68. When TMI, AMSR-E and WindSAT are evaluated, the AMSR-E sensor is found to have produced the brightness temperatures with better quality, given that these sensors are paired with same retrieval algorithm (LPRM). The ASCAT product shows a significant improvement during the temporal validation of retrievals compared to its predecessor ERS, thanks to enhanced sensor configuration. The SMAP mission, through its improved sensor design and RFI handling, shows a high retrieval accuracy under all-topography conditions. Although the retrievals from the SMOS mission are affected by issues such as RFI, the accuracy is still comparable to or better than that of AMSR-E and ASCAT sensors. All soil moisture products have indicated better agreement with the ISMN data than the VICSM, which indicate that they produce soil moisture with better accuracy than the VICSM over the CONUS.

  16. Census Cities Project and atlas of urban and regional change

    NASA Technical Reports Server (NTRS)

    Wray, J. R.

    1970-01-01

    The research design and imagery utilization for urban applications of remote sensing are reviewed, including the combined use of sensor and census data and aircraft and spacecraft sensor platforms. The related purposes of the Census Cities Project are elucidated: (1) to assess the role of remote sensors on high altitude platforms for comparative study of urban areas; (2) to detect changes in selected U.S. urban areas between the 1970 census and the time of launching of an earth-orbiting sensor platform prior to next census; (3) to test the satellite sensor platform utility to monitor urban change and serve as a control for sensor image interpretation; (4) to design an information system for incorporating graphic sensor data with census-type data gathered by traditional techniques; (5) to identify and to design user-oriented end-products or information services; and (6) to ascertain what organizational capability would be needed to provide such services on a continuing basis. A need to develop not only a spatial data information system, but also a methodology for detecting and interpreting change is implied.

  17. An IoT Reader for Wireless Passive Electromagnetic Sensors.

    PubMed

    Galindo-Romera, Gabriel; Carnerero-Cano, Javier; Martínez-Martínez, José Juan; Herraiz-Martínez, Francisco Javier

    2017-03-28

    In the last years, many passive electromagnetic sensors have been reported. Some of these sensors are used for measuring harmful substances. Moreover, the response of these sensors is usually obtained with laboratory equipment. This approach highly increases the total cost and complexity of the sensing system. In this work, a novel low-cost and portable Internet-of-Things (IoT) reader for passive wireless electromagnetic sensors is proposed. The reader is used to interrogate the sensors within a short-range wireless link avoiding the direct contact with the substances under test. The IoT functionalities of the reader allows remote sensing from computers and handheld devices. For that purpose, the proposed design is based on four functional layers: the radiating layer, the RF interface, the IoT mini-computer and the power unit. In this paper a demonstrator of the proposed reader is designed and manufactured. The demonstrator shows, through the remote measurement of different substances, that the proposed system can estimate the dielectric permittivity. It has been demonstrated that a linear approximation with a small error can be extracted from the reader measurements. It is remarkable that the proposed reader can be used with other type of electromagnetic sensors, which transduce the magnitude variations in the frequency domain.

  18. An IoT Reader for Wireless Passive Electromagnetic Sensors

    PubMed Central

    Galindo-Romera, Gabriel; Carnerero-Cano, Javier; Martínez-Martínez, José Juan; Herraiz-Martínez, Francisco Javier

    2017-01-01

    In the last years, many passive electromagnetic sensors have been reported. Some of these sensors are used for measuring harmful substances. Moreover, the response of these sensors is usually obtained with laboratory equipment. This approach highly increases the total cost and complexity of the sensing system. In this work, a novel low-cost and portable Internet-of-Things (IoT) reader for passive wireless electromagnetic sensors is proposed. The reader is used to interrogate the sensors within a short-range wireless link avoiding the direct contact with the substances under test. The IoT functionalities of the reader allows remote sensing from computers and handheld devices. For that purpose, the proposed design is based on four functional layers: the radiating layer, the RF interface, the IoT mini-computer and the power unit. In this paper a demonstrator of the proposed reader is designed and manufactured. The demonstrator shows, through the remote measurement of different substances, that the proposed system can estimate the dielectric permittivity. It has been demonstrated that a linear approximation with a small error can be extracted from the reader measurements. It is remarkable that the proposed reader can be used with other type of electromagnetic sensors, which transduce the magnitude variations in the frequency domain. PMID:28350356

  19. Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological signals.

    PubMed

    Cai, Feng; Yi, Changrui; Liu, Shichang; Wang, Yan; Liu, Lacheng; Liu, Xiaoqing; Xu, Xuming; Wang, Li

    2016-03-15

    Flexible sensors have attracted more and more attention as a fundamental part of anthropomorphic robot research, medical diagnosis and physical health monitoring. Here, we constructed an ultrasensitive and passive flexible sensor with the advantages of low cost, lightness and wearability, electric safety and reliability. The fundamental mechanism of the sensor is based on triboelectric effect inducing electrostatic charges on the surfaces between two different materials. Just like a plate capacitor, current will be generated while the distance or size of the parallel capacitors changes caused by the small mechanical disturbance upon it and therefore the output current/voltage will be produced. Typically, the passive sensor unambiguously monitors muscle motions including hand motion from stretch-clench-stretch, mouth motion from open-bite-open, blink and respiration. Moreover, this sensor records the details of the consecutive phases in a cardiac cycle of the apex cardiogram, and identify the peaks including percussion wave, tidal wave and diastolic wave of the radial pulse wave. To record subtle human physiological signals including radial pulsilogram and apex cardiogram with excellent signal/noise ratio, stability and reproducibility, the sensor shows great potential in the applications of medical diagnosis and daily health monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Passive and Self-Powered Autonomous Sensors for Remote Measurements

    PubMed Central

    Sardini, Emilio; Serpelloni, Mauro

    2009-01-01

    Autonomous sensors play a very important role in the environmental, structural, and medical fields. The use of this kind of systems can be expanded for several applications, for example in implantable devices inside the human body where it is impossible to use wires. Furthermore, they enable measurements in harsh or hermetic environments, such as under extreme heat, cold, humidity or corrosive conditions. The use of batteries as a power supply for these devices represents one solution, but the size, and sometimes the cost and unwanted maintenance burdens of replacement are important drawbacks. In this paper passive and self-powered autonomous sensors for harsh or hermetical environments without batteries are discussed. Their general architectures are presented. Sensing strategies, communication techniques and power management are analyzed. Then, general building blocks of an autonomous sensor are presented and the design guidelines that such a system must follow are given. Furthermore, this paper reports different proposed applications of autonomous sensors applied in harsh or hermetic environments: two examples of passive autonomous sensors that use telemetric communication are proposed, the first one for humidity measurements and the second for high temperatures. Other examples of self-powered autonomous sensors that use a power harvesting system from electromagnetic fields are proposed for temperature measurements and for airflow speeds. PMID:22399949

  1. Passive and self-powered autonomous sensors for remote measurements.

    PubMed

    Sardini, Emilio; Serpelloni, Mauro

    2009-01-01

    Autonomous sensors play a very important role in the environmental, structural, and medical fields. The use of this kind of systems can be expanded for several applications, for example in implantable devices inside the human body where it is impossible to use wires. Furthermore, they enable measurements in harsh or hermetic environments, such as under extreme heat, cold, humidity or corrosive conditions. The use of batteries as a power supply for these devices represents one solution, but the size, and sometimes the cost and unwanted maintenance burdens of replacement are important drawbacks. In this paper passive and self-powered autonomous sensors for harsh or hermetical environments without batteries are discussed. Their general architectures are presented. Sensing strategies, communication techniques and power management are analyzed. Then, general building blocks of an autonomous sensor are presented and the design guidelines that such a system must follow are given. Furthermore, this paper reports different proposed applications of autonomous sensors applied in harsh or hermetic environments: two examples of passive autonomous sensors that use telemetric communication are proposed, the first one for humidity measurements and the second for high temperatures. Other examples of self-powered autonomous sensors that use a power harvesting system from electromagnetic fields are proposed for temperature measurements and for airflow speeds.

  2. Laboratory evaluation of two passive alcohol sensor devices

    DOT National Transportation Integrated Search

    1988-12-01

    Passive alcohol sensing devices are designed to detect the presence of alcohol in a person's normally-expelled breath; they are "passive" in that one is not required to blow into a mouthpiece as with conventional breath test devices. The National Hig...

  3. Irma 5.1 multisensor signature prediction model

    NASA Astrophysics Data System (ADS)

    Savage, James; Coker, Charles; Thai, Bea; Aboutalib, Omar; Yamaoka, Neil; Kim, Charles

    2005-05-01

    The Irma synthetic signature prediction code is being developed to facilitate the research and development of multisensor systems. Irma was one of the first high resolution Infrared (IR) target and background signature models to be developed for tactical weapon application. Originally developed in 1980 by the Munitions Directorate of the Air Force Research Laboratory (AFRL/MN), the Irma model was used exclusively to generate IR scenes. In 1988, a number of significant upgrades to Irma were initiated including the addition of a laser (or active) channel. This two-channel version was released to the user community in 1990. In 1992, an improved scene generator was incorporated into the Irma model, which supported correlated frame-to-frame imagery. A passive IR/millimeter wave (MMW) code was completed in 1994. This served as the cornerstone for the development of the co-registered active/passive IR/MMW model, Irma 4.0. In 2000, Irma version 5.0 was released which encompassed several upgrades to both the physical models and software. Circular polarization was added to the passive channel and the doppler capability was added to the active MMW channel. In 2002, the multibounce technique was added to the Irma passive channel. In the ladar channel, a user-friendly Ladar Sensor Assistant (LSA) was incorporated which provides capability and flexibility for sensor modeling. Irma 5.0 runs on several platforms including Windows, Linux, Solaris, and SGI Irix. Since 2000, additional capabilities and enhancements have been added to the ladar channel including polarization and speckle effect. Work is still ongoing to add time-jittering model to the ladar channel. A new user interface has been introduced to aid users in the mechanism of scene generation and running the Irma code. The user interface provides a canvas where a user can add and remove objects using mouse clicks to construct a scene. The scene can then be visualized to find the desired sensor position. The synthetic ladar signatures have been validated twice and underwent a third validation test near the end of 04. These capabilities will be integrated into the next release, Irma 5.1, scheduled for completion in the summer of FY05. Irma is currently being used to support a number of civilian and military applications. The Irma user base includes over 130 agencies within the Air Force, Army, Navy, DARPA, NASA, Department of Transportation, academia, and industry. The purpose of this paper is to report the progress of the Irma 5.1 development effort.

  4. Remote sensing using airships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavan, C.K. Jr.

    1996-10-01

    Loral Defense Systems-Akron (LDSA) has developed a laser-based mine detection system in response to the US Navy`s requirements for detecting, localizing and classifying mines in deep water shipping channels. This sensor system was tested recently at the Navy`s David Taylor Research Center (DTRC) at Bethesda, MD and at the US Army`s Camp Perry near Lake Erie. The testing at Camp Perry involved installation of the sensor system on the Goodyear Tim & Rubber Company`s airship {open_quotes}Spirit of Akron{close_quotes} and the conduct of control flight test experiments over Lake Erie. Resultant imagery has been analyzed in terms of water optical properties.more » Further tests are planned in a multispectral mode incorporating both active illumination and passive detection. The system can be extended to the detection of Unexploded Ordnance (UXO) in government test ranges and to detection of other devices both buried and at the surface. The utility of the airship (blimp) makes the approach practical due to long endurance, wide speed range and platform flexibility. 14 figs.« less

  5. Superior Self-Powered Room-Temperature Chemical Sensing with Light-Activated Inorganic Halides Perovskites.

    PubMed

    Chen, Hongjun; Zhang, Meng; Bo, Renheng; Barugkin, Chog; Zheng, Jianghui; Ma, Qingshan; Huang, Shujuan; Ho-Baillie, Anita W Y; Catchpole, Kylie R; Tricoli, Antonio

    2018-02-01

    Hybrid halide perovskite is one of the promising light absorber and is intensively investigated for many optoelectronic applications. Here, the first prototype of a self-powered inorganic halides perovskite for chemical gas sensing at room temperature under visible-light irradiation is presented. These devices consist of porous network of CsPbBr 3 (CPB) and can generate an open-circuit voltage of 0.87 V under visible-light irradiation, which can be used to detect various concentrations of O 2 and parts per million concentrations of medically relevant volatile organic compounds such as acetone and ethanol with very quick response and recovery time. It is observed that O 2 gas can passivate the surface trap sites in CPB and the ambipolar charge transport in the perovskite layer results in a distinct sensing mechanism compared with established semiconductors with symmetric electrical response to both oxidizing and reducing gases. The platform of CPB-based gas sensor provides new insights for the emerging area of wearable sensors for personalized and preventive medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Overview of the 2015 Algodones Sand Dunes field campaign to support sensor intercalibration

    NASA Astrophysics Data System (ADS)

    McCorkel, Joel; Bachmann, Charles M.; Coburn, Craig; Gerace, Aaron; Leigh, Larry; Czapla-Myers, Jeff; Helder, Dennis; Cook, Bruce

    2018-01-01

    Several sites from around the world are being used operationally and are suitable for vicarious calibration of space-borne imaging platforms. However, due to the proximity of these sites (e.g., Libya 4), a rigorous characterization of the landscape is not feasible, limiting their utility for sensor intercalibration efforts. Due to its accessibility and similarities to Libya 4, the Algodones Sand Dunes System in California, USA, was identified as a potentially attractive intercalibration site for space-borne, reflective instruments such as Landsat. In March 2015, a 4-day field campaign was conducted to develop an initial characterization of Algodones with a primary goal of assessing its intercalibration potential. Five organizations from the US and Canada collaborated to collect both active and passive airborne image data, spatial and temporal measurements of spectral bidirectional reflectance distribution function, and in-situ sand samples from several locations across the Algodones system. The collection activities conducted to support the campaign goal is summarized, including a summary of all instrumentation used, the data collected, and the experiments performed in an effort to characterize the Algodones site.

  7. Passive tracking scheme for a single stationary observer

    NASA Astrophysics Data System (ADS)

    Chan, Y. T.; Rea, Terry

    2001-08-01

    While there are many techniques for Bearings-Only Tracking (BOT) in the ocean environment, they do not apply directly to the land situation. Generally, for tactical reasons, the land observer platform is stationary; but, it has two sensors, visual and infrared, for measuring bearings and a laser range finder (LRF) for measuring range. There is a requirement to develop a new BOT data fusion scheme that fuses the two sets of bearing readings, and together with a single LRF measurement, produces a unique track. This paper first develops a parameterized solution for the target speeds, prior to the occurrence of the LRF measurement, when the problem is unobservable. At, and after, the LRF measurement, a BOT formulated as a least squares (LS) estimator then produces a unique LS estimate of the target states. Bearing readings from the other sensor serve as instrumental variables in a data fusion setting to eliminate the bias in the BOT estimator. The result is recursive, unbiased and decentralized data fusion scheme. Results from two simulation experiments have corroborated the theoretical development and show that the scheme is optimal.

  8. Swath width study. A simulation assessment of costs and benefits of a sensor system for agricultural application

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Satellites provide an excellent platform from which to observe crops on the scale and frequency required to provide accurate crop production estimates on a worldwide basis. Multispectral imaging sensors aboard these platforms are capable of providing data from which to derive acreage and production estimates. The issue of sensor swath width was examined. The quantitative trade trade necessary to resolve the combined issue of sensor swath width, number of platforms, and their orbits was generated and are included. Problems with different swath width sensors were analyzed and an assessment of system trade-offs of swath width versus number of satellites was made for achieving Global Crop Production Forecasting.

  9. NASA NDE Applications for Mobile MEMS Devices and Sensors

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.; Barclay, R. O.

    2008-01-01

    NASA would like new devices and sensors for performing nondestructive evaluation (NDE) of aerospace vehicles. These devices must be small in size/volume, mass, and power consumption. The devices must be autonomous and mobile so they can access the internal structures of aircraft and spacecraft and adequately monitor the structural health of these craft. The platforms must be mobile in order to transport NDE sensors for evaluating structural integrity and determining whether further investigations will be required. Microelectromechanical systems (MEMS) technology is crucial to the development of the mobile platforms and sensor systems. This paper presents NASA s needs for micro mobile platforms and MEMS sensors that will enable NDE to be performed on aerospace vehicles.

  10. Mobile Sensor Technologies Being Developed

    NASA Technical Reports Server (NTRS)

    Greer, Lawrence C.; Oberle, Lawrence G.

    2003-01-01

    The NASA Glenn Research Center is developing small mobile platforms for sensor placement, as well as methods for communicating between roving platforms and a central command location. The first part of this project is to use commercially available equipment to miniaturize an existing sensor platform. We developed a five-circuit-board suite, with an average board size of 1.5 by 3 cm. Shown in the preceding photograph, this suite provides all motor control, direction finding, and communications capabilities for a 27- by 21- by 40-mm prototype mobile platform. The second part of the project is to provide communications between mobile platforms, and also between multiple platforms and a central command location. This is accomplished with a low-power network labeled "SPAN," Sensor Platform Area Network, a local area network made up of proximity elements. In practice, these proximity elements are composed of fixed- and mobile-sensor-laden science packages that communicate to each other via radiofrequency links. Data in the network will be shared by a central command location that will pass information into and out of the network through its access to a backbone element. The result will be a protocol portable to general purpose microcontrollers satisfying a host of sensor networking tasks. This network will enter the gap somewhere between television remotes and Bluetooth but, unlike 802.15.4, will not specify a physical layer, thus allowing for many data rates over optical, acoustical, radiofrequency, hardwire, or other media. Since the protocol will exist as portable C-code, developers may be able to embed it in a host of microcontrollers from commercial to space grade and, of course, to design it into ASICs. Unlike in 802.15.4, the nodes will relate to each other as peers. A demonstration of this protocol using the two test bed platforms was recently held. Two NASA modified, commercially available, mobile platforms communicated and shared data with each other and a central command location. Web-based control and interrogation of similar mobile sensor platforms have also been demonstrated. Expected applications of this technology include robotic planetary exploration, astronaut-to-equipment communication, and remote aerospace engine inspections.

  11. A multifrequency evaluation of active and passive microwave sensors for oil spill detection and assessment

    NASA Technical Reports Server (NTRS)

    Fenner, R. G.; Reid, S. C.; Solie, C. H.

    1980-01-01

    An evaluation is given of how active and passive microwave sensors can best be used in oil spill detection and assessment. Radar backscatter curves taken over oil spills are presented and their effect on synthetic aperture radar (SAR) imagery are discussed. Plots of microwave radiometric brightness variations over oil spills are presented and discussed. Recommendations as to how to select the best combination of frequency, viewing angle, and sensor type for evaluation of various aspects of oil spills are also discussed.

  12. Use of Pattern Classification Algorithms to Interpret Passive and Active Data Streams from a Walking-Speed Robotic Sensor Platform

    NASA Astrophysics Data System (ADS)

    Dieckman, Eric Allen

    In order to perform useful tasks for us, robots must have the ability to notice, recognize, and respond to objects and events in their environment. This requires the acquisition and synthesis of information from a variety of sensors. Here we investigate the performance of a number of sensor modalities in an unstructured outdoor environment, including the Microsoft Kinect, thermal infrared camera, and coffee can radar. Special attention is given to acoustic echolocation measurements of approaching vehicles, where an acoustic parametric array propagates an audible signal to the oncoming target and the Kinect microphone array records the reflected backscattered signal. Although useful information about the target is hidden inside the noisy time domain measurements, the Dynamic Wavelet Fingerprint process (DWFP) is used to create a time-frequency representation of the data. A small-dimensional feature vector is created for each measurement using an intelligent feature selection process for use in statistical pattern classification routines. Using our experimentally measured data from real vehicles at 50 m, this process is able to correctly classify vehicles into one of five classes with 94% accuracy. Fully three-dimensional simulations allow us to study the nonlinear beam propagation and interaction with real-world targets to improve classification results.

  13. Radiative transfer model for aerosols at infrared wavelengths for passive remote sensing applications: revisited.

    PubMed

    Ben-David, Avishai; Davidson, Charles E; Embury, Janon F

    2008-11-01

    We introduced a two-dimensional radiative transfer model for aerosols in the thermal infrared [Appl. Opt.45, 6860-6875 (2006)APOPAI0003-693510.1364/AO.45.006860]. In that paper we superimposed two orthogonal plane-parallel layers to compute the radiance due to a two-dimensional (2D) rectangular aerosol cloud. In this paper we revisit the model and correct an error in the interaction of the two layers. We derive new expressions relating to the signal content of the radiance from an aerosol cloud based on the concept of five directional thermal contrasts: four for the 2D diffuse radiance and one for direct radiance along the line of sight. The new expressions give additional insight on the radiative transfer processes within the cloud. Simulations for Bacillus subtilis var. niger (BG) bioaerosol and dustlike kaolin aerosol clouds are compared and contrasted for two geometries: an airborne sensor looking down and a ground-based sensor looking up. Simulation results suggest that aerosol cloud detection from an airborne platform may be more challenging than for a ground-based sensor and that the detection of an aerosol cloud in emission mode (negative direct thermal contrast) is not the same as the detection of an aerosol cloud in absorption mode (positive direct thermal contrast).

  14. Recent advances in the development of a self-powered wireless sensor network for structural health prognosis

    NASA Astrophysics Data System (ADS)

    Godinez-Azcuaga, Valery F.; Inman, Daniel J.; Ziehl, Paul H.; Giurgiutiu, Victor; Nanni, Antonio

    2011-04-01

    This paper presents the most recent advances in the development of a self powered wireless sensor network for steel and concrete bridges monitoring and prognosis. This five-year cross-disciplinary project includes development and deployment of a 4-channel acoustic emission wireless node powered by structural vibration and wind energy harvesting modules. In order to accomplish this ambitious goal, the project includes a series of tasks that encompassed a variety of developments such as ultra low power AE systems, energy harvester hardware and especial sensors for passive and active acoustic wave detection. Key studies on acoustic emission produced by corrosion on reinforced concrete and by crack propagation on steel components to develop diagnosis tools and models for bridge prognosis are also a part of the project activities. It is important to mention that the impact of this project extends beyond the area of bridge health monitoring. Several wireless prototype nodes have been already requested for applications on offshore oil platforms, composite ships, combat deployable bridges and wind turbines. This project was awarded to a joint venture formed by Mistras Group Inc, Virginia Tech, University of South Carolina and University of Miami and is sponsored through the NIST-TIP Grant #70NANB9H007.

  15. Carbon dots-based fluorescent probe for "off-on" sensing of Hg(II) and I⁻.

    PubMed

    He, Jiangling; Zhang, Haoran; Zou, Jinliang; Liu, Yingliang; Zhuang, Jianle; Xiao, Yong; Lei, Bingfu

    2016-05-15

    Herein, we report a simple, one-step reflux method for synthesis of photoluminescent carbon dots (CDs) using citric acid as the carbon source and diethylenetriamine (DETA) as the surface passivation reagent along with a high quantum yield (82.40%), the fluorescence intensity of the CDs was found to be effectively quenched by Hg(II) ions. Upon addition of I(-) to the CDs/Hg(II) complex dispersion, the fluorescence intensity of the CDs was significantly recovered. Furthermore, we developed an "off-on" fluorescence assay for the detection of I(-) using CDs/Hg(II) as a fluorescence probe. This probe enables the selective detection of Hg(II) with a linear range of 0-80 μM and a limit of detection is 0.201 µM and a limit of detection about I(-) is 0.234 µM with a linear range of 0-70 μM. Most importantly, the sensors can be successfully applied to the determination of Hg(II) and I(-) in real lake water and urine of cattles, the "off-on" sensor demonstrates high selectivity, repeatability, stability, which offer this CDs-based "off-on" fluorescent sensor a promising platform for environmental and biological sensing applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Application of Artificial Neural Networks to the Development of Improved Multi-Sensor Retrievals of Near-Surface Air Temperature and Humidity Over Ocean

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne

    2012-01-01

    Improved estimates of near-surface air temperature and air humidity are critical to the development of more accurate turbulent surface heat fluxes over the ocean. Recent progress in retrieving these parameters has been made through the application of artificial neural networks (ANN) and the use of multi-sensor passive microwave observations. Details are provided on the development of an improved retrieval algorithm that applies the nonlinear statistical ANN methodology to a set of observations from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A) that are currently available from the NASA AQUA satellite platform. Statistical inversion techniques require an adequate training dataset to properly capture embedded physical relationships. The development of multiple training datasets containing only in-situ observations, only synthetic observations produced using the Community Radiative Transfer Model (CRTM), or a mixture of each is discussed. An intercomparison of results using each training dataset is provided to highlight the relative advantages and disadvantages of each methodology. Particular emphasis will be placed on the development of retrievals in cloudy versus clear-sky conditions. Near-surface air temperature and humidity retrievals using the multi-sensor ANN algorithms are compared to previous linear and non-linear retrieval schemes.

  17. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 μW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  18. A CMOS humidity sensor for passive RFID sensing applications.

    PubMed

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-05-16

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  19. A Magnetic Field Response Recorder: A New Tool for Measurement Acquisition

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2006-01-01

    A magnetic field response recorder was developed to facilitate a measurement acquisition method that uses magnetic fields to power and to interrogate all sensors. Sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic field responses when electrically activated by oscillating magnetic fields. When electrically activated, the sensor's magnetic field response attributes (frequency, amplitude and bandwidth) correspond to the one or more physical states that each sensor measures. The response recorder makes it possible to simultaneously measure two unrelated physical properties using this class of sensors. The recorder is programmable allowing it to analyze one or more response attributes simultaneously. A single sensor design will be used to demonstrate that the acquisition method and the sensor example can be used to for all phases of a component's life from manufacturing to damage that can destroy it.

  20. Submarine Combat Systems Engineering Project Capstone Project

    DTIC Science & Technology

    2011-06-06

    sonar , imaging, Electronic Surveillance (ES) and communications. These sensors passively detect contacts, which emit... passive sensors is included. A Search Detect Identify Track Decide Engage Assess 3 contact can be sensed by the system as either surface or... Detect Track Avoid Search Detect Identify Track Search Engage Assess Detect Track Avoid Search • SONAR •Imagery •TC • SONAR • SONAR •EW •Imagery •ESM

  1. Passive Polarimetric Information Processing for Target Classification

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz; Sadjadi, Farzad

    Polarimetric sensing is an area of active research in a variety of applications. In particular, the use of polarization diversity has been shown to improve performance in automatic target detection and recognition. Within the diverse scope of polarimetric sensing, the field of passive polarimetric sensing is of particular interest. This chapter presents several new methods for gathering in formation using such passive techniques. One method extracts three-dimensional (3D) information and surface properties using one or more sensors. Another method extracts scene-specific algebraic expressions that remain unchanged under polariza tion transformations (such as along the transmission path to the sensor).

  2. Motion analysis report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.

    1985-01-01

    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.

  3. Fabrication process for polymer PLC platforms with V-grooves for passive alignment

    NASA Astrophysics Data System (ADS)

    Park, Suntak; Lee, Jong-Moo; Ahn, Joon Tae; Baek, Yong-Soon

    2005-12-01

    A method for polymer planar lightwave circuit (PLC) devices fabricated on a substrate with V-grooves is developed for passive alignment of an optical fiber to a polymer waveguide. In order to minimize thickness nonuniformity of polymer layers caused by the V-grooves, dry film resist (DFR) is used. The V-grooves are covered with the DFR before the polymer layers are spin-coated on the substrate. The DFR prevents the polymer from being filled in the V-grooves as well as from being spin-coated nonuniformly on the substrate. This process provides a simple and cost-effective fabrication method of polymer PLCs or platforms for passive alignment.

  4. Electrochemical Detection of Platinum(IV) Prodrug Satraplatin in Serum.

    PubMed

    Wu, Yao; Lai, Rebecca Y

    2015-11-03

    We report the design and fabrication of a reagentless and reusable electrochemical sensor for detection of satraplatin (SAT), a platinum(IV) prodrug. The detection strategy is based on the electrocatalytic reaction between the Pt(IV) center of SAT and surface-immobilized methylene blue. We systematically evaluated the effect of passivating diluent chain length on the overall sensor performance. Our results show that the use of a shorter diluent like 2-mercaptoethanol is more advantageous than using a longer and more passivating diluent such as 6-mercapto-1-hexanol. Independent of the use of cyclic voltammetry or chronoamperometry as the sensor interrogation technique, all three sensors, each passivated with a different alkanethiol diluent, have been demonstrated to be sensitive; the limit of detection is in the range of 1-10 μM. They are also highly specific and do not respond to Pt(II) drugs such as cisplatin and carboplatin. More importantly, they are selective enough to be employed directly in 50% serum. This sensing strategy has potential applications in clinical pharmacokinetics studies.

  5. Reconfigurable intelligent sensors for health monitoring: a case study of pulse oximeter sensor.

    PubMed

    Jovanov, E; Milenkovic, A; Basham, S; Clark, D; Kelley, D

    2004-01-01

    Design of low-cost, miniature, lightweight, ultra low-power, intelligent sensors capable of customization and seamless integration into a body area network for health monitoring applications presents one of the most challenging tasks for system designers. To answer this challenge we propose a reconfigurable intelligent sensor platform featuring a low-power microcontroller, a low-power programmable logic device, a communication interface, and a signal conditioning circuit. The proposed solution promises a cost-effective, flexible platform that allows easy customization, run-time reconfiguration, and energy-efficient computation and communication. The development of a common platform for multiple physical sensors and a repository of both software procedures and soft intellectual property cores for hardware acceleration will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of a reconfigurable pulse oximeter sensor.

  6. Multi-function microfluidic platform for sensor integration.

    PubMed

    Fernandes, Ana C; Semenova, Daria; Panjan, Peter; Sesay, Adama M; Gernaey, Krist V; Krühne, Ulrich

    2018-03-06

    The limited availability of metabolite-specific sensors for continuous sampling and monitoring is one of the main bottlenecks contributing to failures in bioprocess development. Furthermore, only a limited number of approaches exist to connect currently available measurement systems with high throughput reactor units. This is especially relevant in the biocatalyst screening and characterization stage of process development. In this work, a strategy for sensor integration in microfluidic platforms is demonstrated, to address the need for rapid, cost-effective and high-throughput screening in bioprocesses. This platform is compatible with different sensor formats by enabling their replacement and was built in order to be highly flexible and thus suitable for a wide range of applications. Moreover, this re-usable platform can easily be connected to analytical equipment, such as HPLC, laboratory scale reactors or other microfluidic chips through the use of standardized fittings. In addition, the developed platform includes a two-sensor system interspersed with a mixing channel, which allows the detection of samples that might be outside the first sensor's range of detection, through dilution of the sample solution up to 10 times. In order to highlight the features of the proposed platform, inline monitoring of glucose levels is presented and discussed. Glucose was chosen due to its importance in biotechnology as a relevant substrate. The platform demonstrated continuous measurement of substrate solutions for up to 12 h. Furthermore, the influence of the fluid velocity on substrate diffusion was observed, indicating the need for in-flow calibration to achieve a good quantitative output. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Support for the Harvard University Water Vapor and Total Water Instruments for the 2004 NASA WB57 Middle Latitude Cirrus Experiment

    NASA Technical Reports Server (NTRS)

    Anderson, James G.

    2005-01-01

    In order to improve our understanding of the role clouds play in the climate system, NASA is investing considerable effort in characterizing clouds with instruments ranging from passive remote sensors on board the EOS platforms, to the forthcoming active remote sensors on Cloudsat and Calipso. These missions, when taken together, have the capacity to advance our understanding of the coupling between various components of the hydrologic cycle and the atmospheric circulation, and hold the additional potential of leading to significant improvements in the characterization of cloud feedbacks in global models. This is especially true considering that several of these platforms will be flown in an identical orbit within several minutes of one another-a constellation of satellites known as the A-Train. The algorithms that are being implemented and developed to convert these new data streams from radiance and reflectivity measurements into geophysical parameters invariably rely on some set of simplifymg assumptions and empirical constants. Uncertainties in these relationships lead to poorly understood random and systematic errors in the retrieved properties. This lack of understanding introduces ambiguity in interpreting the data and in using the global data sets for their intended purposes. In light of this, a series of flights with the W57F was proposed to address certain specific issues related to the basic properties of mid latitude cirrus clouds: the NASA WE357 Middle Latitude Cirrus Experiment ("MidCiX"). The science questions addressed are: 1) Can cloud property retrieval algorithms developed for A-Train active and passive remote sensing measurements accurately characterize the microphysical properties of synoptic and convectively generated cirrus cloud systems? 2) What are the relationships between the cirrus particle mass, projected area, and particle size spectrum in various genre of cirrus clouds? 3) Does the present compliment of state of the art in situ cloud probes provide the level of precision and accuracy needed to develop and validate algorithms and to contribute to our understanding of the characteristics and microphysical processes operating in cirrus clouds?

  8. Wireless implantable passive strain sensor: design, fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Umbrecht, F.; Wägli, P.; Dechand, S.; Gattiker, F.; Neuenschwander, J.; Sennhauser, U.; Hierold, Ch

    2010-08-01

    This work presents a new passive sensor concept for monitoring the deformation of orthopedic implants. The novel sensing principle of the WIPSS (wireless implantable passive strain sensor) is based on a hydro-mechanical amplification effect. The WIPSS is entirely made from biocompatible PMMA and consists of a microchannel attached to a reservoir, which is filled with an incompressible fluid. As the reservoir is exposed to strain, its volume changes and consequently the fill level inside the microchannel varies. The wireless detection of the microchannel's strain-dependent fill level is based on ultrasound. The WIPSS' sensing principle is proved by finite-element simulations and the reservoir's design is optimized toward maximum volume change, in order to achieve high sensitivity. A fabrication process for WIPSS sensor devices entirely made from PMMA is presented. The obtained measurement results confirmed the sensor's functionality and showed very good agreement with the obtained results of the conducted FE simulations regarding the sensor's sensitivity. A strain resolution of 1.7 ± 0.2 × 10-5 was achieved. Further, the determination of the cross-sensitivity to temperature and strains applied out of the sensing direction is presented. The response to dynamic inputs (0.1-5 Hz) has been measured and showed decreasing sensor output with increasing frequency. Test structures of the sensor device allow the application of a signal bandwidth up to 1 Hz. Therefore, the proposed sensor concept of the WIPSS presents a promising new sensor system for static in vivo strain monitoring of orthopedic implants. In combination with the developed ultrasound-based read-out method, this new sensor system offers the potential of wireless sensor read-out with medical ultrasound scanners, which are commercially available.

  9. Passive dual spin misalignment compensators. [gyrostabilized device

    NASA Technical Reports Server (NTRS)

    Donohue, J. H.; Zimmerman, B. G. (Inventor)

    1974-01-01

    A combination dual-spin gyroscopically stabilized device is described having a spinning rotor and a non-spinning platform. Two substantially lossless mechanical resonators, resonant at the spin frequency, are orthogonally positioned on the platform for compensation for the disturbing torque acting on the platform due to rotor misalignment.

  10. Passive UHF RFID Tag with Multiple Sensing Capabilities

    PubMed Central

    Fernández-Salmerón, José; Rivadeneyra, Almudena; Martínez-Martí, Fernando; Capitán-Vallvey, Luis Fermín; Palma, Alberto J.; Carvajal, Miguel A.

    2015-01-01

    This work presents the design, fabrication, and characterization of a printed radio frequency identification tag in the ultra-high frequency band with multiple sensing capabilities. This passive tag is directly screen printed on a cardboard box with the aim of monitoring the packaging conditions during the different stages of the supply chain. This tag includes a commercial force sensor and a printed opening detector. Hence, the force applied to the package can be measured as well as the opening of the box can be detected. The architecture presented is a passive single-chip RFID tag. An electronic switch has been implemented to be able to measure both sensor magnitudes in the same access without including a microcontroller or battery. Moreover, the chip used here integrates a temperature sensor and, therefore, this tag provides three different parameters in every reading. PMID:26506353

  11. A microcantilever-based silver ion sensor using DNA-functionalized gold nanoparticles as a mass amplifier

    NASA Astrophysics Data System (ADS)

    You, Juneseok; Song, Yeongjin; Park, Chanho; Jang, Kuewhan; Na, Sungsoo

    2017-06-01

    Silver ions have been used to sterilize many products, however, it has recently been demonstrated that silver ions can be toxic. This toxicity has been studied over many years with the lethal concentration at 10 μM. Silver ions can accumulate through the food chain, causing serious health problems in many species. Hence, there is a need for a commercially available silver ion sensor, with high detection sensitivity. In this work, we develop an ultra-sensitive silver ion sensor platform, using cytosine based DNA and gold nanoparticles as the mass amplifier. We achieve a lower detection limit for silver ions of 10 pM; this detection limit is one million times lower than the toxic concentration. Using our sensor platform we examine highly selective characteristics of other typical ions in water from natural sources. Furthermore, our sensor platform is able to detect silver ions in a real practical sample of commercially available drinking water. Our sensor platform, which we have termed a ‘MAIS’ (mass amplifier ion sensor), with a simple detection procedure, high sensitivity, selectivity and real practical applicability has shown potential as an early toxicity assessment of silver ions in the environment.

  12. An intelligent surveillance platform for large metropolitan areas with dense sensor deployment.

    PubMed

    Fernández, Jorge; Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M; Carro, Belén; Sánchez-Esguevillas, Antonio; Alonso-López, Jesus A; Smilansky, Zeev

    2013-06-07

    This paper presents an intelligent surveillance platform based on the usage of large numbers of inexpensive sensors designed and developed inside the European Eureka Celtic project HuSIMS. With the aim of maximizing the number of deployable units while keeping monetary and resource/bandwidth costs at a minimum, the surveillance platform is based on the usage of inexpensive visual sensors which apply efficient motion detection and tracking algorithms to transform the video signal in a set of motion parameters. In order to automate the analysis of the myriad of data streams generated by the visual sensors, the platform's control center includes an alarm detection engine which comprises three components applying three different Artificial Intelligence strategies in parallel. These strategies are generic, domain-independent approaches which are able to operate in several domains (traffic surveillance, vandalism prevention, perimeter security, etc.). The architecture is completed with a versatile communication network which facilitates data collection from the visual sensors and alarm and video stream distribution towards the emergency teams. The resulting surveillance system is extremely suitable for its deployment in metropolitan areas, smart cities, and large facilities, mainly because cheap visual sensors and autonomous alarm detection facilitate dense sensor network deployments for wide and detailed coverage.

  13. An Insertable Passive LC Pressure Sensor Based on an Alumina Ceramic for In Situ Pressure Sensing in High-Temperature Environments.

    PubMed

    Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin

    2015-08-31

    Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively.

  14. An Insertable Passive LC Pressure Sensor Based on an Alumina Ceramic for In Situ Pressure Sensing in High-Temperature Environments

    PubMed Central

    Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin

    2015-01-01

    Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively. PMID:26334279

  15. The AirQuality SenseBox

    NASA Astrophysics Data System (ADS)

    Demuth, Dustin; Nuest, Daniel; Bröring, Arne; Pebesma, Edzer

    2013-04-01

    In the past year, a group of open hardware enthusiasts and citizen scientists had large success in the crowd-funding of an open hardware-based sensor platform for air quality monitoring, called the Air Quality Egg. Via the kickstarter platform, the group was able to collect triple the amount of money than needed to fulfill their goals. Data generated by the Air Quality Egg is pushed to the data logging platform cosm.com, which makes the devices a part of the Internet of Things. The project aims at increasing the participation of citizens in the collection of data, the development of sensors, the operation of sensor stations, and, as data on cosm is publicly available, the sharing, visualization and analysis of data. Air Quality Eggs can measure NO2 and CO concentrations, as well as relative humidity and temperature. The chosen sensors are low-cost and have limited precision and accurracy. The Air Quality Egg consists of a stationary outdoor and a stationary indoor unit. Each outdoor unit will wirelessly transmit air quality measurements to the indoor unit, which forwards the data to cosm. Most recent versions of the Air Quality Egg allow a rough calibration of the gas sensors and on-the-fly conversion from raw sensor readings (impedance) to meaningful air quality data expressed in units of parts per billion. Data generated by these low-cost platforms are not intended to replace well-calibrated official monitoring stations, but rather augment the density of the total monitoring network with citizen sensors. To improve the usability of the Air Quality Egg, we present a new and more advanced concept, called the AirQuality SenseBox. We made the outdoor platform more autonomous and location-aware by adding solarpanels and rechargeable batteries as a power source. The AirQuality SenseBox knows its own position from a GPS device attached to the platform. As a mobile sensor platform, it can for instance be attached to vehicles. A low-cost and low-power wireless chipset reads the sensors and broadcasts the data. The data is received by gateways that convert the data and forward it to services. Although cosm is still supported, we also use services that are more common in the scientific domain, in particular the OGC Sensor Observation Service. In contrast to the ``One Sender - One Receiver'' (pair) setup proposed by the platform developers, we follow a ``Many Senders - Many Receivers'' (mesh) solution. As data is broadcasted by the platforms, it can be received and processed by any gateway, and, as the sender is not bound to the receiver, applications different from the gateways can receive and evaluate the data measured by the platform. Advantages of our solution are: (i) prepared gateways, which have more precise data at hand, can send calibration instructions to the mobile sensor platforms when those are in proximity; (ii) redundancy is obtained by adding additional gateways, to avoid the loss of data if a gateway fails; (iii) autonomous stations can be ubiquitous, are robust, do not require frequent maintenance, and can be placed at arbitrary locations; (iv) the standardized interface is vendor-independent and allows direct integration into existing analysis software.

  16. Fly Ear Inspired Miniature Acoustic Sensors for Detection and Localization

    DTIC Science & Technology

    2011-07-31

    Micro-Opto-Electro-Mechnical-System ( MOEMS ) sensor platform that is capable of integrating multiplexed Fabry-Perot (FP) interferometer based sensors. A...on a single MOEMS chip is shown in Figure 8. Light from a low coherence light source with a coherence length Lc is first sent to the reference...towards developing a low coherence interferometer based MOEMS detection system. An optical Micro-Electro-Mechanical-System (MEMS) sensor platform was

  17. KENNEDY SPACE CENTER, FLA. - Research team members work with acoustic cable during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - Research team members work with acoustic cable during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  18. KENNEDY SPACE CENTER, FLA. - Researchers utilize several types of watercraft to conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - Researchers utilize several types of watercraft to conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  19. Applications of the Integrated High-Performance CMOS Image Sensor to Range Finders - from Optical Triangulation to the Automotive Field.

    PubMed

    Wu, Jih-Huah; Pen, Cheng-Chung; Jiang, Joe-Air

    2008-03-13

    With their significant features, the applications of complementary metal-oxidesemiconductor (CMOS) image sensors covers a very extensive range, from industrialautomation to traffic applications such as aiming systems, blind guidance, active/passiverange finders, etc. In this paper CMOS image sensor-based active and passive rangefinders are presented. The measurement scheme of the proposed active/passive rangefinders is based on a simple triangulation method. The designed range finders chieflyconsist of a CMOS image sensor and some light sources such as lasers or LEDs. Theimplementation cost of our range finders is quite low. Image processing software to adjustthe exposure time (ET) of the CMOS image sensor to enhance the performance oftriangulation-based range finders was also developed. An extensive series of experimentswere conducted to evaluate the performance of the designed range finders. From theexperimental results, the distance measurement resolutions achieved by the active rangefinder and the passive range finder can be better than 0.6% and 0.25% within themeasurement ranges of 1 to 8 m and 5 to 45 m, respectively. Feasibility tests onapplications of the developed CMOS image sensor-based range finders to the automotivefield were also conducted. The experimental results demonstrated that our range finders arewell-suited for distance measurements in this field.

  20. Online, In-Situ Monitoring Combustion Turbines Using Wireless Passive Ceramic Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Xun; An, Linan; Xu, Chengying

    2013-06-30

    The overall objective of this project is to develop high-temperature wireless passive ceramic sensors for online, real-time monitoring combustion turbines. During this project period, we have successfully demonstrated temperature sensors up to 1300°C and pressure sensors up to 800°C. The temperature sensor is based on a high-Q-factor dielectric resonator and the pressure sensor utilizes the evanescent-mode cavity to realize a pressure-sensitive high-Q-factor resonator. Both sensors are efficiently integrated with a compact antenna. These sensors are wirelessly interrogated. The resonant frequency change corresponding to either temperature or pressure can be identified using a time-domain gating technique. The sensors realized in thismore » project can survive harsh environments characterized by high temperatures (>1000°C) and corrosive gases, owing to the excellent material properties of polymer-derived ceramics (PDCs) developed at University of Central Florida. It is anticipated that this work will significantly advance the capability of high-temperature sensor technologies and be of a great benefit to turbine industry and their customers.« less

  1. Experimental Design for Evaluating Selected Nondestructive Measurement Technologies - Advanced Reactor Technology Milestone: M3AT-16PN2301043

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Hirt, Evelyn H.; Pitman, Stan G.

    The harsh environments in advanced reactors (AdvRx) increase the possibility of degradation of safety-critical passive components, and therefore pose a particular challenge for deployment and extended operation of these concepts. Nondestructive evaluation technologies are an essential element for obtaining information on passive component condition in AdvRx, with the development of sensor technologies for nondestructively inspecting AdvRx passive components identified as a key need. Given the challenges posed by AdvRx environments and the potential needs for reducing the burden posed by periodic in-service inspection of hard-to-access and hard-to-replace components, a viable solution may be provided by online condition monitoring of components.more » This report identifies the key challenges that will need to be overcome for sensor development in this context, and documents an experimental plan for sensor development, test, and evaluation. The focus of initial research and development is on sodium fast reactors, with the eventual goal of the research being developing the necessary sensor technology, quantifying sensor survivability and long-term measurement reliability for nondestructively inspecting critical components. Materials for sensor development that are likely to withstand the harsh environments are described, along with a status on the fabrication of reference specimens, and the planned approach for design and evaluation of the sensor and measurement technology.« less

  2. Progress on Platforms, Sensors and Applications with Unmanned Aerial Vehicles in soil science and geomorphology

    NASA Astrophysics Data System (ADS)

    Anders, Niels; Suomalainen, Juha; Seeger, Manuel; Keesstra, Saskia; Bartholomeus, Harm; Paron, Paolo

    2014-05-01

    The recent increase of performance and endurance of electronically controlled flying platforms, such as multi-copters and fixed-wing airplanes, and decreasing size and weight of different sensors and batteries leads to increasing popularity of Unmanned Aerial Systems (UAS) for scientific purposes. Modern workflows that implement UAS include guided flight plan generation, 3D GPS navigation for fully automated piloting, and automated processing with new techniques such as "Structure from Motion" photogrammetry. UAS are often equipped with normal RGB cameras, multi- and hyperspectral sensors, radar, or other sensors, and provide a cheap and flexible solution for creating multi-temporal data sets. UAS revolutionized multi-temporal research allowing new applications related to change analysis and process monitoring. The EGU General Assembly 2014 is hosting a session on platforms, sensors and applications with UAS in soil science and geomorphology. This presentation briefly summarizes the outcome of this session, addressing the current state and future challenges of small-platform data acquisition in soil science and geomorphology.

  3. A Synchronous Multi-Body Sensor Platform in a Wireless Body Sensor Network: Design and Implementation

    PubMed Central

    Gil, Yeongjoon; Wu, Wanqing; Lee, Jungtae

    2012-01-01

    Background Human life can be further improved if diseases and disorders can be predicted before they become dangerous, by correctly recognizing signals from the human body, so in order to make disease detection more precise, various body-signals need to be measured simultaneously in a synchronized manner. Object This research aims at developing an integrated system for measuring four signals (EEG, ECG, respiration, and PPG) and simultaneously producing synchronous signals on a Wireless Body Sensor Network. Design We designed and implemented a platform for multiple bio-signals using Bluetooth communication. Results First, we developed a prototype board and verified the signals from the sensor platform using frequency responses and quantities. Next, we designed and implemented a lightweight, ultra-compact, low cost, low power-consumption Printed Circuit Board. Conclusion A synchronous multi-body sensor platform is expected to be very useful in telemedicine and emergency rescue scenarios. Furthermore, this system is expected to be able to analyze the mutual effects among body signals. PMID:23112605

  4. Armstrong Flight Research Center Flight Test Capabilities and Opportunities for the Applications of Wireless Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Hang, Richard

    2015-01-01

    The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.

  5. Design of an Embedded CMOS Temperature Sensor for Passive RFID Tag Chips.

    PubMed

    Deng, Fangming; He, Yigang; Li, Bing; Zhang, Lihua; Wu, Xiang; Fu, Zhihui; Zuo, Lei

    2015-05-18

    This paper presents an ultra-low embedded power temperature sensor for passive RFID tags. The temperature sensor converts the temperature variation to a PTAT current, which is then transformed into a temperature-controlled frequency. A phase locked loop (PLL)-based sensor interface is employed to directly convert this temperature-controlled frequency into a corresponding digital output without an external reference clock. The fabricated sensor occupies an area of 0.021 mm2 using the TSMC 0.18 1P6M mixed-signal CMOS process. Measurement results of the embedded sensor within the tag system shows a 92 nW power dissipation under 1.0 V supply voltage at room temperature, with a sensing resolution of 0.15 °C/LSB and a sensing accuracy of -0.7/0.6 °C from -30 °C to 70 °C after 1-point calibration at 30 °C.

  6. Spiral passive electromagnetic sensor (SPES) for smart sensing and de-icing

    NASA Astrophysics Data System (ADS)

    Iervolino, Onorio; Meo, Michele

    2015-04-01

    The objective of this work was to develop a wireless Spiral Passive Electromagnetic Sensor (SPES) to monitor the complex permittivity of a surrounding medium. The sensor is a self-resonating planar pattern of electrically conductive material. Investigation were conducted to demonstrate the capability of the SPES to monitor humidity and temperature gradients, and acting as an ice protection tool. An oscillating signal is used to interrogate remotely the sensor with a single loop antenna or wiring it directly to a spectrum analyser and monitoring the backscattering signal. The excited sensor responds with its own resonant frequency, amplitude and bandwidth that can be correlated to physical quantities to be monitored. Our studies showed the capability of the sensor to monitor temperature and humidity changes in composite materials and uniformly produce induction heating when the conductive path is activated by an external electric power supply that can be used for deicing of aircraft structures.

  7. Alumina ceramic based high-temperature performance of wireless passive pressure sensor

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wu, Guozhu; Guo, Tao; Tan, Qiulin

    2016-12-01

    A wireless passive pressure sensor equivalent to inductive-capacitive (LC) resonance circuit and based on alumina ceramic is fabricated by using high temperature sintering ceramic and post-fire metallization processes. Cylindrical copper spiral reader antenna and insulation layer are designed to realize the wireless measurement for the sensor in high temperature environment. The high temperature performance of the sensor is analyzed and discussed by studying the phase-frequency and amplitude-frequency characteristics of reader antenna. The average frequency change of sensor is 0.68 kHz/°C when the temperature changes from 27°C to 700°C and the relative change of twice measurements is 2.12%, with high characteristic of repeatability. The study of temperature-drift characteristic of pressure sensor in high temperature environment lays a good basis for the temperature compensation methods and insures the pressure signal readout accurately.

  8. Design of an Embedded CMOS Temperature Sensor for Passive RFID Tag Chips

    PubMed Central

    Deng, Fangming; He, Yigang; Li, Bing; Zhang, Lihua; Wu, Xiang; Fu, Zhihui; Zuo, Lei

    2015-01-01

    This paper presents an ultra-low embedded power temperature sensor for passive RFID tags. The temperature sensor converts the temperature variation to a PTAT current, which is then transformed into a temperature-controlled frequency. A phase locked loop (PLL)-based sensor interface is employed to directly convert this temperature-controlled frequency into a corresponding digital output without an external reference clock. The fabricated sensor occupies an area of 0.021 mm2 using the TSMC 0.18 1P6M mixed-signal CMOS process. Measurement results of the embedded sensor within the tag system shows a 92 nW power dissipation under 1.0 V supply voltage at room temperature, with a sensing resolution of 0.15 °C/LSB and a sensing accuracy of −0.7/0.6 °C from −30 °C to 70 °C after 1-point calibration at 30 °C. PMID:25993518

  9. Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform.

    PubMed

    Farzbod, Ali; Moon, Hyejin

    2018-05-30

    This paper presents the demonstration of on-chip fabrication of a potassium-selective sensor array enabled by electrowetting on dielectric digital microfluidics for the first time. This demonstration proves the concept that electrochemical sensors can be seamlessly integrated with sample preparation units in a digital microfluidic platform. More significantly, the successful on-chip fabrication of a sensor array indicates that sensors become reconfigurable and have longer lifetime in a digital microfluidic platform. The on-chip fabrication of ion-selective electrodes includes electroplating Ag followed by forming AgCl layer by chemical oxidation and depositing a thin layer of desired polymer-based ion selective membrane on one of the sensor electrodes. In this study, potassium ionophores work as potassium ion channels and make the membrane selective to potassium ions. This selectiveness results in the voltage difference across the membrane layer, which is correlated with potassium ion concentration. The calibration curve of the fabricated potassium-selective electrode demonstrates the slope of 58 mV/dec for potassium concentration in KCl sample solutions and shows good agreement with the ideal Nernstian response. The proposed sensor platform is an outstanding candidate for a portable home-use for continuous monitoring of ions thanks to its advantages such as easy automation of sample preparation and detection processes, elongated sensor lifetime, minimal membrane and sample consumption, and user-definable/reconfigurable sensor array. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Strain Wave Acquisition by a Fiber Optic Coherent Sensor for Impact Monitoring

    PubMed Central

    Sbarufatti, Claudio; Beligni, Alessio; Gilioli, Andrea; Ferrario, Maddalena; Mattarei, Marco; Martinelli, Mario; Giglio, Marco

    2017-01-01

    A novel fiber optic sensing technology for high frequency dynamics detection is proposed in this paper, specifically tailored for structural health monitoring applications based on strain wave analysis, for both passive impact identification and active Lamb wave monitoring. The sensing solution relies on a fiber optic-based interferometric architecture associated to an innovative coherent detection scheme, which retrieves in a completely passive way the high-frequency phase information of the received optical signal. The sensing fiber can be arranged into different layouts, depending on the requirement of the specific application, in order to enhance the sensor sensitivity while still ensuring a limited gauge length if punctual measures are required. For active Lamb wave monitoring, this results in a sensing fiber arranged in multiple loops glued on an aluminum thin panel in order to increase the phase signal only in correspondence to the sensing points of interest. Instead, for passive impact identification, the required sensitivity is guaranteed by simply exploiting a longer gauge length glued to the structure. The fiber optic coherent (FOC) sensor is exploited to detect the strain waves emitted by a piezoelectric transducer placed on the aluminum panel or generated by an impulse hammer, respectively. The FOC sensor measurements have been compared with both a numerical model based on Finite Elements and traditional piezoelectric sensors, confirming a good agreement between experimental and simulated results for both active and passive impact monitoring scenarios. PMID:28773154

  11. A multi-sensor approach to the retrieval and model validation of global cloudiness

    NASA Astrophysics Data System (ADS)

    Miller, Steven D.

    2000-11-01

    The ephemeral clouds have represented a daunting challenge to the atmospheric modeling community from the very beginning. Our inability to resolve them by means of traditional passive sensors to the level of detail required for characterizing their complicated role in the climate feedback system has lead us to explore other resources at our disposal. This research seeks to illustrate and, where applicable, quantify the ways in which active (e.g., radar and lidar) remote sensing devices on existing and proposed platforms can serve to improve our current understanding of cloud and cloud processes in terms of (1)their role in the improvement of cloud property retrievals and (2)their application to the validation/development of clouds in numerical weather prediction models. A new retrieval technique which employs active sensors to constrain cloud boundaries in the vertical is shown to decrease the parameter uncertainties with respect to traditional passive methods in excess of 20% for effective particle radius, and 10-20% for optical depth when considering night-time retrievals of cirrus. These results are brought together with detailed cloud profile sampling from the Lidar In-space Technology Experiment (LITE) to conduct the first global-scale active sensor validation of ECMWF short-range forecasts. The comparisons display remarkable agreement in cloud spatial distribution. A weighted statistical analysis yields hit rates between 75-90%, threat scores 45-75%, probabilities of detection ~80%, and false alarm rates 10-45%. The results suggest that, given the level of realism displayed currently by the ECMWF prognostic cloud scheme forecasts, the reanalysis data may be considered as a new resource for global cloud information. A practical application of these findings has been outlined in the context of defining Cloud-Sat instrument requirements based on virtual orbital observations created from ECMWF global cloud distributions of liquid and ice water contents. This research gives cause for new hope in capturing the complex radiative, convective, and dynamical feedback mechanisms associated with clouds in the climate feedback system. Further, it appeals to the need for an improved collaborative rapport between the now largely disjoint modeling and measurement communities.

  12. Evaluating the Global Precipitation Measurement mission with NOAA/NSSL Multi-Radar Multisensor: current status and future directions.

    NASA Astrophysics Data System (ADS)

    Kirstetter, P. E.; Petersen, W. A.; Gourley, J. J.; Kummerow, C.; Huffman, G. J.; Turk, J.; Tanelli, S.; Maggioni, V.; Anagnostou, E. N.; Hong, Y.; Schwaller, M.

    2017-12-01

    Accurate characterization of uncertainties in space-borne precipitation estimates is critical for many applications including water budget studies or prediction of natural hazards at the global scale. The GPM precipitation Level II (active and passive) and Level III (IMERG) estimates are compared to the high quality and high resolution NEXRAD-based precipitation estimates derived from the NOAA/NSSL's Multi-Radar, Multi-Sensor (MRMS) platform. A surface reference is derived from the MRMS suite of products to be accurate with known uncertainty bounds and measured at a resolution below the pixel sizes of any GPM estimate, providing great flexibility in matching to grid scales or footprints. It provides an independent and consistent reference research framework for directly evaluating GPM precipitation products across a large number of meteorological regimes as a function of resolution, accuracy and sample size. The consistency of the ground and space-based sensors in term of precipitation detection, typology and quantification are systematically evaluated. Satellite precipitation retrievals are further investigated in terms of precipitation distributions, systematic biases and random errors, influence of precipitation sub-pixel variability and comparison between satellite products. Prognostic analysis directly provides feedback to algorithm developers on how to improve the satellite estimates. Specific factors for passive (e.g. surface conditions for GMI) and active (e.g. non uniform beam filling for DPR) sensors are investigated. This cross products characterization acts as a bridge to intercalibrate microwave measurements from the GPM constellation satellites and propagate to the combined and global precipitation estimates. Precipitation features previously used to analyze Level II satellite estimates under various precipitation processes are now intoduced for Level III to test several assumptions in the IMERG algorithm. Specifically, the contribution of Level II is explicitly characterized and a rigorous characterization is performed to migrate across scales fully understanding the propagation of errors from Level II to Level III. Perpectives are presented to advance the use of uncertainty as an integral part of QPE for ground-based and space-borne sensors

  13. Sensitive detection of chemical agents and toxic industrial chemicals using active open-path FTIRs

    NASA Astrophysics Data System (ADS)

    Walter, William T.

    2004-03-01

    Active open-path FTIR sensors provide more sensitive detection of chemical agents than passive FTIRs, such as the M21 RSCAAL and JSLSCAD, and at the same time identify and quantify toxic industrial chemicals (TIC). Passive FTIRs are bistatic sensors relying on infrared sources of opportunity. Utilization of earth-based sources of opportunity limits the source temperatures available for passive chemical-agent FTIR sensors to 300° K. Active FTIR chemical-agent sensors utilize silicon carbide sources, which can be operated at 1500° K. The higher source temperature provides more than an 80-times increase in the infrared radiant flux emitted per unit area in the 7 to 14 micron spectral fingerprint region. Minimum detection limits are better than 5 μgm/m3 for GA, GB, GD, GF and VX. Active FTIR sensors can (1) assist first responders and emergency response teams in their assessment of and reaction to a terrorist threat, (2) provide information on the identification of the TIC present and their concentrations and (3) contribute to the understanding and prevention of debilitating disorders analogous to the Gulf War Syndrome for military and civilian personnel.

  14. Airborne Optical Systems Test Bed (AOSTB)

    DTIC Science & Technology

    2016-07-01

    resident laser radar platform with roll -on/ roll -off sensor capability. The new platform provides The Laboratory with an added capability of leveraging...29 Figure 11 – Finite Element Analysis of Loads on Isolators (9G Forward...This project created a resident sensor suite with roll -on/ roll -off capability, coupled to a resident platform (Twin Otter Aircraft). This facility

  15. Using URIs to effectively transmit sensor data and metadata

    NASA Astrophysics Data System (ADS)

    Kokkinaki, Alexandra; Buck, Justin; Darroch, Louise; Gardner, Thomas

    2017-04-01

    Autonomous ocean observation is massively increasing the number of sensors in the ocean. Accordingly, the continuing increase in datasets produced, makes selecting sensors that are fit for purpose a growing challenge. Decision making on selecting quality sensor data, is based on the sensor's metadata, i.e. manufacturer specifications, history of calibrations etc. The Open Geospatial Consortium (OGC) has developed the Sensor Web Enablement (SWE) standards to facilitate integration and interoperability of sensor data and metadata. The World Wide Web Consortium (W3C) Semantic Web technologies enable machine comprehensibility promoting sophisticated linking and processing of data published on the web. Linking the sensor's data and metadata according to the above-mentioned standards can yield practical difficulties, because of internal hardware bandwidth restrictions and a requirement to constrain data transmission costs. Our approach addresses these practical difficulties by uniquely identifying sensor and platform models and instances through URIs, which resolve via content negotiation to either OGC's sensor meta language, sensorML or W3C's Linked Data. Data transmitted by a sensor incorporate the sensor's unique URI to refer to its metadata. Sensor and platform model URIs and descriptions are created and hosted by the British Oceanographic Data Centre (BODC) linked systems service. The sensor owner creates the sensor and platform instance URIs prior and during sensor deployment, through an updatable web form, the Sensor Instance Form (SIF). SIF enables model and instance URI association but also platform and sensor linking. The use of URIs, which are dynamically generated through the SIF, offers both practical and economical benefits to the implementation of SWE and Linked Data standards in near real time systems. Data can be linked to metadata dynamically in-situ while saving on the costs associated to the transmission of long metadata descriptions. The transmission of short URIs also enables the implementation of standards on systems where it is impractical, such as legacy hardware.

  16. Some comments on passive microwave measurement of rain

    NASA Technical Reports Server (NTRS)

    Wilheit, Thomas T.

    1986-01-01

    It is argued that because microwave radiation interacts much more strongly with hydrometeors than with cloud particles, microwave measurements from space offer a significant chance of making global precipitation estimates. Over oceans, passive microwave measurements are essentially attenuation measurements that can be very closely related to the rain rate independently of the details of the drop-size distribution. Over land, scattering of microwave radiation by the hydrometeors, especially in the ice phase, can be used to estimate rainfall. In scattering, the details of the drop-size distribution are very important and it is therefore more difficult to achieve a high degree of accuracy. The SSM/I (Special Sensor Microwave Imager), a passive microwave imaging sensor that will be launched soon, will have dual-polarized channels at 85.5 GHz that will be very sensitive to scattering by frozen hydrometeors. Other sensors being considered for the future space missions would extend the ability to estimate rain rates from space. The ideal spaceborne precipitation-measurement system would use the complementary strengths of passive microwave, radar, and visible/infrared measurements.

  17. Flight data acquisition methodology for validation of passive ranging algorithms for obstacle avoidance

    NASA Technical Reports Server (NTRS)

    Smith, Phillip N.

    1990-01-01

    The automation of low-altitude rotorcraft flight depends on the ability to detect, locate, and navigate around obstacles lying in the rotorcraft's intended flightpath. Computer vision techniques provide a passive method of obstacle detection and range estimation, for obstacle avoidance. Several algorithms based on computer vision methods have been developed for this purpose using laboratory data; however, further development and validation of candidate algorithms require data collected from rotorcraft flight. A data base containing low-altitude imagery augmented with the rotorcraft and sensor parameters required for passive range estimation is not readily available. Here, the emphasis is on the methodology used to develop such a data base from flight-test data consisting of imagery, rotorcraft and sensor parameters, and ground-truth range measurements. As part of the data preparation, a technique for obtaining the sensor calibration parameters is described. The data base will enable the further development of algorithms for computer vision-based obstacle detection and passive range estimation, as well as provide a benchmark for verification of range estimates against ground-truth measurements.

  18. CIP (cleaning-in-place) stability of AlGaN/GaN pH sensors.

    PubMed

    Linkohr, St; Pletschen, W; Schwarz, S U; Anzt, J; Cimalla, V; Ambacher, O

    2013-02-20

    The CIP stability of pH sensitive ion-sensitive field-effect transistors based on AlGaN/GaN heterostructures was investigated. For epitaxial AlGaN/GaN films with high structural quality, CIP tests did not degrade the sensor surface and pH sensitivities of 55-58 mV/pH were achieved. Several different passivation schemes based on SiO(x), SiN(x), AlN, and nanocrystalline diamond were compared with special attention given to compatibility to standard microelectronic device technologies as well as biocompatibility of the passivation films. The CIP stability was evaluated with a main focus on the morphological stability. All stacks containing a SiO₂ or an AlN layer were etched by the NaOH solution in the CIP process. Reliable passivations withstanding the NaOH solution were provided by stacks of ICP-CVD grown and sputtered SiN(x) as well as diamond reinforced passivations. Drift levels about 0.001 pH/h and stable sensitivity over several CIP cycles were achieved for optimized sensor structures. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Role of passive remote sensors. Sensor System Panel report

    NASA Astrophysics Data System (ADS)

    1982-06-01

    Capabilities of present passive systems are described and the development of passive remote sensing systems for the more abundant tropospheric trace species is recommended. The combination of nadir-viewing spectrometers and solar occultation for tropospheric measurement of those gases having large stratospheric burdens is discussed. Development of a nadir-viewing instrument capable of obtaining continuous spectra in narrower bands is recommended. Gas filter radiometers for species specific measurements and development of a spectral survey instrument are discussed. Further development of aerosol retrieval algorithms, including polarization techniques, for obtaining aerosol thickness and size distributions is advised. Recommendations of specific investigations to be pursued are presented.

  20. Role of passive remote sensors. Sensor System Panel report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Capabilities of present passive systems are described and the development of passive remote sensing systems for the more abundant tropospheric trace species is recommended. The combination of nadir-viewing spectrometers and solar occultation for tropospheric measurement of those gases having large stratospheric burdens is discussed. Development of a nadir-viewing instrument capable of obtaining continuous spectra in narrower bands is recommended. Gas filter radiometers for species specific measurements and development of a spectral survey instrument are discussed. Further development of aerosol retrieval algorithms, including polarization techniques, for obtaining aerosol thickness and size distributions is advised. Recommendations of specific investigations to be pursued are presented.

  1. Electro-active sensor, method for constructing the same; apparatus and circuitry for detection of electro-active species

    NASA Technical Reports Server (NTRS)

    Buehler, Martin (Inventor)

    2009-01-01

    An electro-active sensor includes a nonconductive platform with a first electrode set attached with a first side of a nonconductive platform. The first electrode set serves as an electrochemical cell that may be utilized to detect electro-active species in solution. A plurality of electrode sets and a variety of additional electrochemical cells and sensors may be attached with the nonconductive platform. The present invention also includes a method for constructing the aforementioned electro-active sensor. Additionally, an apparatus for detection and observation is disclosed, where the apparatus includes a sealable chamber for insertion of a portion of an electro-active sensor. The apparatus allows for monitoring and detection activities. Allowing for control of attached cells and sensors, a dual-mode circuitry is also disclosed. The dual-mode circuitry includes a switch, allowing the circuitry to be switched from a potentiostat to a galvanostat mode.

  2. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    PubMed Central

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  3. A Self-Sustained Wireless Multi-Sensor Platform Integrated with Printable Organic Sensors for Indoor Environmental Monitoring

    PubMed Central

    Wu, Chun-Chang; Chuang, Wen-Yu; Wu, Ching-Da; Su, Yu-Cheng; Huang, Yung-Yang; Huang, Yang-Jing; Peng, Sheng-Yu; Yu, Shih-An; Lin, Chih-Ting; Lu, Shey-Shi

    2017-01-01

    A self-sustained multi-sensor platform for indoor environmental monitoring is proposed in this paper. To reduce the cost and power consumption of the sensing platform, in the developed platform, organic materials of PEDOT:PSS and PEDOT:PSS/EB-PANI are used as the sensing films for humidity and CO2 detection, respectively. Different from traditional gas sensors, these organic sensing films can operate at room temperature without heating processes or infrared transceivers so that the power consumption of the developed humidity and the CO2 sensors can be as low as 10 μW and 5 μW, respectively. To cooperate with these low-power sensors, a Complementary Metal-Oxide-Semiconductor (CMOS) system-on-chip (SoC) is designed to amplify and to read out multiple sensor signals with low power consumption. The developed SoC includes an analog-front-end interface circuit (AFE), an analog-to-digital convertor (ADC), a digital controller and a power management unit (PMU). Scheduled by the digital controller, the sensing circuits are power gated with a small duty-cycle to reduce the average power consumption to 3.2 μW. The designed PMU converts the power scavenged from a dye sensitized solar cell (DSSC) module into required supply voltages for SoC circuits operation under typical indoor illuminance conditions. To our knowledge, this is the first multiple environmental parameters (Temperature/CO2/Humidity) sensing platform that demonstrates a true self-powering functionality for long-term operations. PMID:28353680

  4. A Self-Sustained Wireless Multi-Sensor Platform Integrated with Printable Organic Sensors for Indoor Environmental Monitoring.

    PubMed

    Wu, Chun-Chang; Chuang, Wen-Yu; Wu, Ching-Da; Su, Yu-Cheng; Huang, Yung-Yang; Huang, Yang-Jing; Peng, Sheng-Yu; Yu, Shih-An; Lin, Chih-Ting; Lu, Shey-Shi

    2017-03-29

    A self-sustained multi-sensor platform for indoor environmental monitoring is proposed in this paper. To reduce the cost and power consumption of the sensing platform, in the developed platform, organic materials of PEDOT:PSS and PEDOT:PSS/EB-PANI are used as the sensing films for humidity and CO₂ detection, respectively. Different from traditional gas sensors, these organic sensing films can operate at room temperature without heating processes or infrared transceivers so that the power consumption of the developed humidity and the CO₂ sensors can be as low as 10 μW and 5 μW, respectively. To cooperate with these low-power sensors, a Complementary Metal-Oxide-Semiconductor (CMOS) system-on-chip (SoC) is designed to amplify and to read out multiple sensor signals with low power consumption. The developed SoC includes an analog-front-end interface circuit (AFE), an analog-to-digital convertor (ADC), a digital controller and a power management unit (PMU). Scheduled by the digital controller, the sensing circuits are power gated with a small duty-cycle to reduce the average power consumption to 3.2 μW. The designed PMU converts the power scavenged from a dye sensitized solar cell (DSSC) module into required supply voltages for SoC circuits operation under typical indoor illuminance conditions. To our knowledge, this is the first multiple environmental parameters (Temperature/CO₂/Humidity) sensing platform that demonstrates a true self-powering functionality for long-term operations.

  5. The Correlation of Active and Passive Microwave Outputs for the Skylab S-193 Sensor

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1976-01-01

    This paper presents the results of the correlation analysis of the Skylab S-193 13.9 GHz Radiometer/Scatterometer data. Computer analysis of the S-193 data shows more than 50 percent of the radiometer and scatterometer data are uncorrelated. The correlation coefficients computed for the data gathered over various ground scenes indicates the desirability of using both active and passive sensors for the determination of various Earth phenomena.

  6. Powering a wireless sensor node with a vibration-driven piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Reilly, Elizabeth K.; Burghardt, Fred; Fain, Romy; Wright, Paul

    2011-12-01

    This paper discusses the direct application of scavenged energy to power a wireless sensor platform. A trapezoidal piezoelectric harvester was designed for a specific machine tool application and tested for robustness and longevity as well as performance. The design focused on resonant performance and distributed strain concentrations at a given resonant frequency and acceleration. Critical issues of power coupling and conditioning between harvester and wireless platform were addressed. The wireless platform consisted of a sensor, controller, power conditioning circuitry, and a custom low power radio. The system transmitted a sensor sample once every 10 s in a scavenging environment of 0.25 g and 100 Hz for a system duty cycle of approximately 0.2%.

  7. Mission specification for three generic mission classes

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Mission specifications for three generic mission classes are generated to provide a baseline for definition and analysis of data acquisition platform system concepts. The mission specifications define compatible groupings of sensors that satisfy specific earth resources and environmental mission objectives. The driving force behind the definition of sensor groupings is mission need; platform and space transportation system constraints are of secondary importance. The three generic mission classes are: (1) low earth orbit sun-synchronous; (2) geosynchronous; and (3) non-sun-synchronous, nongeosynchronous. These missions are chosen to provide a variety of sensor complements and implementation concepts. Each mission specification relates mission categories, mission objectives, measured parameters, and candidate sensors to orbits and coverage, operations compatibility, and platform fleet size.

  8. A wireless passive pressure microsensor fabricated in HTCC MEMS technology for harsh environments.

    PubMed

    Tan, Qiulin; Kang, Hao; Xiong, Jijun; Qin, Li; Zhang, Wendong; Li, Chen; Ding, Liqiong; Zhang, Xiansheng; Yang, Mingliang

    2013-08-02

    A wireless passive high-temperature pressure sensor without evacuation channel fabricated in high-temperature co-fired ceramics (HTCC) technology is proposed. The properties of the HTCC material ensure the sensor can be applied in harsh environments. The sensor without evacuation channel can be completely gastight. The wireless data is obtained with a reader antenna by mutual inductance coupling. Experimental systems are designed to obtain the frequency-pressure characteristic, frequency-temperature characteristic and coupling distance. Experimental results show that the sensor can be coupled with an antenna at 600 °C and max distance of 2.8 cm at room temperature. The senor sensitivity is about 860 Hz/bar and hysteresis error and repeatability error are quite low.

  9. Application of passive imaging polarimetry in the discrimination and detection of different color targets of identical shapes using color-blind imaging sensors

    NASA Astrophysics Data System (ADS)

    El-Saba, A. M.; Alam, M. S.; Surpanani, A.

    2006-05-01

    Important aspects of automatic pattern recognition systems are their ability to efficiently discriminate and detect proper targets with low false alarms. In this paper we extend the applications of passive imaging polarimetry to effectively discriminate and detect different color targets of identical shapes using color-blind imaging sensor. For this case of study we demonstrate that traditional color-blind polarization-insensitive imaging sensors that rely only on the spatial distribution of targets suffer from high false detection rates, especially in scenarios where multiple identical shape targets are present. On the other hand we show that color-blind polarization-sensitive imaging sensors can successfully and efficiently discriminate and detect true targets based on their color only. We highlight the main advantages of using our proposed polarization-encoded imaging sensor.

  10. Minefield reconnaissance and detector system

    DOEpatents

    Butler, M.T.; Cave, S.P.; Creager, J.D.; Johnson, C.M.; Mathes, J.B.; Smith, K.J.

    1994-04-26

    A multi-sensor system is described for detecting the presence of objects on the surface of the ground or buried just under the surface, such as anti-personnel or anti-tank mines or the like. A remote sensor platform has a plurality of metal detector sensors and a plurality of short pulse radar sensors. The remote sensor platform is remotely controlled from a processing and control unit and signals from the remote sensor platform are sent to the processing and control unit where they are individually evaluated in separate data analysis subprocess steps to obtain a probability score for each of the pluralities of sensors. These probability scores are combined in a fusion subprocess step by comparing score sets to a probability table which is derived based upon the historical incidence of object present conditions given that score set. A decision making rule is applied to provide an output which is optionally provided to a marker subprocess for controlling a marker device to mark the location of found objects. 7 figures.

  11. A Wireless Multi-Sensor Dielectric Impedance Spectroscopy Platform

    PubMed Central

    Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Rioux, Maxime; Viens, Jeff; Gosselin, Benoit; Messaddeq, Younes

    2015-01-01

    This paper describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS), designed for in situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the network for data analysis and storage. The system is built from low-cost commercial microelectronics components, performs dielectric spectroscopy ranging from 5 kHz to 100 kHz, and benefits from an on-the-fly calibration system that makes sensor calibration easy. The paper describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing. PMID:26393587

  12. Modeling and analysis of a flywheel microvibration isolation system for spacecrafts

    NASA Astrophysics Data System (ADS)

    Wei, Zhanji; Li, Dongxu; Luo, Qing; Jiang, Jianping

    2015-01-01

    The microvibrations generated by flywheels running at full speed onboard high precision spacecrafts will affect stability of the spacecraft bus and further degrade pointing accuracy of the payload. A passive vibration isolation platform comprised of multi-segment zig-zag beams is proposed to isolate disturbances of the flywheel. By considering the flywheel and the platform as an integral system with gyroscopic effects, an equivalent dynamic model is developed and verified through eigenvalue and frequency response analysis. The critical speeds of the system are deduced and expressed as functions of system parameters. The vibration isolation performance of the platform under synchronal and high-order harmonic disturbances caused by the flywheel is investigated. It is found that the speed range within which the passive platform is effective and the disturbance decay rate of the system are greatly influenced by the locations of the critical speeds. Structure optimization of the platform is carried out to enhance its performance. Simulation results show that a properly designed vibration isolation platform can effectively reduce disturbances emitted by the flywheel operating above the critical speeds of the system.

  13. Wireless Sensor Networks--A Hands-On Modular Experiments Platform for Enhanced Pedagogical Learning

    ERIC Educational Resources Information Center

    Taslidere, E.; Cohen, F. S.; Reisman, F. K.

    2011-01-01

    This paper presents the use of wireless sensor networks (WSNs) in educational research as a platform for enhanced pedagogical learning. The aim here with the use of a WSN platform was to go beyond the implementation stage to the real-life application stage, i.e., linking the implementation to real-life applications, where abstract theory and…

  14. Degradation of 2DEG transport properties in GaN-capped AlGaN/GaN heterostructures at 600 °C in oxidizing and inert environments

    NASA Astrophysics Data System (ADS)

    Hou, Minmin; Jain, Sambhav R.; So, Hongyun; Heuser, Thomas A.; Xu, Xiaoqing; Suria, Ateeq J.; Senesky, Debbie G.

    2017-11-01

    In this paper, the electron mobility and sheet density of the two-dimensional electron gas (2DEG) in both air and argon environments at 600 °C were measured intermittently over a 5 h duration using unpassivated and Al2O3-passivated AlGaN/GaN (with 3 nm GaN cap) van der Pauw test structures. The unpassivated AlGaN/GaN heterostructures annealed in air showed the smallest decrease (˜8%) in 2DEG electron mobility while Al2O3-passivated samples annealed in argon displayed the largest drop (˜70%) based on the Hall measurements. Photoluminescence and atomic force microscopy showed that minimal strain relaxation and surface roughness changes have occurred in the unpassivated samples annealed in air, while those with Al2O3 passivation annealed in argon showed significant microstructural degradations. This suggests that cracks developed in the samples annealed in air were healed by oxidation reactions. To further confirm this, Auger electron spectroscopy was conducted on the unpassivated samples after the anneal in air and results showed that extra surface oxides have been generated, which could act as a dislocation pinning layer to suppress the strain relaxation in AlGaN. On the other hand, similar 2DEG sheet densities were observed in passivated and unpassivated AlGaN/GaN samples at the end of the 5-h anneal in air or argon due to the combined impact of strain relaxation and changes in the ionized electronic states. The results support the use of unpassivated GaN-capped AlGaN/GaN heterostructures as the material platform for high-temperature electronics and sensors used in oxidizing environmental conditions.

  15. Assimilation of the ESA CCI Soil Moisture ACTIVE and PASSIVE Product into the SURFEX Land Surface Model using the Ensemble Transform Kalman Filter

    NASA Astrophysics Data System (ADS)

    Blyverket, J.; Hamer, P.; Bertino, L.; Lahoz, W. A.

    2017-12-01

    The European Space Agency Climate Change Initiative for soil moisture (ESA CCI SM) was initiated in 2012 for a period of six years, the objective for this period was to produce the most complete and consistent global soil moisture data record based on both active and passive sensors. The ESA CCI SM products consist of three surface soil moisture datasets: The ACTIVE product and the PASSIVE product were created by fusing scatterometer and radiometer soil moisture data, respectively. The COMBINED product is a blended product based on the former two datasets. In this study we assimilate globally both the ACTIVE and PASSIVE product at a 25 km spatial resolution. The different satellite platforms have different overpass times, an observation is mapped to the hours 00.00, 06.00, 12.00 or 18.00 if it falls within a 3 hour window centred at these times. We use the SURFEX land surface model with the ISBA diffusion scheme for the soil hydrology. For the assimilation routine we apply the Ensemble Transform Kalman Filter (ETKF). The land surface model is driven by perturbed MERRA-2 atmospheric forcing data, which has a temporal resolution of one hour and is mapped to the SURFEX model grid. Bias between the land surface model and the ESA CCI product is removed by cumulative distribution function (CDF) matching. This work is a step towards creating a global root zone soil moisture product from the most comprehensive satellite surface soil moisture product available. As a first step we consider the period from 2010 - 2016. This allows for comparison against other global root zone soil moisture products (SMAP Level 4, which is independent of the ESA CCI SM product).

  16. A Novel Passive Wireless Sensing Method for Concrete Chloride Ion Concentration Monitoring.

    PubMed

    Zhou, Shuangxi; Sheng, Wei; Deng, Fangming; Wu, Xiang; Fu, Zhihui

    2017-12-11

    In this paper, a novel approach for concrete chloride ion concentration measuring based on passive and wireless sensor tag is proposed. The chloride ion sensor based on RFID communication protocol is consisting of an energy harvesting and management circuit, a low dropout voltage regulator, a MCU, a RFID tag chip and a pair of electrodes. The proposed sensor harvests energy radiated by the RFID reader to power its circuitry. To improve the stability of power supply, a three-stage boost rectifier is customized to rectify the harvested power into dc power and step-up the voltage. Since the measured data is wirelessly transmitted, it contains miscellaneous noises which would decrease the accuracy of measuring. Thus, in this paper, the wavelet denoising method is adopted to denoise the raw data. Besides, a monitoring software is developed to display the measurement results in real-time. The measurement results indicate that the proposed passive sensor tag can achieve a reliable communication distance of 16.3 m and can reliably measure the chloride ion concentration in concrete.

  17. Deriving Leaf Area Index (LAI) from multiple lidar remote sensing systems

    NASA Astrophysics Data System (ADS)

    Tang, H.; Dubayah, R.; Zhao, F.

    2012-12-01

    LAI is an important biophysical variable linking biogeochemical cycles of earth systems. Observations with passive optical remote sensing are plagued by saturation and results from different passive and active sensors are often inconsistent. Recently lidar remote sensing has been applied to derive vertical canopy structure including LAI and its vertical profile. In this research we compare LAI retrievals from three different types of lidar sensors. The study areas include the La Selva Biological Station in Costa Rica and Sierra Nevada Forest in California. We first obtain independent LAI estimates from different lidar systems including airborne lidar (LVIS), spaceborne lidar (GLAS) and ground lidar (Echidna). LAI retrievals are then evaluated between sensors as a function of scale, land cover type and sensor characteristics. We also assess the accuracy of these LAI products against ground measurements. By providing a link between ground observations, ground lidar, aircraft and space-based lidar we hope to demonstrate a path for deriving more accurate estimates of LAI on a global basis, and to provide a more robust means of validating passive optical estimates of this important variable.

  18. A Novel Intracranial Pressure Readout Circuit for Passive Wireless LC Sensor.

    PubMed

    Wang, Fa; Zhang, Xuan; Shokoueinejad, Mehdi; Iskandar, Bermans J; Medow, Joshua E; Webster, John G

    2017-10-01

    We present a wide frequency range, low cost, wireless intracranial pressure monitoring system, which includes an implantable passive sensor and an external reader. The passive sensor consists of two spiral coils and transduces the pressure change to a resonant frequency shift. The external portable reader reads out the sensor's resonant frequency over a wide frequency range (35 MHz-2.7 GHz). We propose a novel circuit topology, which tracks the system's impedance and phase change at a high frequency with low-cost components. This circuit is very simple and reliable. A prototype has been developed, and measurement results demonstrate that the device achieves a suitable measurement distance (>2 cm), sufficient sample frequency (>6 Hz), fine resolution, and good measurement accuracy for medical practice. Responsivity of this prototype is 0.92 MHz/mmHg and resolution is 0.028 mmHg. COMSOL specific absorption rate simulation proves that this system is safe. Considerations to improve the device performance have been discussed, which include the size of antenna, the power radiation, the Analog-to-digital converter (ADC) choice, and the signal processing algorithm.

  19. Battery-free radio frequency identification (RFID) sensors for food quality and safety

    PubMed Central

    Potyrailo, Radislav A.; Nagraj, Nandini; Tang, Zhexiong; Mondello, Frank J.; Surman, Cheryl; Morris, William

    2012-01-01

    The market demands for new sensors for food quality and safety stimulate the development of new sensing technologies that can provide an unobtrusive sensor form factor, battery-free operation, and minimal sensor cost. Intelligent labeling of food products to indicate and report their freshness and other conditions is one of important possible applications of such new sensors. We have applied passive (battery-free) radio frequency identification (RFID) sensors for highly sensitive and selective detection of food freshness and bacterial growth. In these sensors, the electric field generated in the RFID sensor antenna extends out from the plane of the RFID sensor and is affected by the ambient environment providing the opportunity for sensing. This environment may be in the form of a food sample within the electric field of the sensing region or a sensing film deposited onto the sensor antenna. Examples of applications include monitoring of freshness of milk, freshness of fish, and bacterial growth in a solution. Unlike other food freshness monitoring approaches that require a thin film battery for operation of an RFID sensor and fabrication of custom-made sensors, our developed passive RFID sensing approach combines advantages of both battery-free and cost-effective sensor design and offers response selectivity that is impossible to achieve with other individual sensors. PMID:22881825

  20. Battery-free radio frequency identification (RFID) sensors for food quality and safety.

    PubMed

    Potyrailo, Radislav A; Nagraj, Nandini; Tang, Zhexiong; Mondello, Frank J; Surman, Cheryl; Morris, William

    2012-09-05

    Market demands for new sensors for food quality and safety stimulate the development of new sensing technologies that can provide an unobtrusive sensor form, battery-free operation, and minimal sensor cost. Intelligent labeling of food products to indicate and report their freshness and other conditions is one important possible application of such new sensors. This study applied passive (battery-free) radio frequency identification (RFID) sensors for the highly sensitive and selective detection of food freshness and bacterial growth. In these sensors, the electric field generated in the RFID sensor antenna extends from the plane of the RFID sensor and is affected by the ambient environment, providing the opportunity for sensing. This environment may be in the form of a food sample within the electric field of the sensing region or a sensing film deposited onto the sensor antenna. Examples of applications include monitoring of milk freshness, fish freshness, and bacterial growth in a solution. Unlike other food freshness monitoring approaches that require a thin film battery for operation of an RFID sensor and fabrication of custom-made sensors, the passive RFID sensing approach developed here combines the advantages of both battery-free and cost-effective sensor design and offers response selectivity that is impossible to achieve with other individual sensors.

  1. An Intelligent Surveillance Platform for Large Metropolitan Areas with Dense Sensor Deployment

    PubMed Central

    Fernández, Jorge; Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M.; Carro, Belén; Sánchez-Esguevillas, Antonio; Alonso-López, Jesus A.; Smilansky, Zeev

    2013-01-01

    This paper presents an intelligent surveillance platform based on the usage of large numbers of inexpensive sensors designed and developed inside the European Eureka Celtic project HuSIMS. With the aim of maximizing the number of deployable units while keeping monetary and resource/bandwidth costs at a minimum, the surveillance platform is based on the usage of inexpensive visual sensors which apply efficient motion detection and tracking algorithms to transform the video signal in a set of motion parameters. In order to automate the analysis of the myriad of data streams generated by the visual sensors, the platform's control center includes an alarm detection engine which comprises three components applying three different Artificial Intelligence strategies in parallel. These strategies are generic, domain-independent approaches which are able to operate in several domains (traffic surveillance, vandalism prevention, perimeter security, etc.). The architecture is completed with a versatile communication network which facilitates data collection from the visual sensors and alarm and video stream distribution towards the emergency teams. The resulting surveillance system is extremely suitable for its deployment in metropolitan areas, smart cities, and large facilities, mainly because cheap visual sensors and autonomous alarm detection facilitate dense sensor network deployments for wide and detailed coverage. PMID:23748169

  2. A study to identify research issues in the area of electromagnetic measurements and signal handling of remotely sensed data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research issues in the area of electromagnetic measurements and signal handling of remotely sensed data are identified. The following seven issues are discussed; platform/sensor system position and velocity, platform/sensor attitudes and attitude rates, optics and antennas, detectors and associated electronics, sensor calibration, signal handling, and system design.

  3. Anti-collision radio-frequency identification system using passive SAW tags

    NASA Astrophysics Data System (ADS)

    Sorokin, A. V.; Shepeta, A. P.

    2017-06-01

    Modern multi sensor systems should have high operating speed and resistance to climate impacts. Radiofrequency systems use passive SAW tags for identification items and vehicles. These tags find application in industry, traffic remote control systems, and railway remote traffic control systems for identification and speed measuring. However, collision of the passive SAW RFID tags hinders development passive RFID SAW technology in Industry. The collision problem for passive SAW tags leads for incorrect identification and encoding each tag. In our researching, we suggest approach for identification of several passive SAW tags in collision case.

  4. Passive Impact Damage Detection of Fiber Glass Composite Panels

    DTIC Science & Technology

    2013-12-19

    PASSIVE IMPACT DAMAGE DETECTION OF FIBER GLASS COMPOSITE PANELS. By BRUNO ZAMORANO-SENDEROS A dissertation...COVERED 04-11-2012 to 10-12-2013 4. TITLE AND SUBTITLE PASSIVE IMPACT DAMAGE DETECTION OF FIBER GLASS COMPOSITE PANELS 5a. CONTRACT NUMBER 5b...process. .................................... 31 Figure 3-8 Sensor attached to the fiber glass fabric

  5. A study of aerosol absorption and height retrievals with a hyperspectral (UV to NIR) passive sensor

    NASA Astrophysics Data System (ADS)

    Gasso, S.

    2017-12-01

    With the deployment of the first sensor (TOMS, in 1978) with capabilities to detect aerosol absorption (AA) from space, there has been a continuous evolution in hardware and algorithms used to measured this property. Although with TOMS and its more advanced successors (such as OMI) made significant progress in globally characterizing AA , there is room for improvement especially by taking advantage of sensors with extended spectral coverage (UV to NIR) and high spatial resolution (<1 km). While such unique sensor does not exist yet, the collocation of observations from different platforms that jointly fulfill those characteristics (e.g. A-Train, S-NPP) confirm that it is possible to fully retrieve all AA parameters that modulate absorption in the upwelling radiance (AOD, SSA and aerosol layer height). However, such combined approaches still have some drawbacks such as the difficulty to account for cloud contamination. The upcoming deployment of satellite detectors with the desired features all in one sensor (PACE, TropOMI, GEMS) prompt a revision of the AA retrieval technique used in past approaches. In particular,the TropOMI mission, a hyperspectral UV-to-NIR sensor with moderate ( 5km nadir pixel) spatial resolution to be launched in Fall 2017. In addition , the sensor will include sensing capabilities for the wavelength range of the Oxygen bands A and B at very high wavelength resolution. This study will be centered on the aerosol detection capabilities of TropOMI. Because the spectral range covered, it is theoretically possible to simultaneously retrieve the aerosol optical depth, the single scattering albedo and aerosol mean height without assuming any of them as it was the case with previous retrieval approaches. Specifically, we intend to present a theoretical study based on simulated radiances at selected UV, VIS and near-IR bands (including the Oxygen bands) and evaluate the sensitivity of this sensor to different levels of aerosol concentration, height and absorption properties (imaginary index) along with particle size distribution.

  6. Census Cities Project and Atlas of Urban and Regional Change

    NASA Technical Reports Server (NTRS)

    Wray, J. R.

    1971-01-01

    The Census Cities Project has several related purposes: (1) to assess the role of remote sensors on high altitude platforms for the comparative study of urban areas; (2) to detect changes in selected U.S. urban areas between the 1970 census and the time of launching of an earth-orbiting sensor platform prior to the next census; (3) to test the utility of the satellite sensor platform to monitor urban change (When the 1970 census returns become available for small areas, they will serve as a control for sensor image interpretation.); (4) to design an information system for incorporating graphic sensor data with census-type data gathered by traditional techniques; (5) to identify and design user-oriented end-products or information services; and (6) to plan an effective organizational capability to provide such services on a continuing basis.

  7. Application of remote sensing for planning purposes

    NASA Technical Reports Server (NTRS)

    Hughes, T. H. (Editor)

    1977-01-01

    Types of remotely sensed data are many and varied but, all are primarily dependent on the sensor platform and the kind of sensing system used. A sensor platform is the type of aircraft or satellite to which a sensing system is attached; each platform has its own inherent advantages and disadvantages. Selected attributes of several current or recently used platforms are outlined. Though sensing systems are highly varied, they may be divided into various operational categories such as cameras, electromechanical scanners, and radars.

  8. Passive and electro-optic polymer photonics and InP electronics integration

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Katopodis, V.; Groumas, P.; Konczykowska, A.; Dupuy, J.-.; Beretta, A.; Dede, A.; Miller, E.; Choi, J. H.; Harati, P.; Jorge, F.; Nodjiadjim, V.; Dinu, R.; Cangini, G.; Vannucci, A.; Felipe, D.; Maese-Novo, A.; Keil, N.; Bach, H.-.; Schell, Martin; Avramopoulos, H.; Kouloumentas, Ch.

    2015-05-01

    Hybrid photonic integration allows individual components to be developed at their best-suited material platforms without sacrificing the overall performance. In the past few years a polymer-enabled hybrid integration platform has been established, comprising 1) EO polymers for constructing low-complexity and low-cost Mach-Zehnder modulators (MZMs) with extremely high modulation bandwidth; 2) InP components for light sources, detectors, and high-speed electronics including MUX drivers and DEMUX circuits; 3) Ceramic (AIN) RF board that links the electronic signals within the package. On this platform, advanced optoelectronic modules have been demonstrated, including serial 100 Gb/s [1] and 2x100 Gb/s [2] optical transmitters, but also 400 Gb/s optoelectronic interfaces for intra-data center networks [3]. To expand the device functionalities to an unprecedented level and at the same time improve the integration compatibility with diversified active / passive photonic components, we have added a passive polymer-based photonic board (polyboard) as the 4th material system. This passive polyboard allows for low-cost fabrication of single-mode waveguide networks, enables fast and convenient integration of various thin-film elements (TFEs) to control the light polarization, and provides efficient thermo-optic elements (TOEs) for wavelength tuning, light amplitude regulation and light-path switching.

  9. Slotted Photonic Crystal Sensors

    PubMed Central

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  10. Threat detection in desert environment with passive millimeter-wave sensor

    NASA Astrophysics Data System (ADS)

    Wilson, John P.; Schuetz, Christopher A.; Martin, Richard D.; Dillon, Thomas E.; Murakowski, Maciej; Prather, Dennis W.

    2011-06-01

    A new technique for improvised explosive device (IED) creation uses an explosive device buried in foam and covered in a layer of dirt. These devices are difficult to detect visually, however, their material characteristics make them detectable by passive millimeter-wave (pmmW) sensors. Results are presented from a test using a mock IED and an outdoor set-up consisting of two mock IEDs on a dirt background. The results show that the mock IEDs produces a millimeter-wave signature which is distinguishable from the background surrounding the mock IEDs. Simulations based on the measured data are presented and a design for a future vehicle mounted sensor is shown.

  11. Estimating animal population density using passive acoustics.

    PubMed

    Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L

    2013-05-01

    Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture-recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast-developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics-based density estimation, illustrated with examples from real-world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic-based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture-recapture. The methods are also applicable to other aquatic and terrestrial sound-producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds, amphibians, and insects, especially in situations where inferences are required over long periods of time. There is considerable work ahead, with several potentially fruitful research areas, including the development of (i) hardware and software for data acquisition, (ii) efficient, calibrated, automated detection and classification systems, and (iii) statistical approaches optimized for this application. Further, survey design will need to be developed, and research is needed on the acoustic behaviour of target species. Fundamental research on vocalization rates and group sizes, and the relation between these and other factors such as season or behaviour state, is critical. Evaluation of the methods under known density scenarios will be important for empirically validating the approaches presented here. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  12. Estimating animal population density using passive acoustics

    PubMed Central

    Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L

    2013-01-01

    Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture-recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast-developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics-based density estimation, illustrated with examples from real-world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic-based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture-recapture. The methods are also applicable to other aquatic and terrestrial sound-producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds, amphibians, and insects, especially in situations where inferences are required over long periods of time. There is considerable work ahead, with several potentially fruitful research areas, including the development of (i) hardware and software for data acquisition, (ii) efficient, calibrated, automated detection and classification systems, and (iii) statistical approaches optimized for this application. Further, survey design will need to be developed, and research is needed on the acoustic behaviour of target species. Fundamental research on vocalization rates and group sizes, and the relation between these and other factors such as season or behaviour state, is critical. Evaluation of the methods under known density scenarios will be important for empirically validating the approaches presented here. PMID:23190144

  13. Development and calibration of an air-floating six-axis force measurement platform using self-calibration

    NASA Astrophysics Data System (ADS)

    Huang, Bin; Wang, Xiaomeng; Li, Chengwei; Yi, Jiajing; Lu, Rongsheng; Tao, Jiayue

    2016-09-01

    This paper describes the design, working principle, as well as calibration of an air-floating six-axis force measurement platform, where the floating plate and nozzles were connected without contact, preventing inter-dimensional coupling and increasing precision significantly. The measurement repeatability error of the force size in the platform is less than 0.2% full scale (FS), which is significantly better than the precision of 1% FS in the six-axis force sensors on the current market. We overcame the difficulties of weight loading device in high-precision calibration by proposing a self-calibration method based on the floating plate gravity and met the calibration precision requirement of 0.02% FS. This study has general implications for the development and calibration of high-precision multi-axis force sensors. In particular, the air-floating six-axis force measurement platform could be applied to the calibration of some special sensors such as flexible tactile sensors and may be used as a micro-nano mechanical assembly platform for real-time assembly force testing.

  14. KENNEDY SPACE CENTER, FLA. - Researchers are positioned on one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-19

    KENNEDY SPACE CENTER, FLA. - Researchers are positioned on one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  15. KENNEDY SPACE CENTER, FLA. - Researchers utilize several types of watercraft to conduct underwater acoustic research in the Launch Complex 39 turn basin near Launch Pad 39A. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - Researchers utilize several types of watercraft to conduct underwater acoustic research in the Launch Complex 39 turn basin near Launch Pad 39A. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  16. KENNEDY SPACE CENTER, FLA. - Dr. Grant Gilmore (left), Dynamac Corp., talks to another member of the research team conducting underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - Dr. Grant Gilmore (left), Dynamac Corp., talks to another member of the research team conducting underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  17. KENNEDY SPACE CENTER, FLA. - Research team members roll out acoustic cable to the water's edge during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - Research team members roll out acoustic cable to the water's edge during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  18. KENNEDY SPACE CENTER, FLA. - Joe Bartoszek, NASA, is a member of the research team conducting underwater acoustic research in the Launch Complex 39 turn basin near Launch Pad 39A. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - Joe Bartoszek, NASA, is a member of the research team conducting underwater acoustic research in the Launch Complex 39 turn basin near Launch Pad 39A. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  19. KENNEDY SPACE CENTER, FLA. - Research team members take their places on one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-19

    KENNEDY SPACE CENTER, FLA. - Research team members take their places on one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  20. KENNEDY SPACE CENTER, FLA. - Dr. Grant Gilmore, Dynamac Corp., utilizes a laptop computer to explain aspects of the underwater acoustic research under way in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - Dr. Grant Gilmore, Dynamac Corp., utilizes a laptop computer to explain aspects of the underwater acoustic research under way in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  1. CMOS Image Sensors: Electronic Camera On A Chip

    NASA Technical Reports Server (NTRS)

    Fossum, E. R.

    1995-01-01

    Recent advancements in CMOS image sensor technology are reviewed, including both passive pixel sensors and active pixel sensors. On- chip analog to digital converters and on-chip timing and control circuits permit realization of an electronic camera-on-a-chip. Highly miniaturized imaging systems based on CMOS image sensor technology are emerging as a competitor to charge-coupled devices for low cost uses.

  2. Smart Cities Intelligence System (SMACiSYS) Integrating Sensor Web with Spatial Data Infrastructures (sensdi)

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D.; Painho, M.

    2017-09-01

    The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS) with sensor-web access (SENSDI) utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI) aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC) keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.

  3. AGARD Highlights.

    DTIC Science & Technology

    1980-09-01

    Air Vehicles as Sensor Platforms" (see inset) and would seek to determine the operational capability of advanced high altitude air vehicles as...Unmanned Air Vehicles as Sensor Platforms Determine the operational capability of advanced high-altitude air vehicles as platforms for surveillance...m) IT ala (1) a freccia ES sensacion (r) artificial ES indicador (m) tipo A NE pillvleugel FR I sensation MI artificielle FR indicateur (m) type A

  4. Development of Ultra-Low Power Metal Oxide Sensors and Arrays for Embedded Applications

    NASA Astrophysics Data System (ADS)

    Lutz, Brent; Wind, Rikard; Kostelecky, Clayton; Routkevitch, Dmitri; Deininger, Debra

    2011-09-01

    Metal oxide semiconductor sensors are widely used as individual sensors and in arrays, and a variety of designs for low power microhotplates have been demonstrated.1 Synkera Technologies has developed an embeddable chemical microsensor platform, based on a unique ceramic MEMS technology, for practical implementation in cell phones and other mobile electronic devices. Key features of this microsensor platform are (1) small size, (2) ultra-low power consumption, (3) high chemical sensitivity, (4) accurate response to a wide-range of threats, and (5) low cost. The sensor platform is enabled by a combination of advances in ceramic micromachining, and precision deposition of sensing films inside the high aspect ratio pores of anodic aluminum oxide (AAO).

  5. Top/bottom multisensor remote sensing of Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.; Wadhams, P.; Krabill, W. B.; Swift, R. N.; Crawford, J. P.

    1991-01-01

    Results are presented on the Aircraft/Submarine Sea Ice Project experiment carried out in May 1987 to investigate concurrently the top and the bottom features of the Arctic sea-ice cover. Data were collected nearly simultaneously by instruments aboard two aircraft and a submarine, which included passive and active (SAR) microwave sensors, upward looking and sidescan sonars, a lidar profilometer, and an IR sensor. The results described fall into two classes of correlations: (1) quantitative correlations between profiles, such as ice draft (sonar), ice elevation (laser), SAR backscatter along the track line, and passive microwave brightness temperatures; and (2) qualitative and semiquantitative correlations between corresponding areas of imagery (i.e., passive microwave, AR, and sidescan sonar).

  6. Surface Soil Moisture Retrieval Using SSM/I and Its Comparison with ESTAR: A Case Study Over a Grassland Region

    NASA Technical Reports Server (NTRS)

    Jackson, T.; Hsu, A. Y.; ONeill, P. E.

    1999-01-01

    This study extends a previous investigation on estimating surface soil moisture using the Special Sensor Microwave/Imager (SSM/I) over a grassland region. Although SSM/I is not optimal for soil moisture retrieval, it can under some conditions provide information. Rigorous analyses over land have been difficult due to the lack of good validation data sets. A scientific objective of the Southern Great Plains 1997 (SGP97) Hydrology Experiment was to investigate whether the retrieval algorithms for surface soil moisture developed at higher spatial resolution using truck-and aircraft-based passive microwave sensors can be extended to the coarser resolutions expected from satellite platform. With the data collected for the SGP97, the objective of this study is to compare the surface soil moisture estimated from the SSM/I data with those retrieved from the L-band Electronically Scanned Thinned Array Radiometer (ESTAR) data, the core sensor for the experiment, using the same retrieval algorithm. The results indicated that an error of estimate of 7.81% could be achieved with SSM/I data as contrasted to 2.82% with ESTAR data over three intensive sampling areas of different vegetation regimes. It confirms the results of previous study that SSM/I data can be used to retrieve surface soil moisture information at a regional scale under certain conditions.

  7. Microfluidic Mixing Technology for a Universal Health Sensor

    NASA Technical Reports Server (NTRS)

    Chan, Eugene Y.; Bae, Candice

    2009-01-01

    A highly efficient means of microfluidic mixing has been created for use with the rHEALTH sensor an elliptical mixer and passive curvilinear mixing patterns. The rHEALTH sensor provides rapid, handheld, complete blood count, cell differential counts, electrolyte measurements, and other lab tests based on a reusable, flow-based microfluidic platform. These geometries allow for cleaning in a reusable manner, and also allow for complete mixing of fluid streams. The microfluidic mixing is performed by flowing two streams of fluid into an elliptical or curvilinear design that allows the combination of the flows into one channel. The mixing is accomplished by either chaotic advection around micro - fluidic loops. All components of the microfluidic chip are flow-through, meaning that cleaning solution can be introduced into the chip to flush out cells, plasma proteins, and dye. Tests were performed on multiple chip geometries to show that cleaning is efficient in any flowthrough design. The conclusion from these experiments is that the chip can indeed be flushed out with microliter volumes of solution and biological samples are cleaned readily from the chip with minimal effort. The technology can be applied in real-time health monitoring at patient s bedside or in a doctor s office, and real-time clinical intervention in acute situations. It also can be used for daily measurement of hematocrit for patients on anticoagulant drugs, or to detect acute myocardial damage outside a hospital.

  8. Using Passive Sensing to Estimate Relative Energy Expenditure for Eldercare Monitoring

    PubMed Central

    2012-01-01

    This paper describes ongoing work in analyzing sensor data logged in the homes of seniors. An estimation of relative energy expenditure is computed using motion density from passive infrared motion sensors mounted in the environment. We introduce a new algorithm for detecting visitors in the home using motion sensor data and a set of fuzzy rules. The visitor algorithm, as well as a previous algorithm for identifying time-away-from-home (TAFH), are used to filter the logged motion sensor data. Thus, the energy expenditure estimate uses data collected only when the resident is home alone. Case studies are included from TigerPlace, an Aging in Place community, to illustrate how the relative energy expenditure estimate can be used to track health conditions over time. PMID:25266777

  9. Lag compensation of optical fibers or thermocouples to achieve waveform fidelity in dynamic gas pyrometry

    NASA Technical Reports Server (NTRS)

    Warshawsky, I.

    1991-01-01

    Fidelity of waveform reproduction requires constant amplitude ratio and constant time lag of a temperature sensor's indication, at all frequencies of interest. However, heat-transfer type sensors usually cannot satisfy these requirements. Equations for the actual indication of a thermocouple and an optical-fiber pyrometer are given explicitly, in terms of sensor and flowing-gas properties. A practical, realistic design of each type of sensor behaves like a first-order system with amplitude-ratio attenuation inversely proportional to frequency when the frequency exceeds the corner frequency. Only at much higher frequencies does the amplitude-ratio attenuation for the optical fiber sensor become inversely proportional to the square root of the frequency. Design options for improving the frequency response are discussed. On-line electrical lag compensation, using a linear amplifier and a passive compensation network, can extend the corner frequency of the thermocouple 100-fold or more; a similar passive network can be used for the optical-fiber sensor. Design details for these networks are presented.

  10. A complete passive blind image copy-move forensics scheme based on compound statistics features.

    PubMed

    Peng, Fei; Nie, Yun-ying; Long, Min

    2011-10-10

    Since most sensor pattern noise based image copy-move forensics methods require a known reference sensor pattern noise, it generally results in non-blinded passive forensics, which significantly confines the application circumstances. In view of this, a novel passive-blind image copy-move forensics scheme is proposed in this paper. Firstly, a color image is transformed into a grayscale one, and wavelet transform based de-noising filter is used to extract the sensor pattern noise, then the variance of the pattern noise, the signal noise ratio between the de-noised image and the pattern noise, the information entropy and the average energy gradient of the original grayscale image are chosen as features, non-overlapping sliding window operations are done to the images to divide them into different sub-blocks. Finally, the tampered areas are detected by analyzing the correlation of the features between the sub-blocks and the whole image. Experimental results and analysis show that the proposed scheme is completely passive-blind, has a good detection rate, and is robust against JPEG compression, noise, rotation, scaling and blurring. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Miniaturizable Ion-Selective Arrays Based on Highly Stable Polymer Membranes for Biomedical Applications

    PubMed Central

    Mir, Mònica; Lugo, Roberto; Tahirbegi, Islam Bogachan; Samitier, Josep

    2014-01-01

    Poly(vinylchloride) (PVC) is the most common polymer matrix used in the fabrication of ion-selective electrodes (ISEs). However, the surfaces of PVC-based sensors have been reported to show membrane instability. In an attempt to overcome this limitation, here we developed two alternative methods for the preparation of highly stable and robust ion-selective sensors. These platforms are based on the selective electropolymerization of poly(3,4-ethylenedioxythiophene) (PEDOT), where the sulfur atoms contained in the polymer covalently interact with the gold electrode, also permitting controlled selective attachment on a miniaturized electrode in an array format. This platform sensor was improved with the crosslinking of the membrane compounds with poly(ethyleneglycol) diglycidyl ether (PEG), thus also increasing the biocompatibility of the sensor. The resulting ISE membranes showed faster signal stabilization of the sensor response compared with that of the PVC matrix and also better reproducibility and stability, thus making these platforms highly suitable candidates for the manufacture of robust implantable sensors. PMID:24999717

  12. Design and testing of a multi-sensor pedestrian location and navigation platform.

    PubMed

    Morrison, Aiden; Renaudin, Valérie; Bancroft, Jared B; Lachapelle, Gérard

    2012-01-01

    Navigation and location technologies are continually advancing, allowing ever higher accuracies and operation under ever more challenging conditions. The development of such technologies requires the rapid evaluation of a large number of sensors and related utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs) such as the Global Positioning System (GPS) with accelerometers, gyros, barometers, magnetometers and other sensors is allowing for novel applications, but is hindered by the difficulties to test and compare integrated solutions using multiple sensor sets. In order to achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable platform is required. This paper describes the design and testing of the NavCube, a multi-sensor navigation, location and timing platform. The system provides a research tool for pedestrian navigation, location and body motion analysis in an unobtrusive form factor that enables in situ data collections with minimal gait and posture impact. Testing and examples of applications of the NavCube are provided.

  13. A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors

    PubMed Central

    Jang, Chi Woong; Byun, Young Tae; Lee, Taikjin; Woo, Deok Ha; Lee, Seok; Jhon, Young Min

    2013-01-01

    We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC) and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT) sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate. PMID:23783735

  14. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.

    PubMed

    Allison, Robert S; Johnston, Joshua M; Craig, Gregory; Jennings, Sion

    2016-08-18

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context.

  15. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring

    PubMed Central

    Allison, Robert S.; Johnston, Joshua M.; Craig, Gregory; Jennings, Sion

    2016-01-01

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context. PMID:27548174

  16. Design of self-contained sensor for monitoring of deep-sea offshore platform

    NASA Astrophysics Data System (ADS)

    Song, Yang; Yu, Yan; Zhang, Chunwei; Dong, Weijie; Ou, Jinping

    2013-04-01

    Offshore platform, which is the base of the production and living in the sea, is the most important infrastructure for developing oil and gas resources. At present, there are almost 6500 offshore platforms servicing in the 53 countries' sea areas around the world, creating great wealth for the world. In general, offshore platforms may work for 20 years, however, offshore platforms are expensive, complex, bulky, and so many of them are on extended active duty. Because of offshore platforms servicing in the harsh marine environment for a long time, the marine environment have a great impact on the offshore platforms. Besides, with the impact and erosion of seawater, and material aging, the offshore platform is possible to be in unexpected situations when a badly sudden situation happens. Therefore, it is of great significance to monitor the marine environment and offshore platforms. The self-contained sensor for deep-sea offshore platform with its unique design, can not only effectively extend the working time of the sensor with the capability of converting vibration energy to electrical energy, but also simultaneously collect the data of acceleration, inclination, temperature and humidity of the deep sea, so that we can achieve the purpose of monitoring offshore platforms through analyzing the collected data. The self-contained sensor for monitoring of deep-sea offshore platform includes sensing unit, data collecting and storage unit, the energy supply unit. The sensing unit with multi-variables, consists of an accelerometer LIS344ALH, an inclinometer SCA103T and a temperature and humidity sensor SHT11; the data collecting and storage unit includes the MSP430 low-power MCU, large capacity memory, clock circuit and the communication interface, the communication interface includes USB interface, serial ports and wireless interface; in addition, the energy supply unit, converting vibration to electrical energy to power the overall system, includes the electromagnetic generator, voltage multiplier circuit and a super capacitor which can withstand virtually unlimited number of charge-discharge cycles. When the seawater impacts on offshore platforms to produce vibration, electromagnetic generator converts vibration to electrical energy, its output(~ 1 V 50 Hz AC) is stepped up and rectified by a voltage multiplier circuit, and the energy is stored in a super capacitor. It is controlled by the MSP430 that monitors the voltage level on the super capacitor. The super capacitor charges the Li-ion battery when the voltage on the super capacitor reaches a threshold, then the whole process of energy supply is completed. The self-contained sensor for deep-sea offshore platform has good application prospects and practical value with small size, low power, being easy to install, converting vibration energy to supply power and high detection accuracy.

  17. Improving the Army’s Joint Platform Allocation Tool (JPAT)

    DTIC Science & Technology

    2013-09-01

    INTENTIONALLY LEFT BLANK ix LIST OF FIGURES Figure 1. Three example systems composed of platforms P1, P2, and P3, and sensors SN1, SN2 , SN3, and SN4...Figure 1. Three example systems composed of platforms P1, P2, and P3, and sensors SN1, SN2 , SN3, and SN4 (from Craparo et al., 2013) Figure 2. A

  18. Sweetwater, Texas Large N Experiment

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; Woodward, R.; Barklage, M.; Hollis, D.; Spriggs, N.; Gridley, J. M.; Parker, T.

    2015-12-01

    From 7 March to 30 April 2014, NodalSeismic, Nanometrics, and IRIS PASSCAL conducted a collaborative, spatially-dense seismic survey with several thousand nodal short-period geophones complemented by a backbone array of broadband sensors near Sweetwater, Texas. This pilot project demonstrates the efficacy of industry and academic partnerships, and leveraged a larger, commercial 3D survey to collect passive source seismic recordings to image the subsurface. This innovative deployment of a large-N mixed-mode array allows industry to explore array geometries and investigate the value of broadband recordings, while affording academics a dense wavefield imaging capability and an operational model for high volume instrument deployment. The broadband array consists of 25 continuously-recording stations from IRIS PASSCAL and Nanometrics, with an array design that maximized recording of horizontal-traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. In addition, 2639 FairfieldNodal Zland nodes from NodalSeismic were deployed in three sub-arrays: the outlier, backbone, and active source arrays. The backbone array consisted of 292 nodes that covered the entire survey area, while the outlier array consisted of 25 continuously-recording nodes distributed at a ~3 km distance away from the survey perimeter. Both the backbone and outlier array provide valuable constraints for the passive source portion of the analysis. This project serves as a learning platform to develop best practices in the support of large-N arrays with joint industry and academic expertise. Here we investigate lessons learned from a facility perspective, and present examples of data from the various sensors and array geometries. We will explore first-order results from local and teleseismic earthquakes, and show visualizations of the data across the array. Data are archived at the IRIS DMC under stations codes XB and 1B.

  19. AN ACTIVE-PASSIVE COMBINED ALGORITHM FOR HIGH SPATIAL RESOLUTION RETRIEVAL OF SOIL MOISTURE FROM SATELLITE SENSORS (Invited)

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Mladenova, I. E.; Narayan, U.

    2009-12-01

    Soil moisture is known to be an essential factor in controlling the partitioning of rainfall into surface runoff and infiltration and solar energy into latent and sensible heat fluxes. Remote sensing has long proven its capability to obtain soil moisture in near real-time. However, at the present time we have the Advanced Scanning Microwave Radiometer (AMSR-E) on board NASA’s AQUA platform is the only satellite sensor that supplies a soil moisture product. AMSR-E coarse spatial resolution (~ 50 km at 6.9 GHz) strongly limits its applicability for small scale studies. A very promising technique for spatial disaggregation by combining radar and radiometer observations has been demonstrated by the authors using a methodology is based on the assumption that any change in measured brightness temperature and backscatter from one to the next time step is due primarily to change in soil wetness. The approach uses radiometric estimates of soil moisture at a lower resolution to compute the sensitivity of radar to soil moisture at the lower resolution. This estimate of sensitivity is then disaggregated using vegetation water content, vegetation type and soil texture information, which are the variables on which determine the radar sensitivity to soil moisture and are generally available at a scale of radar observation. This change detection algorithm is applied to several locations. We have used aircraft observed active and passive data over Walnut Creek watershed in Central Iowa in 2002; the Little Washita Watershed in Oklahoma in 2003 and the Murrumbidgee Catchment in southeastern Australia for 2006. All of these locations have different soils and land cover conditions which leads to a rigorous test of the disaggregation algorithm. Furthermore, we compare the derived high spatial resolution soil moisture to in-situ sampling and ground observation networks

  20. Electrical Design and Evaluation of Asynchronous Serial Bus Communication Network of 48 Sensor Platform LSIs with Single-Ended I/O for Integrated MEMS-LSI Sensors.

    PubMed

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Muroyama, Masanori

    2018-01-15

    For installing many sensors in a limited space with a limited computing resource, the digitization of the sensor output at the site of sensation has advantages such as a small amount of wiring, low signal interference and high scalability. For this purpose, we have developed a dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) (referred to as "sensor platform LSI") for bus-networked Micro-Electro-Mechanical-Systems (MEMS)-LSI integrated sensors. In this LSI, collision avoidance, adaptation and event-driven functions are simply implemented to relieve data collision and congestion in asynchronous serial bus communication. In this study, we developed a network system with 48 sensor platform LSIs based on Printed Circuit Board (PCB) in a backbone bus topology with the bus length being 2.4 m. We evaluated the serial communication performance when 48 LSIs operated simultaneously with the adaptation function. The number of data packets received from each LSI was almost identical, and the average sampling frequency of 384 capacitance channels (eight for each LSI) was 73.66 Hz.

  1. Minefield reconnaissance and detector system

    DOEpatents

    Butler, Millard T.; Cave, Steven P.; Creager, James D.; Johnson, Charles M.; Mathes, John B.; Smith, Kirk J.

    1994-01-01

    A multi-sensor system (10) for detecting the presence of objects on the surface of the ground or buried just under the surface, such as anti-personnel or anti-tank mines or the like. A remote sensor platform (12) has a plurality of metal detector sensors (22) and a plurality of short pulse radar sensors (24). The remote sensor platform (12) is remotely controlled from a processing and control unit (14) and signals from the remote sensor platform (12) are sent to the processing and control unit (14) where they are individually evaluated in separate data analysis subprocess steps (34, 36) to obtain a probability "score" for each of the pluralities of sensors (22, 24). These probability scores are combined in a fusion subprocess step (38) by comparing score sets to a probability table (130) which is derived based upon the historical incidence of object present conditions given that score set. A decision making rule is applied to provide an output which is optionally provided to a marker subprocess (40) for controlling a marker device (76) to mark the location of found objects.

  2. The RF-powered surface wave sensor oscillator--a successful alternative to passive wireless sensing.

    PubMed

    Avramov, Ivan D

    2004-09-01

    A novel, passive wireless surface acoustic wave (SAW) sensor providing a highly coherent measurand proportional frequency, frequency modulated (FM) with identification (ID) data and immune to interference with multiple-path signals is described. The sensor is appropriate for bandwidth-limited applications requiring high-frequency accuracy. It comprises a low-power oscillator, stabilized with the sensing SAW resonator and powered by the rectified radio frequency (RF) power of the interrogating signal received by an antenna on the sensor part. A few hundred microwatts of direct current (DC) power are enough to power the sensor oscillator and ID modulation circuit and achieve stable operation at 1.0 and 2.49 GHz. Reliable sensor interrogation was achieved over a distance of 0.45 m from a SAW-based interrogation unit providing 50 mW of continuous RF power at 915 MHz. The -30 to -35 dBm of returned sensor power was enough to receive the sensor signal over a long distance and through several walls with a simple superheterodyne FM receiver converting the sensor signal to a low measurand proportional intermediate frequency and retrieving the ID data through FM detection. Different sensor implementations, including continuous and pulsed power versions and the possibility of transmitting data from several measurands with a single sensor, are discussed.

  3. An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications.

    PubMed

    Bhattacharyya, Mayukh; Gruenwald, Waldemar; Jansen, Dirk; Reindl, Leonhard; Aghassi-Hagmann, Jasmin

    2018-05-07

    Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μ m CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 m m 2 . The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μ W. The analog part of the design consumes only 36 μ W, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches.

  4. An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications

    PubMed Central

    Gruenwald, Waldemar; Jansen, Dirk; Aghassi-Hagmann, Jasmin

    2018-01-01

    Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μm CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 mm2. The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μW. The analog part of the design consumes only 36 μW, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches. PMID:29735939

  5. Towards Autonomous Inspection of Space Systems Using Mobile Robotic Sensor Platforms

    NASA Technical Reports Server (NTRS)

    Wong, Edmond; Saad, Ashraf; Litt, Jonathan S.

    2007-01-01

    The space transportation systems required to support NASA's Exploration Initiative will demand a high degree of reliability to ensure mission success. This reliability can be realized through autonomous fault/damage detection and repair capabilities. It is crucial that such capabilities are incorporated into these systems since it will be impractical to rely upon Extra-Vehicular Activity (EVA), visual inspection or tele-operation due to the costly, labor-intensive and time-consuming nature of these methods. One approach to achieving this capability is through the use of an autonomous inspection system comprised of miniature mobile sensor platforms that will cooperatively perform high confidence inspection of space vehicles and habitats. This paper will discuss the efforts to develop a small scale demonstration test-bed to investigate the feasibility of using autonomous mobile sensor platforms to perform inspection operations. Progress will be discussed in technology areas including: the hardware implementation and demonstration of robotic sensor platforms, the implementation of a hardware test-bed facility, and the investigation of collaborative control algorithms.

  6. Current profilers and current meters: compass and tilt sensors errors and calibration

    NASA Astrophysics Data System (ADS)

    Le Menn, M.; Lusven, A.; Bongiovanni, E.; Le Dû, P.; Rouxel, D.; Lucas, S.; Pacaud, L.

    2014-08-01

    Current profilers and current meters have a magnetic compass and tilt sensors for relating measurements to a terrestrial reference frame. As compasses are sensitive to their magnetic environment, they must be calibrated in the configuration in which they will be used. A calibration platform for magnetic compasses and tilt sensors was built, based on a method developed in 2007, to correct angular errors and guarantee a measurement uncertainty for instruments mounted in mooring cages. As mooring cages can weigh up to 800 kg, it was necessary to find a suitable place to set up this platform, map the magnetic fields in this area and dimension the platform to withstand these loads. It was calibrated using a GPS positioning technique. The platform has a table that can be tilted to calibrate the tilt sensors. The measurement uncertainty of the system was evaluated. Sinusoidal corrections based on the anomalies created by soft and hard magnetic materials were tested, as well as manufacturers’ calibration methods.

  7. Wake vortex acoustic characteristics and SOCRATES sensor performance : final report January 2003 to December 2006.

    DOT National Transportation Integrated Search

    2007-07-31

    This report provides an evaluation of the current state of the SOCRATES sensor and its readiness for use as an operational sensor for active monitoring of aircraft wake turbulence. SOCRATES is a laser opto-acoustic array designed to passively detect ...

  8. Aspects of detection and tracking of ground targets from an airborne EO/IR sensor

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam; Sithiravel, Rajiv; Daya, Zahir; Kirubarajan, Thiagalingam

    2015-05-01

    An airborne EO/IR (electro-optical/infrared) camera system comprises of a suite of sensors, such as a narrow and wide field of view (FOV) EO and mid-wave IR sensors. EO/IR camera systems are regularly employed on military and search and rescue aircrafts. The EO/IR system can be used to detect and identify objects rapidly in daylight and at night, often with superior performance in challenging conditions such as fog. There exist several algorithms for detecting potential targets in the bearing elevation grid. The nonlinear filtering problem is one of estimation of the kinematic parameters from bearing and elevation measurements from a moving platform. In this paper, we developed a complete model for the state of a target as detected by an airborne EO/IR system and simulated a typical scenario with single target with 1 or 2 airborne sensors. We have demonstrated the ability to track the target with `high precision' and noted the improvement from using two sensors on a single platform or on separate platforms. The performance of the Extended Kalman filter (EKF) is investigated on simulated data. Image/video data collected from an IR sensor on an airborne platform are processed using an image tracking by detection algorithm.

  9. eSensor: an electrochemical detection-based DNA microarray technology enabling sample-to-answer molecular diagnostics

    NASA Astrophysics Data System (ADS)

    Liu, Robin H.; Longiaru, Mathew

    2009-05-01

    DNA microarrays are becoming a widespread tool used in life science and drug screening due to its many benefits of miniaturization and integration. Microarrays permit a highly multiplexed DNA analysis. Recently, the development of new detection methods and simplified methodologies has rapidly expanded the use of microarray technologies from predominantly gene expression analysis into the arena of diagnostics. Osmetech's eSensor® is an electrochemical detection platform based on a low-to- medium density DNA hybridization array on a cost-effective printed circuit board substrate. eSensor® has been cleared by FDA for Warfarin sensitivity test and Cystic Fibrosis Carrier Detection. Other genetic-based diagnostic and infectious disease detection tests are under development. The eSensor® platform eliminates the need for an expensive laser-based optical system and fluorescent reagents. It allows one to perform hybridization and detection in a single and small instrument without any fluidic processing and handling. Furthermore, the eSensor® platform is readily adaptable to on-chip sample-to-answer genetic analyses using microfluidics technology. The eSensor® platform provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus have a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.

  10. Archimedean Spiral Pairs with no Electrical Connections as a Passive Wireless Implantable Sensor

    PubMed Central

    Drazan, John F; Gunko, Aleksandra; Dion, Matthew; Abdoun, Omar; Cady, Nathaniel C; Connor, Kenneth A; Ledet, Eric H

    2015-01-01

    We have developed, modeled, fabricated, and tested a passive wireless sensor system that exhibits a linear frequency-displacement relationship. The displacement sensor is comprised of two anti-aligned Archimedean coils separated by an insulating dielectric layer. There are no electrical connections between the two coils and there are no onboard electronics. The two coils are inductively and capacitively coupled due to their close proximity. The sensor system is interrogated wirelessly by monitoring the return loss parameter from a vector network analyzer. The resonant frequency of the sensor is dependent on the displacement between the two coils. Due to changes in the inductive and capacitive coupling between the coils at different distances, the resonant frequency is modulated by coil separation. In a specified range, the frequency shift can be linearized with respect to coil separation. Batch fabrication techniques were used to fabricate copper coils for experimental testing with air as the dielectric. Through testing, we validated the performance of sensors as predicted within acceptable errors. Because of its simplicity, this displacement sensor has potential applications for in vivo sensing. PMID:27430033

  11. Anapole nanolasers for mode-locking and ultrafast pulse generation

    PubMed Central

    Totero Gongora, Juan S.; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea

    2017-01-01

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry. PMID:28561017

  12. Solution-based circuits enable rapid and multiplexed pathogen detection.

    PubMed

    Lam, Brian; Das, Jagotamoy; Holmes, Richard D; Live, Ludovic; Sage, Andrew; Sargent, Edward H; Kelley, Shana O

    2013-01-01

    Electronic readout of markers of disease provides compelling simplicity, sensitivity and specificity in the detection of small panels of biomarkers in clinical samples; however, the most important emerging tests for disease, such as infectious disease speciation and antibiotic-resistance profiling, will need to interrogate samples for many dozens of biomarkers. Electronic readout of large panels of markers has been hampered by the difficulty of addressing large arrays of electrode-based sensors on inexpensive platforms. Here we report a new concept--solution-based circuits formed on chip--that makes highly multiplexed electrochemical sensing feasible on passive chips. The solution-based circuits switch the information-carrying signal readout channels and eliminate all measurable crosstalk from adjacent, biomolecule-specific microsensors. We build chips that feature this advance and prove that they analyse unpurified samples successfully, and accurately classify pathogens at clinically relevant concentrations. We also show that signature molecules can be accurately read 2  minutes after sample introduction.

  13. A Novel Sensor Platform Matching the Improved Version of IPMVP Option C for Measuring Energy Savings

    PubMed Central

    Tseng, Yen-Chieh; Lee, Da-Sheng; Lin, Cheng-Fang; Chang, Ching-Yuan

    2013-01-01

    It is easy to measure energy consumption with a power meter. However, energy savings cannot be directly computed by the powers measured using existing power meter technologies, since the power consumption only reflects parts of the real energy flows. The International Performance Measurement and Verification Protocol (IPMVP) was proposed by the Efficiency Valuation Organization (EVO) to quantify energy savings using four different methodologies of A, B, C and D. Although energy savings can be estimated following the IPMVP, there are limitations on its practical implementation. Moreover, the data processing methods of the four IPMVP alternatives use multiple sensors (thermometer, hygrometer, Occupant information) and power meter readings to simulate all facilities, in order to determine an energy usage benchmark and the energy savings. This study proposes a simple sensor platform to measure energy savings. Using usually the Electronic Product Code (EPC) global standard, an architecture framework for an information system is constructed that integrates sensors data, power meter readings and occupancy conditions. The proposed sensor platform is used to monitor a building with a newly built vertical garden system (VGS). A VGS shields solar radiation and saves on energy that would be expended on air-conditioning. With this platform, the amount of energy saved in the whole facility is measured and reported in real-time. The data are compared with those obtained from detailed measurement and verification (M&V) processes. The discrepancy is less than 1.565%. Using measurements from the proposed sensor platform, the energy savings for the entire facility are quantified, with a resolution of ±1.2%. The VGS gives an 8.483% daily electricity saving for the building. Thus, the results show that the simple sensor platform proposed by this study is more widely applicable than the four complicated IPMVP alternatives and the VGS is an effective tool in reducing the carbon footprint of a building. PMID:23698273

  14. Wireless Sensor Platform for Cultural Heritage Monitoring and Modeling System

    PubMed Central

    Bermudez, Sergio A.; Schrott, Alejandro G.; Tsukada, Masahiko; Kargere, Lucretia; Marianno, Fernando; Hamann, Hendrik F.; López, Vanessa; Leona, Marco

    2017-01-01

    Results from three years of continuous monitoring of environmental conditions using a wireless sensor platform installed at The Cloisters, the medieval branch of the New York Metropolitan Museum of Art, are presented. The platform comprises more than 200 sensors that were distributed in five galleries to assess temperature and air flow and to quantify microclimate changes using physics-based and statistical models. The wireless sensor network data shows a very stable environment within the galleries, while the dense monitoring enables localized monitoring of subtle changes in air quality trends and impact of visitors on the microclimate conditions. The high spatial and temporal resolution data serves as a baseline study to understand the impact of visitors and building operations on the long-term preservation of art objects. PMID:28858223

  15. Wireless Sensor Platform for Cultural Heritage Monitoring and Modeling System.

    PubMed

    Klein, Levente J; Bermudez, Sergio A; Schrott, Alejandro G; Tsukada, Masahiko; Dionisi-Vici, Paolo; Kargere, Lucretia; Marianno, Fernando; Hamann, Hendrik F; López, Vanessa; Leona, Marco

    2017-08-31

    Results from three years of continuous monitoring of environmental conditions using a wireless sensor platform installed at The Cloisters, the medieval branch of the New York Metropolitan Museum of Art, are presented. The platform comprises more than 200 sensors that were distributed in five galleries to assess temperature and air flow and to quantify microclimate changes using physics-based and statistical models. The wireless sensor network data shows a very stable environment within the galleries, while the dense monitoring enables localized monitoring of subtle changes in air quality trends and impact of visitors on the microclimate conditions. The high spatial and temporal resolution data serves as a baseline study to understand the impact of visitors and building operations on the long-term preservation of art objects.

  16. Development and Characteristics of a Mobile, Semi-Autonomous Floating Platform for in situ Lake Measurements

    NASA Astrophysics Data System (ADS)

    Barry, D.; Lemmin, U.; Le Dantec, N.; Zulliger, L.; Rusterholz, M.; Bolay, M.; Rossier, J.; Kangur, K.

    2013-12-01

    In the development of sustainable management strategies of lakes more insight into their physical, chemical and ecological dynamics is needed. Field data obtained from various types of sensors with adequate spatial and temporal sampling rate are essential to understand better the processes that govern fluxes and pathways of water masses and transported compounds, whether for model validation or for monitoring purposes. One advantage of unmanned platforms is that they limit the disturbances typically affecting the quality of data collected on small vessels, including perturbations caused by movements of onboard crew. We have developed a mobile, semi-autonomous floating platform with 8 h power autonomy using a 5 m long by 2.5 m wide catamaran. Our approach focused on modularity and high payload capacity in order to accommodate a large number of sensors both in terms of electronic (power and data) and mechanical constraints of integration. Software architecture and onboard electronics use National Instruments technology to simplify and standardize integration of sensors, actuators and communication. Piecewise-movable deck sections allow optimizing platform stability depending on the payload. The entire system is controlled by a remote computer located on an accompanying vessel and connected via a wireless link with a range of over 1 km. Real-time transmission of GPS-stamped measurements allows immediate modifications in the survey plan if needed. The displacement of the platform is semi-autonomous, with the options of either autopilot mode following a pre-planned course specified by waypoints or remote manual control from the accompanying vessel. Maintenance of permanent control over the platform displacement is required for safety reasons with respect to other users of the lake. Currently, the sensor payload comprises an array of fast temperature probes, a bottom-tracking ADCP and atmospheric sensors including a radiometer. A towed CTD with additional water quality sensors operated from a remotely controlled winch is presently being integrated. Field tests have shown that the platform is reliable, capable of collecting long transects of 2D lake and collocated atmospheric boundary layer data and adaptable to integrate new sensors.

  17. Pseudo-orthogonal frequency coded wireless SAW RFID temperature sensor tags.

    PubMed

    Saldanha, Nancy; Malocha, Donald C

    2012-08-01

    SAW sensors are ideal for various wireless, passive multi-sensor applications because they are small, rugged, radiation hard, and offer a wide range of material choices for operation over broad temperature ranges. The readable distance of a tag in a multi-sensor environment is dependent on the insertion loss of the device and the processing gain of the system. Single-frequency code division multiple access (CDMA) tags that are used in high-volume commercial applications must have universal coding schemes and large numbers of codes. The use of a large number of bits at the common center frequency to achieve sufficient code diversity in CDMA tags necessitates reflector banks with >30 dB loss. Orthogonal frequency coding is a spread-spectrum approach that employs frequency and time diversity to achieve enhanced tag properties. The use of orthogonal frequency coded (OFC) SAW tags reduces adjacent reflector interactions for low insertion loss, increased range, complex coding, and system processing gain. This work describes a SAW tag-sensor platform that reduces device loss by implementing long reflector banks with optimized spectral coding. This new pseudo-OFC (POFC) coding is defined and contrasted with the previously defined OFC coding scheme. Auto- and cross-correlation properties of the chips and their relation to reflectivity per strip and reflector length are discussed. Results at 250 MHz of 8-chip OFC and POFC SAW tags will be compared. The key parameters of insertion loss, cross-correlation, and autocorrelation of the two types of frequency-coded tags will be analyzed, contrasted, and discussed. It is shown that coded reflector banks can be achieved with near-zero loss and still maintain good coding properties. Experimental results and results predicted by the coupling of modes model are presented for varying reflector designs and codes. A prototype 915-MHz POFC sensor tag is used as a wireless temperature sensor and the results are shown.

  18. A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends

    PubMed Central

    Ruiz-Garcia, Luis; Lunadei, Loredana; Barreiro, Pilar; Robla, Jose Ignacio

    2009-01-01

    The aim of the present paper is to review the technical and scientific state of the art of wireless sensor technologies and standards for wireless communications in the Agri-Food sector. These technologies are very promising in several fields such as environmental monitoring, precision agriculture, cold chain control or traceability. The paper focuses on WSN (Wireless Sensor Networks) and RFID (Radio Frequency Identification), presenting the different systems available, recent developments and examples of applications, including ZigBee based WSN and passive, semi-passive and active RFID. Future trends of wireless communications in agriculture and food industry are also discussed. PMID:22408551

  19. Inertial navigation sensor integrated motion analysis for autonomous vehicle navigation

    NASA Technical Reports Server (NTRS)

    Roberts, Barry; Bhanu, Bir

    1992-01-01

    Recent work on INS integrated motion analysis is described. Results were obtained with a maximally passive system of obstacle detection (OD) for ground-based vehicles and rotorcraft. The OD approach involves motion analysis of imagery acquired by a passive sensor in the course of vehicle travel to generate range measurements to world points within the sensor FOV. INS data and scene analysis results are used to enhance interest point selection, the matching of the interest points, and the subsequent motion-based computations, tracking, and OD. The most important lesson learned from the research described here is that the incorporation of inertial data into the motion analysis program greatly improves the analysis and makes the process more robust.

  20. Development of Planar Optics for an Optical Tracking Sensor

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Sasagawa, Tomohiro

    1998-10-01

    An optical tracking sensor for large-capacity flexible disk drive (FDD) is demonstrated. The passive optics is compact and lightweight (5.4 mm length×3.6 mm width×1.2 mm height in size and 18 mg weight). It comprises all passive optical elements necessary for optical tracking, e.g., a focusing lens, a three-beam grating, an aperture and a beam splitter grating. Three beams were focused to a predetermined spot size of 13 µm at designed intervals of 110 µm on a disk surface and the reflected beams were successfully guided to photodiodes. This confirms that the application of the planar optical technique is very useful for realizing a compact and light optical sensor.

  1. Submillimetre wave imaging and security: imaging performance and prediction

    NASA Astrophysics Data System (ADS)

    Appleby, R.; Ferguson, S.

    2016-10-01

    Within the European Commission Seventh Framework Programme (FP7), CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) has designed and is fabricating a stand-off system operating at sub-millimetre wave frequencies for the detection of objects concealed on people. This system scans people as they walk by the sensor. This paper presents the top level system design which brings together both passive and active sensors to provide good performance. The passive system operates in two bands between 100 and 600GHz and is based on a cryogen free cooled focal plane array sensor whilst the active system is a solid-state 340GHz radar. A modified version of OpenFX was used for modelling the passive system. This model was recently modified to include realistic location-specific skin temperature and to accept animated characters wearing up to three layers of clothing that move dynamically, such as those typically found in cinematography. Targets under clothing have been modelled and the performance simulated. The strengths and weaknesses of this modelling approach are discussed.

  2. SAW-Based Phononic Crystal Microfluidic Sensor-Microscale Realization of Velocimetry Approaches for Integrated Analytical Platform Applications.

    PubMed

    Oseev, Aleksandr; Lucklum, Ralf; Zubtsov, Mikhail; Schmidt, Marc-Peter; Mukhin, Nikolay V; Hirsch, Soeren

    2017-09-23

    The current work demonstrates a novel surface acoustic wave (SAW) based phononic crystal sensor approach that allows the integration of a velocimetry-based sensor concept into single chip integrated solutions, such as Lab-on-a-Chip devices. The introduced sensor platform merges advantages of ultrasonic velocimetry analytic systems and a microacoustic sensor approach. It is based on the analysis of structural resonances in a periodic composite arrangement of microfluidic channels confined within a liquid analyte. Completed theoretical and experimental investigations show the ability to utilize periodic structure localized modes for the detection of volumetric properties of liquids and prove the efficacy of the proposed sensor concept.

  3. Passive versus active hazard detection and avoidance systems

    NASA Astrophysics Data System (ADS)

    Neveu, D.; Mercier, G.; Hamel, J.-F.; Simard Bilodeau, V.; Woicke, S.; Alger, M.; Beaudette, D.

    2015-06-01

    Upcoming planetary exploration missions will require advanced guidance, navigation and control technologies to reach landing sites with high precision and safety. Various technologies are currently in development to meet that goal. Some technologies rely on passive sensors and benefit from the low mass and power of such solutions while others rely on active sensors and benefit from an improved robustness and accuracy. This paper presents two different hazard detection and avoidance (HDA) system design approaches. The first architecture relies only on a camera as the passive HDA sensor while the second relies, in addition, on a Lidar as the active HDA sensor. Both options use in common an innovative hazard map fusion algorithm aiming at identifying the safest landing locations. This paper presents the simulation tools and reports the closed-loop software simulation results obtained using each design option. The paper also reports the Monte Carlo simulation campaign that was used to assess the robustness of each design option. The performance of each design option is compared against each other in terms of performance criteria such as percentage of success, mean distance to nearest hazard, etc. The applicability of each design option to planetary exploration missions is also discussed.

  4. BreedVision--a multi-sensor platform for non-destructive field-based phenotyping in plant breeding.

    PubMed

    Busemeyer, Lucas; Mentrup, Daniel; Möller, Kim; Wunder, Erik; Alheit, Katharina; Hahn, Volker; Maurer, Hans Peter; Reif, Jochen C; Würschum, Tobias; Müller, Joachim; Rahe, Florian; Ruckelshausen, Arno

    2013-02-27

    To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies.

  5. BreedVision — A Multi-Sensor Platform for Non-Destructive Field-Based Phenotyping in Plant Breeding

    PubMed Central

    Busemeyer, Lucas; Mentrup, Daniel; Möller, Kim; Wunder, Erik; Alheit, Katharina; Hahn, Volker; Maurer, Hans Peter; Reif, Jochen C.; Würschum, Tobias; Müller, Joachim; Rahe, Florian; Ruckelshausen, Arno

    2013-01-01

    To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies. PMID:23447014

  6. Multi-sensor millimeter-wave system for hidden objects detection by non-collaborative screening

    NASA Astrophysics Data System (ADS)

    Zouaoui, Rhalem; Czarny, Romain; Diaz, Frédéric; Khy, Antoine; Lamarque, Thierry

    2011-05-01

    In this work, we present the development of a multi-sensor system for the detection of objects concealed under clothes using passive and active millimeter-wave (mmW) technologies. This study concerns both the optimization of a commercial passive mmW imager at 94 GHz using a phase mask and the development of an active mmW detector at 77 GHz based on synthetic aperture radar (SAR). A first wide-field inspection is done by the passive imager while the person is walking. If a suspicious area is detected, the active imager is switched-on and focused on this area in order to obtain more accurate data (shape of the object, nature of the material ...).

  7. Measurement of the passive stiffness of ankle joint in 3 DOF using stewart platform type ankle foot device.

    PubMed

    Nomura, Kenta; Yonezawa, Teru; Mizoguchi, Hiroshi; Takemura, Hiroshi

    2016-08-01

    This paper presents a method to measure the passive stiffness of an ankle joint in three degrees of freedom (DOF) under two motion speeds (1 Hz and 5 degree/s) using a developed Stewart platform-type device. The developed device can reproduce input motions of the foot in 6 DOF by controlling six pneumatic linear motion actuators. We used the device to measure the passive stiffness of an ankle joint undergoing three kinds of motion, namely dorsi-plantar flexion, inversion-eversion, and adduction-abduction. The measured values of the passive stiffness of the ankle joint in dorsiflexion that we obtained agreed well with that obtained in a previous study, indicating that the developed device is useful for measuring the passive stiffness of ankle joint. In addition, the developed device can be used to measure the stiffness in inversion-eversion and adduction-abduction motions as well, parameters that have never been measured. The results we obtained demonstrated certain interesting features as we varied both the direction and pace of motion (e.g., there were significant differences in the stiffness not only between adduction and abduction during the faster pace, but also between these and the other motions).

  8. A 6DOF passive vibration isolator using X-shape supporting structures

    NASA Astrophysics Data System (ADS)

    Wu, Zhijing; Jing, Xingjian; Sun, Bo; Li, Fengming

    2016-10-01

    A novel 6 degree of freedom (6-DOF) passive vibration isolator is studied theoretically and validated with experiments. Based on the Stewart platform configuration, the 6-DOF isolator is constructed by 6 X-shape structures as legs, which can realize very good and tunable vibration isolation performance in all 6 directions with a passive manner. The mechanic model is established for static analysis of the working range, static stiffness and loading capacity. Thereafter, the equation of motion of the isolator is derived with the Hamilton principle. The equivalent stiffness and the displacement transmissibility in the six decoupled DOFs direction are then discussed with experimental results for validation. The results reveal that (a) by designing the structure parameters, the system can possess flexible stiffness such as negative, quasi-zero and positive stiffness, (b) due to the combination of the Stewart platform and the X-shape structure, the system can have very good vibration isolation performance in all the 6 directions and in a passive manner, and (c) compared with the simplified linear-stiffness legs, the nonlinearity of the X-shape structures enhance the passive isolator to have much better vibration isolation performance.

  9. Wireless measurement of tire pressure with passive quartz sensors

    NASA Astrophysics Data System (ADS)

    Grossmann, Rainer

    1999-05-01

    The air pressure in the tires of a vehicle affects its stability, handling and braking and may contribute to causing an accident. Under-inflated tires increase fuel consumption. Existing measurement systems for the monitoring of the tire pressure use active sensors which need a battery or bulky energy transmission. This work shows a new approach: Quartz crystals as sensors can operate passively, without energy supply, by giving an echo to a stimulus pulse. Strain influences the otherwise extremely stable natural frequency of a quartz crystal which is therefore ideally suited for pressure measurements. As the natural frequency lies in the Megahertz range, stimulation and response can be transmitted by a pair of small antennas. A wireless measurement system has been built with excellent accuracy and resolution and a lightweight sensor which is very reliable and in principle maintenance-free.

  10. Multi-Sensor Mud Detection

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Matthies, Larry H.

    2010-01-01

    Robust mud detection is a critical perception requirement for Unmanned Ground Vehicle (UGV) autonomous offroad navigation. A military UGV stuck in a mud body during a mission may have to be sacrificed or rescued, both of which are unattractive options. There are several characteristics of mud that may be detectable with appropriate UGV-mounted sensors. For example, mud only occurs on the ground surface, is cooler than surrounding dry soil during the daytime under nominal weather conditions, is generally darker than surrounding dry soil in visible imagery, and is highly polarized. However, none of these cues are definitive on their own. Dry soil also occurs on the ground surface, shadows, snow, ice, and water can also be cooler than surrounding dry soil, shadows are also darker than surrounding dry soil in visible imagery, and cars, water, and some vegetation are also highly polarized. Shadows, snow, ice, water, cars, and vegetation can all be disambiguated from mud by using a suite of sensors that span multiple bands in the electromagnetic spectrum. Because there are military operations when it is imperative for UGV's to operate without emitting strong, detectable electromagnetic signals, passive sensors are desirable. JPL has developed a daytime mud detection capability using multiple passive imaging sensors. Cues for mud from multiple passive imaging sensors are fused into a single mud detection image using a rule base, and the resultant mud detection is localized in a terrain map using range data generated from a stereo pair of color cameras.

  11. KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin monitor some of the project's equipment just released into the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-19

    KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin monitor some of the project's equipment just released into the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  12. Passive Microwave Rainfall Estimates from the GPM Mission

    NASA Astrophysics Data System (ADS)

    Kummerow, Christian; Petkovic, Veljko

    2017-04-01

    The Global Precipitation Measurement (GPM) mission was launched in February 2014 as a joint mission between JAXA from Japan and NASA from the United States. GPM carries a state of the art dual-frequency precipitation radar and a multi-channel passive microwave radiometer that acts not only to enhance the radar's retrieval capability, but also as a reference for a constellation of existing satellites carrying passive microwave sensors. In March of 2016, GPM released Version 4 of its precipitation products that consists of radar, radiometer, and combined radar/radiometer products. The precipitation products from these sensors or sensor combination are consistent by design and show relatively minor differences in the mean global sense. Closer examination of the biases, however, reveals regional biases between active and passive sensors that can be directly related top the nature of the convection. By looking at cloud systems instead of individual satellite pixels, the relationship between biases and the large scale environmental state become obvious. Organized convection, which occurs more readily in regimes with large Convective Available Potential Energy (CAPE) and shear tend to drive biases in different directions than isolated convection. This is true over both land and ocean. This talk will present the latest findings and explore these discrepancies from a physical perspective in order to gain some understanding between cloud structures, information content, and retrieval differences. This analysis will be used to then drive a bigger picture of how GPM's latest results inform the Global Water and Energy budgets.

  13. KENNEDY SPACE CENTER, FLA. - Justin Manley, of the National Oceanic and Atmospheric Administration, is a member of the research team conducting underwater acoustic research in the Launch Complex 39 turn basin near Launch Pad 39A. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - Justin Manley, of the National Oceanic and Atmospheric Administration, is a member of the research team conducting underwater acoustic research in the Launch Complex 39 turn basin near Launch Pad 39A. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  14. KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin release some of the project's equipment into the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-19

    KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin release some of the project's equipment into the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  15. KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin retrieve some of the project's equipment from the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-19

    KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin retrieve some of the project's equipment from the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  16. KENNEDY SPACE CENTER, FLA. - A research team member aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin lifts some of the project's equipment from the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-19

    KENNEDY SPACE CENTER, FLA. - A research team member aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin lifts some of the project's equipment from the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  17. KENNEDY SPACE CENTER, FLA. - A research team member aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin releases some of the project's equipment into the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-19

    KENNEDY SPACE CENTER, FLA. - A research team member aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin releases some of the project's equipment into the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  18. KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin prepare to release some of the project's equipment into the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-19

    KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin prepare to release some of the project's equipment into the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  19. KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin secure some of the project's equipment back into the vessel. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-19

    KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin secure some of the project's equipment back into the vessel. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  20. KENNEDY SPACE CENTER, FLA. - A research team member aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin prepares some of the project's equipment for placement in the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-19

    KENNEDY SPACE CENTER, FLA. - A research team member aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin prepares some of the project's equipment for placement in the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  1. KENNEDY SPACE CENTER, FLA. - Research team members roll out acoustic cable to the water's edge as others stand by in a watercraft during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - Research team members roll out acoustic cable to the water's edge as others stand by in a watercraft during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

  2. Development of a Cloud Computing-Based Pier Type Port Structure Stability Evaluation Platform Using Fiber Bragg Grating Sensors.

    PubMed

    Jo, Byung Wan; Jo, Jun Ho; Khan, Rana Muhammad Asad; Kim, Jung Hoon; Lee, Yun Sung

    2018-05-23

    Structure Health Monitoring is a topic of great interest in port structures due to the ageing of structures and the limitations of evaluating structures. This paper presents a cloud computing-based stability evaluation platform for a pier type port structure using Fiber Bragg Grating (FBG) sensors in a system consisting of a FBG strain sensor, FBG displacement gauge, FBG angle meter, gateway, and cloud computing-based web server. The sensors were installed on core components of the structure and measurements were taken to evaluate the structures. The measurement values were transmitted to the web server via the gateway to analyze and visualize them. All data were analyzed and visualized in the web server to evaluate the structure based on the safety evaluation index (SEI). The stability evaluation platform for pier type port structures involves the efficient monitoring of the structures which can be carried out easily anytime and anywhere by converging new technologies such as cloud computing and FBG sensors. In addition, the platform has been successfully implemented at “Maryang Harbor” situated in Maryang-Meyon of Korea to test its durability.

  3. Design and Field Test of a WSN Platform Prototype for Long-Term Environmental Monitoring

    PubMed Central

    Lazarescu, Mihai T.

    2015-01-01

    Long-term wildfire monitoring using distributed in situ temperature sensors is an accurate, yet demanding environmental monitoring application, which requires long-life, low-maintenance, low-cost sensors and a simple, fast, error-proof deployment procedure. We present in this paper the most important design considerations and optimizations of all elements of a low-cost WSN platform prototype for long-term, low-maintenance pervasive wildfire monitoring, its preparation for a nearly three-month field test, the analysis of the causes of failure during the test and the lessons learned for platform improvement. The main components of the total cost of the platform (nodes, deployment and maintenance) are carefully analyzed and optimized for this application. The gateways are designed to operate with resources that are generally used for sensor nodes, while the requirements and cost of the sensor nodes are significantly lower. We define and test in simulation and in the field experiment a simple, but effective communication protocol for this application. It helps to lower the cost of the nodes and field deployment procedure, while extending the theoretical lifetime of the sensor nodes to over 16 years on a single 1 Ah lithium battery. PMID:25912349

  4. An integrative solution for managing, tracing and citing sensor-related information

    NASA Astrophysics Data System (ADS)

    Koppe, Roland; Gerchow, Peter; Macario, Ana; Schewe, Ingo; Rehmcke, Steven; Düde, Tobias

    2017-04-01

    In a data-driven scientific world, the need to capture information on sensors used in the data acquisition process has become increasingly important. Following the recommendations of the Open Geospatial Consortium (OGC), we started by adopting the SensorML standard for describing platforms, devices and sensors. However, it soon became obvious to us that understanding, implementing and filling such standards costs significant effort and cannot be expected from every scientist individually. So we developed a web-based sensor management solution (https://sensor.awi.de) for describing platforms, devices and sensors as hierarchy of systems which supports tracing changes to a system whereas hiding complexity. Each platform contains devices where each device can have sensors associated with specific identifiers, contacts, events, related online resources (e.g. manufacturer factsheets, calibration documentation, data processing documentation), sensor output parameters and geo-location. In order to better understand and address real world requirements, we have closely interacted with field-going scientists in the context of the key national infrastructure project "FRontiers in Arctic marine Monitoring ocean observatory" (FRAM) during the software development. We learned that not only the lineage of observations is crucial for scientists but also alert services using value ranges, flexible output formats and information on data providers (e.g. FTP sources) for example. Mostly important, persistent and citable versions of sensor descriptions are required for traceability and reproducibility allowing seamless integration with existing information systems, e.g. PANGAEA. Within the context of the EU-funded Ocean Data Interoperability Platform project (ODIP II) and in cooperation with 52north we are proving near real-time data via Sensor Observation Services (SOS) along with sensor descriptions based on our sensor management solution. ODIP II also aims to develop a harmonized SensorML profile for the marine community which we will be adopting in our solution as soon as available. In this presentation we will show our sensor management solution which is embedded in our data flow framework to offer out-of-the-box interoperability with existing information systems and standards. In addition, we will present real world examples and challenges related to the description and traceability of sensor metadata.

  5. DURIP: Piezoresponse Force Microscope (PFM) with Controlled Environment for Characterization of Flexoelectric Nanostructures

    DTIC Science & Technology

    2015-04-21

    seismic sensors , acoustic sensors , electromagnetic sensors and infrared (IR) detectors are among in-need multimodal sensing of vehicles, personnel, weapons... sensors and detectors largely due to the fact that the nature of piezoelectricity renders both active and passive sensing with fast response, low profile...and low power consumption. Acoustic and seismic sensors are used to ascertain the exact target location, speed, direction of motion, and

  6. Space-based sensor management and geostationary satellites tracking

    NASA Astrophysics Data System (ADS)

    El-Fallah, A.; Zatezalo, A.; Mahler, R.; Mehra, R. K.; Donatelli, D.

    2007-04-01

    Sensor management for space situational awareness presents a daunting theoretical and practical challenge as it requires the use of multiple types of sensors on a variety of platforms to ensure that the space environment is continuously monitored. We demonstrate a new approach utilizing the Posterior Expected Number of Targets (PENT) as the sensor management objective function, an observation model for a space-based EO/IR sensor platform, and a Probability Hypothesis Density Particle Filter (PHD-PF) tracker. Simulation and results using actual Geostationary Satellites are presented. We also demonstrate enhanced performance by applying the ProgressiveWeighting Correction (PWC) method for regularization in the implementation of the PHD-PF tracker.

  7. Remote sensing of oceanic phytoplankton - Present capabilities and future goals

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1980-01-01

    A description is given of current work in the development of sensors, and their integration into increasingly powerful systems, for oceanic phytoplankton abundance estimation. Among the problems relevant to such work are phytoplankton ecology, the spatial and temporal domains, available sensor platforms, and sensor combinations. Among the platforms considered are satellites, aircraft, tethered balloons, helicopters, ships, and the Space Shuttle. Sensors discussed include microwave radiometers, laser fluorosensors, microwave scatterometers, multispectral scanners, Coastal Ocean Dynamics Radar (CODAR), and linear array detectors. Consideration is also given to the prospects for such future sensor systems as the National Oceanic Satellite System (NOSS) and the Airborne Integrated Mapping System (AIMS).

  8. Multifrequency remote sensing of soil moisture. [Guymon, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Theis, S. W.; Mcfarland, M. J.; Rosenthal, W. D.; Jones, C. L. (Principal Investigator)

    1982-01-01

    Multifrequency sensor data collected at Guymon, Oklahoma and Dalhart, Texas using NASA's C-130 aircraft were used to determine which of the all-weather microwave sensors demonstrated the highest correlation to surface soil moisture over optimal bare soil conditions, and to develop and test techniques which use visible/infrared sensors to compensate for the vegetation effect in this sensor's response to soil moisture. The L-band passive microwave radiometer was found to be the most suitable single sensor system to estimate soil moisture over bare fields. In comparison to other active and passive microwave sensors the L-band radiometer (1) was influenced least by ranges in surface roughness; (2) demonstrated the most sensitivity to soil moisture differences in terms of the range of return from the full range of soil moisture; and (3) was less sensitive to errors in measurement in relation to the range of sensor response. L-band emissivity related more strongly to soil moisture when moisture was expressed as percent of field capacity. The perpendicular vegetation index as determined from the visible/infrared sensors was useful as a measure of the vegetation effect on the L-band radiometer response to soil moisture.

  9. Optical and Electrical Sensor Busses for the Heinrich Hertz Satellite

    NASA Astrophysics Data System (ADS)

    Heyer, Heinz-Voker; Zeh, Thomas; Reutlinger, Arnd; Kammer, Susanne; Voigt, Siegfried

    2010-08-01

    Germany is planning the geostationary communication satellite Heinrich Hertz. The used platform will be the Small Geo platform of OHB. Phase A for this satellite has been performed successfully and two sensor busses in addition to the conventional harness have been selected for housekeeping measurement. *Sensor bus (wire related) *Optical bus (fiber related). The satellite will be launched in 2014. The payload will be a newly developed telecommunication equipment for in-orbit demonstration.

  10. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications.

    PubMed

    Maduraiveeran, Govindhan; Sasidharan, Manickam; Ganesan, Vellaichamy

    2018-04-30

    Introduction of novel functional nanomaterials and analytical technologies signify a foremost possibility for the advance of electrochemical sensor and biosensor platforms/devices for a broad series of applications including biological, biomedical, biotechnological, clinical and medical diagnostics, environmental and health monitoring, and food industries. The design of sensitive and selective electrochemical biological sensor platforms are accomplished conceivably by offering new surface modifications, microfabrication techniques, and diverse nanomaterials with unique properties for in vivo and in vitro medical analysis via relating a sensibly planned electrode/solution interface. The advantageous attributes such as low-cost, miniaturization, energy efficient, easy fabrication, online monitoring, and the simultaneous sensing capability are the driving force towards continued growth of electrochemical biosensing platforms, which have fascinated the interdisciplinary research arenas spanning chemistry, material science, biological science, and medical industries. The electrochemical biosensor platforms have potential applications in the early-stage detection and diagnosis of disease as stout and tunable diagnostic and therapeutic systems. The key aim of this review is to emphasize the newest development in the design of sensing and biosensing platforms based on functional nanomaterials for biological and biomedical applications. High sensitivity and selectivity, fast response, and excellent durability in biological media are all critical aspects which will also be wisely addressed. Potential applications of electrochemical sensor and biosensor platforms based on advanced functional nanomaterials for neuroscience diagnostics, clinical, point-of-care diagnostics and medical industries are also concisely presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Nanopaper as an Optical Sensing Platform.

    PubMed

    Morales-Narváez, Eden; Golmohammadi, Hamed; Naghdi, Tina; Yousefi, Hossein; Kostiv, Uliana; Horák, Daniel; Pourreza, Nahid; Merkoçi, Arben

    2015-07-28

    Bacterial cellulose nanopaper (BC) is a multifunctional material known for numerous desirable properties: sustainability, biocompatibility, biodegradability, optical transparency, thermal properties, flexibility, high mechanical strength, hydrophilicity, high porosity, broad chemical-modification capabilities and high surface area. Herein, we report various nanopaper-based optical sensing platforms and describe how they can be tuned, using nanomaterials, to exhibit plasmonic or photoluminescent properties that can be exploited for sensing applications. We also describe several nanopaper configurations, including cuvettes, plates and spots that we printed or punched on BC. The platforms include a colorimetric-based sensor based on nanopaper containing embedded silver and gold nanoparticles; a photoluminescent-based sensor, comprising CdSe@ZnS quantum dots conjugated to nanopaper; and a potential up-conversion sensing platform constructed from nanopaper functionalized with NaYF4:Yb(3+)@Er(3+)&SiO2 nanoparticles. We have explored modulation of the plasmonic or photoluminescent properties of these platforms using various model biologically relevant analytes. Moreover, we prove that BC is and advantageous preconcentration platform that facilitates the analysis of small volumes of optically active materials (∼4 μL). We are confident that these platforms will pave the way to optical (bio)sensors or theranostic devices that are simple, transparent, flexible, disposable, lightweight, miniaturized and perhaps wearable.

  12. Design of verification platform for wireless vision sensor networks

    NASA Astrophysics Data System (ADS)

    Ye, Juanjuan; Shang, Fei; Yu, Chuang

    2017-08-01

    At present, the majority of research for wireless vision sensor networks (WVSNs) still remains in the software simulation stage, and the verification platforms of WVSNs that available for use are very few. This situation seriously restricts the transformation from theory research of WVSNs to practical application. Therefore, it is necessary to study the construction of verification platform of WVSNs. This paper combines wireless transceiver module, visual information acquisition module and power acquisition module, designs a high-performance wireless vision sensor node whose core is ARM11 microprocessor and selects AODV as the routing protocol to set up a verification platform called AdvanWorks for WVSNs. Experiments show that the AdvanWorks can successfully achieve functions of image acquisition, coding, wireless transmission, and obtain the effective distance parameters between nodes, which lays a good foundation for the follow-up application of WVSNs.

  13. Ramifications of a potential gap in passive microwave data for the long-term sea ice climate record

    NASA Astrophysics Data System (ADS)

    Meier, W.; Stewart, J. S.

    2017-12-01

    The time series of sea ice concentration and extent from passive microwave sensors is one of the longest satellite-derived climate records and the significant decline in Arctic sea ice extent is one of the most iconic indicators of climate change. However, this continuous and consistent record is under threat due to the looming gap in passive microwave sensor coverage. The record started in late 1978 with the launch of the Scanning Multichannel Microwave Radiometer (SMMR) and has continued with a series of Special Sensor Microwave Imager (SSMI) and Special Sensor Microwave Imager and Sounder (SSMIS) instruments on U.S. Defense Meteorological Satellite Program (DMSP) satellites. The data from the different sensors are intercalibrated at the algorithm level by adjusting algorithm coefficients so that the output sea ice data is as consistent as possible between the older and the newer sensor. A key aspect in constructing the time series is to have at least two sensors operating simultaneously so that data from the older and newer sensor can be obtained from the same locations. However, with recent losses of the DMSP F19 and F20, the remaining SSMIS sensors are all well beyond their planned mission lifetime. This means that risk of failure is not small and is increasing with each day of operation. The newest passive microwave sensor, the JAXA Advanced Microwave Scanning Radiometer-2 (AMSR2), is a potential contributor to the time series (though it too is now beyond it's planned 5-year mission lifetime). However, AMSR2's larger antenna and higher spatial resolution presents a challenge in integrating its data with the rest of the sea ice record because the ice edge is quite sensitive to the sensor resolution, which substantially affects the total sea ice extent and area estimates. This will need to be adjusted for if AMSR2 is used to continue the time series. Here we will discuss efforts at NSIDC to integrate AMSR2 estimates into the sea ice climate record if needed. We will also discuss potential contingency plans, such as using operational sea ice charts, to fill any gaps. This would allow the record to continue, but the consistency of the time series will be degraded because the ice charts use human analysis and differing sources, amounts and quality of input data, which makes them sub-optimal for long-term climate records.

  14. The mid-IR silicon photonics sensor platform (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kimerling, Lionel; Hu, Juejun; Agarwal, Anuradha M.

    2017-02-01

    Advances in integrated silicon photonics are enabling highly connected sensor networks that offer sensitivity, selectivity and pattern recognition. Cost, performance and the evolution path of the so-called `Internet of Things' will gate the proliferation of these networks. The wavelength spectral range of 3-8um, commonly known as the mid-IR, is critical to specificity for sensors that identify materials by detection of local vibrational modes, reflectivity and thermal emission. For ubiquitous sensing applications in this regime, the sensors must move from premium to commodity level manufacturing volumes and cost. Scaling performance/cost is critically dependent on establishing a minimum set of platform attributes for point, wearable, and physical sensing. Optical sensors are ideal for non-invasive applications. Optical sensor device physics involves evanescent or intra-cavity structures for applied to concentration, interrogation and photo-catalysis functions. The ultimate utility of a platform is dependent on sample delivery/presentation modalities; system reset, recalibration and maintenance capabilities; and sensitivity and selectivity performance. The attributes and performance of a unified Glass-on-Silicon platform has shown good prospects for heterogeneous integration on materials and devices using a low cost process flow. Integrated, single mode, silicon photonic platforms offer significant performance and cost advantages, but they require discovery and qualification of new materials and process integration schemes for the mid-IR. Waveguide integrated light sources based on rare earth dopants and Ge-pumped frequency combs have promise. Optical resonators and waveguide spirals can enhance sensitivity. PbTe materials are among the best choices for a standard, waveguide integrated photodetector. Chalcogenide glasses are capable of transmitting mid-IR signals with high transparency. Integrated sensor case studies of i) high sensitivity analyte detection in solution; ii) gas sensing in air and iii) on-chip spectrometry provide good insight into the tradeoffs being made en route to ubiquitous sensor deployment in an Internet of Things.

  15. A review of active control approaches in stabilizing combustion systems in aerospace industry

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Lu, Zhengli; Zhao, He; Li, X. Y.; Wang, Bing; Liu, Peijin

    2018-02-01

    Self-sustained combustion instabilities are one of the most plaguing challenges and problems in lean-conditioned propulsion and land-based engine systems, such as rocket motors, gas turbines, industrial furnace and boilers, and turbo-jet thrust augmenters. Either passive or active control in open- or closed-loop configurations can be implemented to mitigate such instabilities. One of the classical disadvantages of passive control is that it is only implementable to a designed combustor over a limited frequency range and can not respond to the changes in operating conditions. Compared with passive control approaches, active control, especially in closed-loop configuration is more adaptive and has inherent capacity to be implemented in practice. The key components in closed-loop active control are 1) sensor, 2) controller (optimization algorithm) and 3) dynamic actuator. The present work is to outline the current status, technical challenges and development progress of the active control approaches (in open- or closed-loop configurations). A brief description of feedback control, adaptive control, model-based control and sliding mode control are provided first by introducing a simplified Rijke-type combustion system. The modelled combustion system provides an invaluable platform to evaluate the performance of these feedback controllers and a transient growth controller. The performance of these controllers are compared and discussed. An outline of theoretical, numerical and experimental investigations are then provided to overview the research and development progress made during the last 4 decades. Finally, potential, challenges and issues involved with the design, application and implementation of active combustion control strategies on a practical engine system are highlighted.

  16. Monitoring of Low Levels of Furfural in Power Transformer Oil with a Sensor System Based on a POF-MIP Platform

    PubMed Central

    Cennamo, Nunzio; De Maria, Letizia; D’Agostino, Girolamo; Zeni, Luigi; Pesavento, Maria

    2015-01-01

    In this work an innovative, miniaturized and low cost optical chemical sensor (POF-MIP platform), based on a molecular imprinted polymer (MIP) and surface plasmon resonance in a plastic optical fiber (POF), is presented and preliminarily tested for monitoring of furfural (furan-2-carbaldehyde) in transformer oil. To this end, the optical platform was coupled to an MIP layer, highly selective for furfural. The ability of the developed sensor to directly detect furfural in the insulating oil was investigated. The detection limit of the sensor has been found to be 9 ppb, with a linear response up to about 30 ppb. However there is a sensible response up to 0.15 ppm. Because of the small linearity range, the Hill equation is suggested for the quantification. The sensor has been effectively tested in real oil samples collected from aged electrical equipment removed from service. The assessed concentration of furfural is in good agreement with that evaluated by a high pressure liquid chromatography (HLPC) method, confirming the good selectivity of the proposed sensor. PMID:25871719

  17. Monitoring of low levels of furfural in power transformer oil with a sensor system based on a POF-MIP platform.

    PubMed

    Cennamo, Nunzio; De Maria, Letizia; D'Agostino, Girolamo; Zeni, Luigi; Pesavento, Maria

    2015-04-13

    In this work an innovative, miniaturized and low cost optical chemical sensor (POF-MIP platform), based on a molecular imprinted polymer (MIP) and surface plasmon resonance in a plastic optical fiber (POF), is presented and preliminarily tested for monitoring of furfural (furan-2-carbaldehyde) in transformer oil. To this end, the optical platform was coupled to an MIP layer, highly selective for furfural. The ability of the developed sensor to directly detect furfural in the insulating oil was investigated. The detection limit of the sensor has been found to be 9 ppb, with a linear response up to about 30 ppb. However there is a sensible response up to 0.15 ppm. Because of the small linearity range, the Hill equation is suggested for the quantification. The sensor has been effectively tested in real oil samples collected from aged electrical equipment removed from service. The assessed concentration of furfural is in good agreement with that evaluated by a high pressure liquid chromatography (HLPC) method, confirming the good selectivity of the proposed sensor.

  18. Passive long range acousto-optic sensor

    NASA Astrophysics Data System (ADS)

    Slater, Dan

    2006-08-01

    Alexander Graham Bell's photophone of 1880 was a simple free space optical communication device that used the sun to illuminate a reflective acoustic diaphragm. A selenium photocell located 213 m (700 ft) away converted the acoustically modulated light beam back into sound. A variation of the photophone is presented here that uses naturally formed free space acousto-optic communications links to provide passive multichannel long range acoustic sensing. This system, called RAS (remote acoustic sensor), functions as a long range microphone with a demonstrated range in excess of 40 km (25 miles).

  19. Pyrotechnic hazards classification and evaluation program test report. Heat flux study of deflagrating pyrotechnic munitions

    NASA Technical Reports Server (NTRS)

    Fassnacht, P. O.

    1971-01-01

    A heat flux study of deflagrating pyrotechnic munitions is presented. Three tests were authorized to investigate whether heat flux measurements may be used as effective hazards evaluation criteria to determine safe quantity distances for pyrotechnics. A passive sensor study was conducted simultaneously to investigate their usefulness in recording events and conditions. It was concluded that heat flux measurements can effectively be used to evaluate hazards criteria and that passive sensors are an inexpensive tool to record certain events in the vicinity of deflagrating pyrotechnic stacks.

  20. Orbiting passive microwave sensor simulation applied to soil moisture estimation

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Clark, B. V.; Pitchford, W. M.; Paris, J. F.

    1979-01-01

    A sensor/scene simulation program was developed and used to determine the effects of scene heterogeneity, resolution, frequency, look angle, and surface and temperature relations on the performance of a spaceborne passive microwave system designed to estimate soil water information. The ground scene is based on classified LANDSAT images which provide realistic ground classes, as well as geometries. It was determined that the average sensitivity of antenna temperature to soil moisture improves as the antenna footprint size increased. Also, the precision (or variability) of the sensitivity changes as a function of resolution.

  1. Passivation on High Q Acoustic Strain Sensor for Accelerometer.

    DTIC Science & Technology

    1984-11-01

    selection of passivation layers. Preliminary results indicated that V203 , (yttrium oxide ) and AIN (aluminum nitride) were the best materials for...thickness selection of passivation layers. Preliminary results indicated that Y203 (yttrium oxide ) and AIN (aluminum nitride) were the best materials...crystal, in this case a parabolic temperature characteristic. Several circuits were designed using varactor diode phase shifting networks. FOjcTl Ta tor

  2. Electrical Design and Evaluation of Asynchronous Serial Bus Communication Network of 48 Sensor Platform LSIs with Single-Ended I/O for Integrated MEMS-LSI Sensors

    PubMed Central

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki

    2018-01-01

    For installing many sensors in a limited space with a limited computing resource, the digitization of the sensor output at the site of sensation has advantages such as a small amount of wiring, low signal interference and high scalability. For this purpose, we have developed a dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) (referred to as “sensor platform LSI”) for bus-networked Micro-Electro-Mechanical-Systems (MEMS)-LSI integrated sensors. In this LSI, collision avoidance, adaptation and event-driven functions are simply implemented to relieve data collision and congestion in asynchronous serial bus communication. In this study, we developed a network system with 48 sensor platform LSIs based on Printed Circuit Board (PCB) in a backbone bus topology with the bus length being 2.4 m. We evaluated the serial communication performance when 48 LSIs operated simultaneously with the adaptation function. The number of data packets received from each LSI was almost identical, and the average sampling frequency of 384 capacitance channels (eight for each LSI) was 73.66 Hz. PMID:29342923

  3. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care

    NASA Astrophysics Data System (ADS)

    Chen, Lisa Y.; Tee, Benjamin C.-K.; Chortos, Alex L.; Schwartz, Gregor; Tse, Victor; J. Lipomi, Darren; Wong, H.-S. Philip; McConnell, Michael V.; Bao, Zhenan

    2014-10-01

    Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.

  4. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care.

    PubMed

    Chen, Lisa Y; Tee, Benjamin C-K; Chortos, Alex L; Schwartz, Gregor; Tse, Victor; Lipomi, Darren J; Wong, H-S Philip; McConnell, Michael V; Bao, Zhenan

    2014-10-06

    Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.

  5. The Global Sensor Web: A Platform for Citizen Science (Invited)

    NASA Astrophysics Data System (ADS)

    Simons, A. L.

    2013-12-01

    The Global Sensor Web (GSW) is an effort to provide an infrastructure for the collection, sharing and visualizing sensor data from around the world. Over the past three years the GSW has been developed and tested as a standardized platform for citizen science. The most developed of the citizen science projects built onto the GSW has been Distributed Electronic Cosmic-ray Observatory (DECO), which is an Android application designed to harness a global network of mobile devices, to detect the origin and behavior of the cosmic radiation. Other projects which can be readily built on top of GSW as a platform are also discussed. A cosmic-ray track candidate captured on a cell phone camera.

  6. South Philadelphia Passive Sampler and Sensor Study

    EPA Science Inventory

    Starting in June 2013, the United States Environmental Protection Agency (U.S. EPA) and the City of Philadelphia Air Measurements Services began collaborative research on the use of passive samplers (PSs) and stand-alone air measurement (SAM) systems to improve information on the...

  7. A Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics.

    PubMed

    Ashok, Praveen C; Giardini, Mario E; Dholakia, Kishan; Sibbett, Wilson

    2014-01-01

    We report the development of a fiber-based Raman sensor to be used in tumour margin identification during endoluminal robotic surgery. Although this is a generic platform, the sensor we describe was adapted for the ARAKNES (Array of Robots Augmenting the KiNematics of Endoluminal Surgery) robotic platform. On such a platform, the Raman sensor is intended to identify ambiguous tissue margins during robot-assisted surgeries. To maintain sterility of the probe during surgical intervention, a disposable sleeve was specially designed. A straightforward user-compatible interface was implemented where a supervised multivariate classification algorithm was used to classify different tissue types based on specific Raman fingerprints so that it could be used without prior knowledge of spectroscopic data analysis. The protocol avoids inter-patient variability in data and the sensor system is not restricted for use in the classification of a particular tissue type. Representative tissue classification assessments were performed using this system on excised tissue. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Real-Time Adaptation of Decision Thresholds in Sensor Networks for Detection of Moving Targets (PREPRINT)

    DTIC Science & Technology

    2010-01-01

    target kinematics for multiple sensor detections is referred to as the track - before - detect strategy, and is commonly adopted in multi-sensor surveillance...of moving targets. Wettergren [4] presented an application of track - before - detect strategies to undersea distributed sensor networks. In de- signing...the deployment of a distributed passive sensor network that employs this track - before - detect procedure, it is impera- tive that the placement of

  9. A Portable Wireless Communication Platform Based on a Multi-Material Fiber Sensor for Real-Time Breath Detection

    PubMed Central

    Bellemare-Rousseau, Simon; Khalil, Mazen; Messaddeq, Younes

    2018-01-01

    In this paper, we present a new mobile wireless communication platform for real-time monitoring of an individual’s breathing rate. The platform takes the form of a wearable stretching T-shirt featuring a sensor and a detection base station. The sensor is formed by a spiral-shaped antenna made from a multi-material fiber connected to a compact transmitter. Based on the resonance frequency of the antenna at approximately 2.4 GHz, the breathing sensor relies on its Bluetooth transmitter. The contactless and non-invasive sensor is designed without compromising the user’s comfort. The sensing mechanism of the system is based on the detection of the signal amplitude transmitted wirelessly by the sensor, which is found to be sensitive to strain. We demonstrate the capability of the platform to detect the breathing rates of four male volunteers who are not in movement. The breathing pattern is obtained through the received signal strength indicator (RSSI) which is filtered and analyzed with home-made algorithms in the portable system. Numerical simulations of human breath are performed to support the experimental detection, and both results are in a good agreement. Slow, fast, regular, irregular, and shallow breathing types are successfully recorded within a frequency interval of 0.16–1.2 Hz, leading to a breathing rate varying from 10 to 72 breaths per minute. PMID:29587396

  10. UrtheCast Second-Generation Earth Observation Sensors

    NASA Astrophysics Data System (ADS)

    Beckett, K.

    2015-04-01

    UrtheCast's Second-Generation state-of-the-art Earth Observation (EO) remote sensing platform will be hosted on the NASA segment of International Space Station (ISS). This platform comprises a high-resolution dual-mode (pushbroom and video) optical camera and a dual-band (X and L) Synthetic Aperture RADAR (SAR) instrument. These new sensors will complement the firstgeneration medium-resolution pushbroom and high-definition video cameras that were mounted on the Russian segment of the ISS in early 2014. The new cameras are expected to be launched to the ISS in late 2017 via the Space Exploration Technologies Corporation Dragon spacecraft. The Canadarm will then be used to install the remote sensing platform onto a CBM (Common Berthing Mechanism) hatch on Node 3, allowing the sensor electronics to be accessible from the inside of the station, thus limiting their exposure to the space environment and allowing for future capability upgrades. The UrtheCast second-generation system will be able to take full advantage of the strengths that each of the individual sensors offers, such that the data exploitation capabilities of the combined sensors is significantly greater than from either sensor alone. This represents a truly novel platform that will lead to significant advances in many other Earth Observation applications such as environmental monitoring, energy and natural resources management, and humanitarian response, with data availability anticipated to begin after commissioning is completed in early 2018.

  11. A Portable Wireless Communication Platform Based on a Multi-Material Fiber Sensor for Real-Time Breath Detection.

    PubMed

    Roudjane, Mourad; Bellemare-Rousseau, Simon; Khalil, Mazen; Gorgutsa, Stepan; Miled, Amine; Messaddeq, Younes

    2018-03-25

    In this paper, we present a new mobile wireless communication platform for real-time monitoring of an individual's breathing rate. The platform takes the form of a wearable stretching T-shirt featuring a sensor and a detection base station. The sensor is formed by a spiral-shaped antenna made from a multi-material fiber connected to a compact transmitter. Based on the resonance frequency of the antenna at approximately 2.4 GHz, the breathing sensor relies on its Bluetooth transmitter. The contactless and non-invasive sensor is designed without compromising the user's comfort. The sensing mechanism of the system is based on the detection of the signal amplitude transmitted wirelessly by the sensor, which is found to be sensitive to strain. We demonstrate the capability of the platform to detect the breathing rates of four male volunteers who are not in movement. The breathing pattern is obtained through the received signal strength indicator (RSSI) which is filtered and analyzed with home-made algorithms in the portable system. Numerical simulations of human breath are performed to support the experimental detection, and both results are in a good agreement. Slow, fast, regular, irregular, and shallow breathing types are successfully recorded within a frequency interval of 0.16-1.2 Hz, leading to a breathing rate varying from 10 to 72 breaths per minute.

  12. Architecture for an integrated real-time air combat and sensor network simulation

    NASA Astrophysics Data System (ADS)

    Criswell, Evans A.; Rushing, John; Lin, Hong; Graves, Sara

    2007-04-01

    An architecture for an integrated air combat and sensor network simulation is presented. The architecture integrates two components: a parallel real-time sensor fusion and target tracking simulation, and an air combat simulation. By integrating these two simulations, it becomes possible to experiment with scenarios in which one or both sides in a battle have very large numbers of primitive passive sensors, and to assess the likely effects of those sensors on the outcome of the battle. Modern Air Power is a real-time theater-level air combat simulation that is currently being used as a part of the USAF Air and Space Basic Course (ASBC). The simulation includes a variety of scenarios from the Vietnam war to the present day, and also includes several hypothetical future scenarios. Modern Air Power includes a scenario editor, an order of battle editor, and full AI customization features that make it possible to quickly construct scenarios for any conflict of interest. The scenario editor makes it possible to place a wide variety of sensors including both high fidelity sensors such as radars, and primitive passive sensors that provide only very limited information. The parallel real-time sensor network simulation is capable of handling very large numbers of sensors on a computing cluster of modest size. It can fuse information provided by disparate sensors to detect and track targets, and produce target tracks.

  13. Single-layer-coated surfaces with linearized reflectance versus angle of incidence: application to passive and active silicon rotation sensors

    NASA Astrophysics Data System (ADS)

    Azzam, R. M. A.; Howlader, M. M. K.; Georgiou, T. Y.

    1995-08-01

    A transparent or absorbing substrate can be coated with a transparent thin film to produce a linear reflectance-versus-angle-of-incidence response over a certain range of angles. Linearization at and near normal incidence is a special case that leads to a maximally flat response for p -polarized, s -polarized, or unpolarized light. For midrange and high-range linearization with moderate and high slopes, respectively, the best results are obtained when the incident light is s polarized. Application to a Si substrate that is coated with a SiO2 film leads to novel passive and active reflection rotation sensors. Experimental results and an error analysis of this rotation sensor are presented.

  14. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  15. Microcantilever sensor platform for UGV-based detection

    NASA Astrophysics Data System (ADS)

    Lawrence, Tyson T.; Halleck, A. E.; Schuler, Peter S.; Mahmud, K. K.; Hicks, David R.

    2010-04-01

    The increased use of Unmanned Ground Vehicles (UGVs) drives the need for new lightweight, low cost sensors. Microelectromechanical System (MEMS) based microcantilever sensors are a promising technology to meet this need, because they can be manufactured at low cost on a mass scale, and are easily integrated into a UGV platform for detection of explosives and other threat agents. While the technology is extremely sensitive, selectivity is a major challenge and the response modes are not well understood. This work summarizes advances in characterizing ultrasensitive microcantilever responses, sampling considerations, and sensor design and cantilever coating methodologies consistent with UGV point detector needs.

  16. A hybrid active/passive exhaust noise control system for locomotives.

    PubMed

    Remington, Paul J; Knight, J Scott; Hanna, Doug; Rowley, Craig

    2005-01-01

    A prototype hybrid system consisting of active and passive components for controlling far-field locomotive exhaust noise has been designed, assembled, and tested on a locomotive. The system consisted of a resistive passive silencer for controlling high-frequency broadband noise and a feedforward multiple-input, multiple-output active control system for suppressing low-frequency tonal noise. The active system used ten roof-mounted bandpass speaker enclosures with 2-12-in. speakers per enclosure as actuators, eight roof-mounted electret microphones as residual sensors, and an optical tachometer that sensed locomotive engine speed as a reference sensor. The system was installed on a passenger locomotive and tested in an operating rail yard. Details of the system are described and the near-field and far-field noise reductions are compared against the design goal.

  17. Massively Parallel, Molecular Analysis Platform Developed Using a CMOS Integrated Circuit With Biological Nanopores

    PubMed Central

    Roever, Stefan

    2012-01-01

    A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.

  18. Membrane-mirror-based autostereoscopic display for tele-operation and teleprescence applications

    NASA Astrophysics Data System (ADS)

    McKay, Stuart; Mair, Gordon M.; Mason, Steven; Revie, Kenneth

    2000-05-01

    An autostereoscopic display for telepresence and tele- operation applications has been developed at the University of Strathclyde in Glasgow, Scotland. The research is a collaborative effort between the Imaging Group and the Transparent Telepresence Research Group, both based at Strathclyde. A key component of the display is the directional screen; a 1.2-m diameter Stretchable Membrane Mirror is currently used. This patented technology enables large diameter, small f No., mirrors to be produced at a fraction of the cost of conventional optics. Another key element of the present system is an anthropomorphic and anthropometric stereo camera sensor platform. Thus, in addition to mirror development, research areas include sensor platform design focused on sight, hearing, research areas include sensor platform design focused on sight, hearing, and smell, telecommunications, display systems for all visual, aural and other senses, tele-operation, and augmented reality. The sensor platform is located at the remote site and transmits live video to the home location. Applications for this technology are as diverse as they are numerous, ranging from bomb disposal and other hazardous environment applications to tele-conferencing, sales, education and entertainment.

  19. Wireless Sensor-Based Smart-Clothing Platform for ECG Monitoring

    PubMed Central

    Lin, Chung-Chih; Yu, Yan-Shuo

    2015-01-01

    The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform's performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the “very good signal” interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis. PMID:26640512

  20. Wireless Sensor-Based Smart-Clothing Platform for ECG Monitoring.

    PubMed

    Wang, Jie; Lin, Chung-Chih; Yu, Yan-Shuo; Yu, Tsang-Chu

    2015-01-01

    The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform's performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the "very good signal" interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis.

  1. I-SCAD® standoff chemical agent detector overview

    NASA Astrophysics Data System (ADS)

    Popa, Mirela O.; Griffin, Matthew T.

    2012-06-01

    This paper presents a system-level description of the I-SCAD® Standoff Chemical Agent Detector, a passive Fourier Transform InfraRed (FTIR) based remote sensing system, for detecting chemical vapor threats. The passive infrared detection system automatically searches the 7 to 14 micron region of the surrounding atmosphere for agent vapor clouds. It is capable of operating while on the move to accomplish reconnaissance, surveillance, and contamination avoidance missions. Additionally, the system is designed to meet the needs for application on air and sea as well as ground mobile and fixed site platforms. The lightweight, passive, and fully automatic detection system scans the surrounding atmosphere for chemical warfare agent vapors. It provides on-the-move, 360-deg coverage from a variety of tactical and reconnaissance platforms at distances up to 5 km. The core of the system is a rugged Michelson interferometer with a flexure spring bearing mechanism and bi-directional data acquisition capability. The modular system design facilitates interfacing to many platforms. A Reduced Field of View (RFOV) variant includes novel modifications to the scanner subcomponent assembly optical design that gives extended performance in detection range and detection probability without sacrificing existing radiometric sensitivity performance. This paper will deliver an overview of system.

  2. Quantification of helicopter rotor downwash effects on electro-optical defensive aids suites

    NASA Astrophysics Data System (ADS)

    Seiffer, Dirk P.; Eisele, Christian; Henriksson, Markus; Sjöqvist, Lars; Möller, Sebastian; Togna, Fabio; Velluet, Marie-Thérèse

    2015-10-01

    The performance of electro-optical platform protection systems can be degraded significantly by the propagation environment around the platform. This includes aero-optical effects and zones of severe turbulence generated by engine exhausts. For helicopters rotor tip vortices and engine exhaust gases that are pressed down by the rotor airflow form the so called downwash phenomena. The downwash is a source for perturbations. A wide range of spatial and temporal fluctuations in the refractive index of air can occur. The perturbations from the turbulent flow cause detrimental effects on energy delivery, angle of arrival fluctuations, jam-code transmission, tracking accuracy and imaging performance in general. Therefore the effects may especially have a severe impact on the performance of laser-based protection systems like directed infrared countermeasures (DIRCM). The chain from passive missile detection and warning to obtaining an optical break-lock by the use of an active laser system will be influenced. To anticipate the installed performance of an electro-optical defensive aids suite (DAS) for helicopter platforms it is necessary to develop models for the prediction of the perturbations. Modelled results have to be validated against experimental findings. However, the data available in open literature on the effects of rotor downwash from helicopters on optical propagation is very limited. To collect necessary data and to obtain a first impression about the magnitude of occurring effects the European defence agency group (EDA) on "airborne platform effects on lasers and warning sensors (ALWS)" decided to design and perform a field trial on the premises of the Italian Air Force Flight Test Center in Pratica di Mare, Italy. ALWS is a technical arrangement under the Europa MoU among France, Germany, Italy, Sweden and the United Kingdom.

  3. SAW-Based Phononic Crystal Microfluidic Sensor—Microscale Realization of Velocimetry Approaches for Integrated Analytical Platform Applications

    PubMed Central

    Lucklum, Ralf; Zubtsov, Mikhail; Schmidt, Marc-Peter; Mukhin, Nikolay V.; Hirsch, Soeren

    2017-01-01

    The current work demonstrates a novel surface acoustic wave (SAW) based phononic crystal sensor approach that allows the integration of a velocimetry-based sensor concept into single chip integrated solutions, such as Lab-on-a-Chip devices. The introduced sensor platform merges advantages of ultrasonic velocimetry analytic systems and a microacoustic sensor approach. It is based on the analysis of structural resonances in a periodic composite arrangement of microfluidic channels confined within a liquid analyte. Completed theoretical and experimental investigations show the ability to utilize periodic structure localized modes for the detection of volumetric properties of liquids and prove the efficacy of the proposed sensor concept. PMID:28946609

  4. Comparison of performance of three commercial platforms for warfarin sensitivity genotyping.

    PubMed

    Babic, Nikolina; Haverfield, Eden V; Burrus, Julie A; Lozada, Anthony; Das, Soma; Yeo, Kiang-Teck J

    2009-08-01

    We performed a 3-way comparison on the Osmetech eSensor, AutoGenomics INFINITI, and a real-time PCR method (Paragonx reagents/Stratagene RT-PCR platform) for their FDA-cleared warfarin panels, and additional polymorphisms (CYP2C9*5, *6, and 11 and extended VKORC1 panels) where available. One hundred de-identified DNA samples were used in this IRB-approved study. Accuracy was determined by comparison of genotyping results across three platforms. Any discrepancy was resolved by bi-directional sequencing. The CYP4F2 on Osmetech was validated by bi-directional sequencing. Accuracies for CYP2C9*2 and *3 were 100% for all 3 platforms. VKORC1 3673 genotyping accuracies were 100% on eSensor and 97% on Infiniti. CYP2C9*5, *6 and *11 showed 100% concordance between eSensor and Infiniti. VKORC1 6484 and 9041 variants compared between ParagonDx and Infiniti analyzer were 100% (6484) and 99% (9041) concordant. CYP4F2 was 100% concordant with sequencing results. The time required to generate the results from automated DNA extraction-to-result was approximately 8h on Infiniti, and 4h on eSensor and ParagonDx, respectively. Overall, we observed excellent CYP2C9*2 and *3 genotyping accuracy for all three platforms. For VKORC1 3673 genotyping, eSensor demonstrated a slightly higher accuracy than the Infiniti, and CYP4F2 on Osmetech was 100% accurate.

  5. Ultra-Precision Measurement and Control of Angle Motion in Piezo-Based Platforms Using Strain Gauge Sensors and a Robust Composite Controller

    PubMed Central

    Liu, Lei; Bai, Yu-Guang; Zhang, Da-Li; Wu, Zhi-Gang

    2013-01-01

    The measurement and control strategy of a piezo-based platform by using strain gauge sensors (SGS) and a robust composite controller is investigated in this paper. First, the experimental setup is constructed by using a piezo-based platform, SGS sensors, an AD5435 platform and two voltage amplifiers. Then, the measurement strategy to measure the tip/tilt angles accurately in the order of sub-μrad is presented. A comprehensive composite control strategy design to enhance the tracking accuracy with a novel driving principle is also proposed. Finally, an experiment is presented to validate the measurement and control strategy. The experimental results demonstrate that the proposed measurement and control strategy provides accurate angle motion with a root mean square (RMS) error of 0.21 μrad, which is approximately equal to the noise level. PMID:23860316

  6. Wireless Sensor Network-Based Service Provisioning by a Brokering Platform

    PubMed Central

    Guijarro, Luis; Pla, Vicent; Vidal, Jose R.; Naldi, Maurizio; Mahmoodi, Toktam

    2017-01-01

    This paper proposes a business model for providing services based on the Internet of Things through a platform that intermediates between human users and Wireless Sensor Networks (WSNs). The platform seeks to maximize its profit through posting both the price charged to each user and the price paid to each WSN. A complete analysis of the profit maximization problem is performed in this paper. We show that the service provider maximizes its profit by incentivizing all users and all Wireless Sensor Infrastructure Providers (WSIPs) to join the platform. This is true not only when the number of users is high, but also when it is moderate, provided that the costs that the users bear do not trespass a cost ceiling. This cost ceiling depends on the number of WSIPs, on the value of the intrinsic value of the service and on the externality that the WSIP has on the user utility. PMID:28498347

  7. Wireless Sensor Network-Based Service Provisioning by a Brokering Platform.

    PubMed

    Guijarro, Luis; Pla, Vicent; Vidal, Jose R; Naldi, Maurizio; Mahmoodi, Toktam

    2017-05-12

    This paper proposes a business model for providing services based on the Internet of Things through a platform that intermediates between human users and Wireless Sensor Networks (WSNs). The platform seeks to maximize its profit through posting both the price charged to each user and the price paid to each WSN. A complete analysis of the profit maximization problem is performed in this paper. We show that the service provider maximizes its profit by incentivizing all users and all Wireless Sensor Infrastructure Providers (WSIPs) to join the platform. This is true not only when the number of users is high, but also when it is moderate, provided that the costs that the users bear do not trespass a cost ceiling. This cost ceiling depends on the number of WSIPs, on the value of the intrinsic value of the service and on the externality that the WSIP has on the user utility.

  8. South Philadelphia Passive Sampler and Sensor Study: Interim Report

    EPA Science Inventory

    Starting in June 2013, the United States Environmental Protection Agency (U.S. EPA) and the City of Philadelphia Air Measurements Services began collaborative research on the use of passive samplers (PSs) and stand-alone air measurement (SAM) systems to improve information on the...

  9. Hybrid Integrated Label-Free Chemical and Biological Sensors

    PubMed Central

    Mehrabani, Simin; Maker, Ashley J.; Armani, Andrea M.

    2014-01-01

    Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach. PMID:24675757

  10. Hybrid integrated label-free chemical and biological sensors.

    PubMed

    Mehrabani, Simin; Maker, Ashley J; Armani, Andrea M

    2014-03-26

    Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach.

  11. Towards a cross-platform software framework to support end-to-end hydrometeorological sensor network deployment

    NASA Astrophysics Data System (ADS)

    Celicourt, P.; Sam, R.; Piasecki, M.

    2016-12-01

    Global phenomena such as climate change and large scale environmental degradation require the collection of accurate environmental data at detailed spatial and temporal scales from which knowledge and actionable insights can be derived using data science methods. Despite significant advances in sensor network technologies, sensors and sensor network deployment remains a labor-intensive, time consuming, cumbersome and expensive task. These factors demonstrate why environmental data collection remains a challenge especially in developing countries where technical infrastructure, expertise and pecuniary resources are scarce. In addition, they also demonstrate the reason why dense and long-term environmental data collection has been historically quite difficult. Moreover, hydrometeorological data collection efforts usually overlook the (critically important) inclusion of a standards-based system for storing, managing, organizing, indexing, documenting and sharing sensor data. We are developing a cross-platform software framework using the Python programming language that will allow us to develop a low cost end-to-end (from sensor to publication) system for hydrometeorological conditions monitoring. The software framework contains provision for sensor, sensor platforms, calibration and network protocols description, sensor programming, data storage, data publication and visualization and more importantly data retrieval in a desired unit system. It is being tested on the Raspberry Pi microcomputer as end node and a laptop PC as the base station in a wireless setting.

  12. Fiber Loop Ringdown — a Time-Domain Sensing Technique for Multi-Function Fiber Optic Sensor Platforms: Current Status and Design Perspectives

    PubMed Central

    Wang, Chuji

    2009-01-01

    Fiber loop ringdown (FLRD) utilizes an inexpensive telecommunications light source, a photodiode, and a section of single-mode fiber to form a uniform fiber optic sensor platform for sensing various quantities, such as pressure, temperature, strain, refractive index, chemical species, biological cells, and small volume of fluids. In FLRD, optical losses of a light pulse in a fiber loop induced by changes in a quantity are measured by the light decay time constants. FLRD measures time to detect a quantity; thus, FLRD is referred to as a time-domain sensing technique. FLRD sensors have near real-time response, multi-pass enhanced high-sensitivity, and relatively low cost (i.e., without using an optical spectral analyzer). During the last eight years since the introduction of the original form of fiber ringdown spectroscopy, there has been increasing interest in the FLRD technique in fiber optic sensor developments, and new application potential is being explored. This paper first discusses the challenging issues in development of multi-function, fiber optic sensors or sensor networks using current fiber optic sensor sensing schemes, and then gives a review on current fiber optic sensor development using FLRD technique. Finally, design perspectives on new generation, multi-function, fiber optic sensor platforms using FLRD technique are particularly presented. PMID:22408471

  13. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  14. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  15. Citizen Sensors for SHM: Towards a Crowdsourcing Platform

    PubMed Central

    Ozer, Ekin; Feng, Maria Q.; Feng, Dongming

    2015-01-01

    This paper presents an innovative structural health monitoring (SHM) platform in terms of how it integrates smartphone sensors, the web, and crowdsourcing. The ubiquity of smartphones has provided an opportunity to create low-cost sensor networks for SHM. Crowdsourcing has given rise to citizen initiatives becoming a vast source of inexpensive, valuable but heterogeneous data. Previously, the authors have investigated the reliability of smartphone accelerometers for vibration-based SHM. This paper takes a step further to integrate mobile sensing and web-based computing for a prospective crowdsourcing-based SHM platform. An iOS application was developed to enable citizens to measure structural vibration and upload the data to a server with smartphones. A web-based platform was developed to collect and process the data automatically and store the processed data, such as modal properties of the structure, for long-term SHM purposes. Finally, the integrated mobile and web-based platforms were tested to collect the low-amplitude ambient vibration data of a bridge structure. Possible sources of uncertainties related to citizens were investigated, including the phone location, coupling conditions, and sampling duration. The field test results showed that the vibration data acquired by smartphones operated by citizens without expertise are useful for identifying structural modal properties with high accuracy. This platform can be further developed into an automated, smart, sustainable, cost-free system for long-term monitoring of structural integrity of spatially distributed urban infrastructure. Citizen Sensors for SHM will be a novel participatory sensing platform in the way that it offers hybrid solutions to transitional crowdsourcing parameters. PMID:26102490

  16. Radio Frequency Detection and Characterization of Water-Ethanol Solution through Spiral-Coupled Passive Micro-Resonator Sensor.

    PubMed

    Koirala, Gyan Raj; Dhakal, Rajendra; Kim, Eun-Seong; Yao, Zhao; Kim, Nam-Young

    2018-04-03

    We present a microfabricated spiral-coupled passive resonator sensor realized through integrated passive device (IPD) technology for the sensitive detection and characterization of water-ethanol solutions. In order to validate the performance of the proposed device, we explicitly measured and analyzed the radio frequency (RF) characteristics of various water-ethanol solution compositions. The measured results showed a drift in the resonance frequency from 1.16 GHz for deionized (DI) water to 1.68 GHz for the solution containing 50% ethanol, whereas the rejection level given by the reflection coefficient decreased from -29.74 dB to -14.81 dB. The obtained limit of detection was 3.82% volume composition of ethanol in solution. The derived loaded capacitance was 21.76 pF for DI water, which gradually decreased to 8.70 pF for the 50% ethanol solution, and the corresponding relative permittivity of the solution decreased from 80.14 to 47.79. The dissipation factor increased with the concentration of ethanol in the solution. We demonstrated the reproducibility of the proposed sensor through iterative measures of the samples and the study of surface morphology. Successive measurement of different samples had no overlapping and had very minimum bias between RF characteristics for each measured sample. The surface profile for bare sensors was retained after the sample test, resulting a root mean square (RMS) value of 11.416 nm as compared to 10.902 nm for the bare test. The proposed sensor was shown to be a viable alternative to existing sensors for highly sensitive water-ethanol concentration detection.

  17. Gyrocopter-Based Remote Sensing Platform

    NASA Astrophysics Data System (ADS)

    Weber, I.; Jenal, A.; Kneer, C.; Bongartz, J.

    2015-04-01

    In this paper the development of a lightweight and highly modularized airborne sensor platform for remote sensing applications utilizing a gyrocopter as a carrier platform is described. The current sensor configuration consists of a high resolution DSLR camera for VIS-RGB recordings. As a second sensor modality, a snapshot hyperspectral camera was integrated in the aircraft. Moreover a custom-developed thermal imaging system composed of a VIS-PAN camera and a LWIR-camera is used for aerial recordings in the thermal infrared range. Furthermore another custom-developed highly flexible imaging system for high resolution multispectral image acquisition with up to six spectral bands in the VIS-NIR range is presented. The performance of the overall system was tested during several flights with all sensor modalities and the precalculated demands with respect to spatial resolution and reliability were validated. The collected data sets were georeferenced, georectified, orthorectified and then stitched to mosaics.

  18. Synthesis Methods for Robust Passification and Control

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)

    2000-01-01

    The research effort under this cooperative agreement has been essentially the continuation of the work from previous grants. The ongoing work has primarily focused on developing passivity-based control techniques for Linear Time-Invariant (LTI) systems. During this period, there has been a significant progress made in the area of passivity-based control of LTI systems and some preliminary results have also been obtained for nonlinear systems, as well. The prior work has addressed optimal control design for inherently passive as well as non- passive linear systems. For exploiting the robustness characteristics of passivity-based controllers the passification methodology was developed for LTI systems that are not inherently passive. Various methods of passification were first proposed in and further developed. The robustness of passification was addressed for multi-input multi-output (MIMO) systems for certain classes of uncertainties using frequency-domain methods. For MIMO systems, a state-space approach using Linear Matrix Inequality (LMI)-based formulation was presented, for passification of non-passive LTI systems. An LMI-based robust passification technique was presented for systems with redundant actuators and sensors. The redundancy in actuators and sensors was used effectively for robust passification using the LMI formulation. The passification was designed to be robust to an interval-type uncertainties in system parameters. The passification techniques were used to design a robust controller for Benchmark Active Control Technology wing under parametric uncertainties. The results on passive nonlinear systems, however, are very limited to date. Our recent work in this area was presented, wherein some stability results were obtained for passive nonlinear systems that are affine in control.

  19. Highly Sensitive and Reproducible SERS Sensor for Biological pH Detection Based on a Uniform Gold Nanorod Array Platform.

    PubMed

    Bi, Liyan; Wang, Yunqing; Yang, Ying; Li, Yuling; Mo, Shanshan; Zheng, Qingyin; Chen, Lingxin

    2018-05-09

    Conventional research on surface-enhanced Raman scattering (SERS)-based pH sensors often depends on nanoparticle aggregation, whereas the variability in nanoparticle aggregation gives rise to poor repeatability in the SERS signal. Herein, we fabricated a gold nanorod array platform via an efficient evaporative self-assembly method. The platform exhibits great SERS sensitivity with an enhancement factor of 5.6 × 10 7 and maintains excellent recyclability and reproducibility with relative standard deviation (RSD) values of less than 8%. On the basis of the platform, we developed a highly sensitive bovine serum albumin (BSA)-coated 4-mercaptopyridine (4-MPy)-linked (BMP) SERS-based pH sensor to report pH ranging from pH 3.0 to pH 8.0. The intensity ratio variation of 1004 and 1096 cm -1 in 4-MPy showed excellent pH sensitivity, which decreased as the surrounding pH increased. Furthermore, this BMP SERS-based pH sensor was employed to measure the pH value in C57BL/6 mouse blood. We have demonstrated that the pH sensor has great advantages such as good stability, reliability, and accuracy, which could be extended for the design of point-of-care devices.

  20. Platforms for Persistent communications Surveillance and Reconnaissance - II

    DTIC Science & Technology

    2009-11-01

    Lifter Airship with a comprehensive suite of sensors as indicated by the green line at the top of the chart with the red arrow. It had a value more than...package, but it was not as capable as the robust sensor suite on the red arrow option. Platforms for Persistent CSR II - 30...sensors remained the top-ranked option as indicated by the green line at the top of the chart with the red arrow. However, its value dropped from 0.253 on

  1. Microfluidic platform for detection and quantification of magnetic markers

    NASA Astrophysics Data System (ADS)

    Kokkinis, Georgios; Cardoso, Susana; Giouroudi, Ioanna

    2017-05-01

    This paper reports on a microfluidic platform with an integrated spin valve giant magneto-resistance (GMR) sensor used for the detection and quantification of single magnetic micromarkers. A microfluidic channel containing the magnetic fluid, microconductors (MCs) for collection of the magnetic markers and a spin valve GMR sensor for detecting the presence of their magnetic stray field were integrated on a single chip. The results show that the sensor is capable of detecting a single magnetic marker with 2.8 μm diameter.

  2. Potential of Future Hurricane Imaging Radiometer (HIRAD) Ocean Surface Wind Observations for Determining Tropical Storm Vortex Intensity and Structure

    NASA Technical Reports Server (NTRS)

    Atlas, Robert; Bailey, M. C.; Black, Peter; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Ruf, Christopher; Uhlhorn, Eric

    2008-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development, which offers the potential of new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation from either UAS or satellite platforms. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven aircraft remote sensing technique for observing tropical cyclone ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by the NASA's Instrument Incubator Program. A brassboard version of the instrument is complete and has been successfully tested in an anechoic chamber, and development of the aircraft instrument is well underway. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean vector winds and rain during hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered. Preliminary studies show that HIRAD will have a significant positive impact on analyses as either a new aircraft or satellite sensor.

  3. The Community Cloud retrieval for CLimate (CC4CL) - Part 1: A framework applied to multiple satellite imaging sensors

    NASA Astrophysics Data System (ADS)

    Sus, Oliver; Stengel, Martin; Stapelberg, Stefan; McGarragh, Gregory; Poulsen, Caroline; Povey, Adam C.; Schlundt, Cornelia; Thomas, Gareth; Christensen, Matthew; Proud, Simon; Jerg, Matthias; Grainger, Roy; Hollmann, Rainer

    2018-06-01

    We present here the key features of the Community Cloud retrieval for CLimate (CC4CL) processing algorithm. We focus on the novel features of the framework: the optimal estimation approach in general, explicit uncertainty quantification through rigorous propagation of all known error sources into the final product, and the consistency of our long-term, multi-platform time series provided at various resolutions, from 0.5 to 0.02°. By describing all key input data and processing steps, we aim to inform the user about important features of this new retrieval framework and its potential applicability to climate studies. We provide an overview of the retrieved and derived output variables. These are analysed for four, partly very challenging, scenes collocated with CALIOP (Cloud-Aerosol lidar with Orthogonal Polarization) observations in the high latitudes and over the Gulf of Guinea-West Africa. The results show that CC4CL provides very realistic estimates of cloud top height and cover for optically thick clouds but, where optically thin clouds overlap, returns a height between the two layers. CC4CL is a unique, coherent, multi-instrument cloud property retrieval framework applicable to passive sensor data of several EO missions. Through its flexibility, CC4CL offers the opportunity for combining a variety of historic and current EO missions into one dataset, which, compared to single sensor retrievals, is improved in terms of accuracy and temporal sampling.

  4. Optics-Integrated Microfluidic Platforms for Biomolecular Analyses

    PubMed Central

    Bates, Kathleen E.; Lu, Hang

    2016-01-01

    Compared with conventional optical methods, optics implemented on microfluidic chips provide small, and often much cheaper ways to interrogate biological systems from the level of single molecules up to small model organisms. The optical probing of single molecules has been used to investigate the mechanical properties of individual biological molecules; however, multiplexing of these measurements through microfluidics and nanofluidics confers many analytical advantages. Optics-integrated microfluidic systems can significantly simplify sample processing and allow a more user-friendly experience; alignments of on-chip optical components are predetermined during fabrication and many purely optical techniques are passively controlled. Furthermore, sample loss from complicated preparation and fluid transfer steps can be virtually eliminated, a particularly important attribute for biological molecules at very low concentrations. Excellent fluid handling and high surface area/volume ratios also contribute to faster detection times for low abundance molecules in small sample volumes. Although integration of optical systems with classical microfluidic analysis techniques has been limited, microfluidics offers a ready platform for interrogation of biophysical properties. By exploiting the ease with which fluids and particles can be precisely and dynamically controlled in microfluidic devices, optical sensors capable of unique imaging modes, single molecule manipulation, and detection of minute changes in concentration of an analyte are possible. PMID:27119629

  5. Open-Loop Flight Testing of COBALT GN&C Technologies for Precise Soft Landing

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Restrepo, Carolina I.

    2017-01-01

    A terrestrial, open-loop (OL) flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed, with support through the NASA Advanced Exploration Systems (AES), Game Changing Development (GCD), and Flight Opportunities (FO) Programs. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuzes the NDL and LVS data in real time to produce a precise navigation solution that is independent of the Global Positioning System (GPS) and suitable for future, autonomous planetary landing systems. The OL campaign tested COBALT as a passive payload, with COBALT data collection and filter execution, but with the Xodiac vehicle Guidance and Control (G&C) loops closed on a Masten GPS-based navigation solution. The OL test was performed as a risk reduction activity in preparation for an upcoming 2017 closed-loop (CL) flight campaign in which Xodiac G&C will act on the COBALT navigation solution and the GPS-based navigation will serve only as a backup monitor.

  6. Detection of chemical pollutants by passive LWIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Lavoie, Hugo; Thériault, Jean-Marc; Bouffard, François; Puckrin, Eldon; Dubé, Denis

    2012-09-01

    Toxic industrial chemicals (TICs) represent a major threat to public health and security. Their detection constitutes a real challenge to security and first responder's communities. One promising detection method is based on the passive standoff identification of chemical vapors emanating from the laboratory under surveillance. To investigate this method, the Department of National Defense and Public Safety Canada have mandated Defense Research and Development Canada (DRDC) - Valcartier to develop and test passive Long Wave Infrared (LWIR) hyperspectral imaging (HSI) sensors for standoff detection. The initial effort was focused to address the standoff detection and identification of toxic industrial chemicals (TICs) and precursors. Sensors such as the Multi-option Differential Detection and Imaging Fourier Spectrometer (MoDDIFS) and the Improved Compact ATmospheric Sounding Interferometer (iCATSI) were developed for this application. This paper describes the sensor developments and presents initial results of standoff detection and identification of TICs and precursors. The standoff sensors are based on the differential Fourier-transform infrared (FTIR) radiometric technology and are able to detect, spectrally resolve and identify small leak plumes at ranges in excess of 1 km. Results from a series of trials in asymmetric threat type scenarios will be presented. These results will serve to establish the potential of the method for standoff detection of TICs precursors and surrogates.

  7. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach

    PubMed Central

    Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian

    2015-01-01

    Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks. PMID:26729123

  8. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach.

    PubMed

    Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian

    2015-12-30

    Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.

  9. Optical Pointing Sensor

    NASA Technical Reports Server (NTRS)

    Shields, Joel F.; Metz, Brandon C.

    2010-01-01

    The optical pointing sensor provides a means of directly measuring the relative positions of JPL s Formation Control Testbed (FCT) vehicles without communication. This innovation is a steerable infrared (IR) rangefinder that gives measurements in terms of range and bearing to a passive retroreflector.

  10. Toward the realization of a compact chemical sensor platform using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Marcus, Logan S.; Pellegrino, Paul M.

    2015-05-01

    The Army is investigating several spectroscopic techniques (e.g., infrared spectroscopy) that could allow for an adaptable sensor platform. Traditionally, chemical sensing platforms have been hampered by the opposing concerns of increasing sensor capability while maintaining a minimal package size. Current sensors, although reasonably sized, are geared to more classical chemical threats, and the ability to expand their capabilities to a broader range of emerging threats is uncertain. Recently, photoacoustic spectroscopy, employed in a sensor format, has shown enormous potential to address these ever-changing threats, while maintaining a compact sensor design. In order to realize the advantage of photoacoustic sensor miniaturization, light sources of comparable size are required. Recent research has employed quantum cascade lasers (QCLs) in combination with MEMS-scale photoacoustic cell designs. The continuous tuning capability of QCLs over a broad wavelength range in the mid-infrared spectral region greatly expands the number of compounds that can be identified. Results have demonstrated that utilizing a tunable QCL with a MEMS-scale photoacoustic cell produces favorable detection limits (ppb levels) for chemical targets (e.g., dimethyl methyl phosphonate (DMMP), vinyl acetate, 1,4-dioxane). Although our chemical sensing research has benefitted from the broad tuning capabilities of QCLs, the limitations of these sources must be considered. Current commercially available tunable systems are still expensive and obviously geared more toward laboratory operation, not fielding. Although the laser element itself is quite small, the packaging, power supply, and controller remain logistical burdens. Additionally, operational features such as continuous wave (CW) modulation and laser output powers while maintaining wide tunability are not yet ideal for a variety of sensing applications. In this paper, we will discuss our continuing evaluation of QCL technology as it matures in relation to our ultimate goal of a universal compact chemical sensor platform.

  11. Elastomeric Sensing of Pressure with Liquid Metal and Wireless Inductive Coupling

    NASA Technical Reports Server (NTRS)

    Dick, Jacob; Zou, Xiyue; Hogan, Ben; Tumalle, Jonathan; Etikyala, Sowmith; Fung, Diego; Charles, Watley; Gu, Tianye; Hull, Patrick V.; Mazzeo, Aaron D.

    2017-01-01

    This project describes resistance-based soft sensors filled with liquid metal, which permit measurements of large strains (0 percent to 110 percent), associated with small forces of less than 30 Newtons. This work also demonstrates a methodology for wireless transfer of these strain measurements without connected electrodes. These sensors allow intermittent detection of pressure on soft membranes with low force. Adapting these sensors for passive wireless pressure sensing will eliminate the need for embedded batteries, and will allow the sensors to transmit pressure data through non-conductive materials including glass and acrylic. The absence of batteries allows us to embed these sensors into materials for long-term use because the sensors only use passive analog circuit elements. We found the oxidation of the liquid metal (eutectic gallium indium) plays a role in the repeatability of the soft sensors. We investigated how the oxidation layer affected the behavior of the sensor by encapsulating materials (silicone, fluorosilicone, and PVC) with varied permeabilities to oxygen. We measured the effects of mechanical loading on the oxidation layer and the effects of wireless inductive coupling on the oxidation layer. We concluded our research by investigating the effects of embedding self-resonant circuits into polydimethylsiloxane (PDMS). Efforts to design engineered systems with soft materials are a growing field with progress in soft robotics, epidermal electronics, and wearable electronics. In the field of soft robotics, PDMS-based grippers are capable of picking up delicate objects because their form-fitting properties allow them to conform to the shape of objects more easily than conventional robotic grippers. Epidermal devices also use PDMS as a substrate to hold electronic components such as radios, sensors, and power supply circuits. Additionally, PDMS-based soft sensors can monitor human motion with liquid metal embedded within micro-channels. Passive wireless sensors have applications in structural health monitoring and medical health monitoring. Doctors can take wireless blood pressure measurements inside arteries to monitor the progression of heart disease. Glaucoma patients can use this technology to monitor the pressure in their eyes to track the progression of the disease.

  12. Telemonitoring of patients with Parkinson's disease using inertia sensors.

    PubMed

    Piro, N E; Baumann, L; Tengler, M; Piro, L; Blechschmidt-Trapp, R

    2014-01-01

    Medical treatment in patients suffering from Parkinson's disease is very difficult as dose-finding is mainly based on selective and subjective impressions by the physician. To allow for the objective evaluation of patients' symptoms required for optimal dosefinding, a telemonitoring system tracks the motion of patients in their surroundings. The system focuses on providing interoperability and usability in order to ensure high acceptance. Patients wear inertia sensors and perform standardized motor tasks. Data are recorded, processed and then presented to the physician in a 3D animated form. In addition, the same data is rated based on the UPDRS score. Interoperability is realized by developing the system in compliance with the recommendations of the Continua Health Alliance. Detailed requirements analysis and continuous collaboration with respective user groups help to achieve high usability. A sensor platform was developed that is capable of measuring acceleration and angular rate of motions as well as the absolute orientation of the device itself through an included compass sensor. The system architecture was designed and required infrastructure, and essential parts of the communication between the system components were implemented following Continua guidelines. Moreover, preliminary data analysis based on three-dimensional acceleration and angular rate data could be established. A prototype system for the telemonitoring of Parkinson's disease patients was successfully developed. The developed sensor platform fully satisfies the needs of monitoring patients of Parkinson's disease and is comparable to other sensor platforms, although these sensor platforms have yet to be tested rigorously against each other. Suitable approaches to provide interoperability and usability were identified and realized and remain to be tested in the field.

  13. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  14. A minimalist approach to bias estimation for passive sensor measurements with targets of opportunity

    NASA Astrophysics Data System (ADS)

    Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov

    2013-09-01

    In order to carry out data fusion, registration error correction is crucial in multisensor systems. This requires estimation of the sensor measurement biases. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. This paper provides a solution for bias estimation for the minimum number of passive sensors (two), when only targets of opportunity are available. The sensor measurements are assumed time-coincident (synchronous) and perfectly associated. Since these sensors provide only line of sight (LOS) measurements, the formation of a single composite Cartesian measurement obtained from fusing the LOS measurements from different sensors is needed to avoid the need for nonlinear filtering. We evaluate the Cramer-Rao Lower Bound (CRLB) on the covariance of the bias estimate, i.e., the quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.

  15. Inter-comparison of soil moisture sensors from the soil moisture active passive marena Oklahoma in situ sensor testbed (SMAP-MOISST)

    USDA-ARS?s Scientific Manuscript database

    The diversity of in situ soil moisture network protocols and instrumentation led to the development of a testbed for comparing in situ soil moisture sensors. Located in Marena, Oklahoma on the Oklahoma State University Range Research Station, the testbed consists of four base stations. Each station ...

  16. Fiber-optic push-pull sensor systems

    NASA Technical Reports Server (NTRS)

    Gardner, David L.; Brown, David A.; Garrett, Steven L.

    1991-01-01

    Fiber-optic push-pull sensors are those which exploit the intrinsically differential nature of an interferometer with concommitant benefits in common-mode rejection of undesired effects. Several fiber-optic accelerometer and hydrophone designs are described. Additionally, the recent development at the Naval Postgraduate School of a passive low-cost interferometric signal demodulator permits the development of economical fiber-optic sensor systems.

  17. Passive exposure of Earth radiation budget experiment components. LDEF experiment AO-147: Post-flight examinations and tests

    NASA Technical Reports Server (NTRS)

    Hickey, John R.

    1992-01-01

    The flight spare sensors of the Earth Radiation Budget (ERB) experiment of the Nimbus 6 and 7 missions were flown aboard the LDEF. The preliminary post retrieval examination and test results are presented here for the sensor windows and filters, the thermopile sensors and a cavity radiometer.

  18. Sensors research and technology

    NASA Technical Reports Server (NTRS)

    Cutts, James A.

    1988-01-01

    Information on sensors research and technology is given in viewgraph form. Information is given on sensing techniques for space science, passive remote sensing techniques and applications, submillimeter coherent sensing, submillimeter mixers and local oscillator sources, non-coherent sensors, active remote sensing, solid state laser development, a low vibration cooler, separation of liquid helium and vapor phase in zero gravity, and future plans.

  19. [Learning to solve a spatial task in a water maze in aggressive and submissive mice].

    PubMed

    Dubrovina, N I; Tomilenko, R A

    2007-01-01

    Learning and retention of the spatial memory were studied in mice with alternative under conditions of various experimental protocols. Visible and hidden platform acquisition in a simple model of the water maze was similarly fast both in aggressive and submissive mice, but extinction differed. Retention of the platform location preference persisted in aggressive mice in four testing trials. In submissive mice, extiction of the spatial memory was accompanied with a prolongation of search with parallel production of episodes of "passive drift". Differences in spatial learning between aggressive and submissive mice were revealed in a water maze complicated with partitions. In this case, aggressors were able to learn the position of a hidden platform (in contrast to submissive mice with the dominant response of "passive drift"). During testing the response, aggressive mice longer retained the spatial preference without extinction.

  20. Wireless energy transfer platform for medical sensors and implantable devices.

    PubMed

    Zhang, Fei; Hackworth, Steven A; Liu, Xiaoyu; Chen, Haiyan; Sclabassi, Robert J; Sun, Mingui

    2009-01-01

    Witricity is a newly developed technique for wireless energy transfer. This paper presents a frequency adjustable witricity system to power medical sensors and implantable devices. New witricity resonators are designed for both energy transmission and reception. A prototype platform is described, including an RF power source, two resonators with new structures, and inductively coupled input and output stages. In vitro experiments, both in open air and using a human head phantom consisting of simulated tissues, are employed to verify the feasibility of this platform. An animal model is utilized to evaluate in vivo energy transfer within the body of a laboratory pig. Our experiments indicate that witricity is an effective new tool for providing a variety of medical sensors and devices with power.

  1. Physical characterization and performance comparison of active- and passive-pixel CMOS detectors for mammography.

    PubMed

    Elbakri, I A; McIntosh, B J; Rickey, D W

    2009-03-21

    We investigated the physical characteristics of two complementary metal oxide semiconductor (CMOS) mammography detectors. The detectors featured 14-bit image acquisition, 50 microm detector element (del) size and an active area of 5 cm x 5 cm. One detector was a passive-pixel sensor (PPS) with signal amplification performed by an array of amplifiers connected to dels via data lines. The other detector was an active-pixel sensor (APS) with signal amplification performed at each del. Passive-pixel designs have higher read noise due to data line capacitance, and the APS represents an attempt to improve the noise performance of this technology. We evaluated the detectors' resolution by measuring the modulation transfer function (MTF) using a tilted edge. We measured the noise power spectra (NPS) and detective quantum efficiencies (DQE) using mammographic beam conditions specified by the IEC 62220-1-2 standard. Our measurements showed the APS to have much higher gain, slightly higher MTF, and higher NPS. The MTF of both sensors approached 10% near the Nyquist limit. DQE values near dc frequency were in the range of 55-67%, with the APS sensor DQE lower than the PPS DQE for all frequencies. Our results show that lower read noise specifications in this case do not translate into gains in the imaging performance of the sensor. We postulate that the lower fill factor of the APS is a possible cause for this result.

  2. Oil Spill Disasters Detection and Monitoring by RST Analysis of Optical Satellite Radiances: the Case of Deepwater Horizon Platform in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Pergola, N.; Grimaldi, S. C.; Coviello, I.; Faruolo, M.; Lacava, T.; Tramutoli, V.

    2010-12-01

    Marine oil spill disasters may have devastating effects on the marine and coastal environment. For monitoring and mitigation purposes, timely detection and continuously updated information on polluted areas are required. Satellite remote sensing can give a significant contribution in such a direction. Nowadays, SAR (Synthetic Aperture Radar) technology has been recognized as the most efficient for oil spill detection and mapping, thanks to the high spatial resolution and all-time/all-weather capability of the present operational sensors. Anyway, the present SARs revisiting time does not allow for a rapid detection and a near real-time monitoring of these phenomena at global scale. Passive optical sensors, on board meteorological satellites, thanks to their high temporal resolution (from a few hours to 15 minutes, depending on the characteristics of the platform/sensor), may represent, at this moment, a suitable SAR alternative/complement for oil spill detection and monitoring. Up to now, some techniques, based on optical satellite data, have been proposed for “a posteriori” mapping of already known oil spill discharges. On the other hand, reliable satellite methods for an automatic and timely detection of oil spills, for surveillance and warning purposes, are still currently missing. Recently, an innovative technique for automatic and near real time oil spill detection and monitoring has been proposed. The technique is based on the general RST (Robust Satellite Technique) approach which exploits multi-temporal satellite records in order to obtain a former characterization of the measured signal, in terms of expected value and natural variability, providing a further identification of signal anomalies by an automatic, unsupervised change detection step. Results obtained by using AVHRR (Advanced Very High Resolution Radiometer) Thermal Infrared data, in different geographic areas and observational conditions, demonstrated excellent detection capabilities both in term of sensitivity (to the presence even of thin/old oil films) and reliability (up to zero occurrence of false alarms), mainly due to the RST invariance regardless of local and environmental conditions. Exploiting its complete independence on the specific satellite platform, RST approach has been successfully exported to the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites. In this paper, results obtained applying the proposed methodology to the recent oil spill disaster of Deepwater Horizon Platform in the gulf of Mexico, that discharged over 5 million barrels (550 million litres) in the ocean, will be shown. A dense temporal series of RST-based oil spill maps, obtained by using MODIS TIR records, are commented, emphasizing and discussing main peculiarities and specific characteristics of this event. Preliminary findings, possible residual limits and future perspectives will be also presented and discussed.

  3. A WBAN System for Ambulatory Monitoring of Physical Activity and Health Status: Applications and Challenges.

    PubMed

    Jovanov, E; Milenkovic, A; Otto, C; De Groen, P; Johnson, B; Warren, S; Taibi, G

    2005-01-01

    Recent technological advances in sensors, low-power integrated circuits, and wireless communications have enabled the design of low-cost, miniature, lightweight, intelligent physiological sensor platforms that can be seamlessly integrated into a body area network for health monitoring. Wireless body area networks (WBANs) promise unobtrusive ambulatory health monitoring for extended periods of time and near real-time updates of patients' medical records through the Internet. A number of innovative systems for health monitoring have recently been proposed. However, they typically rely on custom communication protocols and hardware designs, lacking generality and flexibility. The lack of standard platforms, system software support, and standards makes these systems expensive. Bulky sensors, high price, and frequent battery changes are all likely to limit user compliance. To address some of these challenges, we prototyped a WBAN utilizing a common off-the-shelf wireless sensor platform with a ZigBee-compliant radio interface and an ultra low-power microcontroller. The standard platform interfaces to custom sensor boards that are equipped with accelerometers for motion monitoring and a bioamplifier for electrocardiogram or electromyogram monitoring. Software modules for on-board processing, communication, and network synchronization have been developed using the TinyOS operating system. Although the initial WBAN prototype targets ambulatory monitoring of user activity, the developed sensors can easily be adapted to monitor other physiological parameters. In this paper, we discuss initial results, implementation challenges, and the need for standardization in this dynamic and promising research field.

  4. Prototyping a GNSS-Based Passive Radar for UAVs: An Instrument to Classify the Water Content Feature of Lands

    PubMed Central

    Troglia Gamba, Micaela; Marucco, Gianluca; Pini, Marco; Ugazio, Sabrina; Falletti, Emanuela; Lo Presti, Letizia

    2015-01-01

    Global Navigation Satellite Systems (GNSS) broadcast signals for positioning and navigation, which can be also employed for remote sensing applications. Indeed, the satellites of any GNSS can be seen as synchronized sources of electromagnetic radiation, and specific processing of the signals reflected back from the ground can be used to estimate the geophysical properties of the Earth’s surface. Several experiments have successfully demonstrated GNSS-reflectometry (GNSS-R), whereas new applications are continuously emerging and are presently under development, either from static or dynamic platforms. GNSS-R can be implemented at a low cost, primarily if small devices are mounted on-board unmanned aerial vehicles (UAVs), which today can be equipped with several types of sensors for environmental monitoring. So far, many instruments for GNSS-R have followed the GNSS bistatic radar architecture and consisted of custom GNSS receivers, often requiring a personal computer and bulky systems to store large amounts of data. This paper presents the development of a GNSS-based sensor for UAVs and small manned aircraft, used to classify lands according to their soil water content. The paper provides details on the design of the major hardware and software components, as well as the description of the results obtained through field tests. PMID:26569242

  5. A Review of Oil Spill Remote Sensing

    PubMed Central

    Brown, Carl E.

    2017-01-01

    The technical aspects of oil spill remote sensing are examined and the practical uses and drawbacks of each technology are given with a focus on unfolding technology. The use of visible techniques is ubiquitous, but limited to certain observational conditions and simple applications. Infrared cameras offer some potential as oil spill sensors but have several limitations. Both techniques, although limited in capability, are widely used because of their increasing economy. The laser fluorosensor uniquely detects oil on substrates that include shoreline, water, soil, plants, ice, and snow. New commercial units have come out in the last few years. Radar detects calm areas on water and thus oil on water, because oil will reduce capillary waves on a water surface given moderate winds. Radar provides a unique option for wide area surveillance, all day or night and rainy/cloudy weather. Satellite-carried radars with their frequent overpass and high spatial resolution make these day–night and all-weather sensors essential for delineating both large spills and monitoring ship and platform oil discharges. Most strategic oil spill mapping is now being carried out using radar. Slick thickness measurements have been sought for many years. The operative technique at this time is the passive microwave. New techniques for calibration and verification have made these instruments more reliable. PMID:29301212

  6. Prototyping a GNSS-Based Passive Radar for UAVs: An Instrument to Classify the Water Content Feature of Lands.

    PubMed

    Gamba, Micaela Troglia; Marucco, Gianluca; Pini, Marco; Ugazio, Sabrina; Falletti, Emanuela; Lo Presti, Letizia

    2015-11-10

    Global Navigation Satellite Systems (GNSS) broadcast signals for positioning and navigation, which can be also employed for remote sensing applications. Indeed, the satellites of any GNSS can be seen as synchronized sources of electromagnetic radiation, and specific processing of the signals reflected back from the ground can be used to estimate the geophysical properties of the Earth's surface. Several experiments have successfully demonstrated GNSS-reflectometry (GNSS-R), whereas new applications are continuously emerging and are presently under development, either from static or dynamic platforms. GNSS-R can be implemented at a low cost, primarily if small devices are mounted on-board unmanned aerial vehicles (UAVs), which today can be equipped with several types of sensors for environmental monitoring. So far, many instruments for GNSS-R have followed the GNSS bistatic radar architecture and consisted of custom GNSS receivers, often requiring a personal computer and bulky systems to store large amounts of data. This paper presents the development of a GNSS-based sensor for UAVs and small manned aircraft, used to classify lands according to their soil water content. The paper provides details on the design of the major hardware and software components, as well as the description of the results obtained through field tests.

  7. A class of stabilizing controllers for flexible multibody systems

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.; Kelkar, Atul G.; Maghami, Peiman G.

    1995-01-01

    The problem of controlling a class of nonlinear multibody flexible space systems consisting of a flexible central body to which a number of articulated appendages are attached is considered. Collocated actuators and sensors are assumed, and global asymptotic stability of such systems is established under a nonlinear dissipative control law. The stability is shown to be robust to unmodeled dynamics and parametric uncertainties. For a special case in which the attitude motion of the central body is small, the system, although still nonlinear, is shown to be stabilized by linear dissipative control laws. Two types of linear controllers are considered: static dissipative (constant gain) and dynamic dissipative. The static dissipative control law is also shown to provide robust stability in the presence of certain classes of actuator and sensor nonlinearities and actuator dynamics. The results obtained for this special case can also be readily applied for controlling single-body linear flexible space structures. For this case, a synthesis technique for the design of a suboptimal dynamic dissipative controller is also presented. The results obtained in this paper are applicable to a broad class of multibody and single-body systems such as flexible multilink manipulators, multipayload space platforms, and space antennas. The stability proofs use the Lyapunov approach and exploit the inherent passivity of such systems.

  8. A Review of Oil Spill Remote Sensing.

    PubMed

    Fingas, Merv; Brown, Carl E

    2017-12-30

    The technical aspects of oil spill remote sensing are examined and the practical uses and drawbacks of each technology are given with a focus on unfolding technology. The use of visible techniques is ubiquitous, but limited to certain observational conditions and simple applications. Infrared cameras offer some potential as oil spill sensors but have several limitations. Both techniques, although limited in capability, are widely used because of their increasing economy. The laser fluorosensor uniquely detects oil on substrates that include shoreline, water, soil, plants, ice, and snow. New commercial units have come out in the last few years. Radar detects calm areas on water and thus oil on water, because oil will reduce capillary waves on a water surface given moderate winds. Radar provides a unique option for wide area surveillance, all day or night and rainy/cloudy weather. Satellite-carried radars with their frequent overpass and high spatial resolution make these day-night and all-weather sensors essential for delineating both large spills and monitoring ship and platform oil discharges. Most strategic oil spill mapping is now being carried out using radar. Slick thickness measurements have been sought for many years. The operative technique at this time is the passive microwave. New techniques for calibration and verification have made these instruments more reliable.

  9. Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities.

    PubMed

    Hwang, Byeong-Ung; Lee, Ju-Hyuck; Trung, Tran Quang; Roh, Eun; Kim, Do-Il; Kim, Sang-Woo; Lee, Nae-Eung

    2015-09-22

    Monitoring of human activities can provide clinically relevant information pertaining to disease diagnostics, preventive medicine, care for patients with chronic diseases, rehabilitation, and prosthetics. The recognition of strains on human skin, induced by subtle movements of muscles in the internal organs, such as the esophagus and trachea, and the motion of joints, was demonstrated using a self-powered patchable strain sensor platform, composed on multifunctional nanocomposites of low-density silver nanowires with a conductive elastomer of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/polyurethane, with high sensitivity, stretchability, and optical transparency. The ultra-low-power consumption of the sensor, integrated with both a supercapacitor and a triboelectric nanogenerator into a single transparent stretchable platform based on the same nanocomposites, results in a self-powered monitoring system for skin strain. The capability of the sensor to recognize a wide range of strain on skin has the potential for use in new areas of invisible stretchable electronics for human monitoring. A new type of transparent, stretchable, and ultrasensitive strain sensor based on a AgNW/PEDOT:PSS/PU nanocomposite was developed. The concept of a self-powered patchable sensor system integrated with a supercapacitor and a triboelectric nanogenerator that can be used universally as an autonomous invisible sensor system was used to detect the wide range of strain on human skin.

  10. Remote powering platform for implantable sensor systems at 2.45 GHz.

    PubMed

    Kazanc, Onur; Yilmaz, Gurkan; Maloberti, Franco; Dehollain, Catherine

    2014-01-01

    Far-field remotely powered sensor systems enable long distance operation for low-power sensor systems. In this work, we demonstrate a remote powering platform with a miniaturized antenna and remote powering base station operating at 2.45 GHz. The rectenna, which is the energy receiving and conversion element of the sensor system, is designed and measured. The measurements for the tag are performed within 15 cm distance from the remote powering base station. The realized gain of the tag antenna is measured as -3.3 dB, which is 0.5 dB close to the simulations, where simulated realized gain is -2.8 dB.

  11. System perspectives for mobile platform design in m-Health

    NASA Astrophysics Data System (ADS)

    Roveda, Janet M.; Fink, Wolfgang

    2016-05-01

    Advances in integrated circuit technologies have led to the integration of medical sensor front ends with data processing circuits, i.e., mobile platform design for wearable sensors. We discuss design methodologies for wearable sensor nodes and their applications in m-Health. From the user perspective, flexibility, comfort, appearance, fashion, ease-of-use, and visibility are key form factors. From the technology development point of view, high accuracy, low power consumption, and high signal to noise ratio are desirable features. From the embedded software design standpoint, real time data analysis algorithms, application and database interfaces are the critical components to create successful wearable sensor-based products.

  12. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    PubMed Central

    Solovei, Dmitry; Žák, Jaromír; Majzlíková, Petra; Sedláček, Jiří; Hubálek, Jaromír

    2015-01-01

    A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN) was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes' coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed. PMID:25594591

  13. Biomedical sensor technologies on the platform of mobile phones

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Liu, Jing

    2011-06-01

    Biomedical sensors have been widely used in various areas of biomedical practices, which play an important role in disease detection, diagnosis, monitoring, treatment, health management, and so on. However, most of them and their related platforms are generally not easily accessible or just too expensive or complicated to be kept at home. As an alternative, new technologies enabled from the mobile phones are gradually changing such situations. As can be freely available to almost everyone, mobile phone offers a unique way to improve the conventional medical care through combining with various biomedical sensors. Moreover, the established systems will be both convenient and low cost. In this paper, we present an overview on the state-of-art biomedical sensors, giving a brief introduction of the fundamental principles and showing several new examples or concepts in the area. The focus was particularly put on interpreting the technical strategies to innovate the biomedical sensor technologies based on the platform of mobile phones. Some challenging issues, including feasibility, usability, security, and effectiveness, were discussed. With the help of electrical and mechanical technologies, it is expected that a full combination between the biomedical sensors and mobile phones will bring a bright future for the coming pervasive medical care.

  14. Carbon nanostructures as immobilization platform for DNA: A review on current progress in electrochemical DNA sensors.

    PubMed

    Rasheed, P Abdul; Sandhyarani, N

    2017-11-15

    Development of a sensitive, specific and cost-effective DNA detection method is motivated by increasing demand for the early stage diagnosis of genetic diseases. Recent developments in the design and fabrication of efficient sensor platforms based on nanostructures make the highly sensitive sensors which could indicate very low detection limit to the level of few molecules, a realistic possibility. Electrochemical detection methods are widely used in DNA diagnostics as it provide simple, accurate and inexpensive platform for DNA detection. In addition, the electrochemical DNA sensors provide direct electronic signal without the use of expensive signal transduction equipment and facilitates the immobilization of single stranded DNA (ssDNA) probe sequences on a wide variety of electrode substrates. It has been found that a range of nanomaterials such as metal nanoparticles (MNPs), carbon based nanomaterials, quantum dots (QDs), magnetic nanoparticles and polymeric NPs have been introduced in the sensor design to enhance the sensing performance of electrochemical DNA sensor. In this review, we discuss recent progress in the design and fabrication of efficient electrochemical genosensors based on carbon nanostructures such as carbon nanotubes, graphene, graphene oxide and nanodiamonds. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Virtual Passive Controller for Robot Systems Using Joint Torque Sensors

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    This paper presents a control method based on virtual passive dynamic control that will stabilize a robot manipulator using joint torque sensors and a simple joint model. The method does not require joint position or velocity feedback for stabilization. The proposed control method is stable in the sense of Lyaponov. The control method was implemented on several joints of a laboratory robot. The controller showed good stability robustness to system parameter error and to the exclusion of nonlinear dynamic effects on the joints. The controller enhanced position tracking performance and, in the absence of position control, dissipated joint energy.

  16. KSC-03PD-2364

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Researchers conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASAs Jet Propulsion Laboratory, and mobile robotic sensors from the Navys Mobile Diving and Salvage Unit.

  17. Chemicapacitors as a versatile platform for miniature gas and vapor sensors

    NASA Astrophysics Data System (ADS)

    Blue, Robert; Uttamchandani, Deepak

    2017-02-01

    Recent years have seen the rapid growth in the need for sensors throughout all areas of society including environmental sensing, health-care, public safety and manufacturing quality control. To meet this diverse need, sensors have to evolve from specialized and bespoke systems to miniaturized, low-power, low-cost (almost disposable) ubiquitous platforms. A technology that has been developed which gives a route to meet these challenges is the chemicapacitor sensor. To date the commercialization of these sensors has largely been restricted to humidity sensing, but in this review we examine the progress over recent years to expand this sensing technology to a wide range of gases and vapors. From sensors interrogated with laboratory instrumentation, chemicapacitor sensors have evolved into miniaturized units integrated with low power readout electronics that can selectively detect target molecules to ppm and sub-ppm levels within vapor mixtures.

  18. Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.

    PubMed

    Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael

    2017-10-11

    Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na + ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na + ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.

  19. Passive microwave soil moisture downscaling using vegetation index and skin surface temperature

    USDA-ARS?s Scientific Manuscript database

    Soil moisture satellite estimates are available from a variety of passive microwave satellite sensors, but their spatial resolution is frequently too coarse for use by land managers and other decision makers. In this paper, a soil moisture downscaling algorithm based on a regression relationship bet...

  20. Sensor Management for Tactical Surveillance Operations

    DTIC Science & Technology

    2007-11-01

    active and passive sonar for submarine and tor- pedo detection, and mine avoidance. [range, bearing] range 1.8 km to 55 km Active or Passive AN/SLQ-501...finding (DF) unit [bearing, classification] maximum range 1100 km Passive Cameras (day- light/ night- vision) ( video & still) Record optical and...infrared still images or motion video of events for near-real time assessment or long term analysis and archiving. Range is limited by the image resolution

  1. Technologies for Assessment of Motor Disorders in Parkinson’s Disease: A Review

    PubMed Central

    Oung, Qi Wei; Muthusamy, Hariharan; Lee, Hoi Leong; Basah, Shafriza Nisha; Yaacob, Sazali; Sarillee, Mohamed; Lee, Chia Hau

    2015-01-01

    Parkinson’s Disease (PD) is characterized as the commonest neurodegenerative illness that gradually degenerates the central nervous system. The goal of this review is to come out with a summary of the recent progress of numerous forms of sensors and systems that are related to diagnosis of PD in the past decades. The paper reviews the substantial researches on the application of technological tools (objective techniques) in the PD field applying different types of sensors proposed by previous researchers. In addition, this also includes the use of clinical tools (subjective techniques) for PD assessments, for instance, patient self-reports, patient diaries and the international gold standard reference scale, Unified Parkinson Disease Rating Scale (UPDRS). Comparative studies and critical descriptions of these approaches have been highlighted in this paper, giving an insight on the current state of the art. It is followed by explaining the merits of the multiple sensor fusion platform compared to single sensor platform for better monitoring progression of PD, and ends with thoughts about the future direction towards the need of multimodal sensor integration platform for the assessment of PD. PMID:26404288

  2. Remotely deployable aerial inspection using tactile sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, C. N.; Cao, J.; Pierce, S. G.

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment,more » resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.« less

  3. A web-based system for home monitoring of patients with Parkinson's disease using wearable sensors.

    PubMed

    Chen, Bor-Rong; Patel, Shyamal; Buckley, Thomas; Rednic, Ramona; McClure, Douglas J; Shih, Ludy; Tarsy, Daniel; Welsh, Matt; Bonato, Paolo

    2011-03-01

    This letter introduces MercuryLive, a platform to enable home monitoring of patients with Parkinson's disease (PD) using wearable sensors. MercuryLive contains three tiers: a resource-aware data collection engine that relies upon wearable sensors, web services for live streaming and storage of sensor data, and a web-based graphical user interface client with video conferencing capability. Besides, the platform has the capability of analyzing sensor (i.e., accelerometer) data to reliably estimate clinical scores capturing the severity of tremor, bradykinesia, and dyskinesia. Testing results showed an average data latency of less than 400 ms and video latency of about 200 ms with video frame rate of about 13 frames/s when 800 kb/s of bandwidth were available and we used a 40% video compression, and data feature upload requiring 1 min of extra time following a 10 min interactive session. These results indicate that the proposed platform is suitable to monitor patients with PD to facilitate the titration of medications in the late stages of the disease.

  4. Fluid dynamic design and experimental study of an aspirated temperature measurement platform used in climate observation.

    PubMed

    Yang, Jie; Liu, Qingquan; Dai, Wei; Ding, Renhui

    2016-08-01

    Due to the solar radiation effect, current air temperature sensors inside a thermometer screen or radiation shield may produce measurement errors that are 0.8 °C or higher. To improve the observation accuracy, an aspirated temperature measurement platform is designed. A computational fluid dynamics (CFD) method is implemented to analyze and calculate the radiation error of the aspirated temperature measurement platform under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using a genetic algorithm (GA) method. In order to verify the performance of the temperature sensor, the aspirated temperature measurement platform, temperature sensors with a naturally ventilated radiation shield, and a thermometer screen are characterized in the same environment to conduct the intercomparison. The average radiation errors of the sensors in the naturally ventilated radiation shield and the thermometer screen are 0.44 °C and 0.25 °C, respectively. In contrast, the radiation error of the aspirated temperature measurement platform is as low as 0.05 °C. This aspirated temperature sensor allows the radiation error to be reduced by approximately 88.6% compared to the naturally ventilated radiation shield, and allows the error to be reduced by a percentage of approximately 80% compared to the thermometer screen. The mean absolute error and root mean square error between the correction equation and experimental results are 0.032 °C and 0.036 °C, respectively, which demonstrates the accuracy of the CFD and GA methods proposed in this research.

  5. Fluid dynamic design and experimental study of an aspirated temperature measurement platform used in climate observation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jie, E-mail: yangjie396768@163.com; School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044; Liu, Qingquan

    Due to the solar radiation effect, current air temperature sensors inside a thermometer screen or radiation shield may produce measurement errors that are 0.8 °C or higher. To improve the observation accuracy, an aspirated temperature measurement platform is designed. A computational fluid dynamics (CFD) method is implemented to analyze and calculate the radiation error of the aspirated temperature measurement platform under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using a genetic algorithm (GA) method. In order to verify the performance of the temperature sensor, the aspirated temperature measurement platform, temperature sensors withmore » a naturally ventilated radiation shield, and a thermometer screen are characterized in the same environment to conduct the intercomparison. The average radiation errors of the sensors in the naturally ventilated radiation shield and the thermometer screen are 0.44 °C and 0.25 °C, respectively. In contrast, the radiation error of the aspirated temperature measurement platform is as low as 0.05 °C. This aspirated temperature sensor allows the radiation error to be reduced by approximately 88.6% compared to the naturally ventilated radiation shield, and allows the error to be reduced by a percentage of approximately 80% compared to the thermometer screen. The mean absolute error and root mean square error between the correction equation and experimental results are 0.032 °C and 0.036 °C, respectively, which demonstrates the accuracy of the CFD and GA methods proposed in this research.« less

  6. Integrated approach for automatic target recognition using a network of collaborative sensors.

    PubMed

    Mahalanobis, Abhijit; Van Nevel, Alan

    2006-10-01

    We introduce what is believed to be a novel concept by which several sensors with automatic target recognition (ATR) capability collaborate to recognize objects. Such an approach would be suitable for netted systems in which the sensors and platforms can coordinate to optimize end-to-end performance. We use correlation filtering techniques to facilitate the development of the concept, although other ATR algorithms may be easily substituted. Essentially, a self-configuring geometry of netted platforms is proposed that positions the sensors optimally with respect to each other, and takes into account the interactions among the sensor, the recognition algorithms, and the classes of the objects to be recognized. We show how such a paradigm optimizes overall performance, and illustrate the collaborative ATR scheme for recognizing targets in synthetic aperture radar imagery by using viewing position as a sensor parameter.

  7. Tier-scalable reconnaissance: the challenge of sensor optimization, sensor deployment, sensor fusion, and sensor interoperability

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang; George, Thomas; Tarbell, Mark A.

    2007-04-01

    Robotic reconnaissance operations are called for in extreme environments, not only those such as space, including planetary atmospheres, surfaces, and subsurfaces, but also in potentially hazardous or inaccessible operational areas on Earth, such as mine fields, battlefield environments, enemy occupied territories, terrorist infiltrated environments, or areas that have been exposed to biochemical agents or radiation. Real time reconnaissance enables the identification and characterization of transient events. A fundamentally new mission concept for tier-scalable reconnaissance of operational areas, originated by Fink et al., is aimed at replacing the engineering and safety constrained mission designs of the past. The tier-scalable paradigm integrates multi-tier (orbit atmosphere surface/subsurface) and multi-agent (satellite UAV/blimp surface/subsurface sensing platforms) hierarchical mission architectures, introducing not only mission redundancy and safety, but also enabling and optimizing intelligent, less constrained, and distributed reconnaissance in real time. Given the mass, size, and power constraints faced by such a multi-platform approach, this is an ideal application scenario for a diverse set of MEMS sensors. To support such mission architectures, a high degree of operational autonomy is required. Essential elements of such operational autonomy are: (1) automatic mapping of an operational area from different vantage points (including vehicle health monitoring); (2) automatic feature extraction and target/region-of-interest identification within the mapped operational area; and (3) automatic target prioritization for close-up examination. These requirements imply the optimal deployment of MEMS sensors and sensor platforms, sensor fusion, and sensor interoperability.

  8. Mission planning for large microwave radiometers

    NASA Technical Reports Server (NTRS)

    Schartel, W. A.

    1984-01-01

    Earth orbiting, remote sensing platforms that use microwave radiometers as sensors are susceptible to data interpretation difficulties. The capability of the large microwave radiometer (LMR) was augmented with the inclusion of auxillary sensors that expand and enhance the LMR capability. The final system configuration demonstrates a holistic approach in the design of future orbiting remote sensing platforms that use a LMR as the core instrument.

  9. Sensor4PRI: A Sensor Platform for the Protection of Railway Infrastructures

    PubMed Central

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Rubio, Bartolomé

    2015-01-01

    Wireless Sensor Networks constitute pervasive and distributed computing systems and are potentially one of the most important technologies of this century. They have been specifically identified as a good candidate to become an integral part of the protection of critical infrastructures. In this paper we focus on railway infrastructure protection and we present the details of a sensor platform designed to be integrated into a slab track system in order to carry out both installation and maintenance monitoring activities. In the installation phase, the platform helps operators to install the slab tracks in the right position. In the maintenance phase, the platform collects information about the structural health and behavior of the infrastructure when a train travels along it and relays the readings to a base station. The base station uses trains as data mules to upload the information to the internet. The use of a train as a data mule is especially suitable for collecting information from remote or inaccessible places which do not have a direct connection to the internet and require less network infrastructure. The overall aim of the system is to deploy a permanent economically viable monitoring system to improve the safety of railway infrastructures. PMID:25734648

  10. Long-term real-time structural health monitoring using wireless smart sensor

    NASA Astrophysics Data System (ADS)

    Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil

    2013-04-01

    Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.

  11. Electrocatalysis in DNA Sensors

    PubMed Central

    Furst, Ariel; Hill, Michael G.; Barton, Jacqueline K.

    2014-01-01

    Electrocatalysis is often thought of solely in the inorganic realm, most often applied to energy conversion in fuel cells. However, the ever-growing field of bioelectrocatalysis has made great strides in advancing technology for both biofuel cells as well as biological detection platforms. Within the context of bioelectrocatalytic detection systems, DNA-based platforms are especially prevalent. One subset of these platforms, the one we have developed, takes advantage of the inherent charge transport properties of DNA. Electrocatalysis coupled with DNA-mediated charge transport has enabled specific and sensitive detection of lesions, mismatches and DNA-binding proteins. Even greater signal amplification from these platforms is now being achieved through the incorporation of a secondary electrode to the platform both for patterning DNA arrays and for detection. Here, we describe the evolution of this new DNA sensor technology. PMID:25435647

  12. Electrocatalysis in DNA Sensors.

    PubMed

    Furst, Ariel; Hill, Michael G; Barton, Jacqueline K

    2014-12-14

    Electrocatalysis is often thought of solely in the inorganic realm, most often applied to energy conversion in fuel cells. However, the ever-growing field of bioelectrocatalysis has made great strides in advancing technology for both biofuel cells as well as biological detection platforms. Within the context of bioelectrocatalytic detection systems, DNA-based platforms are especially prevalent. One subset of these platforms, the one we have developed, takes advantage of the inherent charge transport properties of DNA. Electrocatalysis coupled with DNA-mediated charge transport has enabled specific and sensitive detection of lesions, mismatches and DNA-binding proteins. Even greater signal amplification from these platforms is now being achieved through the incorporation of a secondary electrode to the platform both for patterning DNA arrays and for detection. Here, we describe the evolution of this new DNA sensor technology.

  13. NASA Tech Briefs, July 2011

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Topics covered include: 1) Collaborative Clustering for Sensor Networks; 2) Teleoperated Marsupial Mobile Sensor Platform Pair for Telepresence Insertion Into Challenging Structures; 3) Automated Verification of Spatial Resolution in Remotely Sensed Imagery; 4) Electrical Connector Mechanical Seating Sensor; 5) In Situ Aerosol Detector; 6) Multi-Parameter Aerosol Scattering Sensor; 7) MOSFET Switching Circuit Protects Shape Memory Alloy Actuators; 8) Optimized FPGA Implementation of Multi-Rate FIR Filters Through Thread Decomposition; 9) Circuit for Communication Over Power Lines; 10) High-Efficiency Ka-Band Waveguide Two-Way Asymmetric Power Combiner; 11) 10-100 Gbps Offload NIC for WAN, NLR, and Grid Computing; 12) Pulsed Laser System to Simulate Effects of Cosmic Rays in Semiconductor Devices; 13) Flight Planning in the Cloud; 14) MPS Editor; 15) Object-Oriented Multi Disciplinary Design, Analysis, and Optimization Tool; 16) Cryogenic-Compatible Winchester Connector Mount and Retaining System for Composite Tubes; 17) Development of Position-Sensitive Magnetic Calorimeters for X-Ray Astronomy; 18) Planar Rotary Piezoelectric Motor Using Ultrasonic Horns; 19) Self-Rupturing Hermetic Valve; 20) Explosive Bolt Dual-Initiated from One Side; 21) Dampers for Stationary Labyrinth Seals; 22) Two-Arm Flexible Thermal Strap; 23) Carbon Dioxide Removal via Passive Thermal Approaches; 24) Polymer Electrolyte-Based Ambient Temperature Oxygen Microsensors for Environmental Monitoring; 25) Pressure Shell Approach to Integrated Environmental Protection; 26) Image Quality Indicator for Infrared Inspections; 27) Micro-Slit Collimators for X-Ray/Gamma-Ray Imaging; 28) Scatterometer-Calibrated Stability Verification Method; 29) Test Port for Fiber-Optic-Coupled Laser Altimeter; 30) Phase Retrieval System for Assessing Diamond Turning and Optical Surface Defects; 31) Laser Oscillator Incorporating a Wedged Polarization Rotator and a Porro Prism as Cavity Mirror; 32) Generic, Extensible, Configurable Push-Pull Framework for Large-Scale Science Missions; 33) Dynamic Loads Generation for Multi-Point Vibration Excitation Problems; 34) Optimal Control via Self-Generated Stochasticity; 35) Space-Time Localization of Plasma Turbulence Using Multiple Spacecraft Radio Links; 36) Surface Contact Model for Comets and Asteroids; 37) Dust Mitigation Vehicle; 38) Optical Coating Performance for Heat Reflectors of the JWST-ISIM Electronic Component; 39) SpaceCube Demonstration Platform; 40) Aperture Mask for Unambiguous Parity Determination in Long Wavelength Imagers; 41) Spaceflight Ka-Band High-Rate Radiation-Hard Modulator; 42) Enabling Disabled Persons to Gain Access to Digital Media; 43) Cytometer on a Chip; 44) Principles, Techniques, and Applications of Tissue Microfluidics; and 45) Two-Stage Winch for Kites and Tethered Balloons or Blimps.

  14. How Do A-train Sensors Intercompare in the Retrieval of Above-cloud Aerosol Optical Depth? A Case Study-based Assessment

    NASA Technical Reports Server (NTRS)

    Jethva, Hiren; Torres, Omar; Waquet, Fabien; Chand, Duli; Hu, Yongxiang

    2014-01-01

    We intercompare the above-cloud aerosol optical depth (ACAOD) of biomass burning plumes retrieved from A-train sensors, i.e., Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Polarization and Directionality of Earth Reflectances (POLDER), and Ozone Monitoring Instrument (OMI). These sensors have shown independent capabilities to retrieve aerosol loading above marine boundary layer clouds-a kind of situation often found over the southeast Atlantic Ocean during dry burning season. A systematic comparison reveals that all passive sensors and CALIOP-based research methods derive comparable ACAOD with differences mostly within 0.2 over homogeneous cloud fields. The 532 nm ACAOD retrieved by CALIOP operational algorithm is underestimated. The retrieved 1064 nm AOD however shows closer agreement with passive sensors. Given the different types of measurements processed with different algorithms, the reported close agreement between them is encouraging. Due to unavailability of direct measurements above cloud, the validation of satellite-based ACAOD remains an open challenge. The intersatellite comparison however can be useful for the relative evaluation and consistency check

  15. Passive Sensor Integration for Vehicle Self-Localization in Urban Traffic Environment †

    PubMed Central

    Gu, Yanlei; Hsu, Li-Ta; Kamijo, Shunsuke

    2015-01-01

    This research proposes an accurate vehicular positioning system which can achieve lane-level performance in urban canyons. Multiple passive sensors, which include Global Navigation Satellite System (GNSS) receivers, onboard cameras and inertial sensors, are integrated in the proposed system. As the main source for the localization, the GNSS technique suffers from Non-Line-Of-Sight (NLOS) propagation and multipath effects in urban canyons. This paper proposes to employ a novel GNSS positioning technique in the integration. The employed GNSS technique reduces the multipath and NLOS effects by using the 3D building map. In addition, the inertial sensor can describe the vehicle motion, but has a drift problem as time increases. This paper develops vision-based lane detection, which is firstly used for controlling the drift of the inertial sensor. Moreover, the lane keeping and changing behaviors are extracted from the lane detection function, and further reduce the lateral positioning error in the proposed localization system. We evaluate the integrated localization system in the challenging city urban scenario. The experiments demonstrate the proposed method has sub-meter accuracy with respect to mean positioning error. PMID:26633420

  16. Disposable inkjet-printed electrochemical platform for detection of clinically relevant HER-2 breast cancer biomarker.

    PubMed

    Carvajal, Susanita; Fera, Samantha N; Jones, Abby L; Baldo, Thaisa A; Mosa, Islam M; Rusling, James F; Krause, Colleen E

    2018-05-01

    Rapidly fabricated, disposable sensor platforms hold tremendous promise for point-of-care detection. Here, we present an inexpensive (< $0.25) fully inkjet printed electrochemical sensor with integrated counter, reference, and working electrodes that is easily scalable for commercial fabrication. The electrochemical sensor platform featured an inkjet printed gold working 8-electrode array (WEA) and counter electrode (CE), along with an inkjet -printed silver electrode that was chlorinated with bleach to produce a Ag/AgCl quasi-reference electrode (RE). As proof of concept, the electrochemical sensor was successfully applied for detection of clinically relevant breast cancer biomarker Human Epidermal Growth Factor Receptor 2 (HER-2). Capture antibodies were bound to a chemically modified surface on the WEA and placed into a microfluidic device. A full sandwich immunoassay was constructed following a simultaneous injection of target protein, biotinylated antibody, and polymerized horseradish peroxide labels into the microfluidic device housing the WEA. With an ultra fast assay time, of only 15mins a clinically relevant limit of detection of 12pgmL -1 was achieved. Excellent reproducibility and sensitivity were observed through recovery assays preformed in human serum with recoveries ranging from 76% to 103%. These easily fabricated and scalable electrochemical sensor platforms can be readily adapted for multiplex detection following this rapid assay protocol for cancer diagnostics. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. THe high altitude reconnaissance platform (HARP) and its capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusk, D.; Rose, R.L.; Gibeau, E.

    1996-10-01

    The High Altitude Reconnaissance Platform (HARP), a Learjet 36A, is a multi-purpose, long-range, high-altitude aircraft specially modified to serve as a meteorological observation platform. Its instrument suite includes: particle probes, Ka-band radar, two-color lidar, infrared spectroradiometer, thermometer, hygrometer, liquid water probe, and a gust probe. Aeromet scientists have developed software and hardware systems that combine data using sensor fusion concepts, providing detailed environmental information. The HARP answers the need for defining and predicting meteorological conditions throughout large atmospheric volumes particularly in areas where conventional surface and upper-air observations are not available. It also fills the need for gathering and predictingmore » meteorological conditions along an optical sensor`s line of sight or a missile`s reentry path. 6 refs., 2 figs., 4 tabs.« less

  18. A review of brain-computer interface games and an opinion survey from researchers, developers and users.

    PubMed

    Ahn, Minkyu; Lee, Mijin; Choi, Jinyoung; Jun, Sung Chan

    2014-08-11

    In recent years, research on Brain-Computer Interface (BCI) technology for healthy users has attracted considerable interest, and BCI games are especially popular. This study reviews the current status of, and describes future directions, in the field of BCI games. To this end, we conducted a literature search and found that BCI control paradigms using electroencephalographic signals (motor imagery, P300, steady state visual evoked potential and passive approach reading mental state) have been the primary focus of research. We also conducted a survey of nearly three hundred participants that included researchers, game developers and users around the world. From this survey, we found that all three groups (researchers, developers and users) agreed on the significant influence and applicability of BCI and BCI games, and they all selected prostheses, rehabilitation and games as the most promising BCI applications. User and developer groups tended to give low priority to passive BCI and the whole head sensor array. Developers gave higher priorities to "the easiness of playing" and the "development platform" as important elements for BCI games and the market. Based on our assessment, we discuss the critical point at which BCI games will be able to progress from their current stage to widespread marketing to consumers. In conclusion, we propose three critical elements important for expansion of the BCI game market: standards, gameplay and appropriate integration.

  19. Radio frequency identification enabled wireless sensing for intelligent food logistics.

    PubMed

    Zou, Zhuo; Chen, Qiang; Chen, Qing; Uysal, Ismail; Zheng, Lirong

    2014-06-13

    Future technologies and applications for the Internet of Things (IoT) will evolve the process of the food supply chain and create added value of business. Radio frequency identifications (RFIDs) and wireless sensor networks (WSNs) have been considered as the key technological enablers. Intelligent tags, powered by autonomous energy, are attached on objects, networked by short-range wireless links, allowing the physical parameters such as temperatures and humidities as well as the location information to seamlessly integrate with the enterprise information system over the Internet. In this paper, challenges, considerations and design examples are reviewed from system, implementation and application perspectives, particularly with focus on intelligent packaging and logistics for the fresh food tracking and monitoring service. An IoT platform with a two-layer network architecture is introduced consisting of an asymmetric tag-reader link (RFID layer) and an ad-hoc link between readers (WSN layer), which are further connected to the Internet via cellular or Wi-Fi. Then, we provide insights into the enabling technology of RFID with sensing capabilities. Passive, semi-passive and active RFID solutions are discussed. In particular, we describe ultra-wideband radio RFID which has been considered as one of the most promising techniques for ultra-low-power and low-cost wireless sensing. Finally, an example is provided in the form of an application in fresh food tracking services and corresponding field testing results.

  20. A wireless sensor tag platform for container security and integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaya, Ivan A.; Cree, Johnathan V.; Mauss, Fredrick J.

    Cargo containers onboard ships are widely used in the global supply chain. The need for container security is evidenced by the Container Security Initiative launched by the U.S. Bureau of Customs and Border Protection (CBP). One method of monitoring cargo containers is using low power wireless sensor tags. The wireless sensor tags are used to set up a network that is comprised of tags internal to the container and a central device. The sensor network reports alarms and other anomalies to a central device, which then relays the message to an outside network upon arrival at the destination port. Thismore » allows the port authorities to have knowledge of potential security or integrity issues before physically examining the container. Challenges of using wireless sensor tag networks for container security include battery life, size, environmental conditions, information security, and cost among others. PNNL developed an active wireless sensor tag platform capable of reporting data wirelessly to a central node as well as logging data to nonvolatile memory. The tags, operate at 2.4 GHz over an IEEE 802.15.4 protocol, and were designed to be distributed throughout the inside of a shipping container in the upper support frame. The tags are mounted in a housing that allows for simple and efficient installation or removal prior to, during, or after shipment. The distributed tags monitor the entire container volume. The sensor tag platform utilizes low power electronics and provides an extensible sensor interface for incorporating a wide range of sensors including chemical, biological, and environmental sensors.« less

Top