Sample records for passive smap mission

  1. The Soil Moisture Active and Passive (SMAP) Mission

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council’s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen f...

  2. Fostering Application Opportunites for the NASA Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Moran, M. Susan; O'Neill, Peggy E.; Entekhabi, Dara; Njoku, Eni G.; Kellogg, Kent H.

    2010-01-01

    The NASA Soil Moisture Active Passive (SMAP) Mission will provide global observations of soil moisture and freeze/thaw state from space. We outline how priority applications contributed to the SMAP mission measurement requirements and how the SMAP mission plans to foster applications and applied science.

  3. The NASA Soil Moisture Active Passive (SMAP) Mission: Overview

    NASA Technical Reports Server (NTRS)

    O'Neill, Peggy; Entekhabi, Dara; Njoku, Eni; Kellogg, Kent

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council?s Decadal Survey [1]. Its mission design consists of L-band radiometer and radar instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every 2-3 days. The combined active/passive microwave soil moisture product will have a spatial resolution of 10 km and a mean latency of 24 hours. In addition, the SMAP surface observations will be combined with advanced modeling and data assimilation to provide deeper root zone soil moisture and net ecosystem exchange of carbon. SMAP is expected to launch in the late 2014 - early 2015 time frame.

  4. The Soil Moisture Active/Passive Mission (SMAP)

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active/Passive (SMAP) mission will deliver global views of soil moisture content and its freeze/thaw state that are critical terrestrial water cycle state variables. Polarized measurements obtained with a shared antenna L-band radar and radiometer system will allow accurate estima...

  5. The Soil Moisture Active and Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Nijoku, Eni G.; ONeill, Peggy E.; Kellogg, Kent H.; Crow, Wade T.; Edelstein, Wendy N.; Entin, Jared K.; Goodman, Shawn D.; Jackson, Thomas J.; Johnson, Joel; hide

    2009-01-01

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen from thawed land surfaces. Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy and carbon transfers between land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP soil moisture and freeze/thaw timing observations will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes. The SMAP mission concept would utilize an L-band radar and radiometer. These instruments will share a rotating 6-meter mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. The SMAP instruments provide direct measurements of surface conditions. In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and estimates of land surface-atmosphere exchanges of water, energy and carbon. SMAP is scheduled for a 2014 launch date

  6. NASA’s Soil Moisture Active Passive (SMAP) mission and opportunities for applications users

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) mission is one of four first-tier missions recommended by the National Research Council's Committee on Earth Science and Applications from Space. Set to launch in 2014, SMAP soil moisture and freeze/thaw measurements will have an accuracy, resolution, and glob...

  7. The NASA Soil Moisture Active Passive (SMAP) Mission Formulation

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Njoku, Eni; ONeill, Peggy; Kellogg, Kent; Entin, Jared

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier projects recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission is in formulation phase and it is scheduled for launch in 2014. The SMAP mission is designed to produce high-resolution and accurate global mapping of soil moisture and its freeze/thaw state using an instrument architecture that incorporates an L-band (1.26 GHz) radar and an L-band (1.41 GHz) radiometer. The simultaneous radar and radiometer measurements will be combined to derive global soil moisture mapping at 9 [km] resolution with a 2 to 3 days revisit and 0.04 [cm3 cm-3] (1 sigma) soil water content accuracy. The radar measurements also allow the binary detection of surface freeze/thaw state. The project science goals address in water, energy and carbon cycle science as well as provide improved capabilities in natural hazards applications.

  8. FOSTERING APPLICATIONS OPPORTUNITIES FOR THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council’s (NRC’s) Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. SMAP will ma...

  9. NASA's Soil Moisture Active and Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Kellogg, Kent; Njoku, Eni; Thurman, Sam; Edelstein, Wendy; Jai, Ben; Spencer, Mike; Chen, Gun-Shing; Entekhabi, Dara; O'Neill, Peggy; Piepmeier, Jeffrey; hide

    2010-01-01

    The Soil Moisture Active-Passive (SMAP) Mission is one of the first Earth observation satellites being formulated by NASA in response to the 2007 National Research Council s Decadal Survey. SMAP will make global measurements of soil moisture at the Earth's land surface and its freeze-thaw state. These measurements will allow significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. Knowledge gained from SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP observations of soil moisture and freeze/thaw timing over the boreal latitudes will also reduce a major uncertainty in quantifying the global carbon balance and help to resolve an apparent missing carbon sink over land. The SMAP mission concept will utilize an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna flying in a 680 km polar orbit with an 8-day exact ground track repeat aboard a 3-axis stabilized spacecraft to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. In addition, the SMAP project will use these surface observations with advanced modeling and data assimilation to provide estimates of deeper root-zone soil moisture and net ecosystem exchange of carbon. SMAP recently completed its Phase A Mission Concept Study Phase for NASA and transitioned into Phase B (Formulation and Detailed Design). A number of significant accomplishments occurred during this initial phase of mission development. The SMAP project held several open meetings to solicit community feedback on possible science algorithms, prepared preliminary draft Algorithm Theoretical Basis Documents (ATBDs) for each mission science product, and established a prototype algorithm testbed to enable testing and evaluation of the

  10. The Soil Moisture Active Passive (SMAP) applications activity

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier satellite missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission 1 is under development by NASA and is scheduled for launch late in 2014. The SMAP mea...

  11. NASA Soil Moisture Active Passive (SMAP) Mission Formulation

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Njoku, Eni; ONeill, Peggy; Kellogg, Kent; Entin, Jared

    2011-01-01

    The Soil Moisture Active Passive (SMAP) Mission is one of the first Earth observation satellites being formulated by NASA in response to the 2007 National Research Council s Earth Science Decadal Survey [1]. SMAP s measurement objectives are high-resolution global measurements of near-surface soil moisture and its freeze-thaw state. These measurements would allow significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. The soil moisture control of these fluxes is a key factor in the performance of atmospheric models used for weather forecasts and climate projections. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. Knowledge gained from SMAP s planned observations can help mitigate these natural hazards, resulting in potentially great economic and societal benefits. SMAP measurements would also yield high resolution spatial and temporal mapping of the frozen or thawed condition of the surface soil and vegetation. Observations of soil moisture and freeze/thaw timing over the boreal latitudes will contribute to reducing a major uncertainty in quantifying the global carbon balance and help resolve an apparent missing carbon sink over land. The SMAP mission would utilize an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna (see Figure 1) [2]. The radar and radiometer instruments would be carried onboard a 3-axis stabilized spacecraft in a 680 km polar orbit with an 8-day repeating ground track. The instruments are planned to provide high-resolution and high-accuracy global maps of soil moisture at 10 km resolution and freeze/thaw at 3 km resolution, every two to three days (see Table 1 for a list of science data products). The mission is adopting a number of approaches to identify and mitigate potential terrestrial radio frequency interference (RFI). These approaches are being incorporated into the radiometer and radar flight hardware and

  12. Development of SMAP Mission Cal/Val Activities

    NASA Technical Reports Server (NTRS)

    Colliander, A.; Jackson, T.; Kimball, J.; Cosh, M.; Spencer, M.; Entekhabi, D.; Njoku, E.; ONeill, P.

    2010-01-01

    The Soil Moisture Active Passive (SMAP) mission is a NASA directed mission to map global land surface soil moisture and freeze-thaw state. Instrument and mission details are shown. The key SMAP soil moisture product is provided at 10 km resolution with 0.04cubic cm/cubic cm accuracy. The freeze/thaw product is provided at 3 km resolution and 80% frozen-thawed classification accuracy. The full list of SMAP data products is shown.

  13. The soil moisture active passive experiments (SMAPEx): Towards soil moisture retrieval from the SMAP mission

    USDA-ARS?s Scientific Manuscript database

    NASA’s Soil Moisture Active Passive (SMAP) mission, scheduled for launch in 2014, will carry the first combined L-band radar and radiometer system with the objective of mapping near surface soil moisture and freeze/thaw state globally at near-daily time step (2-3 days). SMAP will provide three soil ...

  14. Soil Moisture Active Passive (SMAP) Media Briefing

    NASA Image and Video Library

    2015-01-09

    Christine Bonniksen, SMAP program executive with the Science Mission Directorate’s Earth Science Division, NASA Headquarters, left, Kent Kellogg, SMAP project manager, NASA Jet Propulsion Laboratory (JPL), second from left, Dara Entekhabi, SMAP science team lead, Massachusetts Institute of Technology, second from right, and Brad Doorn, SMAP applications lead, Science Mission Directorate’s Applied Sciences Program, NASA Headquarters, right, are seen during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)

  15. The Soil Moisture Active and Passive Mission (SMAP): Science and Applications

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni

    2009-01-01

    The Soil Moisture Active and Passive mission (SMAP) will provide global maps of soil moisture content and surface freeze/thaw state. Global measurements of these variables are critical for terrestrial water and carbon cycle applications. The SMAP observatory consists of two multipolarization L-band sensors, a radar and radiometer, that share a deployable-mesh reflector antenna. The combined observations from the two sensors will allow accurate estimation of soil moisture at hydrometeorological (10 km) and hydroclimatological (40 km) spatial scales. The rotating antenna configuration provides conical scans of the Earth surface at a constant look angle. The wide-swath (1000 km) measurements will allow global mapping of soil moisture and its freeze/thaw state with 2-3 days revisit. Freeze/thaw in boreal latitudes will be mapped using the radar at 3 km resolution with 1-2 days revisit. The synergy of active and passive observations enables measurements of soil moisture and freeze/thaw state with unprecedented resolution, sensitivity, area coverage and revisit.

  16. Active–passive soil moisture retrievals during the SMAP validation experiment 2012

    USDA-ARS?s Scientific Manuscript database

    The goal of this study is to assess the performance of the active–passive algorithm for the NASA Soil Moisture Active Passive mission (SMAP) using airborne and ground observations from a field campaign. The SMAP active–passive algorithm disaggregates the coarse-resolution radiometer brightness tempe...

  17. Assessment of the SMAP level 2 passive soil moisture product

    USDA-ARS?s Scientific Manuscript database

    The NASA Soil Moisture Active Passive (SMAP) satellite mission was launched on Jan 31, 2015. The observatory was developed to provide global mapping of high-resolution soil moisture and freeze-thaw state every 2–3 days using an L-band (active) radar and an L-band (passive) radiometer. SMAP provides ...

  18. Soil Moisture Active Passive (SMAP) Media Briefing

    NASA Image and Video Library

    2015-01-09

    Brad Doorn, SMAP applications lead, Science Mission Directorate’s Applied Sciences Program at NASA Headquarters speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)

  19. Soil Moisture Active Passive (SMAP) Media Briefing

    NASA Image and Video Library

    2015-01-09

    Christine Bonniksen, SMAP program executive with the Science Mission Directorate’s Earth Science Division at NASA Headquarters speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)

  20. Soil Moisture Active Passive (SMAP) Media Briefing

    NASA Image and Video Library

    2015-01-09

    Dara Entekhabi, SMAP science team lead, Massachusetts Institute of Technology, center, speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)

  1. Soil Moisture Active Passive (SMAP) Media Briefing

    NASA Image and Video Library

    2015-01-09

    Dara Entekhabi, SMAP science team lead, Massachusetts Institute of Technology, speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)

  2. Cost-Effective Telemetry and Command Ground Systems Automation Strategy for the Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Choi, Josh; Sanders, Antonio

    2012-01-01

    Soil Moisture Active Passive (SMAP) is an Earth-orbiting, remote-sensing NASA mission slated for launch in 2014. The ground data system (GDS) being developed for SMAP is composed of many heterogeneous subsystems, ranging from those that support planning and sequencing to those used for real-time operations, and even further to those that enable science data exchange. A full end-to-end automation of the GDS may result in cost savings during mission operations, but it would require a significant upfront investment to develop such a comprehensive automation. As demonstrated by the Jason-1 and Wide-field Infrared Survey Explorer (WISE) missions, a measure of "lights-out" automation for routine, orbital pass, ground operations can still reduce mission costs through smaller staffing of operators and limiting their working hours. The challenge, then, for the SMAP GDS engineering team, is to formulate an automated operations strategy--and corresponding system architecture -- to minimize operator intervention during routine operations, while balancing the development costs associated with the scope and complexity of automation. This paper discusses the automated operations approach being developed for the SMAP GDS. The focus is on automating the activities involved in routine passes, which limits the scope to real-time operations. A key subsystem of the SMAP GDS -- NASA's AMMOS Mission Data Processing and Control System (AMPCS) -- provides a set of capabilities that enable such automation. Also discussed are the lights-out pass automations of the Jason-1 and WISE missions and how they informed the automation strategy for SMAP. The paper aims to provide insights into what is necessary in automating the GDS operations for Earth satellite missions.

  3. Cost-Effective Telemetry and Command Ground Systems Automation Strategy for the Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Choi, Joshua S.; Sanders, Antonio L.

    2012-01-01

    Soil Moisture Active Passive (SMAP) is an Earth-orbiting, remote-sensing NASA mission slated for launch in 2014.[double dagger] The ground data system (GDS) being developed for SMAP is composed of many heterogeneous subsystems, ranging from those that support planning and sequencing to those used for real-time operations, and even further to those that enable science data exchange. A full end-to-end automation of the GDS may result in cost savings during mission operations, but it would require a significant upfront investment to develop such comprehensive automation. As demonstrated by the Jason-1 and Wide-field Infrared Survey Explorer (WISE) missions, a measure of "lights-out" automation for routine, orbital pass ground operations can still reduce mission cost through smaller staffing of operators and limited work hours. The challenge, then, for the SMAP GDS engineering team is to formulate an automated operations strategy--and corresponding system architecture--to minimize operator intervention during operations, while balancing the development cost associated with the scope and complexity of automation. This paper discusses the automated operations approach being developed for the SMAP GDS. The focus is on automating the activities involved in routine passes, which limits the scope to real-time operations. A key subsystem of the SMAP GDS--NASA's AMMOS Mission Data Processing and Control System (AMPCS)--provides a set of capabilities that enable such automation. Also discussed are the lights-out pass automations of the Jason-1 and WISE missions and how they informed the automation strategy for SMAP. The paper aims to provide insights into what is necessary in automating the GDS operations for Earth satellite missions.

  4. The Planned Soil Moisture Active Passive (SMAP) Mission L-Band Radar/Radiometer Instrument

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Wheeler, Kevin; Chan, Samuel; Piepmeier, Jeffrey; Hudson, Derek; Medeiros, James

    2011-01-01

    The Soil Moisture Active/Passive (SMAP) mission is a NASA mission identified by the NRC 'decadal survey' to measure both soil moisture and freeze/thaw state from space. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. The instrument system has completed the preliminary design review (PDR) stage, and detailed instrument design has begun. In addition to providing an overview of the instrument design, two recent design modifications are discussed: 1) The addition of active thermal control to the instrument spun side to provide a more stable, settable thermal environment for the radiometer electronics, and 2) A 'sequential transmit' strategy for the two radar polarization channels which allows a single high-power amplifier to be used.

  5. Assessment of Soil Moisture Data Requirements by the Potential SMAP Data User Community: Review of SMAP Mission User Community

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Escobar, Vanessa M.

    2013-01-01

    NASA's Soil Moisture Active and Passive (SMAP) mission is planned for launch in October 2014 and will provide global measurements of soil moisture and freeze thaw state. The project is driven by both basic research and applied science goals. Understanding how application driven end-users will apply SMAP data, prior to the satellite's launch, is an important goal of NASA's applied science program and SMAP mission success. Because SMAP data are unique, there are no direct proxy data sets that can be used in research and operational studies to determine how the data will interact with existing processes. The objective of this study is to solicit data requirements, accuracy needs, and current understanding of the SMAP mission from the potential user community. This study showed that the data to be provided by the SMAP mission did substantially meet the user community needs. Although there was a broad distribution of requirements stated, the SMAP mission fit within these requirements.

  6. The Soil Moisture Active Passive (SMAP) Applications Activity

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Moran, Susan; Escobar, Vanessa; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier satellite missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission 1 is under development by NASA and is scheduled for launch late in 2014. The SMAP measurements will allow global and high-resolution mapping of soil moisture and its freeze/thaw state at resolutions from 3-40 km. These measurements will have high value for a wide range of environmental applications that underpin many weather-related decisions including drought and flood guidance, agricultural productivity estimation, weather forecasting, climate predictions, and human health risk. In 2007, NASA was tasked by The National Academies to ensure that emerging scientific knowledge is actively applied to obtain societal benefits by broadening community participation and improving means for use of information. SMAP is one of the first missions to come out of this new charge, and its Applications Plan forms the basis for ensuring its commitment to its users. The purpose of this paper is to outline the methods and approaches of the SMAP applications activity, which is designed to increase and sustain the interaction between users and scientists involved in mission development.

  7. Soil Moisture Active Passive (SMAP) Media Briefing

    NASA Image and Video Library

    2015-01-09

    Kent Kellogg, SMAP project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, CA, speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)

  8. NASA Soil Moisture Active Passive (SMAP) Applications

    NASA Astrophysics Data System (ADS)

    Orr, Barron; Moran, M. Susan; Escobar, Vanessa; Brown, Molly E.

    2014-05-01

    The launch of the NASA Soil Moisture Active Passive (SMAP) mission in 2014 will provide global soil moisture and freeze-thaw measurements at moderate resolution (9 km) with latency as short as 24 hours. The resolution, latency and global coverage of SMAP products will enable new applications in the fields of weather, climate, drought, flood, agricultural production, human health and national security. To prepare for launch, the SMAP mission has engaged more than 25 Early Adopters. Early Adopters are users who have a need for SMAP-like soil moisture or freeze-thaw data, and who agreed to apply their own resources to demonstrate the utility of SMAP data for their particular system or model. In turn, the SMAP mission agreed to provide Early Adopters with simulated SMAP data products and pre-launch calibration and validation data from SMAP field campaigns, modeling, and synergistic studies. The applied research underway by Early Adopters has provided fundamental knowledge of how SMAP data products can be scaled and integrated into users' policy, business and management activities to improve decision-making efforts. This presentation will cover SMAP applications including weather and climate forecasting, vehicle mobility estimation, quantification of greenhouse gas emissions, management of urban potable water supply, and prediction of crop yield. The presentation will end with a discussion of potential international applications with focus on the ESA/CEOS TIGER Initiative entitled "looking for water in Africa", the United Nations (UN) Convention to Combat Desertification (UNCCD) which carries a specific mandate focused on Africa, the UN Framework Convention on Climate Change (UNFCCC) which lists soil moisture as an Essential Climate Variable (ECV), and the UN Food and Agriculture Organization (FAO) which reported a food and nutrition crisis in the Sahel.

  9. A data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission

    NASA Astrophysics Data System (ADS)

    Entekhabi, D.; Jagdhuber, T.; Das, N. N.; Baur, M.; Link, M.; Piles, M.; Akbar, R.; Konings, A. G.; Mccoll, K. A.; Alemohammad, S. H.; Montzka, C.; Kunstmann, H.

    2016-12-01

    The active-passive soil moisture retrieval algorithm of NASA's SMAP mission depends on robust statistical estimation of active-passive covariation (β) and vegetation structure (Γ) parameters in order to provide reliable global measurements of soil moisture on an intermediate level (9km) compared to the native resolution of the radiometer (36km) and radar (3km) instruments. These parameters apply to the SMAP radiometer-radar combination over the period of record that was cut short with the end of the SMAP radar transmission. They also apply to the current SMAP radiometer and Sentinel 1A/B radar combination for high-resolution surface soil moisture mapping. However, the performance of the statistically-based approach is directly dependent on the selection of a representative time frame in which these parameters can be estimated assuming dynamic soil moisture and stationary soil roughness and vegetation cover. Here, we propose a novel, data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission. The algorithm does not depend on time series analyses and can be applied using minimum one pair of an active-passive acquisition. The algorithm stems from the physical link between microwave emission and scattering via conservation of energy. The formulation of the emission radiative transfer is combined with the Distorted Born Approximation of radar scattering for vegetated land surfaces. The two formulations are simultaneously solved for the covariation and vegetation structure parameters. Preliminary results from SMAP active-passive observations (April 13th to July 7th 2015) compare well with the time-series statistical approach and confirms the capability of this method to estimate these parameters. Moreover, the method is not restricted to a given frequency (applies to both L-band and C-band combinations for the radar) or incidence angle (all angles and not just the fixed 40° incidence

  10. The SMAP mission combined active-passive soil moisture product at 9 km and 3km spatial resolutions

    USDA-ARS?s Scientific Manuscript database

    The NASA Soil Moisture Active Passive (SMAP) mission with onboard L-band radiometer and radar was launched on January 31st, 2015. The spacecraft provided high-resolution (3 km and 9 km) global soil moisture estimates at regular intervals by combining radiometer and radar observations for ~2.5 months...

  11. A Pre-launch Analysis of NASA's SMAP Mission Data

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.; Brown, M. E.

    2012-12-01

    Product applications have become an integral part of converting the data collected into actionable knowledge that can be used to inform policy. Successfully bridging scientific research with operational decision making in different application areas requires looking into thematic user requirements and data requirements. NASA's Soil Moisture Active/Passive mission (SMAP) has an applications program that actively seeks to integrate the data prior to launch into a broad range of environmental monitoring and decision making systems from drought and flood guidance to disease risk assessment and national security SMAP is a a combined active/passive microwave instrument, which will be launched into a near-polar orbit in late 2014. It aims to produce a series of soil moisture products and soil freeze/thaw products with an accuracy of +/- 10%, a nominal resolution of between 3 and 40km, and latency between 12 hours and 7 days. These measurements will be used to enhance the understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The driving success of the SMAP applications program is joining mission scientists to thematic end users and leveraging the knowledge base of soil moisture data applications, increase the speed SMAP data product ingestion into critical processes and research, improving societal benefits to science. Because SMAP has not yet launched, the mission is using test algorithms to determine how the data will interact with existing processes. The objective of this profession review is to solicit data requirements, accuracy needs and current understanding of the SMAP mission from the user community and then feed that back into mission product development. Thus, understanding how users will apply SMAP data, prior to the satellite's launch, is an important component of SMAP Applied Sciences and one of NASA's measures for mission success. This paper presents an analysis of

  12. Overview of the SMAP Applications and the SMAP Early Adopters Program - NASA's First Mission-Directed Outreach Effort

    NASA Technical Reports Server (NTRS)

    Escobar, V. M.; Delgado Arias, S.; Nearing, G.; Entekhabi, D.; Njoku, E.; Yueh, S.; Doorn, B.; Reichle, R.

    2016-01-01

    Satellite data provide global observations of many of the earths system processes and features. These data are valuable for developing scientific products that increase our understanding of how the earths systems are integrated. The water, energy and carbon cycle exchanges between the land and atmosphere are linked by soil moisture. NASAs Soil Moisture Active Passive (SMAP) mission provides soil moisture and freeze thaw measurements from space and allows scientists to link the water energy and carbon cycles. In order for SMAP data to be best integrated into decision support systems, the mission has engaged with the stakeholder community since 2009 and has attempted to scale the utility of the data to the thematic societal impacts of the satellite product applications. The SMAP Mission, which launched on January 31, 2015, has actively grown an Early Adopter (EA) community as part of its applications effort and worked with these EAs to demonstrate a scaled thematic impact of SMAP data product in societally relevant decision support applications. The SMAP mission provides global observations of the Earths surface soil moisture, providing high accuracy, resolution and continuous global coverage. Through the Early Adopters Program, the SMAP Applications Team will spend the next 2 years after launch documenting and evaluating the use of SMAP science products in applications related to weather forecasting, drought, agriculture productivity, floods, human health and national security.

  13. Soil Moisture Active Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification Document

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.

  14. Pre-Launch Phase 1 Calibration and Validation Rehearsal of Geophysical Data Products of Soil Moisture Active Passive (SMAP) Mission

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Jackson, T. J.; Chan, S.; Dunbar, R.; Das, N. N.; Kim, S.; Reichle, R. H.; De Lannoy, G. J.; Liu, Q.; Kimball, J. S.; Yi, Y.; Cosh, M. H.; Bindlish, R.; Crow, W. T.; Dang, L.; Yueh, S. H.; Njoku, E. G.

    2013-12-01

    NASA's Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in October 2014. The objective of the mission is global mapping of soil moisture and freeze/thaw state. SMAP utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The instruments will operate onboard the SMAP spacecraft in a 685-km Sun-synchronous near-polar orbit, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width. Merging of active and passive L-band observations of the mission will enable an unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrieval. SMAP measurements will enable significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. The SMAP science data product suite of geophysical parameters will include estimates of surface (top 5 cm) and root-zone (down to 1-m depth) soil moisture, net ecosystem exchange, and classification of the frozen/non-frozen state of the landscape. The primary validation reference of the data products will be ground-based measurements. Other remote sensing and model-based products will be used as additional resources. The post-launch timeline of the mission requires that the geophysical data products are validated (with respect to the mission requirements) within 12 months after a 3-month in-orbit check-out phase. SMAP is taking several preparatory steps in order to meet this schedule. One of the main steps consists of running a rehearsal to exercise calibration and validation procedures planned for the Cal/Val Phase. The rehearsal is divided into two stages. Phase 1, which was conducted in June-August 2013, focused on validation methodologies for the geophysical data products. Phase 2, which will be conducted in May-June 2014, includes operational aspects including a fully functioning SMAP Science Data System. (Note that the rehearsals do not include an airborne field

  15. The NASA Soil Moisture Active Passive (SMAP) Mission - Science and Data Product Development Status

    NASA Technical Reports Server (NTRS)

    Nloku, E.; Entekhabi, D.; O'Neill, P.

    2012-01-01

    The Soil Moisture Active Passive (SMAP) mission, planned for launch in late 2014, has the objective of frequent, global mapping of near-surface soil moisture and its freeze-thaw state. The SMAP measurement system utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The instruments will operate on a spacecraft in a 685 km polar orbit with 6am/6pm nodal crossings, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width, providing 3-day global coverage. Data from the instruments will yield global maps of soil moisture and freeze/thaw state at 10 km and 3 km resolutions, respectively, every two to three days. The 10-km soil moisture product will be generated using a combined radar and radiometer retrieval algorithm. SMAP will also provide a radiometer-only soil moisture product at 40-km spatial resolution and a radar-only soil moisture product at 3-km resolution. The relative accuracies of these products will vary regionally and will depend on surface characteristics such as vegetation water content, vegetation type, surface roughness, and landscape heterogeneity. The SMAP soil moisture and freeze/thaw measurements will enable significantly improved estimates of the fluxes of water, energy and carbon between the land and atmosphere. Soil moisture and freeze/thaw controls of these fluxes are key factors in the performance of models used for weather and climate predictions and for quantifYing the global carbon balance. Soil moisture measurements are also of importance in modeling and predicting extreme events such as floods and droughts. The algorithms and data products for SMAP are being developed in the SMAP Science Data System (SDS) Testbed. In the Testbed algorithms are developed and evaluated using simulated SMAP observations as well as observational data from current airborne and spaceborne L-band sensors including data from the SMOS and Aquarius missions. We report here on the development status

  16. Assessment of the SMAP Passive Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Chan, Steven K.; Bindlish, Rajat; O'Neill, Peggy E.; Njoku, Eni; Jackson, Tom; Colliander, Andreas; Chen, Fan; Burgin, Mariko; Dunbar, Scott; Piepmeier, Jeffrey; hide

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015. The observatory was developed to provide global mapping of high-resolution soil moisture and freeze-thaw state every two to three days using an L-band (active) radar and an L-band (passive) radiometer. After an irrecoverable hardware failure of the radar on July 7, 2015, the radiometer-only soil moisture product became the only operational Level 2 soil moisture product for SMAP. The product provides soil moisture estimates posted on a 36 kilometer Earth-fixed grid produced using brightness temperature observations from descending passes. Within months after the commissioning of the SMAP radiometer, the product was assessed to have attained preliminary (beta) science quality, and data were released to the public for evaluation in September 2015. The product is available from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center. This paper provides a summary of the Level 2 Passive Soil Moisture Product (L2_SM_P) and its validation against in situ ground measurements collected from different data sources. Initial in situ comparisons conducted between March 31, 2015 and October 26, 2015, at a limited number of core validation sites (CVSs) and several hundred sparse network points, indicate that the V-pol Single Channel Algorithm (SCA-V) currently delivers the best performance among algorithms considered for L2_SM_P, based on several metrics. The accuracy of the soil moisture retrievals averaged over the CVSs was 0.038 cubic meter per cubic meter unbiased root-mean-square difference (ubRMSD), which approaches the SMAP mission requirement of 0.040 cubic meter per cubic meter.

  17. The NASA Soil Moisture Active Passive (SMAP) Mission - Algorithm and Cal/Val Activities and Synergies with SMOS and Other L-Band Missions

    NASA Technical Reports Server (NTRS)

    Njoku, Eni; Entekhabi, Dara; O'Neill, Peggy; Jackson, Tom; Kellogg, Kent; Entin, Jared

    2011-01-01

    NASA's Soil Moisture Active Passive (SMAP) mission, planned for launch in late 2014, has as its key measurement objective the frequent, global mapping of near-surface soil moisture and its freeze-thaw state. SMAP soil moisture and freeze/thaw measurements at 10 km and 3 km resolutions respectively, would enable significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture control of these fluxes is a key factor in the performance of atmospheric models used for weather forecasts and climate projections Soil moisture measurements are also of great importance in assessing floods and for monitoring drought. In addition, observations of soil moisture and freeze/thaw timing over the boreal latitudes can help reduce uncertainties in quantifying the global carbon balance. The SMAP measurement concept utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The SMAP radiometer and radar flight hardware and ground processing designs are incorporating approaches to identify and mitigate potential terrestrial radio frequency interference (RFI). The radar and radiometer instruments are planned to operate in a 680 km polar orbit, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width, providing 3-day global coverage. Data from the instruments would yield global maps of soil moisture and freeze/thaw state to be provided at 10 km and 3 km resolutions respectively, every two to three days. Plans are to provide also a radiometer-only soil moisture product at 40-km spatial resolution. This product and the underlying brightness temperatures have characteristics similar to those provided by the Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are unique opportunities for common data product development and continuity between the two missions. SMAP also has commonalities with other satellite missions having L-band radiometer and/or radar sensors

  18. High-Resolution Enhanced Product based on SMAP Active-Passive Approach using Sentinel 1A and 1B SAR Data

    NASA Astrophysics Data System (ADS)

    Das, N. N.; Entekhabi, D.; Dunbar, R. S.; Colliander, A.; Kim, S.; Yueh, S. H.

    2017-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission was launched on January 31st, 2015. SMAP utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. However, on July 7th, 2015, the SMAP radar encountered an anomaly and is currently inoperable. During the SMAP post-radar phase, many ways are explored to recover the high-resolution soil moisture capability of the SMAP mission. One of the feasible approaches is to substitute the SMAP radar with other available SAR data. Sentinel 1A/1B SAR data is found more suitable for combining with the SMAP radiometer data because of almost similar orbit configuration that allow overlapping of their swaths with minimal time difference that is key to the SMAP active-passive algorithm. The Sentinel SDV mode acquisition also provide the co-pol and x-pol observations required for the SMAP active-passive algorithm. Some differences do exist between the SMAP SAR data and Sentinel SAR data, they are mainly: 1) Sentinel has C-band SAR and SMAP is L-band; 2) Sentinel has multi incidence angle within its swath, where as SMAP has single incidence angle; and 3) Sentinel swath width is 300 km as compare to SMAP 1000 km swath width. On any given day, the narrow swath width of the Sentinel observations will significantly reduce the spatial coverage of SMAP active-passive approach as compared to the SMAP swath coverage. The temporal resolution (revisit interval) is also degraded from 3-days to 12-days when Sentinel 1A/1B data is used. One bright side of using Sentinel 1A/1B data in the SMAP active-passive algorithm is the potential of obtaining the disaggregated brightness temperature and soil moisture at much finer spatial resolutions of 3 km and 9 km with optimal accuracy. The Beta version of SMAP-Sentinel Active-Passive high-resolution product will be made available to public in September 2017.

  19. In Situ Validation of the Soil Moisture Active Passive (SMAP) Satellite Mission

    NASA Technical Reports Server (NTRS)

    Jackson, T.; Cosh, M.; Crow, W.; Colliander, A.; Walker, J.

    2011-01-01

    SMAP is a new NASA mission proposed for 2014 that would provide a number of soil moisture and freeze/thaw products. The soil moisture products span spatial resolutions from 3 to 40 km. In situ soil moisture observations will be one of the key elements of the validation program for SMAP. Data from the currently available set of soil moisture observing sites and networks need improvement if they are to be useful. Problems include a lack of standardization of instrumentation and installation and the disparity in spatial scale between the point-scale in situ data (a few centimeters) and the coarser satellite products. SMAP has initiated activities to resolve these issues for some of the existing resources. The other challenge to soil moisture validation is the need to expand the number of sites and their geographic distribution. SMAP is attempting to increase the number of sites and their value in validation through collaboration. The issues and solutions involving in situ validation being investigated will be described along with recent results from SMAP validation projects.

  20. Pre-Launch phase 2 rehearsal of the calibration and validation of soil moisture active passive (SMAP) geophysical data products

    USDA-ARS?s Scientific Manuscript database

    NASA’s Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in early November 2014. The objective of the mission is global mapping of soil moisture and landscape freeze/thaw state. SMAP utilizes L-band radar and radiometer measurements sharing a rotating 6-meter mesh reflector antenna...

  1. Spacecraft Environmental Testing SMAP (Soil, Moisture, Active, Passive)

    NASA Technical Reports Server (NTRS)

    Fields, Keith

    2014-01-01

    Testing a complete full up spacecraft to verify it will survive the environment, in which it will be exposed to during its mission, is a formidable task in itself. However, the ''test like you fly'' philosophy sometimes gets compromised because of cost, design and or time. This paper describes the thermal-vacuum and mass properties testing of the Soil Moisture Active Passive (SMAP) earth orbiting satellite. SMAP will provide global observations of soil moisture and freeze/thaw state (the hydrosphere state). SMAP hydrosphere state measurements will be used to enhance understanding of processes that link the water, energy, and carbon cycles, and to extend the capabilities of weather and climate prediction models. It will explain the problems encountered, and the solutions developed, which minimized the risk typically associated with such an arduous process. Also discussed, the future of testing on expensive long lead-time spacecraft. Will we ever reach the ''build and shoot" scenario with minimal or no verification testing?

  2. Monte Carlo Analysis of the Commissioning Phase Maneuvers of the Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Williams, Jessica L.; Bhat, Ramachandra S.; You, Tung-Han

    2012-01-01

    The Soil Moisture Active Passive (SMAP) mission will perform soil moisture content and freeze/thaw state observations from a low-Earth orbit. The observatory is scheduled to launch in October 2014 and will perform observations from a near-polar, frozen, and sun-synchronous Science Orbit for a 3-year data collection mission. At launch, the observatory is delivered to an Injection Orbit that is biased below the Science Orbit; the spacecraft will maneuver to the Science Orbit during the mission Commissioning Phase. The delta V needed to maneuver from the Injection Orbit to the Science Orbit is computed statistically via a Monte Carlo simulation; the 99th percentile delta V (delta V99) is carried as a line item in the mission delta V budget. This paper details the simulation and analysis performed to compute this figure and the delta V99 computed per current mission parameters.

  3. Soil Moisture Active Passive (SMAP) Mission Level 4 Carbon (L4_C) Product Specification Document

    NASA Technical Reports Server (NTRS)

    Glassy, Joe; Kimball, John S.; Jones, Lucas; Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project.

  4. Soil Moisture Active Passive (SMAP) Data and Services at the NASA DAACs

    NASA Astrophysics Data System (ADS)

    Leon, A.; Allen, A. R.; Leslie, S. R.

    2014-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission will provide a capability for global mapping of soil moisture and freeze/thaw state with unprecedented accuracy, resolution, and coverage. The SMAP instrument includes both a radiometer and a synthetic aperture radar (SAR) operating at the L-band (1.20-1.41 GHz) and will provide global coverage at the equator every 3 days. The SMAP mission will play a critical role in understanding the Earth's water and energy cycles, improving weather and climate forecasting, and developing disaster prediction and monitoring services. The NASA Distributed Active Archive Centers (DAACs) at the Alaska Satellite Facility (ASF) and the National Snow and Ice Data Center (NSIDC) will jointly distribute and support SMAP data products. The DAACs will draw upon their unique expertise - ASF with SAR data and NSIDC with cryospheric and remotely-sensed soil moisture data- as well as their shared technologies to provide synergistic data access and support for SMAP products. In an effort to educate and broaden the SMAP user community, we will present an overview of the SMAP data products as well as when they will be available at the DAACs. NASA DAACs play an integral role in enabling data discovery and usage through the value-adding services they provide. Through this presentation, we will also discuss the tools and services at the ASF and NSIDC DAACs and gain further insight into how the DAACs can enable the user community to seamlessly and effectively utilize SMAP data in their research and applications.

  5. An Overview of Production and Validation of the SMAP Passive Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Chan, S.; O'Neill, P.; Njoku, E.; Jackson, T.; Bindlish, R.

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission is an L-band mission scheduled for launch in Jan. 2015. The SMAP instruments consist of a radar and a radiometer to obtain complementary information from space for soil moisture and freeze/thaw state research and applications. By utilizing novel designs in antenna construction, retrieval algorithms, and acquisition hardware, SMAP provides a capability for global mapping of soil moisture and freeze/thaw state with unprecedented accuracy, resolution, and coverage. This improvement in hydrosphere state measurement is expected to advance our understanding of the processes that link the terrestrial water, energy and carbon cycles, improve our capability in flood prediction and drought monitoring, and enhance our skills in weather and climate forecast. For swath-based soil moisture measurement, SMAP generates three operational geophysical data products: (1) the radiometer-only soil moisture product (L2_SM_P) posted at 36-kilometer resolution, (2) the radar-only soil moisture product (L2_SM_A) posted at 3-kilometers resolution, and (3) the radar-radiometer combined soil moisture product (L2_SM_AP) posted at 9-kilometers resolution. Each product draws on the strengths of the underlying sensor(s) and plays a unique role in hydroclimatological and hydrometeorological applications. A full suite of SMAP data products is given in Table 1.

  6. Soil Moisture Active Passive (SMAP) Microwave Radiometer Radio-Frequency Interference (RFI) Mitigation: Initial On-Orbit Results

    NASA Technical Reports Server (NTRS)

    Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Aksoy, Mustafa; Bringer, Alexandra

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission, launched in January 2015, provides global measurements of soil moisture using a microwave radiometer. SMAPs radiometer passband lies within the passive frequency allocation. However, both unauthorized in-band transmitters as well as out-of-band emissions from transmitters operating at frequencies adjacent to this allocated spectrum have been documented as sources of radio frequency interference (RFI) to the L-band radiometers on SMOS and Aquarius. The spectral environment consists of high RFI levels as well as significant occurrences of low level RFI equivalent to 0.1 to 10 K. The SMAP ground processor reports the antenna temperature both before and after RFI mitigation is applied. The difference between these quantities represents the detected RFI level. The presentation will review the SMAP RFI detection and mitigation procedure and discuss early on-orbit RFI measurements from the SMAP radiometer. Assessments of global RFI properties and source types will be provided, as well as the implications of these results for SMAP soil moisture measurements.

  7. Comparison of airborne passive and active L-band System (PALS) brightness temperature measurements to SMOS observations during the SMAP validation experiment 2012 (SMAPVEX12)

    USDA-ARS?s Scientific Manuscript database

    The purpose of SMAP (Soil Moisture Active Passive) Validation Experiment 2012 (SMAPVEX12) campaign was to collect data for the pre-launch development and validation of SMAP soil moisture algorithms. SMAP is a National Aeronautics and Space Administration’s (NASA) satellite mission designed for the m...

  8. A comparative study of the SMAP passive soil moisture product with existing satellite-based soil moisture products

    USDA-ARS?s Scientific Manuscript database

    NASA Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015 to provide global mapping of high-resolution soil moisture and freeze thaw state every 2-3 days using an L-band (active) radar and an L-band (passive) radiometer. The radiometer-only soil moisture product (L2...

  9. Drought monitoring with soil moisture active passive (SMAP) measurements

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok; Vu, Tue; Veettil, Anoop Valiya; Entekhabi, Dara

    2017-09-01

    Recent launch of space-borne systems to estimate surface soil moisture may expand the capability to map soil moisture deficit and drought with global coverage. In this study, we use Soil Moisture Active Passive (SMAP) soil moisture geophysical retrieval products from passive L-band radiometer to evaluate its applicability to forming agricultural drought indices. Agricultural drought is quantified using the Soil Water Deficit Index (SWDI) based on SMAP and soil properties (field capacity and available water content) information. The soil properties are computed using pedo-transfer function with soil characteristics derived from Harmonized World Soil Database. The SMAP soil moisture product needs to be rescaled to be compatible with the soil parameters derived from the in situ stations. In most locations, the rescaled SMAP information captured the dynamics of in situ soil moisture well and shows the expected lag between accumulations of precipitation and delayed increased in surface soil moisture. However, the SMAP soil moisture itself does not reveal the drought information. Therefore, the SMAP based SWDI (SMAP_SWDI) was computed to improve agriculture drought monitoring by using the latest soil moisture retrieval satellite technology. The formulation of SWDI does not depend on longer data and it will overcome the limited (short) length of SMAP data for agricultural drought studies. The SMAP_SWDI is further compared with in situ Atmospheric Water Deficit (AWD) Index. The comparison shows close agreement between SMAP_SWDI and AWD in drought monitoring over Contiguous United States (CONUS), especially in terms of drought characteristics. The SMAP_SWDI was used to construct drought maps for CONUS and compared with well-known drought indices, such as, AWD, Palmer Z-Index, sc-PDSI and SPEI. Overall the SMAP_SWDI is an effective agricultural drought indicator and it provides continuity and introduces new spatial mapping capability for drought monitoring. As an

  10. Overview of the NASA soil moisture active/passive mission

    USDA-ARS?s Scientific Manuscript database

    The NASA Soil Moisture Active Passive (SMAP) Mission is currently in design Phase C and scheduled for launch in October 2014. Its mission concept is based on combined L-band radar and radiometry measurements obtained from a shared, rotating 6-meter antennae. These measurements will be used to retrie...

  11. Initial validation of the Soil Moisture Active Passive mission using USDA-ARS watersheds

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) Mission was launched in January 2015 to measure global surface soil moisture. The calibration and validation program of SMAP relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The U...

  12. Utilization of Ancillary Data Sets for Conceptual SMAP Mission Algorithm Development and Product Generation

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Podest, E.

    2011-01-01

    The planned Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond [1]. Scheduled to launch late in 2014, the proposed SMAP mission would provide high resolution and frequent revisit global mapping of soil moisture and freeze/thaw state, utilizing enhanced Radio Frequency Interference (RFI) mitigation approaches to collect new measurements of the hydrological condition of the Earth's surface. The SMAP instrument design incorporates an L-band radar (3 km) and an L band radiometer (40 km) sharing a single 6-meter rotating mesh antenna to provide measurements of soil moisture and landscape freeze/thaw state [2]. These observations would (1) improve our understanding of linkages between the Earth's water, energy, and carbon cycles, (2) benefit many application areas including numerical weather and climate prediction, flood and drought monitoring, agricultural productivity, human health, and national security, (3) help to address priority questions on climate change, and (4) potentially provide continuity with brightness temperature and soil moisture measurements from ESA's SMOS (Soil Moisture Ocean Salinity) and NASA's Aquarius missions. In the planned SMAP mission prelaunch time frame, baseline algorithms are being developed for generating (1) soil moisture products both from radiometer measurements on a 36 km grid and from combined radar/radiometer measurements on a 9 km grid, and (2) freeze/thaw products from radar measurements on a 3 km grid. These retrieval algorithms need a variety of global ancillary data, both static and dynamic, to run the retrieval models, constrain the retrievals, and provide flags for indicating retrieval quality. The choice of which ancillary dataset to use for a particular SMAP product would be based on a number of factors

  13. PALS (Passive Active L-band System) Radiometer-Based Soil Moisture Retrieval for the SMAP Validation Experiment 2012 (SMAPVEX12)

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Jackson, T. J.; Chan, S.; Bindlish, R.; O'Neill, P. E.; Chazanoff, S. L.; McNairn, H.; Bullock, P.; Powers, J.; Wiseman, G.; Berg, A. A.; Magagi, R.; Njoku, E. G.

    2014-12-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) mission is scheduled for launch in early January 2015. For pre-launch soil moisture algorithm development and validation, the SMAP project and NASA coordinated a SMAP Validation Experiment 2012 (SMAPVEX12) together with Agriculture and Agri-Food Canada in the vicinity of Winnipeg, Canada in June 7-July 19, 2012. Coincident active and passive airborne L-band data were acquired using the Passive Active L-band System (PALS) on 17 days during the experiment. Simultaneously with the PALS measurements, soil moisture ground truth data were collected manually. The vegetation and surface roughness were sampled on non-flight days. The SMAP mission will produce surface (top 5 cm) soil moisture products a) using a combination of its L-band radiometer and SAR (Synthetic Aperture Radar) measurements, b) using the radiometer measurement only, and c) using the SAR measurements only. The SMAPVEX12 data are being utilized for the development and testing of the algorithms applied for generating these soil moisture products. This talk will focus on presenting results of retrieving surface soil moisture using the PALS radiometer. The issues that this retrieval faces are very similar to those faced by the global algorithm using the SMAP radiometer. However, the different spatial resolution of the two observations has to be accounted for in the analysis. The PALS 3 dB footprint in the experiment was on the order of 1 km, whereas the SMAP radiometer has a footprint of about 40 km. In this talk forward modeled brightness temperature over the manually sampled fields and the retrieved soil moisture over the entire experiment domain are presented and discussed. In order to provide a retrieval product similar to that of the SMAP passive algorithm, various ancillary information had to be obtained for the SMAPVEX12 domain. In many cases there are multiple options on how to choose and reprocess these data

  14. Assessment of Version 4 of the SMAP Passive Soil Moisture Standard Product

    NASA Technical Reports Server (NTRS)

    O'neill, P. O.; Chan, S.; Bindlish, R.; Jackson, T.; Colliander, A.; Dunbar, R.; Chen, F.; Piepmeier, Jeffrey R.; Yueh, S.; Entekhabi, D.; hide

    2017-01-01

    NASAs Soil Moisture Active Passive (SMAP) mission launched on January 31, 2015 into a sun-synchronous 6 am6 pm orbit with an objective to produce global mapping of high-resolution soil moisture and freeze-thaw state every 2-3 days. The SMAP radiometer began acquiring routine science data on March 31, 2015 and continues to operate nominally. SMAPs radiometer-derived standard soil moisture product (L2SMP) provides soil moisture estimates posted on a 36-km fixed Earth grid using brightness temperature observations and ancillary data. A beta quality version of L2SMP was released to the public in October, 2015, Version 3 validated L2SMP soil moisture data were released in May, 2016, and Version 4 L2SMP data were released in December, 2016. Version 4 data are processed using the same soil moisture retrieval algorithms as previous versions, but now include retrieved soil moisture from both the 6 am descending orbits and the 6 pm ascending orbits. Validation of 19 months of the standard L2SMP product was done for both AM and PM retrievals using in situ measurements from global core calval sites. Accuracy of the soil moisture retrievals averaged over the core sites showed that SMAP accuracy requirements are being met.

  15. SMAP During Weighing

    NASA Image and Video Library

    2014-11-07

    Operations are underway to weigh NASA's Soil Moisture Active Passive, or SMAP, spacecraft in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  16. SMAP During Weighing

    NASA Image and Video Library

    2014-11-07

    Preparations are underway to weigh NASA's Soil Moisture Active Passive, or SMAP, spacecraft in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  17. L-band active/passive time series measurements over a growing season usign the COMRAD ground-based SMAP

    USDA-ARS?s Scientific Manuscript database

    Scheduled to launch in October 2014, NASA’s Soil Moisture Active Passive (SMAP) mission will provide high-resolution global mapping of soil moisture and freeze/thaw state every 2-3 days. These new measurements of the hydrological condition of the Earth’s surface will build on data from European Spa...

  18. SMAP Algorithms & Cal/Val Workshop

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active and Passive (SMAP) mission is one of four Decadal Survey missions recommended by the U.S. National Research Council for launch in the early part of the next decade ("Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond," NRC, Committ...

  19. SMAP During Weighing

    NASA Image and Video Library

    2014-11-07

    NASA's Soil Moisture Active Passive, or SMAP, spacecraft is lifted from its workstand in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California during operations to determine its weight. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  20. Integration of SMAP and SMOS L-Band Observations

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Chan, Steven; Colliander, Andreas; Kerr, Yaan

    2017-01-01

    Soil Moisture Active Passive (SMAP) mission and the ESA Soil Moisture and Ocean Salinity (SMOS) missions provide brightness temperature and soil moisture estimates every 2-3 days. SMAP brightness temperature observations were compared with SMOS observations at 40 Degrees incidence angle. The brightness temperatures from the two missions are not consistent and have a bias of about 2.7K over land with respect to each other. SMAP and SMOS missions use different retrieval algorithms and ancillary datasets which result in further inconsistencies between the soil moisture products. The reprocessed constant-angle SMOS brightness temperatures were used in the SMAP soil moisture retrieval algorithm to develop a consistent multi-satellite product. The integrated product will have an increased global revisit frequency (1 day) and period of record that would be unattainable by either one of the satellites alone. Results from the development and validation of the integrated product will be presented.

  1. Inter-Comparison of SMAP, SMOS and GCOM-W Soil Moisture Products

    NASA Astrophysics Data System (ADS)

    Bindlish, R.; Jackson, T. J.; Chan, S.; Burgin, M. S.; Colliander, A.; Cosh, M. H.

    2016-12-01

    The Soil Moisture Active Passive (SMAP) mission was launched on Jan 31, 2015. The goal of the SMAP mission is to produce soil moisture with accuracy better than 0.04 m3/m3 with a revisit frequency of 2-3 days. The validated standard SMAP passive soil moisture product (L2SMP) with a spatial resolution of 36 km was released in May 2016. Soil moisture observations from in situ sensors are typically used to validate the satellite estimates. But, in situ observations provide ground truth for limited amount of landcover and climatic conditions. Although each mission will have its own issues, observations by other satellite instruments can be play a role in the calibration and validation of SMAP. SMAP, SMOS and GCOM-W missions share some commonnalities because they are currently providing operational brightness temperature and soil moisture products. SMAP and SMOS operate at L-band but GCOM-W uses X-band observations for soil moisture estimation. All these missions use different ancillary data sources, parameterization and algorithm to retrieve soil moisture. Therefore, it is important to validate and to compare the consistency of these products. Soil moisture products from the different missions will be compared with the in situ observations. SMAP soil moisture products will be inter-compared at global scales with SMOS and GCOM-W soil moisture products. The major contribution of satellite product inter-comparison is that it allows the assessment of the quality of the products over wider geographical and climate domains. Rigorous assessment will lead to a more reliable and accurate soil moisture product from all the missions.

  2. Implementation of Active Thermal Control (ATC) for the Soil Moisture Active and Passive (SMAP) Radiometer

    NASA Technical Reports Server (NTRS)

    Mikhaylov, Rebecca; Kwack, Eug; French, Richard; Dawson, Douglas; Hoffman, Pamela

    2014-01-01

    NASA's Earth Observing Soil Moisture Active and Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 kilometer near-polar, sun-synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its three year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 revolutions per minute, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within three days. In order to make the necessary precise surface emission measurements from space, the electronics and hardware associated with the radiometer must meet tight short-term (instantaneous and orbital) and long-term (monthly and mission) thermal stabilities. Maintaining these tight thermal stabilities is quite challenging because the sensitive electronics are located on a fast spinning platform that can either be in full sunlight or total eclipse, thus exposing them to a highly transient environment. A passive design approach was first adopted early in the design cycle as a low-cost solution. With careful thermal design efforts to cocoon and protect all sensitive components, all stability requirements were met passively. Active thermal control (ATC) was later added after the instrument Preliminary Design Review (PDR) to mitigate the threat of undetected gain glitches, not for thermal-stability reasons. Gain glitches are common problems with radiometers during missions, and one simple way to avoid gain glitches is to use the in-flight set point programmability that ATC

  3. SMAP radiometer-based soil moisture products status and validation

    USDA-ARS?s Scientific Manuscript database

    The NASA Soil Moisture Active Passive (SMAP) mission has been providing L-band brightness temperature measurements of the globe since 2015. These are used with retrieval algorithms to generate global products every 2-3 days. SMAP has recently implemented several new products to enhance both the spat...

  4. NASA's Soil Moisture Active Passive (SMAP) Observatory

    NASA Technical Reports Server (NTRS)

    Kellogg, Kent; Thurman, Sam; Edelstein, Wendy; Spencer, Michael; Chen, Gun-Shing; Underwood, Mark; Njoku, Eni; Goodman, Shawn; Jai, Benhan

    2013-01-01

    The SMAP mission will produce high-resolution and accurate global maps of soil moisture and its freeze/thaw state using data from a non-imaging synthetic aperture radar and a radiometer, both operating at L-band.

  5. The Soil Moisture Active Passive (SMAP): Radar Measurements at High Latitudes and of Freeze/Thaw State

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Dunbar, Scott; Chen, Curtis

    2013-01-01

    The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, a focus will be places on the radar design and associated data products at high latitudes. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used, among other things, to produce a surface freeze/thaw state data product.

  6. Inter-comparison of SMAP, Aquarius and SMOS L-band brightness temperature observations

    USDA-ARS?s Scientific Manuscript database

    Soil Moisture Active Passive (SMAP) mission is scheduled for launch on January 29, 2015. SMAP will make observations with an L-band radar and radiometer using a shared 6 m rotating reflector antenna. SMAP is a fully polarimetric radiometer with the center frequency of 1.41 GHz. The target accuracy o...

  7. SMAP Data Assimilation at the GMAO

    NASA Technical Reports Server (NTRS)

    Reichle, R.; De Lannoy, G.; Liu, Q.; Ardizzone, J.

    2016-01-01

    The NASA Soil Moisture Active Passive (SMAP) mission has been providing L-band (1.4 GHz) passive microwave brightness temperature (Tb) observations since April 2015. These observations are sensitive to surface(0-5 cm) soil moisture. Several of the key applications targeted by SMAP, however, require knowledge of deeper-layer, root zone (0-100 cm) soil moisture, which is not directly measured by SMAP. The NASA Global Modeling and Assimilation Office (GMAO) contributes to SMAP by providing Level 4 data, including the Level 4 Surface and Root Zone Soil Moisture(L4_SM) product, which is based on the assimilation of SMAP Tb observations in the ensemble-based NASA GEOS-5 land surface data assimilation system. The L4_SM product offers global data every three hours at 9 km resolution, thereby interpolating and extrapolating the coarser- scale (40 km) SMAP observations in time and in space (both horizontally and vertically). Since October 31, 2015, beta-version L4_SM data have been available to the public from the National Snow and Ice Data Center for the period March 31, 2015, to near present, with a mean latency of approx. 2.5 days.

  8. SMAP soil moisture drying more rapid than observed in situ following rainfall events

    USDA-ARS?s Scientific Manuscript database

    We examine soil drying rates by comparing observations from the NASA Soil Moisture Active Passive (SMAP) mission to surface soil moisture from in situ probes during drydown periods at SMAP validation sites. SMAP and in situ probes record different soil drying dynamics after rainfall. We modeled this...

  9. SMAP Flys over Earth Artist Concept

    NASA Image and Video Library

    2011-07-12

    This image, created at the Jet Propulsion Laboratory JPL, shows the Soil Moisture Active Passive SMAP mission, specifically depicting how the scanning antenna will fly in space and the swath coverage over the Earth.

  10. Automating the SMAP Ground Data System to Support Lights-Out Operations

    NASA Technical Reports Server (NTRS)

    Sanders, Antonio

    2014-01-01

    The Soil Moisture Active Passive (SMAP) Mission is a first tier mission in NASA's Earth Science Decadal Survey. SMAP will provide a global mapping of soil moisture and its freeze/thaw states. This mapping will be used to enhance the understanding of processes that link the terrestrial water, energy, and carbon cycles, and to enhance weather and forecast capabilities. NASA's Jet Propulsion Laboratory has been selected as the lead center for the development and operation of SMAP. The Jet Propulsion Laboratory (JPL) has an extensive history of successful deep space exploration. JPL missions have typically been large scale Class A missions with significant budget and staffing. SMAP represents a new area of JPL focus towards low cost Earth science missions. Success in this new area requires changes to the way that JPL has traditionally provided the Mission Operations System (MOS)/Ground Data System (GDS) functions. The operation of SMAP requires more routine operations activities and support for higher data rates and data volumes than have been achieved in the past. These activities must be addressed by a reduced operations team and support staff. To meet this challenge, the SMAP ground data system provides automation that will perform unattended operations, including automated commanding of the SMAP spacecraft.

  11. The Soil Moisture Active Passive (SMAP) Radar: Measurements at High Latitudes and of Surface Freeze/Thaw State

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Dunbar, Scott; Chen, Curtis

    2013-01-01

    The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band in order to achieve the science objectives of measuring soil moisture and land surface freeze-thaw state. To achieve requirements for a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, focus will be placed on the radar design. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used to produce a surface freeze/thaw state data product.

  12. Validation of SMAP surface soil moisture products with core validation sites

    USDA-ARS?s Scientific Manuscript database

    The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well-calibrated in situ soil moisture measurements within SMAP product grid pixels for diver...

  13. A comparison of Freeze-Thaw in roads with passive microwave satellite observations from SMAP

    NASA Astrophysics Data System (ADS)

    Kraatz, S.; Jacobs, J. M.; Miller, H.; Daniel, J.

    2017-12-01

    Freeze-thaw (F/T) timings are relevant to both natural and manmade systems as they impact the global carbon budget, health of natural systems (forests) and the safety of roads and structures. The Soil Moisture Active Passive (SMAP) mission's two L-band radiometer F/T products are obtained at 36 km2 footprint and thus mostly observe the natural environment. Roadway temperature data are available from temperature data probes (TDP), which measure temperature from above the ground to 1.8 m depth below the pavement. Differences in F/T timing between natural (SMAP + in-situ cal/val sites) and engineered (road TDP) sites are investigated. Dates of F/T were estimated using a moving window with a threshold of 0oC. The process was repeated for TDP data for air, road surface and road bottom temperatures. The impact of this work is to explore 1) how TDP data corresponds to the new radiometer based F/T product, 2) differences in F/T between roads and natural sites, 3) whether SMAP F/T leads or lags TDP measurements and 4) the variability of F/T dates based on the temperature measurement depth.

  14. SMOS/SMAP Synergy for SMAP Level 2 Soil Moisture Algorithm Evaluation

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann

    2011-01-01

    Soil Moisture Active Passive (SMAP) satellite has been proposed to provide global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolutions, respectively. SMAP would also provide a radiometer-only soil moisture product at 40-km spatial resolution. This product and the supporting brightness temperature observations are common to both SMAP and European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are opportunities for synergies between the two missions. These include exploiting the data for calibration and validation and establishing longer term L-band brightness temperature and derived soil moisture products. In this investigation we will be using SMOS brightness temperature, ancillary data, and soil moisture products to develop and evaluate a candidate SMAP L2 passive soil moisture retrieval algorithm. This work will begin with evaluations based on the SMOS product grids and ancillary data sets and transition to those that will be used by SMAP. An important step in this analysis is reprocessing the multiple incidence angle observations provided by SMOS to a global brightness temperature product that simulates the constant 40 degree incidence angle observations that SMAP will provide. The reprocessed brightness temperature data provide a basis for evaluating different SMAP algorithm alternatives. Several algorithms are being considered for the SMAP radiometer-only soil moisture retrieval. In this first phase, we utilized only the Single Channel Algorithm (SCA), which is based on the radiative transfer equation and uses the channel that is most sensitive to soil moisture (H-pol). Brightness temperature is corrected sequentially for the effects of temperature, vegetation, roughness (dynamic ancillary data sets) and soil texture (static ancillary data set). European Centre for Medium-Range Weather Forecasts (ECMWF) estimates of soil temperature for the top layer (as provided as part of the SMOS

  15. Validation of the Soil Moisture Active Passive mission using USDA-ARS experimental watersheds

    USDA-ARS?s Scientific Manuscript database

    The calibration and validation program of the Soil Moisture Active Passive mission (SMAP) relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The USDA Agricultural Research Service operates several experimental watersheds wh...

  16. Application of SMAP Data for Ocean Surface Remote Sensing

    NASA Astrophysics Data System (ADS)

    Fore, A.; Yueh, S. H.; Tang, W.; Stiles, B. W.; Hayashi, A.

    2017-12-01

    The Soil Moisture Active Passive (SMAP) mission was launched January 31st, 2015. It is designed to measure the soil moisture over land using a combined active / passive L-band system. Due to the Aquarius mission, L-band model functions for ocean winds and salinity are mature and are directly applicable to the SMAP mission. In contrast to Aquarius, the higher resolution and scanning geometry of SMAP allow for wide-swath ocean winds and salinities to be retrieved. In this talk we present the SMAP Sea Surface Salinity (SSS) and extreme winds dataset and its performance. First we discuss the heritage of SMAP SSS algorithms, showing that SMAP and Aquarius show excellent agreement in the ocean surface roughness correction. Then, we give an overview of some newly developed algorithms that are only relevant to the SMAP system; a new galaxy correction and land correction enabling SSS retrievals up to 40 km from coast. We discuss recent improvements to the SMAP data processing for version 4.0. Next we compare the performance of the SMAP SSS to in-situ salinity measurements obtained from ARGO floats, tropical moored buoys, and ship-based data. SMAP SSS has accuracy of 0.2 PSU on a monthly basis compared to ARGO gridded data in tropics and mid-latitudes. In tropical oceans, time series comparison of salinity measured at 1 m depth by moored buoys indicates SMAP can track large salinity changes within a month. Synergetic analysis of SMAP, SMOS, and Argo data allows us to identify and exclude erroneous buoy data from assessment of SMAP SSS. The resulting SMAP-buoy matchup analysis gives a mean standard deviation (STD) of 0.22 PSU and correlation of 0.73 on weekly scale; at monthly scale the mean STD decreased to 0.17 PSU and the correlation increased to 0.8. In addition to SSS, SMAP provides a view into tropical cyclones having much higher sensitivity than traditional scatterometers. We validate the high-winds using collocations with SFMR during tropical cyclones as well as

  17. SMAP Verification and Validation Project - Final Report

    NASA Technical Reports Server (NTRS)

    Murry, Michael

    2012-01-01

    In 2007, the National Research Council (NRC) released the Decadal Survey of Earth science. In the future decade, the survey identified 15 new space missions of significant scientific and application value for the National Aeronautics and Space Administration (NASA) to undertake. One of these missions was the Soil Moisture Active Passive (SMAP) mission that NASA assigned to the Jet Propulsion Laboratory (JPL) in 2008. The goal of SMAP1 is to provide global, high resolution mapping of soil moisture and its freeze/thaw states. The SMAP project recently passed its Critical Design Review and is proceeding with its fabrication and testing phase.Verification and Validation (V&V) is widely recognized as a critical component in system engineering and is vital to the success of any space mission. V&V is a process that is used to check that a system meets its design requirements and specifications in order to fulfill its intended purpose. Verification often refers to the question "Have we built the system right?" whereas Validation asks "Have we built the right system?" Currently the SMAP V&V team is verifying design requirements through inspection, demonstration, analysis, or testing. An example of the SMAP V&V process is the verification of the antenna pointing accuracy with mathematical models since it is not possible to provide the appropriate micro-gravity environment for testing the antenna on Earth before launch.

  18. Soil Moisture Active/Passive (SMAP) Radiometer Subband Calibration and Calibration Drift

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; De Amici, Giovanni; Mohammed, Priscilla

    2016-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007)]. The observatory was launched on Jan 31, 2015. The goal of the SMAP is to measure the global soil moisture and freeze/thaw from space. The L-band radiometer is the passive portion of the spaceborne instrument. It measures all four Stokes antenna temperatures and outputs counts. The Level 1B Brightness Temperature (L1B_TB) science algorithm converts radiometer counts to the Earths surface brightness temperature. The results are reported in the radiometer level 1B data product together with the calibrated antenna temperature (TA) and all of the corrections to the unwanted sources contribution. The calibrated L1B data product are required to satisfy the overall radiometer error budget of 1.3 K needed to meet the soil moisture requirement of 0.04 volumetric fraction uncertainty and the calibration drift requirement of no larger than 0.4 K per month.

  19. Soil Moisture Active Passive (SMAP) Radiometer Subband Calibration and Calibration Drift

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; De Amici, Giovanni; Mohammed, Priscilla N.

    2016-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007). The observatory was launched on Jan 31, 2015. The goal of the SMAP is to measure the global soil moisture and freeze/thaw from space. The L-band radiometer is the passive portion of the spaceborne instrument. It measures all four Stokes antenna temperatures and outputs counts. The Level 1B Brightness Temperature (L1B_TB) science algorithm converts radiometer counts to the Earths surface brightness temperature. The results are reported in the radiometer level 1B data product together with the calibrated antenna temperature (TA) and all of the corrections to the unwanted sources contribution. The calibrated L1B data product are required to satisfy the overall radiometer error budget of 1.3 K needed to meet the soil moisture requirement of 0.04 volumetric fraction uncertainty and the calibration drift requirement of no larger than 0.4 K per month.

  20. Validation and scaling of soil moisture in a semi-arid environment: SMAP Validation Experiment 2015 (SMAPVEX15)

    USDA-ARS?s Scientific Manuscript database

    The NASA SMAP (Soil Moisture Active Passive) mission conducted the SMAP Validation Experiment 2015 (SMAPVEX15) in order to support the calibration and validation activities of SMAP soil moisture data product.The main goals of the experiment were to address issues regarding the spatial disaggregation...

  1. Validating SMAP L2/3 products

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) mission entered its one year calibration and validation (cal/val) phase in May, 2015. This began with a focus on instrument measurements, brightness temperature and backscatter, and has now evolved to the geophysical products that include three different spati...

  2. Development of the Soil Moisture Active Passive (SMAP) radiometer derived landscape freeze/thaw product

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Xu, X.; Dunbar, R. S.; Derksen, C.; Kim, Y.; Kimball, J. S.

    2016-12-01

    A baseline SMAP mission objective was to determine the land surface binary freeze/thaw (FT) state for northern (>45°N) regions with 80% spatial classification accuracy at 3 km resolution and 2-day average intervals. These requirements were initially achieved from the SMAP radar until the sensor failed in July 2015. The FT algorithm is now transitioning to using SMAP radiometer inputs. The main compromises of this change are a coarse (36 km) radiometer footprint, enhanced noise and potential FT signal degradation from seasonal vegetation biomass, soil moisture and surface inundation changes. The new daily passive FT product (L3_FT_P) is based on the same seasonal threshold algorithm as the radar derived product (L3_FT_A): instantaneous SMAP measurements are compared to reference signatures acquired during seasonal frozen and thawed states. Instead of radar inputs, the normalized polarization ratio (NPR) is calculated from SMAP radiometer measurements. The L3_FT_P algorithm is applied using NPR inputs, whereby NPR decreases and increases are associated with respective landscape freezing and thawing. A lower NPR under frozen conditions is due to smaller V-pol brightness temperature increases and larger H-pol increases. Using in situ measurements from core validation sites, the temporal behavior of backscatter and NPR measurements were evaluated during the spring 2015 radar and radiometer overlap period. The transition from frozen to thawed states produced a NPR response similar in timing and magnitude to the radar response, resulting in similar freeze to thaw seasonal transition dates. While the post-thaw radar backscatter consistently remained at elevated values relative to the frozen state, the NPR drifted downwards following the main thaw transition (due to de-polarization of the scene), which may introduce false freeze classification errors. Both radar and radiometer results tended to lead observed soil thawing due to strong sensitivity of the microwave

  3. Evaluation of SMAP Level 2 Soil Moisture Algorithms Using SMOS Data

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann; Shi, J. C.

    2011-01-01

    The objectives of the SMAP (Soil Moisture Active Passive) mission are global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolution, respectively. SMAP will provide soil moisture with a spatial resolution of 10 km with a 3-day revisit time at an accuracy of 0.04 m3/m3 [1]. In this paper we contribute to the development of the Level 2 soil moisture algorithm that is based on passive microwave observations by exploiting Soil Moisture Ocean Salinity (SMOS) satellite observations and products. SMOS brightness temperatures provide a global real-world, rather than simulated, test input for the SMAP radiometer-only soil moisture algorithm. Output of the potential SMAP algorithms will be compared to both in situ measurements and SMOS soil moisture products. The investigation will result in enhanced SMAP pre-launch algorithms for soil moisture.

  4. Temperature Knowledge and Model Correlation for the Soil Moisture Active and Passive (SMAP) Reflector Mesh

    NASA Technical Reports Server (NTRS)

    Mikhaylov, Rebecca; Dawson, Douglas; Kwack, Eug

    2014-01-01

    NASA's Earth observing Soil Moisture Active & Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 km near-polar, sun synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its 3 year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 rpm, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within 3 days. In order to make the necessary precise surface emission measurements from space, a temperature knowledge of 60 deg C for the mesh reflector is required. In order to show compliance, a thermal vacuum test was conducted using a portable solar simulator to illuminate a non flight, but flight-like test article through the quartz window of the vacuum chamber. The molybdenum wire of the antenna mesh is too fine to accommodate thermal sensors for direct temperature measurements. Instead, the mesh temperature was inferred from resistance measurements made during the test. The test article was rotated to five separate angles between 10 deg and 90 deg via chamber breaks to simulate the maximum expected on-orbit solar loading during the mission. The resistance measurements were converted to temperature via a resistance versus temperature calibration plot that was constructed from data collected in a separate calibration test. A simple thermal model of two different representations of the mesh (plate and torus) was created to correlate the mesh temperature predictions to within 60 deg C. The on-orbit mesh

  5. Seasonal Parameterizations of the Tau-Omega Model Using the ComRAD Ground-Based SMAP Simulator

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Joseph, A.; Srivastava, P.; Cosh, M.; Lang, R.

    2014-01-01

    NASA's Soil Moisture Active Passive (SMAP) mission is scheduled for launch in November 2014. In the prelaunch time frame, the SMAP team has focused on improving retrieval algorithms for the various SMAP baseline data products. The SMAP passive-only soil moisture product depends on accurate parameterization of the tau-omega model to achieve the required accuracy in soil moisture retrieval. During a field experiment (APEX12) conducted in the summer of 2012 under dry conditions in Maryland, the Combined Radar/Radiometer (ComRAD) truck-based SMAP simulator collected active/passive microwave time series data at the SMAP incident angle of 40 degrees over corn and soybeans throughout the crop growth cycle. A similar experiment was conducted only over corn in 2002 under normal moist conditions. Data from these two experiments will be analyzed and compared to evaluate how changes in vegetation conditions throughout the growing season in both a drought and normal year can affect parameterizations in the tau-omega model for more accurate soil moisture retrieval.

  6. Development of a SMAP-Based Drought Monitoring Product

    NASA Astrophysics Data System (ADS)

    Sadri, S.; Wood, E. F.; Pan, M.; Lettenmaier, D. P.

    2016-12-01

    Agricultural drought is defined as a deficit in the amount of soil moisture over a prolonged period of time. Soil moisture information over time and space provides critical insight for agricultural management, including both water availability for crops and moisture conditions that affect management practices such as fertilizer, pesticide applications, and their impact as non-point pollution runoff. Since April of 2015, NASA's Soil Moisture Active Passive (SMAP) mission has retrieved soil moisture using L-band passive radiometric measurements at a 8 day repeat orbit with a swath of 1000 km that maps the Earth in 2-3 days depending on locations. Of particular interest to SMAP-based agricultural applications is a monitoring product that assesses the SMAP soil moisture in terms of probability percentiles for dry (drought) or wet (pluvial) conditions. SMAP observations do result in retrievals that are spatially and temporally discontinuous. Additionally, the short SMAP record length provides a statistical challenge in estimating a drought index and thus drought risk evaluations. In this presentation, we describe a SMAP drought index for the CONUS region based on near-surface soil moisture percentiles. Because the length of the SMAP data record is limited, we use a Bayesian conditional probability approach to extend the SMAP record back to 1979 based on simulated soil moisture of the same period from the Variable Infiltration Capacity (VIC) Land Surface Model (LSM), simulated by Princeton University. This is feasible because the VIC top soil layer (10 cm) is highly correlated with the SMAP 36 km passive microwave during 2015-2016, with more than half the CONUS grids having a cross-correlation greater than 0.6, and over 0.9 in many regions. Given the extended SMAP record, we construct an empirical probability distribution of near-surface soil moisture drought index showing severities similar to those used by the U.S. Drought Monitor (from D0-D4), for a specific SMAP

  7. The SMAP level 4 surface and root zone soil moisture data assimilation product

    USDA-ARS?s Scientific Manuscript database

    The NASA Soil Moisture Active Passive (SMAP) mission is scheduled for launch in January 2015 and will provide L-band radar and radiometer observations that are sensitive to surface soil moisture (in the top few centimeters of the soil column). For several of the key applications targeted by SMAP, ho...

  8. Assimilation of Smos Observations to Generate a Prototype SMAP Level 4 Surface and Root-Zone Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Crow, Wade T.; Koster, Randal D.; Kimball, John

    2012-01-01

    The Soil Moisture Active and Passive (SMAP; [1]) mission is being implemented by NASA for launch in October 2014. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high-resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. The Soil Moisture and Ocean Salinity (SMOS; [2]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. In this paper we describe our use of SMOS brightness temperature observations to generate a prototype of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product [5].

  9. The SMAP level 4 carbon product for monitoring ecosystem land-atmosphere CO2 exchange

    USDA-ARS?s Scientific Manuscript database

    The NASA Soil Moisture Active Passive (SMAP) mission Level 4 Carbon (L4C) product provides model estimates of Net Ecosystem CO2 exchange (NEE) incorporating SMAP soil moisture information. The L4C product includes NEE, computed as total ecosystem respiration less gross photosynthesis, at a daily ti...

  10. SMAP Radar Processing and Calibration

    NASA Technical Reports Server (NTRS)

    West, R.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M.

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission is part of the NASA space-based Earth observation program, and consists of an L-band radar and radiometer scheduled for launch into sun synchronous orbit in late 2014. A joint effort of the Jet Propulsion Laboratory (JPL) and the Goddard Space Flight Center (GSFC), the SMAP mission draws heavily on the design and risk reduction heritage of the Hydrosphere State (Hydros) mission [1], [2]. The SMAP science and applications objectives are to: 1) understand processes that link the terrestrial water, energy and carbon cycles, 2) estimate global water and energy fluxes at the land surface, 3) quantify net carbon flux in boreal landscapes, 4) enhance weather and climate forecast skill, and 5) develop improved flood prediction and drought monitoring capability. To meet these science objectives, SMAP ground processing will combine the attributes of the radar and radiometer observations (in terms of their spatial resolution and sensitivity to soil moisture, surface roughness, and vegetation) to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a radar backscatter accuracy of 1 dB (1 sigma) at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This paper will describe the level 1 radar processing and calibration challenges and the choices made so far for the algorithms and software implementation.

  11. The SMAP Dictionary Management System

    NASA Technical Reports Server (NTRS)

    Smith, Kevin A.; Swan, Christoper A.

    2014-01-01

    The Soil Moisture Active Passive (SMAP) Dictionary Management System is a web-based tool to develop and store a mission dictionary. A mission dictionary defines the interface between a ground system and a spacecraft. In recent years, mission dictionaries have grown in size and scope, making it difficult for engineers across multiple disciplines to coordinate the dictionary development effort. The Dictionary Management Systemaddresses these issues by placing all dictionary information in one place, taking advantage of the efficiencies inherent in co-locating what were once disparate dictionary development efforts.

  12. Results from SMAP Validation Experiments 2015 and 2016

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Jackson, T. J.; Cosh, M. H.; Misra, S.; Crow, W.; Powers, J.; Wood, E. F.; Mohanty, B.; Judge, J.; Drewry, D.; McNairn, H.; Bullock, P.; Berg, A. A.; Magagi, R.; O'Neill, P. E.; Yueh, S. H.

    2017-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission was launched in January 2015. The objective of the mission is global mapping of soil moisture and freeze/thaw state. Well-characterized sites with calibrated in situ soil moisture measurements are used to determine the quality of the soil moisture data products; these sites are designated as core validation sites (CVS). To support the CVS-based validation, airborne field experiments are used to provide high-fidelity validation data and to improve the SMAP retrieval algorithms. The SMAP project and NASA coordinated airborne field experiments at three CVS locations in 2015 and 2016. SMAP Validation Experiment 2015 (SMAPVEX15) was conducted around the Walnut Gulch CVS in Arizona in August, 2015. SMAPVEX16 was conducted at the South Fork CVS in Iowa and Carman CVS in Manitoba, Canada from May to August 2016. The airborne PALS (Passive Active L-band Sensor) instrument mapped all experiment areas several times resulting in 30 coincidental measurements with SMAP. The experiments included intensive ground sampling regime consisting of manual sampling and augmentation of the CVS soil moisture measurements with temporary networks of soil moisture sensors. Analyses using the data from these experiments have produced various results regarding the SMAP validation and related science questions. The SMAPVEX15 data set has been used for calibration of a hyper-resolution model for soil moisture product validation; development of a multi-scale parameterization approach for surface roughness, and validation of disaggregation of SMAP soil moisture with optical thermal signal. The SMAPVEX16 data set has been already used for studying the spatial upscaling within a pixel with highly heterogeneous soil texture distribution; for understanding the process of radiative transfer at plot scale in relation to field scale and SMAP footprint scale over highly heterogeneous vegetation distribution; for testing a data fusion based soil moisture

  13. Soil Moisture Active Passive (SMAP) Calibration and Validation Plan and Current Activities

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Cosh, M.; Bindlish, R.; Crow, W.; Colliander, A.; Njoku, E.; McDonald, K.; Kimball, J.; Belair, S.; Walker, J.; hide

    2010-01-01

    The primary objective of the SMAP calibration and validation (Cal/Val) program is demonstrating that the science requirements (product accuracy and bias) have been met over the mission life. This begins during pre-launch with activities that contribute to high quality products and establishing post-launch validation infrastructure and continues through the mission life. However, the major focus is on a relatively short Cal/Val period following launch. The general approach and elements of the SMAP Cal/Val plan will be described and along with details on several ongoing or recent field experiments designed to address both near- and long-term Cal/Val.

  14. Assessment of the Impacts of Radio Frequency Interference on SMAP Radar and Radiometer Measurements

    NASA Technical Reports Server (NTRS)

    Chen, Curtis W.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Hirad Ghaemi

    2012-01-01

    The NASA Soil Moisture Active and Passive (SMAP) mission will measure soil moisture with a combination of Lband radar and radiometer measurements. We present an assessment of the expected impact of radio frequency interference (RFI) on SMAP performance, incorporating projections based on recent data collected by the Aquarius and SMOS missions. We discuss the impacts of RFI on the radar and radiometer separately given the differences in (1) RFI environment between the shared radar band and the protected radiometer band, (2) mitigation techniques available for the different measurements, and (3) existing data sources available that can inform predictions for SMAP.

  15. An initial assessment of a SMAP soil moisture disaggregation scheme using TIR surface evaporation data over the continental United States

    NASA Astrophysics Data System (ADS)

    Mishra, Vikalp; Ellenburg, W. Lee; Griffin, Robert E.; Mecikalski, John R.; Cruise, James F.; Hain, Christopher R.; Anderson, Martha C.

    2018-06-01

    The Soil Moisture Active Passive (SMAP) mission is dedicated toward global soil moisture mapping. Typically, an L-band microwave radiometer has spatial resolution on the order of 36-40 km, which is too coarse for many specific hydro-meteorological and agricultural applications. With the failure of the SMAP active radar within three months of becoming operational, an intermediate (9-km) and finer (3-km) scale soil moisture product solely from the SMAP mission is no longer possible. Therefore, the focus of this study is a disaggregation of the 36-km resolution SMAP passive-only surface soil moisture (SSM) using the Soil Evaporative Efficiency (SEE) approach to spatial scales of 3-km and 9-km. The SEE was computed using thermal-infrared (TIR) estimation of surface evaporation over Continental U.S. (CONUS). The disaggregation results were compared with the 3 months of SMAP-Active (SMAP-A) and Active/Passive (AP) products, while comparisons with SMAP-Enhanced (SMAP-E), SMAP-Passive (SMAP-P), as well as with more than 180 Soil Climate Analysis Network (SCAN) stations across CONUS were performed for a 19 month period. At the 9-km spatial scale, the TIR-Downscaled data correlated strongly with the SMAP-E SSM both spatially (r = 0.90) and temporally (r = 0.87). In comparison with SCAN observations, overall correlations of 0.49 and 0.47; bias of -0.022 and -0.019 and unbiased RMSD of 0.105 and 0.100 were found for SMAP-E and TIR-Downscaled SSM across the Continental U.S., respectively. At 3-km scale, TIR-Downscaled and SMAP-A had a mean temporal correlation of only 0.27. In terms of gain statistics, the highest percentage of SCAN sites with positive gains (>55%) was observed with the TIR-Downscaled SSM at 9-km. Overall, the TIR-based downscaled SSM showed strong correspondence with SMAP-E; compared to SCAN, and overall both SMAP-E and TIR-Downscaled performed similarly, however, gain statistics show that TIR-Downscaled SSM slightly outperformed SMAP-E.

  16. Soil Moisture Active/Passive (SMAP) Forward Brightness Temperature Simulator

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Peipmeier, Jeffrey; Kim, Edward

    2012-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007) [1]. It is to measure the global soil moisture and freeze/thaw from space. One of the spaceborne instruments is an L-band radiometer with a shared single feedhorn and parabolic mesh reflector. While the radiometer measures the emission over a footprint of interest, unwanted emissions are also received by the antenna through the antenna sidelobes from the cosmic background and other error sources such as the Sun, the Moon and the galaxy. Their effects need to be considered accurately, and the analysis of the overall performance of the radiometer requires end-to-end performance simulation from Earth emission to antenna brightness temperature, such as the global simulation of L-band brightness temperature simulation over land and sea [2]. To assist with the SMAP radiometer level 1B algorithm development, the SMAP forward brightness temperature simulator is developed by adapting the Aquarius simulator [2] with necessary modifications. This poster presents the current status of the SMAP forward brightness simulator s development including incorporating the land microwave emission model and its input datasets, and a simplified atmospheric radiative transfer model. The latest simulation results are also presented to demonstrate the ability of supporting the SMAP L1B algorithm development.

  17. A Science Data System Approach for the SMAP Mission

    NASA Technical Reports Server (NTRS)

    Woollard, David; Kwoun, Oh-ig; Bicknell, Tom; West, Richard; Leung, Kon

    2009-01-01

    Though Science Data System (SDS) development has not traditionally been part of the mission concept phase, lessons learned and study of past Earth science missions indicate that SDS functionality can greatly benefit algorithm developers in all mission phases. We have proposed a SDS approach for the SMAP Mission that incorporates early support for an algorithm testbed, allowing scientists to develop codes and seamlessly integrate them into the operational SDS. This approach will greatly reduce both the costs and risks involved in algorithm transitioning and SDS development.

  18. New Physical Algorithms for Downscaling SMAP Soil Moisture

    NASA Astrophysics Data System (ADS)

    Sadeghi, M.; Ghafari, E.; Babaeian, E.; Davary, K.; Farid, A.; Jones, S. B.; Tuller, M.

    2017-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission provides new means for estimation of surface soil moisture at the global scale. However, for many hydrological and agricultural applications the spatial SMAP resolution is too low. To address this scale issue we fused SMAP data with MODIS observations to generate soil moisture maps at 1-km spatial resolution. In course of this study we have improved several existing empirical algorithms and introduced a new physical approach for downscaling SMAP data. The universal triangle/trapezoid model was applied to relate soil moisture to optical/thermal observations such as NDVI, land surface temperature and surface reflectance. These algorithms were evaluated with in situ data measured at 5-cm depth. Our results demonstrate that downscaling SMAP soil moisture data based on physical indicators of soil moisture derived from the MODIS satellite leads to higher accuracy than that achievable with empirical downscaling algorithms. Keywords: Soil moisture, microwave data, downscaling, MODIS, triangle/trapezoid model.

  19. Validation of SMAP soil moisture for the SMAPVEX15 field campaign using a hyper-resolution model

    USDA-ARS?s Scientific Manuscript database

    Accurate global mapping of soil moisture is the goal of the Soil Moisture Active Passive (SMAP) mission, which is expected to improve the estimation of water, energy, and carbon exchanges between the land and the atmosphere. Like other satellite products, the SMAP soil moisture retrievals need to be...

  20. Development and assessment of the SMAP enhanced passive soil moisture product

    USDA-ARS?s Scientific Manuscript database

    Launched in January 2015, the National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) observatory was designed to provide frequent global mapping of high-resolution soil moisture and freeze-thaw state every two to three days using a radar and a radiometer operating a...

  1. SMAP Validation and Accuracy Assessment of Soil Moisture Products

    USDA-ARS?s Scientific Manuscript database

    Introduction: The Soil Moisture Active Passive (SMAP) mission was launched in January, 2015 and will begin its calibration and validation (Cal/Val) phase in May, 2015. This will begin with a focus on instrument measurements, brightness temperature and backscatter, and evolve to the geophysical produ...

  2. SMAP Validation Experiment 2015 (SMAPVEX15)

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Jackson, T. J.; Cosh, M. H.; Misra, S.; Crow, W. T.; Chae, C. S.; Moghaddam, M.; O'Neill, P. E.; Entekhabi, D.; Yueh, S. H.

    2015-12-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) mission was launched in January 2015. The objective of the mission is global mapping of soil moisture and freeze/thaw state. For soil moisture algorithm validation, the SMAP project and NASA coordinated SMAPVEX15 around the Walnut Gulch Experimental Watershed (WGEW) in Tombstone, Arizona on August 1-19, 2015. The main goals of SMAPVEX15 are to understand the effects and contribution of heterogeneity on the soil moisture retrievals, evaluate the impact of known RFI sources on retrieval, and analyze the brightness temperature product calibration and heterogeneity effects. Additionally, the campaign aims to contribute to the validation of GPM (Global Precipitation Mission) data products. The campaign will feature three airborne microwave instruments: PALS (Passive Active L-band System), UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) and AirMOSS (Airborne Microwave Observatory of Subcanopy and Subsurface). PALS has L-band radiometer and radar, and UAVSAR and AirMOSS have L- and P-band synthetic aperture radars, respectively. The PALS instrument will map the area on seven days coincident with SMAP overpasses; UAVSAR and AirMOSS on four days. WGEW was selected as the experiment site due to the rainfall patterns in August and existing dense networks of precipitation gages and soil moisture sensors. An additional temporary network of approximately 80 soil moisture stations was deployed in the region. Rainfall observations were supplemented with two X-band mobile scanning radars, approximately 25 tipping bucket rain gauges, three laser disdrometers, and three vertically-profiling K-band radars. Teams were on the field to take soil moisture samples for gravimetric soil moisture, bulk density and rock fraction determination as well as to measure surface roughness and vegetation water content. In this talk we will present preliminary results from the experiment including

  3. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present (with...

  4. Soil Moisture Active Passive (SMAP) Project Algorithm Theoretical Basis Document SMAP L1B Radiometer Data Product: L1B_TB

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey; Mohammed, Priscilla; De Amici, Giovanni; Kim, Edward; Peng, Jinzheng; Ruf, Christopher; Hanna, Maher; Yueh, Simon; Entekhabi, Dara

    2016-01-01

    The purpose of the Soil Moisture Active Passive (SMAP) radiometer calibration algorithm is to convert Level 0 (L0) radiometer digital counts data into calibrated estimates of brightness temperatures referenced to the Earth's surface within the main beam. The algorithm theory in most respects is similar to what has been developed and implemented for decades for other satellite radiometers; however, SMAP includes two key features heretofore absent from most satellite borne radiometers: radio frequency interference (RFI) detection and mitigation, and measurement of the third and fourth Stokes parameters using digital correlation. The purpose of this document is to describe the SMAP radiometer and forward model, explain the SMAP calibration algorithm, including approximations, errors, and biases, provide all necessary equations for implementing the calibration algorithm and detail the RFI detection and mitigation process. Section 2 provides a summary of algorithm objectives and driving requirements. Section 3 is a description of the instrument and Section 4 covers the forward models, upon which the algorithm is based. Section 5 gives the retrieval algorithm and theory. Section 6 describes the orbit simulator, which implements the forward model and is the key for deriving antenna pattern correction coefficients and testing the overall algorithm.

  5. Recalibration and Validation of the SMAP L-Band Radiometer

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey; Le Vine, David M.; Dinnat, Emmanuel; Bindlish, Rajat; De amici, Giovanni; Mohammed, Priscilla; Misra, Sidharth; Yueh, Simon; Meissner, Thomas

    2017-01-01

    SMAP mission was launched on 31st January 2015 in a 6 AM 6 PM sun-synchronous orbit at 685 km altitude to measure soil moisture and freethaw globally. The passive instrument of SMAP is a fully polarimetric L-band radiometer (1.4GHz) operating with a bandwidth of 24MHz. The radiometer L1B data product version 3 has been released for public science activities. Post-launch calibration and validation activities are described in [4,5]. Validation results show that SMAP antenna temperature (TA) is 2.6 K warmer over galactic Cold Sky (CS), and land TB is 2.6 K colder comparing to SMOS land TB (compared at the top of the atmosphere) after the update of the reflectors thermal model. Due to the biases, the SMAP radiometer is under re-calibration for next data release in 2018.We present the updated calibration approaches for the SMAP radiometer product. We will discuss the various radiometer calibration parameters and part of the validation process and result.

  6. Soil moisture retrieval in forest biomes: field experiment focus for SMAP 2018-2020 and beyond

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) project has made excellent progress in addressing the requirements and science goals of the primary mission. The primary mission baseline requirement is estimates of global surface soil moisture with an error of no greater than 4% volumetric (one sigma) exclud...

  7. The Use of Modeling for Flight Software Engineering on SMAP

    NASA Technical Reports Server (NTRS)

    Murray, Alexander; Jones, Chris G.; Reder, Leonard; Cheng, Shang-Wen

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission proposes to deploy an Earth-orbiting satellite with the goal of obtaining global maps of soil moisture content at regular intervals. Launch is currently planned in 2014. The spacecraft bus would be built at the Jet Propulsion Laboratory (JPL), incorporating both new avionics as well as hardware and software heritage from other JPL projects. [4] provides a comprehensive overview of the proposed mission

  8. Validation of SMAP Surface Soil Moisture Products with Core Validation Sites

    NASA Technical Reports Server (NTRS)

    Colliander, A.; Jackson, T. J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S. B.; Cosh, M. H.; Dunbar, R. S.; Dang, L.; Pashaian, L.; hide

    2017-01-01

    The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well calibrated in situ soil moisture measurements within SMAP product grid pixels for diverse conditions and locations.The estimation of the average soil moisture within the SMAP product grid pixels based on in situ measurements is more reliable when location specific calibration of the sensors has been performed and there is adequate replication over the spatial domain, with an up-scaling function based on analysis using independent estimates of the soil moisture distribution. SMAP fulfilled these requirements through a collaborative CalVal Partner program.This paper presents the results from 34 candidate core validation sites for the first eleven months of the SMAP mission. As a result of the screening of the sites prior to the availability of SMAP data, out of the 34 candidate sites 18 sites fulfilled all the requirements at one of the resolution scales (at least). The rest of the sites are used as secondary information in algorithm evaluation. The results indicate that the SMAP radiometer-based soil moisture data product meets its expected performance of 0.04 cu m/cu m volumetric soil moisture (unbiased root mean square error); the combined radar-radiometer product is close to its expected performance of 0.04 cu m/cu m, and the radar-based product meets its target accuracy of 0.06 cu m/cu m (the lengths of the combined and radar-based products are truncated to about 10 weeks because of the SMAP radar failure). Upon completing the intensive CalVal phase of the mission the SMAP project will continue to enhance the products in the primary and extended geographic domains, in co-operation with the CalVal Partners, by continuing the comparisons over the existing core validation sites and inclusion of candidate sites that can address shortcomings.

  9. Soil Moisture Active Passive (SMAP) Calibration and validation plan and current activities

    USDA-ARS?s Scientific Manuscript database

    The primary objective of the SMAP calibration and validation (Cal/Val) program is demonstrating that the science requirements (product accuracy and bias) have been met over the mission life. This begins during pre-launch with activities that contribute to high quality products and establishing post-...

  10. Validation of the Soil Moisture Active Passive (SMAP) satellite soil moisture retrieval in an Arctic tundra environment

    NASA Astrophysics Data System (ADS)

    Wrona, Elizabeth; Rowlandson, Tracy L.; Nambiar, Manoj; Berg, Aaron A.; Colliander, Andreas; Marsh, Philip

    2017-05-01

    This study examines the Soil Moisture Active Passive soil moisture product on the Equal Area Scalable Earth-2 (EASE-2) 36 km Global cylindrical and North Polar azimuthal grids relative to two in situ soil moisture monitoring networks that were installed in 2015 and 2016. Results indicate that there is no relationship between the Soil Moisture Active Passive (SMAP) Level-2 passive soil moisture product and the upscaled in situ measurements. Additionally, there is very low correlation between modeled brightness temperature using the Community Microwave Emission Model and the Level-1 C SMAP brightness temperature interpolated to the EASE-2 Global grid; however, there is a much stronger relationship to the brightness temperature measurements interpolated to the North Polar grid, suggesting that the soil moisture product could be improved with interpolation on the North Polar grid.

  11. NASA Soil Moisture Active Passive Mission Status and Science Performance

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni; Entin, Jared K.

    2016-01-01

    The Soil Moisture Active Passive (SMAP) observatory was launched January 31, 2015, and its L-band radiometer and radar instruments became operational since mid-April 2015. The SMAP radiometer has been operating flawlessly, but the radar transmitter ceased operation on July 7. This paper provides a status summary of the calibration and validation of the SMAP instruments and the quality assessment of its soil moisture and freeze/thaw products. Since the loss of the radar in July, the SMAP project has been conducting two parallel activities to enhance the resolution of soil moisture products. One of them explores the Backus Gilbert optimum interpolation and de-convolution techniques based on the oversampling characteristics of the SMAP radiometer. The other investigates the disaggregation of the SMAP radiometer data using the European Space Agency's Sentinel-1 C-band synthetic radar data to obtain soil moisture products at about 1 to 3 kilometers resolution. In addition, SMAP's L-band data have found many new applications, including vegetation opacity, ocean surface salinity and hurricane ocean surface wind mapping. Highlights of these new applications will be provided.

  12. Five Things about NASA's SMAP

    NASA Image and Video Library

    2017-12-08

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch on Jan. 29, will measure the moisture in Earth's soil with greater accuracy and higher resolution than any preceding mission, producing a global map of soil moisture every three days. Here are five quick facts about the spacecraft and what it studies. 1. Soil moisture is a tiny fraction of water with a big punch. Only 0.001 percent of Earth's total water is lodged in the top few feet of soil. That tiny percentage, however, affects all living things on land and plays an important role in moving water, carbon and heat between land and atmosphere. 2. Soil moisture can compound water risks. A flood follows a heavy rainfall -- but only if the ground cannot soak up the rain. Waterlogged soil makes a region more flood-prone. Going to the opposite extreme, a drought can parch soil to such an extent that plants are unable to grow even after a few rains have fallen. Knowing soil moisture allows hydrologists to make better decisions related to the risk of flooding and drought, such as how much water to retain in reservoirs. 3. Soil moisture controls the on-off switch for carbon dioxide cleanup. The world's vast northern forests remove carbon dioxide from the air as they grow, helping to clean up our emissions from burning fossil fuels. But when the ground freezes, that process switches off. Carbon dioxide builds up in the atmosphere until the ground thaws in the spring and plants begin growing again. Knowing where and for how long the ground is frozen or thawed is an important part of understanding the role of the northern forests in reducing greenhouse warming. SMAP will map frozen and thawed soils north of 45 degrees north latitude (about the latitude of Minneapolis), around the globe. 4. SMAP is a twofer. The spacecraft's radiometer produces an accurate reading of how much moisture is in the top two inches (five centimeters) of soil, but it has low spatial resolution, that is, one measurement covers a

  13. Spatial and Temporal Patterns of SMAP Brightness Temperatures for Use in Level 1 TB Characterization

    NASA Astrophysics Data System (ADS)

    Kim, E. J.

    2015-12-01

    1. IntroductionThe recent launch of NASA's Soil Moisture Active Passive (SMAP) mission [Entekhabi, et al] has opened the door to improved brightness temperature (TB) calibration of satellite L-band microwave radiometers, through the use of SMAP's lower noise performance and better immunity to man-made interference (vs. ESA's Soil Moisture Ocean Salinity (SMOS) mission [Kerr, et al]), better spatial resolution (vs. NASA's Aquarius sea surface salinity mission [Le Vine, et al]), and cleaner antenna pattern (vs. SMOS). All three radiometers use/used large homogeneous places on Earth's surface as calibration targets—parts of the ocean, Antarctica, and tropical forests. Despite the recent loss of Aquarius data, there is still hope for creating a longer-term L-band data set that spans the timeframe of all 3 missions. 2. Description of Analyses and Expected Results In this paper, we analyze SMAP brightness temperature data to quantify the spatial and temporal characteristics of external target areas in the oceans, Antarctica, forests, and other areas. Existing analyses have examined these targets in terms of averages, standard deviations, and other basic statistics (for Aquarius & SMOS as well). This paper will approach the problem from a signal processing perspective. Coupled with the use of SMAP's novel RFI-mitigated TBs, and the aforementioned lower noise and cleaner antenna pattern, it is expected that of the 3 L-band missions, SMAP should do the best job of characterizing such external targets. The resulting conclusions should be useful to extract the best possible TB calibration from all 3 missions, helping to inter-compare the TB from the 3 missions, and to eventually inter-calibrate the TBs into a single long-term dataset.

  14. Utilization of Ancillary Data Sets for SMAP Algorithm Development and Product Generation

    NASA Technical Reports Server (NTRS)

    ONeill, P.; Podest, E.; Njoku, E.

    2011-01-01

    Algorithms being developed for the Soil Moisture Active Passive (SMAP) mission require a variety of both static and ancillary data. The selection of the most appropriate source for each ancillary data parameter is driven by a number of considerations, including accuracy, latency, availability, and consistency across all SMAP products and with SMOS (Soil Moisture Ocean Salinity). It is anticipated that initial selection of all ancillary datasets, which are needed for ongoing algorithm development activities on the SMAP algorithm testbed at JPL, will be completed within the year. These datasets will be updated as new or improved sources become available, and all selections and changes will be documented for the benefit of the user community. Wise choices in ancillary data will help to enable SMAP to provide new global measurements of soil moisture and freeze/thaw state at the targeted accuracy necessary to tackle hydrologically-relevant societal issues.

  15. SMAP L2/L3 Soil moisture product validation with core validation sites

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) mission was launched by NASA in January, 2015 and entered its one year calibration and validation (cal/val) phase in May, 2015. This began with a focus on instrument measurements, brightness temperature and backscatter, and has now evolved to the geophysical p...

  16. The SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Crow, Wade; Koster, Randal; Kimball, John

    2010-01-01

    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2013 as one of four first-tier missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space in 2007. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. In this paper we describe the assimilation of SMAP observations for the generation of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product. The SMAP mission makes simultaneous active (radar) and passive (radiometer) measurements in the 1.26-1.43 GHz range (L-band) from a sun-synchronous low-earth orbit. Measurements will be obtained across a 1000 km wide swath using conical scanning at a constant incidence angle (40 deg). The radar resolution varies from 1-3 km over the outer 70% of the swath to about 30 km near the center of the swath. The radiometer resolution is 40 km across the entire swath. The radiometer measurements will allow high-accuracy but coarse resolution (40 km) measurements. The radar measurements will add significantly higher resolution information. The radar is however very sensitive to surface roughness and vegetation structure. The combination of the two measurements allows optimal blending of the advantages of each instrument. SMAP directly observes only surface soil moisture (in the top 5 cm of the soil column). Several of the key applications targeted by SMAP, however, require knowledge of root zone soil moisture (approximately top 1 m of the soil column), which is not directly measured by SMAP. The foremost objective of the SMAP L4_SM product is to fill this gap and provide estimates of root zone soil moisture

  17. Recent advances in the salinity retrieval algorithms for Aquarius and Soil Moisture Active Passive (SMAP)

    NASA Astrophysics Data System (ADS)

    Meissner, Thomas; Wentz, Frank; Lee, Tong

    2017-04-01

    Our presentation discusses the latest improvements in the salinity retrievals both for Aquarius and Soil Moisture Active-Passive (SMAP) since the last releases. The Aquarius V4.0 was released in June 2015. The final V5.0 release is planned for late 2017. SMAP V 2.0 has been released in September 2016. We will present validation results for both Aquarius V5.0 pre-release and SMAP V2.0 salinity comparing with near-surface salinity measurements from Argo floats. We show that salty biases at higher northern latitudes in Aquarius V4.0 can be explained by inaccuracy in the model used in correcting for the absorption by atmospheric oxygen. These biases will be mitigated in V5.0 by fine-tuning the parameters in the oxygen absorption model. The full 360-degree look capability of SMAP makes it possible to take observations from the forward and backward looking direction at the same instance of time. This two-look capability aids the salinity retrievals. One of the largest spurious contaminations in the salinity retrievals is caused by the galactic reflection from the ocean surface. Because in most instances the reflected galaxy appears only in either the forward or the backward look, it is possible to determine its contribution by taking the difference of the measured SMAP brightness temperatures between the two looks. Our result suggests that the surface roughness that is used in the galactic correction needs to be increased and also the estimated strength of some of the galactic sources need to be slightly adjusted. The improved galaxy correction has been implemented in SMAP V2.0 retrieval and will be included in Aquarius V5.0 as well. It helps the mitigation of residual zonal and temporal biases that were present in both products. Another major cause of the observed zonal biases in SMAP is the emissive SMAP mesh antenna. In order to correct for it, an accurate knowledge of the emissivity of the antenna and its physical temperature are required. We discuss the improvements

  18. High-Resolution Soil Moisture Retrieval using SMAP-L Band Radiometer and RISAT-C band Radar Data for the Indian Subcontinent

    NASA Astrophysics Data System (ADS)

    Singh, G.; Das, N. N.; Panda, R. K.; Mohanty, B.; Entekhabi, D.; Bhattacharya, B. K.

    2016-12-01

    Soil moisture status at high resolution (1-10 km) is vital for hydrological, agricultural and hydro-metrological applications. The NASA Soil Moisture Active Passive (SMAP) mission had potential to provide reliable soil moisture estimate at finer spatial resolutions (3 km and 9 km) at the global extent, but suffered a malfunction of its radar, consequently making the SMAP mission observations only from radiometer that are of coarse spatial resolution. At present, the availability of high-resolution soil moisture product is limited, especially in developing countries like India, which greatly depends on agriculture for sustaining a huge population. Therefore, an attempt has been made in the reported study to combine the C-band synthetic aperture radar (SAR) data from Radar Imaging Satellite (RISAT) of the Indian Space Research Organization (ISRO) with the SMAP mission L-band radiometer data to obtain high-resolution (1 km and 3 km) soil moisture estimates. In this study, a downscaling approach (Active-Passive Algorithm) implemented for the SMAP mission was used to disaggregate the SMAP radiometer brightness temperature (Tb) using the fine resolution SAR backscatter (σ0) from RISAT. The downscaled high-resolution Tb was then subjected to tau-omega model in conjunction with high-resolution ancillary data to retrieve soil moisture at 1 and 3 km scale. The retrieved high-resolution soil moisture estimates were then validated with ground based soil moisture measurement under different hydro-climatic regions of India. Initial results show tremendous potential and reasonable accuracy for the retrieved soil moisture at 1 km and 3 km. It is expected that ISRO will implement this approach to produce high-resolution soil moisture estimates for the Indian subcontinent.

  19. SMAP validation of soil moisture products

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in October 2014. SMAP will also incorporate a rigorous calibration and validation program that will support algorithm refinement and provide users with information on the accuracy ...

  20. Evaluation of the Validated Soil Moisture Product from the SMAP Radiometer

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Chan, S.; Colliander, A.; Dunbar, S.; Njoku, E.; Bindlish, R.; Chen, F.; Jackson, T.; Burgin, M.; Piepmeier, J.; hide

    2016-01-01

    NASA's Soil Moisture Active Passive (SMAP) mission launched on January 31, 2015 into a sun-synchronous 6 am/6 pm orbit with an objective to produce global mapping of high-resolution soil moisture and freeze-thaw state every 2-3 days using an L-band (active) radar and an L-band (passive) radiometer. The SMAP radiometer began acquiring routine science data on March 31, 2015 and continues to operate nominally. SMAP's radiometer-derived soil moisture product (L2_SM_P) provides soil moisture estimates posted on a 36 km fixed Earth grid using brightness temperature observations from descending (6 am) passes and ancillary data. A beta quality version of L2_SM_P was released to the public in September, 2015, with the fully validated L2_SM_P soil moisture data expected to be released in May, 2016. Additional improvements (including optimization of retrieval algorithm parameters and upscaling approaches) and methodology expansions (including increasing the number of core sites, model-based intercomparisons, and results from several intensive field campaigns) are anticipated in moving from accuracy assessment of the beta quality data to an evaluation of the fully validated L2_SM_P data product.

  1. Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products

    NASA Astrophysics Data System (ADS)

    Kim, Hyunglok; Parinussa, Robert; Konings, Alexandra G.; Wagner, Wolfgang; Cosh, Michael H.; Lakshmi, Venkat; Zohaib, Muhammad; Choi, Minha

    2018-01-01

    Global-scale surface soil moisture (SSM) products retrieved from active and passive microwave remote sensing provide an effective method for monitoring near-real-time SSM content with nearly daily temporal resolution. In the present study, we first inter-compared global-scale error patterns and combined the Soil Moisture Active Passive (SMAP), Advanced Scatterometer (ASCAT), and Advanced Microwave Scanning Radiometer 2 (AMSR2) SSM products using a triple collocation (TC) analysis and the maximized Pearson correlation coefficient (R) method from April 2015 to December 2016. The Global Land Data Assimilation System (GLDAS) and global in situ observations were utilized to investigate and to compare the quality of satellite-based SSM products. The average R-values of SMAP, ASCAT, and AMSR2 were 0.74, 0.64, and 0.65 when they compared with in situ networks, respectively. The ubRMSD values were (0.0411, 0.0625, and 0.0708) m3 m- 3; and the bias values were (- 0.0460, 0.0010, and 0.0418) m3 m- 3 for SMAP, ASCAT, and AMSR2, respectively. The highest average R-values from SMAP against the in situ results are very encouraging; only SMAP showed higher R-values than GLDAS in several in situ networks with low ubRMSD (0.0438 m3 m- 3). Overall, SMAP showed a dry bias (- 0.0460 m3 m- 3) and AMSR2 had a wet bias (0.0418 m3 m- 3); while ASCAT showed the least bias (0.0010 m3 m- 3) among all the products. Each product was evaluated using TC metrics with respect to the different ranges of vegetation optical depth (VOD). Under vegetation scarce conditions (VOD < 0.10), such as desert and semi-desert regions, all products have difficulty obtaining SSM information. In regions with moderately vegetated areas (0.10 < VOD < 0.40), SMAP showed the highest Signal-to-Noise Ratio. Over highly vegetated regions (VOD > 0.40) ASCAT showed comparatively better performance than did the other products. Using the maximized R method, SMAP, ASCAT, and AMSR2 products were combined one by one using the

  2. Bridging the Global Precipitation and Soil Moisture Active Passive Missions: Variability of Microwave Surface Emissivity from In situ and Remote Sensing Perspectives

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Kirstetter, P.; Hong, Y.; Turk, J.

    2016-12-01

    The overland precipitation retrievals from satellite passive microwave (PMW) sensors such as the Global Precipitation Mission (GPM) microwave imager (GMI) are impacted by the land surface emissivity. The estimation of PMW emissivity faces challenges because it is highly variable under the influence of surface properties such as soil moisture, surface roughness and vegetation. This study proposes an improved quantitative understanding of the relationship between the emissivity and surface parameters. Surface parameter information is obtained through (i) in-situ measurements from the International Soil Moisture Network and (ii) satellite measurements from the Soil Moisture Active and Passive mission (SMAP) which provides global scale soil moisture estimates. The variation of emissivity is quantified with soil moisture, surface temperature and vegetation at various frequencies/polarization and over different types of land surfaces to sheds light into the processes governing the emission of the land. This analysis is used to estimate the emissivity under rainy conditions. The framework built with in-situ measurements serves as a benchmark for satellite-based analyses, which paves a way toward global scale emissivity estimates using SMAP.

  3. A GNC Perspective of the Launch and Commissioning of NASA's SMAP (Soil Moisture Active Passive) Spacecraft

    NASA Technical Reports Server (NTRS)

    Brown, Todd S.

    2016-01-01

    The NASA Soil Moisture Active Passive (SMAP) spacecraft was designed to use radar and radiometer measurements to produce global soil moisture measurements every 2-3 days. The SMAP spacecraft is a complicated dual-spinning design with a large 6 meter deployable mesh reflector mounted on a platform that spins at 14.6 rpm while the Guidance Navigation and Control algorithms maintain precise nadir pointing for the de-spun portion of the spacecraft. After launching in early 2015, the Guidance Navigation and Control software and hardware aboard the SMAP spacecraft underwent an intensive spacecraft checkout and commissioning period. This paper describes the activities performed by the Guidance Navigation and Control team to confirm the health and phasing of subsystem hardware and the functionality of the guidance and control modes and algorithms. The operations tasks performed, as well as anomalies that were encountered during the commissioning, are explained and results are summarized.

  4. Estimation of Volume and Freshwater Flux from the Arctic Ocean using SMAP and NCEP CFSv2

    NASA Astrophysics Data System (ADS)

    Bulusu, S.

    2017-12-01

    Spatial and temporal monitoring of sea surface salinity (SSS) plays an important role globally and especially over the Arctic Ocean. The Arctic ice melt has led to an influx of freshwater into the Arctic environment, a process that can be observed in SSS. The recently launched NASA's Soil Moisture Active Passive (SMAP) mission is primarily designed for the global monitoring of soil moisture using L- band (1.4GHz) frequency. SMAP also has the capability of measuring SSS and can thus extend the NASA's Aquarius salinity mission (ended June 7, 2015), salinity data record with improved temporal/spatial sampling. In this research an attempt is made to investigate the retrievability of SSS over the Arctic from SMAP satellite. The objectives of this study are to verify the use of SMAP sea surface salinity (and freshwater) variability in the Arctic Ocean and the extent to estimate freshwater, salt and volume flux from the Arctic Ocean. Along with SMAP data we will use NASA's Ice, Cloud,and land Elevation Satellites (ICESat and ICESat-2), and ESA's CryoSat-2, and NASA's Gravity Recovery and Climate Experiment (GRACE) satellites data to estimate ice melt in the Arctic. The preliminary results from SMAP compared well with the NCEP Climate Forecast System version 2 (CFSv2) salinity data in this region capturing patterns fairly well over the Arctic.

  5. Spatial downscaling of SMAP soil moisture using MODIS land surface temperature and NDVI during SMAPVEX15

    USDA-ARS?s Scientific Manuscript database

    The SMAP (Soil Moisture Active Passive) mission provides global surface soil moisture product at 36 km resolution from its L-band radiometer. While the coarse resolution is satisfactory to many applications there are also a lot of applications which would benefit from a higher resolution soil moistu...

  6. SMAP Spacecraft Offload

    NASA Image and Video Library

    2014-10-15

    NASA's Soil Moisture Active Passive, or SMAP, spacecraft, enclosed in a transportation container, is offloaded from the truck on which it traveled from the Jet Propulsion Laboratory in Pasadena, California, to the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  7. SMAP Spacecraft Offload

    NASA Image and Video Library

    2014-10-15

    NASA's Soil Moisture Active Passive, or SMAP, spacecraft is delivered by truck from the Jet Propulsion Laboratory in Pasadena, California, to the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  8. The Soil Moisture Active Passive Mission (SMAP) Science Data Products: Results of Testing with Field Experiment and Algorithm Testbed Simulation Environment Data

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Njoku, Eni E.; O'Neill, Peggy E.; Kellogg, Kent H.; Entin, Jared K.

    2010-01-01

    Talk outline 1. Derivation of SMAP basic and applied science requirements from the NRC Earth Science Decadal Survey applications 2. Data products and latencies 3. Algorithm highlights 4. SMAP Algorithm Testbed 5. SMAP Working Groups and community engagement

  9. Towards Validation of SMAP: SMAPEX-4 & -5

    NASA Technical Reports Server (NTRS)

    Ye, Nan; Walker, Jeffrey; Wu, Xiaoling; Jackson, Thomas; Renzullo, Luigi; Merlin, Olivier; Rudiger, Christoph; Entekhabi, Dara; DeJeu, Richard; Kim, Edward

    2016-01-01

    The L-band (1 - 2 GHz) microwave remote sensing has been widely acknowledged as the most promising method to monitor regional to global soil moisture. Consequently, the Soil Moisture Active Passive (SMAP) satellite applied this technique to provide global soil moisture every 2 to 3 days. To verify the performance of SMAP, the fourth and fifth campaign of SMAP Experiments (SMAPEx-4 -5) were carried out at the beginning of the SMAP operational phase in the Murrumbidgee River catchment, southeast Australia. The airborne radar and radiometer observations together with ground sampling on soil moisture, vegetation water content, and surface roughness were collected in coincidence with SMAP overpasses. The SMAPEx-4 and -5 data sets will benefit to SMAP post-launch calibration andvalidation under Australian land surface conditions.

  10. SMAP Instrument Mechanical System Engineering

    NASA Technical Reports Server (NTRS)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  11. SMAP Lift to CR

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians rotate NASA's Soil Moisture Active Passive, or SMAP, spacecraft to begin processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  12. SMAP Lift to CR

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians inspect NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  13. A Citizen Science Soil Moisture Sensor to Support SMAP Calibration/Validation

    NASA Astrophysics Data System (ADS)

    Podest, E.; Das, N. N.

    2016-12-01

    The Soil Moisture Active Passive (SMAP) satellite mission was launched in Jan. 2015 and is currently acquiring global measurements of soil moisture in the top 5 cm of the soil every 3 days. SMAP has partnered with the GLOBE program to engage students from around the world to collect in situ soil moisture and help validate SMAP measurements. The current GLOBE SMAP soil moisture protocol consists in collecting a soil sample, weighing, drying and weighing it again in order to determine the amount of water in the soil. Preparation and soil sample collection can take up to 20 minutes and drying can take up to 3 days. We have hence developed a soil moisture measurement device based on Arduino-like microcontrollers along with off-the-shelf and homemade sensors that are accurate, robust, inexpensive and quick and easy to use so that they can be implemented by the GLOBE community and citizen scientists alike. This talk will discuss building, calibration and validation of the soil moisture measuring device and assessing the quality of the measurements collected. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  14. Smap: A Hydrologist Goes Crazy with a New High-Quality Dataset

    NASA Technical Reports Server (NTRS)

    Koster, Randal

    2018-01-01

    By providing global measurements of near-surface soil moisture (down to about 5 cm) with unprecedented accuracy, the Soil Moisture Active/Passive (SMAP) satellite mission has opened the door to new and (in my opinion) exciting hydrological science. In this seminar, I present the results of a recent series of analyses performed with SMAP soil moisture data, covering a wide range of topics: (a) the characterization of the dynamics of near-surface soil moisture, with implications for forecasting soil moisture days into the future; (b) the multi-faceted character of the SMAP data, in the sense that different, established analysis approaches can extract information from the data that is largely (and perhaps unexpectedly) complementary; and (c) the interpretation of the data in the context of large-scale water fluxes. This final analysis is particularly exciting to me because it shows that, once the relevant algorithms are calibrated, precipitation and streamflow rates in hydrological basins can be estimated from the SMAP data alone - a reflection of the fact that the near-surface soil is a critical gateway between the atmospheric and subsurface branches of the hydrological cycle.

  15. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2012-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201l. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record -- provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica--parameters such as surface temperature.

  16. Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture

    NASA Astrophysics Data System (ADS)

    Chew, C. C.; Small, E. E.

    2018-05-01

    This paper quantifies the relationship between forward scattered L-band Global Navigation Satellite System (GNSS) signals, recorded by the Cyclone Global Navigation Satellite System (CYGNSS) constellation and Soil Moisture Active Passive (SMAP) soil moisture (SM). Although designed for tropical ocean surface wind sensing, the CYGNSS receivers also record GNSS reflections over land. The CYGNSS observations of reflection power are compared to SMAP SM between March 2017 and February 2018. A strong, positive linear relationship exists between changes in CYGNSS reflectivity and changes in SMAP SM, but not between the absolute magnitudes of the two observations. The sensitivity of CYGNSS reflectivity to SM varies spatially and can be used to convert reflectivity to estimates of SM. The unbiased root-mean-square difference between daily averaged CYGNSS-derived SM and SMAP SM is 0.045 cm3/cm3 and is similarly low between CYGNSS and in situ SM. These results show that CYGNSS, and future GNSS reflection missions, could provide global SM observations.

  17. Application of triple collocation in ground-based validation of soil moisture active/passive (SMAP) level 2 data products

    USDA-ARS?s Scientific Manuscript database

    The validation of the soil moisture retrievals from the recently-launched NASA Soil Moisture Active/Passive (SMAP) satellite is important prior to their full public release. Uncertainty in attempts to characterize footprint-scale surface-layer soil moisture using point-scale ground observations has ...

  18. SMAP Lift to CR

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians have rotated NASA's Soil Moisture Active Passive, or SMAP, spacecraft to begin processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  19. SMAP Lift to CR

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians prepare a component of NASA's Soil Moisture Active Passive, or SMAP, spacecraft for a lift by a crane. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  20. SMAP Lift to CR

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians remove a protective covering from NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  1. SMAP Lift to CR

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians use a crane to move a component of NASA's Soil Moisture Active Passive, or SMAP, spacecraft for a lift by a crane. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  2. Science Data System Contribution to Calibrating and Validating SMAP Data Products

    NASA Astrophysics Data System (ADS)

    Cuddy, D.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission retrieves global surface soil moisture and freeze/thaw state using measurements acquired by a radiometer and a synthetic aperture radar that fly on an Earth orbiting satellite. The SMAP observatory launched from Vandenberg Air Force Base on January 31, 2015 into a near-polar, sun-synchronous orbit. This paper describes the contribution of the SMAP Science Data System (SDS) to the calibration and on-going validation of the radar backscatter and radiometer brightness temperatures. The Science Data System designed, implemented and operated the software that generates data products that contain various geophysical parameters including soil moisture and freeze/thaw states, daily maps of these geophysical parameters, as well as modeled analyses of global soil moisture and carbon flux in Boreal regions. The SDS is a fully automated system that processes the incoming raw data from the instruments, incorporates spacecraft and instrument engineering data, and uses both dynamic and static ancillary products provided by the scientific community. The standard data products appear in Hierarchical Data Format-5 (HDF5) format. These products contain metadata that conform to the ISO 19115 standard. The Alaska Satellite Facility (ASF) hosts and distributes SMAP radar data products. The National Snow and Ice Data Center (NSIDC) hosts and distributes all of the other SMAP data products.

  3. An initial assessment of SMAP soil moisture disaggregation scheme using TIR surface evaporation data over the continental United States

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) mission is dedicated toward global soil moisture mapping. Typically, an L-band microwave radiometer has a spatial resolution on the order of 36-40 km, which is too coarse for many specific hydro-meteorological and agricultural applications. With the failure of...

  4. SMAP Spacecraft Arrives at Astrotech

    NASA Image and Video Library

    2014-10-14

    The truck transporting NASA's Soil Moisture Active Passive, or SMAP, spacecraft arrives at the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  5. Multi-Scale Soil Moisture Monitoring and Modeling at ARS Watersheds for NASA's Soil Moisture Active Passive (SMAP) Calibration/Validation Mission

    NASA Astrophysics Data System (ADS)

    Coopersmith, E. J.; Cosh, M. H.

    2014-12-01

    NASA's SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networks. This can be achieved via the integration of NLDAS precipitation data to perform calibration of models at each ­in-situ gauge. In turn, these models and the gauges' volumetric estimations are used to generate soil moisture estimates at a 500m scale throughout a given test watershed by leveraging, at each location, the gauge-calibrated models deemed most appropriate in terms of proximity, calibration efficacy, soil-textural similarity, and topography. Four ARS watersheds, located in Iowa, Oklahoma, Georgia, and Arizona are employed to demonstrate the utility of this approach. The South Fork watershed in Iowa represents the simplest case - the soil textures and topography are relative constants and the variability of soil moisture is simply tied to the spatial variability of precipitation. The Little Washita watershed in Oklahoma adds soil textural variability (but remains topographically simple), while the Little River watershed in Georgia incorporates topographic classification. Finally, the Walnut Gulch watershed in Arizona adds a dense precipitation network to be employed for even finer-scale modeling estimates. Results suggest RMSE values at or below the 4% volumetric standard adopted for the SMAP mission are attainable over the desired spatial scales via this integration of modeling efforts and existing in-situ networks.

  6. Model-Based Verification and Validation of the SMAP Uplink Processes

    NASA Technical Reports Server (NTRS)

    Khan, M. Omair; Dubos, Gregory F.; Tirona, Joseph; Standley, Shaun

    2013-01-01

    This case study stands as an example of how a project can validate a system-level design earlier in the project life cycle than traditional V&V processes by using simulation on a system model. Specifically, this paper describes how simulation was added to a system model of the Soil Moisture Active-Passive (SMAP) mission's uplink process.Also discussed are the advantages and disadvantages of the methods employed and the lessons learned; which are intended to benefit future model-based and simulation-based V&V development efforts.

  7. Launch Vehicle Selection and the Implementation of the Soil Moisture Active Passive Mission

    NASA Technical Reports Server (NTRS)

    Sherman, Sarah; Waydo, Peter; Eremenko, Alexander

    2016-01-01

    Soil Moisture Active Passive (SMAP) is a NASA-developed Earth science satellite currently mapping the soil moisture content and freeze/thaw state of Earth's land mass from a 685km, near-polar, sun-synchronous orbit. It was launched on January 31, 2015 from Vandenberg AFB upon a Delta II 7320 launch vehicle. Due to external considerations, SMAP's launch vehicle selection remained an open item until Project Critical Design Review (CDR). Thus, certain key aspects of the spacecraft design had to accommodate a diverse range of candidate launch vehicle environments, performance envelopes, interfaces and operational scenarios. Engineering challenges stemmed from two distinct scenarios: decisions that had to be made prior to launch vehicle selection to accommodate all possible outcomes, and post-selection changes constrained by schedule and the existing spacecraft configuration. The effects of the timing of launch vehicle selection reached virtually every aspect of the Observatory's design and development. Physical environments, mass allocations, material selections, propulsion system performance, dynamic response, launch phase and mission planning, overall size and configuration, and of course all interfaces to the launch vehicle were heavily dependent on this outcome. This paper will discuss the resolution of these technical challenges.

  8. Utilization of Airborne and in Situ Data Obtained in SGP99, SMEX02, CLASIC and SMAPVEX08 Field Campaigns for SMAP Soil Moisture Algorithm Development and Validation

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Chan, Steven; Yueh, Simon; Cosh, Michael; Bindlish, Rajat; Jackson, Tom; Njoku, Eni

    2010-01-01

    Field experiment data sets that include coincident remote sensing measurements and in situ sampling will be valuable in the development and validation of the soil moisture algorithms of the NASA's future SMAP (Soil Moisture Active and Passive) mission. This paper presents an overview of the field experiment data collected from SGP99, SMEX02, CLASIC and SMAPVEX08 campaigns. Common in these campaigns were observations of the airborne PALS (Passive and Active L- and S-band) instrument, which was developed to acquire radar and radiometer measurements at low frequencies. The combined set of the PALS measurements and ground truth obtained from all these campaigns was under study. The investigation shows that the data set contains a range of soil moisture values collected under a limited number of conditions. The quality of both PALS and ground truth data meets the needs of the SMAP algorithm development and validation. The data set has already made significant impact on the science behind SMAP mission. The areas where complementing of the data would be most beneficial are also discussed.

  9. SMAP Gets Ready to Move

    NASA Image and Video Library

    2015-01-21

    In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians secure a transportation canister around NASA Soil Moisture Active Passive SMAP spacecraft for its move to the launch pad.

  10. SMAP Spacecraft Arrives at Astrotech

    NASA Image and Video Library

    2014-10-14

    Workers push the pallet supporting the transportation container protecting NASA's Soil Moisture Active Passive, or SMAP, spacecraft into the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  11. A Texas Flood from Land to Ocean Observed by SMAP

    NASA Astrophysics Data System (ADS)

    Fournier, S.; Reager, J. T., II; Lee, T.; Vazquez, J.; David, C. H.; Gierach, M. M.

    2016-12-01

    Floods are natural hazards that can have damaging impacts not only on affected land areas but also on the adjacent coastal waters. NASA's Soil Moisture Active Passive (SMAP) mission provides measurements of both surface soil moisture and sea surface salinity (SSS), offering the opportunity to study the effects of flooding events on both terrestrial and marine environments. Here, we present analysis of a severe flood that occurred in May 2015 in Texas using SMAP observations and ancillary satellite and in situ data that describe the precipitation intensity, the evolving saturation state of the land surface, the flood discharge peak, and the resulting freshwater plume in the Gulf of Mexico. We describe the spatiotemporal evolution of the different variables, their relationships, and the associated physical processes. Specifically, we identify a freshwater plume in the north-central Gulf, being distinct from the typical Mississippi River plume, that is attributable to the Texas flood.

  12. SMAP Data Assimilation at NASA SPoRT

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay B.; Case, Jonathan L.; Zavodsky, Bradley T.

    2016-01-01

    The NASA Short-Term Prediction Research and Transition (SPoRT) Center maintains a near-real- time run of the Noah Land Surface Model within the Land Information System (LIS) at 3-km resolution. Soil moisture products from this model are used by several NOAA/National Weather Service Weather Forecast Offices for flood and drought situational awareness. We have implemented assimilation of soil moisture retrievals from the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active/ Passive (SMAP) satellites, and are now evaluating the SMAP assimilation. The SMAP-enhanced LIS product is planned for public release by October 2016.

  13. Data assimilation to extract soil moisture information from SMAP observations

    USDA-ARS?s Scientific Manuscript database

    This study compares different methods to extract soil moisture information through the assimilation of Soil Moisture Active Passive (SMAP) observations. Neural Network(NN) and physically-based SMAP soil moisture retrievals were assimilated into the NASA Catchment model over the contiguous United Sta...

  14. Modelling the Passive Microwave Signature from Land Surfaces: A Review of Recent Results and Application to the L-Band SMOS SMAP Soil Moisture Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Wigneron, J.-P.; Jackson, T. J.; O'Neill, P.; De Lannoy, G.; De Rosnay, P.; Walker, J. P.; Ferrazzoli, P.; Mironov, V.; Bircher, S.; Grant, J. P.; hide

    2017-01-01

    Two passive microwave missions are currently operating at L-band to monitor surface soil moisture (SM) over continental surfaces. The SMOS sensor, based on an innovative interferometric technology enabling multi-angular signatures of surfaces to be measured, was launched in November 2009. The SMAP sensor, based on a large mesh reflector 6 m in diameter providing a conically scanning antenna beam with a surface incidence angle of 40deg, was launched in January of 2015. Over the last decade, an intense scientific activity has focused on the development of the SM retrieval algorithms for the two missions. This activity has relied on many field (mainly tower-based) and airborne experimental campaigns, and since 2010-2011, on the SMOS and Aquarius space-borne L-band observations. It has relied too on the use of numerical, physical and semi-empirical models to simulate the microwave brightness temperature of natural scenes for a variety of scenarios in terms of system configurations (polarization, incidence angle) and soil, vegetation and climate conditions. Key components of the inversion models have been evaluated and new parameterizations of the effects of the surface temperature, soil roughness, soil permittivity, and vegetation extinction and scattering have been developed. Among others, global maps of select radiative transfer parameters have been estimated very recently. Based on this intense activity, improvements of the SMOS and SMAP SM inversion algorithms have been proposed. Some of them have already been implemented, whereas others are currently being investigated. In this paper, we present a review of the significant progress which has been made over the last decade in this field of research with a focus on L-band, and a discussion on possible applications to the SMOS and SMAP soil moisture retrieval approaches.

  15. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians rotate NASA's Soil Moisture Active Passive, or SMAP, spacecraft to begin processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  16. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians inspect NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  17. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians begin processing of NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  18. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, an engineer inspects NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  19. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, processing has begun on NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  20. A practical algorithm to estimate soil thawing onset with the soil moisture active passive (SMAP) data

    NASA Astrophysics Data System (ADS)

    Chen, X.; Liu, L.

    2016-12-01

    The Soil Moisture Active Passive (SMAP) satellite simultaneously collected active and passive microwave data at L-band from April to July, 2015. The L-band radiometer brightness temperature (TB) data are strongly sensitive to the change of soil moisture, therefore, can be used to estimate freeze/thaw state of soil. We applied an edge detection method to detect the onset of thawing based on the SMAP level-1C TB data. This method convolves the first derivative of the Gaussian function as a kernel with the TB time series. When thawing occurs, soil moisture increases abruptly and leads to a decrease in TB. Therefore, a primary thaw event can be identified when the convolved signal reaches a local minimum. Considering the noise of the radiometer data, not all local minimums correspond to a thaw event. Therefore, we further applied a filter based on a priori or in situ soil temperature observation to eliminate false events. We compared the TB-based estimates with in situ measurements of soil temperature, moisture, and snow depth from April to June from 5 SNOTEL sites in Alaska. Our results show that at 4 out of the 5 sites the estimated thawing onsets and in-situ data agree within 5 to 10 days. However, we found a distinct inconsistency of 41 days at the fifth site. One possible reason is the mismatch in spatial coverage: one pixel of SMAP radiometer data has a size of 36 km, within which different areas may have different freeze/thaw states. The SMAP radar backscatter coefficient (σ0) data are also very sensitive to soil moisture, and has finer spatial resolution of 1 km, making it more directly comparable with the in situ measurements. We applied a seasonal threshold method to estimate thawing onset based on this data. Firstly, we set a thaw onset based on the in situ soil temperature and moisture measurements at 5 cm depth. Then we averaged σ0 observations from April 14th to 7 days before the thaw onset to represent the frozen soil, and used the mean value from 7

  1. SMAP Spacecraft Arrives at Astrotech

    NASA Image and Video Library

    2014-10-14

    The transportation container protecting NASA's Soil Moisture Active Passive, or SMAP, spacecraft is offloaded from the truck that delivered it from the Jet Propulsion Laboratory in Pasadena, California, to the Astrotech payload processing facility on Vandenberg Air Force Base in California with the aid of a forklift. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  2. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians mount NASA's Soil Moisture Active Passive, or SMAP, spacecraft on a work platform. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  3. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians remove a protective covering from NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  4. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians use a crane to move NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  5. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians have rotated NASA's Soil Moisture Active Passive, or SMAP, spacecraft to begin processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  6. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians prepare a component of NASA's Soil Moisture Active Passive, or SMAP, spacecraft for a lift by a crane. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  7. Hurricane Maria's Strengthening Winds Seen in NASA SMAP Image

    NASA Image and Video Library

    2017-09-19

    The radiometer instrument on NASA's Soil Moisture Active Passive (SMAP) spacecraft captured this image of Hurricane Maria at 6:27 a.m. EDT on Sept. 19, 2017 (10:27 UTC), showing an estimated maximum surface wind speed of 126.6 miles per hour (56.6 meters per second). While Maria was already a Category 5 hurricane at the time of this observation, it is an extremely tightly organized hurricane and SMAP cannot fully resolve its highest winds due to the 25-mile (40-kilometer) resolution of SMAP. https://photojournal.jpl.nasa.gov/catalog/PIA21960

  8. The SMAP Level 4 Carbon PRODUCT for Monitoring Terrestrial Ecosystem-Atmosphere CO2 Exchange

    NASA Technical Reports Server (NTRS)

    Jones, L. A.; Kimball, J. S.; Madani, N.; Reichle, R. H.; Glassy, J.; Ardizzone, J/

    2016-01-01

    The NASA Soil Moisture Active Passive (SMAP) mission Level 4 Carbon (L4_C) product provides model estimates of Net Ecosystem CO2 exchange (NEE) incorporating SMAP soil moisture information as a primary driver. The L4_C product provides NEE, computed as total respiration less gross photosynthesis, at a daily time step and approximate 14-day latency posted to a 9-km global grid summarized by plant functional type. The L4_C product includes component carbon fluxes, surface soil organic carbon stocks, underlying environmental constraints, and detailed uncertainty metrics. The L4_C model is driven by the SMAP Level 4 Soil Moisture (L4_SM) data assimilation product, with additional inputs from the Goddard Earth Observing System, Version 5 (GEOS-5) weather analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. The L4_C data record extends from March 2015 to present with ongoing production. Initial comparisons against global CO2 eddy flux tower measurements, satellite Solar Induced Canopy Florescence (SIF) and other independent observation benchmarks show favorable L4_C performance and accuracy, capturing the dynamic biosphere response to recent weather anomalies and demonstrating the value of SMAP observations for monitoring of global terrestrial water and carbon cycle linkages.

  9. Reducing Earth Topography Resolution for SMAP Mission Ground Tracks Using K-Means Clustering

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen

    2013-01-01

    The K-means clustering algorithm is used to reduce Earth topography resolution for the SMAP mission ground tracks. As SMAP propagates in orbit, knowledge of the radar antenna footprints on Earth is required for the antenna misalignment calibration. Each antenna footprint contains a latitude and longitude location pair on the Earth surface. There are 400 pairs in one data set for the calibration model. It is computationally expensive to calculate corresponding Earth elevation for these data pairs. Thus, the antenna footprint resolution is reduced. Similar topographical data pairs are grouped together with the K-means clustering algorithm. The resolution is reduced to the mean of each topographical cluster called the cluster centroid. The corresponding Earth elevation for each cluster centroid is assigned to the entire group. Results show that 400 data points are reduced to 60 while still maintaining algorithm performance and computational efficiency. In this work, sensitivity analysis is also performed to show a trade-off between algorithm performance versus computational efficiency as the number of cluster centroids and algorithm iterations are increased.

  10. Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network

    NASA Astrophysics Data System (ADS)

    Fang, Kuai; Shen, Chaopeng; Kifer, Daniel; Yang, Xiao

    2017-11-01

    The Soil Moisture Active Passive (SMAP) mission has delivered valuable sensing of surface soil moisture since 2015. However, it has a short time span and irregular revisit schedules. Utilizing a state-of-the-art time series deep learning neural network, Long Short-Term Memory (LSTM), we created a system that predicts SMAP level-3 moisture product with atmospheric forcings, model-simulated moisture, and static physiographic attributes as inputs. The system removes most of the bias with model simulations and improves predicted moisture climatology, achieving small test root-mean-square errors (<0.035) and high-correlation coefficients >0.87 for over 75% of Continental United States, including the forested southeast. As the first application of LSTM in hydrology, we show the proposed network avoids overfitting and is robust for both temporal and spatial extrapolation tests. LSTM generalizes well across regions with distinct climates and environmental settings. With high fidelity to SMAP, LSTM shows great potential for hindcasting, data assimilation, and weather forecasting.

  11. Soil Moisture Active Passive Satellite Status and Recent Validation Results

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) mission was launched in January, 2015 and began its calibration and validation (cal/val) phase in May, 2015. Cal/Val will begin with a focus on instrument measurements, brightness temperature and backscatter, and evolve to the geophysical products that include...

  12. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions with Climate Data Record Applications

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2011-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201 I. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.

  13. Impact of Aquarius and SMAP Sea Surface Salinity Observations on Seasonal Predictions of the 2015 El Nino

    NASA Technical Reports Server (NTRS)

    Hackert, E.; Kovach, R.; Marshak, J.; Borovikov, A.; Molod, A.; Vernieres, G.

    2018-01-01

    We assess the impact of satellite sea surface salinity (SSS) observations on dynamical ENSO forecasts for the big 2015 El Nino event. From March to June 2015, the availability of two overlapping satellite SSS instruments, Aquarius and SMAP (Soil Moisture Active Passive Mission), allows a unique opportunity to compare and contrast forecasts generated with the benefit of these two satellite SSS observation types. Four distinct experiments are presented that include 1) freely evolving model SSS (i.e. no satellite SSS), relaxation to 2) climatological SSS (i.e. WOA13 SSS), 3) Aquarius, and 4) SMAP initialization. Coupled hindcasts are then generated from these initial conditions for March 2015. These forecasts are then validated against observations and evaluated with respect to the observed El Nino development.

  14. Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates

    USDA-ARS?s Scientific Manuscript database

    SMAP (Soil Moisture Active and Passive) radiometer observations at 40 km resolution are routinely assimilated into the NASA Catchment Land Surface Model to generate the 9-km SMAP Level-4 Soil Moisture product. This study demonstrates that adding high-resolution radar observations from Sentinel-1 to ...

  15. Soil Moisture Active Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth's surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  16. Soil Moisture ActivePassive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth’s surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  17. Airborne active and passive L-band measurements using PALS instrument in SMAPVEX12 soil moisture field campaign

    NASA Astrophysics Data System (ADS)

    Colliander, Andreas; Yueh, Simon; Chazanoff, Seth; Dinardo, Steven; O'Dwyer, Ian; Jackson, Thomas; McNairn, Heather; Bullock, Paul; Wiseman, Grant; Berg, Aaron; Magagi, Ramata; Njoku, Eni

    2012-10-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in late 2014. The objective of the mission is global mapping of soil moisture and freeze/thaw state. Merging of active and passive L-band observations of the mission will enable unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrieval. For pre-launch algorithm development and validation the SMAP project and NASA coordinated a field campaign named as SMAPVEX12 (Soil Moisture Active Passive Validation Experiment 2012) together with Agriculture and Agri-Food Canada, and other Canadian and US institutions in the vicinity of Winnipeg, Canada in June-July, 2012. The main objective of SMAPVEX12 was acquisition of a data record that features long time-series with varying soil moisture and vegetation conditions over an aerial domain of multiple parallel flight lines. The coincident active and passive L-band data was acquired with the PALS (Passive Active L-band System) instrument. The measurements were conducted over the experiment domain every 2-3 days on average, over a period of 43 days. The preliminary calibration of the brightness temperatures obtained in the campaign has been performed. Daily lake calibrations were used to adjust the radiometer calibration parameters, and the obtained measurements were compared against the raw in situ soil moisture measurements. The evaluation shows that this preliminary calibration of the data produces already a consistent brightness temperature record over the campaign duration, and only secondary adjustments and cleaning of the data is need before the data can be applied to the development and validation of SMAP algorithms.

  18. Soil Moisture Active/Passive (SMAP) L-band microwave radiometer post-launch calibration

    USDA-ARS?s Scientific Manuscript database

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM / 6 PM sun-synchronous orbit at 685-km altitude. Since April 2015, the radiometer has been under calibration and validation to assess the quality of the radiometer L1B data product. Calibrat...

  19. Advances in Assimilation of Satellite-Based Passive Microwave Observations for Soil-Moisture Estimation

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle J. M.; Pauwels, Valentijn; Reichle, Rolf H.; Draper, Clara; Koster, Randy; Liu, Qing

    2012-01-01

    Satellite-based microwave measurements have long shown potential to provide global information about soil moisture. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS, [1]) mission as well as the future National Aeronautics and Space Administration (NASA) Soil Moisture Active and Passive (SMAP, [2]) mission measure passive microwave emission at L-band frequencies, at a relatively coarse (40 km) spatial resolution. In addition, SMAP will measure active microwave signals at a higher spatial resolution (3 km). These new L-band missions have a greater sensing depth (of -5cm) compared with past and present C- and X-band microwave sensors. ESA currently also disseminates retrievals of SMOS surface soil moisture that are derived from SMOS brightness temperature observations and ancillary data. In this research, we address two major challenges with the assimilation of recent/future satellite-based microwave measurements: (i) assimilation of soil moisture retrievals versus brightness temperatures for surface and root-zone soil moisture estimation and (ii) scale-mismatches between satellite observations, models and in situ validation data.

  20. Achieving Lights-Out Operation of SMAP Using Ground Data System Automation

    NASA Technical Reports Server (NTRS)

    Sanders, Antonio

    2013-01-01

    The approach used in the SMAP ground data system to provide reliable, automated capabilities to conduct unattended operations has been presented. The impacts of automation on the ground data system architecture were discussed, including the three major automation patterns identified for SMAP and how these patterns address the operations use cases. The architecture and approaches used by SMAP will set the baseline for future JPL Earth Science missions.

  1. Prolongation of SMAP to Spatio-temporally Seamless Coverage of Continental US Using a Deep Learning Neural Network

    NASA Astrophysics Data System (ADS)

    Fang, K.; Shen, C.; Kifer, D.; Yang, X.

    2017-12-01

    The Soil Moisture Active Passive (SMAP) mission has delivered high-quality and valuable sensing of surface soil moisture since 2015. However, its short time span, coarse resolution, and irregular revisit schedule have limited its use. Utilizing a state-of-the-art deep-in-time neural network, Long Short-Term Memory (LSTM), we created a system that predicts SMAP level-3 soil moisture data using climate forcing, model-simulated moisture, and static physical attributes as inputs. The system removes most of the bias with model simulations and also improves predicted moisture climatology, achieving a testing accuracy of 0.025 to 0.03 in most parts of Continental United States (CONUS). As the first application of LSTM in hydrology, we show that it is more robust than simpler methods in either temporal or spatial extrapolation tests. We also discuss roles of different predictors, the effectiveness of regularization algorithms and impacts of training strategies. With high fidelity to SMAP products, our data can aid various applications including data assimilation, weather forecasting, and soil moisture hindcasting.

  2. SMAP Radiometer Captures Views of Global Soil Moisture

    NASA Image and Video Library

    2015-05-06

    These maps of global soil moisture were created using data from the radiometer instrument on NASA Soil Moisture Active Passive SMAP observatory. Evident are regions of increased soil moisture and flooding during April, 2015.

  3. Combined active and passive microwave remote sensing of vegetated surfaces at l-band

    USDA-ARS?s Scientific Manuscript database

    In previous work the distorted Born approximation (DBA) of volume scattering was combined with the numerical solutions of Maxwell equations (NMM3D) for a rough surface to calculate the radar backscattering coefficient for the Soil Moisture Active Passive (SMAP) mission. The model results were valida...

  4. SMAP RADAR Calibration and Validation

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  5. Development and Validation of The SMAP Enhanced Passive Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Chan, S.; Bindlish, R.; O'Neill, P.; Jackson, T.; Chaubell, J.; Piepmeier, J.; Dunbar, S.; Colliander, A.; Chen, F.; Entekhabi, D.; hide

    2017-01-01

    Since the beginning of its routine science operation in March 2015, the NASA SMAP observatory has been returning interference-mitigated brightness temperature observations at L-band (1.41 GHz) frequency from space. The resulting data enable frequent global mapping of soil moisture with a retrieval uncertainty below 0.040 cu m/cu m at a 36 km spatial scale. This paper describes the development and validation of an enhanced version of the current standard soil moisture product. Compared with the standard product that is posted on a 36 km grid, the new enhanced product is posted on a 9 km grid. Derived from the same time-ordered brightness temperature observations that feed the current standard passive soil moisture product, the enhanced passive soil moisture product leverages on the Backus-Gilbert optimal interpolation technique that more fully utilizes the additional information from the original radiometer observations to achieve global mapping of soil moisture with enhanced clarity. The resulting enhanced soil moisture product was assessed using long-term in situ soil moisture observations from core validation sites located in diverse biomes and was found to exhibit an average retrieval uncertainty below 0.040 cu m/cu m. As of December 2016, the enhanced soil moisture product has been made available to the public from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center.

  6. The Value of SMAP Soil Moisture Observations For Agricultural Applications

    NASA Astrophysics Data System (ADS)

    Mladenova, I. E.; Bolten, J. D.; Crow, W.; Reynolds, C. A.

    2017-12-01

    Knowledge of the amount of soil moisture (SM) in the root zone (RZ) is critical source of information for crop analysts and agricultural agencies as it controls crop development and crop condition changes and can largely impact end-of-season yield. Foreign Agricultural Services (FAS), a subdivision of U.S. Department of Agriculture (USDA) that is in charge with providing information on current and expected global crop supply and demand estimates, has been relying on RZSM estimates generated by the modified two-layer Palmer model, which has been enhanced to allow the assimilation of satellite-based soil moisture data. Generally the accuracy of model-based soil moisture estimates is dependent on the precision of the forcing data that drives the model and more specifically, the accuracy of the precipitation data. Data assimilation gives the opportunity to correct for such precipitation-related inaccuracies and enhance the quality of the model estimates. Here we demonstrate the value of ingesting passive-based soil moisture observations derived from the Soil Moisture Active Passive (SMAP) mission. In terms of agriculture, general understanding is that the change in soil moisture conditions precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop conditions. Therefore, we assess the accuracy of the SMAP enhanced Palmer model by examining the lag rank cross-correlation coefficient between the model generated soil moisture observations and the Normalized Difference Vegetation Index (NDVI).

  7. SMAP Impact Analysis of Early Adopter Research-Two Case studies on the scientific and societal benefits of SMAP data

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.; Wu, H. T.; Moran, S.; O'Neill, P. E.

    2016-12-01

    To document and evaluate the use of SMAP science products in applications, the SMAP Phase E Applications Plan proposes to "conduct case studies to address a basic question: How are SMAP science products used in decision support systems and how does the new data stream affect the system performance?" The objective is to determine the value of SMAP data to the six categories of applications based on Early Adopters' experiences, where value is defined as the scientific and/or societal benefit. Since SMAP is the first mission with a pre-launch Early Adopter Program, the post-launch case study is also unprecedented. In this talk, we will show some results of the SMAP Early Adopters, with focus on the two case studies in the applications of agriculture and weather forecasting, respectively. For agriculture, we will show the work of USDA/NASS (National Agriculture Statistics Service) scientists (Zhengwei Yang and Rick Mueller). Using SMAP soil moisture products, they have been working on the establishment of a visualization, analytics, and dissemination tool to support and improve US national crop condition monitoring. Scientifically, this study will improve our understanding on the impact of crop canopy on the SMAP SM retrieval and on the mapping relation between SMAP SM and NASS soil moisture survey results. Socio-economically, the use of SMAP data and web-based tool will improve the consistency, reliability, objectivity, and efficiency of cropland soil moisture monitoring and assessment, which will benefit the current end users of the NASS weekly report including farmers, insurance companies, and financial institutes. For weather, we will show the work of NOAA scientists (Xiwu Zhan, Weizhong Zheng, and Mike Ek) on the transition of NASA SMAP research products to NOAA operational numerical weather and seasonal climate predictions and research hydrological forecasts. Results of initial analyses and validation of the assimilation of SMAP soil moisture in NOAA's Global

  8. Improved Calibration through SMAP RFI Change Detection

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey; De Amici, Giovanni; Mohammed, Priscilla; Peng, Jinzheng

    2017-01-01

    Anthropogenic Radio-Frequency Interference (RFI) drove both the SMAP (Soil Moisture Active Passive) microwave radiometer hardware and Level 1 science algorithm designs to use new technology and techniques for the first time on a spaceflight project. Care was taken to provide special features allowing the detection and removal of harmful interference in order to meet the error budget. Nonetheless, the project accepted a risk that RFI and its mitigation would exceed the 1.3-K error budget. Thus, RFI will likely remain a challenge afterwards due to its changing and uncertain nature. To address the challenge, we seek to answer the following questions: How does RFI evolve over the SMAP lifetime? What calibration error does the changing RFI environment cause? Can time series information be exploited to reduce these errors and improve calibration for all science products reliant upon SMAP radiometer data? In this talk, we address the first question.

  9. Soil Moisture Active and Passive (SMAP) White-Painted Expanded Polystyrene (EPS) Radome Survivability Test

    NASA Technical Reports Server (NTRS)

    Mikhaylov, Rebecca; Kwack, Eug; Stegman, Matthew; Dawson, Douglas; Hoffman, Pamela

    2015-01-01

    NASA's SMAP Mission launched in January 2015 into a 685 km near-polar, sun-synchronous orbit. The SMAP instrument architecture incorporates an L-band radar and radiometer which share a common feedhorn and mesh reflector. The instrument rotates about the nadir axis at approximately 15 rpm, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within three days. The radiometer and its associated electronics have tight thermal stability requirements in order to meet the required surface emittance measurement precision from space. Maintaining the thermal stabilities is quite challenging because the radiometer is located on a spinning platform that can either be in full sunlight or eclipse, and thus exposed to a highly transient environment. Stability requirements were met by integrating a light-weight Expanded Polystyrene (EPS) radome into the design to prevent solar illumination of the feed horn interior. The radome was painted white since the thermo-optical properties of bare sunlit EPS degrade rapidly over the three-year mission. Milling of the EPS and solvent within the white paint created cavities on the EPS surface which may introduce localized hot spots possibly violating the EPS glass transition temperature of 96degC and leading to structural integrity concerns. A three-day thermal test was conducted in a vacuum chamber to verify survivability of the radome during a simulated non-spin fault condition at end of mission. A portable solar simulator illuminated the test article and the beam irradiance was kept nearly constant during the entire 50 hour test, except during the first hour which simulated the expected 79degC on-orbit surface temperature of the radome. The test article survived based on the established pass criteria for three separate metrics: dimensional, optical property, and color. If any hot spots exist locally, they did not cause any observable permanent deformation when compared to pre- and

  10. Validation and Scaling of Soil Moisture in a Semi-Arid Environment: SMAP Validation Experiment 2015 (SMAPVEX15)

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Cosh, Michael H.; Misra, Sidharth; Jackson, Thomas J.; Crow, Wade T.; Chan, Steven; Bindlish, Rajat; Chae, Chun; Holifield Collins, Chandra; Yueh, Simon H.

    2017-01-01

    The NASA SMAP (Soil Moisture Active Passive) mission conducted the SMAP Validation Experiment 2015 (SMAPVEX15) in order to support the calibration and validation activities of SMAP soil moisture data products. The main goals of the experiment were to address issues regarding the spatial disaggregation methodologies for improvement of soil moisture products and validation of the in situ measurement upscaling techniques. To support these objectives high-resolution soil moisture maps were acquired with the airborne PALS (Passive Active L-band Sensor) instrument over an area in southeast Arizona that includes the Walnut Gulch Experimental Watershed (WGEW), and intensive ground sampling was carried out to augment the permanent in situ instrumentation. The objective of the paper was to establish the correspondence and relationship between the highly heterogeneous spatial distribution of soil moisture on the ground and the coarse resolution radiometer-based soil moisture retrievals of SMAP. The high-resolution mapping conducted with PALS provided the required connection between the in situ measurements and SMAP retrievals. The in situ measurements were used to validate the PALS soil moisture acquired at 1-km resolution. Based on the information from a dense network of rain gauges in the study area, the in situ soil moisture measurements did not capture all the precipitation events accurately. That is, the PALS and SMAP soil moisture estimates responded to precipitation events detected by rain gauges, which were in some cases not detected by the in situ soil moisture sensors. It was also concluded that the spatial distribution of the soil moisture resulted from the relatively small spatial extents of the typical convective storms in this region was not completely captured with the in situ stations. After removing those cases (approximately10 of the observations) the following metrics were obtained: RMSD (root mean square difference) of0.016m3m3 and correlation of 0.83. The

  11. Utilizing Machine Learning to Downscale SMAP L3_SM_P Brightness Temperatures in Iowa for Agricultural Applications

    NASA Astrophysics Data System (ADS)

    Chakrabarti, S.; Judge, J.; Bindlish, R.; Bongiovanni, T.; Jackson, T. J.

    2016-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission provides global observations of brightness temperatures (TB) at 36km. For these observations to be relevant to studies in agricultural regions, the TB values need to be downscaled to finer resolutions. In this study, a machine learning algorithm is introduced for downscaling of TB from 36km to 9km. The algorithm uses image segmentation to cluster the study region based on meteorological and land cover similarity, followed by a support vector machine based regression that computes the value of the disaggregated TB at all pixels. High resolution remote sensing products such as land surface temperature, normalized difference vegetation index, enhanced vegetation index, precipitation, soil texture, and land-cover were used for downscaling. The algorithm was implemented in Iowa, United States, during the growing season from April to July 2015 when the SMAP L3-SM_AP TB product at 9 km was available for comparison. In addition, the downscaled estimates from the algorithm are compared with 9km TB obtained by resampling SMAP L1B_TB product at 36km. It was found that the downscaled TB were very similar to the SMAP-L3_SM _AP TB product, even for vegetated areas with a mean difference ≤ 5K. However, the standard deviation of the downscaled was lower by 7K than that of the AP product. The probability density functions of the downscaled TB were similar to the SMAP- TB. The results indicate that these downscaling algorithms may be used for downscaling TB using complex non-linear correlations on a grid without using active microwave observations.

  12. Assimilation of Sentinel-1 and SMAP observations to improve GEOS-5 soil moisture

    NASA Astrophysics Data System (ADS)

    Lievens, Hans; Reichle, Rolf; Wagner, Wolfgang; De Lannoy, Gabrielle; Liu, Qing; Verhoest, Niko

    2017-04-01

    The SMAP (Soil Moisture Active and Passive) mission carries an L-band radiometer that provides brightness temperature observations at a nominal resolution of 40 km. These radiance observations are routinely assimilated into GEOS-5 (Goddard Earth Observing System version 5) to generate the SMAP Level 4 Soil Moisture product. The use of C-band radar backscatter observations from Sentinel-1 has the potential to add value to the radiance assimilation by increasing the level of spatial detail. The specifications of Sentinel-1 are appealing, particularly its high spatial resolution (5 by 20 m in interferometric wide swath mode) and frequent revisit time (potentially every 3 days for the Sentinel-1A and Sentinel-1B constellation). However, the shorter wavelength of Sentinel-1 observations implies less sensitivity to soil moisture. This study investigates the value of Sentinel-1 data for hydrologic simulations by assimilating the radar observations into GEOS-5, either separately from or simultaneously with SMAP radiometer observations. The assimilation can be performed if either or both Sentinel-1 or SMAP observations are available, and is thus not restricted to synchronised overpasses. To facilitate the assimilation of the radar observations, GEOS-5 is coupled to the water cloud model, simulating the radar backscatter as observed by Sentinel-1. The innovations, i.e. differences between observations and simulations, are converted into increments to the model soil moisture state through an Ensemble Kalman Filter. The model runs are performed at 9-km spatial and 3-hourly temporal resolution, over the period from May 2015 to October 2016. The impact of the assimilation on surface and root-zone soil moisture simulations is assessed using in situ measurements from SMAP core validation sites and sparse networks. The assimilation of Sentinel-1 backscatter is found to consistently improve surface and root-zone soil moisture, relative to the open loop (no assimilation). However

  13. Estimating surface soil moisture from SMAP observations using a neural network technique

    USDA-ARS?s Scientific Manuscript database

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to June 2016 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observ...

  14. NASA Soil Moisture Active Passive Mission Status and Science Highlights

    NASA Technical Reports Server (NTRS)

    Yueh, Simon; Entekhabi, Dara; O'Neill, Peggy; Entin, Jared

    2017-01-01

    The Soil Moisture Active Passive (SMAP) observatory was launched January 31, 2015, and its L-band radiometer and radar instruments became operational during April 2015. This paper provides a summary of the quality assessment of its baseline soil moisture and freeze/thaw products as well as an overview of new products. The first new product explores the Backus Gilbert optimum interpolation based on the oversampling characteristics of the SMAP radiometer. The second one investigates the disaggregation of the SMAP radiometer data using the European Space Agency's Sentinel-1 C-band synthetic aperture radar (SAR) data to obtain soil moisture products at about 1 to 3 km resolution. In addition, SMAPs L-band data have been found useful for many scientific applications, including depictions of water cycles, vegetation opacity, ocean surface salinity and hurricane ocean surface wind mapping. Highlights of these new applications will be provided.The SMAP soil moisture, freeze/taw state and SSSprovide a synergistic view of water cycle. For example, Fig.7 illustrates the transition of freeze/thaw state, change of soilmoisture near the pole and SSS in the Arctic Ocean fromApril to October in 2015 and 2016. In April, most parts ofAlaska, Canada, and Siberia remained frozen. Melt onsetstarted in May. Alaska, Canada, and a big part of Siberia havebecome thawed at the end of May; some freshwater dischargecould be found near the mouth of Mackenzie in 2016, but notin 2015. The soil moisture appeared to be higher in the Oband Yenisei river basins in Siberia in 2015. As a result,freshwater discharge was more widespread in the Kara Seanear the mouths of both rivers in June 2015 than in 2016. TheNorth America and Siberia have become completely thawedin July. After June, the freshwater discharge from other riversinto the Arctic, indicated by blue, also became visible. Thefreeze-up started in September and the high latitude regionsin North America and Eurasia became frozen. Comparing

  15. On the synergy of SMAP, AMSR2 AND SENTINEL-1 for retrieving soil moisture

    NASA Astrophysics Data System (ADS)

    Santi, E.; Paloscia, S.; Pettinato, S.; Brocca, L.; Ciabatta, L.; Entekhabi, D.

    2018-03-01

    An algorithm for retrieving soil moisture content (SMC) from synergic use of both active and passive microwave acquisitions is presented. The algorithm takes advantage of the integration of microwave data from SMAP, Sentinel-1 and AMSR2 for overcoming the SMAP radar failure and obtaining a SMC product at enhanced resolution (0.1° × 0.1°) and improved accuracy with respect to the original SMAP radiometric SMC product. A disaggregation technique based on the Smoothing filter based intensity modulation (SFIM) allows combining the radiometric and SAR data. Disaggregated microwave data are used as inputs of an Artificial Neural Networks (ANN) based algorithm, which is able to exploit the synergy between active and passive acquisitions. The algorithm is defined, trained and tested using the SMEX02 experimental dataset and data simulated by forward electromagnetic models based on the Radiative Transfer Theory. Then the algorithm is adapted to satellite data and tested using one year of SMAP, AMSR2 and Sentinel-1 co-located data on a flat agricultural area located in the Po Valley, in northern Italy. Spatially distributed SMC values at 0.1° × 0.1° resolution generated by the Soil Water Balance Model (SWBM) are considered as reference for this purpose. The synergy of SMAP, Sentinel-1 and AMSR2 allowed increasing the correlation between estimated and reference SMC from R ≅ 0.68 of the SMAP based retrieval up to R ≅ 0.86 of the combination SMAP + Sentinel-1 + AMSR2. The corresponding Root Mean Square Error (RMSE) decreased from RMSE ≅ 0.04 m3/m3 to RMSE ≅ 0.024 m3/m3.

  16. SMAP L-Band Microwave Radiometer: Instrument Design and First Year on Orbit

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Focardi, Paolo; Horgan, Kevin; Knuble, Joseph; Ehsan, Negar; Lucey, Jared; Brambora, Clifford; Brown, Paula R.; Hoffman, Pamela J.; French, Richard T.; hide

    2017-01-01

    The Soil Moisture Active Passive (SMAP) L-band microwave radiometer is a conical scanning instrument designed to measure soil moisture with 4 percent volumetric accuracy at 40-kilometer spatial resolution. SMAP is NASA's first Earth Systematic Mission developed in response to its first Earth science decadal survey. Here, the design is reviewed and the results of its first year on orbit are presented. Unique features of radiometer include a large 6-meter rotating reflector, fully polarimetric radiometer receiver with internal calibration, and radio-frequency interference detection and filtering hardware. The radiometer electronics are thermally controlled to achieve good radiometric stability. Analyses of on-orbit results indicate the electrical and thermal characteristics of the electronics and internal calibration sources are very stable and promote excellent gain stability. Radiometer NEdT (Noise Equivalent differential Temperature) less than 1 degree Kelvin for 17-millisecond samples. The gain spectrum exhibits low noise at frequencies greater than 1 megahertz and 1 divided by f (pink) noise rising at longer time scales fully captured by the internal calibration scheme. Results from sky observations and global swath imagery of all four Stokes antenna temperatures indicate the instrument is operating as expected.

  17. Using Data Assimilation Diagnostics to Assess the SMAP Level-4 Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Liu, Qing; De Lannoy, Gabrielle; Crow, Wade; Kimball, John; Koster, Randy; Ardizzone, Joe

    2018-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with approx.2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of approx. 0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under approx. 3 K), the soil moisture increments (under approx. 0.01 cu m/cu m), and the surface soil temperature increments (under approx. 1 K). Typical instantaneous values are approx. 6 K for O-F residuals, approx. 0.01 (approx. 0.003) cu m/cu m for surface (root-zone) soil moisture increments, and approx. 0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.

  18. Global Assessment of the SMAP Level-4 Soil Moisture Product Using Assimilation Diagnostics

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Liu, Qing; De Lannoy, Gabrielle; Crow, Wade; Kimball, John; Koster, Randy; Ardizzone, Joe

    2018-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with approx. 2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of approx. 0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under approx. 3 K), the soil moisture increments (under approx. 0.01 cu m/cu m), and the surface soil temperature increments (under approx. 1 K). Typical instantaneous values are approx. 6 K for O-F residuals, approx. 0.01 (approx. 0.003) cu m/cu m for surface (root-zone) soil moisture increments, and approx. 0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.

  19. The SMAP Level-4 ECO Project: Linking the Terrestrial Water and Carbon Cycles

    NASA Technical Reports Server (NTRS)

    Kolassa, J.; Reichle, R. H.; Liu, Qing; Koster, Randal D.

    2017-01-01

    The SMAP (Soil Moisture Active Passive) Level-4 projects aims to develop a fully coupled hydrology-vegetation data assimilation algorithm to generate improved estimates of modeled hydrological fields and carbon fluxes. This includes using the new NASA Catchment-CN (Catchment-Carbon-Nitrogen) model, which combines the Catchment land surface hydrology model with dynamic vegetation components from the Community Land Model version 4 (CLM4). As such, Catchment-CN allows a more realistic, fully coupled feedback between the land hydrology and the biosphere. The L4 ECO project further aims to inform the model through the assimilation of Soil Moisture Active Passive (SMAP) brightness temperature observations as well as observations of Moderate Resolution Imaging Spectroradiometer (MODIS) fraction of absorbed photosynthetically active radiation (FPAR). Preliminary results show that the assimilation of SMAP observations leads to consistent improvements in the model soil moisture skill. An evaluation of the Catchment-CN modeled vegetation characteristics showed that a calibration of the model's vegetation parameters is required before an assimilation of MODIS FPAR observations is feasible.

  20. Downscaling SMAP Soil Moisture Using Geoinformation Data and Geostatistics

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Wang, L.

    2017-12-01

    Soil moisture is important for agricultural and hydrological studies. However, ground truth soil moisture data for wide area is difficult to achieve. Microwave remote sensing such as Soil Moisture Active Passive (SMAP) can offer a solution for wide coverage. However, existing global soil moisture products only provide observations at coarse spatial resolutions, which often limit their applications in regional agricultural and hydrological studies. This paper therefore aims to generate fine scale soil moisture information and extend soil moisture spatial availability. A statistical downscaling scheme is presented that incorporates multiple fine scale geoinformation data into the downscaling of coarse scale SMAP data in the absence of ground measurement data. Geoinformation data related to soil moisture patterns including digital elevation model (DEM), land surface temperature (LST), land use and normalized difference vegetation index (NDVI) at a fine scale are used as auxiliary environmental variables for downscaling SMAP data. Generalized additive model (GAM) and regression tree are first conducted to derive statistical relationships between SMAP data and auxiliary geoinformation data at an original coarse scale, and residuals are then downscaled to a finer scale via area-to-point kriging (ATPK) by accounting for the spatial correlation information of the input residuals. The results from standard validation scores as well as the triple collocation (TC) method against soil moisture in-situ measurements show that the downscaling method can significantly improve the spatial details of SMAP soil moisture while maintain the accuracy.

  1. Boreal Inundation Mapping with SMAP Radiometer Data for Methane Studies

    NASA Astrophysics Data System (ADS)

    Kim, Seungbum; Brisco, Brian; Poncos, Valentin

    2017-04-01

    Inundation and consequent anoxic condition induce methane release, which is one of the most potent greenhouse gases. Boreal regions contain large amounts of organic carbon, which is a potentially major methane emission source under climatic warming conditions. Boreal wetlands in particular are one of the largest sources of uncertainties in global methane budget. Wetland spatial extent together with the gas release rate remains highly unknown. Characterization of the existing inundation database is poor, because of the inundation under clouds and dense vegetation. In this work, the inundation extent is derived using brightness temperature data acquired by the L-band Soil Moisture Active Passive (SMAP) satellite, which offers the L-band capabilities to penetrate clouds and vegetation at 3-day revisit. The fidelity of the SMAP watermask is assessed as a first step in this investigation by comparing with the following data sets: 3-m resolution maps derived using Radarsat synthetic aperture radar (SAR) data in northern Canada and multi-sensor climatology over Siberia. Because Radarsat coverages are limited despite its high spatial resolution, at the time and location where Radarsats are not available, we also compare with 3-km resolution SMAP SAR data that are concurrent with the SMAP radiometer data globally until July 2015. Inundation extents were derived with Radarsat, SMAP SAR, and SMAP radiometer over the 60 km x 60km area at Peace Athabasca Delta (PAD), Canada on 6 days in spring and summer 2015. The SMAP SAR results match the locations of Radarsat waterbodies. However, the SMAP SAR underestimates the water extent, mainly over mixed pixels that have subpixel land presence. The threshold value (-3 dB) applied to the SMAP SAR was determined previously over the global domain. The threshold is dependent on the type of local landcover within a mixed pixel. Further analysis is needed to locally optimize the threshold. The SMAP radiometer water fraction over Peace

  2. Analysis of in situ resources of for the Soil Moisture Active Passive Validation Experiments in 2015 and 2016

    USDA-ARS?s Scientific Manuscript database

    With the launch of the Soil Moisture Active Passive Mission (SMAP) in 2015, a new era of soil moisture monitoring was begun. Soil moisture is available on a near daily basis at a 36 km resolution for the globe. But this dataset is only as valuable if its products are accurate and reliableas its acc...

  3. Data Assimilation to Extract Soil Moisture Information From SMAP Observations

    NASA Technical Reports Server (NTRS)

    Kolassa, J.; Reichle, R. H.; Liu, Q.; Alemohammad, S. H.; Gentine, P.

    2017-01-01

    Statistical techniques permit the retrieval of soil moisture estimates in a model climatology while retaining the spatial and temporal signatures of the satellite observations. As a consequence, they can be used to reduce the need for localized bias correction techniques typically implemented in data assimilation (DA) systems that tend to remove some of the independent information provided by satellite observations. Here, we use a statistical neural network (NN) algorithm to retrieve SMAP (Soil Moisture Active Passive) surface soil moisture estimates in the climatology of the NASA Catchment land surface model. Assimilating these estimates without additional bias correction is found to significantly reduce the model error and increase the temporal correlation against SMAP CalVal in situ observations over the contiguous United States. A comparison with assimilation experiments using traditional bias correction techniques shows that the NN approach better retains the independent information provided by the SMAP observations and thus leads to larger model skill improvements during the assimilation. A comparison with the SMAP Level 4 product shows that the NN approach is able to provide comparable skill improvements and thus represents a viable assimilation approach.

  4. SMAP Soil Moisture Disaggregation using Land Surface Temperature and Vegetation Data

    NASA Astrophysics Data System (ADS)

    Fang, B.; Lakshmi, V.

    2016-12-01

    Soil moisture (SM) is a key parameter in agriculture, hydrology and ecology studies. The global SM retrievals have been providing by microwave remote sensing technology since late 1970s and many SM retrieval algorithms have been developed, calibrated and applied on satellite sensors such as AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System), AMSR-2 (Advanced Microwave Scanning Radiometer 2) and SMOS (Soil Moisture and Ocean Salinity). Particularly, SMAP (Soil Moisture Active/Passive) satellite, which was developed by NASA, was launched in January 2015. SMAP provides soil moisture products of 9 km and 36 km spatial resolutions which are not capable for research and applications of finer scale. Toward this issue, this study applied a SM disaggregation algorithm to disaggregate SMAP passive microwave soil moisture 36 km product. This algorithm was developed based on the thermal inertial relationship between daily surface temperature variation and daily average soil moisture which is modulated by vegetation condition, by using remote sensing retrievals from AVHRR (Advanced Very High Resolution Radiometer, MODIS (Moderate Resolution Imaging Spectroradiometer), SPOT (Satellite Pour l'Observation de la Terre), as well as Land Surface Model (LSM) output from NLDAS (North American Land Data Assimilation System). The disaggregation model was built at 1/8o spatial resolution on monthly basis and was implemented to calculate and disaggregate SMAP 36 km SM retrievals to 1 km resolution in Oklahoma. The SM disaggregation results were also validated using MESONET (Mesoscale Network) and MICRONET (Microscale Network) ground SM measurements.

  5. Evaluating new SMAP soil moisture for drought monitoring in the rangelands of the US High Plains

    USGS Publications Warehouse

    Velpuri, Naga Manohar; Senay, Gabriel B.; Morisette, Jeffrey T.

    2016-01-01

    Level 3 soil moisture datasets from the recently launched Soil Moisture Active Passive (SMAP) satellite are evaluated for drought monitoring in rangelands.Validation of SMAP soil moisture (SSM) with in situ and modeled estimates showed high level of agreement.SSM showed the highest correlation with surface soil moisture (0-5 cm) and a strong correlation to depths up to 20 cm.SSM showed a reliable and expected response of capturing seasonal dynamics in relation to precipitation, land surface temperature, and evapotranspiration.Further evaluation using multi-year SMAP datasets is necessary to quantify the full benefits and limitations for drought monitoring in rangelands.

  6. The stereochemical effect of SMAP-29 and SMAP-18 on bacterial selectivity, membrane interaction and anti-inflammatory activity.

    PubMed

    Jacob, Binu; Rajasekaran, Ganesan; Kim, Eun Young; Park, Il-Seon; Bang, Jeong-Kyu; Shin, Song Yub

    2016-05-01

    Sheep myeloid antimicrobial peptide-29 (SMAP-29) is a cathelicidin-related antimicrobial peptide derived from sheep myeloid cells. In order to investigate the effects of L-to-D-amino acid substitution in SMAP-29 on bacterial selectivity, membrane interaction and anti-inflammatory activity, we synthesized its two D-enantiomeric peptides (SMAP-29-E1 and SMAP-29-E2 containing D-Ile and D-allo-Ile, respectively) and two diastereomeric peptides (SMAP-29-D1 and SMAP-29-D2). Additionally, in order to address the effect of L-to-D-amino acid substitution in the N-terminal helical peptide of SMAP-29 (named SMAP-18) on antimicrobial activity, we synthesized its two D-enantiomeric peptides (SMAP-18-E1 and SMAP-18-E2), which are composed of D-amino acids entirely. L-to-D-amino acid substitution in membrane-targeting AMP, SMAP-29 did not affect its antimicrobial activity. However, D-allo-Ile containing-SMAP-29-E2 and SMAP-29-D2 exhibited less hemolytic activity compared to D-Ile containing-SMAP-29-E1 and SMAP-29-D1, respectively. L-to-D-amino acid substitution in intracellular targeting-AMPs, SMAP-18 and buforin-2 improved antimicrobial activity by 2- to eightfold. The improved antimicrobial activity of the D-isomers of SMAP-18 and buforin-2 seems to be due to the stability against proteases inside bacterial cells. Membrane depolarization and dye leakage suggested that the membrane-disruptive mode of SMAP-29-D1 and SMAP-29-D2 is different from that of SMAP-29, SMAP-29-E1, and SMAP-29-E2. L-to-D-amino acid substitution in SMAP-29 improved anti-inflammatory activity in LPS-stimulated RAW 264.7 cells. In summary, we propose here that D-allo-Ile substitution is a more powerful strategy for increasing bacterial selectivity than D-Ile substitution in the design of D-enantiomeric and diastereomeric AMPs. SMAP-29-D1, and SMAP-29-D2 with improved bacterial selectivity and anti-inflammatory activity can serve as promising candidates for the development of anti-inflammatory and

  7. Using NASA's GRACE and SMAP satellites to measure human impacts on the water cycle

    NASA Astrophysics Data System (ADS)

    Reager, J. T., II; Castle, S.; Turmon, M.; Famiglietti, J. S.; Fournier, S.

    2017-12-01

    Two satellite missions, the Gravity Recovery and Climate Experiment (GRACE) mission and the Soil Moisture Active Passive (SMAP) mission are enabling the measurement of the dynamic state of the water cycle globally, offering a unique opportunity for the study of human impacts on terrestrial hydrology and an opportunity to quantify the direct augmentation of natural cycles by human activities. While many model-data fusion studies aim to apply observations to improve model performance, we present recent studies on measuring the multi-scale impacts of human activities by differencing or contrasting model simulations and observations. Results that will be presented include studies on: the measurement of human impacts on evapotranspiration in the Colorado River Basin; the estimation of the human portion of groundwater depletion in the Southwestern U.S.; and the influence of irrigation on runoff generation in the Mississippi River basin. Each of these cases has a unique implications for the sustainable use of natural resources by humans, and indicate the relevant extent and magnitude of human influence on natural processes, suggesting their importance for inclusion in hydrology and land-surface models.

  8. End-of-Mission Passivation: Successes and Challenges

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas; Matney, Mark

    2012-01-01

    The passivation of spacecraft and launch vehicle orbital stages at end-of-mission has been a principal space debris mitigation measure world-wide since the 1980 s. Space vehicle passivation includes the removal of stored energies, especially those associated with propulsion and electrical power systems. Prior to 2007 the breakup of non-functioning, non-passivated space vehicles was the major source of hazardous debris in Earth orbit. The United Nations and the Inter-Agency Space Debris Coordination Committee have both included passivation in their formal space debris mitigation guidelines. This often simple countermeasure has been adopted by many spacefaring countries and organizations and has undoubtedly prevented numerous major satellite breakups. For some existing space vehicle designs, passivation requires changes in hardware, software, and/or operational procedures. Questions about the permissible degree of passivation for both current and future space vehicles have arisen and are addressed herein. An important element to be considered is the potentially long period in which the space vehicle will remain in orbit, i.e., up to 25 years after mission termination in LEO and for centuries in orbits above LEO. Finally, the issue of passivation of space vehicles which have failed prematurely is addressed.

  9. Validation of SMAP Root Zone Soil Moisture Estimates with Improved Cosmic-Ray Neutron Probe Observations

    NASA Astrophysics Data System (ADS)

    Babaeian, E.; Tuller, M.; Sadeghi, M.; Franz, T.; Jones, S. B.

    2017-12-01

    Soil Moisture Active Passive (SMAP) soil moisture products are commonly validated based on point-scale reference measurements, despite the exorbitant spatial scale disparity. The difference between the measurement depth of point-scale sensors and the penetration depth of SMAP further complicates evaluation efforts. Cosmic-ray neutron probes (CRNP) with an approximately 500-m radius footprint provide an appealing alternative for SMAP validation. This study is focused on the validation of SMAP level-4 root zone soil moisture products with 9-km spatial resolution based on CRNP observations at twenty U.S. reference sites with climatic conditions ranging from semiarid to humid. The CRNP measurements are often biased by additional hydrogen sources such as surface water, atmospheric vapor, or mineral lattice water, which sometimes yield unrealistic moisture values in excess of the soil water storage capacity. These effects were removed during CRNP data analysis. Comparison of SMAP data with corrected CRNP observations revealed a very high correlation for most of the investigated sites, which opens new avenues for validation of current and future satellite soil moisture products.

  10. Data Assimilation of SMAP Observations and the Impact on Weather Forecasts and Heat Stress

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Case, Jonathan; Blankenship, Clay; Crosson, William; White, Khristopher

    2014-01-01

    SPoRT produces real-time LIS soil moisture products for situational awareness and local numerical weather prediction over CONUS, Mesoamerica, and East Africa ?Currently interact/collaborate with operational partners on evaluation of soil moisture products ?Drought/fire ?Extreme heat ?Convective initiation ?Flood and water borne diseases ?Initial efforts to assimilate L2 soil moisture observations from SMOS (as a precursor for SMAP) have been successful ?Active/passive blended product from SMAP will be assimilated similarly and higher spatial resolution should improve on local-scale processes

  11. Evaluation of the validated soil moisture product from the SMAP radiometer

    USDA-ARS?s Scientific Manuscript database

    In this study, we used a multilinear regression approach to retrieve surface soil moisture from NASA’s Soil Moisture Active Passive (SMAP) satellite data to create a global dataset of surface soil moisture which is consistent with ESA’s Soil Moisture and Ocean Salinity (SMOS) satellite retrieved sur...

  12. Mapping global surface water inundation dynamics using synergistic information from SMAP, AMSR2 and Landsat

    NASA Astrophysics Data System (ADS)

    Du, J.; Kimball, J. S.; Galantowicz, J. F.; Kim, S.; Chan, S.; Reichle, R. H.; Jones, L. A.; Watts, J. D.

    2017-12-01

    A method to monitor global land surface water (fw) inundation dynamics was developed by exploiting the enhanced fw sensitivity of L-band (1.4 GHz) passive microwave observations from the Soil Moisture Active Passive (SMAP) mission. The L-band fw (fwLBand) retrievals were derived using SMAP H-polarization brightness temperature (Tb) observations and predefined L-band reference microwave emissivities for water and land endmembers. Potential soil moisture and vegetation contributions to the microwave signal were represented from overlapping higher frequency Tb observations from AMSR2. The resulting fwLBand global record has high temporal sampling (1-3 days) and 36-km spatial resolution. The fwLBand annual averages corresponded favourably (R=0.84, p<0.001) with a 250-m resolution static global water map (MOD44W) aggregated at the same spatial scale, while capturing significant inundation variations worldwide. The monthly fwLBand averages also showed seasonal inundation changes consistent with river discharge records within six major US river basins. An uncertainty analysis indicated generally reliable fwLBand performance for major land cover areas and under low to moderate vegetation cover, but with lower accuracy for detecting water bodies covered by dense vegetation. Finer resolution (30-m) fwLBand results were obtained for three sub-regions in North America using an empirical downscaling approach and ancillary global Water Occurrence Dataset (WOD) derived from the historical Landsat record. The resulting 30-m fwLBand retrievals showed favourable classification accuracy for water (commission error 31.84%; omission error 28.08%) and land (commission error 0.82%; omission error 0.99%) and seasonal wet and dry periods when compared to independent water maps derived from Landsat-8 imagery. The new fwLBand algorithms and continuing SMAP and AMSR2 operations provide for near real-time, multi-scale monitoring of global surface water inundation dynamics, potentially

  13. Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model

    NASA Astrophysics Data System (ADS)

    Shellito, Peter J.; Small, Eric E.; Livneh, Ben

    2018-03-01

    Drydown periods that follow precipitation events provide an opportunity to assess controls on soil evaporation on a continental scale. We use SMAP (Soil Moisture Active Passive) observations and Noah simulations from drydown periods to quantify the role of soil moisture, potential evaporation, vegetation cover, and soil texture on soil drying rates. Rates are determined using finite differences over intervals of 1 to 3 days. In the Noah model, the drying rates are a good approximation of direct soil evaporation rates, and our work suggests that SMAP-observed drying is also predominantly affected by direct soil evaporation. Data cover the domain of the North American Land Data Assimilation System Phase 2 and span the first 1.8 years of SMAP's operation. Drying of surface soil moisture observed by SMAP is faster than that simulated by Noah. SMAP drying is fastest when surface soil moisture levels are high, potential evaporation is high, and when vegetation cover is low. Soil texture plays a minor role in SMAP drying rates. Noah simulations show similar responses to soil moisture and potential evaporation, but vegetation has a minimal effect and soil texture has a much larger effect compared to SMAP. When drying rates are normalized by potential evaporation, SMAP observations and Noah simulations both show that increases in vegetation cover lead to decreases in evaporative efficiency from the surface soil. However, the magnitude of this effect simulated by Noah is much weaker than that determined from SMAP observations.

  14. Assessment of SMAP soil moisture for global simulation of gross primary production

    NASA Astrophysics Data System (ADS)

    He, Liming; Chen, Jing M.; Liu, Jane; Bélair, Stéphane; Luo, Xiangzhong

    2017-07-01

    In this study, high-quality soil moisture data derived from the Soil Moisture Active Passive (SMAP) satellite measurements are evaluated from a perspective of improving the estimation of the global gross primary production (GPP) using a process-based ecosystem model, namely, the Boreal Ecosystem Productivity Simulator (BEPS). The SMAP soil moisture data are assimilated into BEPS using an ensemble Kalman filter. The correlation coefficient (r) between simulated GPP from the sunlit leaves and Sun-induced chlorophyll fluorescence (SIF) measured by Global Ozone Monitoring Experiment-2 is used as an indicator to evaluate the performance of the GPP simulation. Areas with SMAP data in low quality (i.e., forests), or with SIF in low magnitude (e.g., deserts), or both are excluded from the analysis. With the assimilated SMAP data, the r value is enhanced for Africa, Asia, and North America by 0.016, 0.013, and 0.013, respectively (p < 0.05). Significant improvement in r appears in single-cropping agricultural land where the irrigation is not considered in the model but well captured by SMAP (e.g., 0.09 in North America, p < 0.05). With the assimilation of SMAP, areas with weak model performances are identified in double or triple cropping cropland (e.g., part of North China Plain) and/or mountainous area (e.g., Spain and Turkey). The correlation coefficient is enhanced by 0.01 in global average for shrub, grass, and cropland. This enhancement is small and insignificant because nonwater-stressed areas are included.

  15. Enhancing SMAP Soil Moisture Retrievals via Superresolution Techniques

    NASA Astrophysics Data System (ADS)

    Beale, K. D.; Ebtehaj, A. M.; Romberg, J. K.; Bras, R. L.

    2017-12-01

    Soil moisture is a key state variable that modulates land-atmosphere interactions and its high-resolution global scale estimates are essential for improved weather forecasting, drought prediction, crop management, and the safety of troop mobility. Currently, NASA's Soil Moisture Active/Passive (SMAP) satellite provides a global picture of soil moisture variability at a resolution of 36 km, which is prohibitive for some hydrologic applications. The goal of this research is to enhance the resolution of SMAP passive microwave retrievals by a factor of 2 to 4 using modern superresolution techniques that rely on the knowledge of high-resolution land surface models. In this work, we explore several super-resolution techniques including an empirical dictionary method, a learned dictionary method, and a three-layer convolutional neural network. Using a year of global high-resolution land surface model simulations as training set, we found that we are able to produce high-resolution soil moisture maps that outperform the original low-resolution observations both qualitatively and quantitatively. In particular, on a patch-by-patch basis we are able to produce estimates of high-resolution soil moisture maps that improve on the original low-resolution patches by on average 6% in terms of mean-squared error, and 14% in terms of the structural similarity index.

  16. The Relationship of Temporal Variations in SMAP Vegetation Optical Depth to Plant Hydraulic Behavior

    NASA Astrophysics Data System (ADS)

    Konings, A. G.

    2016-12-01

    The soil emissions measured by L-band radiometers such as that on the NASA Soil Moisture Active/Passive mission are modulated by vegetation cover as quantified by the soil scattering albedo and the vegetation optical depth (VOD). The VOD is linearly proportional to the total vegetation water content, which is dependent on both the biomass and relative water content of the plant. Biomass is expected to vary more slowly than water content. Variations in vegetation water content are highly informative as they are directly indicative of the degree of hydraulic stress (or lack thereof) experienced by the plant. However, robust retrievals are needed in order for SMAP VOD observations to be useful. This is complicated by the fact that multiple unknowns (soil moisture, VOD, and albedo) need to be determined from two highly correlated polarizations. This presentation will discuss the application to SMAP of a recently developed timeseries algorithm for VOD and albedo retrieval - the Multi-Temporal Dual Channel Algorithm MTDCA, and its interpretation for plant hydraulic applications. The MT-DCA is based on the assumption that, for consecutive overpasses at a given time of day, VOD varies more slowly than soil moisture. A two-overpass moving average can then be used to determine variations in VOD that are less sensitive to high-frequency noise than classical dual-channel algorithms. Seasonal variations of SMAP VOD are presented and compared to expected patterns based on rainfall and radiation seasonality. Taking advantage of the large diurnal variation (relative to the seasonal variation) of canopy water potention, diurnal variations (between 6AM and 6PM observations) of SMAP VOD are then used to calculate global variations in ecosystem-scale isohydricity - the degree of stomatal closure and xylem conductivity loss in response to water stress. Lastly, the effect of satellite sensing frequency and overpass time on water content across canopies of different height will be

  17. An Arduino Based Citizen Science Soil Moisture Sensor in Support of SMAP and GLOBE

    NASA Astrophysics Data System (ADS)

    Podest, E.; Das, N. N.; Rajasekaran, E.; Jeyaram, R.; Lohrli, C.; Hovhannesian, H.; Fairbanks, G.

    2017-12-01

    Citizen science allows individuals anywhere in the world to engage in science by collecting environmental variables. One of the longest running platforms for the collection of in situ variables is the GLOBE program, which is international in scope and encourages students and citizen scientists alike to collect in situ measurements. NASA's Soil Moisture Active Passive (SMAP) satellite mission, which has been acquiring global soil moisture measurements every 3 days of the top 5 cm of the soil since 2015, has partnered with the GLOBE program to engage students from around the world to collect in situ soil moisture and help validate SMAP measurements. The current GLOBE SMAP soil moisture protocol consists in collecting a soil sample, weighing, drying and weighing it again in order to determine the amount of water in the soil. Preparation and soil sample collection can take up to 20 minutes and drying can take up to 3 days. We have hence developed a soil moisture measurement device based on Arduino- microcontrollers along with off-the-shelf and homemade sensors that are accurate, robust, inexpensive and quick and easy to use so that they can be implemented by the GLOBE community and citizen scientists alike. In addition, we have developed a phone app, which interfaces with the Arduino, displays the soil moisture value and send the measurement to the GLOBE database. This talk will discuss building, calibration and validation of the soil moisture measuring device and assessing the quality of the measurements collected. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  18. Feasibility of inter-comparing airborne and spaceborne obsevations of radar backscattering coefficients

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) mission will provide global soil moisture products that will facilitate new science and application areas. The SMAP mission, scheduled for launch in November 2014, will offer synthetic aperture radar (SAR) measurements of backscattering coefficients for the re...

  19. Evaluating soil moisture retrievals from ESA's SMOS and NASA's SMAP brightness temperature datasets

    USDA-ARS?s Scientific Manuscript database

    Two satellites are currently monitoring surface soil moisture (SM) from L-band observations: SMOS (Soil Moisture and Ocean Salinity), a European Space Agency (ESA) satellite that was launched on November 2, 2009 and SMAP (Soil Moisture Active Passive), a National Aeronautics and Space Administration...

  20. Hurricane Harvey's Rapid Wind Intensification seen by NASA's SMAP

    NASA Image and Video Library

    2017-08-28

    The rapid intensification of Hurricane Harvey is seen in this pair of images of ocean surface wind speeds as observed by the radiometer instrument aboard NASA's Soil Moisture Active Passive (SMAP) satellite at 7:29 a.m. CDT Aug. 24th, 2017 (left) and at 7 p.m. CDT Aug. 26th (right). Color indicates wind speed, with red being highest and blue lowest. The images show Harvey's maximum wind speeds increased from approximately 56 miles per hour (25 meters per second) to about 107 miles per hour (47.8 meters per second) in the 36 hours just before landfall. The higher wind speeds estimated near the mouth of the Mississippi River are erroneous and are due to errors in the ancillary sea-surface-salinity data product used by SMAP to estimate extreme wind speeds. https://photojournal.jpl.nasa.gov/catalog/PIA21884

  1. Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates

    NASA Astrophysics Data System (ADS)

    Lievens, H.; Reichle, R. H.; Liu, Q.; De Lannoy, G.; Dunbar, R. S.; Kim, S.; Das, N. N.; Cosh, M. H.; Walker, J. P.; Wagner, W.

    2017-12-01

    SMAP (Soil Moisture Active and Passive) radiometer observations at 40 km resolution are routinely assimilated into the NASA Catchment Land Surface Model (CLSM) to generate the SMAP Level 4 Soil Moisture product. The use of C-band radar backscatter observations from Sentinel-1 has the potential to add value to the radiance assimilation by increasing the level of spatial detail. The specifications of Sentinel-1 are appealing, particularly its high spatial resolution (5 by 20 m in interferometric wide swath mode) and frequent revisit time (6 day repeat cycle for the Sentinel-1A and Sentinel-1B constellation). However, the shorter wavelength of Sentinel-1 observations implies less sensitivity to soil moisture. This study investigates the value of Sentinel-1 data for hydrologic simulations by assimilating the radar observations into CLSM, either separately from or simultaneously with SMAP radiometer observations. To facilitate the assimilation of the radar observations, CLSM is coupled to the water cloud model, simulating the radar backscatter as observed by Sentinel-1. The innovations, i.e. differences between observations and simulations, are converted into increments to the model soil moisture state through an Ensemble Kalman Filter. The assimilation impact is assessed by comparing 3-hourly, 9 km surface and root-zone soil moisture simulations with in situ measurements from 9 km SMAP core validation sites and sparse networks, from May 2015 to 2017. The Sentinel-1 assimilation consistently improves surface soil moisture, whereas root-zone impacts are mostly neutral. Relatively larger improvements are obtained from SMAP assimilation. The joint assimilation of SMAP and Sentinel-1 observations performs best, demonstrating the complementary value of radar and radiometer observations.

  2. SMAP Salinity Artifacts Associated With Presence of Rain

    NASA Astrophysics Data System (ADS)

    Jacob, M. M.; Santos-Garcia, A.; Jones, L.

    2016-02-01

    The Soil Moisture Active Passive (SMAP) satellite carries an L-band radiometer, which measures sea surface salinity (SSS) over a swath of 1000 km @ 40 km resolution. SMAP can extend the Aquarius (AQ) salinity data record with improved temporal/spatial sampling. Previous studies [see references] have demonstrated significant differences between satellite and in-situ salinity measurements during rain. In the presence of precipitation, salinity stratification exists near the sea surface, which nullifies the presumption of a well-mixed salinity. In general, these salinity gradients last only a few hours and the upper layer becomes slightly fresher in salinity. This paper describes the Rain Impact Model (RIM) that simulates the effects of rain accumulation on the SSS [Santos-Garcia et al., 2014] applied to SMAP. This model incorporates rainfall information for the previous 24 hours to the measurement sample (in this case SMAP) and uses as initialization the Hybrid Coordinate Ocean Model (HYCOM) data. Given the better resolution of SMAP, the goal of this paper is to continue the analysis previously done with AQ to better understand the effects of the instantaneous and accumulated rain on the salinity measurements. Boutin, J., N. Martin, G. Reverdin, X. Yin, and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9(1), 183-192, doi:10.5194/os-9-183-2013. Santos-Garcia, A., M. Jacob, L. Jones, W. Asher, Y. Hejazin, H. Ebrahimi, and M. Rabolli (2014), Investigation of rain effects on Aquarius Sea Surface Salinity measurements, J. Geophys. Res. Oceans, 119, 7605-7624, doi:10.1002/2014JC010137. Tang, W., S.H Yueh, A. Hayashi, A.G. Fore, W.L. Jones, A. Santos-Garcia, and M.M. Jacob, (2015), Rain-Induced Near Surface Salinity Stratification and Rain Roughness Correction for Aquarius SSS Retrieval, in Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 8(99), 1-11, doi: 10.1109/JSTARS.2015.2463768.

  3. Using SMAP to identify structural errors in hydrologic models

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Reichle, R. H.; Chen, F.; Xia, Y.; Liu, Q.

    2017-12-01

    Despite decades of effort, and the development of progressively more complex models, there continues to be underlying uncertainty regarding the representation of basic water and energy balance processes in land surface models. Soil moisture occupies a central conceptual position between atmosphere forcing of the land surface and resulting surface water fluxes. As such, direct observations of soil moisture are potentially of great value for identifying and correcting fundamental structural problems affecting these models. However, to date, this potential has not yet been realized using satellite-based retrieval products. Using soil moisture data sets produced by the NASA Soil Moisture Active/Passive mission, this presentation will explore the use of the remotely-sensed soil moisture data products as a constraint to reject certain types of surface runoff parameterizations within a land surface model. Results will demonstrate that the precision of the SMAP Level 4 Surface and Root-Zone soil moisture product allows for the robust sampling of correlation statistics describing the true strength of the relationship between pre-storm soil moisture and subsequent storm-scale runoff efficiency (i.e., total storm flow divided by total rainfall both in units of depth). For a set of 16 basins located in the South-Central United States, we will use these sampled correlations to demonstrate that so-called "infiltration-excess" runoff parameterizations under predict the importance of pre-storm soil moisture for determining storm-scale runoff efficiency. To conclude, we will discuss prospects for leveraging this insight to improve short-term hydrologic forecasting and additional avenues for SMAP soil moisture products to provide process-level insight for hydrologic modelers.

  4. Estimating surface soil moisture from SMAP observations using a Neural Network technique.

    PubMed

    Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P

    2018-01-01

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.

  5. Radio-Frequency Interference (RFI) Mitigation for the Soil, Moisture Active/Passive (SMAP) Radiometer

    NASA Technical Reports Server (NTRS)

    Bradley, Damon; Brambora, Cliff; Wong, Mark Englin; Miles, Lynn; Durachka, David; Farmer, Brian; Mohammed, Priscilla; Piepmier, Jeff; Medeiros, Jim; Martin Neil; hide

    2010-01-01

    The presence of anthropogenic RFI is expected to adversely impact soil moisture measurement by NASA s Soil Moisture Active Passive mission. The digital signal processing approach and preliminary design for detecting and mitigating this RFI is presented in this paper. This approach is largely based upon the work of Johnson and Ruf.

  6. Model-based verification and validation of the SMAP uplink processes

    NASA Astrophysics Data System (ADS)

    Khan, M. O.; Dubos, G. F.; Tirona, J.; Standley, S.

    Model-Based Systems Engineering (MBSE) is being used increasingly within the spacecraft design community because of its benefits when compared to document-based approaches. As the complexity of projects expands dramatically with continually increasing computational power and technology infusion, the time and effort needed for verification and validation (V& V) increases geometrically. Using simulation to perform design validation with system-level models earlier in the life cycle stands to bridge the gap between design of the system (based on system-level requirements) and verifying those requirements/validating the system as a whole. This case study stands as an example of how a project can validate a system-level design earlier in the project life cycle than traditional V& V processes by using simulation on a system model. Specifically, this paper describes how simulation was added to a system model of the Soil Moisture Active-Passive (SMAP) mission's uplink process. Also discussed are the advantages and disadvantages of the methods employed and the lessons learned; which are intended to benefit future model-based and simulation-based development efforts.

  7. Evaluating Soil Moisture Retrievals from ESA's SMOS and NASA's SMAP Brightness Temperature Datasets

    NASA Technical Reports Server (NTRS)

    Al-Yaari, A.; Wigernon, J.-P.; Kerr, Y.; Rodriguez-Fernandez, N.; O'Neill, P. E.; Jackson, T. J.; De Lannoy, G. J. M.; Al Bitar, A.; Mialon, A.; Richaume, P.; hide

    2017-01-01

    Two satellites are currently monitoring surface soil moisture (SM) using L-band observations: SMOS (Soil Moisture and Ocean Salinity), a joint ESA (European Space Agency), CNES (Centre national d'tudes spatiales), and CDTI (the Spanish government agency with responsibility for space) satellite launched on November 2, 2009 and SMAP (Soil Moisture Active Passive), a National Aeronautics and Space Administration (NASA) satellite successfully launched in January 2015. In this study, we used a multilinear regression approach to retrieve SM from SMAP data to create a global dataset of SM, which is consistent with SM data retrieved from SMOS. This was achieved by calibrating coefficients of the regression model using the CATDS (Centre Aval de Traitement des Donnes) SMOS Level 3 SM and the horizontally and vertically polarized brightness temperatures (TB) at 40 deg incidence angle, over the 2013 - 2014 period. Next, this model was applied to SMAP L3 TB data from Apr 2015 to Jul 2016. The retrieved SM from SMAP (referred to here as SMAP_Reg) was compared to: (i) the operational SMAP L3 SM (SMAP_SCA), retrieved using the baseline Single Channel retrieval Algorithm (SCA); and (ii) the operational SMOSL3 SM, derived from the multiangular inversion of the L-MEB model (L-MEB algorithm) (SMOSL3). This inter-comparison was made against in situ soil moisture measurements from more than 400 sites spread over the globe, which are used here as a reference soil moisture dataset. The in situ observations were obtained from the International Soil Moisture Network (ISMN; https:ismn.geo.tuwien.ac.at) in North of America (PBO_H2O, SCAN, SNOTEL, iRON, and USCRN), in Australia (Oznet), Africa (DAHRA), and in Europe (REMEDHUS, SMOSMANIA, FMI, and RSMN). The agreement was analyzed in terms of four classical statistical criteria: Root Mean Squared Error (RMSE),Bias, Unbiased RMSE (UnbRMSE), and correlation coefficient (R). Results of the comparison of these various products with in situ

  8. Evaluating soil moisture retrievals from ESA's SMOS and NASA's SMAP brightness temperature datasets.

    PubMed

    Al-Yaari, A; Wigneron, J-P; Kerr, Y; Rodriguez-Fernandez, N; O'Neill, P E; Jackson, T J; De Lannoy, G J M; Al Bitar, A; Mialon, A; Richaume, P; Walker, J P; Mahmoodi, A; Yueh, S

    2017-05-01

    Two satellites are currently monitoring surface soil moisture (SM) using L-band observations: SMOS (Soil Moisture and Ocean Salinity), a joint ESA (European Space Agency), CNES (Centre national d'études spatiales), and CDTI (the Spanish government agency with responsibility for space) satellite launched on November 2, 2009 and SMAP (Soil Moisture Active Passive), a National Aeronautics and Space Administration (NASA) satellite successfully launched in January 2015. In this study, we used a multilinear regression approach to retrieve SM from SMAP data to create a global dataset of SM, which is consistent with SM data retrieved from SMOS. This was achieved by calibrating coefficients of the regression model using the CATDS (Centre Aval de Traitement des Données) SMOS Level 3 SM and the horizontally and vertically polarized brightness temperatures (TB) at 40° incidence angle, over the 2013 - 2014 period. Next, this model was applied to SMAP L3 TB data from Apr 2015 to Jul 2016. The retrieved SM from SMAP (referred to here as SMAP_Reg) was compared to: (i) the operational SMAP L3 SM (SMAP_SCA), retrieved using the baseline Single Channel retrieval Algorithm (SCA); and (ii) the operational SMOSL3 SM, derived from the multiangular inversion of the L-MEB model (L-MEB algorithm) (SMOSL3). This inter-comparison was made against in situ soil moisture measurements from more than 400 sites spread over the globe, which are used here as a reference soil moisture dataset. The in situ observations were obtained from the International Soil Moisture Network (ISMN; https://ismn.geo.tuwien.ac.at/) in North of America (PBO_H2O, SCAN, SNOTEL, iRON, and USCRN), in Australia (Oznet), Africa (DAHRA), and in Europe (REMEDHUS, SMOSMANIA, FMI, and RSMN). The agreement was analyzed in terms of four classical statistical criteria: Root Mean Squared Error (RMSE), Bias, Unbiased RMSE (UnbRMSE), and correlation coefficient (R). Results of the comparison of these various products with in situ

  9. KSC-2015-1217

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – Wendy Edelstein, instrument manager for NASA's Soil Moisture Active Passive mission, or SMAP, discusses the science and engineering of the mission with the audience of a NASA Social held at Vandenberg Air Force Base in California. This NASA Social brought together mission scientists and engineers with an audience of 70 students, educators, social media managers, bloggers, photographers and videographers who were selected from a pool of 325 applicants from 45 countries to participate in launch activities and communicate their experience with social media followers. The SMAP mission is scheduled to launch from Vandenberg on Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  10. KSC-2015-1205

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – Jared Entin, program scientist for NASA's Soil Moisture Active Passive mission, or SMAP, discusses the science and engineering of the mission with the audience of a NASA Social held at Vandenberg Air Force Base in California. This NASA Social brought together mission scientists and engineers with an audience of 70 students, educators, social media managers, bloggers, photographers and videographers who were selected from a pool of 325 applicants from 45 countries to participate in launch activities and communicate their experience with social media followers. The SMAP mission is scheduled to launch from Vandenberg on Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  11. KSC-2015-1204

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – Jared Entin, program scientist for NASA's Soil Moisture Active Passive mission, or SMAP, discusses the science and engineering of the mission with the audience of a NASA Social held at Vandenberg Air Force Base in California. This NASA Social brought together mission scientists and engineers with an audience of 70 students, educators, social media managers, bloggers, photographers and videographers who were selected from a pool of 325 applicants from 45 countries to participate in launch activities and communicate their experience with social media followers. The SMAP mission is scheduled to launch from Vandenberg on Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  12. KSC-2015-1263

    NASA Image and Video Library

    2015-01-31

    VANDENBERG AIR FORCE BASE, Calif. – Geoff Yoder, deputy associate administrator of the Science Mission Directorate at NASA Headquarters in Washington D.C., participates in a news conference at Vandenberg Air Force Base in California, following NASA's successful launch of the Soil Moisture Active Passive satellite, or SMAP, on its mission to study the Earth's soil moisture. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  13. Soil Moisture Active Passive Mission L4_C Data Product Assessment (Version 2 Validated Release)

    NASA Technical Reports Server (NTRS)

    Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima; Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas

    2016-01-01

    The SMAP satellite was successfully launched January 31st 2015, and began acquiring Earth observation data following in-orbit sensor calibration. Global data products derived from the SMAP L-band microwave measurements include Level 1 calibrated and geolocated radiometric brightness temperatures, Level 23 surface soil moisture and freezethaw geophysical retrievals mapped to a fixed Earth grid, and model enhanced Level 4 data products for surface to root zone soil moisture and terrestrial carbon (CO2) fluxes. The post-launch SMAP mission CalVal Phase had two primary objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product pertaining to the validated release. The L4_C validated product release effectively replaces an earlier L4_C beta-product release (Kimball et al. 2015). The validated release described in this report incorporates a longer data record and benefits from algorithm and CalVal refinements acquired during the SMAP post-launch CalVal intensive period. The SMAP L4_C algorithms utilize a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily net ecosystem CO2 exchange (NEE) and component carbon fluxes for vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape freeze/thaw (FT) controls on GPP and respiration (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and

  14. Surface Flooding from Hurricane Harvey Shown in New SMAP Imagery

    NASA Image and Video Library

    2017-08-30

    A new series of images generated with data from NASA's Soil Moisture Active Passive (SMAP) satellite illustrate the surface flooding caused by Hurricane Harvey from before its initial landfall through August 27, 2017. The SMAP observations detect the proportion of the ground covered by surface water within the satellite's field of view. The sequence of images depicts successive satellite orbital swath observations showing the surface water conditions on August 22, before Harvey's landfall (left), and then on Aug. 27, two days after landfall (middle). The resulting increase in surface flooding from record rainfall over the three-day period, shown at right, depicts regionally heavy flooding around the Houston metropolitan area. The hardest hit areas (blue and purple shades) cover more than 23,000 square miles (about 59,600 square kilometers) and indicate a more than 1,000-fold increase in surface water cover from rainfall-driven flooding. SMAP's low-frequency (L-band) microwave radiometer features enhanced capabilities for detecting surface water changes in nearly all weather conditions and under low-to-moderate vegetation cover. The satellite provides global coverage with one to three-day repeat sampling, which is well suited for monitoring dynamic inland waters around the world. https://photojournal.jpl.nasa.gov/catalog/PIA21930

  15. Validation of SMAP Radar Vegetation Data Cubes from Agricultural Field Measurements

    NASA Astrophysics Data System (ADS)

    Tsang, L.; Xu, X.; Liao, T.; Kim, S.; Njoku, E. G.

    2012-12-01

    The NASA Soil Moisture Active/Passive (SMAP) Mission will be launched in October 2014. The objective of the SMAP mission is to provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. In the active algorithm, the retrieval is performed based on the backscattering data cube, which are characterized by two surface parameters, which are soil moisture and soil surface rms height, and one vegetation parameter, the vegetation water content. We have developed a physical-based forward scattering model to generate the data cube for agricultural fields. To represent the agricultural crops, we include a layer of cylinders and disks on top of the rough surface. The scattering cross section of the vegetation layer and its interaction with the underground soil surface were calculated by the distorted Born approximation, which give explicitly three scattering mechanisms. A) The direct volume scattering B) The double bounce effect as, and C) The double bouncing effects. The direct volume scattering is calculated by using the Body of Revolution code. The double bounce effects, exhibited by the interaction of rough surface with the vegetation layer is considered by modifying the rough surface reflectivity using the coherent wave as computed by Numerical solution of Maxwell equations of 3 Dimensional simulations (NMM3D) of bare soil scattering. The rough surface scattering of the soil was calculated by NMM3D. We have compared the physical scattering models with field measurements. In the field campaign, the measurements were made on soil moisture, rough surface rms heights and vegetation water content as well as geometric parameters of vegetation. The three main crops lands are grassland, cornfield and soybean fields. The corresponding data cubes are validated using SGP99, SMEX02

  16. KSC-2015-1216

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – Sam Thurman, deputy project manager for NASA's Soil Moisture Active Passive mission, or SMAP, addresses the audience of a NASA Social held at Vandenberg Air Force Base in California. This NASA Social brought together mission scientists and engineers with an audience of 70 students, educators, social media managers, bloggers, photographers and videographers who were selected from a pool of 325 applicants from 45 countries to participate in launch activities and communicate their experience with social media followers. The SMAP mission is scheduled to launch from Vandenberg on Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  17. KSC-2015-1261

    NASA Image and Video Library

    2015-01-31

    VANDENBERG AIR FORCE BASE, Calif. – During a news conference at Vandenberg Air Force Base in California, NASA officials discuss the launch of the Soil Moisture Active Passive satellite, or SMAP, and its mission to study the Earth's soil moisture. Participating in the briefing, from left, are Kent Kellogg, SMAP project manager at the Jet Propulsion Laboratory in Pasadena, California, Scott Higginbotham, NASA mission manager for Educational Launch of Nanosatellites, or ELaNa-X, at the Kennedy Space Center, and Geoff Yoder, deputy associate administrator of the Science Mission Directorate at NASA Headquarters. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  18. KSC-2015-1265

    NASA Image and Video Library

    2015-01-31

    VANDENBERG AIR FORCE BASE, Calif. – During a news conference at Vandenberg Air Force Base in California, NASA officials discuss the launch of the Soil Moisture Active Passive satellite, or SMAP, and its mission to study the Earth's soil moisture. Participating in the briefing, from left, are Kent Kellogg, SMAP project manager at the Jet Propulsion Laboratory in Pasadena, California, Scott Higginbotham, NASA mission manager for Educational Launch of Nanosatellites, or ELaNa-X, at the Kennedy Space Center, and Geoff Yoder, deputy associate administrator of the Science Mission Directorate at NASA Headquarters. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  19. Version 3 of the SMAP Level 4 Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Liu, Qing; Ardizzone, Joe; Crow, Wade; De Lannoy, Gabrielle; Kolassa, Jana; Kimball, John; Koster, Randy

    2017-01-01

    The NASA Soil Moisture Active Passive (SMAP) Level 4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root zone (0-100 cm) soil moisture as well as related land surface states and fluxes from 31 March 2015 to present with a latency of 2.5 days. The ensemble-based L4_SM algorithm is a variant of the Goddard Earth Observing System version 5 (GEOS-5) land data assimilation system and ingests SMAP L-band (1.4 GHz) Level 1 brightness temperature observations into the Catchment land surface model. The soil moisture analysis is non-local (spatially distributed), performs downscaling from the 36-km resolution of the observations to that of the model, and respects the relative uncertainties of the modeled and observed brightness temperatures. Prior to assimilation, a climatological rescaling is applied to the assimilated brightness temperatures using a 6 year record of SMOS observations. A new feature in Version 3 of the L4_SM data product is the use of 2 years of SMAP observations for rescaling where SMOS observations are not available because of radio frequency interference, which expands the impact of SMAP observations on the L4_SM estimates into large regions of northern Africa and Asia. This presentation investigates the performance and data assimilation diagnostics of the Version 3 L4_SM data product. The L4_SM soil moisture estimates meet the 0.04 m3m3 (unbiased) RMSE requirement. We further demonstrate that there is little bias in the soil moisture analysis. Finally, we illustrate where the assimilation system overestimates or underestimates the actual errors in the system.

  20. KSC-2015-1221

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – Col. Marc Del Rosario, commander of the 30th Space Wing Operations Group, addresses the audience of a NASA Social held for NASA's Soil Moisture Active Passive mission, or SMAP, at Vandenberg Air Force Base in California. This NASA Social brought together mission scientists and engineers with an audience of 70 students, educators, social media managers, bloggers, photographers and videographers who were selected from a pool of 325 applicants from 45 countries to participate in launch activities and communicate their experience with social media followers. The SMAP mission is scheduled to launch from Vandenberg on Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  1. KSC-2015-1220

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – Representatives of the social media were given the opportunity to ask questions from the experts of NASA's Soil Moisture Active Passive mission, or SMAP, at the NASA Social held at Vandenberg Air Force Base in California. This NASA Social brought together mission scientists and engineers with an audience of 70 students, educators, social media managers, bloggers, photographers and videographers who were selected from a pool of 325 applicants from 45 countries to participate in launch activities and communicate their experience with social media followers. The SMAP mission is scheduled to launch from Vandenberg on Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  2. KSC-2015-1264

    NASA Image and Video Library

    2015-01-31

    VANDENBERG AIR FORCE BASE, Calif. – During a news conference at Vandenberg Air Force Base in California, NASA officials discuss the launch of the Soil Moisture Active Passive satellite, or SMAP, and its mission to study the Earth's soil moisture. Participating in the briefing, from left, are George Diller of NASA Public Affairs, Kent Kellogg, SMAP project manager at the Jet Propulsion Laboratory in Pasadena, California, Scott Higginbotham, NASA mission manager for Educational Launch of Nanosatellites, or ELaNa-X, at the Kennedy Space Center, and Geoff Yoder, deputy associate administrator of the Science Mission Directorate at NASA Headquarters. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  3. KSC-2015-1260

    NASA Image and Video Library

    2015-01-31

    VANDENBERG AIR FORCE BASE, Calif. – Kent Kellogg, SMAP project manager at the Jet Propulsion Laboratory in Pasadena, California, participates in a news conference at Vandenberg Air Force Base in California following NASA's successful launch of the Soil Moisture Active Passive satellite, or SMAP, on its mission to study the Earth's soil moisture. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  4. Evaluating soil moisture retrievals from ESA’s SMOS and NASA’s SMAP brightness temperature datasets

    PubMed Central

    Al-Yaari, A.; Wigneron, J.-P.; Kerr, Y.; Rodriguez-Fernandez, N.; O’Neill, P. E.; Jackson, T. J.; De Lannoy, G.J.M.; Al Bitar, A; Mialon, A.; Richaume, P.; Walker, JP; Mahmoodi, A.; Yueh, S.

    2018-01-01

    Two satellites are currently monitoring surface soil moisture (SM) using L-band observations: SMOS (Soil Moisture and Ocean Salinity), a joint ESA (European Space Agency), CNES (Centre national d’études spatiales), and CDTI (the Spanish government agency with responsibility for space) satellite launched on November 2, 2009 and SMAP (Soil Moisture Active Passive), a National Aeronautics and Space Administration (NASA) satellite successfully launched in January 2015. In this study, we used a multilinear regression approach to retrieve SM from SMAP data to create a global dataset of SM, which is consistent with SM data retrieved from SMOS. This was achieved by calibrating coefficients of the regression model using the CATDS (Centre Aval de Traitement des Données) SMOS Level 3 SM and the horizontally and vertically polarized brightness temperatures (TB) at 40° incidence angle, over the 2013 – 2014 period. Next, this model was applied to SMAP L3 TB data from Apr 2015 to Jul 2016. The retrieved SM from SMAP (referred to here as SMAP_Reg) was compared to: (i) the operational SMAP L3 SM (SMAP_SCA), retrieved using the baseline Single Channel retrieval Algorithm (SCA); and (ii) the operational SMOSL3 SM, derived from the multiangular inversion of the L-MEB model (L-MEB algorithm) (SMOSL3). This inter-comparison was made against in situ soil moisture measurements from more than 400 sites spread over the globe, which are used here as a reference soil moisture dataset. The in situ observations were obtained from the International Soil Moisture Network (ISMN; https://ismn.geo.tuwien.ac.at/) in North of America (PBO_H2O, SCAN, SNOTEL, iRON, and USCRN), in Australia (Oznet), Africa (DAHRA), and in Europe (REMEDHUS, SMOSMANIA, FMI, and RSMN). The agreement was analyzed in terms of four classical statistical criteria: Root Mean Squared Error (RMSE), Bias, Unbiased RMSE (UnbRMSE), and correlation coefficient (R). Results of the comparison of these various products with in

  5. Soil Moisture Retrieval with Airborne PALS Instrument over Agricultural Areas in SMAPVEX16

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Jackson, Thomas J.; Cosh, Mike; Misra, Sidharth; Bindlish, Rajat; Powers, Jarrett; McNairn, Heather; Bullock, P.; Berg, A.; Magagi, A.; hide

    2017-01-01

    NASA's SMAP (Soil Moisture Active Passive) calibration and validation program revealed that the soil moisture products are experiencing difficulties in meeting the mission requirements in certain agricultural areas. Therefore, the mission organized airborne field experiments at two core validation sites to investigate these anomalies. The SMAP Validation Experiment 2016 included airborne observations with the PALS (Passive Active L-band Sensor) instrument and intensive ground sampling. The goal of the PALS measurements are to investigate the soil moisture retrieval algorithm formulation and parameterization under the varying (spatially and temporally) conditions of the agricultural domains and to obtain high resolution soil moisture maps within the SMAP pixels. In this paper the soil moisture retrieval using the PALS brightness temperature observations in SMAPVEX16 is presented.

  6. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  7. Generating large-scale estimates from sparse, in-situ networks: multi-scale soil moisture modeling at ARS watersheds for NASA’s soil moisture active passive (SMAP) calibration/validation mission

    USDA-ARS?s Scientific Manuscript database

    NASA’s SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networ...

  8. Empirical Soil Moisture Estimation with Spaceborne L-band Polarimetric Radars: Aquarius, SMAP, and PALSAR-2

    NASA Astrophysics Data System (ADS)

    Burgin, M. S.; van Zyl, J. J.

    2017-12-01

    Traditionally, substantial ancillary data is needed to parametrize complex electromagnetic models to estimate soil moisture from polarimetric radar data. The Soil Moisture Active Passive (SMAP) baseline radar soil moisture retrieval algorithm uses a data cube approach, where a cube of radar backscatter values is calculated using sophisticated models. In this work, we utilize the empirical approach by Kim and van Zyl (2009) which is an optional SMAP radar soil moisture retrieval algorithm; it expresses radar backscatter of a vegetated scene as a linear function of soil moisture, hence eliminating the need for ancillary data. We use 2.5 years of L-band Aquarius radar and radiometer derived soil moisture data to determine two coefficients of a linear model function on a global scale. These coefficients are used to estimate soil moisture with 2.5 months of L-band SMAP and L-band PALSAR-2 data. The estimated soil moisture is compared with the SMAP Level 2 radiometer-only soil moisture product; the global unbiased RMSE of the SMAP derived soil moisture corresponds to 0.06-0.07 cm3/cm3. In this study, we leverage the three diverse L-band radar data sets to investigate the impact of pixel size and pixel heterogeneity on soil moisture estimation performance. Pixel sizes range from 100 km for Aquarius, over 3, 9, 36 km for SMAP, to 10m for PALSAR-2. Furthermore, we observe seasonal variation in the radar sensitivity to soil moisture which allows the identification and quantification of seasonally changing vegetation. Utilizing this information, we further improve the estimation performance. The research described in this paper is supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017. All rights reserved.

  9. Enhancing the USDA Global Crop Assessment Decision Support System Using SMAP Soil Moisture Data

    NASA Astrophysics Data System (ADS)

    Bolten, J. D.; Mladenova, I. E.; Crow, W. T.; Reynolds, C. A.

    2016-12-01

    The Foreign Agricultural Services (FAS) is a subdivision of U.S. Department of Agriculture (USDA) that is in charge with providing information on current and expected crop supply and demand estimates. Knowledge of the amount of water in the root zone is an essential source of information for the crop analysts as it governs the crop development and crop growth, which in turn determine the end-of-season yields. USDA FAS currently relies on root zone soil moisture (RZSM) estimates generated using the modified two-layer Palmer Model (PM). PM is a simple water-balance hydrologic model that is driven by daily precipitation observations and minimum and maximum temperature data. These forcing data are based on ground meteorological station measurements from the World Meteorological Organization (WMO), and gridded weather data from the former U.S. Air Force Weather Agency (AFWA), currently called U.S. Air Force 557th Weather Wing. The PM was extended by adding a data assimilation (DA) unit that provides the opportunity to routinely ingest satellite-based soil moisture observations. This allows us to adjust for precipitation-related inaccuracies and enhance the quality of the PM soil moisture estimates. The current operational DA system is based on a 1-D Ensample Kalman Filter approach and relies on observations obtained from the Soil Moisture Ocean Salinity Mission (SMOS). Our talk will demonstrate the value of assimilating two satellite products (i.e. a passive and active) and discuss work that is done in preparation for ingesting soil moisture observations from the Soil Moisture Active Passive (SMAP) mission.

  10. Sensitivity of Active and Passive Microwave Observations to Soil Moisture during Growing Corn

    NASA Astrophysics Data System (ADS)

    Judge, J.; Monsivais-Huertero, A.; Liu, P.; De Roo, R. D.; England, A. W.; Nagarajan, K.

    2011-12-01

    Soil moisture (SM) in the root zone is a key factor governing water and energy fluxes at the land surface and its accurate knowledge is critical to predictions of weather and near-term climate, nutrient cycles, crop-yield, and ecosystem productivity. Microwave observations, such as those at L-band, are highly sensitive to soil moisture in the upper few centimeters (near-surface). The two satellite-based missions dedicated to soil moisture estimation include, the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission and the planned NASA Soil Moisture Active/Passive (SMAP) [4] mission. The SMAP mission will include active and passive sensors at L-band to provide global observations of SM, with a repeat coverage of every 2-3 days. These observations can significantly improve root zone soil moisture estimates through data assimilation into land surface models (LSMs). Both the active (radar) and passive (radiometer) microwave sensors measure radiation quantities that are functions of soil dielectric constant and exhibit similar sensitivities to SM. In addition to the SM sensitivity, radar backscatter is highly sensitive to roughness of soil surface and scattering within the vegetation. These effects may produce a much larger dynamic range in backscatter than that produced due to SM changes alone. In this study, we discuss the field observations of active and passive signatures of growing corn at L-band from several seasons during the tenth Microwave, Water and Energy Balance Experiment (MicroWEX-10) conducted in North Central Florida, and to understand the sensitivity of these signatures to soil moisture under dynamic vegetation conditions. The MicroWEXs are a series of season-long field experiments conducted during the growing seasons of sweet corn, cotton, and energy cane over the past six years (for example, [22]). The corn was planted on July 5 and harvested on September 23, 2011 during MicroWEX-10. The size of the field was 0.04 km2 and the soils

  11. KSC-2015-1218

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – Dara Entekhabi, science team leader at the Massachusetts Institute of Technology in Cambridge, Massachusetts, discusses the science and engineering of NASA's Soil Moisture Active Passive mission, or SMAP, with the audience of a NASA Social held at Vandenberg Air Force Base in California. This NASA Social brought together mission scientists and engineers with an audience of 70 students, educators, social media managers, bloggers, photographers and videographers who were selected from a pool of 325 applicants from 45 countries to participate in launch activities and communicate their experience with social media followers. The SMAP mission is scheduled to launch from Vandenberg on Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  12. NASA SMAP Images Show Texas Soil Moisture Conditions Before/After Hurricane Harvey's Landfall

    NASA Image and Video Library

    2017-08-29

    Images of soil moisture conditions in Texas near Houston, generated by NASA's Soil Moisture Active Passive (SMAP) satellite before and after the landfall of Hurricane Harvey can be used to monitor changing ground conditions due to Harvey's rainfall. As seen in the left panel, SMAP observations show that soil surface conditions were already very wet a few days before the hurricane made landfall (August 21/22), with moisture levels in the 20 to 40 percent range. Such saturated soil surfaces contributed to the inability of water to infiltrate more deeply into soils, thereby increasing the likelihood of flooding. After Harvey made landfall, the southwest portion of Houston became exceptionally wet, as seen in the right panel image from August 25/26, signaling the arrival of heavy rains and widespread flooding. https://photojournal.jpl.nasa.gov/catalog/PIA21926

  13. Airborne Active and Passive L-Band Observations in Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12)

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Yueh, S. H.; Chazanoff, S.; Jackson, T. J.; McNairn, H.; Bullock, P.; Wiseman, G.; Berg, A. A.; Magagi, R.; Njoku, E. G.

    2012-12-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in October 2014. The objective of the mission is global mapping of soil moisture and freeze/thaw state. Merging of active and passive L-band observations of the mission will enable unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrieval. For pre-launch algorithm development and validation the SMAP project and NASA coordinated a field campaign named as SMAPVEX12 (Soil Moisture Active Passive Validation Experiment 2012) together with Agriculture and Agri-Food Canada in the vicinity of Winnipeg, Canada in June-July, 2012. The main objective of SMAPVEX12 was acquisition of data record that features long-time series with varying soil moisture and vegetation conditions (for testing the application of time-series approach) over aerial domain of multiple parallel lines (for spatial disaggregation studies). The coincident active and passive L-band data were acquired using the Passive Active L-band System (PALS), which is an airborne radiometer and radar developed for testing L-band retrieval algorithms. For SMAPVEX12 PALS was installed on a Twin Otter aircraft. The flight plan included flights at two altitudes. The higher altitude was used to map the whole experiment domain and the lower altitude was used to obtain measurements over a specific set of field sites. The spatial resolution (and swath) of the radar and radiometer from low altitude was about 600 m and from high altitude about 1500 m. The PALS acquisitions were complemented with high resolution (~10 m) L-band SAR measurements carried out by UAVSAR instrument on-board G-III aircraft. The campaign ran from June 7 until July 19. The PALS instrument conducted 17 brightness temperature and backscatter measurement flights and the UAVSAR conducted 14 backscatter measurement flights. The airborne data acquisition was supported by

  14. A Dual-Polarized, Dual-Frequency, Corrugated Feed Horn for SMAP

    NASA Technical Reports Server (NTRS)

    Focardi, Paolo; Brown, Paula R.

    2012-01-01

    SMAP will be the first Earth science mission to use a deployable 6m mesh reflector for both radar and radiometric measurements from low Earth orbit. The instrument antenna will spin at about 14 rpm, making the design of both reflector and feed more challenging. While the performance requirements imposed by the radar instrument are relatively benign, those pertinent to the radiometer are more difficult to meet. Extreme care was necessary in designing the feed, especially from a performance stability perspective. Thermal variations due to the spacecraft going in and out of eclipse during orbit and direct solar radiation into the horn are just two of the challenges faced during the design phase. In this paper, the basic concepts behind the design of SMAP's feed will be discussed. Each component of the feed will be analyzed in detail with particular emphasis on its impact on major RF requirements. Overall performance of the feed will also be discussed.

  15. KSC-2015-1219

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – Dara Entekhabi, science team leader at the Massachusetts Institute of Technology in Cambridge, Massachusetts, and other experts discuss the science and engineering of NASA's Soil Moisture Active Passive mission, or SMAP, with the audience of a NASA Social held at Vandenberg Air Force Base in California. This NASA Social brought together mission scientists and engineers with an audience of 70 students, educators, social media managers, bloggers, photographers and videographers who were selected from a pool of 325 applicants from 45 countries to participate in launch activities and communicate their experience with social media followers. The SMAP mission is scheduled to launch from Vandenberg on Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  16. Potential of bias correction for downscaling passive microwave and soil moisture data

    USDA-ARS?s Scientific Manuscript database

    Passive microwave satellites such as SMOS (Soil Moisture and Ocean Salinity) or SMAP (Soil Moisture Active Passive) observe brightness temperature (TB) and retrieve soil moisture at a spatial resolution greater than most hydrological processes. Bias correction is proposed as a simple method to disag...

  17. KSC-2015-1258

    NASA Image and Video Library

    2015-01-31

    VANDENBERG AIR FORCE BASE, Calif. – The two-stage Delta II launch vehicle lifts off Space Launch Complex 2 at Vandenberg Air Force Base, carrying NASA's Soil Moisture Active Passive satellite, or SMAP, on a mission to study global coverage of soil moisture and freeze/thaw measurements. Launch was at 9:22 a.m. EST. SMAP is designed to produce the highest-resolution maps of soil moisture ever obtained from space. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  18. Validation of SMAP data using Cosmic-ray Neutron Probes during the SMAPVEX16-IA Campaign

    NASA Astrophysics Data System (ADS)

    Russell, M. V.

    2016-12-01

    Global trends in consumptive water-use indicate a growing and unsustainable reliance on water resources. Each year it is estimated that 60 percent of water used for agriculture is wasted through inadequate water conservation, losses in distribution, and inappropriate times and rates of irrigation. Satellite remote sensing offers a variety of water balance datasets (precipitation, evapotranspiration, soil moisture, groundwater storage) to increase the water use efficiency in agricultural systems. In this work, we aim to validate the Soil Moisture Active Passive (SMAP) soil moisture product using the ground based cosmic-ray neutron probe (CRNP) for estimating field scale soil moisture at intermediate spatial scales as part of SMAPVEX16-IA experiment. Typical SMAP calibration and validation has been done using a combination of direct gravimetric sampling and in-situ soil moisture point observations. Although these measurements provide accurate data, it is time consuming and labor intensive to collect data over a 36 by 36 km SMAP pixel. Through a joint effort with rovers provided by the US Army Corps of Engineers and University of Nebraska-Lincoln, we are able to cover the domain in 7 hours. Data from both rovers was combined in order to produce a 1, 3, 9 and 36 km resolution product on the day of 12 SMAP overpasses in May and August 2016. Here we will describe basic QAQC procedures for estimating soil moisture from the dual rover experiment. This will include discussion about calibration, validation, and accounting for conditions such as variable road type and growing vegetation. Lastly, we will compare the calibrated rover and SMAP products. If the products are highly correlated the ground based rovers offer a strategy for collecting finer resolution products that may be used in future downscaling efforts in support of high resolution Land Surface Modeling.

  19. KSC-2015-1259

    NASA Image and Video Library

    2015-01-31

    VANDENBERG AIR FORCE BASE, Calif. – An exhaust cloud builds around the United Launch Alliance Delta II rocket as it lifts off Space Launch Complex 2 at Vandenberg Air Force Base, carrying NASA's Soil Moisture Active Passive satellite, or SMAP, on a mission to study global coverage of soil moisture and freeze/thaw measurements. Launch was at 9:22 a.m. EST. SMAP is designed to produce the highest-resolution maps of soil moisture ever obtained from space. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  20. Devastating Carolina Floods Viewed by NASA SMAP

    NASA Image and Video Library

    2015-10-08

    Surface soil moisture in the Southeastern United States as retrieved from NASA's Soil Moisture Active Passive (SMAP) satellite observatory at around 6 a.m. on Oct. 5, 2015. Large parts of South Carolina appear blue, representing the impact of heavy localized rains and flooding. Regions in blue indicate areas with saturated soil conditions and possible standing water. Large-scale flooding was experienced all over South Carolina on Oct. 5-6, 2015. As of Oct. 7, 17 deaths had been attributed to these floods, with heavy economic losses. In some regions, the intensity of these floods was described as a 1,000-year storm (1-in-1,000 chance of happening in any given year). At least 14 dams have already failed as a result of these floods. http://photojournal.jpl.nasa.gov/catalog/PIA20001

  1. Mapping surface heat fluxes by assimilating GOES land surface temperature and SMAP products

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Steele-Dunne, S. C.; Van De Giesen, N.

    2017-12-01

    Surface heat fluxes significantly affect the land-atmosphere interaction, but their modelling is often hindered by the lack of in-situ measurements and the high spatial heterogeneity. Here, we propose a hybrid particle assimilation strategy to estimate surface heat fluxes by assimilating GOES land surface temperature (LST) data and SMAP products into a simple dual-source surface energy balance model, in which the requirement for in-situ data is minimized. The study aims to estimate two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). CHN scales the sum of surface energy fluxes, and EF represents the partitioning between flux components. To bridge the huge resolution gap between GOES and SMAP data, SMAP data are assimilated using a particle filter to update soil moisture which constrains EF, and GOES data are assimilated with an adaptive particle batch smoother to update CHN. The methodology is applied to an area in the US Southern Great Plains with forcing data from NLDAS-2 and the GPM mission. Assessment against in-situ observations suggests that the sensible and latent heat flux estimates are greatly improved at both daytime and 30-min scale after assimilation, particularly for latent heat fluxes. Comparison against an LST-only assimilation case demonstrates that despite the coarse resolution, assimilating SMAP data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the modelling uncertainties are large. Since the methodology is independent on in-situ data, it can be easily applied to other areas.

  2. SMOS and SMAP: from Lessons Learned to Future Mission Requirements

    NASA Astrophysics Data System (ADS)

    Kerr, Y. H.; Wigneron, J. P.; Cabot, F.; Escorihuela, M. J.; Anterrieu, E.; Rouge, B.; Rodriguez Fernandez, N.; Bindlish, R.; Khazaal, A.; Al-Bitar, A.; Mialon, A.; Lesthievent, G.

    2017-12-01

    The SMOS (Soil Moisture and Ocean Salinity) satellite was successfully launched in November 2009. This ESA led mission for Earth Observation is dedicated to provide soil moisture over continental surface, vegetation water content over land, and ocean salinity. The Soil Moisture and Ocean Salinity mission has now been collecting data for over 7 years. TheSoil Moisture Active and Passive for over 2 years.The two data set have been reprocessed (Version 620 for levels 1 and 2 and version 3 for level 3 CATDS) to be merged into one product, while operational near real time soil moisture data is now available and assimilation of SMOS data in NWP has proved successful. After 7 years of L-Band data acquisition, it seems important to start using data for having a look at anomalies and see how they can relate to large scale events. We have also produced a 15 year soil moisture data set by merging SMOS and AMSR using a neural network approach. The purpose of this communication is to present the two mission results after more than seven years in orbit in a climatic trend perspective, as through such a period anomalies can be detected. Thereby we benefit from consistent datasets provided through the latest reprocessing using most recent algorithm enhancements. Using the above mentioned products it is possible to follow large events such as the evolution of the droughts in North America, or water fraction evolution over the Amazonian basin. In this occasion we will focus on the analysis of SMOS and ancillary products anomalies to reveal two climatic trends, the temporal evolution of water storage over the Indian continent in relation to rainfall anomalies, and the global impact of El Nino types of events on the general water storage distribution. This presentation shows in detail the use of long term data sets of L-band microwave radiometry in two specific cases, namely droughts and water budget over a large basin. Several other analyses are under way currently. Obviously

  3. Passive Microwave Rainfall Estimates from the GPM Mission

    NASA Astrophysics Data System (ADS)

    Kummerow, Christian; Petkovic, Veljko

    2017-04-01

    The Global Precipitation Measurement (GPM) mission was launched in February 2014 as a joint mission between JAXA from Japan and NASA from the United States. GPM carries a state of the art dual-frequency precipitation radar and a multi-channel passive microwave radiometer that acts not only to enhance the radar's retrieval capability, but also as a reference for a constellation of existing satellites carrying passive microwave sensors. In March of 2016, GPM released Version 4 of its precipitation products that consists of radar, radiometer, and combined radar/radiometer products. The precipitation products from these sensors or sensor combination are consistent by design and show relatively minor differences in the mean global sense. Closer examination of the biases, however, reveals regional biases between active and passive sensors that can be directly related top the nature of the convection. By looking at cloud systems instead of individual satellite pixels, the relationship between biases and the large scale environmental state become obvious. Organized convection, which occurs more readily in regimes with large Convective Available Potential Energy (CAPE) and shear tend to drive biases in different directions than isolated convection. This is true over both land and ocean. This talk will present the latest findings and explore these discrepancies from a physical perspective in order to gain some understanding between cloud structures, information content, and retrieval differences. This analysis will be used to then drive a bigger picture of how GPM's latest results inform the Global Water and Energy budgets.

  4. Faraday Rotation Measurement with the SMAP Radiometer

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Abraham, S.

    2016-01-01

    Faraday rotation is an issue that needs to be taken into account in remote sensing of parameters such as soil moisture and ocean salinity at L-band. This is especially important for SMAP because Faraday rotation varies with azimuth around the conical scan. SMAP retrieves Faraday rotation in situ using the ratio of the third and second Stokes parameters, a procedure that was demonstrated successfully by Aquarius. This manuscript reports the performance of this algorithm on SMAP. Over ocean the process works reasonably well and results compare favorably with expected values. But over land, the inhomogeneous nature of the scene results in much noisier, and in some cases unreliable estimates of Faraday rotation.

  5. Consistent Transition of Salinity Retrievals From Aquarius to SMAP

    NASA Astrophysics Data System (ADS)

    Mears, C. A.; Meissner, T.; Wentz, F. J.; Manaster, A.

    2017-12-01

    The Aquarius Version 5.0 release in late 2017 has achieved an excellent level of accuracy and significantly mitigated most of the regional and seasonal biases that had been observed in prior releases. The SMAP NASA/RSS Version 2.0 release does not quite yet reach that level of accuracy. Our presentation discusses the necessary steps that need to be undertaken in the upcoming V 3.0 of the SMAP salinity retrieval algorithm to achieve a seamless transition between the salinity products from the two instruments. We also discuss where fundamental differences in the sensors make it difficult to reach complete consistency. In the Aquarius V 4.0 and earlier releases, comparison with ARGO floats have revealed small fresh biases at low latitudes and larger seasonally varying salty biases at high latitudes. These biases have been tracked back to inaccuracies in the models that are used for correcting the absorption by atmospheric oxygen and for correcting the wind induced roughness. The geophysical models have been changed in Aquarius V5.0, which resulted in a significant improvement of these biases. The upcoming SMAP V3 release will implement the same geophysical model. In deriving the changes of the geophysical model, monthly ARGO analyzed fields from Scripps are now being used consistently as reference salinity for both Aquarius V5.0 and the upcoming SMAP V3.0 releases. Earlier versions had used HYOCM as reference salinity field. The development of the Aquarius V 5.0 algorithm has already strongly benefited from the full 360o look capability of SMAP. This aided in deriving the correction of the reflected galaxy, which is a strong spurious signal for both sensors. Consistent corrections for the galactic signal are now used for both Aquarius and SMAP. It is also important to filter out rain when developing the GMF and when validating the satellite salinities versus in-situ measurements on order to avoid mismatches due to salinity stratification in the upper ocean layer. One

  6. Soil Moisture Active Passive Mission L4_SM Data Product Assessment (Version 2 Validated Release)

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf Helmut; De Lannoy, Gabrielle J. M.; Liu, Qing; Ardizzone, Joseph V.; Chen, Fan; Colliander, Andreas; Conaty, Austin; Crow, Wade; Jackson, Thomas; Kimball, John; hide

    2016-01-01

    During the post-launch SMAP calibration and validation (Cal/Val) phase there are two objectives for each science data product team: 1) calibrate, verify, and improve the performance of the science algorithm, and 2) validate the accuracy of the science data product as specified in the science requirements and according to the Cal/Val schedule. This report provides an assessment of the SMAP Level 4 Surface and Root Zone Soil Moisture Passive (L4_SM) product specifically for the product's public Version 2 validated release scheduled for 29 April 2016. The assessment of the Version 2 L4_SM data product includes comparisons of SMAP L4_SM soil moisture estimates with in situ soil moisture observations from core validation sites and sparse networks. The assessment further includes a global evaluation of the internal diagnostics from the ensemble-based data assimilation system that is used to generate the L4_SM product. This evaluation focuses on the statistics of the observation-minus-forecast (O-F) residuals and the analysis increments. Together, the core validation site comparisons and the statistics of the assimilation diagnostics are considered primary validation methodologies for the L4_SM product. Comparisons against in situ measurements from regional-scale sparse networks are considered a secondary validation methodology because such in situ measurements are subject to up-scaling errors from the point-scale to the grid cell scale of the data product. Based on the limited set of core validation sites, the wide geographic range of the sparse network sites, and the global assessment of the assimilation diagnostics, the assessment presented here meets the criteria established by the Committee on Earth Observing Satellites for Stage 2 validation and supports the validated release of the data. An analysis of the time average surface and root zone soil moisture shows that the global pattern of arid and humid regions are captured by the L4_SM estimates. Results from the

  7. Fraction of the global water cycle observed by SMAP

    NASA Astrophysics Data System (ADS)

    Mccoll, K. A.; Entekhabi, D.; Alemohammad, S. H.; Akbar, R.; Konings, A. G.; Yueh, S. H.

    2016-12-01

    Sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture (SSM). Using a full year of global observations from NASA's Soil Moisture Active Passive (SMAP) mission, we show here that SSM - a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces - plays a very significant role in the water cycle, retaining a median 16% of precipitation falling on land after 3 days. Furthermore, the retained fraction of the SSM storage after 3 days is highest (lowest) over arid (wet) regions, and in regions where drainage to groundwater storage is lowest (highest). The retained fraction decreases monotonically with increasing mean SSM. Regions of low retained fraction broadly correspond spatially with regions where groundwater recharge and groundwater storage are both largest. These analyses are the first global estimates - derived from measurements rather than models - of both the mean magnitude and memory time scales of the SSM storage. Beyond the fundamental importance of characterizing the magnitude and response time scales of Earth's water storages, a key application of these results is in identifying regions with strong land-atmosphere coupling. Significant soil moisture memory is a necessary condition for land-atmosphere feedbacks. These results may therefore have particularly important implications for short-term weather forecasting of extreme precipitation events and floods.

  8. Technical Report Series on Global Modeling and Data Assimilation. Volume 40; Soil Moisture Active Passive (SMAP) Project Assessment Report for the Beta-Release L4_SM Data Product

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Liu, Qing; Colliander, Andreas; Conaty, Austin; Jackson, Thomas; Kimball, John

    2015-01-01

    During the post-launch SMAP calibration and validation (Cal/Val) phase there are two objectives for each science data product team: 1) calibrate, verify, and improve the performance of the science algorithm, and 2) validate the accuracy of the science data product as specified in the science requirements and according to the Cal/Val schedule. This report provides an assessment of the SMAP Level 4 Surface and Root Zone Soil Moisture Passive (L4_SM) product specifically for the product's public beta release scheduled for 30 October 2015. The primary objective of the beta release is to allow users to familiarize themselves with the data product before the validated product becomes available. The beta release also allows users to conduct their own assessment of the data and to provide feedback to the L4_SM science data product team. The assessment of the L4_SM data product includes comparisons of SMAP L4_SM soil moisture estimates with in situ soil moisture observations from core validation sites and sparse networks. The assessment further includes a global evaluation of the internal diagnostics from the ensemble-based data assimilation system that is used to generate the L4_SM product. This evaluation focuses on the statistics of the observation-minus-forecast (O-F) residuals and the analysis increments. Together, the core validation site comparisons and the statistics of the assimilation diagnostics are considered primary validation methodologies for the L4_SM product. Comparisons against in situ measurements from regional-scale sparse networks are considered a secondary validation methodology because such in situ measurements are subject to upscaling errors from the point-scale to the grid cell scale of the data product. Based on the limited set of core validation sites, the assessment presented here meets the criteria established by the Committee on Earth Observing Satellites for Stage 1 validation and supports the beta release of the data. The validation against

  9. NASA Soil Moisture Mission Produces First Global Radar Map

    NASA Image and Video Library

    2015-04-21

    With its antenna now spinning at full speed, NASA new Soil Moisture Active Passive SMAP observatory has successfully re-tested its science instruments and generated its first global maps, a key step to beginning routine science operations in May, 2015

  10. NASA Soil Moisture Mission Produces First Global Radiometer Map

    NASA Image and Video Library

    2015-04-21

    With its antenna now spinning at full speed, NASA new Soil Moisture Active Passive SMAP observatory has successfully re-tested its science instruments and generated its first global maps, a key step to beginning routine science operations in May, 2015

  11. A new Downscaling Approach for SMAP, SMOS and ASCAT by predicting sub-grid Soil Moisture Variability based on Soil Texture

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Rötzer, K.; Bogena, H. R.; Vereecken, H.

    2017-12-01

    Improving the coarse spatial resolution of global soil moisture products from SMOS, SMAP and ASCAT is currently an up-to-date topic. Soil texture heterogeneity is known to be one of the main sources of soil moisture spatial variability. A method has been developed that predicts the soil moisture standard deviation as a function of the mean soil moisture based on soil texture information. It is a closed-form expression using stochastic analysis of 1D unsaturated gravitational flow in an infinitely long vertical profile based on the Mualem-van Genuchten model and first-order Taylor expansions. With the recent development of high resolution maps of basic soil properties such as soil texture and bulk density, relevant information to estimate soil moisture variability within a satellite product grid cell is available. Here, we predict for each SMOS, SMAP and ASCAT grid cell the sub-grid soil moisture variability based on the SoilGrids1km data set. We provide a look-up table that indicates the soil moisture standard deviation for any given soil moisture mean. The resulting data set provides important information for downscaling coarse soil moisture observations of the SMOS, SMAP and ASCAT missions. Downscaling SMAP data by a field capacity proxy indicates adequate accuracy of the sub-grid soil moisture patterns.

  12. A Prototype Land Information Sensor Web: Design, Implementation and Implication for the SMAP Mission

    NASA Astrophysics Data System (ADS)

    Su, H.; Houser, P.; Tian, Y.; Geiger, J. K.; Kumar, S. V.; Gates, L.

    2009-12-01

    developed and it is the very first sensor web framework developed especially for the land surface studies. Synthetic experiments based on the LISW-SOA and the virtual sensor web provide a controlled environment in which to examine the end-to-end performance of the prototype, the impact of various sensor web design trade-offs and the eventual value of sensor webs for a particular prediction or decision support. In this paper, the design, implementation of the LISW-SOA and the implication for the Soil Moisture Active and Passive (SMAP) mission is presented. Particular attention is focused on examining the relationship between the economic investment on a sensor web (space and air borne, ground based) and the accuracy of the model predicted soil moisture, which can be achieved by using such sensor observations. The Study of Virtual Land Information Sensor Web (LISW) is expected to provide some necessary a priori knowledge for designing and deploying the next generation Global Earth Observing System of systems (GEOSS).

  13. The potential of SMAP soil moisture data for analyzing droughts

    NASA Astrophysics Data System (ADS)

    Rajasekaran, E.; Das, N. N.; Entekhabi, D.; Yueh, S. H.

    2017-12-01

    Identification of the onset and the end of droughts are important for socioeconomic planning. Different datasets and tools are either available or being generated for drought analysis to recognize the status of drought. The aim of this study is to understand the potential of the SMAP soil moisture (SM) data for identification of onset, persistence and withdrawal of droughts over the Contiguous United States. We are using the SMAP-passive level 3 soil moisture observations and the United States Drought Monitor (http://droughtmonitor.unl.edu) data for understanding the relation between change in SM and drought severity. The daily observed SM data are temporally averaged to match the weekly drought monitor data and subsequently the weekly, monthly, 3 monthly and 6 monthly change in SM and drought severity were estimated. The analyses suggested that the change in SM and drought severity are correlated especially over the mid-west and west coast of USA at monthly and longer time scales. The spatial pattern of the SM change maps clearly indicated the regions that are moving between different levels of drought severity. Further, the time series of effective saturation [Se =(θ-θr)/(θs-θr)] indicated the temporal dynamics of drought conditions over California which is recovering from a long-term drought. Additional analyses are being carried out to develop statistics between drought severity and soil moisture level.

  14. KSC-2015-1130

    NASA Image and Video Library

    2015-01-13

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is mated to its Delta II rocket at Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  15. KSC-2015-1119

    NASA Image and Video Library

    2015-01-13

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is prepared for lifting at Space Launch Complex 2 for mating to its Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  16. KSC-2015-1127

    NASA Image and Video Library

    2015-01-13

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is lifted at Space Launch Complex 2 for mating to its Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  17. KSC-2015-1120

    NASA Image and Video Library

    2015-01-13

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is prepared for lifting at Space Launch Complex 2 for mating to its Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  18. KSC-2015-1129

    NASA Image and Video Library

    2015-01-13

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is mated to its Delta II rocket at Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  19. KSC-2015-1109

    NASA Image and Video Library

    2015-01-08

    VANDENBERG AIR FORCE BASE, Calif. – Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, engineers and technicians inspect NASA's Soil Moisture Active Passive mission, or SMAP, satellite. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: Jeremy Moore, USAF Photo Squadron

  20. KSC-2015-1111

    NASA Image and Video Library

    2015-01-08

    VANDENBERG AIR FORCE BASE, Calif. – Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, engineers and technicians inspect NASA's Soil Moisture Active Passive mission, or SMAP, satellite. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: Jeremy Moore, USAF Photo Squadron

  1. KSC-2015-1123

    NASA Image and Video Library

    2015-01-13

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is lifted at Space Launch Complex 2 for mating to its Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  2. KSC-2015-1128

    NASA Image and Video Library

    2015-01-13

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is mated to its Delta II rocket at Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  3. KSC-2015-1121

    NASA Image and Video Library

    2015-01-13

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is prepared for lifting at Space Launch Complex 2 for mating to its Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  4. KSC-2015-1122

    NASA Image and Video Library

    2015-01-13

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is lifted at Space Launch Complex 2 for mating to its Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  5. KSC-2015-1132

    NASA Image and Video Library

    2015-01-13

    VANDENBERG AIR FORCE BASE, Calif. – The sun sets behind Space Launch Complex 2 at Vandenberg Air Force Base in California where NASA's Soil Moisture Active Passive mission, or SMAP, satellite is being prepared for liftoff. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  6. KSC-2015-1125

    NASA Image and Video Library

    2015-01-13

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is lifted at Space Launch Complex 2 for mating to its Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  7. Recent Advances in the Salinity Retrieval Algorithms for Aquarius and SMAP

    NASA Astrophysics Data System (ADS)

    Meissner, T.; Wentz, F. J.

    2016-12-01

    Our presentation discusses the latest improvements in the salinity retrievals for both Aquarius and SMAP since the last releases. The Aquarius V4.0 was released in June 2015 and the SMAP V 1.0 was released in November 2015. Upcoming releases are planned for SMAP (V 2.0) in August 2016 and for Aquarius (V 5.0) late 2017. The full 360o look capability of SMAP makes it possible to take observations from the forward and backward looking direction at the same instance of time. This two-look capability strongly aids the salinity retrievals. One of the largest spurious contaminations in the salinity retrievals is caused by the galaxy that is reflected from the ocean surface. Because in most instances the reflected galaxy appears only in either the forward or the backward look, it is possible to determine its contribution by taking the difference of the measured SMAP brightness temperatures between the two looks. Our result suggests that the surface roughness that is used in the galactic correction needs to be increased and also the strength of some of the galactic sources need to be slightly adjusted. The improved galaxy correction is getting implemented in upcoming Aquarius and SMAP salinity releases and strongly aids the mitigation of residual zonal and temporal biases that are observed in both products. Another major cause of the observed zonal biases in SMAP is the emissive SMAP mesh antenna. In order to correct for it the physical temperature of the antenna is needed. No direct measurements but only a thermal model are available. We discuss recent improvements in the correction for the emissive SMAP antenna and show how most of the zonal biases in V1.0 can be mitigated. Finally, we show that observed salty biases at higher Northern latitudes can be explained by inaccuracies in the model that is used in correcting for the absorption by atmospheric oxygen. These biases can be decreased by fine-tuning the parameters in the absorption model.

  8. Sunset at Vandenberg

    NASA Image and Video Library

    2015-01-21

    The sun sets behind Space Launch Complex 2, Vandenberg Air Force Base, California, where NASA Soil Moisture Active Passive SMAP mission satellite is being prepared for liftoff. Launch is scheduled for Jan. 29.

  9. Synergistic Use of SMOS Measurements with SMAP Derived and In-situ Data over Valencia Anchor Station by Using Downscaling Technique

    NASA Astrophysics Data System (ADS)

    Ansari Amoli, Abdolreza; Lopez-Baeza, Ernesto; Mahmoudi, Ali; Mahmoodi, Ali

    2016-07-01

    Synergistic Use of SMOS Measurements with SMAP Derived and In-situ Data over the Valencia Anchor Station by Using a Downscaling Technique Ansari Amoli, A.(1),Mahmoodi, A.(2) and Lopez-Baeza, E.(3) (1) Department of Earth Physics and Thermodynamics, University of Valencia, Spain (2) Centre d'Etudes Spatiales de la BIOsphère (CESBIO), France (3) Department of Earth Physics and Thermodynamics, University of Valencia, Spain Soil moisture products from active sensors are not operationally available. Passive remote sensors return more accurate estimates, but their resolution is much coarser. One solution to overcome this problem is the synergy between radar and radiometric data by using disaggregation (downscaling) techniques. Few studies have been conducted to merge high resolution radar and coarse resolution radiometer measurements in order to obtain an intermediate resolution product. In this paper we present an algorithm using combined available SMAP (Soil Moisture Active and Passive) radar and SMOS (Soil Moisture and Ocean Salinity) radiometer measurements to estimate surface soil moisture over the Valencia Anchor Station (VAS), Valencia, Spain. The goal is to combine the respective attributes of the radar and radiometer observations to estimate soil moisture at a resolution of 3 km. The algorithm disaggregates the coarse resolution SMOS (15 km) radiometer brightness temperature product based on the spatial variation of the high resolution SMAP (3 km) radar backscatter. The disaggregation of the radiometer brightness temperature uses the radar backscatter spatial patterns within the radiometer footprint that are inferred from the radar measurements. For this reason the radar measurements within the radiometer footprint are scaled by parameters that are derived from the temporal fluctuations in the radar and radiometer measurements.

  10. SMAP Faraday Rotation

    NASA Technical Reports Server (NTRS)

    Le Vine, David

    2016-01-01

    Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).

  11. KSC-2015-1222

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – From left, John Bellardo, co-principal investigator Cubesat at California Polytechnic, San Luis Obispo, David Rider, GRIFEX principal investigator at Jet Propulsion Laboratory, Pasadena, California, and Dave Klumpar, Firebird-II principal investigator and director of the Space Science and Engineering Laboratory at Montana State University in Bozeman, Montana, discuss three Educational Launch of Nanosatellites ELaNa CubeSat that are being flown as auxiliary payloads on NASA's Soil Moisture Active Passive mission, or SMAP, with the audience of a NASA Social held for at Vandenberg Air Force Base in California. This NASA Social brought together mission scientists and engineers with an audience of 70 students, educators, social media managers, bloggers, photographers and videographers who were selected from a pool of 325 applicants from 45 countries to participate in launch activities and communicate their experience with social media followers. The SMAP mission is scheduled to launch from Vandenberg on Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  12. KSC-2014-3166

    NASA Image and Video Library

    2014-07-17

    VANDENBERG AIR FORCE BASE, Calif. – NASA's Soil Moisture Active Passive mission, or SMAP, is scheduled to launch in November 2014 from Space Launch Complex 2 on Vandenberg Air Force Base in California, seen here on a temperate, fog-free summer's day. A United Launch Alliance Delta II rocket will be used to deliver SMAP into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  13. Enhancing begetation productivity forecasting using remotely-sensed surface soil moisture retrievals

    USDA-ARS?s Scientific Manuscript database

    With the onset of data availability from the ESA Soil Moisture and Ocean Salinity (SMOS) mission (Kerr and Levine, 2008) and the expected 2015 launch of the NASA Soil Moisture Active and Passive (SMAP) mission (Entekhabi et al., 2010), the next five years should see a significant expansion in our ab...

  14. KSC-2014-3258

    NASA Image and Video Library

    2014-07-22

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is delivered to the Building 836 hangar on south Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  15. KSC-2014-3360

    NASA Image and Video Library

    2014-08-04

    VANDENBERG AIR FORCE BASE, Calif. – A crane transfers the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  16. KSC-2014-3350

    NASA Image and Video Library

    2014-08-04

    VANDENBERG AIR FORCE BASE, Calif. – Preparations are underway at Space Launch Complex 2 on Vandenberg Air Force Base in California for the arrival of the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  17. KSC-2015-1116

    NASA Image and Video Library

    2015-01-13

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is transported to Space Launch Complex 2 where it will be mated to a Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  18. KSC-2014-3580

    NASA Image and Video Library

    2014-08-04

    VANDENBERG AIR FORCE BASE, Calif. – A crane transfers the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Tony Vauccin, USAF

  19. KSC-2015-1115

    NASA Image and Video Library

    2015-01-13

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is transported to Space Launch Complex 2 where it will be mated to a Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  20. KSC-2015-1117

    NASA Image and Video Library

    2015-01-13

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is transported to Space Launch Complex 2 where it will be mated to a Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  1. KSC-2015-1131

    NASA Image and Video Library

    2015-01-13

    VANDENBERG AIR FORCE BASE, Calif. – The sun sets over the Pacific Ocean as seen from Vandenberg Air Force Base in California where NASA's Soil Moisture Active Passive mission, or SMAP, satellite is being prepared for liftoff from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  2. KSC-2015-1118

    NASA Image and Video Library

    2015-01-13

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is transported to Space Launch Complex 2 where it will be mated to a Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  3. Technical Report Series on Global Modeling and Data Assimilation. Volume 42; Soil Moisture Active Passive (SMAP) Project Calibration and Validation for the L4_C Beta-Release Data Product

    NASA Technical Reports Server (NTRS)

    Koster, Randal D. (Editor); Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima (Editor); Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas

    2015-01-01

    During the post-launch Cal/Val Phase of SMAP there are two objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements according to the Cal/Val timeline. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product specifically for the beta release. The beta-release version of the SMAP L4_C algorithms utilizes a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily NEE and component carbon fluxes, particularly vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (<10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape FT controls on GPP and Reco (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and underlying freeze/thaw and soil moisture constraints to these processes, 2) documenting primary connections between terrestrial water, energy and carbon cycles, and 3) improving understanding of terrestrial carbon sink activity in northern ecosystems.

  4. SMAP Takes a New Measure of Hurricane Matthew Winds

    NASA Image and Video Library

    2016-10-07

    NASA's SMAP radiometer instrument measured Hurricane Matthew's wind speeds at 4:52 a.m. PDT (7:52 a.m. EDT) at up to 132 miles per hour (59 meters per second). SMAP has excellent sensitivity to extreme winds, far beyond that of typical scatterometer instruments now in orbit. http://photojournal.jpl.nasa.gov/catalog/PIA21096

  5. Use of Radar Vegetation Index (RVI) in Passive Microwave Algorithms for Soil Moisture Estimates

    NASA Astrophysics Data System (ADS)

    Rowlandson, T. L.; Berg, A. A.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) satellite will provide a unique opportunity for the estimation of soil moisture by having simultaneous radar and radiometer measurements available. As with the Soil Moisture and Ocean Salinity (SMOS) satellite, the soil moisture algorithms will need to account for the contribution of vegetation to the brightness temperature. Global maps of vegetation volumetric water content (VWC) are difficult to obtain, and the SMOS mission has opted to estimate the optical depth of standing vegetation by using a relationship between the VWC and the leaf area index (LAI). LAI is estimated from optical remote sensing or through soil-vegetation-atmosphere transfer modeling. During the growing season, the VWC of agricultural crops can increase rapidly, and if cloud cover exists during an optical acquisition, the estimation of LAI may be delayed, resulting in an underestimation of the VWC and overestimation of the soil moisture. Alternatively, the radar vegetation index (RVI) has shown strong correlation and linear relationship with VWC for rice and soybeans. Using the SMAP radar to produce RVI values that are coincident to brightness temperature measurements may eliminate the need for LAI estimates. The SMAP Validation Experiment 2012 (SMAPVEX12) was a cal/val campaign for the SMAP mission held in Manitoba, Canada, during a 6-week period in June and July, 2012. During this campaign, soil moisture measurements were obtained for 55 fields with varying soil texture and vegetation cover. Vegetation was sampled from each field weekly to determine the VWC. Soil moisture measurements were taken coincident to overpasses by an aircraft carrying the Passive and Active L-band System (PALS) instrumentation. The aircraft flew flight lines at both high and low altitudes. The low altitude flight lines provided a footprint size approximately equivalent to the size of the SMAPVEX12 field sites. Of the 55 field sites, the low altitude flight lines provided

  6. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  7. Rapid Intensification of Hurricane Irma Seen in New SMAP Wind Images

    NASA Image and Video Library

    2017-09-05

    This pair of images shows ocean surface wind speeds for Hurricane Irma as observed at 5:26 a.m. EDT on Sept. 4, 2017 (top) and 24.5 hours later at 6:02 a.m. EDT on September 5th (bottom) by the radiometer instrument on NASA's Soil Moisture Active Passive (SMAP) satellite. Color indicates wind speed, with red being highest and blue lowest. Irma intensified from a Category 2 hurricane on Sept. 4 with observed wind speed of 106 miles per hour (47.5 meters per second) to a Category 5 hurricane on Sept. 5 with a maximum observed wind speed of 160 miles per hour (71.4 meters per second). https://photojournal.jpl.nasa.gov/catalog/PIA21939

  8. The Error Structure of the SMAP Single and Dual Channel Soil Moisture Retrievals

    NASA Astrophysics Data System (ADS)

    Dong, Jianzhi; Crow, Wade T.; Bindlish, Rajat

    2018-01-01

    Knowledge of the temporal error structure for remotely sensed surface soil moisture retrievals can improve our ability to exploit them for hydrologic and climate studies. This study employs a triple collocation analysis to investigate both the total variance and temporal autocorrelation of errors in Soil Moisture Active and Passive (SMAP) products generated from two separate soil moisture retrieval algorithms, the vertically polarized brightness temperature-based single-channel algorithm (SCA-V, the current baseline SMAP algorithm) and the dual-channel algorithm (DCA). A key assumption made in SCA-V is that real-time vegetation opacity can be accurately captured using only a climatology for vegetation opacity. Results demonstrate that while SCA-V generally outperforms DCA, SCA-V can produce larger total errors when this assumption is significantly violated by interannual variability in vegetation health and biomass. Furthermore, larger autocorrelated errors in SCA-V retrievals are found in areas with relatively large vegetation opacity deviations from climatological expectations. This implies that a significant portion of the autocorrelated error in SCA-V is attributable to the violation of its vegetation opacity climatology assumption and suggests that utilizing a real (as opposed to climatological) vegetation opacity time series in the SCA-V algorithm would reduce the magnitude of autocorrelated soil moisture retrieval errors.

  9. Going Up

    NASA Image and Video Library

    2015-01-21

    At Space Launch Complex 2 on Vandenberg Air Force Base in California, NASA Soil Moisture Active Passive SMAP mission satellite is lifted up the side of a mobile service tower for mating to its Delta II rocket.

  10. Evaluation of Radar Vegetation Indices for Vegetation Water Content Estimation Using Data from a Ground-Based SMAP Simulator

    NASA Technical Reports Server (NTRS)

    Srivastava, Prashant K.; O'Neill, Peggy; Cosh, Michael; Lang, Roger; Joseph, Alicia

    2015-01-01

    Vegetation water content (VWC) is an important component of microwave soil moisture retrieval algorithms. This paper aims to estimate VWC using L band active and passive radar/radiometer datasets obtained from a NASA ground-based Soil Moisture Active Passive (SMAP) simulator known as ComRAD (Combined Radar/Radiometer). Several approaches to derive vegetation information from radar and radiometer data such as HH, HV, VV, Microwave Polarization Difference Index (MPDI), HH/VV ratio, HV/(HH+VV), HV/(HH+HV+VV) and Radar Vegetation Index (RVI) are tested for VWC estimation through a generalized linear model (GLM). The overall analysis indicates that HV radar backscattering could be used for VWC content estimation with highest performance followed by HH, VV, MPDI, RVI, and other ratios.

  11. KSC-2014-3284

    NASA Image and Video Library

    2014-07-23

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is transported from the Building 836 hangar to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  12. KSC-2015-1114

    NASA Image and Video Library

    2015-01-08

    VANDENBERG AIR FORCE BASE, Calif. – Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, engineers and technicians place a protective cover over NASA's Soil Moisture Active Passive mission, or SMAP, satellite prior the spacecraft being transported to the launch pad. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: Jeremy Moore, USAF Photo Squadron

  13. KSC-2014-3578

    NASA Image and Video Library

    2014-08-04

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is hoisted into a vertical position for its transfer into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Tony Vauccin, USAF

  14. KSC-2014-3277

    NASA Image and Video Library

    2014-07-23

    VANDENBERG AIR FORCE BASE, Calif. – Technicians prepare to offload the first stage of a United Launch Alliance Delta II rocket following its arrival at NASA hangar 836 on Vandenberg Air Force Base in California. The launch vehicle will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  15. KSC-2014-3282

    NASA Image and Video Library

    2014-07-23

    VANDENBERG AIR FORCE BASE, Calif. – Technicians assist in offloading the first stage of a United Launch Alliance Delta II rocket following its arrival at NASA hangar 836 on Vandenberg Air Force Base in California. The launch vehicle will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  16. KSC-2014-3364

    NASA Image and Video Library

    2014-08-04

    VANDENBERG AIR FORCE BASE, Calif. – Workers guide the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, onto the launcher adjacent to the fixed umbilical tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  17. KSC-2014-3290

    NASA Image and Video Library

    2014-07-23

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, accomplishes some tight turns on its approach to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  18. KSC-2014-3276

    NASA Image and Video Library

    2014-07-23

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of a United Launch Alliance Delta II rocket arrives at NASA hangar 836 on Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  19. KSC-2014-3291

    NASA Image and Video Library

    2014-07-23

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, passes the mobile service tower at Space Launch Complex 2 on its way to the Horizontal Processing Facility on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  20. KSC-2014-3361

    NASA Image and Video Library

    2014-08-04

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is positioned in the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California in preparation for mating with the rocket's second stage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  1. KSC-2014-3351

    NASA Image and Video Library

    2014-08-04

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is readied for the short trip from the Horizontal Processing Facility to the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  2. KSC-2014-3356

    NASA Image and Video Library

    2014-08-04

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is elevated off its transporter into a vertical position for its move into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  3. KSC-2014-3278

    NASA Image and Video Library

    2014-07-23

    VANDENBERG AIR FORCE BASE, Calif. – A crane is positioned to offload the first stage of a United Launch Alliance Delta II rocket following its arrival at NASA hangar 836 on Vandenberg Air Force Base in California. The launch vehicle will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  4. KSC-2014-3577

    NASA Image and Video Library

    2014-08-04

    VANDENBERG AIR FORCE BASE, Calif. – A crane hoists the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, into a vertical position alongside the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Tony Vauccin, USAF

  5. KSC-2014-3357

    NASA Image and Video Library

    2014-08-04

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is hoisted into a vertical position for its move into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  6. KSC-2015-1112

    NASA Image and Video Library

    2015-01-08

    VANDENBERG AIR FORCE BASE, Calif. – Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, engineers and technicians place a protective cover over NASA's Soil Moisture Active Passive mission, or SMAP, satellite prior the spacecraft being transported to the launch pad. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: Jeremy Moore, USAF Photo Squadron

  7. KSC-2014-3355

    NASA Image and Video Library

    2014-08-04

    VANDENBERG AIR FORCE BASE, Calif. – Workers oversee the preparations to lift the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  8. KSC-2014-3275

    NASA Image and Video Library

    2014-07-23

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of a United Launch Alliance Delta II rocket arrives at NASA hangar 836 on Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  9. KSC-2014-3359

    NASA Image and Video Library

    2014-08-04

    VANDENBERG AIR FORCE BASE, Calif. – Workers steady the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, after it is lifted into a vertical position beside the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  10. KSC-2014-3279

    NASA Image and Video Library

    2014-07-23

    VANDENBERG AIR FORCE BASE, Calif. – A crane is used to offload the first stage of a United Launch Alliance Delta II rocket following its arrival at NASA hangar 836 on Vandenberg Air Force Base in California. The launch vehicle will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  11. KSC-2015-1113

    NASA Image and Video Library

    2015-01-08

    VANDENBERG AIR FORCE BASE, Calif. – Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, engineers and technicians place a protective cover over NASA's Soil Moisture Active Passive mission, or SMAP, satellite prior the spacecraft being transported to the launch pad. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: Jeremy Moore, USAF Photo Squadron

  12. Passive Thermal Control Challenges for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Rickman, Steven L.

    2004-01-01

    This slide presentation reviews the importance of developing passive thermal control for the future exploration missions envisioned in President Bush's call for human exploration of the Moon and Mars. Included in the presentation is a review of the conditions that make the thermal control very challenging on the Moon and Mars. With the future miniaturization of electronics components, power density and the associated challenges of electronics heat dissipation will provide new challenges. There is a challenge for improvement in modeling and analysis of thermal control systems, and for improved facilities to support testing of thermal-vacuum systems.

  13. KSC-2014-2842

    NASA Image and Video Library

    2014-06-03

    VANDENBERG AIR FORCE BASE, Calif. – Preparations are underway to move a section of the fairing for NASA's Soil Moisture Active Passive mission, or SMAP, onto a transportation cradle in the Building 836 high bay on south Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  14. KSC-2014-2833

    NASA Image and Video Library

    2014-06-03

    VANDENBERG AIR FORCE BASE, Calif. – Workers hoist the lid off the transportation trailer containing the fairing for NASA's Soil Moisture Active Passive mission, or SMAP, in the Building 836 high bay on Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  15. KSC-2014-2838

    NASA Image and Video Library

    2014-06-03

    VANDENBERG AIR FORCE BASE, Calif. – Workers lift a section of the fairing for NASA's Soil Moisture Active Passive mission, or SMAP, from a transportation trailer in the Building 836 high bay on Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  16. KSC-2014-2844

    NASA Image and Video Library

    2014-06-03

    VANDENBERG AIR FORCE BASE, Calif. – Workers move a section of the fairing for NASA's Soil Moisture Active Passive mission, or SMAP, from a hardware dolly toward a transportation cradle in the Building 836 high bay on Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  17. KSC-2015-1231

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The sun sets over the West Cost prior to the launch gantry being rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  18. KSC-2015-1230

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The sun sets over the West Cost prior to the launch gantry being rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  19. KSC-2015-1232

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The sun sets over the West Cost prior to the launch gantry being rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin

  20. KSC-2015-1226

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  1. KSC-2015-1236

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  2. KSC-2015-1227

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  3. KSC-2015-1228

    NASA Image and Video Library

    2015-01-29

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  4. KSC-2015-1225

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  5. KSC-2015-1235

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  6. KSC-2015-1238

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  7. KSC-2015-1234

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  8. KSC-2014-2840

    NASA Image and Video Library

    2014-06-03

    VANDENBERG AIR FORCE BASE, Calif. – Workers prepare to rotate a section of the fairing for NASA's Soil Moisture Active Passive mission, or SMAP, in a lifting device in the Building 836 high bay on Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  9. KSC-2014-2837

    NASA Image and Video Library

    2014-06-03

    VANDENBERG AIR FORCE BASE, Calif. – Workers prepare to lift the fairing for NASA's Soil Moisture Active Passive mission, or SMAP, from a transportation trailer in the Building 836 high bay on Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  10. KSC-2015-1224

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  11. KSC-2014-2832

    NASA Image and Video Library

    2014-06-03

    VANDENBERG AIR FORCE BASE, Calif. – The transportation trailer containing the fairing for NASA's Soil Moisture Active Passive mission, or SMAP, arrives in the Building 836 high bay on south Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  12. KSC-2014-2834

    NASA Image and Video Library

    2014-06-03

    VANDENBERG AIR FORCE BASE, Calif. – The lid is lifted from the transportation trailer containing the fairing for NASA's Soil Moisture Active Passive mission, or SMAP, in the Building 836 high bay on Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  13. KSC-2014-2836

    NASA Image and Video Library

    2014-06-03

    VANDENBERG AIR FORCE BASE, Calif. – The lid is removed from the transportation trailer containing the fairing for NASA's Soil Moisture Active Passive mission, or SMAP, in the Building 836 high bay on Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  14. KSC-2014-2843

    NASA Image and Video Library

    2014-06-03

    VANDENBERG AIR FORCE BASE, Calif. – A section of the fairing for NASA's Soil Moisture Active Passive mission, or SMAP, secured to a lifting device, glides across the floor of the Building 836 high bay on Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  15. KSC-2015-1223

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  16. KSC-2014-2841

    NASA Image and Video Library

    2014-06-03

    VANDENBERG AIR FORCE BASE, Calif. – Workers rotate a section of the fairing for NASA's Soil Moisture Active Passive mission, or SMAP, in a lifting device in the Building 836 high bay on Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  17. KSC-2014-3461

    NASA Image and Video Library

    2014-08-07

    VANDENBERG AIR FORCE BASE, Calif. – The half sections of the 10-foot-diameter fairing for NASA's Soil Moisture Active Passive mission, or SMAP, are delivered to the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for no earlier than November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  18. KSC-2014-3462

    NASA Image and Video Library

    2014-08-07

    VANDENBERG AIR FORCE BASE, Calif. – The half sections of the 10-foot-diameter fairing for NASA's Soil Moisture Active Passive mission, or SMAP, arrive at the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for no earlier than November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  19. KSC-2015-1229

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  20. KSC-2015-1233

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  1. KSC-2015-1237

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  2. KSC-2014-4457

    NASA Image and Video Library

    2014-11-07

    VANDENBERG AIR FORCE BASE, Calif. – NASA's Soil Moisture Active Passive, or SMAP, spacecraft is lifted from its workstand in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California during operations to determine its weight. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  3. KSC-2014-4455

    NASA Image and Video Library

    2014-11-07

    VANDENBERG AIR FORCE BASE, Calif. – Operations are underway to weigh NASA's Soil Moisture Active Passive, or SMAP, spacecraft in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  4. KSC-2014-4453

    NASA Image and Video Library

    2014-11-07

    VANDENBERG AIR FORCE BASE, Calif. – Operations are underway to weigh NASA's Soil Moisture Active Passive, or SMAP, spacecraft in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  5. KSC-2014-4454

    NASA Image and Video Library

    2014-11-07

    VANDENBERG AIR FORCE BASE, Calif. – Operations are underway to weigh NASA's Soil Moisture Active Passive, or SMAP, spacecraft in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  6. KSC-2014-4451

    NASA Image and Video Library

    2014-11-07

    VANDENBERG AIR FORCE BASE, Calif. – Preparations are underway to weigh NASA's Soil Moisture Active Passive, or SMAP, spacecraft in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  7. KSC-2014-4452

    NASA Image and Video Library

    2014-11-07

    VANDENBERG AIR FORCE BASE, Calif. – Preparations are underway to weigh NASA's Soil Moisture Active Passive, or SMAP, spacecraft in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  8. KSC-2014-4456

    NASA Image and Video Library

    2014-11-07

    VANDENBERG AIR FORCE BASE, Calif. – Operations are underway to weigh NASA's Soil Moisture Active Passive, or SMAP, spacecraft in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  9. KSC-2014-2835

    NASA Image and Video Library

    2014-06-03

    VANDENBERG AIR FORCE BASE, Calif. – A worker steadies the lid of the transportation trailer containing the fairing for NASA's Soil Moisture Active Passive mission, or SMAP, in the Building 836 high bay on Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  10. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; hide

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  11. Modelling the passive microwave signature from land surfaces: a review of recent results and application to the SMOS & SMAP soil moisture retrieval algorithms

    USDA-ARS?s Scientific Manuscript database

    Two passive microwave missions are currently operating at L-band to monitor surface soil moisture (SM) over continental surfaces. The SMOS sensor, based on an innovative interferometric technology enabling multi-angular signatures of surfaces to be measured, was launched in November 2009....

  12. KSC-2014-3161

    NASA Image and Video Library

    2014-07-14

    VANDENBERG AIR FORCE BASE, Calif. – The transportation trailer carrying the second stage, or upper stage, of a United Launch Alliance Delta II rocket backs into the Building 836 hangar on south Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit from Vandenberg's Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  13. KSC-2014-3324

    NASA Image and Video Library

    2014-07-23

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is transported from the Building 836 hangar to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/U.S. Air Force 30th Space Wing

  14. KSC-2014-3287

    NASA Image and Video Library

    2014-07-23

    VANDENBERG AIR FORCE BASE, Calif. – A worker is stationed on the transporter carrying the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, from the Building 836 hangar to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  15. KSC-2014-3576

    NASA Image and Video Library

    2014-08-04

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is raised off its transporter into a vertical position for its transfer into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Tony Vauccin, USAF

  16. KSC-2014-3186

    NASA Image and Video Library

    2014-07-14

    VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket arrives at the Horizontal Processing Facility near the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  17. KSC-2014-3326

    NASA Image and Video Library

    2014-07-23

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, crosses a railroad bridge on its move from the Building 836 hangar to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/U.S. Air Force 30th Space Wing

  18. KSC-2014-3160

    NASA Image and Video Library

    2014-07-14

    VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket arrives at the Building 836 hangar on south Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit from Vandenberg's Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  19. KSC-2014-3325

    NASA Image and Video Library

    2014-07-23

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, makes its way along the roadways on Vandenberg Air Force Base in California from the Building 836 hangar to the Horizontal Processing Facility at Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/U.S. Air Force 30th Space Wing

  20. KSC-2014-3178

    NASA Image and Video Library

    2014-07-14

    VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket begins its journey from Building 836 on south Vandenberg Air Force Base in California to the Horizontal Processing Facility at Space Launch Complex 2. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  1. KSC-2014-3363

    NASA Image and Video Library

    2014-08-04

    VANDENBERG AIR FORCE BASE, Calif. – The nozzle on the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, comes into view as the booster is lowered onto the launcher adjacent to the fixed umbilical tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  2. Surface Soil Moisture Memory Estimated from Models and SMAP Observations

    NASA Astrophysics Data System (ADS)

    He, Q.; Mccoll, K. A.; Li, C.; Lu, H.; Akbar, R.; Pan, M.; Entekhabi, D.

    2017-12-01

    Soil moisture memory(SMM), which is loosely defined as the time taken by soil to forget an anomaly, has been proved to be important in land-atmosphere interaction. There are many metrics to calculate the SMM timescale, for example, the timescale based on the time-series autocorrelation, the timescale ignoring the soil moisture time series and the timescale which only considers soil moisture increment. Recently, a new timescale based on `Water Cycle Fraction' (Kaighin et al., 2017), in which the impact of precipitation on soil moisture memory is considered, has been put up but not been fully evaluated in global. In this study, we compared the surface SMM derived from SMAP observations with that from land surface model simulations (i.e., the SMAP Nature Run (NR) provided by the Goddard Earth Observing System, version 5) (Rolf et al., 2014). Three timescale metrics were used to quantify the surface SMM as: T0 based on the soil moisture time series autocorrelation, deT0 based on the detrending soil moisture time series autocorrelation, and tHalf based on the Water Cycle Fraction. The comparisons indicate that: (1) there are big gaps between the T0 derived from SMAP and that from NR (2) the gaps get small for deT0 case, in which the seasonality of surface soil moisture was removed with a moving average filter; (3) the tHalf estimated from SMAP is much closer to that from NR. The results demonstrate that surface SMM can vary dramatically among different metrics, while the memory derived from land surface model differs from the one from SMAP observation. tHalf, with considering the impact of precipitation, may be a good choice to quantify surface SMM and have high potential in studies related to land atmosphere interactions. References McColl. K.A., S.H. Alemohammad, R. Akbar, A.G. Konings, S. Yueh, D. Entekhabi. The Global Distribution and Dynamics of Surface Soil Moisture, Nature Geoscience, 2017 Reichle. R., L. Qing, D.L. Gabrielle, A. Joe. The "SMAP_Nature_v03" Data

  3. Four Decades of Microwave Satellite Soil Moisture Observations: Product validation and inter-satellite comparisons

    NASA Astrophysics Data System (ADS)

    Lanka, K.; Pan, M.; Wanders, N.; Kumar, D. N.; Wood, E. F.

    2017-12-01

    The satellite based passive and active microwave sensors enhanced our ability to retrieve soil moisture at global scales. It has been almost four decades since the first passive microwave satellite sensor was launched in 1978. Since then soil moisture has gained considerable attention in hydro-meteorological, climate, and agricultural research resulting in the deployment of two dedicated missions in the last decade, SMOS and SMAP. Signifying the four decades of microwave remote sensing of soil moisture, this work aims to present an overview of how our knowledge in this field has improved in terms of the design of sensors and their accuracy of retrieving soil moisture. We considered daily coverage, temporal performance, and spatial performance to assess the accuracy of products corresponding to eight passive sensors (SMMR, SSM/I, TMI, AMSR-E, WindSAT, AMSR2, SMOS and SMAP), two active sensors (ERS-Scatterometer, MetOp-ASCAT), and one active/passive merged soil moisture product (ESA-CCI combined product), using 1058 ISMN in-situ stations and the VIC LSM soil moisture simulations (VICSM) over the CONUS. Our analysis indicated that the daily coverage has increased from 30 % during 1980s to 85 % (during non-winter months) with the launch of dedicated soil moisture missions SMOS and SMAP. The temporal validation of passive and active soil moisture products with the ISMN data place the range of median RMSE as 0.06-0.10 m3/m3 and median correlation as 0.20-0.68. When TMI, AMSR-E and WindSAT are evaluated, the AMSR-E sensor is found to have produced the brightness temperatures with better quality, given that these sensors are paired with same retrieval algorithm (LPRM). The ASCAT product shows a significant improvement during the temporal validation of retrievals compared to its predecessor ERS, thanks to enhanced sensor configuration. The SMAP mission, through its improved sensor design and RFI handling, shows a high retrieval accuracy under all-topography conditions

  4. Connecting NASA science and engineering with earth science applications

    USDA-ARS?s Scientific Manuscript database

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  5. Challenges in Interpreting and Validating Satellite Soil Moisture Information

    USDA-ARS?s Scientific Manuscript database

    Global soil moisture products are now being generated routinely using microwave-based satellite observing systems. These include the NASA Soil Moisture Active Passive (SMAP) mission. In order to fully exploit these observations they must be integrated with both in situ measurements and model-based e...

  6. Precipitation estimation using L-Band and C-Band soil moisture retrievals

    USDA-ARS?s Scientific Manuscript database

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterome...

  7. Does NASA SMAP Improve the Accuracy of Power Outage Models?

    NASA Astrophysics Data System (ADS)

    Quiring, S. M.; McRoberts, D. B.; Toy, B.; Alvarado, B.

    2016-12-01

    Electric power utilities make critical decisions in the days prior to hurricane landfall that are primarily based on the estimated impact to their service area. For example, utilities must determine how many repair crews to request from other utilities, the amount of material and equipment they will need to make repairs, and where in their geographically expansive service area to station crews and materials. Accurate forecasts of the impact of an approaching hurricane within their service area are critical for utilities in balancing the costs and benefits of different levels of resources. The Hurricane Outage Prediction Model (HOPM) are a family of statistical models that utilize predictions of tropical cyclone windspeed and duration of strong winds, along with power system and environmental variables (e.g., soil moisture, long-term precipitation), to forecast the number and location of power outages. This project assesses whether using NASA SMAP soil moisture improves the accuracy of power outage forecasts as compared to using model-derived soil moisture from NLDAS-2. A sensitivity analysis is employed since there have been very few tropical cyclones making landfall in the United States since SMAP was launched. The HOPM is used to predict power outages for 13 historical tropical cyclones and the model is run using twice, once with NLDAS soil moisture and once with SMAP soil moisture. Our results demonstrate that using SMAP soil moisture can have a significant impact on power outage predictions. SMAP has the potential to enhance the accuracy of power outage forecasts. Improved outage forecasts reduce the duration of power outages which reduces economic losses and accelerates recovery.

  8. Azimuthal Signature of Coincidental Brightness Temperature and Normalized Radar Cross-Section Obtained Using Airborne PALS Instrument

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Kim, Seungbum; Yueh, Simon; Cosh, Mike; Jackson, Tom; Njoku, Eni

    2010-01-01

    Coincidental airborne brightness temperature (TB) and normalized radar-cross section (NRCS) measurements were carried out with the PALS (Passive and Active L- and S-band) instrument in the SMAPVEX08 (SMAP Validation Experiment 2008) field campaign. This paper describes results obtained from a set of flights which measured a field in 45(sup o) steps over the azimuth angle. The field contained mature soy beans with distinct row structure. The measurement shows that both TB and NRCS experience modulation effects over the azimuth as expected based on the theory. The result is useful in development and validation of land surface parameter forward models and retrieval algorithms, such as the soil moisture algorithm for NASA's SMAP (Soil Moisture Active and Passive) mission. Although the footprint of the SMAP will not be sensitive to the small resolution scale effects as the one presented in this paper, it is nevertheless important to understand the effects at smaller scale.

  9. Comparison of SMOS and SMAP Soil Moisture Retrieval Approaches Using Tower-based Radiometer Data over a Vineyard Field

    NASA Technical Reports Server (NTRS)

    Miernecki, Maciej; Wigneron, Jean-Pierre; Lopez-Baeza, Ernesto; Kerr, Yann; DeJeu, Richard; DeLannoy, Gabielle J. M.; Jackson, Tom J.; O'Neill, Peggy E.; Shwank, Mike; Moran, Roberto Fernandez; hide

    2014-01-01

    The objective of this study was to compare several approaches to soil moisture (SM) retrieval using L-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30-60). Based on a three year data set (2010-2012), several SM retrieval approaches developed for spaceborne missions including AMSR-E (Advanced Microwave Scanning Radiometer for EOS), SMAP (Soil Moisture Active Passive) and SMOS were compared. The approaches include: the Single Channel Algorithm (SCA) for horizontal (SCA-H) and vertical (SCA-V) polarizations, the Dual Channel Algorithm (DCA), the Land Parameter Retrieval Model (LPRM) and two simplified approaches based on statistical regressions (referred to as 'Mattar' and 'Saleh'). Time series of vegetation indices required for three of the algorithms (SCA-H, SCA-V and Mattar) were obtained from MODIS observations. The SM retrievals were evaluated against reference SM values estimated from a multiangular 2-Parameter inversion approach. The results obtained with the current base line algorithms developed for SMAP (SCA-H and -V) are in very good agreement with the reference SM data set derived from the multi-angular observations (R2 around 0.90, RMSE varying between 0.035 and 0.056 m3m3 for several retrieval configurations). This result showed that, provided the relationship between vegetation optical depth and a remotely-sensed vegetation index can be calibrated, the SCA algorithms can provide results very close to those obtained from multi-angular observations in this study area. The approaches based on statistical regressions provided similar results and the

  10. Evaluation of the tau-omega model for passive microwave soil moisture retrieval using SMAPEx data sets

    USDA-ARS?s Scientific Manuscript database

    The parameters used for passive soil moisture retrieval algorithms reported in the literature encompass a wide range, leading to a large uncertainty in the applicability of those values. This paper presents an evaluation of the proposed parameterizations of the tau-omega model from 1) SMAP ATBD for ...

  11. Precipitation Estimation Using L-Band and C-Band Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Brocca, Luca; Crow, Wade T.; Burgin, Mariko S.; De Lannoy, Gabrielle J. M.

    2016-01-01

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterometer (ASCAT) mission. The precipitation estimates so obtained are evaluated against in situ (gauge-based) precipitation observations from across the globe. The precipitation estimation skill achieved using the L-band SMAP and SMOS data sets is higher than that obtained with the C-band product, as might be expected given that L-band is sensitive to a thicker layer of soil and thereby provides more information on the response of soil moisture to precipitation. The square of the correlation coefficient between the SMAP-based precipitation estimates and the observations (for aggregations to approximately100 km and 5 days) is on average about 0.6 in areas of high rain gauge density. Satellite missions specifically designed to monitor soil moisture thus do provide significant information on precipitation variability, information that could contribute to efforts in global precipitation estimation.

  12. KSC-2014-3163

    NASA Image and Video Library

    2014-07-14

    VANDENBERG AIR FORCE BASE, Calif. – Preparations are underway to lift the second stage, or upper stage, of a United Launch Alliance Delta II rocket from its transportation trailer in the Building 836 hangar on south Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit from Vandenberg's Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  13. KSC-2014-3180

    NASA Image and Video Library

    2014-07-14

    VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket winds its way along the roads from Building 836 to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  14. KSC-2014-3184

    NASA Image and Video Library

    2014-07-14

    VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket arrives at Space Launch Complex 2 on Vandenberg Air Force Base in California where it will undergo preparations for launch in the Horizontal Processing Facility. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  15. KSC-2014-3179

    NASA Image and Video Library

    2014-07-14

    VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket is on its way from Building 836 on south Vandenberg Air Force Base in California to the Horizontal Processing Facility at Space Launch Complex 2. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  16. KSC-2014-3182

    NASA Image and Video Library

    2014-07-14

    VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket is towed along the roadway from Building 836 to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  17. KSC-2014-3181

    NASA Image and Video Library

    2014-07-14

    VANDENBERG AIR FORCE BASE, Calif. – A security detail accompanies the second stage, or upper stage, of a United Launch Alliance Delta II rocket on its move from Building 836 to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  18. KSC-2014-3288

    NASA Image and Video Library

    2014-07-23

    VANDENBERG AIR FORCE BASE, Calif. – The U.S. Air Force 30th Security Forces Squadron is responsible for the safety of the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, on its move from the Building 836 hangar to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  19. KSC-2014-3162

    NASA Image and Video Library

    2014-07-14

    VANDENBERG AIR FORCE BASE, Calif. – The lid is removed from the transportation trailer containing the second stage, or upper stage, of a United Launch Alliance Delta II rocket in the Building 836 hangar on south Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit from Vandenberg's Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  20. KSC-2014-2872

    NASA Image and Video Library

    2014-06-03

    VANDENBERG AIR FORCE BASE, Calif. – The lid is removed from the transportation trailer containing a half section of the 10-foot-diameter fairing for NASA's Soil Moisture Active Passive mission, or SMAP, in the Building 836 high bay on south Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/U.S. Air Force 30th Space Wing

  1. KSC-2014-3460

    NASA Image and Video Library

    2014-08-07

    VANDENBERG AIR FORCE BASE, Calif. – Preparations are underway to transport a half section of the 10-foot-diameter fairing for NASA's Soil Moisture Active Passive mission, or SMAP, from the Horizontal Integration Facility to the nearby mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for no earlier than November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  2. KSC-2014-2873

    NASA Image and Video Library

    2014-06-03

    VANDENBERG AIR FORCE BASE, Calif. – Workers prepare to lift a half section of the 10-foot-diameter fairing for NASA's Soil Moisture Active Passive mission, or SMAP, from a transportation trailer in the Building 836 high bay on south Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/U.S. Air Force 30th Space Wing

  3. KSC-2014-2874

    NASA Image and Video Library

    2014-06-03

    VANDENBERG AIR FORCE BASE, Calif. – Workers attach a half section of the 10-foot-diameter fairing for NASA's Soil Moisture Active Passive mission, or SMAP, to an overhead crane to lift it from a transportation trailer in the Building 836 high bay on south Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/U.S. Air Force 30th Space Wing

  4. KSC-2014-3471

    NASA Image and Video Library

    2014-08-07

    VANDENBERG AIR FORCE BASE, Calif. – A half section of the 10-foot-diameter fairing for NASA's Soil Moisture Active Passive mission, or SMAP, is transferred into the environmental enclosure at the top of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California where it will be stowed until arrival of the spacecraft. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for no earlier than November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  5. KSC-2014-3470

    NASA Image and Video Library

    2014-08-07

    VANDENBERG AIR FORCE BASE, Calif. – A half section of the 10-foot-diameter fairing for NASA's Soil Moisture Active Passive mission, or SMAP, is hoisted to the top of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California where it will be transferred into the environmental enclosure and stowed until arrival of the spacecraft. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for no earlier than November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  6. SoilSCAPE in-Situ Observations of Soil Moisture for SMAP Validation: Pushing the Envelopes of Spatial Coverage and Energy Efficiency in Sparse Wireless Sensor Networks (Invited)

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A.; Clewley, D.; Akbar, R.; Entekhabi, D.

    2013-12-01

    Soil Moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) is a wireless in-situ sensor network technology, developed under the support of NASA ESTO/AIST program, for multi-scale validation of soil moisture retrievals from the Soil Moisture Active and Passive (SMAP) mission. The SMAP sensor suite is expected to produce soil moisture retrievals at 3 km scale from the radar instrument, at 36 km from the radiometer, and at 10 km from the combination of the two sensors. To validate the retrieved soil moisture maps at any of these scales, it is necessary to perform in-situ observations at multiple scales (ten, hundreds, and thousands of meters), representative of the true spatial variability of soil moisture fields. The most recent SoilSCAPE network, deployed in the California central valley, has been designed, built, and deployed to accomplish this goal, and is expected to become a core validation site for SMAP. The network consists of up to 150 sensor nodes, each comprised of 3-4 soil moisture sensors at various depths, deployed over a spatial extent of 36 km by 36 km. The network contains multiple sub-networks, each having up to 30 nodes, whose location is selected in part based on maximizing the land cover diversity within the 36 km cell. The network has achieved unprecedented energy efficiency, longevity, and spatial coverage using custom-designed hardware and software protocols. The network architecture utilizes a nested strategy, where a number of end devices (EDs) communicate to a local coordinator (LC) using our recently developed hardware with ultra-efficient circuitry and best-effort-timeslot allocation communication protocol. The LCs in turn communicates with the base station (BS) via text messages and a new compression scheme. The hardware and software technologies required to implement this latest deployment of the SoilSCAPE network will be presented in this paper, and several data sets resulting from the measurements will be shown. The data are

  7. A Data-Driven Approach for Daily Real-Time Estimates and Forecasts of Near-Surface Soil Moisture

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Reichle, Rolf H.; Mahanama, Sarith P. P.

    2017-01-01

    NASAs Soil Moisture Active Passive (SMAP) mission provides global surface soil moisture retrievals with a revisit time of 2-3 days and a latency of 24 hours. Here, to enhance the utility of the SMAP data, we present an approach for improving real-time soil moisture estimates (nowcasts) and for forecasting soil moisture several days into the future. The approach, which involves using an estimate of loss processes (evaporation and drainage) and precipitation to evolve the most recent SMAP retrieval forward in time, is evaluated against subsequent SMAP retrievals themselves. The nowcast accuracy over the continental United States (CONUS) is shown to be markedly higher than that achieved with the simple yet common persistence approach. The accuracy of soil moisture forecasts, which rely on precipitation forecasts rather than on precipitation measurements, is reduced relative to nowcast accuracy but is still significantly higher than that obtained through persistence.

  8. Dynamic Modeling of the SMAP Rotating Flexible Antenna

    NASA Technical Reports Server (NTRS)

    Nayeri, Reza D.

    2012-01-01

    Dynamic model development in ADAMS for the SMAP project is explained: The main objective of the dynamic models are for pointing error assessment, and the control/stability margin requirement verifications

  9. Smap Soil Moisture Data Assimilation for the Continental United States and Eastern Africa

    NASA Astrophysics Data System (ADS)

    Blankenship, C. B.; Case, J.; Zavodsky, B.; Crosson, W. L.

    2016-12-01

    The NASA Short-Term Prediction Research and Transition (SPoRT) Center at Marshall Space Flight Center manages near-real-time runs of the Noah Land Surface Model within the NASA Land Information System (LIS) over Continental U.S. (CONUS) and Eastern Africa domains. Soil moisture products from the CONUS model run are used by several NOAA/National Weather Service Weather Forecast Offices for flood and drought situational awareness. The baseline LIS configuration is the Noah model driven by atmospheric and combined radar/gauge precipitation analyses, and input satellite-derived real-time green vegetation fraction on a 3-km grid for the CONUS. This configuration is being enhanced by adding the assimilation of Level 2 Soil Moisture Active/Passive (SMAP) soil moisture retrievals in a parallel run beginning on 1 April 2015. Our implementation of SMAP assimilation includes a cumulative distribution function (CDF) matching approach that aggregates points with similar soil types. This method allows creation of robust CDFs with a short data record, and also permits the correction of local anomalies that may arise from poor forcing data (e.g., quality-control problems with rain gauges). Validation results using in situ soil monitoring networks in the CONUS are shown, with comparisons to the baseline SPoRT-LIS run. Initial results are also presented from a modeling run in eastern Africa, forced by Integrated Multi-satellitE Retrievals for GPM (IMERG) precipitation data. Strategies for spatial downscaling and for dealing with effective depth of the retrieval product are also discussed.

  10. Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury.

    PubMed

    Krebs, Danny J; Novo-Gradac, Anne-Marie; Li, Steven X; Lindauer, Steven J; Afzal, Robert S; Yu, Anthony W

    2005-03-20

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter, an instrument on the Mercury Surface, Space Environment, Geochemistry, and Ranging mission to the planet Mercury. The laser achieves 5.4% efficiency with a near-diffraction-limited beam. It passed all space-flight environmental tests at subsystem, instrument, and satellite integration testing and successfully completes a postlaunch aliveness check en route to Mercury. The laser design draws on a heritage of previous laser altimetry missions, specifically the Ice Cloud and Elevation Satellite and the Mars Global Surveyor, but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  11. KSC-2015-1262

    NASA Image and Video Library

    2015-01-31

    VANDENBERG AIR FORCE BASE, Calif. – Scott Higginbotham, NASA mission manager for Educational Launch of Nanosatellites, or ELaNa-X, at the Kennedy Space Center in Florida, participates in a news conference at Vandenberg Air Force Base in California, following NASA's successful launch of the Soil Moisture Active Passive satellite, or SMAP, on its mission to study the Earth's soil moisture. To learn more about ELaNa, visit http://www.nasa.gov/mission_pages/smallsats/elana. Photo credit: NASA/Kim Shiflett

  12. KSC-2014-3164

    NASA Image and Video Library

    2014-07-14

    VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket and the transporter to which it is attached are lifted out of a transportation trailer in the Building 836 hangar on south Vandenberg Air Force Base in California. The stage will be moved to the Horizontal Integration Facility at Space Launch Complex 2 for further processing. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  13. KSC-2014-3615

    NASA Image and Video Library

    2014-08-20

    VANDENBERG AIR FORCE BASE, Calif. – The second stage of the Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is transferred into the top of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to install the second stage atop the rocket's first stage. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for no earlier than November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  14. KSC-2014-3496

    NASA Image and Video Library

    2014-08-04

    VANDENBERG AIR FORCE BASE, Calif. – The Delta II interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, is ready to be lifted into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. A United Launch Alliance Delta II rocket will loft SMAP into orbit. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  15. Compact, Passively Q-Switched Nd:YAG Laser for the MESSENGER Mission to the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Krebs, Danny J.; Novo-Gradac, Anne-Marie; Li, Steven X.; Lindauer, Steven J.; Afzal, Robert S.; Yu, Antony

    2004-01-01

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter (MLA) instrument which is an instrument on the MESSENGER mission to the planet Mercury. The laser achieves 5.4 percent efficiency with a near diffraction limited beam. It has passed all space flight environmental tests at system, instrument, and satellite integration. The laser design draws on a heritage of previous laser altimetry missions, specifically ISESAT and Mars Global Surveyor; but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  16. Combined active and passive microwave remote sensing of soil moisture for vegetated surfaces at L-band

    USDA-ARS?s Scientific Manuscript database

    The distorted Born approximation (DBA) combined with the numerical solutions of Maxwell equations (NMM3D) has been used for the radar backscattering model for the SMAP mission. The models for vegetated surfaces such as wheat, grass, soybean and corn have been validated with the Soil Moisture Active ...

  17. SMAP Level 4 Surface and Root Zone Soil Moisture

    NASA Technical Reports Server (NTRS)

    Reichle, R.; De Lannoy, G.; Liu, Q.; Ardizzone, J.; Kimball, J.; Koster, R.

    2017-01-01

    The SMAP Level 4 soil moisture (L4_SM) product provides global estimates of surface and root zone soil moisture, along with other land surface variables and their error estimates. These estimates are obtained through assimilation of SMAP brightness temperature observations into the Goddard Earth Observing System (GEOS-5) land surface model. The L4_SM product is provided at 9 km spatial and 3-hourly temporal resolution and with about 2.5 day latency. The soil moisture and temperature estimates in the L4_SM product are validated against in situ observations. The L4_SM product meets the required target uncertainty of 0.04 m(exp. 3)m(exp. -3), measured in terms of unbiased root-mean-square-error, for both surface and root zone soil moisture.

  18. Infusion of SMAP Data into Offline and Coupled Models: Evaluation, Calibration, and Assimilation

    NASA Astrophysics Data System (ADS)

    Lawston, P.; Santanello, J. A., Jr.; Dennis, E. J.; Kumar, S.

    2017-12-01

    The impact of the land surface on the water and energy cycle is modulated by its coupling to the planetary boundary layer (PBL), and begins at the local scale. A core component of the local land-atmosphere coupling (LoCo) effort requires understanding the `links in the chain' between soil moisture and precipitation, most notably through surface heat fluxes and PBL evolution. To date, broader (i.e. global) application of LoCo diagnostics has been limited by observational data requirements of the coupled system (and in particular, soil moisture) that are typically only met during localized, short-term field campaigns. SMAP offers, for the first time, the ability to map high quality, near-surface soil moisture globally every few days at a spatial resolution comparable to current modeling efforts. As a result, there are numerous potential avenues for SMAP model-data fusion that can be explored in the context of improving understanding of L-A interaction and NWP. In this study, we assess multiple points of intersection of SMAP products with offline and coupled models and evaluate impacts using process-level diagnostics. Results will inform upon the importance of high-resolution soil moisture mapping for improved coupled prediction and model development, as well as reconciling differences in modeled, retrieved, and measured soil moisture. Specifically, NASA model (LIS, NU-WRF) and observation (SMAP, NLDAS-2) products are combined with in-situ standard and IOP measurements (soil moisture, flux, and radiosonde) over the ARM-SGP. An array of land surface model spinups (via LIS-Noah) are performed with varying atmospheric forcing, greenness fraction, and soil layering permutations. Calibration of LIS-Noah soil hydraulic parameters is then performed using an array of in-situ soil moisture and flux and SMAP products. In addition, SMAP assimilation is performed in LIS-Noah both at the scale of the observation (36 and 9km) and the model grid (1km). The focus is on the

  19. Aquarius Active-Passive RFI Environment at L-Band

    NASA Technical Reports Server (NTRS)

    Le Vine, David M.; De Matthaeis, Paolo

    2014-01-01

    Active/Passive instrument combinations (i.e., radiometer and radar) are being developed at L-band for remote sensing of sea surface salinity and soil moisture. Aquarius is already in orbit and SMAP is planned for launch in the Fall of 2014. Aquarius has provided for the first time a simultaneous look at the Radio Frequency Interference (RFI) environment from space for both active and passive instruments. The RFI environment for the radiometer observations is now reasonably well known and examples from Aquarius are presented in this manuscript that show that RFI is an important consideration for the scatterometer as well. In particular, extensive areas of the USA, Europe and Asia exhibit strong RFI in both the radiometer band at 1.41 GHz and in the band at 1.26 GHz employed by the Aquarius scatterometer. Furthermore, in areas such as the USA, where RFI at 1.4 GHz is relatively well controlled, RFI in the scatterometer band maybe the limiting consideration for the operation of combination active/passive instruments.

  20. Using SMAP data to improve drought early warning over the US Great Plains

    NASA Astrophysics Data System (ADS)

    Fu, R.; Fernando, N.; Tang, W.

    2015-12-01

    A drought prone region such as the Great Plains of the United States (US GP) requires credible and actionable drought early warning. Such information cannot simply be extracted from available climate forecasts because of their large uncertainties at regional scales, and unclear connections to the needs of the decision makers. In particular, current dynamic seasonal predictions and climate projections, such as those produced by the NOAA North American Multi-Model Ensemble experiment (NMME) are much more reliable for winter and spring than for the summer season for the US GP. To mitigate the weaknesses of dynamic prediction/projections, we have identified three key processes behind the spring-to-summer dry memory through observational studies, as the scientific basis for a statistical drought early warning system. This system uses percentile soil moisture anomalies in spring as a key input to provide a probabilistic summer drought early warning. The latter outperforms the dynamic prediction over the US Southern Plains and has been used by the Texas state water agency to support state drought preparedness. A main source of uncertainty for this drought early warning system is the soil moisture input obtained from the NOAA Climate Forecasting System (CFS). We are testing use of the beta version of NASA Soil Moisture Active Passive (SMAP) soil moisture data, along with the Soil Moisture and Ocean Salinity (SMOS), and the long-term Essential Climate Variable Soil Moisture (ECV-SM) soil moisture data, to reduce this uncertainty. Preliminary results based on ECV-SM suggests satellite based soil moisture data could improve early warning of rainfall anomalies over the western US GP with less dense vegetation. The skill degrades over the eastern US GP where denser vegetation is found. We evaluate our SMAP-based drought early warning for 2015 summer against observations.

  1. Surface soil moisture retrieval using the L-band synthetic aperture radar onboard the Soil Moisture Active Passive satellite and evaluation at core validation sites

    USDA-ARS?s Scientific Manuscript database

    This paper evaluates the retrieval of soil moisture in the top 5-cm layer at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Surface soil moisture ...

  2. KSC-2014-3333

    NASA Image and Video Library

    2014-07-31

    VANDENBERG AIR FORCE BASE, Calif. – The Delta II interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, is lowered onto the flatbed of the truck that will transport it from the Building 836 hangar on south Vandenberg Air Force Base in California to the pad. A United Launch Alliance Delta II rocket will loft SMAP into orbit from Vandenberg's Space Launch Complex 2. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  3. KSC-2014-3171

    NASA Image and Video Library

    2014-06-20

    VANDENBERG AIR FORCE BASE, Calif. – Workers prepare to lift the canister containing the interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, from its transportation trailer in the high bay of the Building 836 hangar on south Vandenberg Air Force Base in California. A United Launch Alliance Delta II rocket will loft SMAP into orbit from Vandenberg's Space Launch Complex 2. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  4. KSC-2014-3169

    NASA Image and Video Library

    2014-06-20

    VANDENBERG AIR FORCE BASE, Calif. – As the cover of the transportation trailer is lifted in the high bay of the Building 836 hangar on south Vandenberg Air Force Base in California, the canister containing the interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, comes into view. A United Launch Alliance Delta II rocket will loft SMAP into orbit from Vandenberg's Space Launch Complex 2. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  5. KSC-2014-3172

    NASA Image and Video Library

    2014-06-20

    VANDENBERG AIR FORCE BASE, Calif. – The canister containing the interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, is lifted out of its transportation trailer in the high bay of the Building 836 hangar on south Vandenberg Air Force Base in California. A United Launch Alliance Delta II rocket will loft SMAP into orbit from Vandenberg's Space Launch Complex 2. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  6. KSC-2014-3332

    NASA Image and Video Library

    2014-07-31

    VANDENBERG AIR FORCE BASE, Calif. – The Delta II interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, glides in a vertical position across the Building 836 hangar on south Vandenberg Air Force Base in California toward the truck that will transport it to the pad. A United Launch Alliance Delta II rocket will loft SMAP into orbit from Vandenberg's Space Launch Complex 2. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  7. KSC-2014-3334

    NASA Image and Video Library

    2014-07-31

    VANDENBERG AIR FORCE BASE, Calif. – Workers secure the Delta II interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, onto the flatbed of the truck that will transport it to the pad from the Building 836 hangar on south Vandenberg Air Force Base in California. A United Launch Alliance Delta II rocket will loft SMAP into orbit from Vandenberg's Space Launch Complex 2. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  8. KSC-2014-3502

    NASA Image and Video Library

    2014-08-04

    VANDENBERG AIR FORCE BASE, Calif. – The Delta II interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, is transferred into the environmental enclosure in the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Processing of the United Launch Alliance Delta II rocket that will loft SMAP into orbit is underway at the pad. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  9. KSC-2014-3257

    NASA Image and Video Library

    2014-07-16

    VANDENBERG AIR FORCE BASE, Calif. – The nozzle has been installed on the second stage of the United Launch Alliance Delta II rocket in the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. The Delta II will be used to loft NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  10. Enhancements and Evolution of the Real Time Mission Monitor

    NASA Technical Reports Server (NTRS)

    Goodman, Michael; Blakeslee, Richard; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn

    2008-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. We have received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and

  11. Enhancements and Evolution of the Real Time Mission Monitor

    NASA Astrophysics Data System (ADS)

    Goodman, M.; Blakeslee, R.; Hardin, D.; Hall, J.; He, Y.; Regner, K.

    2008-12-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual earth application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. RTMM has received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and

  12. Analysis of in situ resources for the Soil Moisture Active Passive Validation Experiments in 2015 and 2016

    NASA Astrophysics Data System (ADS)

    Cosh, M. H.; Jackson, T. J.; Colliander, A.; Bindlish, R.; McKee, L.; Goodrich, D. C.; Prueger, J. H.; Hornbuckle, B. K.; Coopersmith, E. J.; Holifield Collins, C.; Smith, J.

    2016-12-01

    With the launch of the Soil Moisture Active Passive Mission (SMAP) in 2015, a new era of soil moisture monitoring was begun. Soil moisture is available on a near daily basis at a 36 km resolution for the globe. But this dataset is only as valuable if its products are accurate and reliable. Therefore, in order to demonstrate the accuracy of the soil moisture product, NASA enacted an extensive calibration and validation program with many in situ soil moisture networks contributing data across a variety of landscape regimes. However, not all questions can be answered by these networks. As a result, two intensive field experiments were executed to provide more detailed reference points for calibration and validation. Multi-week field campaigns were conducted in Arizona and Iowa at the USDA Agricultural Research Service Walnut Gulch and South Fork Experimental Watersheds, respectively. Aircraft observations were made to provide a high resolution data product. Soil moisture, soil roughness and vegetation data were collected at high resolution to provide a downscaled dataset to compare against aircraft and satellite estimates.

  13. Does serotonin-modulating anticonsolidation protein (SMAP) influence the choice of turning direction in carps, Cyprinus carpio, in a T-maze?

    PubMed

    Garina, D V; Nepomnyashchikh, V A; Mekhtiev, A A

    2016-08-01

    Serotonin-modulating anticonsolidation protein (SMAP) can impair the formation of memory traces in mammals and fish. We have studied the influence of SMAP on behavioral lateralization of juvenile carps Cyprinus carpio in a T-maze without food reinforcement in three experimental groups (n = 8 each): (1) negative control (intact animals); (2) experimental group (fish injected ICV with SMAP; 2 μl, 1.2 mg ml(-1)) and (3) active control group (fish injected ICV with inactivated SMAP). The behavioral lateralization of carps was observed on the 1st, 2nd, 3rd and 6th days after the injections. In each observation session, a fish was placed five times in a start chamber of the T-maze. The direction of the turn upon leaving the start chamber, as well as the latency from the opening of start chamber flap to the fish's turn was registered. The number of right turns (of all five turns observed during the session) was a criterion of lateralization. It was found that carps have no inherent preference for turning left or right. The SMAP injection did not influence the choice of turning direction, but increases latency values insignificantly. The results are important for the correct interpretation and clarification of data reporting the role of SMAP in training and formation of spatial memory of fish in a maze.

  14. Parameterization of L-, C- and X-band Radiometer-based Soil Moisture Retrieval Algorithm Using In-situ Validation Sites

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Colliander, A.; Burgin, M. S.; Walker, J. P.; Chae, C. S.; Dinnat, E.; Cosh, M. H.; Caldwell, T. G.

    2017-12-01

    Passive microwave remote sensing has become an important technique for global soil moisture estimation over the past three decades. A number of missions carrying sensors at different frequencies that are capable for soil moisture retrieval have been launched. Among them, there are Japan Aerospace Exploration Agency's (JAXA's) Advanced Microwave Scanning Radiometer-EOS (AMSR-E) launched in May 2002 on the National Aeronautics and Space Administration (NASA) Aqua satellite (ceased operation in October 2011), European Space Agency's (ESA's) Soil Moisture and Ocean Salinity (SMOS) mission launched in November 2009, JAXA's Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the GCOM-W satellite launched in May 2012, and NASA's Soil Moisture Active Passive (SMAP) mission launched in January 2015. Therefore, there is an opportunity to develop a consistent inter-calibrated long-term soil moisture data record based on the availability of these four missions. This study focuses on the parametrization of the tau-omega model at L-, C- and X-band using the brightness temperature (TB) observations from the four missions and the in-situ soil moisture and soil temperature data from core validation sites across various landcover types. The same ancillary data sets as the SMAP baseline algorithm are applied for retrieval at different frequencies. Preliminary comparison of SMAP and AMSR2 TB observations against forward-simulated TB at the Yanco site in Australia showed a generally good agreement with each other and higher correlation for the vertical polarization (R=0.96 for L-band and 0.93 for C- and X-band). Simultaneous calibrations of the vegetation parameter b and roughness parameter h at both horizontal and vertical polarizations are also performed. Finally, a set of model parameters for successfully retrieving soil moisture at different validation sites at L-, C- and X-band respectively are presented. The research described in this paper is supported by the Jet Propulsion

  15. KSC-2014-3255

    NASA Image and Video Library

    2014-07-16

    VANDENBERG AIR FORCE BASE, Calif. – It takes teamwork to lift the nozzle for the second stage of a United Launch Alliance Delta II rocket from its work stand in the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. The Delta II will be used to loft NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  16. Generating a global soil evaporation dataset using SMAP soil moisture data to estimate components of the surface water balance

    NASA Astrophysics Data System (ADS)

    Carbone, E.; Small, E. E.; Badger, A.; Livneh, B.

    2016-12-01

    Evapotranspiration (ET) is fundamental to the water, energy and carbon cycles. However, our ability to measure ET and partition the total flux into transpiration and evaporation from soil is limited. This project aims to generate a global, observationally-based soil evaporation dataset (E-SMAP): using SMAP surface soil moisture data in conjunction with models and auxiliary observations to observe or estimate each component of the surface water balance. E-SMAP will enable a better understanding of water balance processes and contribute to forecasts of water resource availability. Here we focus on the flux between the soil surface and root zone layers (qbot), which dictates the proportion of water that is available for soil evaporation. Any water that moves from the surface layer to the root zone contributes to transpiration or groundwater recharge. The magnitude and direction of qbot are driven by gravity and the gradient in matric potential. We use a highly discretized Richards Equation-type model (e.g. Hydrus 1D software) with meteorological forcing from the North American Land Data Assimilation System (NLDAS) to estimate qbot. We verify the simulations using SMAP L4 surface and root zone soil moisture data. These data are well suited for evaluating qbot because they represent the most advanced estimate of the surface to root zone soil moisture gradient at the global scale. Results are compared with similar calculations using NLDAS and in situ soil moisture data. Preliminary calculations show that the greatest amount of variability between qbot determined from NLDAS, in situ and SMAP occurs directly after precipitation events. At these times, uncertainties in qbot calculations significantly affect E-SMAP estimates.

  17. Information System Life-Cycle And Documentation Standards (SMAP DIDS)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Although not computer program, SMAP DIDS written to provide systematic, NASA-wide structure for documenting information system development projects. Each DID (data item description) outlines document required for top-quality software development. When combined with management, assurance, and life cycle standards, Standards protect all parties who participate in design and operation of new information system.

  18. Comparison of soil moisture retrieval algorithms based on the synergy between SMAP and SMOS-IC

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Khusfi, Mohsen; Alavipanah, Seyed Kazem; Hamzeh, Saeid; Amiraslani, Farshad; Neysani Samany, Najmeh; Wigneron, Jean-Pierre

    2018-05-01

    This study was carried out to evaluate possible improvements of the soil moisture (SM) retrievals from the SMAP observations, based on the synergy between SMAP and SMOS. We assessed the impacts of the vegetation and soil roughness parameters on SM retrievals from SMAP observations. To do so, the effects of three key input parameters including the vegetation optical depth (VOD), effective scattering albedo (ω) and soil roughness (HR) parameters were assessed with the emphasis on the synergy with the VOD product derived from SMOS-IC, a new and simpler version of the SMOS algorithm, over two years of data (April 2015 to April 2017). First, a comprehensive comparison of seven SM retrieval algorithms was made to find the best one for SM retrievals from the SMAP observations. All results were evaluated against in situ measurements over 548 stations from the International Soil Moisture Network (ISMN) in terms of four statistical metrics: correlation coefficient (R), root mean square error (RMSE), bias and unbiased RMSE (UbRMSE). The comparison of seven SM retrieval algorithms showed that the dual channel algorithm based on the additional use of the SMOS-IC VOD product (selected algorithm) led to the best results of SM retrievals over 378, 399, 330 and 271 stations (out of a total of 548 stations) in terms of R, RMSE, UbRMSE and both R & UbRMSE, respectively. Moreover, comparing the measured and retrieved SM values showed that this synergy approach led to an increase in median R value from 0.6 to 0.65 and a decrease in median UbRMSE from 0.09 m3/m3 to 0.06 m3/m3. Second, using the algorithm selected in a first step and defined above, the ω and HR parameters were calibrated over 218 rather homogenous ISMN stations. 72 combinations of various values of ω and HR were used for the calibration over different land cover classes. In this calibration process, the optimal values of ω and HR were found for the different land cover classes. The obtained results indicated that the

  19. Using SMAP Data to Investigate the Role of Soil Moisture Variability on Realtime Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Krajewski, W. F.; Jadidoleslam, N.; Mantilla, R.

    2017-12-01

    The Iowa Flood Center has developed a regional high-resolution flood-forecasting model for the state of Iowa that decomposes the landscape into hillslopes of about 0.1 km2. For the model to benefit, through data assimilation, from SMAP observations of soil moisture (SM) at scales of approximately 100 km2, we are testing a framework to connect SMAP-scale observations to the small-scale SM variability calculated by our rainfall-runoff models. As a step in this direction, we performed data analyses of 15-min point SM observations using a network of about 30 TDR instruments spread throughout the state. We developed a stochastic point-scale SM model that captures 1) SM increases due to rainfall inputs, and 2) SM decay during dry periods. We use a power law model to describe soil moisture decay during dry periods, and a single parameter logistic curve to describe precipitation feedback on soil moisture. We find that the parameters of the models behave as time-independent random variables with stationary distributions. Using data-based simulation, we explore differences in the dynamical range of variability of hillslope and SMAP-scale domains. The simulations allow us to predict the runoff field and streamflow hydrographs for the state of Iowa during the three largest flooding periods (2008, 2014, and 2016). We also use the results to determine the reduction in forecast uncertainty from assimilation of unbiased SMAP-scale soil moisture observations.

  20. NASAs Soil Moisture Active Passive (SMAP) Mission and Opportunities For Applications Users

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Escobar, Vanessa; Moran, Susan; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni G.; Doorn, Brad; Entin, Jared K.

    2013-01-01

    Water in the soil, both its amount (soil moisture) and its state (freeze/thaw), plays a key role in water and energy cycles, in weather and climate, and in the carbon cycle. Additionally, soil moisture touches upon human lives in a number of ways from the ravages of flooding to the needs for monitoring agricultural and hydrologic droughts. Because of their relevance to weather, climate, science, and society, accurate and timely measurements of soil moisture and freeze/thaw state with global coverage are critically important.

  1. Climate downscaling over South America for 1971-2000: application in SMAP rainfall-runoff model for Grande River Basin

    NASA Astrophysics Data System (ADS)

    da Silva, Felipe das Neves Roque; Alves, José Luis Drummond; Cataldi, Marcio

    2018-03-01

    This paper aims to validate inflow simulations concerning the present-day climate at Água Vermelha Hydroelectric Plant (AVHP—located on the Grande River Basin) based on the Soil Moisture Accounting Procedure (SMAP) hydrological model. In order to provide rainfall data to the SMAP model, the RegCM regional climate model was also used working with boundary conditions from the MIROC model. Initially, present-day climate simulation performed by RegCM model was analyzed. It was found that, in terms of rainfall, the model was able to simulate the main patterns observed over South America. A bias correction technique was also used and it was essential to reduce mistakes related to rainfall simulation. Comparison between rainfall simulations from RegCM and MIROC showed improvements when the dynamical downscaling was performed. Then, SMAP, a rainfall-runoff hydrological model, was used to simulate inflows at Água Vermelha Hydroelectric Plant. After calibration with observed rainfall, SMAP simulations were evaluated in two different periods from the one used in calibration. During calibration, SMAP captures the inflow variability observed at AVHP. During validation periods, the hydrological model obtained better results and statistics with observed rainfall. However, in spite of some discrepancies, the use of simulated rainfall without bias correction captured the interannual flow variability. However, the use of bias removal in the simulated rainfall performed by RegCM brought significant improvements to the simulation of natural inflows performed by SMAP. Not only the curve of simulated inflow became more similar to the observed inflow, but also the statistics improved their values. Improvements were also noticed in the inflow simulation when the rainfall was provided by the regional climate model compared to the global model. In general, results obtained so far prove that there was an added value in rainfall when regional climate model was compared to global climate

  2. Comparing SMAP to Macro-scale and Hyper-resolution Land Surface Models over Continental U. S.

    NASA Astrophysics Data System (ADS)

    Pan, Ming; Cai, Xitian; Chaney, Nathaniel; Wood, Eric

    2016-04-01

    SMAP sensors collect moisture information in top soil at the spatial resolution of ~40 km (radiometer) and ~1 to 3 km (radar, before its failure in July 2015). Such information is extremely valuable for understanding various terrestrial hydrologic processes and their implications on human life. At the same time, soil moisture is a joint consequence of numerous physical processes (precipitation, temperature, radiation, topography, crop/vegetation dynamics, soil properties, etc.) that happen at a wide range of scales from tens of kilometers down to tens of meters. Therefore, a full and thorough analysis/exploration of SMAP data products calls for investigations at multiple spatial scales - from regional, to catchment, and to field scales. Here we first compare the SMAP retrievals to the Variable Infiltration Capacity (VIC) macro-scale land surface model simulations over the continental U. S. region at 3 km resolution. The forcing inputs to the model are merged/downscaled from a suite of best available data products including the NLDAS-2 forcing, Stage IV and Stage II precipitation, GOES Surface and Insolation Products, and fine elevation data. The near real time VIC simulation is intended to provide a source of large scale comparisons at the active sensor resolution. Beyond the VIC model scale, we perform comparisons at 30 m resolution against the recently developed HydroBloks hyper-resolution land surface model over several densely gauged USDA experimental watersheds. Comparisons are also made against in-situ point-scale observations from various SMAP Cal/Val and field campaign sites.

  3. PolarCube: A High Resolution Passive Microwave Satellite for Sounding and Imaging at 118 GHz

    NASA Astrophysics Data System (ADS)

    Weaver, R. L.; Gallaher, D. W.; Gasiewski, A. J.; Sanders, B.; Periasamy, L.; Hwang, K.; Alvarenga, G.; Hickey, A. M.

    2013-12-01

    PolarCube is a 3U CubeSat hosting an eight-channel passive microwave spectrometer operating at the 118.7503 GHz oxygen resonance that is currently in development. The project has an anticipated launch date in early 2015. It is currently being designed to operate for approximately12 months on orbit to provide the first global 118-GHz spectral imagery of the Earth over full seasonal cycle and to sound Arctic vertical temperature structure. The principles used by PolarCube for temperature sounding are well established in number of peer-reviewed papers going back more than two decades, although the potential for sounding from a CubeSat has never before been demonstrated in space. The PolarCube channels are selected to probe atmospheric emission over a range of vertical levels from the surface to lower stratosphere. This capability has been available operationally for over three decades, but at lower frequencies and higher altitudes that do not provide the spatial resolution that will be achieved by PolarCube. While the NASA JPSS ATMS satellite sensor provides global coverage at ~32 km resolution, the PolarCube will improve on this resolution by a factor of two, thus facilitating the primary science goal of determining sea ice concentration and extent while at the same time collecting profile data on atmospheric temperature. Additionally, we seek to correlate freeze-thaw line data from SMAP with our near simultaneously collected atmospheric temperature data. In addition to polar science, PolarCube will provide a first demonstration of a very low cost passive microwave sounder that if operated in a fleet configuration would have the potential to fulfill the goals of the Precipitation Atmospheric Temperature and Humidity (PATH) mission, as defined in the NRC Decadal Survey. PolarCube 118-GHz passive microwave spectrometer in deployed configuration

  4. Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Quets, Jan; De Lannoy, Gabrielle; Reichle, Rolf; Cosh, Michael; van der Schalie, Robin; Wigneron, Jean-Pierre

    2017-01-01

    The uncertainty associated with passive soil moisture retrieval is hard to quantify, and known to be underlain by various, diverse, and complex causes. Factors affecting space-borne retrieved soil moisture estimation include: (i) the optimization or inversion method applied to the radiative transfer model (RTM), such as e.g. the Single Channel Algorithm (SCA), or the Land Parameter Retrieval Model (LPRM), (ii) the selection of the observed brightness temperatures (Tbs), e.g. polarization and incidence angle, (iii) the definition of the cost function and the impact of prior information in it, and (iv) the RTM parameterization (e.g. parameterizations officially used by the SMOS L2 and SMAP L2 retrieval products, ECMWF-based SMOS assimilation product, SMAP L4 assimilation product, and perturbations from those configurations). This study aims at disentangling the relative importance of the above-mentioned sources of uncertainty, by carrying out soil moisture retrieval experiments, using SMOS Tb observations in different settings, of which some are mentioned above. The ensemble uncertainties are evaluated at 11 reference CalVal sites, over a time period of more than 5 years. These experimental retrievals were inter-compared, and further confronted with in situ soil moisture measurements and operational SMOS L2 retrievals, using commonly used skill metrics to quantify the temporal uncertainty in the retrievals.

  5. Estimating Basin-Scale Water Budgets with SMAP Level 2 Soil Moisture Data

    NASA Technical Reports Server (NTRS)

    Koster, Randal; Crow, Wade; Reichle, Rolf; Mahanama, Sarith P.

    2018-01-01

    The SMAP estimates of rainfall and streamflow are not perfect, but they do contain relevant information. At the very least, they should prove useful for constraining, or otherwise contributing to, rainfall and streamflow estimates obtained with more conventional approaches.

  6. Development of a High Resolution Passive Microwave 3U Cubesat for High Resolution Temperature Sounding and Imaging at 118 GHz

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Sanders, B. T.; Gallaher, D. W.; Periasamy, L.; Alvarenga, G.; Weaver, R.; Scambos, T. A.

    2014-12-01

    PolarCube is a 3U CubeSat based on the CU ALL-STAR bus hosting an eight-channel passive microwave scanning spectrometer operating at the 118.7503 GHz (1-) O2 resonance. The anticipated launch date is in late 2015. It is being designed to operate for 12 months on orbit to provide global 118-GHz spectral imagery of the Earth over a full seasonal cycle. The mission will focus on the study of Arctic vertical temperature structure and its relation to sea ice coverage, but include the secondary goals of assessing the potential for convective cloud mass detection and cloud top altitude measurement and hurricane warm core sounding. The principles used by PolarCube for sounding and cloud measurement have been well established in number of peer-reviewed papers, although measurements using the 118 GHz oxygen line over the dry polar regions (unaffected by water vapor) have never been demonstrated from space. The PolarCube channels are selected to probe clear-air emission over vertical levels from the surface to the lower stratosphere. Operational spaceborne microwave soundings have available for decades but using lower frequencies (50-57 GHz) and from higher altitudes. While the JPSS ATMS sensor provides global coverage at ~32 km resolution PolarCube will improve on this resolution by a factor of two (~16 km), thus facilitating a key science goal of mapping sea ice concentration and extent while obtaining temperature profile data. Additionally, we seek to correlate freeze-thaw line data from the NASA SMAP mission with atmospheric temperature structure to help understand the relationship between clouds, temperature, and surface energy fluxes during seasonal transitions. PolarCube will also provide the first demonstration of a very low cost passive microwave sounder that if operated in a fleet configuration would have the potential to fulfill the goals of the Precipitation Atmospheric Temperature and Humidity (PATH) mission, as defined in the NRC Decadal Survey.

  7. Estimating Surface Soil Moisture in a Mixed-Landscape using SMAP and MODIS/VIIRS Data

    NASA Astrophysics Data System (ADS)

    Tang, J.; Di, L.; Xiao, J.

    2017-12-01

    Soil moisture, a critical parameter of earth ecosystem linking land surface and atmosphere, has been widely applied in many application (Di, 1991; Njoku et al. 2003; Western 2002; Zhao et al. 2014; McColl et al. 2017) from regional to continental or even global scale. The advent of satellite-based remote sensing, particular in the last two decades, has proven successful for mapping the surface soil moisture (SSM) from space (Petropoulos et al. 2015; Kim et al. 2015; Molero et al. 2016). The current soil moisture products, however, is not able to fully characterize the spatial and temporal variability of soil moisture at mixed landscape types (Albergel et al. 2013; Zeng et al. 2015). In this research, we derived the SSM at 1-km spatial resolution by using sensor observation and high-level products from SMAP and MODIS/VIIRS as well as metrorological, landcover, and soil data. Specifically, we proposed a practicable method to produce the originally planned SMAP L3_SM_A with comparable quality by downscaling the SMAP L3_SM_P product through a proved method, the geographically weighted regression method at mixed landscape in southern New Hampshire. This estimated SSM was validated using the Soil Climate Analysis Network (SCAN) from Natural Resources Conservation Service (NRCS) of United States Department of Agriculture (USDA).

  8. Exploiting the synergy between SMAP and SMOS to improve brightness temperature simulations and soil moisture retrievals in arid regions

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Mohsen; Alavipanah, Seyed Kazem; Hamzeh, Saeid; Amiraslani, Farshad; Neysani Samany, Najmeh; Wigneron, Jean-Pierre

    2018-02-01

    The objective of this study was to exploit the synergy between SMOS and SMAP based on vegetation optical depth (VOD) to improve brightness temperature (TB) simulations and land surface soil moisture (SM) retrievals in arid regions of the world. In the current operational algorithm of SMAP (level 2), vegetation water content (VWC) is considered as a proxy to compute VOD which is calculated by an empirical conversion function of NDVI. Avoiding the empirical estimation of VOD, the SMOS algorithm is used to retrieve simultaneously SM and VOD from TB observations. The present study attempted to improve SMAP TB simulations and SM retrievals by benefiting from the advantages of the SMOS (L-MEB) algorithm. This was achieved by using a synergy method based on replacing the default value of SMAP VOD with the retrieved value of VOD from the SMOS multi angular and bi-polarization observations of TB. The insitu SM measurements, used as reference SM in this study, were obtained from the International Soil Moisture Network (ISMN) over 180 stations located in arid regions of the world. Furthermore, four stations were randomly selected to analyze the temporal variations in VOD and SM. Results of the synergy method showed that the accuracy of the TB simulations and SM retrievals was respectively improved at 144 and 124 stations (out of a total of 180 stations) in terms of coefficient of determination (R2) and unbiased root mean squared error (UbRMSE). Analyzing the temporal variations in VOD showed that the SMOS VOD, conversely to the SMAP VOD, can better illustrate the presence of herbaceous plants and may be a better indicator of the seasonal changes in the vegetation density and biomass over the year.

  9. National Snow and Ice Data Center |

    Science.gov Websites

    Temperature Glaciers Ice Sheets Permafrost Sea Ice Soil Moisture Snow ...search for more Scientific Data Web pages Data Sets Drought on the range Drought on the range Using satellite soil moisture data as a tool for drought monitoring. Read more ... SMAP Soil Moisture Active Passive Data (SMAP) NASA SMAP data

  10. Airborne Soil Moisture determination at regional level: A data fusion mission approach for Catalan territory

    NASA Astrophysics Data System (ADS)

    Martin, Francisco; Corbera, Jordi; Marchan, Juan Fernando; Camps, Adriano

    2010-05-01

    During the last years the importance of water management has grown considerably. Average temperatures exhibit an increasing pattern (0.77 °C during the last 20 years) that is expected to continue in the next years. These results in a decrease in the hydrical resources (15% during the last 20 years for the Catalan territori) being the expectative not very optimist. A tangible consequence was the drought episode that suffers Catalonia. It is within this scenario that the ‘Programa Català d'Observació de la Terra' (PCOT) as a unit of the official mapping agency of Catalonia, the ‘Institut Cartogràfic de Catalunya' (ICC) has detected the need to develop new tools to improve the management of water resources. The knowledge of soil moisture across a given region can help to efficiently manage the limited water resources. Present Earth Observations missions such as ESA's SMOS, or the future NASA's SMAP focus considerably their efforts in the estimation of soil moisture. The main drawbacks are the resolutions obtained (40 km for SMOS, 10 km for SMAP), which are not adequate for regional scale and territorial availability such as the case of Catalonia where a spatial resolution in a range between 20-30m. and 100-150m. is desired both for local actuations and to deteminate hidric soil patterns In this scenario, PCOT is carrying out an airborne soil moisture mission for the Catalan territory, taking advantage of the availability of ICC aircrafts and of more than 20 years of experience in making aircraft campaigns and operating hyperspectral airborne sensors such as CASI (0.75-1.4 µm) and TASI (8-11.5 µm) to respond to environmental and cartographic end users needs of geoinformation data, products and services. This mission will generate soil moisture maps over the Catalan region that will improve the water management, and will also be used for the study of the hydrological patterns of Catalonia. Soil moisture determination will be achieved by means of L

  11. Advanced Passive Microwave Radiometer Technology for GPM Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Im, Eastwood; Kummerow, Christian; Principe, Caleb; Ruf, Christoper; Wilheit, Thomas; Starr, David (Technical Monitor)

    2002-01-01

    An interferometer-type passive microwave radiometer based on MMIC receiver technology and a thinned array antenna design is being developed under the Instrument Incubator Program (TIP) on a project entitled the Lightweight Rainfall Radiometer (LRR). The prototype single channel aircraft instrument will be ready for first testing in 2nd quarter 2003, for deployment on the NASA DC-8 aircraft and in a ground configuration manner; this version measures at 10.7 GHz in a crosstrack imaging mode. The design for a two (2) frequency preliminary space flight model at 19 and 35 GHz (also in crosstrack imaging mode) has also been completed, in which the design features would enable it to fly in a bore-sighted configuration with a new dual-frequency space radar (DPR) under development at the Communications Research Laboratory (CRL) in Tokyo, Japan. The DPR will be flown as one of two primary instruments on the Global Precipitation Measurement (GPM) mission's core satellite in the 2007 time frame. The dual frequency space flight design of the ERR matches the APR frequencies and will be proposed as an ancillary instrument on the GPM core satellite to advance space-based precipitation measurement by enabling better microphysical characterization and coincident volume data gathering for exercising combined algorithm techniques which make use of both radar backscatter and radiometer attenuation information to constrain rainrate solutions within a physical algorithm context. This talk will discuss the design features, performance capabilities, applications plans, and conical/polarametric imaging possibilities for the LRR, as well as a brief summary of the project status and schedule.

  12. KSC-2015-1255

    NASA Image and Video Library

    2015-01-31

    VANDENBERG AIR FORCE BASE, Calif. – At Space Launch Complex 2 on Vandenberg Air Force Base in California, a United Launch Alliance Delta II rocket roars to life. The liftoff will boost NASA's Soil Moisture Active Passive satellite, or SMAP, to orbit. Liftoff was at 9:22 a.m. EST. SMAP is designed to produce the highest-resolution maps of soil moisture ever obtained from space. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  13. KSC-2015-1257

    NASA Image and Video Library

    2015-01-31

    VANDENBERG AIR FORCE BASE, Calif. – At Space Launch Complex 2 on Vandenberg Air Force Base in California, a United Launch Alliance Delta II rocket springs to life. The liftoff will boost NASA's Soil Moisture Active Passive satellite, or SMAP, to orbit. Liftoff was at 9:22 a.m. EST. SMAP is designed to produce the highest-resolution maps of soil moisture ever obtained from space. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  14. KSC-2015-1256

    NASA Image and Video Library

    2015-01-31

    VANDENBERG AIR FORCE BASE, Calif. – A Delta II rocket lifts off Space Launch Complex 2 at Vandenberg Air Force Base, carrying NASA's Soil Moisture Active Passive satellite, or SMAP, to Earth orbit. Liftoff was at 9:22 a.m. EST. SMAP's measurements will be invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environmental and ecology applications communities. SMAP is designed to produce the highest-resolution maps of soil moisture ever obtained from space. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  15. Evaluation of the SMAP model calculated snow albedo at the SIGMA-A site, northwest Greenland, during the 2012 record surface melt event

    NASA Astrophysics Data System (ADS)

    Niwano, M.; Aoki, T.; Matoba, S.; Yamaguchi, S.; Tanikawa, T.; Kuchiki, K.; Motoyama, H.

    2015-12-01

    The snow and ice on the Greenland ice sheet (GrIS) experienced the extreme surface melt around 12 July, 2012. In order to understand the snow-atmosphere interaction during the period, we applied a physical snowpack model SMAP to the GrIS snowpack. In the SMAP model, the snow albedo is calculated by the PBSAM component explicitly considering effects of snow grain size and light-absorbing snow impurities such as black carbon and dust. Temporal evolution of snow grain size is calculated internally in the SMAP model, whereas mass concentrations of snow impurities are externally given from observations. In the PBSAM, the (shortwave) snow albedo is calculated from a weighted summation of visible albedo (primarily affected by snow impurities) and near-infrared albedo (mainly controlled by snow grain size). The weights for these albedos are the visible and near-infrared fractions of the downward shortwave radiant flux. The SMAP model forced by meteorological data obtained from an automated weather station at SIGMA-A site, northwest GrIS during 30 June to 14 July, 2012 (IOP) was evaluated in terms of surface (optically equivalent) snow grain size and snow albedo. Snow grain size simulated by the model was compared against that retrieved from in-situ spectral albedo measurements. Although the RMSE and ME were reasonable (0.21 mm and 0.17 mm, respectively), the small snow grain size associated with the surface hoar could not be simulated by the SMAP model. As for snow albedo, simulation results agreed well with observations throughout the IOP (RMSE was 0.022 and ME was 0.008). Under cloudy-sky conditions, the SMAP model reproduced observed rapid increase in the snow albedo. When cloud cover is present the near-infrared fraction of the downward shortwave radiant flux is decreased, while it is increased under clear-sky conditions. Therefore, the above mentioned performance of the SMAP model can be attributed to the PBSAM component driven by the observed near-infrared and

  16. SMAP Global Map of Surface Soil Moisture Aug. 25-27, 2015

    NASA Image and Video Library

    2015-09-02

    A three-day composite global map of surface soil moisture as retrieved from NASA SMAP radiometer instrument between Aug. 25-27, 2015. Dry areas appear yellow/orange, such as the Sahara Desert, western Australia and the western U.S. Wet areas appear blue, representing the impacts of localized storms. White areas indicate snow, ice or frozen ground. http://photojournal.jpl.nasa.gov/catalog/PIA19877

  17. Robust Platinum Resistor Thermometer (PRT) Sensors and Reliable Bonding for Space Missions

    NASA Technical Reports Server (NTRS)

    Cucullu, Gordy C., III; Mikhaylov, Rebecca; Rajeshuni, Ramesham; Petkov, Mihail; Hills, David; Uribe, Jose; Okuno, James; De Los Santos, Greg

    2013-01-01

    Platinum resistance thermometers (PRTs) provide accurate temperature measurements over a wide temperature range and are used extensively on space missions due to their simplicity and linearity. A standard on spacecraft, PRTs are used to provide precision temperature control and vehicle health assessment. This paper reviews the extensive reliability testing of platinum resistor thermometer sensors (PRTs) and bonding methods used on the Mars Science Laboratory (MSL) mission and for the upcoming Soil Moisture Active Passive (SMAP) mission. During the Mars Exploration Rover (MER) mission, several key, JPL-packaged PRTs failed on those rovers prior to and within 1-Sol of landing due to thermally induced stresses. Similar failures can be traced back to other JPL missions dating back thirty years. As a result, MSL sought out a PRT more forgiving to the packaging configurations used at JPL, and extensively tested the Honeywell HRTS-5760-B-U-0-12 sensor to successfully demonstrate suitable robustness to thermal cycling. Specifically, this PRT was cycled 2,000 times, simulating three Martian winters and summers. The PRTs were bonded to six substrate materials (Aluminum 7050, treated Magnesium AZ231-B, Stainless Steel 304, Albemet, Titanium 6AL4V, and G-10), using four different aerospace adhesives--two epoxies and two silicones--that conformed to MSL's low out-gassing requirements. An additional epoxy was tested in a shorter environmental cycling test, when the need for a different temperature range adhesive was necessary for mobility and actuator hardware late in the fabrication process. All of this testing, along with electrostatic discharge (ESD) and destructive part analyses, demonstrate that this PRT is highly robust, and not subject to the failure of PRTs on previous missions. While there were two PRTs that failed during fabrication, to date there have been no in-flight PRT failures on MSL, including those on the Curiosity rover. Since MSL, the sensor has gone through

  18. Robust Platinum Resistor Thermometer (PRT) Sensors and Reliable Bonding for Space Missions

    NASA Technical Reports Server (NTRS)

    Cucullu, Gordy C. III; Mikhaylov, Rebecca; Ramesham, Rajeshuni; Petkov, Mihail; Hills, David; Uribe, Jose; Okuno, James; De Los Santos, Greg

    2013-01-01

    Platinum resistance thermometers (PRTs) provide accurate temperature measurements over a wide temperature range and are used extensively on space missions due to their simplicity and linearity. A standard on spacecraft, PRTs are used to provide precision temperature control and vehicle health assessment. This paper reviews the extensive reliability testing of platinum resistor thermometer sensors (PRTs) and bonding methods used on the Mars Science Laboratory (MSL) mission and for the upcoming Soil Moisture Active Passive (SMAP) mission. During the Mars Exploration Rover (MER) mission, several key, JPL-packaged PRTs failed on those rovers prior to and within 1-Sol of landing due to thermally induced stresses. Similar failures can be traced back to other JPL missions dating back thirty years. As a result, MSL sought out a PRT more forgiving to the packaging configurations used at JPL, and extensively tested the Honeywell HRTS-5760-B-U-0-12 sensor to successfully demonstrate suitable robustness to thermal cycling. Specifically, this PRT was cycled 2,000 times, simulating three Martian winters and summers. The PRTs were bonded to six substrate materials (Aluminum 7050, treated Magnesium AZ231-B, Stainless Steel 304, Albemet, Titanium 6AL4V, and G-10), using four different aerospace adhesives--two epoxies and two silicones--that conformed to MSL's low out-gassing requirements. An additional epoxy was tested in a shorter environmental cycling test, when the need for a different temperature range adhesive was necessary for mobility and actuator hardware late in the fabrication process. All of this testing, along with electrostatic discharge (ESD) and destructive part analyses, demonstrate that this PRT is highly robust, and not subject to the failure of PRTs on previous missions. While there were two PRTs that failed during fabrication, to date there have been no in-flight PRT failures on MSL, including those on the Curiosity rover. Since MSL, the sensor has gone through

  19. Design and Development of the SMAP Microwave Radiometer Electronics

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Medeiros, James J.; Horgan, Kevin A.; Brambora, Clifford K.; Estep, Robert H.

    2014-01-01

    The SMAP microwave radiometer will measure land surface brightness temperature at L-band (1413 MHz) in the presence of radio frequency interference (RFI) for soil moisture remote sensing. The radiometer design was driven by the requirements to incorporate internal calibration, to operate synchronously with the SMAP radar, and to mitigate the deleterious effects of RFI. The system design includes a highly linear super-heterodyne microwave receiver with internal reference loads and noise sources for calibration and an innovative digital signal processor and detection system. The front-end comprises a coaxial cable-based feed network, with a pair of diplexers and a coupled noise source, and radiometer front-end (RFE) box. Internal calibration is provided by reference switches and a common noise source inside the RFE. The RF back-end (RBE) downconverts the 1413 MHz channel to an intermediate frequency (IF) of 120 MHz. The IF signals are then sampled and quantized by high-speed analog-to-digital converters in the radiometer digital electronics (RDE) box. The RBE local oscillator and RDE sampling clocks are phase-locked to a common reference to ensure coherency between the signals. The RDE performs additional filtering, sub-band channelization, cross-correlation for measuring third and fourth Stokes parameters, and detection and integration of the first four raw moments of the signals. These data are packetized and sent to the ground for calibration and further processing. Here we discuss the novel features of the radiometer hardware particularly those influenced by the need to mitigate RFI.

  20. NHM-SMAP: spatially and temporally high-resolution nonhydrostatic atmospheric model coupled with detailed snow process model for Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Niwano, Masashi; Aoki, Teruo; Hashimoto, Akihiro; Matoba, Sumito; Yamaguchi, Satoru; Tanikawa, Tomonori; Fujita, Koji; Tsushima, Akane; Iizuka, Yoshinori; Shimada, Rigen; Hori, Masahiro

    2018-02-01

    To improve surface mass balance (SMB) estimates for the Greenland Ice Sheet (GrIS), we developed a 5 km resolution regional climate model combining the Japan Meteorological Agency Non-Hydrostatic atmospheric Model and the Snow Metamorphism and Albedo Process model (NHM-SMAP) with an output interval of 1 h, forced by the Japanese 55-year reanalysis (JRA-55). We used in situ data to evaluate NHM-SMAP in the GrIS during the 2011-2014 mass balance years. We investigated two options for the lower boundary conditions of the atmosphere: an offline configuration using snow, firn, and ice albedo, surface temperature data from JRA-55, and an online configuration using values from SMAP. The online configuration improved model performance in simulating 2 m air temperature, suggesting that the surface analysis provided by JRA-55 is inadequate for the GrIS and that SMAP results can better simulate physical conditions of snow/firn/ice. It also reproduced the measured features of the GrIS climate, diurnal variations, and even a strong mesoscale wind event. In particular, it successfully reproduced the temporal evolution of the GrIS surface melt area extent as well as the record melt event around 12 July 2012, at which time the simulated melt area extent reached 92.4 %. Sensitivity tests showed that the choice of calculation schemes for vertical water movement in snow and firn has an effect as great as 200 Gt year-1 in the GrIS-wide accumulated SMB estimates; a scheme based on the Richards equation provided the best performance.

  1. Modeling Off-Nominal Behavior in SysML

    NASA Technical Reports Server (NTRS)

    Day, John C.; Donahue, Kenneth; Ingham, Michel; Kadesch, Alex; Kennedy, Andrew K.; Post, Ethan

    2012-01-01

    Specification and development of fault management functionality in systems is performed in an ad hoc way - more of an art than a science. Improvements to system reliability, availability, safety and resilience will be limited without infusion of additional formality into the practice of fault management. Key to the formalization of fault management is a precise representation of off-nominal behavior. Using the upcoming Soil Moisture Active-Passive (SMAP) mission for source material, we have modeled the off-nominal behavior of the SMAP system during its initial spin-up activity, using the System Modeling Language (SysML). In the course of developing these models, we have developed generic patterns for capturing off-nominal behavior in SysML. We show how these patterns provide useful ways of reasoning about the system (e.g., checking for completeness and effectiveness) and allow the automatic generation of typical artifacts (e.g., success trees and FMECAs) used in system analyses.

  2. L-band HIgh Spatial Resolution Soil Moisture Mapping using SMALL UnManned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Dai, E.; Venkitasubramony, A.; Gasiewski, A. J.; Stachura, M.; Elston, J. S.; Walter, B.; Lankford, D.; Corey, C.

    2017-12-01

    Soil moisture is of fundamental importance to many hydrological, biological and biogeochemical processes, plays an important role in the development and evolution of convective weather and precipitation, water resource management, agriculture, and flood runoff prediction. The launch of NASA's Soil Moisture Active/Passive (SMAP) mission in 2015 provided new passive global measurements of soil moisture and surface freeze/thaw state at fixed crossing times and spatial resolutions of 36 km. However, there exists a need for measurements of soil moisture on much smaller spatial scales and arbitrary diurnal times for SMAP validation, precision agriculture and evaporation and transpiration studies of boundary layer heat transport. The Lobe Differencing Correlation Radiometer (LDCR) provides a means of mapping soil moisture on spatial scales as small as several meters. Compared with other methods of validation based on either in-situ measurements [1,2] or existing airborne sensors suitable for manned aircraft deployment [3], the integrated design of the LDCR on a lightweight small UAS (sUAS) is capable of providing sub-watershed ( km scale) coverage at very high spatial resolution ( 15 m) suitable for scaling studies, and at comparatively low operator cost. To demonstrate the LDCR several flights had been performed during field experiments at the Canton Oklahoma Soilscape site and Yuma Colorado Irrigation Research Foundation (IRF) site in 2015 and 2016, respectively, using LDCR Revision A and Tempest sUAS. The scientific intercomparisons of LDCR retrieved soil moisture and in-situ measurements will be presented. LDCR Revision B has been built and integrated into SuperSwift sUAS and additional field experiments will be performed at IRF in 2017. In Revision B the IF signal is sampled at 80 MS/s to enable digital correlation and RFI mitigation capabilities, in addition to analog correlation. [1] McIntyre, E.M., A.J. Gasiewski, and D. Manda D, "Near Real-Time Passive C

  3. Large/Complex Antenna Performance Validation for Spaceborne Radar/Radiometeric Instruments

    NASA Technical Reports Server (NTRS)

    Focardi, Paolo; Harrell, Jefferson; Vacchione, Joseph

    2013-01-01

    Over the past decade, Earth observing missions which employ spaceborne combined radar & radiometric instruments have been developed and implemented. These instruments include the use of large and complex deployable antennas whose radiation characteristics need to be accurately determined over 4 pisteradians. Given the size and complexity of these antennas, the performance of the flight units cannot be readily measured. In addition, the radiation performance is impacted by the presence of the instrument's service platform which cannot easily be included in any measurement campaign. In order to meet the system performance knowledge requirements, a two pronged approach has been employed. The first is to use modeling tools to characterize the system and the second is to build a scale model of the system and use RF measurements to validate the results of the modeling tools. This paper demonstrates the resulting level of agreement between scale model and numerical modeling for two recent missions: (1) the earlier Aquarius instrument currently in Earth orbit and (2) the upcoming Soil Moisture Active Passive (SMAP) mission. The results from two modeling approaches, Ansoft's High Frequency Structure Simulator (HFSS) and TICRA's General RF Applications Software Package (GRASP), were compared with measurements of approximately 1/10th scale models of the Aquarius and SMAP systems. Generally good agreement was found between the three methods but each approach had its shortcomings as will be detailed in this paper.

  4. Using passive seismology to study the sub-surface and internal structure of Didymoon

    NASA Astrophysics Data System (ADS)

    Murdoch, N.; Hempel, S.; Pou, L.; Cadu, A.; Garcia, R. F.; Mimoun, D.; Margerin, L.; Karatekin, O.

    2017-09-01

    As there is evidence to suggest that asteroids are seismically active, passive rather than active seismology could be performed thus simplifying the mission design. Here we discuss the possibility of performing a passive seismic experiment on Didymoon; the secondary component of asteroid (65803) Didymos and the target of the joint ESA-NASA mission AIDA

  5. Tools, Services & Support of NASA Salinity Mission Data Archival Distribution through PO.DAAC

    NASA Astrophysics Data System (ADS)

    Tsontos, V. M.; Vazquez, J.

    2017-12-01

    The Physical Oceanography Distributed Active Center (PO.DAAC) serves as the designated NASA repository and distribution node for all Aquarius/SAC-D and SMAP sea surface salinity (SSS) mission data products in close collaboration with the projects. In addition to these official mission products, that by December 2017 will include the Aquarius V5.0 end-of-mission data, PO.DAAC archives and distributes high-value, principal investigator led satellite SSS products, and also datasets from NASA's "Salinity Processes in the Upper Ocean Regional Study" (SPURS 1 & 2) field campaigns in the N. Atlantic salinity maximum and high rainfall E. Tropical Pacific regions. Here we report on the status of these data holdings at PO.DAAC, and the range of data services and access tools that are provided in support of NASA salinity. These include user support and data discovery services, OPeNDAP and THREDDS web services for subsetting/extraction, and visualization via LAS and SOTO. Emphasis is placed on newer capabilities, including PODAAC's consolidated web services (CWS) and advanced L2 subsetting tool called HiTIDE.

  6. Global-scale assessment and combination of SMAP with ASCAT (Active) and AMSR2 (Passive) soil moisture products

    USDA-ARS?s Scientific Manuscript database

    Global-scale surface soil moisture (SSM) products retrieved from active and passive microwave remote sensing provide an effective method for monitoring near-real-time SSM content with nearly daily temporal resolution. In the present study, we first inter-compared global-scale error patterns and comb...

  7. KSC-2015-1206

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – Jason Townsend, NASA's deputy social media manager, addresses the audience of a NASA Social held at Vandenberg Air Force Base in California. This NASA Social brought together mission scientists and engineers with an audience of 70 students, educators, social media managers, bloggers, photographers and videographers who were selected from a pool of 325 applicants from 45 countries to participate in launch activities and communicate their experience with social media followers. The SMAP mission is scheduled to launch from Vandenberg on Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  8. Effects of Recent Regional Soil Moisture Variability on Global Net Ecosystem CO2 Exchange

    NASA Astrophysics Data System (ADS)

    Jones, L. A.; Madani, N.; Kimball, J. S.; Reichle, R. H.; Colliander, A.

    2017-12-01

    Soil moisture exerts a major regional control on the inter-annual variability of the global land sink for atmospheric CO2. In semi-arid regions, annual biomass production is closely coupled to variability in soil moisture availability, while in cold-season-affected regions, summer drought offsets the effects of advancing spring phenology. Availability of satellite solar-induced fluorescence (SIF) observations and improvements in atmospheric inversions has led to unprecedented ability to monitor atmospheric sink strength. However, discrepancies still exist between such top-down estimates as atmospheric inversion and bottom-up process and satellite driven models, indicating that relative strength, mechanisms, and interaction of driving factors remain poorly understood. We use soil moisture fields informed by Soil Moisture Active Passive Mission (SMAP) observations to compare recent (2015-2017) and historic (2000-2014) variability in net ecosystem land-atmosphere CO2 exchange (NEE). The operational SMAP Level 4 Carbon (L4C) product relates ground-based flux tower measurements to other bottom-up and global top-down estimates to underlying soil moisture and other driving conditions using data-assimilation-based SMAP Level 4 Soil Moisture (L4SM). Droughts in coastal Brazil, South Africa, Eastern Africa, and an anomalous wet period in Eastern Australia were observed by L4C. A seasonal seesaw pattern of below-normal sink strength at high latitudes relative to slightly above-normal sink strength for mid-latitudes was also observed. Whereas SMAP-based soil moisture is relatively informative for short-term temporal variability, soil moisture biases that vary in space and with season constrain the ability of the L4C estimates to accurately resolve NEE. Such biases might be caused by irrigation and plant-accessible ground-water. Nevertheless, SMAP L4C daily NEE estimates connect top-down estimates to variability of effective driving factors for accurate estimates of regional

  9. Calculating crop water requirement satisfaction in the West Africa Sahel with remotely sensed soil moisture

    USGS Publications Warehouse

    McNally, Amy; Gregory J. Husak,; Molly Brown,; Carroll, Mark L.; Funk, Christopher C.; Soni Yatheendradas,; Kristi Arsenault,; Christa Peters-Lidard,; Verdin, James

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission will provide soil moisture data with unprecedented accuracy, resolution, and coverage, enabling models to better track agricultural drought and estimate yields. In turn, this information can be used to shape policy related to food and water from commodity markets to humanitarian relief efforts. New data alone, however, do not translate to improvements in drought and yield forecasts. New tools will be needed to transform SMAP data into agriculturally meaningful products. The objective of this study is to evaluate the possibility and efficiency of replacing the rainfall-derived soil moisture component of a crop water stress index with SMAP data. The approach is demonstrated with 0.1°-resolution, ~10-day microwave soil moisture from the European Space Agency and simulated soil moisture from the Famine Early Warning Systems Network Land Data Assimilation System. Over a West Africa domain, the approach is evaluated by comparing the different soil moisture estimates and their resulting Water Requirement Satisfaction Index values from 2000 to 2010. This study highlights how the ensemble of indices performs during wet versus dry years, over different land-cover types, and the correlation with national-level millet yields. The new approach is a feasible and useful way to quantitatively assess how satellite-derived rainfall and soil moisture track agricultural water deficits. Given the importance of soil moisture in many applications, ranging from agriculture to public health to fire, this study should inspire other modeling communities to reformulate existing tools to take advantage of SMAP data.

  10. Neural Network-Based Retrieval of Surface and Root Zone Soil Moisture using Multi-Frequency Remotely-Sensed Observations

    NASA Astrophysics Data System (ADS)

    Hamed Alemohammad, Seyed; Kolassa, Jana; Prigent, Catherine; Aires, Filipe; Gentine, Pierre

    2017-04-01

    Knowledge of root zone soil moisture is essential in studying plant's response to different stress conditions since plant photosynthetic activity and transpiration rate are constrained by the water available through their roots. Current global root zone soil moisture estimates are based on either outputs from physical models constrained by observations, or assimilation of remotely-sensed microwave-based surface soil moisture estimates with physical model outputs. However, quality of these estimates are limited by the accuracy of the model representations of physical processes (such as radiative transfer, infiltration, percolation, and evapotranspiration) as well as errors in the estimates of the surface parameters. Additionally, statistical approaches provide an alternative efficient platform to develop root zone soil moisture retrieval algorithms from remotely-sensed observations. In this study, we present a new neural network based retrieval algorithm to estimate surface and root zone soil moisture from passive microwave observations of SMAP satellite (L-band) and AMSR2 instrument (X-band). SMAP early morning observations are ideal for surface soil moisture retrieval. AMSR2 mid-night observations are used here as an indicator of plant hydraulic properties that are related to root zone soil moisture. The combined observations from SMAP and AMSR2 together with other ancillary observations including the Solar-Induced Fluorescence (SIF) estimates from GOME-2 instrument provide necessary information to estimate surface and root zone soil moisture. The algorithm is applied to observations from the first 18 months of SMAP mission and retrievals are validated against in-situ observations and other global datasets.

  11. KSC-2015-1248

    NASA Image and Video Library

    2015-01-29

    VANDENBERG AIR FORCE BASE, Calif. – The mobile service tower rolls toward the United Launch Alliance Delta II rocket at Space Launch Complex 2 on Vandenberg Air Force Base in California. Aboard the rocket is NOAA's Soil Moisture Active Passive satellite, or SMAP, designed to produce the highest-resolution maps of soil moisture ever obtained from space. Launch was postponed today due to violation of upper-level wind shear constraints. Launch now is targeted for Jan. 31. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  12. KSC-2015-1247

    NASA Image and Video Library

    2015-01-29

    VANDENBERG AIR FORCE BASE, Calif. – The mobile service tower rolls toward the United Launch Alliance Delta II rocket at Space Launch Complex 2 on Vandenberg Air Force Base in California. Aboard the rocket is NOAA's Soil Moisture Active Passive satellite, or SMAP, designed to produce the highest-resolution maps of soil moisture ever obtained from space. Launch was postponed today due to violation of upper-level wind shear constraints. Launch now is targeted for Jan. 31. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  13. Using SMOS observations in the development of the SMAP level 4 surface and root-zone soil moisture project

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture and Ocean Salinity (SMOS; [1]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. Along with these brightness temperature observations, ESA also disseminates retrievals of surface soil moisture that are derived ...

  14. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  15. The Western States Water Mission: A Hyper-Resolution Hydrological Model and Data Integration Platform for the Western United States

    NASA Astrophysics Data System (ADS)

    Famiglietti, J. S.; David, C. H.; Reager, J. T., II; Oaida, C.; Stampoulis, D.; Levoe, S.; Liu, P. W.; Trangsrud, A.; Basilio, R. R.; Allen, G. H.; Crichton, D. J.; Emery, C. M.; Farr, T.; Granger, S. L.; Hobbs, J.; Malhotra, S.; Osterman, G. B.; Rueckert, M.; Turmon, M.

    2017-12-01

    The Western States Water Mission (WSWM) is a high-resolution (3 km2), hydrological model and data integration platform under development at the Jet Propulsion Laboratory for the last 2 years. Distinctive features of the WSWM are its explicit representations of river networks and deep groundwater, an emphasis on uncertainty quantification, a major visualization and data distribution effort, and its focus on multivariate data assimilation, including GRACE/FO, SMAP, SWOT and MODSCAG fractional snow covered area. Importantly, the WSWM is actively managed as a flight project, i.e. with the rigor of a satellite mission. In this presentation we give an overview of the WSWM, including past accomplishments status, and future plans. In particular, results from recent 30-year simulations with GRACE and MODSCAG assimilation will be presented.

  16. Characterizing ecosystem response to water supply changes inferred from GRACE drought severity index and surface soil moisture anomalies from ESA CCI and SMAP

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Velicogna, I.; Kimball, J. S.

    2017-12-01

    Climate change such as more frequent heatwaves and drought is threatening our food security and ecosystem by reducing water supply to vegetation. Characterizing vegetation response to water supply changes is not only important for evaluating and mitigating climatic change impacts on ecosystem functions and services, but also to determine the feedback mechanisms that ecosystem response may generate on the climate itself. However, such characterization is not well-known at the global scale partly because large scale observations of underground water supply changes are limited. Satellite observations of soil moisture (SM) datasets such as from Soil Moisture Active and Passive (SMAP) and European Space Agency Climate Change Initiative (ESA CCI) do not penetrate more than a few centimeters and do not capture the entire root-zone. Here we employ a newly developed Drought Severity Index from Gravity Recovery and Climate Experiment (GRACE-DSI) to complement SM observations by informing total water supply changes in the entire terrestrial hydrological cycle. We use MODIS vegetation indices as proxies for vegetation growth and investigate their seasonal and interannual variability in relation to GRACE-DSI. We find that total water supply constrains vegetation growth across the entire continental US. Water constraint begins at an earlier date of year and lasts for a longer period in the lower latitude than in the higher latitude. We also find that water constraint occurs at different phenological stages depending on vegetation type. For instance, water constrain forest growth during reproductive period in eastern US but constrain shrub land growth during green-up in Arizona (Fig. 1). In western United States, eastern Australia and the horn of Africa, we find that vegetation growth changes closely follows GRACE-DSI but can have 16-day to one-month delay with respect to SM anomalies from SMAP and ESA CCI. This suggests that in these regions, vegetation is sensitive to water

  17. CoMet: an airborne mission to simultaneously measure CO2 and CH4 using lidar, passive remote sensing, and in-situ techniques

    NASA Astrophysics Data System (ADS)

    Fix, Andreas; Amediek, Axel; Bovensmann, Heinrich; Ehret, Gerhard; Gerbig, Christoph; Gerilowski, Konstantin; Pfeilsticker, Klaus; Roiger, Anke; Zöger, Martin

    2018-04-01

    TIn order to improve our current knowledge on the budgets of the two most important anthropogenic greenhouse gases, CO2 and CH4, an airborne mission on board the German research aircraft HALO in coordination with two smaller Cessna aircraft is going to be conducted in April/May 2017. The goal of CoMet is to combine a suite of the best currently available active (lidar) and passive remote sensors as well as in-situ instruments to provide regional-scale data of greenhouse gases which are urgently required.

  18. NASA Soil Moisture Mapper Takes First SMAPshots

    NASA Image and Video Library

    2015-03-09

    Fresh off the recent successful deployment of its 20-foot (6-meter) reflector antenna and associated boom arm, NASA's new Soil Moisture Active Passive (SMAP) observatory has successfully completed a two-day test of its science instruments. On Feb. 27 and 28, SMAP's radar and radiometer instruments were successfully operated for the first time with SMAP's antenna in a non-spinning mode. The test was a key step in preparation for the planned spin-up of SMAP's antenna to approximately 15 revolutions per minute in late March. The spin-up will be performed in a two-step process after additional tests and maneuvers adjust the observatory to its final science orbit over the next couple of weeks. Based on the data received, mission controllers at NASA's Jet Propulsion Laboratory, Pasadena, California; and NASA's Goddard Space Flight Center, Greenbelt, Maryland; concluded that the radar and radiometer performed as expected. SMAP launched Jan. 31 on a minimum three-year mission to map global soil moisture and detect whether soils are frozen or thawed. The mission will help scientists understand the links in Earth's water, energy and carbon cycles, help reduce uncertainties in predicting weather and climate, and enhance our ability to monitor and predict natural hazards such as floods and droughts The first test image illustrates the significance of SMAP's spinning instrument design. For this initial test with SMAP's antenna not yet spinning, the observatory's measurement swath width -- the strips observed on Earth in the image -- was limited to 25 miles (40 kilometers). When fully spun up and operating, SMAP's antenna will measure a 620-mile-wide (1,000-kilometer) swath of the ground as it flies above Earth at an altitude of 426 miles (685 kilometers). This will allow SMAP to map the entire globe with high-resolution radar data every two to three days, filling in all of the land surface detail that is not available in this first image. The radar data illustrated in the upper

  19. High LET, passive space radiation dosimetry and spectrometry

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.; Keegan, R. P.; Frigo, L. A.; Sanner, D.; Rowe, V.

    1995-01-01

    The development of high linear energy transfer (LET), passive radiation dosimetry and spectrometry is needed for the purpose of accurate determination of equivalent doses and assessment of health risks to astronauts on long duration missions. Progress in the following research areas is summerized: intercomparisons of cosmic ray equivalent dose and LET spectra measurements between STS missions and between astronauts; increases LET spectra measurement accuracy with ATAS; space radiation measurements for intercomparisons of passive (PNTD, TLD, TRND, Emulsion) and active (TEPC, RME-111) dosimeters; interaction of cosmic ray particles with nuclei in matter; radiation measurements after long duration space exposures; ground based dosimeter calibrations; neutron detector calibrations; radiation measurements on Soviet/Russian spacecraft; space radiation measurements under thin shielding; and space radiation.

  20. KSC-2015-1245

    NASA Image and Video Library

    2015-01-29

    VANDENBERG AIR FORCE BASE, Calif. – Operations are underway at Space Launch Complex 2 on Vandenberg Air Force Base in California to enclose the United Launch Alliance Delta II rocket in the launch gantry. Aboard the rocket is NOAA's Soil Moisture Active Passive satellite, or SMAP, designed to produce the highest-resolution maps of soil moisture ever obtained from space. Launch was postponed today due to violation of upper-level wind shear constraints. Launch now is targeted for Jan. 31. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  1. KSC-2015-1246

    NASA Image and Video Library

    2015-01-29

    VANDENBERG AIR FORCE BASE, Calif. – Operations are underway at Space Launch Complex 2 on Vandenberg Air Force Base in California to enclose the United Launch Alliance Delta II rocket in the launch gantry. Aboard the rocket is NOAA's Soil Moisture Active Passive satellite, or SMAP, designed to produce the highest-resolution maps of soil moisture ever obtained from space. Launch was postponed today due to violation of upper-level wind shear constraints. Launch now is targeted for Jan. 31. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  2. Orion Passive Thermal Control Overview

    NASA Technical Reports Server (NTRS)

    Miller, Stephen W.

    2007-01-01

    An viewgraph presentation of Orion's passive thermal control system is shown. The topics include: 1) Orion in CxP Hierarchy; 2) General Orion Description/Orientation; 3) Module Descriptions and Images; 4) Orion PTCS Overview; 5) Requirements/Interfaces; 6) Design Reference Missions; 7) Natural Environments; 8) Thermal Models; 9) Challenges/Issues; and 10) Testing

  3. KSC-2014-4236

    NASA Image and Video Library

    2014-10-15

    VANDENBERG AIR FORCE BASE, Calif. – The truck transporting NASA's Soil Moisture Active Passive, or SMAP, spacecraft arrives at the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  4. KSC-2014-4244

    NASA Image and Video Library

    2014-10-15

    VANDENBERG AIR FORCE BASE, Calif. – Workers push the pallet supporting the transportation container protecting NASA's Soil Moisture Active Passive, or SMAP, spacecraft into the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  5. KSC-2014-4243

    NASA Image and Video Library

    2014-10-15

    VANDENBERG AIR FORCE BASE, Calif. – Workers push the pallet supporting the transportation container protecting NASA's Soil Moisture Active Passive, or SMAP, spacecraft into the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  6. KSC-2014-4287

    NASA Image and Video Library

    2014-10-16

    VANDENBERG AIR FORCE BASE, Calif. – Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians mount NASA's Soil Moisture Active Passive, or SMAP, spacecraft on a work platform. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/ Randy Beaudoin

  7. The Canadian Experiment for Freeze/Thaw in 2012 or 2013 CanEx-FT12 or FT13

    NASA Technical Reports Server (NTRS)

    Belair, Stephane; Bernier, Monique; Colliander, Andreas; Jackson, Thomas; McDonald, Kyle; Walker, Anne

    2011-01-01

    General objectives of the experiment are: Pre-launch Calibration/Validation of SMAP Freeze/Thaw products and retrieval algorithms and rehearsal for Soil Moisture Active-Passive (SMAP) post launch validation. The basis of the radar freeze-thaw measurement is the large shift in dielectric constant and backscatter (dB) between predominantly frozen & thawed conditions. The Dielectric constant of liquid water varies with frequency, whereas that of pure ice is constant

  8. L-band Soil Moisture Mapping using Small UnManned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Dai, E.; Gasiewski, A. J.; Stachura, M.; Elston, J.; Venkitasubramony, A.

    2016-12-01

    1. IntroductionSoil moisture is of fundamental importance to many hydrological, biological and biogeochemical processes, plays an important role in the development and evolution of convective weather and precipitation, and impacts water resource management, agriculture, and flood runoff prediction. The launch of NASA's Soil Moisture Active/Passive (SMAP) mission in 2015 promises to provide global measurements of soil moisture and surface freeze/thaw state at fixed crossing times and spatial resolutions as low as 5 km for some products. However, there exists a need for measurements of soil moisture on smaller spatial scales and arbitrary diurnal times for SMAP validation, precision agriculture and evaporation and transpiration studies of boundary layer heat transport. The Lobe Differencing Correlation Radiometer (LDCR) provides a means of mapping soil moisture on spatial scales as small as several meters (i.e., the height of the platform). Compared with various other proposed methods of validation based on either in-situ measurements [1,2] or existing airborne sensors suitable for manned aircraft deployment [3], the integrated design of the LDCR on a lightweight small UAS (sUAS) is capable of providing sub-watershed ( km scale) coverage at very high spatial resolution ( 15 m) suitable for scaling scale studies, and at comparatively low operator cost. To demonstrate the LDCR several flights had been performed during field experiments at the Canton Oklahoma Soilscape site on September 8th and 9th, 2015 and Yuma Colorado Irrigation Research Foundation (IRF) site from June to August, 2016. These tests were flown at 25-50 m altitude to obtain differing spatial resolutions. The scientific intercomparisons of LDCR retrieved soil moisture and in-situ measurements will be presented. 2. References[1] McIntyre, E.M., A.J. Gasiewski, and D. Manda D, "Near Real-Time Passive C-Band Microwave Soil Moisture Retrieval During CLASIC 2007," Proc. IGARSS, 2008. [2] Robock, A., S

  9. Ground Data System Analysis Tools to Track Flight System State Parameters for the Mars Science Laboratory (MSL) and Beyond

    NASA Technical Reports Server (NTRS)

    Allard, Dan; Deforrest, Lloyd

    2014-01-01

    Flight software parameters enable space mission operators fine-tuned control over flight system configurations, enabling rapid and dynamic changes to ongoing science activities in a much more flexible manner than can be accomplished with (otherwise broadly used) configuration file based approaches. The Mars Science Laboratory (MSL), Curiosity, makes extensive use of parameters to support complex, daily activities via commanded changes to said parameters in memory. However, as the loss of Mars Global Surveyor (MGS) in 2006 demonstrated, flight system management by parameters brings with it risks, including the possibility of losing track of the flight system configuration and the threat of invalid command executions. To mitigate this risk a growing number of missions have funded efforts to implement parameter tracking parameter state software tools and services including MSL and the Soil Moisture Active Passive (SMAP) mission. This paper will discuss the engineering challenges and resulting software architecture of MSL's onboard parameter state tracking software and discuss the road forward to make parameter management tools suitable for use on multiple missions.

  10. Passive vs. Parachute System Architecture for Robotic Sample Return Vehicles

    NASA Technical Reports Server (NTRS)

    Maddock, Robert W.; Henning, Allen B.; Samareh, Jamshid A.

    2016-01-01

    The Multi-Mission Earth Entry Vehicle (MMEEV) is a flexible vehicle concept based on the Mars Sample Return (MSR) EEV design which can be used in the preliminary sample return mission study phase to parametrically investigate any trade space of interest to determine the best entry vehicle design approach for that particular mission concept. In addition to the trade space dimensions often considered (e.g. entry conditions, payload size and mass, vehicle size, etc.), the MMEEV trade space considers whether it might be more beneficial for the vehicle to utilize a parachute system during descent/landing or to be fully passive (i.e. not use a parachute). In order to evaluate this trade space dimension, a simplified parachute system model has been developed based on inputs such as vehicle size/mass, payload size/mass and landing requirements. This model works in conjunction with analytical approximations of a mission trade space dataset provided by the MMEEV System Analysis for Planetary EDL (M-SAPE) tool to help quantify the differences between an active (with parachute) and a passive (no parachute) vehicle concept.

  11. Passive cryogenic cooling of electrooptics with a heat pipe/radiator.

    PubMed

    Nelson, B E; Goldstein, G A

    1974-09-01

    The current status of the heat pipe is discussed with particular emphasis on applications to cryogenic thermal control. The competitive nature of the passive heat pipe/radiator system is demonstrated through a comparative study with other candidate systems for a 1-yr mission. The mission involves cooling a spaceborne experiment to 100 K while it dissipates 10 W.

  12. The Suess-Urey mission (return of solar matter to Earth).

    PubMed

    Rapp, D; Naderi, F; Neugebauer, M; Sevilla, D; Sweetnam, D; Burnett, D; Wiens, R; Smith, N; Clark, B; McComas, D; Stansbery, E

    1996-01-01

    The Suess-Urey (S-U) mission has been proposed as a NASA Discovery mission to return samples of matter from the Sun to the Earth for isotopic and chemical analyses in terrestrial laboratories to provide a major improvement in our knowledge of the average chemical and isotopic composition of the solar system. The S-U spacecraft and sample return capsule will be placed in a halo orbit around the L1 Sun-Earth libration point for two years to collect solar wind ions which implant into large passive collectors made of ultra-pure materials. Constant Spacecraft-Sun-Earth geometries enable simple spin stabilized attitude control, simple passive thermal control, and a fixed medium gain antenna. Low data requirements and the safety of a Sun-pointed spinner, result in extremely low mission operations costs.

  13. Four decades of microwave satellite soil moisture observations: Part 2. Product validation and inter-satellite comparisons

    NASA Astrophysics Data System (ADS)

    Karthikeyan, L.; Pan, Ming; Wanders, Niko; Kumar, D. Nagesh; Wood, Eric F.

    2017-11-01

    Soil moisture is widely recognized as an important land surface variable that provides a deeper knowledge of land-atmosphere interactions and climate change. Space-borne passive and active microwave sensors have become valuable and essential sources of soil moisture observations at global scales. Over the past four decades, several active and passive microwave sensors have been deployed, along with the recent launch of two fully dedicated missions (SMOS and SMAP). Signifying the four decades of microwave remote sensing of soil moisture, this Part 2 of the two-part review series aims to present an overview of how our knowledge in this field has improved in terms of the design of sensors and their accuracy for retrieving soil moisture. The first part discusses the developments made in active and passive microwave soil moisture retrieval algorithms. We assess the evolution of the products of various sensors over the last four decades, in terms of daily coverage, temporal performance, and spatial performance, by comparing the products of eight passive sensors (SMMR, SSM/I, TMI, AMSR-E, WindSAT, AMSR2, SMOS and SMAP), two active sensors (ERS-Scatterometer, MetOp-ASCAT), and one active/passive merged soil moisture product (ESA-CCI combined product) with the International Soil Moisture Network (ISMN) in-situ stations and the Variable Infiltration Capacity (VIC) land surface model simulations over the Contiguous United States (CONUS). In the process, the regional impacts of vegetation conditions on the spatial and temporal performance of soil moisture products are investigated. We also carried out inter-satellite comparisons to study the roles of sensor design and algorithms on the retrieval accuracy. We find that substantial improvements have been made over recent years in this field in terms of daily coverage, retrieval accuracy, and temporal dynamics. We conclude that the microwave soil moisture products have significantly evolved in the last four decades and will

  14. The Soil Moisture Active Passive Marena Oklahoma In Situ Sensor Testbed (SMAP-MOISST): Design and initial results

    USDA-ARS?s Scientific Manuscript database

    In situ soil moisture monitoring networks are critical to the development of soil moisture remote sensing missions as well as agricultural and environmental management, weather forecasting and many other endeavors. These in situ networks are composed of a variety of sensors and installation practic...

  15. KSC-2015-1096

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive, or SMAP, spacecraft, has been secured inside a transportation canister and secured onto a transporter for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  16. KSC-2015-1088

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians enclose a transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft in an environmentally protective wrap for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  17. KSC-2015-1087

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians secure a transportation canister around NASA's Soil Moisture Active Passive, or SMAP, spacecraft for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  18. KSC-2015-1094

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive, or SMAP, spacecraft, secured inside a transportation canister is lowered onto a transporter for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  19. KSC-2015-1089

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, a technician ensures the transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft is ready for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  20. KSC-2014-4254

    NASA Image and Video Library

    2014-10-15

    VANDENBERG AIR FORCE BASE, Calif. – NASA's Soil Moisture Active Passive, or SMAP, spacecraft, enclosed in a transportation container, is offloaded from the truck on which it traveled from the Jet Propulsion Laboratory in Pasadena, California, to the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Robert Rasmison