Sample records for passive system reliability

  1. Results of a Demonstration Assessment of Passive System Reliability Utilizing the Reliability Method for Passive Systems (RMPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia

    2015-04-26

    Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), amore » systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.« less

  2. A Passive System Reliability Analysis for a Station Blackout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunett, Acacia; Bucknor, Matthew; Grabaskas, David

    2015-05-03

    The latest iterations of advanced reactor designs have included increased reliance on passive safety systems to maintain plant integrity during unplanned sequences. While these systems are advantageous in reducing the reliance on human intervention and availability of power, the phenomenological foundations on which these systems are built require a novel approach to a reliability assessment. Passive systems possess the unique ability to fail functionally without failing physically, a result of their explicit dependency on existing boundary conditions that drive their operating mode and capacity. Argonne National Laboratory is performing ongoing analyses that demonstrate various methodologies for the characterization of passivemore » system reliability within a probabilistic framework. Two reliability analysis techniques are utilized in this work. The first approach, the Reliability Method for Passive Systems, provides a mechanistic technique employing deterministic models and conventional static event trees. The second approach, a simulation-based technique, utilizes discrete dynamic event trees to treat time- dependent phenomena during scenario evolution. For this demonstration analysis, both reliability assessment techniques are used to analyze an extended station blackout in a pool-type sodium fast reactor (SFR) coupled with a reactor cavity cooling system (RCCS). This work demonstrates the entire process of a passive system reliability analysis, including identification of important parameters and failure metrics, treatment of uncertainties and analysis of results.« less

  3. Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew D.; Grabaskas, David; Brunett, Acacia J.

    2016-01-01

    Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologiesmore » for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Centering on an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive reactor cavity cooling system following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. While this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability for the reactor cavity cooling system (and the reactor system in general) to the postulated transient event.« less

  4. Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

    DOE PAGES

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; ...

    2017-01-24

    We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.

    We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less

  6. Passive Thermal Management of Foil Bearings

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J. (Inventor)

    2015-01-01

    Systems and methods for passive thermal management of foil bearing systems are disclosed herein. The flow of the hydrodynamic film across the surface of bearing compliant foils may be disrupted to provide passive cooling and to improve the performance and reliability of the foil bearing system.

  7. Handbook of experiences in the design and installation of solar heating and cooling systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, D.S.; Oberoi, H.S.

    1980-07-01

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

  8. Demonstration of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  9. Advanced Reactor PSA Methodologies for System Reliability Analysis and Source Term Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, D.; Brunett, A.; Passerini, S.

    Beginning in 2015, a project was initiated to update and modernize the probabilistic safety assessment (PSA) of the GE-Hitachi PRISM sodium fast reactor. This project is a collaboration between GE-Hitachi and Argonne National Laboratory (Argonne), and funded in part by the U.S. Department of Energy. Specifically, the role of Argonne is to assess the reliability of passive safety systems, complete a mechanistic source term calculation, and provide component reliability estimates. The assessment of passive system reliability focused on the performance of the Reactor Vessel Auxiliary Cooling System (RVACS) and the inherent reactivity feedback mechanisms of the metal fuel core. Themore » mechanistic source term assessment attempted to provide a sequence specific source term evaluation to quantify offsite consequences. Lastly, the reliability assessment focused on components specific to the sodium fast reactor, including electromagnetic pumps, intermediate heat exchangers, the steam generator, and sodium valves and piping.« less

  10. Development of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony

    2011-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. The passive thermal management system relies on heat conduction within the cooling plate to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack rather than using a pumped loop cooling system to convectively remove the heat. Using the passive approach eliminates the need for a coolant pump and other cooling loop components which reduces fuel cell system mass and improves overall system reliability. Previous analysis had identified that low density, ultra-high thermal conductivity materials would be needed for the cooling plates in order to achieve the desired reductions in mass and the highly uniform thermal heat sink for each cell within a fuel cell stack. A pyrolytic graphite material was identified and fabricated into a thin plate using different methods. Also a development project with Thermacore, Inc. resulted in a planar heat pipe. Thermal conductivity tests were done using these materials. The results indicated that lightweight passive fuel cell cooling is feasible.

  11. Long life high reliability thermal control systems study data handbook

    NASA Technical Reports Server (NTRS)

    Scollon, T. R., Jr.; Carpitella, M. J.

    1971-01-01

    The development of thermal control systems with high reliability and long service life is discussed. Various passive and semi-active thermal control systems which have been installed on space vehicles are described. The properties of the various coatings are presented in tabular form.

  12. Development of Passive Fuel Cell Thermal Management Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.

    2010-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.

  13. Dense range map reconstruction from a versatile robotic sensor system with an active trinocular vision and a passive binocular vision.

    PubMed

    Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck

    2008-04-10

    One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.

  14. Passive fire building protection system evaluation (case study: millennium ict centre)

    NASA Astrophysics Data System (ADS)

    Rahman, Vinky; Stephanie

    2018-03-01

    Passive fire protection system is a system that refers to the building design, both regarding of architecture and structure. This system usually consists of structural protection that protects the structure of the building and prevents the spread of fire and facilitate the evacuation process in case of fire. Millennium ICT Center is the largest electronic shopping center in Medan, Indonesia. As a public building that accommodates the crowd, this building needs a fire protection system by the standards. Therefore, the purpose of this study is to evaluate passive fire protection system of Millennium ICT Center building. The study was conducted to describe the facts of the building as well as direct observation to the research location. The collected data is then processed using the AHP (Analytical Hierarchy Process) method in its weighting process to obtain the reliability value of passive fire protection fire system. The results showed that there are some components of passive fire protection system in the building, but some are still unqualified. The first section in your paper

  15. Mars transit vehicle thermal protection system: Issues, options, and trades

    NASA Technical Reports Server (NTRS)

    Brown, Norman

    1986-01-01

    A Mars mission is characterized by different mission phases. The thermal control of cryogenic propellant in a propulsive vehicle must withstand the different mission environments. Long term cryogenic storage may be achieved by passive or active systems. Passive cryo boiloff management features will include multilayer insulation, vapor cooled shield, and low conductance structural supports and penetrations. Active boiloff management incorporates the use of a refrigeration system. Key system trade areas include active verses passive system boiloff management (with respect to safety, reliability, and cost) and propellant tank insulation optimizations. Technology requirements include refrigeration technology advancements, insulation performance during long exposure, and cryogenic fluid transfer system for mission vehicle propellant tanking during vehicle buildip in LEO.

  16. Structural Damage Detection Using Virtual Passive Controllers

    NASA Technical Reports Server (NTRS)

    Lew, Jiann-Shiun; Juang, Jer-Nan

    2001-01-01

    This paper presents novel approaches for structural damage detection which uses the virtual passive controllers attached to structures, where passive controllers are energy dissipative devices and thus guarantee the closed-loop stability. The use of the identified parameters of various closed-loop systems can solve the problem that reliable identified parameters, such as natural frequencies of the open-loop system may not provide enough information for damage detection. Only a small number of sensors are required for the proposed approaches. The identified natural frequencies, which are generally much less sensitive to noise and more reliable than the identified natural frequencies, are used for damage detection. Two damage detection techniques are presented. One technique is based on the structures with direct output feedback controllers while the other technique uses the second-order dynamic feedback controllers. A least-squares technique, which is based on the sensitivity of natural frequencies to damage variables, is used for accurately identifying the damage variables.

  17. Reliability of dynamometric passive properties of the pelvic floor muscles in postmenopausal women with stress urinary incontinence.

    PubMed

    Morin, Mélanie; Gravel, Denis; Bourbonnais, Daniel; Dumoulin, Chantale; Ouellet, Stéphane

    2008-01-01

    The passive properties of the pelvic floor muscles (PFM) might play a role in stress urinary incontinence (SUI) pathophysiology. To investigate the test-retest reliability of the dynamometric passive properties of the PFM in postmenopausal SUI women. Thirty-two SUI postmenopausal women were convened to two sessions 2 weeks apart. In each session, the measurements were repeated twice. The pelvic floor musculature was evaluated in four different conditions: (1) forces recorded at minimal aperture (initial passive resistance); (2) passive resistance at maximal aperture; (3) five lengthening and shortening cycles (Forces and passive elastic stiffness (PES) were evaluated at different vaginal apertures. Hysteresis was also calculated.); (4) Percentage of passive resistance loss after 1 min of sustained stretching was computed. The generalizability theory was used to calculate two reliability estimates, the dependability indices (Phi) and the standard error of measurement (SEM), for one session involving one measurement or the mean of two measurements. Overall, the reliability of the passive properties was good with indices of dependability of 0.75-0.93. The SEMs for forces and PES were 0.24-0.67 N and 0.03-0.10 N/mm, respectively, for mean, maximal and 20-mm apertures, representing an error between 13% and 23%. Passive forces at minimal aperture showed lower reliability (Phi = 0.51-0.57) compared with other vaginal openings. The aperture at a common force of 0.5 N was the only parameter demonstrating a poor reliability (Phi = 0.35). This new approach for assessing PFM passive properties showed enough reliability for highly recommending its inclusion in the PFM assessment of SUI postmenopausal women. (c) 2008 Wiley-Liss, Inc.

  18. Evaluation of Advanced COTS Passive Devices for Extreme Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Dones, Keishla R.

    2009-01-01

    Electronic sensors and circuits are often exposed to extreme temperatures in many of NASA deep space and planetary surface exploration missions. Electronics capable of operation in harsh environments would be beneficial as they simplify overall system design, relax thermal management constraints, and meet operational requirements. For example, cryogenic operation of electronic parts will improve reliability, increase energy density, and extend the operational lifetimes of space-based electronic systems. Similarly, electronic parts that are able to withstand and operate efficiently in high temperature environments will negate the need for thermal control elements and their associated structures, thereby reducing system size and weight, enhancing its reliability, improving its efficiency, and reducing cost. Passive devices play a critical role in the design of almost all electronic circuitry. To address the needs of systems for extreme temperature operation, some of the advanced and most recently introduced commercial-off-the-shelf (COTS) passive devices, which included resistors and capacitors, were examined for operation under a wide temperature regime. The types of resistors investigated included high temperature precision film, general purpose metal oxide, and wirewound.

  19. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  20. Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry

    NASA Astrophysics Data System (ADS)

    Al Jaafari, Khaled Ali

    Non-linear loads such as variable speed drives constitute the bulky load of oil and gas industry power systems. They are widely used in driving induction and permanent magnet motors for variable speed applications. That is because variable speed drives provide high static and dynamic performance. Moreover, they are known of their high energy efficiency and high motion quality, and high starting torque. However, these non-linear loads are main sources of current and voltage harmonics and lower the quality of electric power system. In fact, it is the six-pulse and twelve-pulse diode and thyristor rectifiers that spoil the AC power line with the dominant harmonics (5th, 7th, 11th). They provide DC voltage to the inverter of the variable speed drives. Typical problems that arise from these harmonics are Harmonic resonances', harmonic losses, interference with electronic equipment, and line voltage distortion at the Point of Common Coupling (PCC). Thus, it is necessary to find efficient, reliable, and economical harmonic filters. The passive filters have definite advantage over active filters in terms of components count, cost and reliability. Reliability and maintenance is a serious issue in drilling rigs which are located in offshore and onshore with extreme operating conditions. Passive filters are tuned to eliminate a certain frequency and therefore there is a need to equip the system with more than one passive filter to eliminate all unwanted frequencies. An alternative solution is Wide Spectrum Harmonic passive filter. The wide spectrum harmonic filters are becoming increasingly popular in these applications and found to overcome some of the limitations of conventional tuned passive filter. The most important feature of wide spectrum harmonic passive filters is that only one capacitor is required to filter a wide range of harmonics. Wide spectrum filter is essentially a low-pass filter for the harmonic at fundamental frequency. It can also be considered as a single-stage passive filter plus input and output inductors. The work proposed gives a complete analysis of wide spectrum harmonic passive filters, the methodology to choose its parameters according to the operational condition, effect of load and source inductance on its characteristics. Also, comparison of the performance of the wide band passive filter with tuned filter is given. The analyses are supported with the simulation results and were verified experimentally. The analysis given in this thesis will be useful for the selection of proper wide spectrum harmonic filters for harmonic mitigation applications in oil and gas industry.

  1. Passivating Li-Ion Batteries in Orbit at the End of the Spacecraft's Life

    NASA Astrophysics Data System (ADS)

    Alcindor, Peter; Kimber, Rick; Remy, Stephane; Prevot, Didier

    2014-08-01

    International focus on the "Clean Space Initiative", as discussed at the ESA workshop "EoL Electrical Passivation" held on October 11th 2013 identified new legislation (REACh, RoHS and LOS). This paper concerns itself with the prevention of Li-ion battery explosion post end of mission as the spacecraft systems remain active well beyond the initial design expectations and beyond classical reliability design predictions. The main risks to Li-ion energy storage battery systems is the prevention of over charging and over discharging, both these scenarios result in the build up of internal pressure ultimately resulting in venting of high pressure gas. To warrant against such risk legislation requires that batteries are "Passivated" within the predictable life of the spacecraft systems. This paper proposes a simple method for the passivation of Li-ion batteries that relies only on the normal systems that form part of most present day spacecraft heritage.

  2. Reliability and concurrent validity of a Smartphone, bubble inclinometer and motion analysis system for measurement of hip joint range of motion.

    PubMed

    Charlton, Paula C; Mentiplay, Benjamin F; Pua, Yong-Hao; Clark, Ross A

    2015-05-01

    Traditional methods of assessing joint range of motion (ROM) involve specialized tools that may not be widely available to clinicians. This study assesses the reliability and validity of a custom Smartphone application for assessing hip joint range of motion. Intra-tester reliability with concurrent validity. Passive hip joint range of motion was recorded for seven different movements in 20 males on two separate occasions. Data from a Smartphone, bubble inclinometer and a three dimensional motion analysis (3DMA) system were collected simultaneously. Intraclass correlation coefficients (ICCs), coefficients of variation (CV) and standard error of measurement (SEM) were used to assess reliability. To assess validity of the Smartphone application and the bubble inclinometer against the three dimensional motion analysis system, intraclass correlation coefficients and fixed and proportional biases were used. The Smartphone demonstrated good to excellent reliability (ICCs>0.75) for four out of the seven movements, and moderate to good reliability for the remaining three movements (ICC=0.63-0.68). Additionally, the Smartphone application displayed comparable reliability to the bubble inclinometer. The Smartphone application displayed excellent validity when compared to the three dimensional motion analysis system for all movements (ICCs>0.88) except one, which displayed moderate to good validity (ICC=0.71). Smartphones are portable and widely available tools that are mostly reliable and valid for assessing passive hip range of motion, with potential for large-scale use when a bubble inclinometer is not available. However, caution must be taken in its implementation as some movement axes demonstrated only moderate reliability. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. The replacement of dry heat in generic reliability assurance requirements for passive optical components

    NASA Astrophysics Data System (ADS)

    Ren, Xusheng; Qian, Longsheng; Zhang, Guiyan

    2005-12-01

    According to Generic Reliability Assurance Requirements for Passive Optical Components GR-1221-CORE (Issue 2, January 1999), reliability determination test of different kinds of passive optical components which using in uncontrolled environments is taken. The test condition of High Temperature Storage Test (Dry Test) and Damp Test is in below sheet. Except for humidity condition, all is same. In order to save test time and cost, after a sires of contrast tests, the replacement of Dry Heat is discussed. Controlling the Failure mechanism of dry heat and damp heat of passive optical components, the contrast test of dry heat and damp heat for passive optical components (include DWDM, CWDM, Coupler, Isolator, mini Isolator) is taken. The test result of isolator is listed. Telcordia test not only test the reliability of the passive optical components, but also test the patience of the experimenter. The cost of Telcordia test in money, manpower and material resources, especially in time is heavy burden for the company. After a series of tests, we can find that Damp heat could factually test the reliability of passive optical components, and equipment manufacturer in accord with component manufacture could omit the dry heat test if damp heat test is taken first and passed.

  4. Reliability and Heat Transfer Performance of a Miniature High-Temperature Thermosyphon-Based Thermal Valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alleman, Jeffrey L; Olsen, Michele L; Glatzmaier, Gregory C

    Latent heat thermal energy storage systems have the advantages of near isothermal heat release and high energy density compared to sensible heat, generally resulting in higher power block efficiencies. Until now, there has been no highly effective and reliable method to passively extract that stored latent energy. Most modern attempts rely on external power supplied to a pump to move viscous heat transfer fluids from the phase change material (PCM) to the power block. In this work, the problem of latent heat dispatchability has been addressed with a redesigned thermosyphon geometry that can act as a 'thermal valve' capable ofmore » passively and efficiently controlling the release of heat from a thermal reservoir. A bench-scale prototype with a stainless steel casing and sodium working fluid was designed and tested to be reliable for more than fifty 'on/off' cycles at an operating temperature of 600 degrees C. The measured thermal resistances in the 'on' and 'off' states were 0.0395 K/W and 11.0 K/W respectively. This device demonstrated efficient, fast, reliable, and passive heat extraction from a PCM and may have application to other fields and industries using thermal processing.« less

  5. Fully Passive Wireless Acquisition of Neuropotentials

    NASA Astrophysics Data System (ADS)

    Schwerdt, Helen N.

    The ability to monitor electrophysiological signals from the sentient brain is requisite to decipher its enormously complex workings and initiate remedial solutions for the vast amount of neurologically-based disorders. Despite immense advancements in creating a variety of instruments to record signals from the brain, the translation of such neurorecording instrumentation to real clinical domains places heavy demands on their safety and reliability, both of which are not entirely portrayed by presently existing implantable recording solutions. In an attempt to lower these barriers, alternative wireless radar backscattering techniques are proposed to render the technical burdens of the implant chip to entirely passive neurorecording processes that transpire in the absence of formal integrated power sources or powering schemes along with any active circuitry. These radar-like wireless backscattering mechanisms are used to conceive of fully passive neurorecording operations of an implantable microsystem. The fully passive device potentially manifests inherent advantages over current wireless implantable and wired recording systems: negligible heat dissipation to reduce risks of brain tissue damage and minimal circuitry for long term reliability as a chronic implant. Fully passive neurorecording operations are realized via intrinsic nonlinear mixing properties of the varactor diode. These mixing and recording operations are directly activated by wirelessly interrogating the fully passive device with a microwave carrier signal. This fundamental carrier signal, acquired by the implant antenna, mixes through the varactor diode along with the internal targeted neuropotential brain signals to produce higher frequency harmonics containing the targeted neuropotential signals. These harmonics are backscattered wirelessly to the external interrogator that retrieves and recovers the original neuropotential brain signal. The passive approach removes the need for internal power sources and may alleviate heat trauma and reliability issues that limit practical implementation of existing implantable neurorecorders.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, David; Brunett, Acacia J.; Passerini, Stefano

    GE Hitachi Nuclear Energy (GEH) and Argonne National Laboratory (Argonne) participated in a two year collaboration to modernize and update the probabilistic risk assessment (PRA) for the PRISM sodium fast reactor. At a high level, the primary outcome of the project was the development of a next-generation PRA that is intended to enable risk-informed prioritization of safety- and reliability-focused research and development. A central Argonne task during this project was a reliability assessment of passive safety systems, which included the Reactor Vessel Auxiliary Cooling System (RVACS) and the inherent reactivity feedbacks of the metal fuel core. Both systems were examinedmore » utilizing a methodology derived from the Reliability Method for Passive Safety Functions (RMPS), with an emphasis on developing success criteria based on mechanistic system modeling while also maintaining consistency with the Fuel Damage Categories (FDCs) of the mechanistic source term assessment. This paper provides an overview of the reliability analyses of both systems, including highlights of the FMEAs, the construction of best-estimate models, uncertain parameter screening and propagation, and the quantification of system failure probability. In particular, special focus is given to the methodologies to perform the analysis of uncertainty propagation and the determination of the likelihood of violating FDC limits. Additionally, important lessons learned are also reviewed, such as optimal sampling methodologies for the discovery of low likelihood failure events and strategies for the combined treatment of aleatory and epistemic uncertainties.« less

  7. Measure Guideline: Passive Vents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, David; Neri, Robin

    2016-02-05

    This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated sourcemore » of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.« less

  8. High power diode lasers emitting from 639 nm to 690 nm

    NASA Astrophysics Data System (ADS)

    Bao, L.; Grimshaw, M.; DeVito, M.; Kanskar, M.; Dong, W.; Guan, X.; Zhang, S.; Patterson, J.; Dickerson, P.; Kennedy, K.; Li, S.; Haden, J.; Martinsen, R.

    2014-03-01

    There is increasing market demand for high power reliable red lasers for display and cinema applications. Due to the fundamental material system limit at this wavelength range, red diode lasers have lower efficiency and are more temperature sensitive, compared to 790-980 nm diode lasers. In terms of reliability, red lasers are also more sensitive to catastrophic optical mirror damage (COMD) due to the higher photon energy. Thus developing higher power-reliable red lasers is very challenging. This paper will present nLIGHT's released red products from 639 nm to 690nm, with established high performance and long-term reliability. These single emitter diode lasers can work as stand-alone singleemitter units or efficiently integrate into our compact, passively-cooled Pearl™ fiber-coupled module architectures for higher output power and improved reliability. In order to further improve power and reliability, new chip optimizations have been focused on improving epitaxial design/growth, chip configuration/processing and optical facet passivation. Initial optimization has demonstrated promising results for 639 nm diode lasers to be reliably rated at 1.5 W and 690nm diode lasers to be reliably rated at 4.0 W. Accelerated life-test has started and further design optimization are underway.

  9. Parameters influencing the course of passive drug loading into lipid nanoemulsions.

    PubMed

    Göke, Katrin; Bunjes, Heike

    2018-05-01

    Passive drug loading can be used to effectively identify suitable colloidal lipid carrier systems for poorly water-soluble drugs. This method comprises incubation of preformed carrier systems with drug powder and subsequent determination of the resulting drug load of the carrier particles. Until now, the passive loading mechanism is unknown, which complicates reliable routine use. In this work, the influence of drug characteristics on the course of passive loading was investigated systematically varying drug surface area and drug solubility. Fenofibrate and flufenamic acid were used as model drugs; the carrier system was a trimyristin nanodispersion. Loading progress was analyzed by UV spectroscopy or by a novel method based on differential scanning calorimetry. While increasing drug solubility by micelle incorporation did not speed up passive loading, a large drug surface area and high water solubility were key parameters for fast loading. Since both factors are crucial in drug dissolution as described by the Noyes-Whitney equation, these findings point to a dissolution-diffusion-based passive loading mechanism. Accordingly, passive loading also occurred when drug and carrier particles were separated by a dialysis membrane. Knowledge of the loading mechanism allows optimizing the conditions for future passive loading studies and assessing the limitations of the method. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Fiber laser platform for highest flexibility and reliability in industrial femtosecond micromachining: TruMicro Series 2000

    NASA Astrophysics Data System (ADS)

    Jansen, Florian; Kanal, Florian; Kahmann, Max; Tan, Chuong; Diekamp, Holger; Scelle, Raphael; Budnicki, Aleksander; Sutter, Dirk

    2018-02-01

    In this work we present an ultrafast laser system distinguished by its industry-ready reliability and its outstanding flexibility that allows for real-time process-inherent parameter. The robust system design and linear amplifier architecture make the all-fiber series TruMicro 2000 ideally suited for passive coupling to hollow-core delivery fibers. In addition to details on the laser system itself, various application examples are shown, including welding of different glasses and ablation of silicon carbide and silicon.

  11. A Novel Reliable WDM-PON System

    NASA Astrophysics Data System (ADS)

    Chen, Benyang; Gan, Chaoqin; Qi, Yongqian; Xia, Lei

    2011-12-01

    In this paper, a reliable Wavelength-Division-Multiplexing Passive Optical Network (WDM-PON) system is proposed. It can provide the protection against both the feeder fiber failure and the distribution fiber failure. When the fiber failure occurs, the corresponding switches in the OLT and in the ONU can switch to the protection link without affecting the users in normal status. That is to say, the protection for one ONU is independent of the other ONUs.

  12. Optimization of Wireless Power Transfer Systems Enhanced by Passive Elements and Metasurfaces

    NASA Astrophysics Data System (ADS)

    Lang, Hans-Dieter; Sarris, Costas D.

    2017-10-01

    This paper presents a rigorous optimization technique for wireless power transfer (WPT) systems enhanced by passive elements, ranging from simple reflectors and intermedi- ate relays all the way to general electromagnetic guiding and focusing structures, such as metasurfaces and metamaterials. At its core is a convex semidefinite relaxation formulation of the otherwise nonconvex optimization problem, of which tightness and optimality can be confirmed by a simple test of its solutions. The resulting method is rigorous, versatile, and general -- it does not rely on any assumptions. As shown in various examples, it is able to efficiently and reliably optimize such WPT systems in order to find their physical limitations on performance, optimal operating parameters and inspect their working principles, even for a large number of active transmitters and passive elements.

  13. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, Guillermo M.; Baca, Albert G.; Zutavern, Fred J.

    1998-01-01

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.

  14. Development of a passive sampler for gaseous mercury

    NASA Astrophysics Data System (ADS)

    Gustin, M. S.; Lyman, S. N.; Kilner, P.; Prestbo, E.

    2011-10-01

    Here we describe work toward development of the components of a cost effective passive sampling system for gaseous Hg that could be broadly deployed by nontechnical staff. The passive sampling system included an external shield to reduce turbulence and exposure to precipitation and dust, a diffusive housing that directly protects the collection surface during deployment and handling, and a collection surface. A protocol for cleaning and deploying the sampler and an analytical method were developed. Our final design consisted of a polycarbonate external shield enclosing a custom diffusive housing made from expanded PTFE tubing. Two collection surfaces were investigated, gold sputter-coated quartz plates and silver wires. Research showed the former would require extensive quality control for use, while the latter had interferences with other atmosphere constituents. Although the gold surface exhibited the best performance over space and time, gradual passivation would limit reuse. For both surfaces lack of contamination during shipping, deployment and storage indicated that the handling protocols developed worked well with nontechnical staff. We suggest that the basis for this passive sampling system is sound, but further exploration and development of a reliable collection surface is needed.

  15. Building America Case Study: Design Guidance for Passive Vents in New Construction Multifamily Buildings, New York, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-02-01

    This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated sourcemore » of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.« less

  16. Wireless SAW passive tag temperature measurement in the collision case

    NASA Astrophysics Data System (ADS)

    Sorokin, A.; Shepeta, A.; Wattimena, M.

    2018-04-01

    This paper describes temperature measurement in the multisensor systems based on the radio-frequency identification SAW passive tags which are currently applied in the electric power systems and the switchgears. Different approaches of temperature measurement in the collision case are shown here. The study is based on the tag model with specific topology, which allows us to determine temperature through the response signal with time-frequency information. This research considers the collision case for several passive tags as the temperature sensors which are placed in the switchgear. This research proposal is to analyze the possibility of using several SAW passive sensors in the collision case. We consider the using of the different typical elements for passive surface acoustic wave tag which applies as an anticollision passive sensor. These wireless sensors based on the surface acoustic waves tags contain specifically coded structures. This topology makes possible the reliability of increasing tag identification and the temperature measurement in the collision case. As the results for this case we illustrate simultaneous measurement of at least six sensors.

  17. A reliability study on brain activation during active and passive arm movements supported by an MRI-compatible robot.

    PubMed

    Estévez, Natalia; Yu, Ningbo; Brügger, Mike; Villiger, Michael; Hepp-Reymond, Marie-Claude; Riener, Robert; Kollias, Spyros

    2014-11-01

    In neurorehabilitation, longitudinal assessment of arm movement related brain function in patients with motor disability is challenging due to variability in task performance. MRI-compatible robots monitor and control task performance, yielding more reliable evaluation of brain function over time. The main goals of the present study were first to define the brain network activated while performing active and passive elbow movements with an MRI-compatible arm robot (MaRIA) in healthy subjects, and second to test the reproducibility of this activation over time. For the fMRI analysis two models were compared. In model 1 movement onset and duration were included, whereas in model 2 force and range of motion were added to the analysis. Reliability of brain activation was tested with several statistical approaches applied on individual and group activation maps and on summary statistics. The activated network included mainly the primary motor cortex, primary and secondary somatosensory cortex, superior and inferior parietal cortex, medial and lateral premotor regions, and subcortical structures. Reliability analyses revealed robust activation for active movements with both fMRI models and all the statistical methods used. Imposed passive movements also elicited mainly robust brain activation for individual and group activation maps, and reliability was improved by including additional force and range of motion using model 2. These findings demonstrate that the use of robotic devices, such as MaRIA, can be useful to reliably assess arm movement related brain activation in longitudinal studies and may contribute in studies evaluating therapies and brain plasticity following injury in the nervous system.

  18. Cost-effective and monitoring-active technique for TDM-passive optical networks

    NASA Astrophysics Data System (ADS)

    Chi, Chang-Chia; Lin, Hong-Mao; Tarn, Chen-Wen; Lin, Huang-Liang

    2014-08-01

    A reliable, detection-active and cost-effective method which employs the hello and heartbeat signals for branched node distinguishing to monitor fiber fault in any branch of distribution fibers of a time division multiplexing passive optical network (TDM-PON) is proposed. With this method, the material cost of building an optical network monitor system for a TDM-PON with 168 ONUs and the time of identifying a multiple branch faults is significantly reduced in a TDM-PON system of any scale. A fault location in a 1 × 32 TDM-PON system using this method to identify the fault branch is demonstrated.

  19. "Reliability Of Fiber Optic Lans"

    NASA Astrophysics Data System (ADS)

    Code n, Michael; Scholl, Frederick; Hatfield, W. Bryan

    1987-02-01

    Fiber optic Local Area Network Systems are being used to interconnect increasing numbers of nodes. These nodes may include office computer peripherals and terminals, PBX switches, process control equipment and sensors, automated machine tools and robots, and military telemetry and communications equipment. The extensive shared base of capital resources in each system requires that the fiber optic LAN meet stringent reliability and maintainability requirements. These requirements are met by proper system design and by suitable manufacturing and quality procedures at all levels of a vertically integrated manufacturing operation. We will describe the reliability and maintainability of Codenoll's passive star based systems. These include LAN systems compatible with Ethernet (IEEE 802.3) and MAP (IEEE 802.4), and software compatible with IBM Token Ring (IEEE 802.5). No single point of failure exists in this system architecture.

  20. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.

    1998-09-08

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.

  1. A Study on Design and Analysis of Hybrid Vibration Damper with Energy Harvesting and Optimal Damping Effect

    NASA Astrophysics Data System (ADS)

    Hanumantha Rao, T. V.; Srinivasa Rao, M. S. S.; Apparao, B. V.; Satyanarayana, K.

    2014-04-01

    The basic purpose of a damper is to reduce the vibration and to have a better ride comfort, road handling and safety to the rider. Recent developments show that an active vibration damper can effectively work much better than a passive damper. The effectiveness and reliability can be further enhanced by using hybrid dampers, which is a combination of active and passive dampers. But the need to have energy optimization in any field need not be stressed. Consequently, novel suspension concepts are required, not only to improve the vehicle's dynamic performance, but also to see that the energy generated during vibration can be harvested by utilizing regeneration functions. Hence if a hybrid damper with energy harvesting capability be designed, it would serve both purposes. In the hybrid damper a combination of hydraulic damper to act as a passive damper and an electromagnetic (EM) damper to act as an active damper is considered. The hydraulic system has more reliability and is time tested and the EM system acts as a dynamic vibration system as well as energy harvester. In this study a hybrid EM damper is modeled, analyzed and validity is shown for frequency response functions and energy balance for its active use. It is also shown how the effectiveness of the suspension system can be enhanced by using a hybrid damper.

  2. Comprehensive neuromechanical assessment in stroke patients: reliability and responsiveness of a protocol to measure neural and non-neural wrist properties.

    PubMed

    van der Krogt, Hanneke; Klomp, Asbjørn; de Groot, Jurriaan H; de Vlugt, Erwin; van der Helm, Frans Ct; Meskers, Carel Gm; Arendzen, J Hans

    2015-03-13

    Understanding movement disorder after stroke and providing targeted treatment for post stroke patients requires valid and reliable identification of biomechanical (passive) and neural (active and reflexive) contributors. Aim of this study was to assess test-retest reliability of passive, active and reflexive parameters and to determine clinical responsiveness in a cohort of stroke patients with upper extremity impairments and healthy volunteers. Thirty-two community-residing chronic stroke patients with an impairment of an upper limb and fourteen healthy volunteers were assessed with a comprehensive neuromechanical assessment protocol consisting of active and passive tasks and different stretch reflex-eliciting measuring velocities, using a haptic manipulator and surface electromyography of wrist flexor and extensor muscles (Netherlands Trial Registry number NTR1424). Intraclass correlation coefficients (ICC) and Standard Error of Measurement were calculated to establish relative and absolute test-retest reliability of passive, active and reflexive parameters. Clinical responsiveness was tested with Kruskal Wallis test for differences between groups. ICC of passive parameters were fair to excellent (0.45 to 0.91). ICC of active parameters were excellent (0.88-0.99). ICC of reflexive parameters were fair to good (0.50-0.74). Only the reflexive loop time of the extensor muscles performed poor (ICC 0.18). Significant differences between chronic stroke patients and healthy volunteers were found in ten out of fourteen parameters. Passive, active and reflexive parameters can be assessed with high reliability in post-stroke patients. Parameters were responsive to clinical status. The next step is longitudinal measurement of passive, active and reflexive parameters to establish their predictive value for functional outcome after stroke.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jose Reyes

    In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.

  4. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  5. An islanding detection methodology combining decision trees and Sandia frequency shift for inverter-based distributed generations

    DOE PAGES

    Azim, Riyasat; Li, Fangxing; Xue, Yaosuo; ...

    2017-07-14

    Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less

  6. An islanding detection methodology combining decision trees and Sandia frequency shift for inverter-based distributed generations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azim, Riyasat; Li, Fangxing; Xue, Yaosuo

    Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less

  7. Inter-rater Reliability of Real-Time Ultrasound to Measure Acromiohumeral Distance.

    PubMed

    Mackenzie, Tanya Anne; Bdaiwi, Alya H; Herrington, Lee; Cools, Ann

    2016-07-01

    Real-time ultrasound (RTUS) has been suggested as a reliable measure of acromiohumeral distance. However, to date, no vigorous assessment and reporting of inter-rater reliability of this method has been performed with the shoulder in a neutral position or with active and passive arm abduction. To assess intrasession inter-rater reliability of using RTUS to measure acromiohumeral distance with the shoulder in a neutral position and with 60° active and passive abduction. Inter-rater intrasession reliability of repeated measures. Human performance laboratory. Twenty persons (12 male and 8 female) with an average age of 29.86 years (standard deviation, 7.8). In an inter-rater, intrasession study, RTUS was used to measure the acromiohumeral distance with the shoulder in a neutral position and with 60° of both active and passive abduction. Acromiohumeral distance. Intraclass correlation coefficient (ICC)2.1 scores ranged between 0.65-0.88 (standard error of the mean = 0.81-1.2 mm and minimal detectable differences with 95% confidence = 2.2-2.3 mm) for inter-rater intrasession reliability. RTUS was found to have fair to good inter-rater reliability as a tool to measure acromiohumeral distance with the shoulder in a neutral position and with 60° of both active and passive arm abduction. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  8. Long life reliability thermal control systems study

    NASA Technical Reports Server (NTRS)

    Scollon, T. R., Jr.; Killen, R. E.

    1972-01-01

    The results of a program undertaken to conceptually design and evaluate a passive, high reliability, long life thermal control system for space station application are presented. The program consisted of four steps: (1) investigate and select potential thermal system elements; (2) conceive, evaluate and select a thermal control system using these elements; (3) conduct a verification test of a prototype segment of the selected system; and (4) evaluate the utilization of waste heat from the power supply. The result of this project is a conceptual thermal control system design which employs heat pipes as primary components, both for heat transport and temperature control. The system, its evaluation, and the test results are described.

  9. Breaking BAD: A Data Serving Vision for Big Active Data

    PubMed Central

    Carey, Michael J.; Jacobs, Steven; Tsotras, Vassilis J.

    2017-01-01

    Virtually all of today’s Big Data systems are passive in nature. Here we describe a project to shift Big Data platforms from passive to active. We detail a vision for a scalable system that can continuously and reliably capture Big Data to enable timely and automatic delivery of new information to a large pool of interested users as well as supporting analyses of historical information. We are currently building a Big Active Data (BAD) system by extending an existing scalable open-source BDMS (AsterixDB) in this active direction. This first paper zooms in on the Data Serving piece of the BAD puzzle, including its key concepts and user model. PMID:29034377

  10. Reliability of shoulder internal rotation passive range of motion measurements in the supine versus sidelying position.

    PubMed

    Lunden, Jason B; Muffenbier, Mike; Giveans, M Russell; Cieminski, Cort J

    2010-09-01

    Clinical measurement, reliability. To compare intrarater and interrater reliability of shoulder internal rotation (IR) passive range of motion measurements utilizing a standard supine position and a sidelying position. Glenohumeral IR range of motion deficits are often noted in patients with shoulder pathology. Excellent intrarater reliability has been found when measuring this motion. However, interrater reliability has been reported as poor to fair. Some clinicians currently use a sidelying position for IR stretching with patients who have shoulder pathology. However, no objective data exist for IR passive range of motion measured in this sidelying position, either in terms of reliability or normative values. Seventy subjects (mean age, 36.8 years), with (n = 19) and without (n = 51) shoulder pathology, were included in this study. Shoulder IR passive range of motion of the dominant shoulder or involved shoulder was measured by 2 investigators in 2 positions: (1) a standard supine position, with the shoulder at 90 degrees of abduction, and (2) in sidelying on the tested side, with the shoulder flexed to 90 degrees . Intrarater reliability for supine measurements was good to excellent (ICC3,1 = 0.70-0.93) and for sidelying measurements was excellent (ICC3,1 = 0.94-0.98). Interrater reliability was fair to good for the supine measurement (ICC2,2 = 0.74-0.81) and good to excellent for the sidelying measurement (ICC2,2 = 0.88-0.96). The mean (range) value of the dominant shoulder sidelying IR passive range of motion was 40 degrees (11 degrees to 69 degrees ) for healthy subjects and 25 degrees (-16 degrees to 49 degrees) for subjects with shoulder pathology. For subjects with shoulder pathology, measurements of shoulder IR made in the sidelying position had superior intrarater and interrater reliability compared to those in the standard supine position.

  11. Passive roadside reflectors and communications systems for improvement of radar reliability

    DOT National Transportation Integrated Search

    2006-06-01

    The use of radar in automotive applications such as adaptive cruise control is limited to detecting : target vehicles directly in front of the host vehicle. Vehicles around a curve on a highway and : cross traffic vehicles at an intersection cannot b...

  12. Fiberoptics technology and its application to propulsion control systems

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1983-01-01

    Electro-optical systems have many advantages over conventional electrical systems. Among these are optics' insensitivity to electro-magnetic interference, good electrical isolation and the ability to make measurements in highly explosive areas without risk. These advantages promise to help improve the reliability of future aircraft engine control systems which will be entirely electronic digital. To improve the reliability of these systems, especially against lightning strikes, passive, optical, sensors and fiberoptic transmission lines are being considered for use in future engine systems. Also under consideration are actuators which receive their command signals over fiber optic cables. This paper reviews concepts used for optical instrumentation and actuation systems and discusses work being done by NASA Lewis Research Center in this area.

  13. Validity and reliability of smartphone magnetometer-based goniometer evaluation of shoulder abduction--A pilot study.

    PubMed

    Johnson, Linda B; Sumner, Sean; Duong, Tina; Yan, Posu; Bajcsy, Ruzena; Abresch, R Ted; de Bie, Evan; Han, Jay J

    2015-12-01

    Goniometers are commonly used by physical therapists to measure range-of-motion (ROM) in the musculoskeletal system. These measurements are used to assist in diagnosis and to help monitor treatment efficacy. With newly emerging technologies, smartphone-based applications are being explored for measuring joint angles and movement. This pilot study investigates the intra- and inter-rater reliability as well as concurrent validity of a newly-developed smartphone magnetometer-based goniometer (MG) application for measuring passive shoulder abduction in both sitting and supine positions, and compare against the traditional universal goniometer (UG). This is a comparative study with repeated measurement design. Three physical therapists utilized both the smartphone MG and a traditional UG to measure various angles of passive shoulder abduction in a healthy subject, whose shoulder was positioned in eight different positions with pre-determined degree of abduction while seated or supine. Each therapist was blinded to the measured angles. Concordance correlation coefficients (CCCs), Bland-Altman plotting methods, and Analysis of Variance (ANOVA) were used for statistical analyses. Both traditional UG and smartphone MG were reliable in repeated measures of standardized joint angle positions (average CCC > 0.997) with similar variability in both measurement tools (standard deviation (SD) ± 4°). Agreement between the UG and MG measurements was greater than 0.99 in all positions. Our results show that the smartphone MG has equivalent reliability compared to the traditional UG when measuring passive shoulder abduction ROM. With concordant measures and comparable reliability to the UG, the newly developed MG application shows potential as a useful tool to assess joint angles. Published by Elsevier Ltd.

  14. A Review of Passive RFID Tag Antenna-Based Sensors and Systems for Structural Health Monitoring Applications.

    PubMed

    Zhang, Jun; Tian, Gui Yun; Marindra, Adi M J; Sunny, Ali Imam; Zhao, Ao Bo

    2017-01-29

    In recent few years, the antenna and sensor communities have witnessed a considerable integration of radio frequency identification (RFID) tag antennas and sensors because of the impetus provided by internet of things (IoT) and cyber-physical systems (CPS). Such types of sensor can find potential applications in structural health monitoring (SHM) because of their passive, wireless, simple, compact size, and multimodal nature, particular in large scale infrastructures during their lifecycle. The big data from these ubiquitous sensors are expected to generate a big impact for intelligent monitoring. A remarkable number of scientific papers demonstrate the possibility that objects can be remotely tracked and intelligently monitored for their physical/chemical/mechanical properties and environment conditions. Most of the work focuses on antenna design, and significant information has been generated to demonstrate feasibilities. Further information is needed to gain deep understanding of the passive RFID antenna sensor systems in order to make them reliable and practical. Nevertheless, this information is scattered over much literature. This paper is to comprehensively summarize and clearly highlight the challenges and state-of-the-art methods of passive RFID antenna sensors and systems in terms of sensing and communication from system point of view. Future trends are also discussed. The future research and development in UK are suggested as well.

  15. Fast gas spectroscopy using pulsed quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Beyer, T.; Braun, M.; Lambrecht, A.

    2003-03-01

    Laser spectroscopy has found many industrial applications, e.g., control of automotive exhaust and process monitoring. The midinfrared region is of special interest because it has stronger absorption lines compared to the near infrared (NIR). However, in the NIR high quality reliable laser sources, detectors, and passive optical components are available. A quantum cascade laser could change this situation if fundamental advantages can be exploited with compact and reliable systems. It will be shown that, using pulsed lasers and available fast detectors, lower residual sensitivity levels than in corresponding NIR systems can be achieved. The stability is sufficient for industrial applications.

  16. Active and passive vibration suppression for space structures

    NASA Technical Reports Server (NTRS)

    Hyland, David C.

    1991-01-01

    The relative benefits of passive and active vibration suppression for large space structures (LSS) are discussed. The intent is to sketch the true ranges of applicability of these approaches using previously published technical results. It was found that the distinction between active and passive vibration suppression approaches is not as sharp as might be thought at first. The relative simplicity, reliability, and cost effectiveness touted for passive measures are vitiated by 'hidden costs' bound up with detailed engineering implementation issues and inherent performance limitations. At the same time, reliability and robustness issues are often cited against active control. It is argued that a continuum of vibration suppression measures offering mutually supporting capabilities is needed. The challenge is to properly orchestrate a spectrum of methods to reap the synergistic benefits of combined advanced materials, passive damping, and active control.

  17. Classification of passive auditory event-related potentials using discriminant analysis and self-organizing feature maps.

    PubMed

    Schönweiler, R; Wübbelt, P; Tolloczko, R; Rose, C; Ptok, M

    2000-01-01

    Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P(1), N(1), P(2) and N(2). Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups. Different DA methods and SOFM configurations were trained to the values. SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CAPD includes a 'non-peripheral' auditory processing deficit. Copyright 2000 S. Karger AG, Basel.

  18. Extracting More Information from Passive Optical Tracking Observations for Reliable Orbit Element Generation

    NASA Astrophysics Data System (ADS)

    Bennett, J.; Gehly, S.

    2016-09-01

    This paper presents results from a preliminary method for extracting more orbital information from low rate passive optical tracking data. An improvement in the accuracy of the observation data yields more accurate and reliable orbital elements. A comparison between the orbit propagations from the orbital element generated using the new data processing method is compared with the one generated from the raw observation data for several objects. Optical tracking data collected by EOS Space Systems, located on Mount Stromlo, Australia, is fitted to provide a new orbital element. The element accuracy is determined from a comparison between the predicted orbit and subsequent tracking data or reference orbit if available. The new method is shown to result in a better orbit prediction which has important implications in conjunction assessments and the Space Environment Research Centre space object catalogue. The focus is on obtaining reliable orbital solutions from sparse data. This work forms part of the collaborative effort of the Space Environment Management Cooperative Research Centre which is developing new technologies and strategies to preserve the space environment (www.serc.org.au).

  19. Multifrequency passive microwave observations of soil moisture in an arid rangeland environment

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Schmugge, T. J.; Parry, R.; Kustas, W. P.; Ritchie, J. C.; Shutko, A. M.; Khaldin, A.; Reutov, E.; Novichikhin, E.; Liberman, B.

    1992-01-01

    A cooperative experiment was conducted by teams from the U.S. and U.S.S.R. to evaluate passive microwave instruments and algorithms used to estimate surface soil moisture. Experiments were conducted as part of an interdisciplinary experiment in an arid rangeland watershed located in the southwest United States. Soviet microwave radiometers operating at wavelengths of 2.25, 21 and 27 cm were flown on a U.S. aircraft. Radio frequency interference limited usable data to the 2.25 and 21 cm systems. Data have been calibrated and compared to ground observations of soil moisture. These analyses showed that the 21 cm system could produce reliable and useful soil moisture information and that the 2.25 cm system was of no value for soil moisture estimation in this experiment.

  20. AP1000{sup R} nuclear power plant safety overview for spent fuel cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorgemans, J.; Mulhollem, L.; Glavin, J.

    2012-07-01

    The AP1000{sup R} plant is an 1100-MWe class pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and costs. The AP1000 design uses passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems such as AC power, component cooling water, service water or HVAC. Furthermore, these passive features 'fail safe' during a non-LOCA event such that DC power and instrumentation are not required. The AP1000 also has simple, active, defense-in-depth systems to support normal plant operations. These active systems provide the first levelmore » of defense against more probable events and they provide investment protection, reduce the demands on the passive features and support the probabilistic risk assessment. The AP1000 passive safety approach allows the plant to achieve and maintain safe shutdown in case of an accident for 72 hours without operator action, meeting the expectations provided in the U.S. Utility Requirement Document and the European Utility Requirements for passive plants. Limited operator actions are required to maintain safe conditions in the spent fuel pool via passive means. In line with the AP1000 approach to safety described above, the AP1000 plant design features multiple, diverse lines of defense to ensure spent fuel cooling can be maintained for design-basis events and beyond design-basis accidents. During normal and abnormal conditions, defense-in-depth and other systems provide highly reliable spent fuel pool cooling. They rely on off-site AC power or the on-site standby diesel generators. For unlikely design basis events with an extended loss of AC power (i.e., station blackout) or loss of heat sink or both, spent fuel cooling can still be provided indefinitely: - Passive systems, requiring minimal or no operator actions, are sufficient for at least 72 hours under all possible pool heat load conditions. - After 3 days, several different means are provided to continue spent fuel cooling using installed plant equipment as well as off-site equipment with built-in connections. Even for beyond design basis accidents with postulated pool damage and multiple failures in the passive safety-related systems and in the defense-in-depth active systems, the AP1000 multiple spent fuel pool spray and fill systems provide additional lines of defense to prevent spent fuel damage. (authors)« less

  1. Development of chip passivated monolithic complementary MISFET circuits with beam leads

    NASA Technical Reports Server (NTRS)

    Ragonese, L. J.; Kim, M. J.; Corrie, B. L.; Brouillette, J. W.; Warr, R. E.

    1972-01-01

    The results are presented of a program to demonstrate the processes for fabricating complementary MISFET beam-leaded circuits, which, potentially, are comparable in quality to available bipolar beam-lead chips that use silicon nitride passivation in conjunction with a platinum-titanium-gold metal system. Materials and techniques, different from the bipolar case, were used in order to be more compatible with the special requirements of fully passivated complementary MISFET devices. Two types of circuits were designed and fabricated, a D-flip-flop and a three-input NOR/NAND gate. Fifty beam-leaded chips of each type were constructed. A quality and reliability assurance program was performed to identify failure mechanisms. Sample tests and inspections (including destructive) were developed to measure the physical characteristics of the circuits.

  2. A Review of Passive RFID Tag Antenna-Based Sensors and Systems for Structural Health Monitoring Applications

    PubMed Central

    Zhang, Jun; Tian, Gui Yun; Marindra, Adi M. J.; Sunny, Ali Imam; Zhao, Ao Bo

    2017-01-01

    In recent few years, the antenna and sensor communities have witnessed a considerable integration of radio frequency identification (RFID) tag antennas and sensors because of the impetus provided by internet of things (IoT) and cyber-physical systems (CPS). Such types of sensor can find potential applications in structural health monitoring (SHM) because of their passive, wireless, simple, compact size, and multimodal nature, particular in large scale infrastructures during their lifecycle. The big data from these ubiquitous sensors are expected to generate a big impact for intelligent monitoring. A remarkable number of scientific papers demonstrate the possibility that objects can be remotely tracked and intelligently monitored for their physical/chemical/mechanical properties and environment conditions. Most of the work focuses on antenna design, and significant information has been generated to demonstrate feasibilities. Further information is needed to gain deep understanding of the passive RFID antenna sensor systems in order to make them reliable and practical. Nevertheless, this information is scattered over much literature. This paper is to comprehensively summarize and clearly highlight the challenges and state-of-the-art methods of passive RFID antenna sensors and systems in terms of sensing and communication from system point of view. Future trends are also discussed. The future research and development in UK are suggested as well. PMID:28146067

  3. Fluorine incorporation in solution-processed poly-siloxane passivation for highly reliable a-InGaZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Yoshida, Naofumi; Bermundo, Juan Paolo; Ishikawa, Yasuaki; Nonaka, Toshiaki; Taniguchi, Katsuto; Uraoka, Yukiharu

    2018-03-01

    We investigated a fluorine-containing polysiloxane (Poly-SX) passivation layer fabricated by solution process for amorphous InGaZnO (a-IGZO) thin-film transistors (TFT). This passivation layer greatly improved the stability of the a-IGZO device even after being subjected to positive bias stress (PBS) and negative bias stress (NBS). The mobility (µ) of TFTs passivated by fluorine-containing Poly-SX increased by 31%-56% (10.50-12.54 cm2 V-1 s-1) compared with TFTs passivated by non-fluorinated Poly-SX (8.04 cm2 V-1 s-1). Increasing the amount of fluorine additives led to a higher µ in passivated TFTs. Aside from enhancing the performance, these passivation layers could increase the reliability of a-IGZO TFTs under PBS and NBS with a minimal threshold voltage shift (ΔV th) of up to  +0.2 V and  -0.1 V, respectively. Additionally, all TFTs passivated by the fluorinated passivation materials did not exhibit a hump effect after NBS. We also showed that fluorinated photosensitive Poly-SX, which can be fabricated without any dry etching process, had an effective passivation property. In this report, we demonstrated the photolithography of Poly-SX, and electrical properties of Poly-SX passivated TFTs, and analyzed the state of the a-IGZO layer to show the large potential of Poly-SX as an effective solution-processed passivation material.

  4. Comparison of different passive knee extension torque-angle assessments.

    PubMed

    Freitas, Sandro R; Vaz, João R; Bruno, Paula M; Valamatos, Maria J; Mil-Homens, Pedro

    2013-11-01

    Previous studies have used isokinetic dynamometry to assess joint torques and angles during passive extension of the knee, often without reporting upon methodological errors and reliability outcomes. In addition, the reliability of the techniques used to measure passive knee extension torque-angle and the extent to which reliability may be affected by the position of the subjects is also unclear. Therefore, we conducted an analysis of the intra- and inter-session reliability of two methods of assessing passive knee extension: (A) a 2D kinematic analysis coupled to a custom-made device that enabled the direct measurement of resistance to stretch and (B) an isokinetic dynamometer used in two testing positions (with the non-tested thigh either flexed at 45° or in the neutral position). The intra-class correlation coefficients (ICCs) of torque, the slope of the torque-angle curve, and the parameters of the mathematical model that were fit to the torque-angle data for the above conditions were measured in sixteen healthy male subjects (age: 21.4 ± 2.1 yr; BMI: 22.6 ± 3.3 kg m(-2); tibial length: 37.4 ± 3.4 cm). The results found were: (1) methods A and B led to distinctly different torque-angle responses; (2) passive torque-angle relationship and stretch tolerance were influenced by the position of the non-tested thigh; and (3) ICCs obtained for torque were higher than for the slope and for the mathematical parameters that were fit to the torque-angle curve. In conclusion, the measurement method that is used and the positioning of subjects can influence the passive knee extension torque-angle outcome.

  5. Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, J. N.; Chin, M. R.; Sjoden, G. E.

    2013-07-01

    A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reactionmore » rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)« less

  6. Radioisotope Power System Pool Concept

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Bolotin, Gary S.

    2015-01-01

    Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.

  7. Comparison of sampling methodologies for nutrient monitoring in streams: uncertainties, costs and implications for mitigation

    NASA Astrophysics Data System (ADS)

    Audet, J.; Martinsen, L.; Hasler, B.; de Jonge, H.; Karydi, E.; Ovesen, N. B.; Kronvang, B.

    2014-07-01

    Eutrophication of aquatic ecosystems caused by excess concentrations of nitrogen and phosphorus may have harmful consequences for biodiversity and poses a health risk to humans via the water supplies. Reduction of nitrogen and phosphorus losses to aquatic ecosystems involves implementation of costly measures, and reliable monitoring methods are therefore essential to select appropriate mitigation strategies and to evaluate their effects. Here, we compare the performances and costs of three methodologies for the monitoring of nutrients in rivers: grab sampling, time-proportional sampling and passive sampling using flow proportional samplers. Assuming time-proportional sampling to be the best estimate of the "true" nutrient load, our results showed that the risk of obtaining wrong total nutrient load estimates by passive samplers is high despite similar costs as the time-proportional sampling. Our conclusion is that for passive samplers to provide a reliable monitoring alternative, further development is needed. Grab sampling was the cheapest of the three methods and was more precise and accurate than passive sampling. We conclude that although monitoring employing time-proportional sampling is costly, its reliability precludes unnecessarily high implementation expenses.

  8. Comparison of sampling methodologies for nutrient monitoring in streams: uncertainties, costs and implications for mitigation

    NASA Astrophysics Data System (ADS)

    Audet, J.; Martinsen, L.; Hasler, B.; de Jonge, H.; Karydi, E.; Ovesen, N. B.; Kronvang, B.

    2014-11-01

    Eutrophication of aquatic ecosystems caused by excess concentrations of nitrogen and phosphorus may have harmful consequences for biodiversity and poses a health risk to humans via water supplies. Reduction of nitrogen and phosphorus losses to aquatic ecosystems involves implementation of costly measures, and reliable monitoring methods are therefore essential to select appropriate mitigation strategies and to evaluate their effects. Here, we compare the performances and costs of three methodologies for the monitoring of nutrients in rivers: grab sampling; time-proportional sampling; and passive sampling using flow-proportional samplers. Assuming hourly time-proportional sampling to be the best estimate of the "true" nutrient load, our results showed that the risk of obtaining wrong total nutrient load estimates by passive samplers is high despite similar costs as the time-proportional sampling. Our conclusion is that for passive samplers to provide a reliable monitoring alternative, further development is needed. Grab sampling was the cheapest of the three methods and was more precise and accurate than passive sampling. We conclude that although monitoring employing time-proportional sampling is costly, its reliability precludes unnecessarily high implementation expenses.

  9. A Novel Intracranial Pressure Readout Circuit for Passive Wireless LC Sensor.

    PubMed

    Wang, Fa; Zhang, Xuan; Shokoueinejad, Mehdi; Iskandar, Bermans J; Medow, Joshua E; Webster, John G

    2017-10-01

    We present a wide frequency range, low cost, wireless intracranial pressure monitoring system, which includes an implantable passive sensor and an external reader. The passive sensor consists of two spiral coils and transduces the pressure change to a resonant frequency shift. The external portable reader reads out the sensor's resonant frequency over a wide frequency range (35 MHz-2.7 GHz). We propose a novel circuit topology, which tracks the system's impedance and phase change at a high frequency with low-cost components. This circuit is very simple and reliable. A prototype has been developed, and measurement results demonstrate that the device achieves a suitable measurement distance (>2 cm), sufficient sample frequency (>6 Hz), fine resolution, and good measurement accuracy for medical practice. Responsivity of this prototype is 0.92 MHz/mmHg and resolution is 0.028 mmHg. COMSOL specific absorption rate simulation proves that this system is safe. Considerations to improve the device performance have been discussed, which include the size of antenna, the power radiation, the Analog-to-digital converter (ADC) choice, and the signal processing algorithm.

  10. Achieving Efficient Spectrum Usage in Passive and Active Sensing

    NASA Astrophysics Data System (ADS)

    Wang, Huaiyi

    Increasing demand for supporting more wireless services with higher performance and reliability within the frequency bands that are most conducive to operating cost-effective cellular and mobile broadband is aggravating current electromagnetic spectrum congestion. This situation motivates technology and management innovation to increase the efficiency of spectral use. If primary-secondary spectrum sharing can be shown possible without compromising (or while even improving) performance in an existing application, opportunities for efficiency may be realizable by making the freed spectrum available for commercial use. While both active and passive sensing systems are vitally important for many public good applications, opportunities for increasing the efficiency of spectrum use can be shown to exist for both systems. This dissertation explores methods and technologies for remote sensing systems that enhance spectral efficiency and enable dynamic spectrum access both within and outside traditionally allocated bands.

  11. Low temperature cured poly-siloxane passivation for highly reliable a-InGaZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Yoshida, Naofumi; Bermundo, Juan Paolo; Ishikawa, Yasuaki; Nonaka, Toshiaki; Taniguchi, Katsuto; Uraoka, Yukiharu

    2018-05-01

    Low temperature processable passivation materials are necessary to fabricate highly reliable amorphous InGaZnO (a-IGZO) thin-film transistors (TFT) on organic substrates for flexible device applications. We investigated 3 types of poly-siloxane (Poly-SX) passivation layers fabricated by a solution process and cured at low temperatures (180 °C) for a-IGZO TFTs. This passivation layer greatly improves the stability of the a-IGZO device even after being subjected to positive (PBS) and negative bias stress (NBS). The field effect mobility (μ) of MePhQ504010 passivated on the TFT reached 8.34 cm2/Vs and had a small threshold voltage shift of 0.9 V after PBS, -0.8 V after NBS without the hump phenomenon. Furthermore, we analyzed the hydrogen and hydroxide states in the a-IGZO layer by secondary ion mass spectrometry and X-ray photoelectron spectroscopy to determine the cause of excellent electrical properties despite the curing performed at a low temperature. These results show the potential of the solution processed Poly-SX passivation layer for flexible devices.

  12. A hybrid electromagnetic shock absorber for active vehicle suspension systems

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Babak; Bolandhemmat, Hamidreza; Behrad Khamesee, Mir; Golnaraghi, Farid

    2011-02-01

    The use of electromagnetic dampers (ED) in vehicle active suspension systems has drawn considerable attention in the past few years, attributed to the fact that active suspension systems have shown superior performance in improving ride comfort and road handling of terrain vehicles, compared with their passive and semi-active counterparts. Although demonstrating superb performance, active suspensions still have some shortcomings that must be overcome. They have high energy consumption, weight, and cost and are not fail-safe in case of a power breakdown. The novel hybrid ED, which is proposed in this paper, is a potential solution to the above-mentioned drawbacks of conventional active suspension systems. The proposed hybrid ED is designed to inherit the high-performance characteristics of an active ED with the reliability of a passive damper in a single package. The eddy current damping effect is utilised as a source of the passive damping. First, a prototype ED is designed and fabricated. The prototype ED is then utilised to experimentally establish the design requirements for a real-size active ED. This is accomplished by comparing its vibration isolation performance in a 1-DOF quarter-car test rig with that of a same-class semi-active damper. Then, after a real-size active ED is designed, the concept of hybrid damper is introduced to the damper design to address the drawbacks of the active ED. Finally, the finite-element method is used to accurately model and analyse the designed hybrid damper. It is demonstrated that by introducing the eddy current damping effect to the active part, a passive damping of approximately 1570 Ns/m is achieved. This amount of passive damping guarantees that the damper is fail-safe and reduces the power consumption more than 70%, compared with an active ED in an automotive active suspension system.

  13. Passive fMRI mapping of language function for pediatric epilepsy surgical planning: validation using Wada, ECS, and FMAER.

    PubMed

    Suarez, Ralph O; Taimouri, Vahid; Boyer, Katrina; Vega, Clemente; Rotenberg, Alexander; Madsen, Joseph R; Loddenkemper, Tobias; Duffy, Frank H; Prabhu, Sanjay P; Warfield, Simon K

    2014-12-01

    In this study we validate passive language fMRI protocols designed for clinical application in pediatric epilepsy surgical planning as they do not require overt participation from patients. We introduced a set of quality checks that assess reliability of noninvasive fMRI mappings utilized for clinical purposes. We initially compared two fMRI language mapping paradigms, one active in nature (requiring participation from the patient) and the other passive in nature (requiring no participation from the patient). Group-level analysis in a healthy control cohort demonstrated similar activation of the putative language centers of the brain in the inferior frontal (IFG) and temporoparietal (TPG) regions. Additionally, we showed that passive language fMRI produced more left-lateralized activation in TPG (LI=+0.45) compared to the active task; with similarly robust left-lateralized IFG (LI=+0.24) activations using the passive task. We validated our recommended fMRI mapping protocols in a cohort of 15 pediatric epilepsy patients by direct comparison against the invasive clinical gold-standards. We found that language-specific TPG activation by fMRI agreed to within 9.2mm to subdural localizations by invasive functional mapping in the same patients, and language dominance by fMRI agreed with Wada test results at 80% congruency in TPG and 73% congruency in IFG. Lastly, we tested the recommended passive language fMRI protocols in a cohort of very young patients and confirmed reliable language-specific activation patterns in that challenging cohort. We concluded that language activation maps can be reliably achieved using the passive language fMRI protocols we proposed even in very young (average 7.5 years old) or sedated pediatric epilepsy patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Dangerous intersections? A review of studies of fatigue and distraction in the automated vehicle.

    PubMed

    Matthews, Gerald; Neubauer, Catherine; Saxby, Dyani J; Wohleber, Ryan W; Lin, Jinchao

    2018-04-10

    The impacts of fatigue on the vehicle driver may change with technological advancements including automation and the increasing prevalence of potentially distracting in-car systems. This article reviews the authors' simulation studies of how fatigue, automation, and distraction may intersect as threats to safety. Distinguishing between states of active and passive fatigue supports understanding of fatigue and the development of countermeasures. Active fatigue is a stress-like state driven by overload of cognitive capabilities. Passive fatigue is produced by underload and monotony, and is associated with loss of task engagement and alertness. Our studies show that automated driving reliably elicits subjective symptoms of passive fatigue and also loss of alertness that persists following manual takeover. Passive fatigue also impairs attention and automation use in operators of Remotely Piloted Vehicles (RPVs). Use of in-vehicle media has been proposed as a countermeasure to fatigue, but such media may also be distracting. Studies tested whether various forms of phone-based media interacted with automation-induced fatigue, but effects were complex and dependent on task configuration. Selection of fatigue countermeasures should be guided by an understanding of the form of fatigue confronting the operator. System design, regulation of level of automation, managing distraction, and selection of fatigue-resilient personnel are all possible interventions for passive fatigue, but careful evaluation of interventions is necessary prior to deployment. Copyright © 2018. Published by Elsevier Ltd.

  15. Environmental monitoring of selected pesticides and organic chemicals in urban stormwater recycling systems using passive sampling techniques

    NASA Astrophysics Data System (ADS)

    Page, Declan; Miotliński, Konrad; Gonzalez, Dennis; Barry, Karen; Dillon, Peter; Gallen, Christie

    2014-03-01

    Water recycling via aquifers has become a valuable tool to augment urban water supplies in many countries. This study reports the first use of passive samplers for monitoring of organic micropollutants in Managed Aquifer Recharge (MAR). Five different configurations of passive samplers were deployed in a stormwater treatment wetland, groundwater monitoring wells and a recovery tank to capture a range of polar and non-polar micropollutants present in the system. The passive samplers were analysed for a suite of pesticides, polycyclic aromatic hydrocarbons (PAHs) and other chemicals. As a result, 17 pesticides and pesticide degradation products, 5 PAHs and 8 other organic chemicals including flame retardants and fragrances were detected in urban stormwater recharging Aquifer Storage and Recovery (ASR) and an Aquifer Storage Transfer and Recovery (ASTR) system. Of the pesticides detected, diuron, metolachlor and chlorpyrifos were generally detected at the highest concentrations in one or more passive samplers, whereas chlorpyrifos, diuron, metolachlor, simazine, galaxolide and triallate were detected in multiple samplers. Fluorene was the PAH detected at the highest concentration and the flame retardant Tris(1-chloro-2-propyl)phosphate was the chemical detected in the greatest abundance at all sites. The passive samplers showed different efficiencies for capture of micropollutants with the Empore disc samplers giving the most reliable results. The results indicate generally low levels of organic micropollutants in the stormwater, as the contaminants detected were present at very low ng/L levels, generally two to four orders of magnitude below the drinking water guidelines (NHMRC, 2011). The efficiency of attenuation of these organic micropollutants during MAR was difficult to determine due to variations in the source water concentrations. Comparisons were made between different samplers, to give a field-based calibration where existing lab-based calibrations were unavailable.

  16. Teflon/SiO₂ Bilayer Passivation for Improving the Electrical Reliability of Oxide TFTs Fabricated Using a New Two-Photomask Self-Alignment Process.

    PubMed

    Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der; Hung, Bohr-Ran

    2015-04-13

    This study proposes a two-photomask process for fabricating amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) that exhibit a self-aligned structure. The fabricated TFTs, which lack etching-stop (ES) layers, have undamaged a-IGZO active layers that facilitate superior performance. In addition, we demonstrate a bilayer passivation method that uses a polytetrafluoroethylene (Teflon) and SiO₂ combination layer for improving the electrical reliability of the fabricated TFTs. Teflon was deposited as a buffer layer through thermal evaporation. The Teflon layer exhibited favorable compatibility with the underlying IGZO channel layer and effectively protected the a-IGZO TFTs from plasma damage during SiO₂ deposition, resulting in a negligible initial performance drop in the a-IGZO TFTs. Compared with passivation-free a-IGZO TFTs, passivated TFTs exhibited superior stability even after 168 h of aging under ambient air at 95% relative humidity.

  17. Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Zhang, Guangjun

    2013-11-01

    Additive manufacturing based on gas metal arc welding is an advanced technique for depositing fully dense components with low cost. Despite this fact, techniques to achieve accurate control and automation of the process have not yet been perfectly developed. The online measurement of the deposited bead geometry is a key problem for reliable control. In this work a passive vision-sensing system, comprising two cameras and composite filtering techniques, was proposed for real-time detection of the bead height and width through deposition of thin walls. The nozzle to the top surface distance was monitored for eliminating accumulated height errors during the multi-layer deposition process. Various image processing algorithms were applied and discussed for extracting feature parameters. A calibration procedure was presented for the monitoring system. Validation experiments confirmed the effectiveness of the online measurement system for bead geometry in layered additive manufacturing.

  18. Probabilistic assessment of dynamic system performance. Part 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belhadj, Mohamed

    1993-01-01

    Accurate prediction of dynamic system failure behavior can be important for the reliability and risk analyses of nuclear power plants, as well as for their backfitting to satisfy given constraints on overall system reliability, or optimization of system performance. Global analysis of dynamic systems through investigating the variations in the structure of the attractors of the system and the domains of attraction of these attractors as a function of the system parameters is also important for nuclear technology in order to understand the fault-tolerance as well as the safety margins of the system under consideration and to insure a safemore » operation of nuclear reactors. Such a global analysis would be particularly relevant to future reactors with inherent or passive safety features that are expected to rely on natural phenomena rather than active components to achieve and maintain safe shutdown. Conventionally, failure and global analysis of dynamic systems necessitate the utilization of different methodologies which have computational limitations on the system size that can be handled. Using a Chapman-Kolmogorov interpretation of system dynamics, a theoretical basis is developed that unifies these methodologies as special cases and which can be used for a comprehensive safety and reliability analysis of dynamic systems.« less

  19. Czech results at criticality dosimetry intercomparison 2002.

    PubMed

    Frantisek, Spurný; Jaroslav, Trousil

    2004-01-01

    Two criticality dosimetry systems were tested by Czech participants during the intercomparison held in Valduc, France, June 2002. The first consisted of the thermoluminescent detectors (TLDs) (Al-P glasses) and Si-diodes as passive neutron dosemeters. Second, it was studied to what extent the individual dosemeters used in the Czech routine personal dosimetry service can give a reliable estimation of criticality accident exposure. It was found that the first system furnishes quite reliable estimation of accidental doses. For routine individual dosimetry system, no important problems were encountered in the case of photon dosemeters (TLDs, film badge). For etched track detectors in contact with the 232Th or 235U-Al alloy, the track density saturation for the spark counting method limits the upper dose at approximately 1 Gy for neutrons with the energy >1 MeV.

  20. Axial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  1. Design, analysis, and testing of high frequency passively damped struts

    NASA Technical Reports Server (NTRS)

    Yiu, Y. C.; Davis, L. Porter; Napolitano, Kevin; Ninneman, R. Rory

    1993-01-01

    Objectives of the research are: (1) to develop design requirements for damped struts to stabilize control system in the high frequency cross-over and spill-over range; (2) to design, fabricate and test viscously damped strut and viscoelastically damped strut; (3) to verify accuracy of design and analysis methodology of damped struts; and (4) to design and build test apparatus, and develop data reduction algorithm to measure strut complex stiffness. In order to meet the stringent performance requirements of the SPICE experiment, the active control system is used to suppress the dynamic responses of the low order structural modes. However, the control system also inadvertently drives some of the higher order modes unstable in the cross-over and spill-over frequency range. Passive damping is a reliable and effective way to provide damping to stabilize the control system. It also improves the robustness of the control system. Damping is designed into the SPICE testbed as an integral part of the control-structure technology.

  2. Characterization Testing of the Teledyne Passive Breadboard Fuel Cell Powerplant

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    NASA's Exploration Technology Development Program (ETDP) is tasked with the development of enabling and enhancing technologies for NASA's exploration missions. As part of that initiative, the return to the Moon requires a reliable, efficient, and lightweight fuel cell powerplant system to provide power to the Altair Lunar Lander and for lunar surface systems. Fuel cell powerplants are made up of two basic parts; the fuel cell itself and the supporting ancillary subsystem. This subsystem is designed to deliver reactants to the fuel cell and remove product water and waste heat from the fuel cell. Typically, fuel cell powerplant ancillary subsystems rely upon pumps and active water separation techniques to accomplish these tasks for closed hydrogen/oxygen systems. In a typical system, these components are the largest contributors to the overall parasitic power load of the fuel cell powerplant. A potential step towards the development of an efficient lightweight power system is to maximize the use of "passive" or low-power ancillary components as a replacement to these high-power load components

  3. Apparatus for localizing disturbances in pressurized water reactors (PWR)

    DOEpatents

    Sykora, Dalibor

    1989-01-01

    The invention according to CS-PS 177386, entitled ''Apparatus for increasing the efficiency and passivity of the functioning of a bubbling-vacuum system for localizing disturbances in nuclear power plants with a pressurized water reactor'', concerns an important area of nuclear power engineering that is being developed in the RGW member countries. The invention solves the problems of increasing the reliability and intensification during the operation of the above very important system for guaranteeing the safety of the standard nuclear power plants of Soviet design. The essence of the invention consists in the installation of a simple passively operating supplementary apparatus. Consequently, the following can be observed in the system: first an improvement and simultaneous increase in the reliability of its function during the critical transition period, which follows the filling of the second space with air from the first space; secondly, elimination of the hitherto unavoidable initiating role of the active sprinkler-condensation device present; thirdly, a more effective performance and subjection of the elements to disintegration of the water flowing from the bubbling condenser into the first space; and fourthly, an enhanced utilization of the heat-conducting ability of the water reservoir of the bubbling condenser. Representatives of the supplementary apparatus are autonomous and local secondary systems of the sprinkler-sprayer without an insert, which spray the water under the effect of gravity. 1 fig.

  4. Wireless measurement of tire pressure with passive quartz sensors

    NASA Astrophysics Data System (ADS)

    Grossmann, Rainer

    1999-05-01

    The air pressure in the tires of a vehicle affects its stability, handling and braking and may contribute to causing an accident. Under-inflated tires increase fuel consumption. Existing measurement systems for the monitoring of the tire pressure use active sensors which need a battery or bulky energy transmission. This work shows a new approach: Quartz crystals as sensors can operate passively, without energy supply, by giving an echo to a stimulus pulse. Strain influences the otherwise extremely stable natural frequency of a quartz crystal which is therefore ideally suited for pressure measurements. As the natural frequency lies in the Megahertz range, stimulation and response can be transmitted by a pair of small antennas. A wireless measurement system has been built with excellent accuracy and resolution and a lightweight sensor which is very reliable and in principle maintenance-free.

  5. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates

    USGS Publications Warehouse

    Hobbs, Michael T.; Brehme, Cheryl S.

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing.

  6. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates.

    PubMed

    Hobbs, Michael T; Brehme, Cheryl S

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing.

  7. Neural networks application to divergence-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1992-01-01

    The purpose of this report is to summarize the state of knowledge and outline the planned work in divergence-based/neural networks approach to the problem of passive ranging derived from optical flow. Work in this and closely related areas is reviewed in order to provide the necessary background for further developments. New ideas about devising a monocular passive-ranging system are then introduced. It is shown that image-plan divergence is independent of image-plan location with respect to the focus of expansion and of camera maneuvers because it directly measures the object's expansion which, in turn, is related to the time-to-collision. Thus, a divergence-based method has the potential of providing a reliable range complementing other monocular passive-ranging methods which encounter difficulties in image areas close to the focus of expansion. Image-plan divergence can be thought of as some spatial/temporal pattern. A neural network realization was chosen for this task because neural networks have generally performed well in various other pattern recognition applications. The main goal of this work is to teach a neural network to derive the divergence from the imagery.

  8. Pesticide impact on aquatic invertebrates identified with Chemcatcher® passive samplers and the SPEAR(pesticides) index.

    PubMed

    Münze, Ronald; Orlinskiy, Polina; Gunold, Roman; Paschke, Albrecht; Kaske, Oliver; Beketov, Mikhail A; Hundt, Matthias; Bauer, Coretta; Schüürmann, Gerrit; Möder, Monika; Liess, Matthias

    2015-12-15

    Pesticides negatively affect biodiversity and ecosystem function in aquatic environments. In the present study, we investigated the effects of pesticides on stream macroinvertebrates at 19 sites in a rural area dominated by forest cover and arable land in Central Germany. Pesticide exposure was quantified with Chemcatcher® passive samplers equipped with a diffusion-limiting membrane. Ecological effects on macroinvertebrate communities and on the ecosystem function detritus breakdown were identified using the indicator system SPEARpesticides and the leaf litter degradation rates, respectively. A decrease in the abundance of pesticide-vulnerable taxa and a reduction in leaf litter decomposition rates were observed at sites contaminated with the banned insecticide Carbofuran (Toxic Units≥-2.8), confirming the effect thresholds from previous studies. The results show that Chemcatcher® passive samplers with a diffusion-limiting membrane reliably detect ecologically relevant pesticide pollution, and we suggest Chemcatcher® passive samplers and SPEARpesticides as a promising combination to assess pesticide exposure and effects in rivers and streams. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Passive wireless strain monitoring of tyres using capacitance and tuning frequency changes

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Ryosuke; Todoroki, Akira

    2005-08-01

    In-service strain monitoring of tyres of automobiles is quite effective for improving the reliability of tyres and anti-lock braking systems (ABS). Conventional strain gauges have high stiffness and require lead wires. Therefore, they are cumbersome for tyre strain measurements. In a previous study, the authors proposed a new wireless strain monitoring method that adopts the tyre itself as a sensor, with an oscillating circuit. This method is very simple and useful, but it requires a battery to activate the oscillating circuit. In the present study, the previous method for wireless tyre monitoring is improved to produce a passive wireless sensor. A specimen made from a commercially available tyre is connected to a tuning circuit comprising an inductance and a capacitance as a condenser. The capacitance change of the tyre alters the tuning frequency. This change of the tuned radio wave facilitates wireless measurement of the applied strain of the specimen without any power supply. This passive wireless method is applied to a specimen and the static applied strain is measured. Experiments demonstrate that the method is effective for passive wireless strain monitoring of tyres.

  10. Advance Power Technology Experiment for the Starshine 3 Satellite

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas; Bailey, Sheila (Technical Monitor); Hepp, A. (Technical Monitor)

    2001-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IWS) for evaluation.

  11. Advance Power Technology Demonstration on Starshine 3

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas

    2002-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IMPS) for evaluation.

  12. Cost- and reliability-oriented aggregation point association in long-term evolution and passive optical network hybrid access infrastructure for smart grid neighborhood area network

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao; Feng, Lei; Zhou, Fanqin; Wei, Lei; Yu, Peng; Li, Wenjing

    2018-02-01

    With the rapid development of the smart grid, the data aggregation point (AP) in the neighborhood area network (NAN) is becoming increasingly important for forwarding the information between the home area network and wide area network. Due to limited budget, it is unable to use one-single access technology to meet the ongoing requirements on AP coverage. This paper first introduces the wired and wireless hybrid access network with the integration of long-term evolution (LTE) and passive optical network (PON) system for NAN, which allows a good trade-off among cost, flexibility, and reliability. Then, based on the already existing wireless LTE network, an AP association optimization model is proposed to make the PON serve as many APs as possible, considering both the economic efficiency and network reliability. Moreover, since the features of the constraints and variables of this NP-hard problem, a hybrid intelligent optimization algorithm is proposed, which is achieved by the mixture of the genetic, ant colony and dynamic greedy algorithm. By comparing with other published methods, simulation results verify the performance of the proposed method in improving the AP coverage and the performance of the proposed algorithm in terms of convergence.

  13. Teflon/SiO2 Bilayer Passivation for Improving the Electrical Reliability of Oxide TFTs Fabricated Using a New Two-Photomask Self-Alignment Process

    PubMed Central

    Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der; Hung, Bohr-Ran

    2015-01-01

    This study proposes a two-photomask process for fabricating amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) that exhibit a self-aligned structure. The fabricated TFTs, which lack etching-stop (ES) layers, have undamaged a-IGZO active layers that facilitate superior performance. In addition, we demonstrate a bilayer passivation method that uses a polytetrafluoroethylene (Teflon) and SiO2 combination layer for improving the electrical reliability of the fabricated TFTs. Teflon was deposited as a buffer layer through thermal evaporation. The Teflon layer exhibited favorable compatibility with the underlying IGZO channel layer and effectively protected the a-IGZO TFTs from plasma damage during SiO2 deposition, resulting in a negligible initial performance drop in the a-IGZO TFTs. Compared with passivation-free a-IGZO TFTs, passivated TFTs exhibited superior stability even after 168 h of aging under ambient air at 95% relative humidity. PMID:28788026

  14. Robotic-Assisted Knee Arthroplasty: An Overview.

    PubMed

    van der List, Jelle P; Chawla, Harshvardhan; Pearle, Andrew D

    2016-01-01

    Unicompartmental knee arthroplasty and total knee arthroplasty are reliable treatment options for osteoarthritis. In order to improve survivorship rates, variables that are intraoperatively controlled by the orthopedic surgeon are being evaluated. These variables include lower leg alignment, soft tissue balance, joint line maintenance, and tibial and femoral component alignment, size, and fixation methods. Since tighter control of these factors is associated with improved outcomes of knee arthroplasty, several computer-assisted surgery systems have been developed. These systems differ in the number and type of variables they control. Robotic-assisted systems control these aforementioned variables and, in addition, aim to improve the surgical precision of the procedure. Robotic-assisted systems are active, semi-active, or passive, depending on how independently the systems perform maneuvers. Reviewing the robotic-assisted knee arthroplasty systems, it becomes clear that these systems can accurately and reliably control the aforementioned variables. Moreover, these systems are more accurate and reliable in controlling these variables when compared to the current gold standard of conventional manual surgery. At present, few studies have assessed the survivorship and functional outcomes of robotic-assisted surgery, and no sufficiently powered studies were identified that compared survivorship or functional outcomes between robotic-assisted and conventional knee arthroplasty. Although preliminary outcomes of robotic-assisted surgery look promising, more studies are necessary to assess if the increased accuracy and reliability in controlling the surgical variables leads to better outcomes of robotic-assisted knee arthroplasty.

  15. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective is to provide turbine-cooling technologies to meet Propulsion 21 goals related to engine fuel burn, emissions, safety, and reliability. Specifically, the GE Aviation (GEA) Advanced Turbine Cooling and Thermal Management program seeks to develop advanced cooling and flow distribution methods for HP turbines, while achieving a substantial reduction in total cooling flow and assuring acceptable turbine component safety and reliability. Enhanced cooling techniques, such as fluidic devices, controlled-vortex cooling, and directed impingement jets, offer the opportunity to incorporate both active and passive schemes. Coolant heat transfer enhancement also can be achieved from advanced designs that incorporate multi-disciplinary optimization of external film and internal cooling passage geometry.

  16. Thermal Protection for Mars Sample Return Earth Entry Vehicle: A Grand Challenge for Design Methodology and Reliability Verification

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Gage, Peter; Wright, Michael J.

    2017-01-01

    Mars Sample Return is our Grand Challenge for the coming decade. TPS (Thermal Protection System) nominal performance is not the key challenge. The main difficulty for designers is the need to verify unprecedented reliability for the entry system: current guidelines for prevention of backward contamination require that the probability of spores larger than 1 micron diameter escaping into the Earth environment be lower than 1 million for the entire system, and the allocation to TPS would be more stringent than that. For reference, the reliability allocation for Orion TPS is closer to 11000, and the demonstrated reliability for previous human Earth return systems was closer to 1100. Improving reliability by more than 3 orders of magnitude is a grand challenge indeed. The TPS community must embrace the possibility of new architectures that are focused on reliability above thermal performance and mass efficiency. MSR (Mars Sample Return) EEV (Earth Entry Vehicle) will be hit with MMOD (Micrometeoroid and Orbital Debris) prior to reentry. A chute-less aero-shell design which allows for self-righting shape was baselined in prior MSR studies, with the assumption that a passive system will maximize EEV robustness. Hence the aero-shell along with the TPS has to take ground impact and not break apart. System verification will require testing to establish ablative performance and thermal failure but also testing of damage from MMOD, and structural performance at ground impact. Mission requirements will demand analysis, testing and verification that are focused on establishing reliability of the design. In this proposed talk, we will focus on the grand challenge of MSR EEV TPS and the need for innovative approaches to address challenges in modeling, testing, manufacturing and verification.

  17. A pulse-compression-ring circuit for high-efficiency electric propulsion.

    PubMed

    Owens, Thomas L

    2008-03-01

    A highly efficient, highly reliable pulsed-power system has been developed for use in high power, repetitively pulsed inductive plasma thrusters. The pulsed inductive thruster ejects plasma propellant at a high velocity using a Lorentz force developed through inductive coupling to the plasma. Having greatly increased propellant-utilization efficiency compared to chemical rockets, this type of electric propulsion system may one day propel spacecraft on long-duration deep-space missions. High system reliability and electrical efficiency are extremely important for these extended missions. In the prototype pulsed-power system described here, exceptional reliability is achieved using a pulse-compression circuit driven by both active solid-state switching and passive magnetic switching. High efficiency is achieved using a novel ring architecture that recovers unused energy in a pulse-compression system with minimal circuit loss after each impulse. As an added benefit, voltage reversal is eliminated in the ring topology, resulting in long lifetimes for energy-storage capacitors. System tests were performed using an adjustable inductive load at a voltage level of 3.3 kV, a peak current of 20 kA, and a current switching rate of 15 kA/micros.

  18. Passive control of a biventricular assist device with compliant inflow cannulae.

    PubMed

    Gregory, Shaun David; Pearcy, Mark John; Timms, Daniel

    2012-08-01

    Rotary ventricular assist device (VAD) support of the cardiovascular system is susceptible to suction events due to the limited preload sensitivity of these devices. This may be of particular concern with rotary biventricular support (BiVAD) where the native, flow balancing Starling response is diminished in both ventricles. The reliability of sensor and sensorless-based control systems which aim to control VAD flow based on preload has limitations, and, thus, an alternative solution is desired. This study introduces a compliant inflow cannula (CIC) which could improve the preload sensitivity of a rotary VAD by passively altering VAD flow depending on preload. To evaluate the design, both the CIC and a standard rigid inflow cannula were inserted into a mock circulation loop to enable biventricular heart failure support using configurations of atrial and ventricular inflow, and arterial outflow cannulation. A range of left (LVAD) and right VAD (RVAD) rotational speeds were tested as well as step changes in systemic/pulmonary vascular resistance to alter relative preloads, with resulting flow rates recorded. Simulated suction events were observed, particularly at higher VAD speeds, during support with the rigid inflow cannula, while the CIC prevented suction events under all circumstances. The compliant section passively restricted its internal diameter as preload was reduced, which increased the VAD circuit resistance and thus reduced VAD flow. Therefore, a CIC could potentially be used as a passive control system to prevent suction events in rotary left, right, and biventricular support. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates

    PubMed Central

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing. PMID:28981533

  20. Terrain matching image pre-process and its format transform in autonomous underwater navigation

    NASA Astrophysics Data System (ADS)

    Cao, Xuejun; Zhang, Feizhou; Yang, Dongkai; Yang, Bogang

    2007-06-01

    Underwater passive navigation technology is one of the important development orientations in the field of modern navigation. With the advantage of high self-determination, stealth at sea, anti-jamming and high precision, passive navigation is completely meet with actual navigation requirements. Therefore passive navigation has become a specific navigating method for underwater vehicles. The scientists and researchers in the navigating field paid more attention to it. The underwater passive navigation can provide accurate navigation information with main Inertial Navigation System (INS) for a long period, such as location and speed. Along with the development of micro-electronics technology, the navigation of AUV is given priority to INS assisted with other navigation methods, such as terrain matching navigation. It can provide navigation ability for a long period, correct the errors of INS and make AUV not emerge from the seabed termly. With terrain matching navigation technique, in the assistance of digital charts and ocean geographical characteristics sensors, we carry through underwater image matching assistant navigation to obtain the higher location precision, therefore it is content with the requirement of underwater, long-term, high precision and all-weather of the navigation system for Autonomous Underwater Vehicles. Tertian-assistant navigation (TAN) is directly dependent on the image information (map information) in the navigating field to assist the primary navigation system according to the path appointed in advance. In TAN, a factor coordinative important with the system operation is precision and practicability of the storable images and the database which produce the image data. If the data used for characteristics are not suitable, the system navigation precision will be low. Comparing with terrain matching assistant navigation system, image matching navigation system is a kind of high precision and low cost assistant navigation system, and its matching precision directly influences the final precision of integrated navigation system. Image matching assistant navigation is spatially matching and aiming at two underwater scenery images coming from two different sensors matriculating of the same scenery in order to confirm the relative displacement of the two images. In this way, we can obtain the vehicle's location in fiducial image known geographical relation, and the precise location information given from image matching location is transmitted to INS to eliminate its location error and greatly enhance the navigation precision of vehicle. Digital image data analysis and processing of image matching in underwater passive navigation is important. In regard to underwater geographic data analysis, we focus on the acquirement, disposal, analysis, expression and measurement of database information. These analysis items structure one of the important contents of underwater terrain matching and are propitious to know the seabed terrain configuration of navigation areas so that the best advantageous seabed terrain district and dependable navigation algorithm can be selected. In this way, we can improve the precision and reliability of terrain assistant navigation system. The pre-process and format transformation of digital image during underwater image matching are expatiated in this paper. The information of the terrain status in navigation areas need further study to provide the reliable data terrain characteristic and underwater overcast for navigation. Through realizing the choice of sea route, danger district prediction and navigating algorithm analysis, TAN can obtain more high location precision and probability, hence provide technological support for image matching of underwater passive navigation.

  1. Performance evaluation and accuracy of passive capillary samplers (PCAPs) for estimating real-time drainage water fluxes

    USDA-ARS?s Scientific Manuscript database

    Successful monitoring of pollutant transport through the soil profile requires accurate, reliable, and appropriate instrumentation to measure amount of drainage water or flux within the vadose layer. We evaluated the performance and accuracy of automated passive capillary wick samplers (PCAPs) for ...

  2. Environmental monitoring of selected pesticides and organic chemicals in urban stormwater recycling systems using passive sampling techniques.

    PubMed

    Page, Declan; Miotliński, Konrad; Gonzalez, Dennis; Barry, Karen; Dillon, Peter; Gallen, Christie

    2014-03-01

    Water recycling via aquifers has become a valuable tool to augment urban water supplies in many countries. This study reports the first use of passive samplers for monitoring of organic micropollutants in Managed Aquifer Recharge (MAR). Five different configurations of passive samplers were deployed in a stormwater treatment wetland, groundwater monitoring wells and a recovery tank to capture a range of polar and non-polar micropollutants present in the system. The passive samplers were analysed for a suite of pesticides, polycyclic aromatic hydrocarbons (PAHs) and other chemicals. As a result, 17 pesticides and pesticide degradation products, 5 PAHs and 8 other organic chemicals including flame retardants and fragrances were detected in urban stormwater recharging Aquifer Storage and Recovery (ASR) and an Aquifer Storage Transfer and Recovery (ASTR) system. Of the pesticides detected, diuron, metolachlor and chlorpyrifos were generally detected at the highest concentrations in one or more passive samplers, whereas chlorpyrifos, diuron, metolachlor, simazine, galaxolide and triallate were detected in multiple samplers. Fluorene was the PAH detected at the highest concentration and the flame retardant Tris(1-chloro-2-propyl)phosphate was the chemical detected in the greatest abundance at all sites. The passive samplers showed different efficiencies for capture of micropollutants with the Empore disc samplers giving the most reliable results. The results indicate generally low levels of organic micropollutants in the stormwater, as the contaminants detected were present at very low ng/L levels, generally two to four orders of magnitude below the drinking water guidelines (NHMRC, 2011). The efficiency of attenuation of these organic micropollutants during MAR was difficult to determine due to variations in the source water concentrations. Comparisons were made between different samplers, to give a field-based calibration where existing lab-based calibrations were unavailable. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  3. Composting on Mars or the Moon: I. Comparative evaluation of process design alternatives

    NASA Technical Reports Server (NTRS)

    Finstein, M. S.; Strom, P. F.; Hogan, J. A.; Cowan, R. M.; Janes, H. W. (Principal Investigator)

    1999-01-01

    As a candidate technology for treating solid wastes and recovering resources in bioregenerative Advanced Life Support, composting potentially offers such advantages as compactness, low mass, near ambient reactor temperatures and pressures, reliability, flexibility, simplicity, and forgiveness of operational error or neglect. Importantly, the interactions among the physical, chemical, and biological factors that govern composting system behavior are well understood. This article comparatively evaluates five Generic Systems that describe the basic alternatives to composting facility design and control. These are: 1) passive aeration; 2) passive aeration abetted by mechanical agitation; 3) forced aeration--O2 feedback control; 4) forced aeration--temperature feedback control; 5) forced aeration--integrated O2 and temperature feedback control. Each of the five has a distinctive pattern of behavior and process performance characteristics. Only Systems 4 and 5 are judged to be viable candidates for ALS on alien worlds, though which is better suited in this application is yet to be determined.

  4. Validity and Reliability of a New Device (WIMU®) for Measuring Hamstring Muscle Extensibility.

    PubMed

    Muyor, José M

    2017-09-01

    The aims of the current study were 1) to evaluate the validity of the WIMU ® system for measuring hamstring muscle extensibility in the passive straight leg raise (PSLR) test using an inclinometer for the criterion and 2) to determine the test-retest reliability of the WIMU ® system to measure hamstring muscle extensibility during the PSLR test. 55 subjects were evaluated on 2 separate occasions. Data from a Unilever inclinometer and WIMU ® system were collected simultaneously. Intraclass correlation coefficients (ICCs) for the validity were very high (0.983-1); a very low systematic bias (-0.21°--0.42°), random error (0.05°-0.04°) and standard error of the estimate (0.43°-0.34°) were observed (left-right leg, respectively) between the 2 devices (inclinometer and the WIMU ® system). The R 2 between the devices was 0.999 (p<0.001) in both the left and right legs. The test-retest reliability of the WIMU ® system was excellent, with ICCs ranging from 0.972-0.995, low coefficients of variation (0.01%), and a low standard error of the estimate (0.19-0.31°). The WIMU ® system showed strong concurrent validity and excellent test-retest reliability for the evaluation of hamstring muscle extensibility in the PSLR test. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Evidence-based approach to assess passive diffusion and carrier-mediated drug transport.

    PubMed

    Di, Li; Artursson, Per; Avdeef, Alex; Ecker, Gerhard F; Faller, Bernard; Fischer, Holger; Houston, J Brian; Kansy, Manfred; Kerns, Edward H; Krämer, Stefanie D; Lennernäs, Hans; Sugano, Kiyohiko

    2012-08-01

    Evidence supporting the action of passive diffusion and carrier-mediated (CM) transport in drug bioavailability and disposition is discussed to refute the recently proposed theory that drug transport is CM-only and that new transporters will be discovered that possess transport characteristics ascribed to passive diffusion. Misconceptions and faulty speculations are addressed to provide reliable guidance on choosing appropriate tools for drug design and optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Carrier characteristics influence the kinetics of passive drug loading into lipid nanoemulsions.

    PubMed

    Göke, Katrin; Bunjes, Heike

    2018-05-01

    Passive loading as a novel screening approach is a material-saving tool for the efficient selection of a suitable colloidal lipid carrier system for poorly water soluble drug candidates. This method comprises incubation of preformed carrier systems with drug powder and subsequent determination of the resulting drug load of the carrier particles after removal of excess drug. For reliable routine use and to obtain meaningful loading results, information on the kinetics of the process is required. Passive loading proceeds via a dissolution-diffusion-based mechanism, where drug surface area and drug water solubility are key parameters for fast passive loading. While the influence of the drug characteristics is mostly understood, the influence of the carrier characteristics remains unknown. The aim of this study was to examine how the lipid nanocarriers' characteristics, i.e. the type of lipid, the lipid content and the particle size, influence the kinetics of passive loading. Fenofibrate was used as model drug and the loading progress was analyzed by UV spectroscopy. The saturation solubility in the nanocarrier particles, i.e. the lipid type, did not influence the passive loading rate constant. Low lipid content in the nanocarrier and a small nanocarrier particle size both increased passive loading speed. Both variations increase the diffusivity of the nanocarrier particles, which is the primary cause for fast loading at these conditions: The quicker the carrier particles diffuse, the higher is the speed of passive loading. The influence of the diffusivity of the lipid nanocarriers and the effect of drug dissolution rate were included in an overall mechanistic model developed for similar processes (A. Balakrishnan, B.D. Rege, G.L. Amidon, J.E. Polli, Surfactant-mediated dissolution: contributions of solubility enhancement and relatively low micelle diffusivity, J. Pharm. Sci. 93 (2004) 2064-2075). The resulting mechanistic model gave a good estimate of the speed of passive loading in nanoemulsions. Whilst the drug's characteristics - apart from drug surface area - are basically fixed, the lipid nanocarriers can be customized to improve passive loading speed, e.g. by using small nanocarrier particles. The knowledge of the loading mechanism now allows the use of passive loading for the straightforward, material-saving selection of suitable lipid drug nanocarriers. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. An Acoustic Charge Transport Imager for High Definition Television Applications: Reliability Modeling and Parametric Yield Prediction of GaAs Multiple Quantum Well Avalanche Photodiodes. Degree awarded Oct. 1997

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Yun, Ilgu

    1994-01-01

    Reliability modeling and parametric yield prediction of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs), which are of interest as an ultra-low noise image capture mechanism for high definition systems, have been investigated. First, the effect of various doping methods on the reliability of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiode (APD) structures fabricated by molecular beam epitaxy is investigated. Reliability is examined by accelerated life tests by monitoring dark current and breakdown voltage. Median device lifetime and the activation energy of the degradation mechanism are computed for undoped, doped-barrier, and doped-well APD structures. Lifetimes for each device structure are examined via a statistically designed experiment. Analysis of variance shows that dark-current is affected primarily by device diameter, temperature and stressing time, and breakdown voltage depends on the diameter, stressing time and APD type. It is concluded that the undoped APD has the highest reliability, followed by the doped well and doped barrier devices, respectively. To determine the source of the degradation mechanism for each device structure, failure analysis using the electron-beam induced current method is performed. This analysis reveals some degree of device degradation caused by ionic impurities in the passivation layer, and energy-dispersive spectrometry subsequently verified the presence of ionic sodium as the primary contaminant. However, since all device structures are similarly passivated, sodium contamination alone does not account for the observed variation between the differently doped APDs. This effect is explained by the dopant migration during stressing, which is verified by free carrier concentration measurements using the capacitance-voltage technique.

  8. SKYWARD: the next generation airborne infrared search and track

    NASA Astrophysics Data System (ADS)

    Fortunato, L.; Colombi, G.; Ondini, A.; Quaranta, C.; Giunti, C.; Sozzi, B.; Balzarotti, G.

    2016-05-01

    Infrared Search and Track systems are an essential element of the modern and future combat aircrafts. Passive automatic search, detection and tracking functions, are key points for silent operations or jammed tactical scenarios. SKYWARD represents the latest evolution of IRST technology in which high quality electro-optical components, advanced algorithms, efficient hardware and software solutions are harmonically integrated to provide high-end affordable performances. Additionally, the reduction of critical opto-mechanical elements optimises weight and volume and increases the overall reliability. Multiple operative modes dedicated to different situations are available; many options can be selected among multiple or single target tracking, for surveillance or engagement, and imaging, for landing or navigation aid, assuring the maximum system flexibility. The high quality 2D-IR sensor is exploited by multiple parallel processing chains, based on linear and non-linear techniques, to extract the possible targets from background, in different conditions, with false alarm rate control. A widely tested track processor manages a large amount of candidate targets simultaneously and allows discriminating real targets from noise whilst operating with low target to background contrasts. The capability of providing reliable passive range estimation is an additional qualifying element of the system. Particular care has been dedicated to the detector non-uniformities, a possible limiting factor for distant targets detection, as well as to the design of the electro-optics for a harsh airborne environment. The system can be configured for LWIR or MWIR waveband according to the customer operational requirements. An embedded data recorder saves all the necessary images and data for mission debriefing, particularly useful during inflight system integration and tuning.

  9. Design Analysis of the Ares 1 Pogo Accumulator

    NASA Technical Reports Server (NTRS)

    Swanson, Luke A.; Giel, Thomas V.

    2009-01-01

    Several accumulator designs and gas charge systems are considered in order to suppress POGO within the Ares I vehicle Upper Stage Liquid Ox ygen System. The thermodynamic and flow analysis completed to evaluat e candidate designs are presented and the results are used to evaluat e the ability of each concept to meet the levied suppression requirements. One annular accumulator design meets all suppression requirement s while also providing manufacturability and operability advantages. Of the two proposed charge systems to provide and maintain gas within the accumulator, a passive level control design meets the charge req uirements and maximizes reliability.

  10. Passive wireless strain monitoring of tire using capacitance change

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Ryosuke; Todoroki, Akira

    2004-07-01

    In-service strain monitoring of tires of automobile is quite effective for improving the reliability of tires and Anti-lock Braking System (ABS). Since conventional strain gages have high stiffness and require lead wires, the conventional strain gages are cumbersome for the strain measurements of the tires. In a previous study, the authors proposed a new wireless strain monitoring method that adopts the tire itself as a sensor, with an oscillating circuit. This method is very simple and useful, but it requires a battery to activate the oscillating circuit. In the present study, the previous method for wireless tire monitoring is improved to produce a passive wireless sensor. A specimen made from a commercially available tire is connected to a tuning circuit comprising an inductance and a capacitance as a condenser. The capacitance change of tire causes change of the tuning frequency. This change of the tuned radio wave enables us to measure the applied strain of the specimen wirelessly, without any power supply from outside. This new passive wireless method is applied to a specimen and the static applied strain is measured. As a result, the method is experimentally shown to be effective as a passive wireless strain monitoring of tires.

  11. Dynamic user data analysis and web composition technique using big data

    NASA Astrophysics Data System (ADS)

    Soundarya, P.; Vanitha, M.; Sumaiya Thaseen, I.

    2017-11-01

    In the existing system, a reliable service oriented system is built which is more important when compared with the traditional standalone system in the unpredictable internet service and it also a challenging task to build reliable web service. In the proposed system, the fault tolerance is determined by using the proposed heuristic algorithm. There are two kinds of strategies active and passive strategies. The user requirement is also formulated as local and global constraints. Different services are deployed in the modification process. Two bus reservation and two train reservation services are deployed along with hotel reservation service. User can choose any one of the bus reservation and specify their destination location. If corresponding destination is not available then automatic backup service to another bus reservation system is carried. If same, the service is not available then parallel service of train reservation is initiated. Automatic hotel reservation is also initiated based on the mode and type of travel of the user.

  12. New Generation Lidar Technology and Applications

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1999-01-01

    Lidar has been a tool for atmospheric research for several decades. Until recently routine operational use of lidar was not known. Problems have involved a lack of appropriate technology rather than a lack of applications. Within the last few years, lidar based on a new generation of solid state lasers and detectors have changed the situation. Operational applications for cloud and aerosol research applications are now well established. In these research applications, the direct height profiling capability of lidar is typically an adjunct to other types of sensing, both passive and active. Compact eye safe lidar with the sensitivity for ground based monitoring of all significant cloud and aerosol structure and the reliability to operate full time for several years is now in routine use. The approach is known as micro pulse lidar (MPL). For MPL the laser pulse repetition rate is in the kilohertz range and the pulse energies are in the micro-Joule range. The low pulse energy permits the systems to be eye safe and reliable with solid state lasers. A number of MPL systems have been deployed since 1992 at atmospheric research sites at a variety of global locations. Accurate monitoring of cloud and aerosol vertical distribution is a critical measurement for atmospheric radiation. An airborne application of lidar cloud and aerosol profiling is retrievals of parameters from combined lidar and passive sensing involving visible, infrared and microwave frequencies. A lidar based on a large pulse, solid state diode pumped ND:YAG laser has been deployed on the NASA ER-2 high altitude research aircraft along with multi-spectral visible/IR and microwave imaging radiometers since 1993. The system has shown high reliability in an extensive series of experimental projects for cloud remote sensing. The retrieval of cirrus radiation parameters is an effective application for combined lidar and passive sensing. An approved NASA mission will soon begin long term lidar observation of atmospheric structure from space. The Geoscience Laser Altimeter System (GLAS) of the Earth Observing System is scheduled for deployment in the 2001 time frame. GLAS is both a cloud and aerosol lidar and a surface altimeter, principally for monitoring of polar ice sheets. The GLAS instrument is based on all solid state lasers operating at 40 Hz and high efficiency, solid state detectors. The design lifetime is three to five years. Data from the GLAS mission is expected to revolutionize some aspects of our understanding of the global distribution of cloud and aerosols for global climate prediction.

  13. Reliable protocol for shear wave elastography of lower limb muscles at rest and during passive stretching.

    PubMed

    Dubois, Guillaume; Kheireddine, Walid; Vergari, Claudio; Bonneau, Dominique; Thoreux, Patricia; Rouch, Philippe; Tanter, Mickael; Gennisson, Jean-Luc; Skalli, Wafa

    2015-09-01

    Development of shear wave elastography gave access to non-invasive muscle stiffness assessment in vivo. The aim of the present study was to define a measurement protocol to be used in clinical routine for quantifying the shear modulus of lower limb muscles. Four positions were defined to evaluate shear modulus in 10 healthy subjects: parallel to the fibers, in the anterior and posterior aspects of the lower limb, at rest and during passive stretching. Reliability was first evaluated on two muscles by three operators; these measurements were repeated six times. Then, measurement reliability was compared in 11 muscles by two operators; these measurements were repeated three times. Reproducibility of shear modulus was 0.48 kPa and repeatability was 0.41 kPa, with all muscles pooled. Position did not significantly influence reliability. Shear wave elastography appeared to be an appropriate and reliable tool to evaluate the shear modulus of lower limb muscles with the proposed protocol. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Highly reliable photosensitive organic-inorganic hybrid passivation layers for a-InGaZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Bermundo, Juan Paolo; Ishikawa, Yasuaki; Yamazaki, Haruka; Nonaka, Toshiaki; Fujii, Mami N.; Uraoka, Yukiharu

    2015-07-01

    We report the fabrication of a photosensitive hybrid passivation material on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) that greatly enhance its stability and improve its electrical characteristics. The hybrid passivation based on polysilsesquioxane is transparent and fabricated using a simple solution process. Because the passivation is photosensitive, dry etching was never performed during TFT fabrication. TFTs passivated with this material had a small threshold voltage shift of 0.5 V during positive bias stress, 0.5 V during negative bias stress, and -2.5 V during negative bias illumination stress. Furthermore, TFTs passivated by this layer were stable after being subjected to high relative humidity stress — confirming the superb barrier ability of the passivation. Analysis of secondary ion mass spectrometry showed that a large amount of hydrogen, carbon, and fluorine can be found in the channel region. We show that both hydrogen and fluorine reduced oxygen vacancies and that fluorine stabilized weak oxygen and hydroxide bonds. These results demonstrate the large potential of photosensitive hybrid passivation layers as effective passivation materials.

  15. Adaptive-passive vibration control systems for industrial applications

    NASA Astrophysics Data System (ADS)

    Mayer, D.; Pfeiffer, T.; Vrbata, J.; Melz, T.

    2015-04-01

    Tuned vibration absorbers have become common for passive vibration reduction in many industrial applications. Lightly damped absorbers (also called neutralizers) can be used to suppress narrowband disturbances by tuning them to the excitation frequency. If the resonance is adapted in-operation, the performance of those devices can be significantly enhanced, or inertial mass can be decreased. However, the integration of actuators, sensors and control electronics into the system raises new design challenges. In this work, the development of adaptive-passive systems for vibration reduction at an industrial scale is presented. As an example, vibration reduction of a ship engine was studied in a full scale test. Simulations were used to study the feasibility and evaluate the system concept at an early stage. Several ways to adjust the resonance of the neutralizer were evaluated, including piezoelectric actuation and common mechatronic drives. Prototypes were implemented and tested. Since vibration absorbers suffer from high dynamic loads, reliability tests were used to assess the long-term behavior under operational conditions and to improve the components. It was proved that the adaptive systems are capable to withstand the mechanical loads in an industrial application. Also a control strategy had to be implemented in order to track the excitation frequency. The most mature concepts were integrated into the full scale test. An imbalance exciter was used to simulate the engine vibrations at a realistic level experimentally. The neutralizers were tested at varying excitation frequencies to evaluate the tracking capabilities of the control system. It was proved that a significant vibration reduction is possible.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelsen, Nicholas H.; Kolb, James D.; Kulkarni, Akshay G.

    Mechanical component response to shock environments must be predictable in order to ensure reliability and safety. Whether the shock input results from accidental drops during transportation to projectile impact scenarios, the system must irreversibly transition into a safe state that is incapable of triggering the component . With this critical need in mind, the 2017 Nuclear Weapons Summer Product Realization Institute (NW SPRINT) program objective sought the design of a passive shock failsafe with emphasis on additively manufactured (AM) components. Team Advanced and Exploratory (A&E) responded to the challenge by designing and delivering multiple passive shock sensing mech anisms thatmore » activate within a prescribed mechanical shock threshold. These AM failsafe designs were tuned and validated using analytical and computational techniques including the shock response spectrum (SRS) and finite element analysis (FEA). After rapid prototyping, the devices experienced physical shock tests conducted on Sandia drop tables to experimentally verify performance. Keywords: Additive manufacturing, dynamic system, failsafe, finite element analysis, mechanical shock, NW SPRINT, shock respon se spectrum« less

  17. Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs

    PubMed Central

    Mousikou, Petroula; Mahajan, Yatin; de Lissa, Peter; Thie, Johnson; McArthur, Genevieve

    2013-01-01

    Background. Auditory event-related potentials (ERPs) have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI), attention deficit hyperactivity disorder (ADHD), schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants – particularly children. Recently, a commercial gaming electroencephalography (EEG) system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC®, www.emotiv.com) were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan). Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz) and 100 deviant (1200 Hz) tones under passive (non-attended) and active (attended) conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan) or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC®). These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks) and the mismatch negativity (MMN) in active and passive listening conditions for each participant. Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs) indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21). Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks. Conclusions. Our findings suggest that the gaming EEG system may prove a valid alternative to laboratory ERP systems for recording reliable late auditory ERPs (P1, N1, P2, N2, and the P3) over the frontal cortices. In the future, the gaming EEG system may also prove useful for measuring less reliable ERPs, such as the MMN, if the reliability of such ERPs can be boosted to the same level as late auditory ERPs. PMID:23638374

  18. Validation of the Emotiv EPOC(®) EEG gaming system for measuring research quality auditory ERPs.

    PubMed

    Badcock, Nicholas A; Mousikou, Petroula; Mahajan, Yatin; de Lissa, Peter; Thie, Johnson; McArthur, Genevieve

    2013-01-01

    Background. Auditory event-related potentials (ERPs) have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI), attention deficit hyperactivity disorder (ADHD), schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants - particularly children. Recently, a commercial gaming electroencephalography (EEG) system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC(®), www.emotiv.com) were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan). Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz) and 100 deviant (1200 Hz) tones under passive (non-attended) and active (attended) conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan) or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC(®)). These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks) and the mismatch negativity (MMN) in active and passive listening conditions for each participant. Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs) indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21). Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks. Conclusions. Our findings suggest that the gaming EEG system may prove a valid alternative to laboratory ERP systems for recording reliable late auditory ERPs (P1, N1, P2, N2, and the P3) over the frontal cortices. In the future, the gaming EEG system may also prove useful for measuring less reliable ERPs, such as the MMN, if the reliability of such ERPs can be boosted to the same level as late auditory ERPs.

  19. A review of passive thermal management of LED module

    NASA Astrophysics Data System (ADS)

    Huaiyu, Ye; Koh, Sau; van Zeijl, Henk; Gielen, A. W. J.; Guoqi, Zhang

    2011-01-01

    Recently, the high-brightness LEDs have begun to be designed for illumination application. The increased electrical currents used to drive LEDs lead to thermal issues. Thermal management for LED module is a key design parameter as high operation temperature directly affects their maximum light output, quality, reliability and life time. In this review, only passive thermal solutions used on LED module will be studied. Moreover, new thermal interface materials and passive thermal solutions applied on electronic equipments are discussed which have high potential to enhance the thermal performance of LED Module.

  20. Passive Two-Phase Cooling for Automotive Power Electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.

    2014-01-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated and tested using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245 fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator concept that incorporates features to improve performance and reduce its size was designed. Simulation results indicate themore » concept's thermal resistance can be 58% to 65% lower than automotive dual-side-cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers-plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.« less

  1. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate itsmore » thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.« less

  2. Design of the flame detector based on pyroelectric infrared sensor

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yu, Benhua; Dong, Lei; Li, Kai

    2017-10-01

    As a fire detection device, flame detector has the advantages of short reaction time and long distance. Based on pyroelectric infrared sensor working principle, the passive pyroelectric infrared alarm system is designed, which is mainly used for safety of tunnel to detect whether fire occurred or not. Modelling and Simulation of the pyroelectric Detector Using Labview. An attempt was made to obtain a simple test platform of a pyroelectric detector which would make an excellent basis for the analysis of its dynamic behaviour. After many experiments, This system has sensitive response, high anti-interference ability and safe and reliable performance.

  3. Thermal System Verification and Model Validation for NASA's Cryogenic Passively Cooled James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Cleveland, Paul E.; Parrish, Keith A.

    2005-01-01

    A thorough and unique thermal verification and model validation plan has been developed for NASA s James Webb Space Telescope. The JWST observatory consists of a large deployed aperture optical telescope passively cooled to below 50 Kelvin along with a suite of several instruments passively and actively cooled to below 37 Kelvin and 7 Kelvin, respectively. Passive cooling to these extremely low temperatures is made feasible by the use of a large deployed high efficiency sunshield and an orbit location at the L2 Lagrange point. Another enabling feature is the scale or size of the observatory that allows for large radiator sizes that are compatible with the expected power dissipation of the instruments and large format Mercury Cadmium Telluride (HgCdTe) detector arrays. This passive cooling concept is simple, reliable, and mission enabling when compared to the alternatives of mechanical coolers and stored cryogens. However, these same large scale observatory features, which make passive cooling viable, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone to most space missions thermal verification plan. JWST is simply too large in its deployed configuration to be properly thermal balance tested in the facilities that currently exist. This reality, when combined with a mission thermal concept with little to no flight heritage, has necessitated the need for a unique and alternative approach to thermal system verification and model validation. This paper describes the thermal verification and model validation plan that has been developed for JWST. The plan relies on judicious use of cryogenic and thermal design margin, a completely independent thermal modeling cross check utilizing different analysis teams and software packages, and finally, a comprehensive set of thermal tests that occur at different levels of JWST assembly. After a brief description of the JWST mission and thermal architecture, a detailed description of the three aspects of the thermal verification and model validation plan is presented.

  4. Biodigester Feasibility and Design for Space & Earth

    NASA Technical Reports Server (NTRS)

    Shutts, Stacy; Ewert, Mike; Bacon, Jack

    2016-01-01

    Anaerobic digestion converts organic waste into methane gas and fertilizer effluent. The ICA-developed prototype system is designed for planetary surface operation. It uses passive hydrostatic control for reliability, and is modular and redundant. The serpentine configuration accommodates tight geometric constraints similar to the ISS ECLSS rack architectures. Its shallow, low-tilt design enables (variable) lower-g convection than standard Earth (1 g) digesters. This technology will reuse and recycle materials including human waste, excess food, as well as packaging (if biodegradable bags are used).

  5. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unwin, Stephen D.; Lowry, Peter P.; Layton, Robert F.

    This is a working report drafted under the Risk-Informed Safety Margin Characterization pathway of the Light Water Reactor Sustainability Program, describing statistical models of passives component reliabilities.

  7. Test-retest reliability of a new device for assessing ankle joint threshold to detect passive movement in healthy adults.

    PubMed

    Sun, Wei; Song, Qipeng; Yu, Bing; Zhang, Cui; Mao, Dewei

    2015-01-01

    This study aimed to evaluate the test-retest reliability of a new device for assessing ankle joint kinesthesia. This device could measure the passive motion threshold of four ankle joint movements, namely plantarflexion, dorsiflexion, inversion and eversion. A total of 21 healthy adults, including 13 males and 8 females, participated in the study. Each participant completed two sessions on two separate days with 1-week interval. The sessions were administered by the same experimenter in the same laboratory. At least 12 trials (three successful trials in each of the four directions) were performed in each session. The mean values in each direction were calculated and analysed. The ICC values of test-retest reliability ranged from 0.737 (dorsiflexion) to 0.935 (eversion), whereas the SEM values ranged from 0.21° (plantarflexion) to 0.52° (inversion). The Bland-Altman plots showed that the reliability of plantarflexion-dorsiflexion was better than that of inversion-eversion. The results evaluated the reliability of the new device as fair to excellent. The new device for assessing kinesthesia could be used to examine the ankle joint kinesthesia.

  8. High reliability - low noise radionuclide signature identification algorithms for border security applications

    NASA Astrophysics Data System (ADS)

    Lee, Sangkyu

    Illicit trafficking and smuggling of radioactive materials and special nuclear materials (SNM) are considered as one of the most important recent global nuclear threats. Monitoring the transport and safety of radioisotopes and SNM are challenging due to their weak signals and easy shielding. Great efforts worldwide are focused at developing and improving the detection technologies and algorithms, for accurate and reliable detection of radioisotopes of interest in thus better securing the borders against nuclear threats. In general, radiation portal monitors enable detection of gamma and neutron emitting radioisotopes. Passive or active interrogation techniques, present and/or under the development, are all aimed at increasing accuracy, reliability, and in shortening the time of interrogation as well as the cost of the equipment. Equally important efforts are aimed at advancing algorithms to process the imaging data in an efficient manner providing reliable "readings" of the interiors of the examined volumes of various sizes, ranging from cargos to suitcases. The main objective of this thesis is to develop two synergistic algorithms with the goal to provide highly reliable - low noise identification of radioisotope signatures. These algorithms combine analysis of passive radioactive detection technique with active interrogation imaging techniques such as gamma radiography or muon tomography. One algorithm consists of gamma spectroscopy and cosmic muon tomography, and the other algorithm is based on gamma spectroscopy and gamma radiography. The purpose of fusing two detection methodologies per algorithm is to find both heavy-Z radioisotopes and shielding materials, since radionuclides can be identified with gamma spectroscopy, and shielding materials can be detected using muon tomography or gamma radiography. These combined algorithms are created and analyzed based on numerically generated images of various cargo sizes and materials. In summary, the three detection methodologies are fused into two algorithms with mathematical functions providing: reliable identification of radioisotopes in gamma spectroscopy; noise reduction and precision enhancement in muon tomography; and the atomic number and density estimation in gamma radiography. It is expected that these new algorithms maybe implemented at portal scanning systems with the goal to enhance the accuracy and reliability in detecting nuclear materials inside the cargo containers.

  9. Reliable Wide-Area Wavelength Division Multiplexing Passive Optical Network Accommodating Gigabit Ethernet and 10-Gb Ethernet Services

    NASA Astrophysics Data System (ADS)

    Nakamura, Hirotaka; Suzuki, Hiro; Kani, Jun-Ichi; Iwatsuki, Katsumi

    2006-05-01

    This paper proposes and demonstrates a reliable wide-area wavelength-division-multiplexing passive optical network (WDM-PON) with a wavelength-shifted protection scheme. This protection scheme utilizes the cyclic property of 2 × N athermal arrayed-waveguide grating and two kinds of wavelength allocations, each of which is assigned for working and protection, respectively. Compared with conventional protection schemes, this scheme does not need a 3-dB optical coupler, thus leading to ensure the large loss budget that is suited for wide-area WDM-PONs. It also features a passive access node and does not have a protection function in the optical network unit (ONU). The feasibility of the proposed scheme is experimentally confirmed by the carrier-distributed WDM-PON with gigabit Ethernet interface (GbE-IF) and 10-GbE-IF, in which the ONU does not employ a light source, and all wavelengths for upstream signals are centralized and distributed from the central office.

  10. A CTE matched hard solder passively cooled laser diode package combined with nXLT facet passivation enables high power, high reliability operation

    NASA Astrophysics Data System (ADS)

    Hodges, Aaron; Wang, Jun; DeFranza, Mark; Liu, Xingsheng; Vivian, Bill; Johnson, Curt; Crump, Paul; Leisher, Paul; DeVito, Mark; Martinsen, Robert; Bell, Jacob

    2007-04-01

    A conductively cooled laser diode package design with hard AuSn solder and CTE matched sub mount is presented. We discuss how this platform eliminates the failure mechanisms associated with indium solder. We present the problem of catastrophic optical mirror damage (COMD) and show that nLight's nXLT TM facet passivation technology effectively eliminates facet defect initiated COMD as a failure mechanism for both single emitter and bar format laser diodes. By combining these technologies we have developed a product that has high reliability at high powers, even at increased operation temperatures. We present early results from on-going accelerated life testing of this configuration that suggests an 808nm, 30% fill factor device will have a MTTF of more than 21khrs at 60W CW, 25°C operating conditions and a MTTF of more than 6.4khrs when operated under hard pulsed (1 second on, 1 second off) conditions.

  11. Lead free 0201 assembly and thermal cycle/aging reliability

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza; Ramkumar, S. Manian; Varanasi, Arun

    2005-01-01

    The many challenges with 0201 passive component assembly can be attributed to the solder paste volume, pad design, aperture design, board finish, type of solder paste, pick-and-place, and reflow profile. A Design-of-Experiment (DOE) study was carried out to investigate the effects of these parameters on assembly defects and reliability.

  12. Method to Increase Performance of Foil Bearings Through Passive Thermal Management

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert

    2013-01-01

    This invention is a new approach to designing foil bearings to increase their load capacity and improve their reliability through passive thermal management. In the present case, the bearing is designed in such a way as to prevent the carryover of lubricant from the exit of one sector to the inlet of the ensuing sector of the foil bearing. When such passive thermal management techniques are used, bearing load capacity is improved by multiples, and reliability is enhanced when compared to current foil bearings. This concept has recently been tested and validated, and shows that load capacity performance of foil bearings can be improved by a factor of two at relatively low speeds with potentially greater relative improvements at higher speeds. Such improvements in performance with respect to speed are typical of foil bearings. Additionally, operation of these newly conceived bearings shows much more reliability and repeatable performance. This trait can be exploited in machine design to enhance safety, reliability, and overall performance. Finally, lower frictional torque has been demonstrated when operating at lower (non-load capacity) loads, thus providing another improvement above the current state of the art. The objective of the invention is to incorporate features into a foil bearing that both enhance passive thermal management and temperature control, while at the same time improve the hydrodynamic (load capacity) performance of the foil bearing. Foil bearings are unique antifriction devices that can utilize the working fluid of a machine as a lubricant (typically air for turbines and motors, liquids for pumps), and as a coolant to remove excess energy due to frictional heating. The current state of the art of foil bearings utilizes forced cooling of the bearing and shaft, which represents poor efficiency and poor reliability. This invention embodies features that utilize the bearing geometry in such a manner as to both support load and provide an inherent and passive cooling mechanism. This cooling mechanism functions in such a way as to prevent used (higher temperature) lubricant from being carried over from the exit of one sector into the entry of the next sector of the foil bearing. The disclosed innovation is an improved foil bearing design that reduces or eliminates the need for force cooling of the bearing, while at the same time improving the load capacity of the bearing by at least a factor of two. These improvements are due to the elimination of lubricant carryover from the trailing edge of one sector into the leading edge of the next, and the mixing of used lubricant with the surrounding ambient fluid.

  13. Comparative assessment of passive surveillance in disease-free and endemic situation: Example of Brucella melitensis surveillance in Switzerland and in Bosnia and Herzegovina

    PubMed Central

    Hadorn, Daniela C; Haracic, Sabina Seric; Stärk, Katharina DC

    2008-01-01

    Background Globalization and subsequent growth in international trade in animals and animal products has increased the importance of international disease reporting. Efficient and reliable surveillance systems are needed in order to document the disease status of a population at a given time. In this context, passive surveillance plays an important role in early warning systems. However, it is not yet routinely integrated in the assessment of disease surveillance systems because different factors like the disease awareness (DA) of people reporting suspect cases influence the detection performance of passive surveillance. In this paper, we used scenario tree methodology in order to evaluate and compare the quality and benefit of abortion testing (ABT) for Brucella melitensis (Bm) between the disease free situation in Switzerland (CH) and a hypothetical disease free situation in Bosnia and Herzegovina (BH), taking into account DA levels assumed for the current endemic situation in BH. Results The structure and input parameters of the scenario tree were identical for CH and BH with the exception of population data in small ruminants and the DA in farmers and veterinarians. The sensitivity analysis of the stochastic scenario tree model showed that the small ruminant population structure and the DA of farmers were important influential parameters with regard to the unit sensitivity of ABT in both CH and BH. The DA of both farmers and veterinarians was assumed to be higher in BH than in CH due to the current endemic situation in BH. Although the same DA cannot necessarily be assumed for the modelled hypothetical disease free situation as for the actual endemic situation, it shows the importance of the higher vigilance of people reporting suspect cases on the probability that an average unit processed in the ABT-component would test positive. Conclusion The actual sensitivity of passive surveillance approaches heavily depends on the context in which they are applied. Scenario tree modelling allows for the evaluation of such passive surveillance system components under assumed disease free situation. Despite data gaps, this is a real opportunity to compare different situations and to explore consequences of changes that could be made. PMID:19099610

  14. Comparative assessment of passive surveillance in disease-free and endemic situation: example of Brucella melitensis surveillance in Switzerland and in Bosnia and Herzegovina.

    PubMed

    Hadorn, Daniela C; Haracic, Sabina Seric; Stärk, Katharina D C

    2008-12-22

    Globalization and subsequent growth in international trade in animals and animal products has increased the importance of international disease reporting. Efficient and reliable surveillance systems are needed in order to document the disease status of a population at a given time. In this context, passive surveillance plays an important role in early warning systems. However, it is not yet routinely integrated in the assessment of disease surveillance systems because different factors like the disease awareness (DA) of people reporting suspect cases influence the detection performance of passive surveillance. In this paper, we used scenario tree methodology in order to evaluate and compare the quality and benefit of abortion testing (ABT) for Brucella melitensis (Bm) between the disease free situation in Switzerland (CH) and a hypothetical disease free situation in Bosnia and Herzegovina (BH), taking into account DA levels assumed for the current endemic situation in BH. The structure and input parameters of the scenario tree were identical for CH and BH with the exception of population data in small ruminants and the DA in farmers and veterinarians. The sensitivity analysis of the stochastic scenario tree model showed that the small ruminant population structure and the DA of farmers were important influential parameters with regard to the unit sensitivity of ABT in both CH and BH. The DA of both farmers and veterinarians was assumed to be higher in BH than in CH due to the current endemic situation in BH. Although the same DA cannot necessarily be assumed for the modelled hypothetical disease free situation as for the actual endemic situation, it shows the importance of the higher vigilance of people reporting suspect cases on the probability that an average unit processed in the ABT-component would test positive. The actual sensitivity of passive surveillance approaches heavily depends on the context in which they are applied. Scenario tree modelling allows for the evaluation of such passive surveillance system components under assumed disease free situation. Despite data gaps, this is a real opportunity to compare different situations and to explore consequences of changes that could be made.

  15. Reliability and efficacy of organic passivation for polycrystalline silicon solar cells at room temperature

    NASA Astrophysics Data System (ADS)

    Shinde, Onkar S.; Funde, Adinath M.; Jadkar, Sandesh R.; Dusane, Rajiv O.; Dhere, Neelkanth G.; Ghaisas, Subhash V.

    2016-09-01

    Oleylamine is used as a passivating layer instead of commercial high temperature SiNx. Oleylamine coating applied on the n-type emitter side with p-type base polycrystalline silicon solar cells at room temperature using a simple spin coating method. It has been observed that there is 16% increase in efficiency after Oleylamine coating. Further, the solar cell was subjected to standard characterization namely current-voltage measurement for electrical parameters and Fourier transform infrared spectroscopy to understand the interaction of emitter surface and passivating Oleylamine. However, the passivation layer is not stable due to the reaction between Oleylamine and ambient air content such as humidity and carbon dioxide. This degradation can be prevented with suitable overcoating.

  16. High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime.

    PubMed

    Nodop, D; Limpert, J; Hohmuth, R; Richter, W; Guina, M; Tünnermann, A

    2007-08-01

    We present passively Q-switched microchip lasers with items bonded by spin-on-glass glue. Passive Q-switching is obtained by a semiconductor saturable absorber mirror. The laser medium is a Nd:YVO(4) crystal. These lasers generate pulse peak powers up to 20 kW at a pulse duration as short as 50 ps and pulse repetition rates of 166 kHz. At 1064 nm, a linear polarized transversal and longitudinal single-mode beam is emitted. To the best of our knowledge, these are the shortest pulses in the 1 microJ energy range ever obtained with passively Q-switched microchip lasers. The quasi-monolithic setup ensures stable and reliable performance.

  17. Intra- and inter-rater reliability of 3D passive intervertebral motion in subjects with nonspecific neck pain assessed by physical therapy students: A pilot study.

    PubMed

    Rossettini, Giacomo; Rondoni, Angie; Lovato, Tommaso; Strobe, Marco; Verzè, Elisa; Vicentini, Marco; Testa, Marco

    2016-06-03

    Passive Intervertebral Movements (PIVMs) are commonly used to assess and treat patients with nonspecific neck pain. Only very few studies have investigated 3D movements until now. This study assessed intra- and inter-rater reliability of three-dimensional (3D) cervical PIVMs performed by physical therapy students in patients with nonspecific neck pain. Thirty-one patients, mean age 47.2 ± 7.2 years, were independently evaluated by 2 physical therapy students. The raters (A and B) assessed mobility, end-feel and pain provocation performing bilaterally the 3D cervical segmental side-bending test (3D CSSB) from levels C2-C3 to C6-C7. Percentage agreement (raw, positive and negative), Cohen's kappa (95% CI), prevalence index and bias index were calculated to estimate intra- and inter-reliability. Intra-rater reliability showed kappa values ranging between fair and substantial (k 0.29-0.80) for pain provocation, mobility and end-feel, with percentage agreements between 61%-90%. Inter-rater reliability presented kappa values ranging between fair and substantial (k 0.22-0.62) for pain provocation, mobility and end-feel, with percentage agreements between 61% and 80%. Intra-rater reliability of 3D PIVMs was superior to inter-rater reliability in patients with nonspecific neck pain. The most repeatable evaluation parameter was pain. However overall poor reliability suggests avoiding the use of these techniques alone to examine patients and measure their outcome. Further studies are needed to investigate PIVMs reliability in combination with other assessment procedure in symptomatic patients.

  18. Liquid hydrogen and liquid oxygen feedline passive recirculation analysis

    NASA Astrophysics Data System (ADS)

    Holt, Kimberly Ann; Cleary, Nicole L.; Nichols, Andrew J.; Perry, Gretchen L. E.

    The primary goal of the National Launch System (NLS) program was to design an operationally efficient, highly reliable vehicle with minimal recurring launch costs. To achieve this goal, trade studies of key main propulsion subsystems were performed to specify vehicle design requirements. These requirements include the use of passive recirculation to thermally condition the liquid hydrogen (LH2) and liquid oxygen (LO2) propellant feed systems and Space Transportation Main Engine (STME) fuel pumps. Rockwell International (RI) proposed a joint independent research and development (JIRAD) program with Marshall Space Flight Center (MSFC) to study the LH2 feed system passive recirculation concept. The testing was started in July 1992 and completed in November 1992. Vertical and sloped feedline designs were used. An engine simulator was attached at the bottom of the feedline. This simulator had strip heaters that were set to equal the corresponding heat input from different engines. A computer program is currently being used to analyze the passive recirculation concept in the LH2 vertical feedline tests. Four tests, where the heater setting is the independent variable, were chosen. While the JIRAD with RI was underway, General Dynamics Space Systems (GDSS) proposed a JIRAD with MSFC to explore passive recirculation in the LO2 feed system. Liquid nitrogen (LN2) is being used instead of LO2 for safety and economic concerns. To date, three sets of calibration tests have been completed on the sloped LN2 test article. The environmental heat was calculated from the calibration tests in which the strip heaters were turned off. During the LH2 testing, the environmental heat was assumed to be constant. Therefore, the total heat was equal to the environmental heat flux plus the heater input. However, the first two sets of LN2 calibration tests have shown that the environmental heat flux varies with heater input. A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA/FLUINT) model is currently being built to determine if this variation in environmental heat is due to a change in the wall temperature.

  19. Enhancing ultra-high CPV passive cooling using least-material finned heat sinks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micheli, Leonardo, E-mail: lm409@exeter.ac.uk; Mallick, Tapas K., E-mail: T.K.Mallick@exeter.ac.uk; Fernandez, Eduardo F., E-mail: E.Fernandez-Fernandez2@exeter.ac.uk

    2015-09-28

    Ultra-high concentrating photovoltaic (CPV) systems aim to increase the cost-competiveness of CPV by increasing the concentrations over 2000 suns. In this work, the design of a heat sink for ultra-high concentrating photovoltaic (CPV) applications is presented. For the first time, the least-material approach, widely used in electronics to maximize the thermal dissipation while minimizing the weight of the heat sink, has been applied in CPV. This method has the potential to further decrease the cost of this technology and to keep the multijunction cell within the operative temperature range. The designing procedure is described in the paper and the resultsmore » of a thermal simulation are shown to prove the reliability of the solution. A prediction of the costs is also reported: a cost of 0.151$/W{sub p} is expected for a passive least-material heat sink developed for 4000x applications.« less

  20. Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers

    NASA Astrophysics Data System (ADS)

    Na, Dongsoo; Park, Kichul; Park, Ki-Hwan; Song, Yong-Won

    2017-11-01

    Black phosphorus (BP) has attracted increasing attention due to its unique electrical properties. In addition, the outstanding optical nonlinearity of BP has been demonstrated in various ways. Its functionality as a saturable absorber, in particular, has been validated in demonstrations of passive mode-locked lasers. However, normally, the performance of BP is degraded eventually by both thermal and chemical damage in ambient conditions. The passivation of BP is the critical issue to guarantee a stable performance of the optical devices. We quantitatively characterized the mode-locked lasers operated by BP saturable absorbers with diversified passivation materials such as polydimethylsiloxane (PDMS) or Al2O3, considering the atomic structure of the materials, and therefore the hydro-permeability of the passivation layers. Unlike the BP layers without passivation, we demonstrated that the Al2O3-passivated BP layer was protected from the surface oxidation reaction in the long-term, and the PDMS-passivated one had a short-term blocking effect. The quantitative analysis showed that the time-dependent characteristics of the pulsed laser without passivation were changed with respect to the pulse duration, spectral width, and time-bandwidth product displaying 550 fs, 2.8 nm, and 0.406, respectively. With passivation, the changes were limited to <43 fs, <0.3 nm, and <0.012, respectively.

  1. Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers.

    PubMed

    Na, Dongsoo; Park, Kichul; Park, Ki-Hwan; Song, Yong-Won

    2017-11-24

    Black phosphorus (BP) has attracted increasing attention due to its unique electrical properties. In addition, the outstanding optical nonlinearity of BP has been demonstrated in various ways. Its functionality as a saturable absorber, in particular, has been validated in demonstrations of passive mode-locked lasers. However, normally, the performance of BP is degraded eventually by both thermal and chemical damage in ambient conditions. The passivation of BP is the critical issue to guarantee a stable performance of the optical devices. We quantitatively characterized the mode-locked lasers operated by BP saturable absorbers with diversified passivation materials such as polydimethylsiloxane (PDMS) or Al 2 O 3 , considering the atomic structure of the materials, and therefore the hydro-permeability of the passivation layers. Unlike the BP layers without passivation, we demonstrated that the Al 2 O 3 -passivated BP layer was protected from the surface oxidation reaction in the long-term, and the PDMS-passivated one had a short-term blocking effect. The quantitative analysis showed that the time-dependent characteristics of the pulsed laser without passivation were changed with respect to the pulse duration, spectral width, and time-bandwidth product displaying 550 fs, 2.8 nm, and 0.406, respectively. With passivation, the changes were limited to <43 fs, <0.3 nm, and <0.012, respectively.

  2. Cognitive Processing in Non-Communicative Patients: What Can Event-Related Potentials Tell Us?

    PubMed Central

    Lugo, Zulay R.; Quitadamo, Lucia R.; Bianchi, Luigi; Pellas, Fréderic; Veser, Sandra; Lesenfants, Damien; Real, Ruben G. L.; Herbert, Cornelia; Guger, Christoph; Kotchoubey, Boris; Mattia, Donatella; Kübler, Andrea; Laureys, Steven; Noirhomme, Quentin

    2016-01-01

    Event-related potentials (ERP) have been proposed to improve the differential diagnosis of non-responsive patients. We investigated the potential of the P300 as a reliable marker of conscious processing in patients with locked-in syndrome (LIS). Eleven chronic LIS patients and 10 healthy subjects (HS) listened to a complex-tone auditory oddball paradigm, first in a passive condition (listen to the sounds) and then in an active condition (counting the deviant tones). Seven out of nine HS displayed a P300 waveform in the passive condition and all in the active condition. HS showed statistically significant changes in peak and area amplitude between conditions. Three out of seven LIS patients showed the P3 waveform in the passive condition and five of seven in the active condition. No changes in peak amplitude and only a significant difference at one electrode in area amplitude were observed in this group between conditions. We conclude that, in spite of keeping full consciousness and intact or nearly intact cortical functions, compared to HS, LIS patients present less reliable results when testing with ERP, specifically in the passive condition. We thus strongly recommend applying ERP paradigms in an active condition when evaluating consciousness in non-responsive patients. PMID:27895567

  3. Active Wireless System for Structural Health Monitoring Applications.

    PubMed

    Perera, Ricardo; Pérez, Alberto; García-Diéguez, Marta; Zapico-Valle, José Luis

    2017-12-11

    The use of wireless sensors in Structural Health Monitoring (SHM) has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT) sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI)-based SHM. This work develops a flexible wireless smart sensor (WSS) framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  4. Environmental acoustic cues guide the biosonar attention of a highly specialised echolocator.

    PubMed

    Lattenkamp, Ella Z; Kaiser, Samuel; Kaučič, Rožle; Großmann, Martina; Koselj, Klemen; Goerlitz, Holger R

    2018-04-23

    Sensory systems experience a trade-off between maximizing the detail and amount of sampled information. This trade-off is particularly pronounced in sensory systems that are highly specialised for a single task and thus experience limitations in other tasks. We hypothesised that combining sensory input from multiple streams of information may resolve this trade-off and improve detection and sensing reliability. Specifically, we predicted that perceptive limitations experienced by animals reliant on specialised active echolocation can be compensated for by the phylogenetically older and less specialised process of passive hearing. We tested this hypothesis in greater horseshoe bats, which possess morphological and neural specialisations allowing them to identify fluttering prey in dense vegetation using echolocation only. At the same time, their echolocation system is both spatially and temporally severely limited. Here, we show that greater horseshoe bats employ passive hearing to initially detect and localise prey-generated and other environmental sounds, and then raise vocalisation level and concentrate the scanning movements of their sonar beam on the sound source for further investigation with echolocation. These specialised echolocators thus supplement echo-acoustic information with environmental acoustic cues, enlarging perceived space beyond their biosonar range. Contrary to our predictions, we did not find consistent preferences for prey-related acoustic stimuli, indicating the use of passive acoustic cues also for detection of non-prey objects. Our findings suggest that even specialised echolocators exploit a wide range of environmental information, and that phylogenetically older sensory systems can support the evolution of sensory specialisations by compensating for their limitations. © 2018. Published by The Company of Biologists Ltd.

  5. Between-Day Reliability of Pre-Participation Screening Components in Pre-Professional Ballet and Contemporary Dancers.

    PubMed

    Kenny, Sarah J; Palacios-Derflingher, Luz; Owoeye, Oluwatoyosi B A; Whittaker, Jackie L; Emery, Carolyn A

    2018-03-15

    Critical appraisal of research investigating risk factors for musculoskeletal injury in dancers suggests high quality reliability studies are lacking. The purpose of this study was to determine between-day reliability of pre-participation screening (PPS) components in pre-professional ballet and contemporary dancers. Thirty-eight dancers (35 female, 3 male; median age; 18 years; range: 11 to 30 years) participated. Screening components (Athletic Coping Skills Inventory-28, body mass index, percent total body fat, total bone mineral density, Foot Posture Index-6, hip and ankle range of motion, three lumbopelvic control tasks, unipedal dynamic balance, and the Y-Balance Test) were conducted one week apart. Intra-class correlation coefficients (ICCs: 95% confidence intervals), standard error of measurement, minimal detectable change (MDC), Bland-Altman methods of agreement [95% limits of agreement (LOA)], Cohen's kappa coefficients, standard error, and percent agreements were calculated. Depending on the screening component, ICC estimates ranged from 0.51 to 0.98, kappa coefficients varied between -0.09 and 0.47, and percent agreement spanned 71% to 95%. Wide 95% LOA were demonstrated by Foot Posture Index-6 (right: -6.06, 7.31), passive hip external rotation (right: -9.89, 16.54), and passive supine turnout (left: -15.36, 17.58). The PPS components examined demonstrated moderate to excellent relative reliability with mean between-day differences less than MDC, or sufficient percent agreement, across all assessments. However, due to wide 95% limits of agreement, the Foot Posture Index-6 and passive hip range of motion are not recommended for screening injury risk in pre-professional dancers.

  6. Study of optical techniques for the Ames unitary wind tunnels. Part 4: Model deformation

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    A survey of systems capable of model deformation measurements was conducted. The survey included stereo-cameras, scanners, and digitizers. Moire, holographic, and heterodyne interferometry techniques were also looked at. Stereo-cameras with passive or active targets are currently being deployed for model deformation measurements at NASA Ames and LaRC, Boeing, and ONERA. Scanners and digitizers are widely used in robotics, motion analysis, medicine, etc., and some of the scanner and digitizers can meet the model deformation requirements. Commercial stereo-cameras, scanners, and digitizers are being improved in accuracy, reliability, and ease of operation. A number of new systems are coming onto the market.

  7. Elastography Study of Hamstring Behaviors during Passive Stretching

    PubMed Central

    Le Sant, Guillaume; Ates, Filiz; Brasseur, Jean-Louis; Nordez, Antoine

    2015-01-01

    Introduction The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography. Methods/Results The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion) on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%), semimembranosus (SM, CV: 10.3%-11.2%) and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%), but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%). Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh. Conclusion This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury. PMID:26418862

  8. Evaluating the Relationship between Equilibrium Passive ...

    EPA Pesticide Factsheets

    This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-four studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Regression equations correlating bioaccumulation (CL) and passive sampler uptake (CPS) were used to assess the strength of observed relationships. Passive sampling based concentrations resulted in logarithmic predictive relationships, most of which were within one to two orders of magnitude of measured bioaccumulation. Mean coefficients of determination (r2) for LDPE, PDMS and POM were 0.68, 0.76 and 0.58, respectively. For the available raw data, the mean ratio of CL and CPS was 10.8 ± 18.4 (n = 609). This review concludes that in many applications passive sampling may serve as a reliable surrogate for biomonitoring organisms when biomonitoring organisms are not available. When applied properly, passive sampling based estimates of bioaccumulation provide useful information for making informed decisions about the bioavailability of HOCs

  9. Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer.

    PubMed

    Black, L E; Cavalli, A; Verheijen, M A; Haverkort, J E M; Bakkers, E P A M; Kessels, W M M

    2017-10-11

    III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a PO x layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since PO x is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al 2 O 3 capping layer to form a PO x /Al 2 O 3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm -2 ), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and solar cells.

  10. Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer

    PubMed Central

    2017-01-01

    III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a POx layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since POx is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al2O3 capping layer to form a POx/Al2O3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm–2), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and solar cells. PMID:28885032

  11. Asymptotic Stability of Interconnected Passive Non-Linear Systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Joshi, S. M.; Kelkar, A. G.

    1999-01-01

    This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.

  12. Rational Hydrogenation for Enhanced Mobility and High Reliability on ZnO-based Thin Film Transistors: From Simulation to Experiment.

    PubMed

    Xu, Lei; Chen, Qian; Liao, Lei; Liu, Xingqiang; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Jiang, Changzhong; Wang, Jinlan; Li, Jinchai

    2016-03-02

    Hydrogenation is one of the effective methods for improving the performance of ZnO thin film transistors (TFTs), which originate from the fact that hydrogen (H) acts as a defect passivator and a shallow n-type dopant in ZnO materials. However, passivation accompanied by an excessive H doping of the channel region of a ZnO TFT is undesirable because high carrier density leads to negative threshold voltages. Herein, we report that Mg/H codoping could overcome the trade-off between performance and reliability in the ZnO TFTs. The theoretical calculation suggests that the incorporation of Mg in hydrogenated ZnO decrease the formation energy of interstitial H and increase formation energy of O-vacancy (VO). The experimental results demonstrate that the existence of the diluted Mg in hydrogenated ZnO TFTs could be sufficient to boost up mobility from 10 to 32.2 cm(2)/(V s) at a low carrier density (∼2.0 × 10(18) cm(-3)), which can be attributed to the decreased electron effective mass by surface band bending. The all results verified that the Mg/H codoping can significantly passivate the VO to improve device reliability and enhance mobility. Thus, this finding clearly points the way to realize high-performance metal oxide TFTs for low-cost, large-volume, flexible electronics.

  13. A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity.

    PubMed

    Pandyan, A D; Johnson, G R; Price, C I; Curless, R H; Barnes, M P; Rodgers, H

    1999-10-01

    The Ashworth Scale and the modified Ashworth Scale are the primary clinical measures of spast city. A prerequisite for using any scale is a knowledge of its characteristics and limitations, as these will play a part in analysing and interpreting the data. Despite the current emphasis on treating spasticity, clinicians rarely measure it. To determine the validity and the reliability of the Ashworth and modified Ashworth Scales. A theoretical analysis following a structured literature review (key words: Ashworth; Spasticity; Measurement) of 40 papers selected from the BIDS-EMBASE, First Search and Medline databases. The application of both scales would suggest that confusion exists on their characteristics and limitations as measures of spasticity. Resistance to passive movement is a complex measure that will be influenced by many factors, only one of which could be spasticity. The Ashworth Scale (AS) can be used as an ordinal level measure of resistance to passive movement, but not spasticity. The modified Ashworth Scale (MAS) will need to be treated as a nominal level measure of resistance to passive movement until the ambiguity between the '1' and '1+' grades is resolved. The reliability of the scales is better in the upper limb. The AS may be more reliable than the MAS. There is a need to standardize methods to apply these scales in clinical practice and research.

  14. Triangulation methods for automated docking

    NASA Technical Reports Server (NTRS)

    Bales, John W.

    1996-01-01

    An automated docking system must have a reliable method for determining range and orientation of the passive (target) vehicle with respect to the active vehicle. This method must also provide accurate information on the rates of change of range to and orientation of the passive vehicle. The method must be accurate within required tolerances and capable of operating in real time. The method being developed at Marshall Space Flight Center employs a single TV camera, a laser illumination system and a target consisting, in its minimal configuration, of three retro-reflectors. Two of the retro-reflectors are mounted flush to the same surface, with the third retro-reflector mounted to a post fixed midway between the other two and jutting at a right angle from the surface. For redundancy, two additional retroreflectors are mounted on the surface on a line at right angles to the line containing the first two retro-reflectors, and equally spaced on either side of the post. The target vehicle will contain a large target for initial acquisition and several smaller targets for close range.

  15. Passive metamaterial-based acoustic holograms in ultrasound energy transfer systems

    NASA Astrophysics Data System (ADS)

    Bakhtiari-Nejad, Marjan; Elnahhas, Ahmed; Hajj, Muhammad R.; Shahab, Shima

    2018-03-01

    Contactless energy transfer (CET) is a technology that is particularly relevant in applications where wired electrical contact is dangerous or impractical. Furthermore, it would enhance the development, use, and reliability of low-power sensors in applications where changing batteries is not practical or may not be a viable option. One CET method that has recently attracted interest is the ultrasonic acoustic energy transfer, which is based on the reception of acoustic waves at ultrasonic frequencies by a piezoelectric receiver. Patterning and focusing the transmitted acoustic energy in space is one of the challenges for enhancing the power transmission and locally charging sensors or devices. We use a mathematically designed passive metamaterial-based acoustic hologram to selectively power an array of piezoelectric receivers using an unfocused transmitter. The acoustic hologram is employed to create a multifocal pressure pattern in the target plane where the receivers are located inside focal regions. We conduct multiphysics simulations in which a single transmitter is used to power multiple receivers with an arbitrary two-dimensional spatial pattern via wave controlling and manipulation, using the hologram. We show that the multi-focal pressure pattern created by the passive acoustic hologram will enhance the power transmission for most receivers.

  16. A Novel Passive Wireless Sensing Method for Concrete Chloride Ion Concentration Monitoring.

    PubMed

    Zhou, Shuangxi; Sheng, Wei; Deng, Fangming; Wu, Xiang; Fu, Zhihui

    2017-12-11

    In this paper, a novel approach for concrete chloride ion concentration measuring based on passive and wireless sensor tag is proposed. The chloride ion sensor based on RFID communication protocol is consisting of an energy harvesting and management circuit, a low dropout voltage regulator, a MCU, a RFID tag chip and a pair of electrodes. The proposed sensor harvests energy radiated by the RFID reader to power its circuitry. To improve the stability of power supply, a three-stage boost rectifier is customized to rectify the harvested power into dc power and step-up the voltage. Since the measured data is wirelessly transmitted, it contains miscellaneous noises which would decrease the accuracy of measuring. Thus, in this paper, the wavelet denoising method is adopted to denoise the raw data. Besides, a monitoring software is developed to display the measurement results in real-time. The measurement results indicate that the proposed passive sensor tag can achieve a reliable communication distance of 16.3 m and can reliably measure the chloride ion concentration in concrete.

  17. Real-time monitoring for detection of retained surgical sponges and team motion in the surgical operation room using radio-frequency-identification (RFID) technology: a preclinical evaluation.

    PubMed

    Kranzfelder, Michael; Zywitza, Dorit; Jell, Thomas; Schneider, Armin; Gillen, Sonja; Friess, Helmut; Feussner, Hubertus

    2012-06-15

    Technical progress in the surgical operating room (OR) increases constantly, facilitating the development of intelligent OR systems functioning as "safety backup" in the background of surgery. Precondition is comprehensive data retrieval to identify imminent risky situations and inaugurate adequate security mechanisms. Radio-frequency-identification (RFID) technology may have the potential to meet these demands. We set up a pilot study investigating feasibility and appliance reliability of a stationary RFID system for real-time surgical sponge monitoring (passive tagged sponges, position monitoring: mayo-stand/abdominal situs/waste bucket) and OR team tracking (active transponders, position monitoring: right/left side of OR table). In vitro: 20/20 sponges (100%) were detected on the mayo-stand and within the OR-phantom, however, real-time detection accuracy declined to 7/20 (33%) when the tags were moved simultaneously. All retained sponges were detected correctly. In vivo (animal): 7-10/10 sterilized sponges (70%-100%) were detected correctly within the abdominal cavity. OR-team: detection accuracy within the OR (surveillance antenna) and on both sides of the OR table (sector antenna) was 100%. Mean detection time for position change (left to right side and contrariwise) was 30-60 s. No transponder failure was noted. This is the first combined RFID system that has been developed for stationary use in the surgical OR. Preclinical evaluation revealed a reliable sponge tracking and correct detection of retained textiles (passive RFID) but also demonstrated feasibility of comprehensive data acquisition of team motion (active RFID). However, detection accuracy needs to be further improved before implementation into the surgical OR. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. A study of the feasibility and performance of an active/passive imager using silicon focal plane arrays and incoherent continuous wave laser diodes

    NASA Astrophysics Data System (ADS)

    Vollmerhausen, Richard H.

    This dissertation describes an active/passive imager (API) that provides reliable, nighttime, target acquisition in a man-portable package with effective visual range of about 4 kilometers. The reflective imagery is easier to interpret than currently used thermal imagery. Also, in the active mode, the API provides performance equivalent to the big-aperture, thermal systems used on weapons platforms like tanks and attack helicopters. This dissertation describes the research needed to demonstrate both the feasibility and utility of the API. Part of the research describes implementation of a silicon focal plane array (SFPA) capable of both active and passive imaging. The passive imaging mode exceeds the nighttime performance of currently fielded, man-portable sensors. Further, when scene illumination is insufficient for passive imaging, the low dark current of SFPA makes it possible to use continuous wave laser diodes (CWLD) to add an active imaging mode. CWLD have advantages of size, efficiency, and improved eye safety when compared to high peak-power diodes. Because of the improved eye safety, the API provides user-demanded features like video output and extended range gates in the active as well as passive imaging modes. Like any other night vision device, the API depends on natural illumination of the scene for passive operation. Although it has been known for decades that "starlight" illumination is actually from diffuse airglow emissions, the research described in this dissertation provides the first estimates of the global and temporal variation of ground illumination due to airglow. A third related element of the current research establishes the impact of atmospheric aerosols on API performance. We know from day experience that atmospheric scattering of sunlight into the imager line-of-sight can blind the imager and drastically degrade performance. Atmospheric scattering of sunlight is extensively covered in the literature. However, previous literature did not cover the impact of atmospheric scattering when the target is diffusely illuminated by airglow.

  19. Development of a machine vision system for automated structural assembly

    NASA Technical Reports Server (NTRS)

    Sydow, P. Daniel; Cooper, Eric G.

    1992-01-01

    Research is being conducted at the LaRC to develop a telerobotic assembly system designed to construct large space truss structures. This research program was initiated within the past several years, and a ground-based test-bed was developed to evaluate and expand the state of the art. Test-bed operations currently use predetermined ('taught') points for truss structural assembly. Total dependence on the use of taught points for joint receptacle capture and strut installation is neither robust nor reliable enough for space operations. Therefore, a machine vision sensor guidance system is being developed to locate and guide the robot to a passive target mounted on the truss joint receptacle. The vision system hardware includes a miniature video camera, passive targets mounted on the joint receptacles, target illumination hardware, and an image processing system. Discrimination of the target from background clutter is accomplished through standard digital processing techniques. Once the target is identified, a pose estimation algorithm is invoked to determine the location, in three-dimensional space, of the target relative to the robots end-effector. Preliminary test results of the vision system in the Automated Structural Assembly Laboratory with a range of lighting and background conditions indicate that it is fully capable of successfully identifying joint receptacle targets throughout the required operational range. Controlled optical bench test results indicate that the system can also provide the pose estimation accuracy to define the target position.

  20. Multilevel non-volatile data storage utilizing common current hysteresis of networked single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hwang, Ihn; Wang, Wei; Hwang, Sun Kak; Cho, Sung Hwan; Kim, Kang Lib; Jeong, Beomjin; Huh, June; Park, Cheolmin

    2016-05-01

    The characteristic source-drain current hysteresis frequently observed in field-effect transistors with networked single walled carbon-nanotube (NSWNT) channels is problematic for the reliable switching and sensing performance of devices. But the two distinct current states of the hysteresis curve at a zero gate voltage can be useful for memory applications. In this work, we demonstrate a novel non-volatile transistor memory with solution-processed NSWNTs which are suitable for multilevel data programming and reading. A polymer passivation layer with a small amount of water employed on the top of the NSWNT channel serves as an efficient gate voltage dependent charge trapping and de-trapping site. A systematic investigation evidences that the water mixed in a polymer passivation solution is critical for reliable non-volatile memory operation. The optimized device is air-stable and temperature-resistive up to 80 °C and exhibits excellent non-volatile memory performance with an on/off current ratio greater than 104, a switching time less than 100 ms, data retention longer than 4000 s, and write/read endurance over 100 cycles. Furthermore, the gate voltage dependent charge injection mediated by water in the passivation layer allowed for multilevel operation of our memory in which 4 distinct current states were programmed repetitively and preserved over a long time period.The characteristic source-drain current hysteresis frequently observed in field-effect transistors with networked single walled carbon-nanotube (NSWNT) channels is problematic for the reliable switching and sensing performance of devices. But the two distinct current states of the hysteresis curve at a zero gate voltage can be useful for memory applications. In this work, we demonstrate a novel non-volatile transistor memory with solution-processed NSWNTs which are suitable for multilevel data programming and reading. A polymer passivation layer with a small amount of water employed on the top of the NSWNT channel serves as an efficient gate voltage dependent charge trapping and de-trapping site. A systematic investigation evidences that the water mixed in a polymer passivation solution is critical for reliable non-volatile memory operation. The optimized device is air-stable and temperature-resistive up to 80 °C and exhibits excellent non-volatile memory performance with an on/off current ratio greater than 104, a switching time less than 100 ms, data retention longer than 4000 s, and write/read endurance over 100 cycles. Furthermore, the gate voltage dependent charge injection mediated by water in the passivation layer allowed for multilevel operation of our memory in which 4 distinct current states were programmed repetitively and preserved over a long time period. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00505e

  1. A Study of Tropical thin Cirrus Clouds with Supervised Learning

    NASA Astrophysics Data System (ADS)

    Rodier, S. D.; Hu, Y.; Vaughan, M. A.

    2007-12-01

    ABSTRACT Accurate knowledge of the temporal frequency and spatial extent of optically thin cirrus is crucial to climate feedback analysis. Current global warming theory asserts that when the atmospheric concentration of CO2 increases, the outgoing longwave radiation at non-window wavelengths is reduced. If the Earth's net radiative balance is to remain stable, ground temperatures must rise in response, thereby increasing thermal emission to space. Current models do not account for subsequent changes in cloud cover, because this aspect of the climate feedback system is so poorly understood. One possible response of the cloud-climate feedback process is an increase in the global occurrence of thin cirrus clouds, driven by the increase in longwave cooling in the upper troposphere that results from higher CO2 concentrations. Exacerbating the difficulty of assessing the situation is the fact that passive remote sensing instruments cannot reliably detect cirrus clouds with optical depths less than ~0.3, because these clouds do not reflect enough sunlight to create a sufficient contrast with the Earth's surface. Now, however, the presence of thin cirrus can for the first time be accurately detected and systematically monitored by the combination of active and passive sensors onboard the CALIPSO satellite. Nevertheless, the data record is still quite limited, as CALIPSO has been in orbit for only 16 months. We have therefore initiated a multi-platform data fusion study to establish a methodology for extending the limited set of CALIPSO measurements to the existing 30-year record of passive remote sensing data, and thus improve our understanding of cloud feedback mechanisms. Using nighttime data from the first 10 days in April 2007 as a training set, we applied a general regression neural network (GRNN) to collocated samples of sea surface temperature (SST) reported by AMSR, brightness temperatures (BT) from the CALIPSO imaging infrared radiometer (IIR), and optical depths (OD) derived from the CALIPSO lidar measurements. The result is an accurate mapping of the optical depths derived from the active sensors to the brightness temperatures computed from the passive sensor measurements. Applying the trained network to this combination of passive sensor parameters, optical depths as small as 0.1 can be reliably retrieved. The relative uncertainties in the retrieval are reasonable, and can be improved significantly by use of a much larger training set.

  2. Potentiodynamic Corrosion Testing.

    PubMed

    Munir, Selin; Pelletier, Matthew H; Walsh, William R

    2016-09-04

    Different metallic materials have different polarization characteristics as dictated by the open circuit potential, breakdown potential, and passivation potential of the material. The detection of these electrochemical parameters identifies the corrosion factors of a material. A reliable and well-functioning corrosion system is required to achieve this. Corrosion of the samples was achieved via a potentiodynamic polarization technique employing a three-electrode configuration, consisting of reference, counter, and working electrodes. Prior to commencement a baseline potential is obtained. Following the stabilization of the corrosion potential (Ecorr), the applied potential is ramped at a slow rate in the positive direction relative to the reference electrode. The working electrode was a stainless steel screw. The reference electrode was a standard Ag/AgCl. The counter electrode used was a platinum mesh. Having a reliable and well-functioning in vitro corrosion system to test biomaterials provides an in-expensive technique that allows for the systematic characterization of the material by determining the breakdown potential, to further understand the material's response to corrosion. The goal of the protocol is to set up and run an in vitro potentiodynamic corrosion system to analyze pitting corrosion for small metallic medical devices.

  3. CONFERENCE NOTE: CETO—Centro de Ciências e Tecnologias Opticas, Trends in Optical Fibre Metrology and Standards

    NASA Astrophysics Data System (ADS)

    1994-01-01

    Summer School, 27 June to 8 July 1994, Viana do Castelo, Hotel do Parque, Portugal Optical fibres, with their extremely low transmission loss, untapped bandwidth and controllable dispersion, dominate a broad range of technologies in which applications must respond to the increasing constraints of today's specifications as well as envisage future requirements. Optical fibres dominate communications systems. In the area of sensors, fibre optics will be fully exploited for their immunity to EMI, their high sensitivity and their large dynamic range. The maturity of single mode optical technology has led to intensive R&D of a range of components based on the advantages of transmission characteristics and signal processing. Specifications and intercompatibility requests for the new generation of both analogue and digital fibre optical components and systems has created a demand for sophisticated measuring techniques based on unique and complex instruments. In recent years there has been a signification evolution in response to the explosion of applications and the tightening of specifications. These developments justify a concerted effort to focus on trends in optical fibre metrology and standards. Objective The objective of this school is to provide a progressive and comprehensive presentation of current issues concerning passive and active optical fibre characterization and measurement techniques. Passive fibre components support a variety of developments in optical fibre systems and will be discussed in terms of relevance and standards. Particular attention will be paid to devices for metrological purposes such as reference fibres and calibration artefacts. The characterization and testing of optical fibre amplifiers, which have great potential in telecommunications, data distribution networks and as a system part in instrumentation, will be covered. Methods of measurement and means of calibration with traceability will be discussed, together with the characterization requirements of the new generation of analogue and digital fibre optical systems, which require sophisticated measurement techniques employing complex instruments unique to optical measurements. The school will foster and enhance the interaction between material, devices, systems, and standards-oriented R&D communities, as well as between engineers concerned with design and manufacturers of systems and instrumentation. Topics Review of optical fibre communication technology and systems Measurement techniques for fibre characterization: Reliability and traceability Reference fibres and calibration artefacts Ribbon fibres Mechanical and environmental testing Fibre reliability Polarimetric measurements Passive components characterization: Splices and connectors Couplers, splitters, taps and WDMs Optical fibres and isolators WDM technologies and applications: WDM technologies Tunable optical filters Fibre amplifiers and sources: Performances and characterization Design and standards Nonlinear effects Subsystem design and standards: Design and fabrication techniques Performance degradation and reliability Evaluation of costs/performance/technology Sensors IR - optical fibres Plastic fibres Instrumentation Registration Participation free of charge for postgraduate students, with some grants available for travel and lodging expenses. All correspondence should be addressed to: Secretariat, Trends in Optical Fibre Metrology and Standards, a/c Prof. Olivério D D Soares, Centro de Ciências e Tecnologias Opticas, Lab. Fisica - Faculdade de Ciências, Praça Gomes Teixeira, P-4000 Porto, Portugal. Tel: 351-2-310290, 351-2-2001648; Fax: 351-2-319267.

  4. Indicating spinal joint mobilisations or manipulations in patients with neck or low-back pain: protocol of an inter-examiner reliability study among manual therapists.

    PubMed

    van Trijffel, Emiel; Lindeboom, Robert; Bossuyt, Patrick Mm; Schmitt, Maarten A; Lucas, Cees; Koes, Bart W; Oostendorp, Rob Ab

    2014-01-01

    Manual spinal joint mobilisations and manipulations are widely used treatments in patients with neck and low-back pain. Inter-examiner reliability of passive intervertebral motion assessment of the cervical and lumbar spine, perceived as important for indicating these interventions, is poor within a univariable approach. The diagnostic process as a whole in daily practice in manual therapy has a multivariable character, however, in which the use and interpretation of passive intervertebral motion assessment depend on earlier results from the diagnostic process. To date, the inter-examiner reliability among manual therapists of a multivariable diagnostic decision-making process in patients with neck or low-back pain is unknown. This study will be conducted as a repeated-measures design in which 14 pairs of manual therapists independently examine a consecutive series of a planned total of 165 patients with neck or low-back pain presenting in primary care physiotherapy. Primary outcome measure is therapists' decision about whether or not manual spinal joint mobilisations or manipulations, or both, are indicated in each patient, alone or as part of a multimodal treatment. Therapists will largely be free to conduct the full diagnostic process based on their formulated examination objectives. For each pair of therapists, 2×2 tables will be constructed and reliability for the dichotomous decision will be expressed using Cohen's kappa. In addition, observed agreement, prevalence of positive decisions, prevalence index, bias index, and specific agreement in positive and negative decisions will be calculated. Univariable logistic regression analysis of concordant decisions will be performed to explore which demographic, professional, or clinical factors contributed to reliability. This study will provide an estimate of the inter-examiner reliability among manual therapists of indicating spinal joint mobilisations or manipulations in patients with neck or low-back pain based on a multivariable diagnostic reasoning and decision-making process, as opposed to reliability of individual tests. As such, it is proposed as an initial step toward the development of an alternative approach to current classification systems and prediction rules for identifying those patients with spinal disorders that may show a better response to manual therapy which can be incorporated in randomised clinical trials. Potential methodological limitations of this study are discussed.

  5. Indicating spinal joint mobilisations or manipulations in patients with neck or low-back pain: protocol of an inter-examiner reliability study among manual therapists

    PubMed Central

    2014-01-01

    Background Manual spinal joint mobilisations and manipulations are widely used treatments in patients with neck and low-back pain. Inter-examiner reliability of passive intervertebral motion assessment of the cervical and lumbar spine, perceived as important for indicating these interventions, is poor within a univariable approach. The diagnostic process as a whole in daily practice in manual therapy has a multivariable character, however, in which the use and interpretation of passive intervertebral motion assessment depend on earlier results from the diagnostic process. To date, the inter-examiner reliability among manual therapists of a multivariable diagnostic decision-making process in patients with neck or low-back pain is unknown. Methods This study will be conducted as a repeated-measures design in which 14 pairs of manual therapists independently examine a consecutive series of a planned total of 165 patients with neck or low-back pain presenting in primary care physiotherapy. Primary outcome measure is therapists’ decision about whether or not manual spinal joint mobilisations or manipulations, or both, are indicated in each patient, alone or as part of a multimodal treatment. Therapists will largely be free to conduct the full diagnostic process based on their formulated examination objectives. For each pair of therapists, 2×2 tables will be constructed and reliability for the dichotomous decision will be expressed using Cohen’s kappa. In addition, observed agreement, prevalence of positive decisions, prevalence index, bias index, and specific agreement in positive and negative decisions will be calculated. Univariable logistic regression analysis of concordant decisions will be performed to explore which demographic, professional, or clinical factors contributed to reliability. Discussion This study will provide an estimate of the inter-examiner reliability among manual therapists of indicating spinal joint mobilisations or manipulations in patients with neck or low-back pain based on a multivariable diagnostic reasoning and decision-making process, as opposed to reliability of individual tests. As such, it is proposed as an initial step toward the development of an alternative approach to current classification systems and prediction rules for identifying those patients with spinal disorders that may show a better response to manual therapy which can be incorporated in randomised clinical trials. Potential methodological limitations of this study are discussed. PMID:24982754

  6. Reliability of Sn/Pb and Lead-Free (SnAgCu) Solders of Surface Mounted Miniaturized Passive Components for Extreme Temperature (-185 C to +125 C) Space Missions

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2011-01-01

    Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability or future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185oC to +125oC) covers military specifications (-55oC to +100oC), extreme old Martian (-120oC to +115oC), asteroid Nereus (-180oC to +25oC) and JUNO (-150oC to +120oC) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185oC to +125oC) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.

  7. Reliability of Sn/Pb and lead-free (SnAgCu) solders of surface mounted miniaturized passive components for extreme temperature (-185°C to +125°C) space missions

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2011-02-01

    Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability for future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185°C to +125°C) covers military specifications (-55°C to +100°C), extreme cold Martian (-120°C to +115°C), asteroid Nereus (-180°C to +25°C) and JUNO (-150°C to +120°C) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185°C to +125°C) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.

  8. Passivity-based Robust Control of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)

    2000-01-01

    This report provides a brief summary of the research work performed over the duration of the cooperative research agreement between NASA Langley Research Center and Kansas State University. The cooperative agreement which was originally for the duration the three years was extended by another year through no-cost extension in order to accomplish the goals of the project. The main objective of the research was to develop passivity-based robust control methodology for passive and non-passive aerospace systems. The focus of the first-year's research was limited to the investigation of passivity-based methods for the robust control of Linear Time-Invariant (LTI) single-input single-output (SISO), open-loop stable, minimum-phase non-passive systems. The second year's focus was mainly on extending the passivity-based methodology to a larger class of non-passive LTI systems which includes unstable and nonminimum phase SISO systems. For LTI non-passive systems, five different passification. methods were developed. The primary effort during the years three and four was on the development of passification methodology for MIMO systems, development of methods for checking robustness of passification, and developing synthesis techniques for passifying compensators. For passive LTI systems optimal synthesis procedure was also developed for the design of constant-gain positive real controllers. For nonlinear passive systems, numerical optimization-based technique was developed for the synthesis of constant as well as time-varying gain positive-real controllers. The passivity-based control design methodology developed during the duration of this project was demonstrated by its application to various benchmark examples. These example systems included longitudinal model of an F-18 High Alpha Research Vehicle (HARV) for pitch axis control, NASA's supersonic transport wind tunnel model, ACC benchmark model, 1-D acoustic duct model, piezo-actuated flexible link model, and NASA's Benchmark Active Controls Technology (BACT) Wing model. Some of the stability results for linear passive systems were also extended to nonlinear passive systems. Several publications and conference presentations resulted from this research.

  9. Anti-collision radio-frequency identification system using passive SAW tags

    NASA Astrophysics Data System (ADS)

    Sorokin, A. V.; Shepeta, A. P.

    2017-06-01

    Modern multi sensor systems should have high operating speed and resistance to climate impacts. Radiofrequency systems use passive SAW tags for identification items and vehicles. These tags find application in industry, traffic remote control systems, and railway remote traffic control systems for identification and speed measuring. However, collision of the passive SAW RFID tags hinders development passive RFID SAW technology in Industry. The collision problem for passive SAW tags leads for incorrect identification and encoding each tag. In our researching, we suggest approach for identification of several passive SAW tags in collision case.

  10. The role of cleaning conditions and epitaxial layer structure on reliability of Sc 2O 3 and MgO passivation on AlGaN/GaN HEMTS

    NASA Astrophysics Data System (ADS)

    Luo, B.; Mehandru, R. M.; Kim, Jihyun; Ren, F.; Gila, B. P.; Onstine, A. H.; Abernathy, C. R.; Pearton, S. J.; Fitch, R. C.; Gillespie, J.; Dellmer, R.; Jenkins, T.; Sewell, J.; Via, D.; Crespo, A.

    2002-12-01

    The effect of layer structure (GaN versus AlGaN cap) and cleaning procedure prior to Sc 2O 3 or MgO deposition at 100 °C were examined for their effects on the long-term bias-stress stability of AlGaN/GaN high electron mobility transistors (HEMTs). Surface cleaning by itself was not sufficient to prevent current collapse in the devices. The forward and reverse gate leakage currents were decreased under most conditions upon deposition of the oxide passivation layers. After ≈13 h of bias-stressing, the MgO-passivated HEMTs retain ⩾90% their initial drain-source current. The Sc 2O 3-passivated devices retained ˜80% recovery of the current under the same conditions.

  11. Disinfection of Spacecraft Potable Water Systems by Passivation with Ionic Silver

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.; McCoy, LaShelle e.; Roberts, Michael S.

    2011-01-01

    Microbial growth is common on wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and physical disinfection methods. Advanced control technologies are needed to limit microorganisms and increase the reliability of life support systems required for long-duration human missions. Silver ions and compounds are widely used as antimicrobial agents for medical applications and continue to be used as a residual biocide in some spacecraft water systems. The National Aeronautics and Space Administration (NASA) has identified silver fluoride for use in the potable water system on the next generation spacecraft. Due to ionic interactions between silver fluoride in solution and wetted metallic surfaces, ionic silver is rapidly depleted from solution and loses its antimicrobial efficacy over time. This report describes research to prolong the antimicrobial efficacy of ionic silver by maintaining its solubility. Three types of metal coupons (lnconel 718, Stainless Steel 316, and Titanium 6AI-4V) used in spacecraft potable water systems were exposed to either a continuous flow of water amended with 0.4 mg/L ionic silver fluoride or to a static, pre-treatment passivation in 50 mg/L ionic silver fluoride with or without a surface oxidation pre-treatment. Coupons were then challenged in a high-shear, CDC bioreactor (BioSurface Technologies) by exposure to six bacteria previously isolated from spacecraft potable water systems. Continuous exposure to 0.4 mg/L ionic silver over the course of 24 hours during the flow phase resulted in a >7-log reduction. The residual effect of a 24-hour passivation treatment in 50 mg/L of ionic silver resulted in a >3-log reduction, whereas a two-week treatment resulted in a >4-log reduction. Results indicate that 0.4 mg/L ionic silver is an effective biocide against many bacteria and that a prepassivation of metal surfaces with silver can provide additional microbial control.

  12. Aspects and Some Results on Passivity and Positivity of Dynamic Systems

    NASA Astrophysics Data System (ADS)

    De la Sen, M.

    2017-12-01

    This paper is devoted to discuss certain aspects of passivity results in dynamic systems and the characterization of the regenerative systems counterparts. In particular, the various concepts of passivity as standard passivity, strict input passivity, strict output passivity and very strict passivity (i.e. joint strict input and output passivity) are given and related to the existence of a storage function and a dissipation function. Later on, the obtained results are related to external positivity of systems and positivity or strict positivity of the transfer matrices and transfer functions in the time-invariant case. On the other hand, it is discussed how to achieve or how eventually to increase the passivity effects via linear feedback by the synthesis of the appropriate feed-forward or feedback controllers or, simply, by adding a positive parallel direct input-output matrix interconnection gain.

  13. Improved inflatable landing systems for low cost planetary landers

    NASA Astrophysics Data System (ADS)

    Northey, Dave; Morgan, Chris

    2006-10-01

    Inflatable landing systems have been traditionally perceived as a cost-effective solution to the problem of landing a spacecraft on a planetary surface. To date, the systems used have all employed the approach of surrounding the lander with non-vented airbags where the lander on impact bounces a number of times until the impact energy is dissipated. However, the reliability record of such systems is not at all good. This paper examines the problems involved in the use of non-vented airbags, and how these problems have been overcome by the use of vented airbags in terrestrial systems. Using a specific case study, it is shown that even the basic passive type of venting can give significant mass reductions. It is also shown that actively controlling the venting based on the landing scenario can further enhance the performance of vented airbags.

  14. Improved inflatable landing systems for low cost planetary landers

    NASA Astrophysics Data System (ADS)

    Northey, Dave; Morgan, Chris

    2003-11-01

    Inflatable landing systems have been traditionally perceived as a cost-effective solution to the problem of landing a spacecraft on a planetary surface. To date the systems used have all employed the approach of surrounding the lander with non-vented airbags where the lander bounces on impact a number of times until the impact energy is dissipated. However the reliability record of such systems is not at all good. This paper examines the problems involved in the use of non-vented airbags, and how these problems have been overcome by the use of vented airbags in terrestrial systems. Using a specific case study, it is shown that even the basic passive type of venting can give significant mass reductions. It is also shown that actively controlling the venting based on the landing scenario can further enhance the performance of vented airbags.

  15. Daylighting and shuttering: RIB system mechanical design and preliminary performance data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinney, L.; Reynolds, D.

    1983-12-01

    The Reflective, Insulating Blind (RIB) system is a flexible, user-controlled daylighting device which also has direct thermal advantages: it can reject a considerable portion of summer sun while still retaining an adequate daylighting function; and it functions as moveable insulation to significantly decrease thermal losses through fenestration during evening hours. The conceptual design of the RIB system was accomplished by Barnes and Shapira at the Oak Ridge National Laboratory (ORNL). Mechanical design and prototype fabrication was accomplished by the authors and 29 systems were installed immediately inside existing south-facing windows of an energy-efficient office and dormitory at ORNL. The buildingmore » is a heavily-instrumented, passively-solar-heated structure for which reliable performance data was gathered and analyzed before the addition of RIB systems, thus facilitating the interpretation of ''after RIB'' performance data.« less

  16. High duty cycle hard soldered kilowatt laser diode arrays

    NASA Astrophysics Data System (ADS)

    Klumel, Genady; Karni, Yoram; Oppenheim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom

    2010-02-01

    High-brightness laser diode arrays operating at a duty cycle of 10% - 20% are in ever-increasing demand for the optical pumping of solid state lasers and directed energy applications. Under high duty-cycle operation at 10% - 20%, passive (conductive) cooling is of limited use, while micro-coolers using de-ionized cooling water can considerably degrade device reliability. When designing and developing actively-cooled collimated laser diode arrays for high duty cycle operation, three main problems should be carefully addressed: an effective local and total heat removal, a minimization of packaging-induced and operational stresses, and high-precision fast axis collimation. In this paper, we present a novel laser diode array incorporating a built-in tap water cooling system, all-hard-solder bonded assembly, facet-passivated high-power 940 nm laser bars and tight fast axis collimation. By employing an appropriate layout of water cooling channels, careful choice of packaging materials, proper design of critical parts, and active optics alignment, we have demonstrated actively-cooled collimated laser diode arrays with extended lifetime and reliability, without compromising their efficiency, optical power density, brightness or compactness. Among the key performance benchmarks achieved are: 150 W/bar optical peak power at 10% duty cycle, >50% wallplug efficiency and <1° collimated fast axis divergence. A lifetime of >0.5 Ghots with <2% degradation has been experimentally proven. The laser diode arrays have also been successfully tested under harsh environmental conditions, including thermal cycling between -20°C and 40°C and mechanical shocks at 500g acceleration. The results of both performance and reliability testing bear out the effectiveness and robustness of the manufacturing technology for high duty-cycle laser arrays.

  17. Improvement in performance and reliability with CF4 plasma pretreatment on the buffer oxide layer for low-temperature polysilicon thin-film transistor

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Yi-Yan; Yang, Chun-Chieh

    2012-03-01

    This study applies CF4 plasma pretreatment to a buffer oxide layer to improve the performance of low-temperature polysilicon thin-film transistors (LTPS TFTs). Results show that the fluorine atoms piled up at the interface between the bulk channel and buffer oxide layer and accumulated in the bulk channel. The reduction of the trap states density by fluorine passivation can improve the electrical characteristics of the LTPS TFTs. It is found that the threshold voltage reduced from 4.32 to 3.03 V and the field-effect mobility increased from 29.71 to 45.65 cm2 V-1 S-1. In addition, the on current degradation and threshold voltage shift after stressing were significantly improved about 31% and 70%, respectively. We believe that the proposed CF4 plasma pretreatment on the buffer oxide layer can passivate the trap states and avoid the plasma induced damage on the polysilicon channel surface, resulting in the improvement in performance and reliability for LTPS-TFT mass production application on AMOLED displays with critical reliability requirement.

  18. On the robustness of the Hβ Lick index as a cosmic clock in passive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Concas, Alice; Pozzetti, L.; Moresco, M.; Cimatti, A.

    2017-06-01

    We examine the Hβ Lick index in a sample of ˜24 000 massive (log(M/M_{⊙})>10.75) and passive early-type galaxies extracted from the Sloan Digital Sky Survey at z < 0.3, in order to assess the reliability of this index to constrain the epoch of formation and age evolution of these systems. We further investigate the possibility of exploiting this index as `cosmic chronometer', I.e. to derive the Hubble parameter from its differential evolution with redshift, hence constraining cosmological models independently of other probes. We find that the Hβ strength increases with redshift as expected in passive evolution models, and shows at each redshift weaker values in more massive galaxies. However, a detailed comparison of the observed index with the predictions of stellar population synthesis models highlights a significant tension, with the observed index being systematically lower than expected. By analysing the stacked spectra, we find a weak [N II] λ6584 emission line (not detectable in the single spectra) that anti-correlates with the mass, which can be interpreted as a hint of the presence of ionized gas. We estimated the correction of the Hβ index by the residual emission component exploiting different approaches, but find it very uncertain and model dependent. We conclude that, while the qualitative trends of the observed Hβ-z relations are consistent with the expected passive and downsizing scenario, the possible presence of ionized gas even in the most massive and passive galaxies prevents us to use this index for a quantitative estimate of the age evolution and for cosmological applications.

  19. Thermal Management and Reliability of Automotive Power Electronics and Electric Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumanchi, Sreekant V; Bennion, Kevin S; Cousineau, Justine E

    Low-cost, high-performance thermal management technologies are helping meet aggressive power density, specific power, cost, and reliability targets for power electronics and electric machines. The National Renewable Energy Laboratory is working closely with numerous industry and research partners to help influence development of components that meet aggressive performance and cost targets through development and characterization of cooling technologies, and thermal characterization and improvements of passive stack materials and interfaces. Thermomechanical reliability and lifetime estimation models are important enablers for industry in cost-and time-effective design.

  20. Detecting ionizing radiation with optical fibers down to biomedical doses

    NASA Astrophysics Data System (ADS)

    Avino, S.; D'Avino, V.; Giorgini, A.; Pacelli, R.; Liuzzi, R.; Cella, L.; De Natale, P.; Gagliardi, G.

    2013-10-01

    We report on a passive ionizing radiation sensor based on a fiber-optic resonant cavity interrogated by a high resolution interferometric technique. After irradiation in clinical linear accelerators, we observe significant variations of the fiber thermo-optic coefficient. Exploiting this effect, we demonstrate an ultimate detection limit of 160 mGy with an interaction volume of only 6 × 10-4 mm3. Thanks to its reliability, compactness, and sensitivity at biomedical dose levels, our system lends itself to real applications in radiation therapy procedures as well as in radiation monitoring and protection in medicine, aerospace, and nuclear power plants.

  1. Model of ballistic targets' dynamics used for trajectory tracking algorithms

    NASA Astrophysics Data System (ADS)

    Okoń-FÄ fara, Marta; Kawalec, Adam; Witczak, Andrzej

    2017-04-01

    There are known only few ballistic object tracking algorithms. To develop such algorithms and to its further testing, it is necessary to implement possibly simple and reliable objects' dynamics model. The article presents the dynamics' model of a tactical ballistic missile (TBM) including the three stages of flight: the boost stage and two passive stages - the ascending one and the descending one. Additionally, the procedure of transformation from the local coordinate system to the polar-radar oriented and the global is presented. The prepared theoretical data may be used to determine the tracking algorithm parameters and to its further verification.

  2. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar.

    PubMed

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-09-29

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system's capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.

  3. Methodology Development for Passive Component Reliability Modeling in a Multi-Physics Simulation Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldemir, Tunc; Denning, Richard; Catalyurek, Umit

    Reduction in safety margin can be expected as passive structures and components undergo degradation with time. Limitations in the traditional probabilistic risk assessment (PRA) methodology constrain its value as an effective tool to address the impact of aging effects on risk and for quantifying the impact of aging management strategies in maintaining safety margins. A methodology has been developed to address multiple aging mechanisms involving large numbers of components (with possibly statistically dependent failures) within the PRA framework in a computationally feasible manner when the sequencing of events is conditioned on the physical conditions predicted in a simulation environment, suchmore » as the New Generation System Code (NGSC) concept. Both epistemic and aleatory uncertainties can be accounted for within the same phenomenological framework and maintenance can be accounted for in a coherent fashion. The framework accommodates the prospective impacts of various intervention strategies such as testing, maintenance, and refurbishment. The methodology is illustrated with several examples.« less

  4. Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems

    NASA Astrophysics Data System (ADS)

    Yang, Le; Wang, Shuo; Feng, Jianghua

    2017-11-01

    Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive systems, high-frequency EMI noise, coupled with the parasitic parameters of the trough system, are difficult to analyze and reduce. In this article, EMI modeling techniques for different function units in a VFD system, including induction motors, motor bearings, and rectifierinverters, are reviewed and evaluated in terms of applied frequency range, model parameterization, and model accuracy. The EMI models for the motors are categorized based on modeling techniques and model topologies. Motor bearing and shaft models are also reviewed, and techniques that are used to eliminate bearing current are evaluated. Modeling techniques for conventional rectifierinverter systems are also summarized. EMI noise suppression techniques, including passive filter, Wheatstone bridge balance, active filter, and optimized modulation, are reviewed and compared based on the VFD system models.

  5. Accuracy and Feasibility of Video Analysis for Assessing Hamstring Flexibility and Validity of the Sit-and-Reach Test

    ERIC Educational Resources Information Center

    Mier, Constance M.

    2011-01-01

    The accuracy of video analysis of the passive straight-leg raise test (PSLR) and the validity of the sit-and-reach test (SR) were tested in 60 men and women. Computer software measured static hip-joint flexion accurately. High within-session reliability of the PSLR was demonstrated (R greater than 0.97). Test-retest (separate days) reliability for…

  6. Rasch measurement: the Arm Activity measure (ArmA) passive function sub-scale.

    PubMed

    Ashford, Stephen; Siegert, Richard J; Alexandrescu, Roxana

    2016-01-01

    To evaluate the conformity of the Arm Activity measure (ArmA) passive function sub-scale to the Rasch model. A consecutive cohort of patients (n = 92) undergoing rehabilitation, including upper limb rehabilitation and spasticity management, at two specialist rehabilitation units were included. Rasch analysis was used to examine scaling and conformity to the model. Responses were analysed using Rasch unidimensional measurement models (RUMM 2030). The following aspects were considered: overall model and individual item fit statistics and fit residuals, internal reliability, item response threshold ordering, item bias, local dependency and unidimensionality. ArmA contains both active and passive function sub-scales, but in this analysis only the passive function sub-scale was considered. Four of the seven items in the ArmA passive function sub-scale initially had disordered thresholds. These items were rescored to four response options, which resulted in ordered thresholds for all items. Once the items with disordered thresholds had been rescored, item bias was not identified for age, global disability level or diagnosis, but with a small difference in difficulty between males and females for one item of the scale. Local dependency was not observed and the unidimensionality of the sub-scale was supported and good fit to the Rasch model was identified. The person separation index (PSI) was 0.95 indicating that the scale is able to reliably differentiate at least two groups of patients. The ArmA passive function sub-scale was shown in this evaluation to conform to the Rasch model once disordered thresholds had been addressed. Using the logit scores produced by the Rasch model it was possible to convert this back to the original scale range. Implications for Rehabilitation The ArmA passive function sub-scale was shown, in this evaluation, to conform to the Rasch model once disordered thresholds had been addressed and therefore to be a clinically applicable and potentially useful hierarchical measure. Using Rasch logit scores it has be possible to convert back to the original ordinal scale range and provide an indication of real change to enable evaluation of clinical outcome of importance to patients and clinicians.

  7. Using hybrid magnetic bearings to completely suspend the impeller of a ventricular assist device.

    PubMed

    Khanwilkar, P; Olsen, D; Bearnson, G; Allaire, P; Maslen, E; Flack, R; Long, J

    1996-06-01

    Clinically available blood pumps and those under development suffer from poor mechanical reliability and poor biocompatibility related to anatomic fit, hemolysis, and thrombosis. To alleviate these problems concurrently in a long-term device is a substantial challenge. Based on testing the performance of a prototype, and on our judgment of desired characteristics, we have configured an innovative ventricular assist device, the CFVAD4, for long-term use. The design process and its outcome, the CFVAD4 system configuration, is described. To provide unprecedented reliability and biocompatibility, magnetic bearings completely suspend the rotating pump impeller. The CFVAD4 uses a combination of passive (permanent) and active (electric) magnetic bearings, a mixed flow impeller, and a slotless 3-phase brushless DC motor. These components are shaped, oriented, and integrated to provide a compact, implantable, pancake-shaped unit for placement in the left upper abdominal quadrant of adult humans.

  8. Multi-detector system approach for unattended uranium enrichment monitoring at gas centrifuge enrichment plants

    NASA Astrophysics Data System (ADS)

    Favalli, A.; Lombardi, M.; MacArthur, D. W.; McCluskey, C.; Moss, C. E.; Paffett, M. T.; Ianakiev, K. D.

    2018-01-01

    Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants while reducing the inspection effort is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One requirement of such a monitor is a simple, reliable and precise passive measurement of the 186-keV line from 235U. The other information required is the amount of gas in the pipe, which can be obtained by a transmission or pressure measurement. We describe our research to develop such a passive measurement system. Unfortunately, a complication arises in the interpretation of the gamma measurements, from the contribution of uranium deposits on the wall of the pipe to the 186-keV peak. A multi-detector approach to address this complication is presented where two measurements, one with signal primarily from gas and one with signal primarily from deposits, are performed simultaneously with different detectors and geometries. This allows a correction to be made to the 186-keV peak for the contribution from the deposit. We present the design of the multi-detector system and the results of the experimental calibration of the proof-of-principle prototype built at LANL.

  9. A passive cooling system proposal for multifunction and high-power displays

    NASA Astrophysics Data System (ADS)

    Tari, Ilker

    2013-03-01

    Flat panel displays are conventionally cooled by internal natural convection, which constrains the possible rate of heat transfer from the panel. On one hand, during the last few years, the power consumption and the related cooling requirement for 1080p displays have decreased mostly due to energy savings by the switch to LED backlighting and more efficient electronics. However, on the other hand, the required cooling rate recently started to increase with new directions in the industry such as 3D displays, and ultra-high-resolution displays (recent 4K announcements and planned introduction of 8K). In addition to these trends in display technology itself, there is also a trend to integrate consumer entertainment products into displays with the ultimate goal of designing a multifunction device replacing the TV, the media player, the PC, the game console and the sound system. Considering the increasing power requirement for higher fidelity in video processing, these multifunction devices tend to generate very high heat fluxes, which are impossible to dissipate with internal natural convection. In order to overcome this obstacle, instead of active cooling with forced convection that comes with drawbacks of noise, additional power consumption, and reduced reliability, a passive cooling system relying on external natural convection and radiation is proposed here. The proposed cooling system consists of a heat spreader flat heat pipe and aluminum plate-finned heat sink with anodized surfaces. For this system, the possible maximum heat dissipation rates from the standard size panels (in 26-70 inch range) are estimated by using our recently obtained heat transfer correlations for the natural convection from aluminum plate-finned heat sinks together with the surface-to-surface radiation. With the use of the proposed passive cooling system, the possibility of dissipating very high heat rates is demonstrated, hinting a promising green alternative to active cooling.

  10. At Home Photography-Based Method for Measuring Wrist Range of Motion.

    PubMed

    Trehan, Samir K; Rancy, Schneider K; Johnsen, Parker H; Hillstrom, Howard J; Lee, Steve K; Wolfe, Scott W

    2017-11-01

    Purpose  To determine the reliability of wrist range of motion (WROM) measurements based on digital photographs taken by patients at home compared with traditional measurements done in the office with a goniometer. Methods  Sixty-nine postoperative patients were enrolled in this study at least 3 months postoperatively. Active and passive wrist flexion/extension and radial/ulnar deviation were recorded by one of the two attending surgeons with a 1-degree resolution goniometer at the last postoperative office visit. Patients were provided an illustrated instruction sheet detailing how to take digital photographic images at home in six wrist positions (active and passive flexion/extension, and radial/ulnar deviation). Wrist position was measured from digital images by both the attending surgeons in a randomized, blinded fashion on two separate occasions greater than 2 weeks apart using the same goniometer. Reliability analysis was performed using the intraclass correlation coefficient to assess agreement between clinical and photography-based goniometry, as well as intra- and interobserver agreement. Results  Out of 69 enrolled patients, 30 (43%) patients sent digital images. Of the 180 digital photographs, only 9 (5%) were missing or deemed inadequate for WROM measurements. Agreement between clinical and photography-based measurements was "almost perfect" for passive wrist flexion/extension and "substantial" for active wrist flexion/extension and radial/ulnar deviation. Inter- and intraobserver agreement for the attending surgeons was "almost perfect" for all measurements. Discussion  This study validates a photography-based goniometry protocol allowing accurate and reliable WROM measurements without direct physician contact. Passive WROM was more accurately measured from photographs than active WROM. This study builds on previous photography-based goniometry literature by validating a protocol in which patients or their families take and submit their own photographs. Clinical Relevance  Patient-performed photography-based goniometry represents an alternative to traditional clinical goniometry that could enable longer-term follow-up, overcome travel-related impediments to office visits, improve convenience, and reduce costs for patients.

  11. Active-passive corrosion of iron-chromium-nickel alloys in hot concentrated sulphuric acid solutions

    NASA Astrophysics Data System (ADS)

    Kish, Joseph R.

    1999-11-01

    In the manufacture of sulphuric acid more stringent environmental standards and operation economics have forced the industry to improve product utilization, energy efficiency and reliability. A key to improving both the thermal efficiency and reliability is the use and/or development of more corrosion resistance materials including stainless steels, especially in the parts of the plant that handle the condensed acid. Application of more corrosion resistant material requires a better understanding of the corrosion mechanism involved in concentrated H2SO4-H2O (>90 wt.%) solutions. While corrosion kinetics of carbon steel, the traditional material of construction, are relatively well understood, this is much less true in the case of the cyclic active-passive corrosion of stainless steels. Models proposed to explain the cyclic active-passive corrosion involve a periodic formation of either a protective metal sulphate film or an insoluble sulphur layer. To better understand the reactivity and/or passivity of stainless steel in concentrated H2SO4-H2O solutions a study employing immersion and electrochemical techniques, including rotating electrodes, was conducted in order to clarify the following: (1) The state of stainless steel passivity. (2) The conditions in which passivity is stable. (3) The role played by the major alloying elements in establishing and maintaining the passive state. The study involved evaluating the corrosion behaviour of stainless steels S30403 and S43000 along with iron, chromium and nickel in 93.5 wt.% H2SO4 at temperatures between 25--80°C. Major discoveries of the study include: (1) A content of 17--18 wt.% chromium is sufficient to anodically passivate S43000 as the potential is made more noble. Passivity is not stable and requires anodic polarization. (2) Alloyed nickel plays an active role in improving the corrosion resistance of stainless steel. A content of 8 wt.% nickel is sufficient promote a periodic passivation of the base Fe-(17--18)wt.% Cr stainless steel under open-circuit conditions which reduces the corrosion rate by at least an order of magnitude. (3) The electrolysis of concentrated H2SO4-H 2O solutions involves a potential-dependent reduction of H2SO 4 molecules to sulphur-containing species with an oxidation state lower than six (6). The various reduction products have a significant effect on the stainless steel corrosion resistance. (4) Successful modelling of the corrosion of nickel has been accomplished by using a galvanic interaction between a noncontinuous nickel sulphide (NiS) deposit, formed in situ, and the uncovered nickel metal. (5) Successful modelling of the active-passive corrosion of S30403 has been accomplished using a galvanic interaction between NiS(Ni) and S43000.

  12. Modeling Off-Nominal Behavior in SysML

    NASA Technical Reports Server (NTRS)

    Day, John C.; Donahue, Kenneth; Ingham, Michel; Kadesch, Alex; Kennedy, Andrew K.; Post, Ethan

    2012-01-01

    Specification and development of fault management functionality in systems is performed in an ad hoc way - more of an art than a science. Improvements to system reliability, availability, safety and resilience will be limited without infusion of additional formality into the practice of fault management. Key to the formalization of fault management is a precise representation of off-nominal behavior. Using the upcoming Soil Moisture Active-Passive (SMAP) mission for source material, we have modeled the off-nominal behavior of the SMAP system during its initial spin-up activity, using the System Modeling Language (SysML). In the course of developing these models, we have developed generic patterns for capturing off-nominal behavior in SysML. We show how these patterns provide useful ways of reasoning about the system (e.g., checking for completeness and effectiveness) and allow the automatic generation of typical artifacts (e.g., success trees and FMECAs) used in system analyses.

  13. Neuronal correlates of a virtual-reality-based passive sensory P300 network.

    PubMed

    Chen, Chun-Chuan; Syue, Kai-Syun; Li, Kai-Chiun; Yeh, Shih-Ching

    2014-01-01

    P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person's intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients' analytic results with this study. For example, the task presented here is not applicable to incommunicative patients.

  14. Neuronal Correlates of a Virtual-Reality-Based Passive Sensory P300 Network

    PubMed Central

    Chen, Chun-Chuan; Syue, Kai-Syun; Li, Kai-Chiun; Yeh, Shih-Ching

    2014-01-01

    P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person’s intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients’ analytic results with this study. For example, the task presented here is not applicable to incommunicative patients. PMID:25401520

  15. Context-aware brain-computer interfaces: exploring the information space of user, technical system and environment

    NASA Astrophysics Data System (ADS)

    Zander, T. O.; Jatzev, S.

    2012-02-01

    Brain-computer interface (BCI) systems are usually applied in highly controlled environments such as research laboratories or clinical setups. However, many BCI-based applications are implemented in more complex environments. For example, patients might want to use a BCI system at home, and users without disabilities could benefit from BCI systems in special working environments. In these contexts, it might be more difficult to reliably infer information about brain activity, because many intervening factors add up and disturb the BCI feature space. One solution for this problem would be adding context awareness to the system. We propose to augment the available information space with additional channels carrying information about the user state, the environment and the technical system. In particular, passive BCI systems seem to be capable of adding highly relevant context information—otherwise covert aspects of user state. In this paper, we present a theoretical framework based on general human-machine system research for adding context awareness to a BCI system. Building on that, we present results from a study on a passive BCI, which allows access to the covert aspect of user state related to the perceived loss of control. This study is a proof of concept and demonstrates that context awareness could beneficially be implemented in and combined with a BCI system or a general human-machine system. The EEG data from this experiment are available for public download at www.phypa.org. Parts of this work have already been presented in non-journal publications. This will be indicated specifically by appropriate references in the text.

  16. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar

    PubMed Central

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-01-01

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system’s capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications. PMID:27690051

  17. Systematic analysis of CMOS-micromachined inductors with application to mixer matching circuits

    NASA Astrophysics Data System (ADS)

    Wu, Jerry Chun-Li

    The growing demand for consumer voice and data communication systems and military communication applications has created a need for low-power, low-cost, high-performance radio-frequency (RF) front-end. To achieve this goal, bringing passive components, especially inductors, to silicon is imperative. On-chip passive components such as inductors and capacitors generally enhance the reliability and efficiency of silicon-integrated RF cells. They can provide circuit solutions with superior performance and contribute to a higher level of integration. With passive components on chip, there is a great opportunity to have transformers, filters, and matching networks on chip. However, inductors on silicon have a low quality factor (Q) due to both substrate and metal loss. This dissertation demonstrates the systematic analysis of inductors fabricated using standard complementary metal-oxide-semiconductor (CMOS) and micro-electro-mechanical (MEMS) system technologies. We report system-on-chip inductor modeling, simulation, and measurements of effective inductance and quality factors. In this analysis methodology, a number of systematic simulations are performed on regular and micromachined inductors with different parameters such as spiral topology, number of turns, outer diameter, thickness, and percentage of substrate removed by using micromachining technologies. Three different novel support structures of the micromachined spiral inductor are proposed, analyzed, and implemented for larger size suspended inductors. The sensitivity of the structure support and different degree of substrate etching by post-processing is illustrated. The results provide guidelines for the selection of inductor parameters, post-processing methodologies, and its spiral supports to meet the RF design specifications and the stability requirements for mobile communication. The proposed CMOS-micromachined inductor is used in a low cost-effective double-balanced Gilbert mixer with on-chip matching network. The integrated mixer inductor was implemented and tested to prove the concept.

  18. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

  19. Potential Application of a Thermoelectric Generator in Passive Cooling System of Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Wang, Dongqing; Liu, Yu; Jiang, Jin; Pang, Wei; Lau, Woon Ming; Mei, Jun

    2017-05-01

    In the design of nuclear power plants, various natural circulation passive cooling systems are considered to remove residual heat from the reactor core in the event of a power loss and maintain the plant's safety. These passive systems rely on gravity differences of fluids, resulting from density differentials, rather than using an external power-driven system. Unfortunately, a major drawback of such systems is their weak driving force, which can negatively impact safety. In such systems, there is a temperature difference between the heat source and the heat sink, which potentially offers a natural platform for thermoelectric generator (TEG) applications. While a previous study designed and analyzed a TEG-based passive core cooling system, this paper considers TEG applications in other passive cooling systems of nuclear power plants, after which the concept of a TEG-based passive cooling system is proposed. In such a system, electricity is produced using the system's temperature differences through the TEG, and this electricity is used to further enhance the cooling process.

  20. Synthesis Methods for Robust Passification and Control

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)

    2000-01-01

    The research effort under this cooperative agreement has been essentially the continuation of the work from previous grants. The ongoing work has primarily focused on developing passivity-based control techniques for Linear Time-Invariant (LTI) systems. During this period, there has been a significant progress made in the area of passivity-based control of LTI systems and some preliminary results have also been obtained for nonlinear systems, as well. The prior work has addressed optimal control design for inherently passive as well as non- passive linear systems. For exploiting the robustness characteristics of passivity-based controllers the passification methodology was developed for LTI systems that are not inherently passive. Various methods of passification were first proposed in and further developed. The robustness of passification was addressed for multi-input multi-output (MIMO) systems for certain classes of uncertainties using frequency-domain methods. For MIMO systems, a state-space approach using Linear Matrix Inequality (LMI)-based formulation was presented, for passification of non-passive LTI systems. An LMI-based robust passification technique was presented for systems with redundant actuators and sensors. The redundancy in actuators and sensors was used effectively for robust passification using the LMI formulation. The passification was designed to be robust to an interval-type uncertainties in system parameters. The passification techniques were used to design a robust controller for Benchmark Active Control Technology wing under parametric uncertainties. The results on passive nonlinear systems, however, are very limited to date. Our recent work in this area was presented, wherein some stability results were obtained for passive nonlinear systems that are affine in control.

  1. Contextual and perceptual brain processes underlying moral cognition: a quantitative meta-analysis of moral reasoning and moral emotions.

    PubMed

    Sevinc, Gunes; Spreng, R Nathan

    2014-01-01

    Human morality has been investigated using a variety of tasks ranging from judgments of hypothetical dilemmas to viewing morally salient stimuli. These experiments have provided insight into neural correlates of moral judgments and emotions, yet these approaches reveal important differences in moral cognition. Moral reasoning tasks require active deliberation while moral emotion tasks involve the perception of stimuli with moral implications. We examined convergent and divergent brain activity associated with these experimental paradigms taking a quantitative meta-analytic approach. A systematic search of the literature yielded 40 studies. Studies involving explicit decisions in a moral situation were categorized as active (n = 22); studies evoking moral emotions were categorized as passive (n = 18). We conducted a coordinate-based meta-analysis using the Activation Likelihood Estimation to determine reliable patterns of brain activity. Results revealed a convergent pattern of reliable brain activity for both task categories in regions of the default network, consistent with the social and contextual information processes supported by this brain network. Active tasks revealed more reliable activity in the temporoparietal junction, angular gyrus and temporal pole. Active tasks demand deliberative reasoning and may disproportionately involve the retrieval of social knowledge from memory, mental state attribution, and construction of the context through associative processes. In contrast, passive tasks reliably engaged regions associated with visual and emotional information processing, including lingual gyrus and the amygdala. A laterality effect was observed in dorsomedial prefrontal cortex, with active tasks engaging the left, and passive tasks engaging the right. While overlapping activity patterns suggest a shared neural network for both tasks, differential activity suggests that processing of moral input is affected by task demands. The results provide novel insight into distinct features of moral cognition, including the generation of moral context through associative processes and the perceptual detection of moral salience.

  2. Contextual and Perceptual Brain Processes Underlying Moral Cognition: A Quantitative Meta-Analysis of Moral Reasoning and Moral Emotions

    PubMed Central

    Sevinc, Gunes; Spreng, R. Nathan

    2014-01-01

    Background and Objectives Human morality has been investigated using a variety of tasks ranging from judgments of hypothetical dilemmas to viewing morally salient stimuli. These experiments have provided insight into neural correlates of moral judgments and emotions, yet these approaches reveal important differences in moral cognition. Moral reasoning tasks require active deliberation while moral emotion tasks involve the perception of stimuli with moral implications. We examined convergent and divergent brain activity associated with these experimental paradigms taking a quantitative meta-analytic approach. Data Source A systematic search of the literature yielded 40 studies. Studies involving explicit decisions in a moral situation were categorized as active (n = 22); studies evoking moral emotions were categorized as passive (n = 18). We conducted a coordinate-based meta-analysis using the Activation Likelihood Estimation to determine reliable patterns of brain activity. Results & Conclusions Results revealed a convergent pattern of reliable brain activity for both task categories in regions of the default network, consistent with the social and contextual information processes supported by this brain network. Active tasks revealed more reliable activity in the temporoparietal junction, angular gyrus and temporal pole. Active tasks demand deliberative reasoning and may disproportionately involve the retrieval of social knowledge from memory, mental state attribution, and construction of the context through associative processes. In contrast, passive tasks reliably engaged regions associated with visual and emotional information processing, including lingual gyrus and the amygdala. A laterality effect was observed in dorsomedial prefrontal cortex, with active tasks engaging the left, and passive tasks engaging the right. While overlapping activity patterns suggest a shared neural network for both tasks, differential activity suggests that processing of moral input is affected by task demands. The results provide novel insight into distinct features of moral cognition, including the generation of moral context through associative processes and the perceptual detection of moral salience. PMID:24503959

  3. Passive cooling system for top entry liquid metal cooled nuclear reactors

    DOEpatents

    Boardman, Charles E.; Hunsbedt, Anstein; Hui, Marvin M.

    1992-01-01

    A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

  4. Reliability and minimal detectable change of a modified passive neck flexion test in patients with chronic nonspecific neck pain and asymptomatic subjects.

    PubMed

    López-de-Uralde-Villanueva, Ibai; Acuyo-Osorio, Mario; Prieto-Aldana, María; La Touche, Roy

    2017-04-01

    The Passive Neck Flexion Test (PNFT) can diagnose meningitis and potential spinal disorders. Little evidence is available concerning the use of a modified version of the PNFT (mPNFT) in patients with chronic nonspecific neck pain (CNSNP). To assess the reliability of the mPNFT in subjects with and without CNSNP. The secondary objective was to assess the differences in the symptoms provoked by the mPNFT between these two populations. We used repeated measures concordance design for the main objective and cross-sectional design for the secondary objective. A total of 30 asymptomatic subjects and 34 patients with CNSNP were recruited. The following measures were recorded: the range of motion at the onset of symptoms (OS-mPNFT), the range of motion at the submaximal pain (SP-mPNFT), and evoked pain intensity on the mPNFT (VAS-mPNFT). Good to excellent reliability was observed for OS-mPNFT and SP-mPNFT in the asymptomatic group (intra-examiner reliability: 0.95-0.97; inter-examiner reliability: 0.86-0.90; intra-examiner test-retest reliability: 0.84-0.87). In the CNSNP group, a good to excellent reliability was obtained for the OS-mPNFT (intra-examiner reliability: 0.89-0.96; inter-examiner reliability: 0.83-0.86; intra-examiner test-retest reliability: 0.83-0.85) and the SP-PNFT (intra-examiner reliability: 0.94-0.98; inter-examiner reliability: 0.80-0.82; intra-examiner test-retest reliability: 0.88-0.91). The CNSNP group showed statistically significant differences in OS-mPNFT (t = 4.92; P < 0.001), SP-mPNFT (t = 2.79; P = 0.007) and in VAS-mPNFT (t = -10.39; P < 0.001) versus the asymptomatic group. The mPNFT is a reliable tool regardless of the examiner and the time factor. Patients with CNSNP have a decrease range of motion and more pain than asymptomatic subjects in the mPNFT. This exceeds the minimal detectable changes for OS-mPNFT and VAS-mPNFT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Wireless Monitoring of Automobile Tires for Intelligent Tires

    PubMed Central

    Matsuzaki, Ryosuke; Todoroki, Akira

    2008-01-01

    This review discusses key technologies of intelligent tires focusing on sensors and wireless data transmission. Intelligent automobile tires, which monitor their pressure, deformation, wheel loading, friction, or tread wear, are expected to improve the reliability of tires and tire control systems. However, in installing sensors in a tire, many problems have to be considered, such as compatibility of the sensors with tire rubber, wireless transmission, and battery installments. As regards sensing, this review discusses indirect methods using existing sensors, such as that for wheel speed, and direct methods, such as surface acoustic wave sensors and piezoelectric sensors. For wireless transmission, passive wireless methods and energy harvesting are also discussed. PMID:27873979

  6. Spent fuel measurements. passive neutron albedo reactivity (PNAR) and photon signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eigenbrodt, Julia; Menlove, Howard Olsen

    2016-03-29

    The International Atomic Energy Agency’s (IAEA) safeguards technical objective is the timely detection of a diversion of a significant quantity of nuclear material from peaceful activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. An important IAEA task towards meeting this objective is the ability to accurately and reliably measure spent nuclear fuel (SNF) to verify reactor operating parameters and verify that the fuel has not been removed from reactors or SNF storage facilities. This dissertation analyzes a method to improvemore » the state-of-the-art of nuclear material safeguards measurements using two combined measurement techniques: passive neutron albedo reactivity (PNAR) and passive spectral photon measurements.« less

  7. A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks.

    PubMed

    Aricò, P; Borghini, G; Di Flumeri, G; Colosimo, A; Pozzi, S; Babiloni, F

    2016-01-01

    In the last decades, it has been a fast-growing concept in the neuroscience field. The passive brain-computer interface (p-BCI) systems allow to improve the human-machine interaction (HMI) in operational environments, by using the covert brain activity (eg, mental workload) of the operator. However, p-BCI technology could suffer from some practical issues when used outside the laboratories. In particular, one of the most important limitations is the necessity to recalibrate the p-BCI system each time before its use, to avoid a significant reduction of its reliability in the detection of the considered mental states. The objective of the proposed study was to provide an example of p-BCIs used to evaluate the users' mental workload in a real operational environment. For this purpose, through the facilities provided by the École Nationale de l'Aviation Civile of Toulouse (France), the cerebral activity of 12 professional air traffic control officers (ATCOs) has been recorded while performing high realistic air traffic management scenarios. By the analysis of the ATCOs' brain activity (electroencephalographic signal-EEG) and the subjective workload perception (instantaneous self-assessment) provided by both the examined ATCOs and external air traffic control experts, it has been possible to estimate and evaluate the variation of the mental workload under which the controllers were operating. The results showed (i) a high significant correlation between the neurophysiological and the subjective workload assessment, and (ii) a high reliability over time (up to a month) of the proposed algorithm that was also able to maintain high discrimination accuracies by using a low number of EEG electrodes (~3 EEG channels). In conclusion, the proposed methodology demonstrated the suitability of p-BCI systems in operational environments and the advantages of the neurophysiological measures with respect to the subjective ones. © 2016 Elsevier B.V. All rights reserved.

  8. Framework of passive millimeter-wave scene simulation based on material classification

    NASA Astrophysics Data System (ADS)

    Park, Hyuk; Kim, Sung-Hyun; Lee, Ho-Jin; Kim, Yong-Hoon; Ki, Jae-Sug; Yoon, In-Bok; Lee, Jung-Min; Park, Soon-Jun

    2006-05-01

    Over the past few decades, passive millimeter-wave (PMMW) sensors have emerged as useful implements in transportation and military applications such as autonomous flight-landing system, smart weapons, night- and all weather vision system. As an efficient way to predict the performance of a PMMW sensor and apply it to system, it is required to test in SoftWare-In-the-Loop (SWIL). The PMMW scene simulation is a key component for implementation of this simulator. However, there is no commercial on-the-shelf available to construct the PMMW scene simulation; only there have been a few studies on this technology. We have studied the PMMW scene simulation method to develop the PMMW sensor SWIL simulator. This paper describes the framework of the PMMW scene simulation and the tentative results. The purpose of the PMMW scene simulation is to generate sensor outputs (or image) from a visible image and environmental conditions. We organize it into four parts; material classification mapping, PMMW environmental setting, PMMW scene forming, and millimeter-wave (MMW) sensorworks. The background and the objects in the scene are classified based on properties related with MMW radiation and reflectivity. The environmental setting part calculates the following PMMW phenomenology; atmospheric propagation and emission including sky temperature, weather conditions, and physical temperature. Then, PMMW raw images are formed with surface geometry. Finally, PMMW sensor outputs are generated from PMMW raw images by applying the sensor characteristics such as an aperture size and noise level. Through the simulation process, PMMW phenomenology and sensor characteristics are simulated on the output scene. We have finished the design of framework of the simulator, and are working on implementation in detail. As a tentative result, the flight observation was simulated in specific conditions. After implementation details, we plan to increase the reliability of the simulation by data collecting using actual PMMW sensors. With the reliable PMMW scene simulator, it will be more efficient to apply the PMMW sensor to various applications.

  9. Advanced visualization platform for surgical operating room coordination: distributed video board system.

    PubMed

    Hu, Peter F; Xiao, Yan; Ho, Danny; Mackenzie, Colin F; Hu, Hao; Voigt, Roger; Martz, Douglas

    2006-06-01

    One of the major challenges for day-of-surgery operating room coordination is accurate and timely situation awareness. Distributed and secure real-time status information is key to addressing these challenges. This article reports on the design and implementation of a passive status monitoring system in a 19-room surgical suite of a major academic medical center. Key design requirements considered included integrated real-time operating room status display, access control, security, and network impact. The system used live operating room video images and patient vital signs obtained through monitors to automatically update events and operating room status. Images were presented on a "need-to-know" basis, and access was controlled by identification badge authorization. The system delivered reliable real-time operating room images and status with acceptable network impact. Operating room status was visualized at 4 separate locations and was used continuously by clinicians and operating room service providers to coordinate operating room activities.

  10. Membrane-less microfiltration using inertial microfluidics

    PubMed Central

    Warkiani, Majid Ebrahimi; Tay, Andy Kah Ping; Guan, Guofeng; Han, Jongyoon

    2015-01-01

    Microfiltration is a ubiquitous and often crucial part of many industrial processes, including biopharmaceutical manufacturing. Yet, all existing filtration systems suffer from the issue of membrane clogging, which fundamentally limits the efficiency and reliability of the filtration process. Herein, we report the development of a membrane-less microfiltration system by massively parallelizing inertial microfluidics to achieve a macroscopic volume processing rates (~ 500 mL/min). We demonstrated the systems engineered for CHO (10–20 μm) and yeast (3–5 μm) cells filtration, which are two main cell types used for large-scale bioreactors. Our proposed system can replace existing filtration membrane and provide passive (no external force fields), continuous filtration, thus eliminating the need for membrane replacement. This platform has the desirable combinations of high throughput, low-cost, and scalability, making it compatible for a myriad of microfiltration applications and industrial purposes. PMID:26154774

  11. Incremental passivity and output regulation for switched nonlinear systems

    NASA Astrophysics Data System (ADS)

    Pang, Hongbo; Zhao, Jun

    2017-10-01

    This paper studies incremental passivity and global output regulation for switched nonlinear systems, whose subsystems are not required to be incrementally passive. A concept of incremental passivity for switched systems is put forward. First, a switched system is rendered incrementally passive by the design of a state-dependent switching law. Second, the feedback incremental passification is achieved by the design of a state-dependent switching law and a set of state feedback controllers. Finally, we show that once the incremental passivity for switched nonlinear systems is assured, the output regulation problem is solved by the design of global nonlinear regulator controllers comprising two components: the steady-state control and the linear output feedback stabilising controllers, even though the problem for none of subsystems is solvable. Two examples are presented to illustrate the effectiveness of the proposed approach.

  12. Novel Concrete Temperature Monitoring Method Based on an Embedded Passive RFID Sensor Tag.

    PubMed

    Liu, Yongsheng; Deng, Fangming; He, Yigang; Li, Bing; Liang, Zhen; Zhou, Shuangxi

    2017-06-22

    This paper firstly introduces the importance of temperature control in concrete measurement, then a passive radio frequency identification (RFID) sensor tag embedded for concrete temperature monitoring is presented. In order to reduce the influences of concrete electromagnetic parameters during the drying process, a T-type antenna is proposed to measure the concrete temperature at the required depth. The proposed RFID sensor tag is based on the EPC generation-2 ultra-high frequency (UHF) communication protocol and operates in passive mode. The temperature sensor can convert the sensor signals to corresponding digital signals without an external reference clock due to the adoption of phase-locked loop (PLL)-based architecture. Laboratory experimentation and on-site testing demonstrate that our sensor tag embedded in concrete can provide reliable communication performance in passive mode. The maximum communicating distance between reader and tag is 7 m at the operating frequency of 915 MHz and the tested results show high consistency with the results tested by a thermocouple.

  13. Novel Concrete Temperature Monitoring Method Based on an Embedded Passive RFID Sensor Tag

    PubMed Central

    Liu, Yongsheng; Deng, Fangming; He, Yigang; Li, Bing; Liang, Zhen; Zhou, Shuangxi

    2017-01-01

    This paper firstly introduces the importance of temperature control in concrete measurement, then a passive radio frequency identification (RFID) sensor tag embedded for concrete temperature monitoring is presented. In order to reduce the influences of concrete electromagnetic parameters during the drying process, a T-type antenna is proposed to measure the concrete temperature at the required depth. The proposed RFID sensor tag is based on the EPC generation-2 ultra-high frequency (UHF) communication protocol and operates in passive mode. The temperature sensor can convert the sensor signals to corresponding digital signals without an external reference clock due to the adoption of phase-locked loop (PLL)-based architecture. Laboratory experimentation and on-site testing demonstrate that our sensor tag embedded in concrete can provide reliable communication performance in passive mode. The maximum communicating distance between reader and tag is 7 m at the operating frequency of 915 MHz and the tested results show high consistency with the results tested by a thermocouple. PMID:28640188

  14. A passivity criterion for sampled-data bilateral teleoperation systems.

    PubMed

    Jazayeri, Ali; Tavakoli, Mahdi

    2013-01-01

    A teleoperation system consists of a teleoperator, a human operator, and a remote environment. Conditions involving system and controller parameters that ensure the teleoperator passivity can serve as control design guidelines to attain maximum teleoperation transparency while maintaining system stability. In this paper, sufficient conditions for teleoperator passivity are derived for when position error-based controllers are implemented in discrete-time. This new analysis is necessary because discretization causes energy leaks and does not necessarily preserve the passivity of the system. The proposed criterion for sampled-data teleoperator passivity imposes lower bounds on the teleoperator's robots dampings, an upper bound on the sampling time, and bounds on the control gains. The criterion is verified through simulations and experiments.

  15. Performance Evaluation of Electrochem's PEM Fuel Cell Power Plant for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; Hoberecht, Mark

    2003-01-01

    NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.

  16. Adaptive fuzzy control of a class of nonaffine nonlinear system with input saturation based on passivity theorem.

    PubMed

    Molavi, Ali; Jalali, Aliakbar; Ghasemi Naraghi, Mahdi

    2017-07-01

    In this paper, based on the passivity theorem, an adaptive fuzzy controller is designed for a class of unknown nonaffine nonlinear systems with arbitrary relative degree and saturation input nonlinearity to track the desired trajectory. The system equations are in normal form and its unforced dynamic may be unstable. As relative degree one is a structural obstacle in system passivation approach, in this paper, backstepping method is used to circumvent this obstacle and passivate the system step by step. Because of the existence of uncertainty and disturbance in the system, exact passivation and reference tracking cannot be tackled, so the approximate passivation or passivation with respect to a set is obtained to hold the tracking error in a neighborhood around zero. Furthermore, in order to overcome the non-smoothness of the saturation input nonlinearity, a parametric smooth nonlinear function with arbitrary approximation error is used to approximate the input saturation. Finally, the simulation results for the theoretical and practical examples are given to validate the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Reliability of reflectance measures in passive filters

    NASA Astrophysics Data System (ADS)

    Saldiva de André, Carmen Diva; Afonso de André, Paulo; Rocha, Francisco Marcelo; Saldiva, Paulo Hilário Nascimento; Carvalho de Oliveira, Regiani; Singer, Julio M.

    2014-08-01

    Measurements of optical reflectance in passive filters impregnated with a reactive chemical solution may be transformed to ozone concentrations via a calibration curve and constitute a low cost alternative for environmental monitoring, mainly to estimate human exposure. Given the possibility of errors caused by exposure bias, it is common to consider sets of m filters exposed during a certain period to estimate the latent reflectance on n different sample occasions at a certain location. Mixed models with sample occasions as random effects are useful to analyze data obtained under such setups. The intra-class correlation coefficient of the mean of the m measurements is an indicator of the reliability of the latent reflectance estimates. Our objective is to determine m in order to obtain a pre-specified reliability of the estimates, taking possible outliers into account. To illustrate the procedure, we consider an experiment conducted at the Laboratory of Experimental Air Pollution, University of São Paulo, Brazil (LPAE/FMUSP), where sets of m = 3 filters were exposed during 7 days on n = 9 different occasions at a certain location. The results show that the reliability of the latent reflectance estimates for each occasion obtained under homoskedasticity is km = 0.74. A residual analysis suggests that the within-occasion variance for two of the occasions should be different from the others. A refined model with two within-occasion variance components was considered, yielding km = 0.56 for these occasions and km = 0.87 for the remaining ones. To guarantee that all estimates have a reliability of at least 80% we require measurements on m = 10 filters on each occasion.

  18. Synthesis of Optimal Constant-Gain Positive-Real Controllers for Passive Systems

    NASA Technical Reports Server (NTRS)

    Mao, Y.; Kelkar, A. G.; Joshi, S. M.

    1999-01-01

    This paper presents synthesis methods for the design of constant-gain positive real controllers for passive systems. The results presented in this paper, in conjunction with the previous work by the authors on passification of non-passive systems, offer a useful synthesis tool for the design of passivity-based robust controllers for non-passive systems as well. Two synthesis approaches are given for minimizing an LQ-type performance index, resulting in optimal controller gains. Two separate algorithms, one for each of these approaches, are given. The synthesis techniques are demonstrated using two numerical examples: control of a flexible structure and longitudinal control of a fighter aircraft.

  19. Wireless Subsurface Sensors for Health Monitoring of Thermal Protection Systems on Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles (RLVs) in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to develop inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and industry partners to develop "wireless" devices that can be embedded in the thermal protection system to monitor temperature or other quantities of interest. These devices are sensors integrated with radio-frequency identification (RFID) microchips to enable non-contact communication of sensor data to an external reader that may be a hand-held scanner or a large portal. Both passive and active prototype devices have been developed. The passive device uses a thermal fuse to indicate the occurrence of excessive temperature. This device has a diameter under 0.13 cm. (suitable for placement in gaps between ceramic TPS tiles on an RLV) and can withstand 370 C for 15 minutes. The active device contains a small battery to provide power to a thermocouple for recording a temperature history during flight. The bulk of the device must be placed beneath the TPS for protection from high temperature, but the thermocouple can be placed in a hot location such as near the external surface.

  20. Passive BCI in Operational Environments: Insights, Recent Advances, and Future Trends.

    PubMed

    Arico, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Sciaraffa, Nicolina; Colosimo, Alfredo; Babiloni, Fabio

    2017-07-01

    This minireview aims to highlight recent important aspects to consider and evaluate when passive brain-computer interface (pBCI) systems would be developed and used in operational environments, and remarks future directions of their applications. Electroencephalography (EEG) based pBCI has become an important tool for real-time analysis of brain activity since it could potentially provide covertly-without distracting the user from the main task-and objectively-not affected by the subjective judgment of an observer or the user itself-information about the operator cognitive state. Different examples of pBCI applications in operational environments and new adaptive interface solutions have been presented and described. In addition, a general overview regarding the correct use of machine learning techniques (e.g., which algorithm to use, common pitfalls to avoid, etc.) in the pBCI field has been provided. Despite recent innovations on algorithms and neurotechnology, pBCI systems are not completely ready to enter the market yet, mainly due to limitations of the EEG electrodes technology, and algorithms reliability and capability in real settings. High complexity and safety critical systems (e.g., airplanes, ATM interfaces) should adapt their behaviors and functionality accordingly to the user' actual mental state. Thus, technologies (i.e., pBCIs) able to measure in real time the user's mental states would result very useful in such "high risk" environments to enhance human machine interaction, and so increase the overall safety.

  1. Multi-detector system approach for unattended uranium enrichment monitoring at gas centrifuge enrichment plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favalli, A.; Lombardi, M.; MacArthur, D. W.

    Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants while reducing the inspection effort is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One requirement of such a monitor is a simple, reliable and precise passive measurement of the 186-keV line from 235U. The other information required is the amount of gas in the pipe, which can be obtained by a transmission or pressure measurement. Here, we describe our research to develop such amore » passive measurement system. Unfortunately, a complication arises in the interpretation of the gamma measurements, from the contribution of uranium deposits on the wall of the pipe to the 186-keV peak. A multi-detector approach to address this complication is presented where two measurements, one with signal primarily from gas and one with signal primarily from deposits, are performed simultaneously with different detectors and geometries. This allows a correction to be made to the 186-keV peak for the contribution from the deposit. Finally, we present the design of the multi-detector system and the results of the experimental calibration of the proof-of-principle prototype built at LANL.« less

  2. Multi-detector system approach for unattended uranium enrichment monitoring at gas centrifuge enrichment plants

    DOE PAGES

    Favalli, A.; Lombardi, M.; MacArthur, D. W.; ...

    2017-09-14

    Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants while reducing the inspection effort is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One requirement of such a monitor is a simple, reliable and precise passive measurement of the 186-keV line from 235U. The other information required is the amount of gas in the pipe, which can be obtained by a transmission or pressure measurement. Here, we describe our research to develop such amore » passive measurement system. Unfortunately, a complication arises in the interpretation of the gamma measurements, from the contribution of uranium deposits on the wall of the pipe to the 186-keV peak. A multi-detector approach to address this complication is presented where two measurements, one with signal primarily from gas and one with signal primarily from deposits, are performed simultaneously with different detectors and geometries. This allows a correction to be made to the 186-keV peak for the contribution from the deposit. Finally, we present the design of the multi-detector system and the results of the experimental calibration of the proof-of-principle prototype built at LANL.« less

  3. Time-to-impact estimation in passive missile warning systems

    NASA Astrophysics Data System (ADS)

    Şahıngıl, Mehmet Cihan

    2017-05-01

    A missile warning system can detect the incoming missile threat(s) and automatically cue the other Electronic Attack (EA) systems in the suit, such as Directed Infrared Counter Measure (DIRCM) system and/or Counter Measure Dispensing System (CMDS). Most missile warning systems are currently based on passive sensor technology operating in either Solar Blind Ultraviolet (SBUV) or Midwave Infrared (MWIR) bands on which there is an intensive emission from the exhaust plume of the threatening missile. Although passive missile warning systems have some clear advantages over pulse-Doppler radar (PDR) based active missile warning systems, they show poorer performance in terms of time-to-impact (TTI) estimation which is critical for optimizing the countermeasures and also "passive kill assessment". In this paper, we consider this problem, namely, TTI estimation from passive measurements and present a TTI estimation scheme which can be used in passive missile warning systems. Our problem formulation is based on Extended Kalman Filter (EKF). The algorithm uses the area parameter of the threat plume which is derived from the used image frame.

  4. Reliability assessment of multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.

    1995-01-01

    The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.

  5. Development of a prototype two-phase thermal bus system for Space Station

    NASA Technical Reports Server (NTRS)

    Myron, D. L.; Parish, R. C.

    1987-01-01

    This paper describes the basic elements of a pumped two-phase ammonia thermal control system designed for microgravity environments, the development of the concept into a Space Station flight design, and design details of the prototype to be ground-tested in the Johnson Space Center (JSC) Thermal Test Bed. The basic system concept is one of forced-flow heat transport through interface heat exchangers with anhydrous ammonia being pumped by a device expressly designed for two-phase fluid management in reduced gravity. Control of saturation conditions, and thus system interface temperatures, is accomplished with a single central pressure regulating valve. Flow control and liquid inventory are controlled by passive, nonelectromechanical devices. Use of these simple control elements results in minimal computer controls and high system reliability. Building on the basic system concept, a brief overview of a potential Space Station flight design is given. Primary verification of the system concept will involve testing at JSC of a 25-kW ground test article currently in fabrication.

  6. Tropospheric Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr. (Editor)

    1982-01-01

    The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.

  7. Development of a passive phase separator for space and earth applications

    PubMed Central

    Wu, Xiongjun; Loraine, Greg; Hsiao, Chao-Tsung; Chahine, Georges L.

    2018-01-01

    The limited amount of liquids and gases that can be carried to space makes it imperative to recycle and reuse these fluids for extended human operations. During recycling processes gas and liquid phases are often intermixed. In the absence of gravity, separating gases from liquids is challenging due to the absence of buoyancy. This paper describes development of a passive phase separator that is capable of efficiently and reliably separating gas–liquid mixtures of both high and low void fractions in a wide range of flow rates that is applicable to for both space and earth applications. PMID:29628785

  8. Evaluation of Non-Chromate Passivations on Electroplated gamma-Phase Zinc Nickel

    NASA Astrophysics Data System (ADS)

    Volz, Steven Michael

    This research focused on the corrosion response and electrochemical behavior of electroplated low hydrogen embrittlement alkaline gamma-phase zinc nickel with passivation layers. The motivation was the need to replace hexavalent chromium conversion coatings in military grade electrical systems with a more environment friendly alternative. The passivation layers were employed for the purpose of mitigating corrosion attack while maintaining low contact resistance. Trivalent chromium-based passivations and cerium-based passivations were compared against the currently used hexavalent chromium conversion coating. The coating systems were compared using electrochemical impedance spectroscopy, cyclic potentiodymanic scans, salt spray exposure testing, electrical resistance measurements, microstructure analysis, and compositional analysis. Coating systems with lower open circuit had a lower corrosion current and performed better during salt spray testing. All of the systems evaluated had corrosion products consistent with oxidized zinc compounds but the morphology of the passivation was dependent on the passivation. The electrical contact resistance ranged from 1 to 108 mO/cm 2, after salt spray testing. Two versions of Trivalent chromium-based passivations, were able to meet military performance specifications after corrosion testing.

  9. A Passive Testing Approach for Protocols in Wireless Sensor Networks

    PubMed Central

    Che, Xiaoping; Maag, Stephane; Tan, Hwee-Xian; Tan, Hwee-Pink; Zhou, Zhangbing

    2015-01-01

    Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed for wireless sensor networks (WSN). However, one stage that is often neglected before their deployment is the conformance testing process, a crucial and challenging step. Compared to active testing techniques commonly used in wired networks, passive approaches are more suitable to the WSN environment. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic-based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties, as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. Furthermore, the flexibility, genericity and practicability of our approach have been proven by the experimental results. PMID:26610495

  10. A Passive Testing Approach for Protocols in Wireless Sensor Networks.

    PubMed

    Che, Xiaoping; Maag, Stephane; Tan, Hwee-Xian; Tan, Hwee-Pink; Zhou, Zhangbing

    2015-11-19

    Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed for wireless sensor networks (WSN). However, one stage that is often neglected before their deployment is the conformance testing process, a crucial and challenging step. Compared to active testing techniques commonly used in wired networks, passive approaches are more suitable to the WSN environment. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic-based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties, as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. Furthermore, the flexibility, genericity and practicability of our approach have been proven by the experimental results.

  11. Testing the Feasibility of a Passive and Active Case Ascertainment System for Multiple Rare Conditions Simultaneously: The Experience in Three US States

    PubMed Central

    McDermott, Suzanne; Ruttenber, Margaret; Mann, Joshua; Smith, Michael G; Royer, Julie; Valdez, Rodolfo

    2016-01-01

    Background Owing to their low prevalence, single rare conditions are difficult to monitor through current state passive and active case ascertainment systems. However, such monitoring is important because, as a group, rare conditions have great impact on the health of affected individuals and the well-being of their caregivers. A viable approach could be to conduct passive and active case ascertainment of several rare conditions simultaneously. This is a report about the feasibility of such an approach. Objective To test the feasibility of a case ascertainment system with passive and active components aimed at monitoring 3 rare conditions simultaneously in 3 states of the United States (Colorado, Kansas, and South Carolina). The 3 conditions are spina bifida, muscular dystrophy, and fragile X syndrome. Methods Teams from each state evaluated the possibility of using current or modified versions of their local passive and active case ascertainment systems and datasets to monitor the 3 conditions. Together, these teams established the case definitions and selected the variables and the abstraction tools for the active case ascertainment approach. After testing the ability of their local passive and active case ascertainment system to capture all 3 conditions, the next steps were to report the number of cases detected actively and passively for each condition, to list the local barriers against the combined passive and active case ascertainment system, and to describe the experiences in trying to overcome these barriers. Results During the test period, the team from South Carolina was able to collect data on all 3 conditions simultaneously for all ages. The Colorado team was also able to collect data on all 3 conditions but, because of age restrictions in its passive and active case ascertainment system, it was able to report few cases of fragile X syndrome. The team from Kansas was able to collect data only on spina bifida. For all states, the implementation of an active component of the ascertainment system was problematic. The passive component appears viable with minor modifications. Conclusions Despite evident barriers, the joint passive and active case ascertainment of rare disorders using modified existing surveillance systems and datasets seems feasible, especially for systems that rely on passive case ascertainment. PMID:27574026

  12. Passivity and Dissipativity as Design and Analysis Tools for Networked Control Systems

    ERIC Educational Resources Information Center

    Yu, Han

    2012-01-01

    In this dissertation, several control problems are studied that arise when passive or dissipative systems are interconnected and controlled over a communication network. Since communication networks can impact the systems' stability and performance, there is a need to extend the results on control of passive or dissipative systems to networked…

  13. Regenerative fuel cell study for satellites in GEO orbit

    NASA Technical Reports Server (NTRS)

    Levy, Alexander; Vandine, Leslie L.; Stedman, James K.

    1987-01-01

    Summarized are the results of a 12-month study to identify high performance regenerative hydrogen-oxygen fuel cell concepts for geosynchronous satellite application. Emphasis was placed on concepts with the potential for high energy density (W-hr/lb) and passive means for water and heat management to maximize system reliability. Both polymer membrane and alkaline electrolyte fuel cells were considered, with emphasis on the alkaline cell because of its high performance, advanced state of development, and proven ability to operate in a launch and space environment. Three alkaline system concepts were studied. The first, the integrated design, utilized a configuration in which the fuel cell and electrolysis cells are alternately stacked inside a pressure vessel. Product water is transferred by diffusion during electrolysis and waste heat is conducted through the pressure wall, thus using completely passive means for transfer and control. The second alkaline system, the dedicated design, uses a separate fuel cell and electrolysis stack so that each unit can be optimized in size and weight based on its orbital operating period. The third design was a dual function stack configuration, in which each cell can operate in both fuel cell and electrolysis mode, thus eliminating the need for two separate stacks and associated equipment. Results indicate that using near term technology energy densities between 46 and 52 W-hr/lb can be achieved at efficiencies of 55 percent. System densities of 115 W-hr/lb are contemplated.

  14. Design of an Experimental Facility for Passive Heat Removal in Advanced Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Bersano, Andrea

    With reference to innovative heat exchangers to be used in passive safety system of Gen- eration IV nuclear reactors and Small Modular Reactors it is necessary to study the natural circulation and the efficiency of heat removal systems. Especially in safety systems, as the decay heat removal system of many reactors, it is increasing the use of passive components in order to improve their availability and reliability during possible accidental scenarios, reducing the need of human intervention. Many of these systems are based on natural circulation, so they require an intense analysis due to the possible instability of the related phenomena. The aim of this thesis work is to build a scaled facility which can reproduce, in a simplified way, the decay heat removal system (DHR2) of the lead-cooled fast reactor ALFRED and, in particular, the bayonet heat exchanger, which transfers heat from lead to water. Given the thermal power to be removed, the natural circulation flow rate and the pressure drops will be studied both experimentally and numerically using the code RELAP5 3D. The first phase of preliminary analysis and project includes: the calculations to design the heat source and heat sink, the choice of materials and components and CAD drawings of the facility. After that, the numerical study is performed using the thermal-hydraulic code RELAP5 3D in order to simulate the behavior of the system. The purpose is to run pretest simulations of the facility to optimize the dimensioning setting the operative parameters (temperature, pressure, etc.) and to chose the most adequate measurement devices. The model of the system is continually developed to better simulate the system studied. High attention is dedicated to the control logic of the system to obtain acceptable results. The initial experimental tests phase consists in cold zero power tests of the facility in order to characterize and to calibrate the pressure drops. In future works the experimental results will be compared to the values predicted by the system code and differences will be discussed with the ultimate goal to qualify RELAP5-3D for the analysis of decay heat removal systems in natural circulation. The numerical data will be also used to understand the key parameters related to the heat transfer in natural circulation and to optimize the operation of the system.

  15. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors

    PubMed Central

    Marrs, Michael A.; Raupp, Gregory B.

    2016-01-01

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate. PMID:27472329

  16. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors.

    PubMed

    Marrs, Michael A; Raupp, Gregory B

    2016-07-26

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm² and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate.

  17. High sensitivity broadband 360GHz passive receiver for TeraSCREEN

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Oldfield, Matthew; Maestrojuán, Itziar; Platt, Duncan; Brewster, Nick; Viegas, Colin; Alderman, Byron; Ellison, Brian N.

    2016-05-01

    TeraSCREEN is an EU FP7 Security project aimed at developing a combined active, with frequency channel centered at 360 GHz, and passive, with frequency channels centered at 94, 220 and 360 GHz, imaging system for border controls in airport and commercial ferry ports. The system will include automatic threat detection and classification and has been designed with a strong focus on the ethical, legal and practical aspects of operating in these environments and with the potential threats in mind. Furthermore, both the passive and active systems are based on array receivers with the active system consisting of a 16 element MIMO FMCW radar centered at 360 GHz with a bandwidth of 30 GHz utilizing a custom made direct digital synthesizer. The 16 element passive receiver system at 360 GHz uses commercial Gunn diode oscillators at 90 GHz followed by custom made 90 to 180 GHz frequency doublers supplying the local oscillator for 360 GHz sub-harmonic mixers. This paper describes the development of the passive antenna module, local oscillator chain, frequency mixers and detectors used in the passive receiver array of this system. The complete passive receiver chain is characterized in this paper.

  18. Using Hybrid Magnetic Bearings to Completely Suspend the Impeller of a Ventricular Assist Device.

    PubMed

    Khanwilkar, Pratap; Olsen, Don; Bearnson, Gill; Allaire, Paul; Maslen, Eric; Flack, Ron; Long, James

    1996-05-01

    Clinically available blood pumps and those under development suffer from poor mechanical reliability and poor biocompatibility related to anatomic fit, hemolysis, and thrombosis. To alleviate these problems concurrently in a long-term device is a substantial challenge. Based on testing the performance of a prototype, and on our judgment of desired characteristics, we have configured an innovative ventricular assist device, the CF-VAD4, for long-term use. The design process and its outcome, the CFVAD4 system configuration, is described. To provide unprecedented reliability and biocompatibility, magnetic bearings completely suspend the rotating pump impeller. The CFVAD4 uses a combination of passive (permanent) and active (electric) magnetic bearings, a mixed flow impeller, and a slotless 3-phase brushless DC motor. These components are shaped, oriented, and integrated to provide a compact, implantable, pancake-shaped unit for placement in the left upper abdominal quadrant of adult humans. © 1996 International Society for Artificial Organs.

  19. Chronic, percutaneous connector for electrical recording and stimulation with microelectrode arrays.

    PubMed

    Shah, Kedar G; Lee, Kye Young; Tolosa, Vanessa; Tooker, Angela; Felix, Sarah; Benett, William; Pannu, Satinderpall

    2014-01-01

    The translation of advances in neural stimulation and recording research into clinical practice hinges on the ability to perform chronic experiments in awake and behaving animal models. Advances in microelectrode array technology, most notably flexible polymer arrays, have significantly improved reliability of the neural interface. However, electrical connector technology has lagged and is prone to failure from non-biocompatibility, large size, contamination, corrosion, and difficulty of use. We present a novel chronic, percutaneous electrical connector system that is suitable for neural stimulation and recording. This system features biocompatible materials, low connect and disconnect forces, passive alignment, and a protective cap during non-use. We have successfully designed, assembled, and tested in vitro both a 16-channel system and a high density 64-channel system. Custom, polyimide, 16-channel, microelectrode arrays were electrically assembled with the connector system and tested using cyclic voltammetry and electrochemical impedance spectroscopy. This connector system is versatile and can be used with a variety of microelectrode array technologies for chronic studies.

  20. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  1. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  2. Distance correction system for localization based on linear regression and smoothing in ambient intelligence display.

    PubMed

    Kim, Dae-Hee; Choi, Jae-Hun; Lim, Myung-Eun; Park, Soo-Jun

    2008-01-01

    This paper suggests the method of correcting distance between an ambient intelligence display and a user based on linear regression and smoothing method, by which distance information of a user who approaches to the display can he accurately output even in an unanticipated condition using a passive infrared VIR) sensor and an ultrasonic device. The developed system consists of an ambient intelligence display and an ultrasonic transmitter, and a sensor gateway. Each module communicates with each other through RF (Radio frequency) communication. The ambient intelligence display includes an ultrasonic receiver and a PIR sensor for motion detection. In particular, this system selects and processes algorithms such as smoothing or linear regression for current input data processing dynamically through judgment process that is determined using the previous reliable data stored in a queue. In addition, we implemented GUI software with JAVA for real time location tracking and an ambient intelligence display.

  3. Advanced fuel cell concepts for future NASA missions

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1987-01-01

    Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.

  4. Thermal control systems for low-temperature heat rejection on a lunar base

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Gottmann, Matthias; Nanjundan, Ashok

    1993-01-01

    One of the important issues in the design of a lunar base is the thermal control system (TCS) used to reject low-temperature heat from the base. The TCS ensures that the base and the components inside are maintained within an acceptable temperature range. The temperature of the lunar surface peaks at 400 K during the 336-hour lunar day. Under these circumstances, direct dissipation of waste heat from the lunar base using passive radiators would be impractical. Thermal control systems based on thermal storage, shaded radiators, and heat pumps have been proposed. Based on proven technology, innovation, realistic complexity, reliability, and near-term applicability, a heat pump-based TCS was selected as a candidate for early missions. In this report, Rankine-cycle heat pumps and absorption heat pumps (ammonia water and lithium bromide-water) have been analyzed and optimized for a lunar base cooling load of 100 kW.

  5. Regenerative fuel cell study for satellites in GEO orbit

    NASA Technical Reports Server (NTRS)

    Vandine, Leslie; Gonzalez-Sanabria, Olga; Levy, Alexander

    1987-01-01

    The results of a 12 month study to identify high performance regenerative hydrogen-oxygen fuel cell concepts for geosynchronous satellite application are summarized. Emphasis was placed on concepts with the potential for high energy density and passive means for water and heat management to maximize system reliability. Both polymer membrane and alkaline electrolyte fuel cells were considered, with emphasis on the alkaline cell because of its high performance, advanced state of development, and proven ability to operate in a launch and space environment. Three alkaline system concepts were studied. Results indicate that using near term technology energy densities between 46 and 52 watt-hour/lb can be achieved at efficiencies of 55 percent. Using advanced light weight cell construction which was achieved in experimental cells, composite tankage material for the reactant gases and the reversible stack concept, system energy densities of 115 watt-hours/lb can be projected.

  6. Measurement of Resistive Plantar Flexion Torque of the Ankle during Passive Stretch in Healthy Subjects and Patients with Poststroke Hemiplegia.

    PubMed

    Mizuno, Shiho; Sonoda, Shigeru; Takeda, Kotaro; Maeshima, Shinichiro

    2016-04-01

    Quantification of increased muscle tone for patients with spasticity has been performed to date using various devices to replace the manual scales, such as the modified Ashworth scale or the Tardieu scale. We developed a device that could measure resistive plantar flexion (PF) torque of the ankle during passive dorsiflexion (DF) as an indicator of muscle tone of ankle plantar flexors. The primary objective was to explore the test-retest intrarater reliability of a custom-built device. Participants were 11 healthy subjects (7 men, 4 women; mean age 47.0 years) and 22 patients with poststroke hemiplegia (11 hemorrhagic, 11 ischemic; 14 men, 8 women; mean age 57.2 years). The device was affixed to the ankle. Subjects were seated with knees either flexed or extended. The ankle was passively dorsiflexed from 20° of PF to more than 10° of DF at 5°/second (slow stretch) or 90°/second (fast stretch). Angle and torque were measured twice during the stretches. The intraclass correlation coefficients (ICCs) of torque at 10° of DF (T10) in the 4 conditions-slow and fast stretches with knee flexed or extended-were calculated. The T10 ICCs of the 4 conditions were .95-.99 in both groups. The healthy subjects showed significantly higher T10 of knee extension than of knee flexion during slow and fast stretches. The patients showed increased velocity-dependent torque during fast stretches. Excellent reliability was observed. The device is suitable for measuring resistive PF torque during passive stretch in a flexed knee condition. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  7. A Novel Physiological Investigation of the Functional Residual Capacity by the Bias Flow Nitrogen Washout Technique in Infants

    PubMed Central

    Morris, Mohy G.

    2011-01-01

    Summary The dynamic functional residual capacity (FRCdyn), the lung volume most routinely measured in infants, is an unreliable volume landmark. In addition to the FRCdyn, we measured the (passive) static FRC (FRCst) by inducing a brief post-hyperventilation apnea (PHA) in 33 healthy infants aged 7.4–127.2 weeks. A commercial system for nitrogen (N2) washout to measure FRC, and a custom made system to monitor and record flow and airwayopening pressure signals in real-time were used in unison. Infants were manually hyperventilated to induce a PHA. After the last passive expiration, FRCst was estimated by measuring the volume of N2 expired after end-passive expiratory switching of the inspired gas from room air to 100% oxygen during the post-expiratory apneic pause. Repeatable intrasubject FRCst and FRCdyn measurements overlapped in most infants including the younger ones (P = 0.2839). Mean (95% confidence interval [CI]) FRCst was 21.1 (20.0–22.3), and error-corrected FRCdyn was 21.4 (20.4–22.4) ml/kg. Mean (washout time [t]) tFRCst was longer than tFRCdyn 60 sec (95% CI 55–65) versus 47 sec (95% CI 43–51) (P<0.0001). The FRC and washout time were dependent on body length, weight and age. We conclude that the FRCst is not different from the FRCdyn in infants. The FRCst is a reliable volume landmark because the PHA stabilizes the end-expiratory level by potentially abolishing the sedated infant’s breathing strategies. The FRCst lacks potential sources of errors and disadvantages associated with measuring the FRCdyn. The findings cast significant doubt on the traditional physiology of air trapping in healthy infants’ lungs. PMID:19499588

  8. 48 CFR 211.275 - Passive radio frequency identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Passive radio frequency identification. 211.275 Section 211.275 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... Requirements Documents 211.275 Passive radio frequency identification. ...

  9. Thirsty Walls: A New Paradigm for Air Revitalization in Life Support

    NASA Technical Reports Server (NTRS)

    Graf, John; Brennecke, Joan; Weislogel, Mark

    2015-01-01

    Carbon Dioxide removal systems on submarines are compact and reliable. They use solubility chemistry. They spray a Carbon Dioxide adsorbing chemical directly into the air stream, and allow the liquid to settle. Carbon Dioxide removal systems on ISS are large and need repair. They use adsorption chemistry. They force air through a bed packed with granular zeolite, and heat the bed to desorb the Carbon Dioxide. The thermal cycles cause the zeolite to dust. New advances in additive manufacturing, and a better understanding of uid behavior in microgravity make it possible to expose a liquid directly to air in a microgravity environment. It is now practical to use submarine style solubility chemistry for atmosphere revitalization in space. It is now possible to develop space systems that achieve submarine levels of reliability. New developments in Ionic Liquid research make it possible to match the solubility performance characteristics of MEA used on submarines - with Ionic Liquids that do not release chemical vapors into the air. "Thirsty Walls" provide gentle, passive contact between ventilation air and Air Revitalization functions of temperature control, relative humidity control, and Carbon Dioxide removal. "Thirsty Walls" eliminates the need of large blowers and compressors that need to force air at high velocities through restrictive Air Revitalization hardware.

  10. Reliability-based structural optimization: A proposed analytical-experimental study

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson; Nikolaidis, Efstratios

    1993-01-01

    An analytical and experimental study for assessing the potential of reliability-based structural optimization is proposed and described. In the study, competing designs obtained by deterministic and reliability-based optimization are compared. The experimental portion of the study is practical because the structure selected is a modular, actively and passively controlled truss that consists of many identical members, and because the competing designs are compared in terms of their dynamic performance and are not destroyed if failure occurs. The analytical portion of this study is illustrated on a 10-bar truss example. In the illustrative example, it is shown that reliability-based optimization can yield a design that is superior to an alternative design obtained by deterministic optimization. These analytical results provide motivation for the proposed study, which is underway.

  11. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles.

    PubMed

    Abid, Haider J; Chen, Jie; Nassar, Ameen A

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system.

  12. Integrated passive/active vibration absorber for multi-story buildings

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina J.; Ahmadi, Goodarz; Horta, Lucas G.

    1995-01-01

    Passive isolator, active vibration absorber, and an integrated passive/active (hybrid) control are studied for their effectiveness in reducing structural vibration under seismic excitations. For the passive isolator, a laminated rubber bearing base isolator which has been studied and used extensively by researchers and seismic designers is considered. An active vibration absorber concept, which can provide guaranteed closed-loop stability with minimum knowledge of the controlled system, is used to reduce the passive isolator displacement and to suppress the top floor vibration. A three-story building model is used for the numerical simulation. The performance of an active vibration absorber and a hybrid vibration controller in reducing peak structural responses is compared with the passively isolated structural response and with absence of vibration control systems under the N00W component of El Centro 1940 and N90W component of the Mexico City earthquake excitation records. The results show that the integrated passive/active vibration control system is most effective in suppressing the peak structural acceleration for the El Centro 1940 earthquake when compared with the passive or active vibration absorber alone. The active vibration absorber, however, is the only system that suppresses the peak acceleration of the structure for the Mexico City 1985 earthquake.

  13. What we can and cannot (yet) do with functional near infrared spectroscopy

    PubMed Central

    Strait, Megan; Scheutz, Matthias

    2014-01-01

    Functional near infrared spectroscopy (NIRS) is a relatively new technique complimentary to EEG for the development of brain-computer interfaces (BCIs). NIRS-based systems for detecting various cognitive and affective states such as mental and emotional stress have already been demonstrated in a range of adaptive human–computer interaction (HCI) applications. However, before NIRS-BCIs can be used reliably in realistic HCI settings, substantial challenges oncerning signal processing and modeling must be addressed. Although many of those challenges have been identified previously, the solutions to overcome them remain scant. In this paper, we first review what can be currently done with NIRS, specifically, NIRS-based approaches to measuring cognitive and affective user states as well as demonstrations of passive NIRS-BCIs. We then discuss some of the primary challenges these systems would face if deployed in more realistic settings, including detection latencies and motion artifacts. Lastly, we investigate the effects of some of these challenges on signal reliability via a quantitative comparison of three NIRS models. The hope is that this paper will actively engage researchers to acilitate the advancement of NIRS as a more robust and useful tool to the BCI community. PMID:24904261

  14. Differentiated protection method in passive optical networks based on OPEX

    NASA Astrophysics Data System (ADS)

    Zhang, Zhicheng; Guo, Wei; Jin, Yaohui; Sun, Weiqiang; Hu, Weisheng

    2011-12-01

    Reliable service delivery becomes more significant due to increased dependency on electronic services all over society and the growing importance of reliable service delivery. As the capability of PON increasing, both residential and business customers may be included in a PON. Meanwhile, OPEX have been proven to be a very important factor of the total cost for a telecommunication operator. Thus, in this paper, we present the partial protection PON architecture and compare the operational expenditures (OPEX) of fully duplicated protection and partly duplicated protection for ONUs with different distributed fiber length, reliability requirement and penalty cost per hour. At last, we propose a differentiated protection method to minimize OPEX.

  15. Use of cermet thin film resistors with nitride passivated metal insulator field effect transistor

    NASA Technical Reports Server (NTRS)

    Brown, G. A.; Harrap, V.

    1971-01-01

    Film deposition of cermet resistors on same chip with metal nitride oxide silicon field effect transistors permits protection of contamination sensitive active devices from contaminants produced in cermet deposition and definition processes. Additional advantages include lower cost, greater reliability, and space savings.

  16. CIP (cleaning-in-place) stability of AlGaN/GaN pH sensors.

    PubMed

    Linkohr, St; Pletschen, W; Schwarz, S U; Anzt, J; Cimalla, V; Ambacher, O

    2013-02-20

    The CIP stability of pH sensitive ion-sensitive field-effect transistors based on AlGaN/GaN heterostructures was investigated. For epitaxial AlGaN/GaN films with high structural quality, CIP tests did not degrade the sensor surface and pH sensitivities of 55-58 mV/pH were achieved. Several different passivation schemes based on SiO(x), SiN(x), AlN, and nanocrystalline diamond were compared with special attention given to compatibility to standard microelectronic device technologies as well as biocompatibility of the passivation films. The CIP stability was evaluated with a main focus on the morphological stability. All stacks containing a SiO₂ or an AlN layer were etched by the NaOH solution in the CIP process. Reliable passivations withstanding the NaOH solution were provided by stacks of ICP-CVD grown and sputtered SiN(x) as well as diamond reinforced passivations. Drift levels about 0.001 pH/h and stable sensitivity over several CIP cycles were achieved for optimized sensor structures. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Design of a vibration isolation system for a cycle ergometer to be used onboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Pearson, Lillian; Tait, Steven; Trevino, Maurice

    1991-01-01

    Low frequency vibrations generated during exercise using the cycle ergometer onboard the Space Shuttle are disrupting sensitive microgravity experiments. The design team is asked by NASA/USRA to generate alternatives for the design of a vibration isolation system for the cycle ergometer. It is the design team's objective to present alternative designs and a problem solution for a vibration isolation system for an exercise cycle ergometer to be used onboard the Space Shuttle. In the development of alternative designs, the design team emphasizes passive systems as opposed to active control systems. This decision is made because the team feels that passive systems are less complex than active control systems, external energy sources are not required, and mass is reduced due to the lack of machinery such as servomotors or compressors typical of active control systems. Eleven alternative designs are developed by the design team. From these alternatives, three active control systems are included to compare the benefits of active and passive systems. Also included in the alternatives is an isolation system designed by an independent engineer that was acquired late in the project. The eight alternatives using passive isolation systems are narrowed down by selection criteria to four considered to be the most promising by the design team. A feasibility analysis is performed on these four passive isolation systems. Based on the feasibility analysis, a final design solution is chosen and further developed. From the development of the design, the design team has concluded that passive systems are not effective at isolating vibrations for the low frequencies considered for this project. Recommendations are made for guidelines of passive isolation design and application of such systems.

  18. Electric Motor Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, Kevin

    2015-06-09

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize themore » passive thermal performance, work is being performed to measure motor material thermal properties and thermal contact resistances. The active cooling performance of automatic transmission fluid (ATF) jets is also being measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings.« less

  19. Field observation of advance warning/advisory signage for passive railway crossings with restricted lateral sightline visibility: an experimental investigation.

    PubMed

    Ward, N J; Wilde, G J

    1995-04-01

    This study evaluated a newly proposed series of signs intended for passive crossings with restrictions to lateral sightline visibility. These signs provide advance warning of a crossing and the restriction to lateral visibility. In addition, the signs advise motorists to come to a complete stop before crossing. Motorist behaviour was examined before and after installation of these signs at a rural passive crossing. A second site was observed in parallel to control partially for any confounding effects. Results indicated that motorists reduced speed and searched approach quadrants longer at points in the approachway after installation of the signs. However, there was no reliable increase in the number of motorists coming to complete stop, engaging in search behaviours, or classified as safe. The results are discussed in terms of reasons for the lack of compliance with the sign advisory.

  20. Passive wall cooling panel with phase change material as a cooling agent

    NASA Astrophysics Data System (ADS)

    Majid, Masni A.; Tajudin, Rasyidah Ahmad; Salleh, Norhafizah; Hamid, Noor Azlina Abd

    2017-11-01

    The study was carried out to the determine performance of passive wall cooling panels by using Phase Change Materials as a cooling agent. This passive cooling system used cooling agent as natural energy storage without using any HVAC system. Eight full scale passive wall cooling panels were developed with the size 1500 mm (L) × 500 mm (W) × 100 mm (T). The cooling agent such as glycerine were filled in the tube with horizontal and vertical arrangement. The passive wall cooling panels were casting by using foamed concrete with density between 1200 kg/m3 - 1500 kg/m3. The passive wall cooling panels were tested in a small house and the differences of indoor and outdoor temperature was recorded. Passive wall cooling panels with glycerine as cooling agent in vertical arrangement showed the best performance with dropped of indoor air temperature within 3°C compared to outdoor air temperature. The lowest indoor air temperature recorded was 25°C from passive wall cooling panels with glycerine in vertical arrangement. From this study, the passive wall cooling system could be applied as it was environmental friendly and less maintenance.

  1. Surveillance for unattended gas compressor stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stastny, F.J.

    1974-06-01

    Surveillance devices in unattended compressor stations include those which detect trespassing by unauthorized personnel and those which protect the major operating equipment from damage and/or self-destruction. The latter monitor the critical operating parameters of major equipment and shut down the equipment when these parameters are exceeded; a table presents a function monitor and control list for such devices. Detection and apprehension of unauthorized personnel is a subject of increasing importance to guarantee station operability for reliable service and yet minimize staff personnel. An effective intrusion-detection system must (1) pinpoint the location and indicate the nature of the intrusion and (2)more » detect and respond rapidly to give security personnel a reasonable probability of apprehending or deterring the intruder before damage is done. The 2nd requirement is most difficult to satisfy when the facility is in a remote location, as is usually the case. Some of the parameters to consider in selecting an intrusion-detection system include concealment, legality, active vs. passive detector, back-up power, weather conditions, reliability, maintenance, discrimination, and compromising by intruders. Types of detectors include photo cell, infrared and radio frequency, audio,vibration, taut wire, circuit continuity, radar, and closed-circuit TV. The numerous types of devices and systems available provide sufficient diversity to enable a company to select a single device or a hybrid system which would incorporate several different devices for protecting unattended facilities.« less

  2. Design, testing, and economics of a 430 W sub p photovoltaic concentrator array for non grid-connected applications

    NASA Astrophysics Data System (ADS)

    Maish, A. B.; Rios, M., Jr.; Togami, H.

    A stand-alone 430 W/sub p/ photovoltaic (PV) concentrating system for low power, non grid-connected applications has been designed, fabricated, and tested at Sandia National Laboratories. The array consists of four passively cooled Fresnel lens concentrating modules on a newly developed polar axis tracking structure. Two axis tracking is provided using a self powered clock drive unit mounted on a single post foundation. Test results of tracking accuracy, array output power, parasitic power, performance in winds and array reliability are discussed. using a range of estimated production costs for small production volumes, the life-cycle energy costs have been calculated and compared to the equivalent energy costs of a 3 kW diesel electric generator set and of an equivalent flat panel PV system.

  3. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles

    PubMed Central

    Abid, Haider J.; Chen, Jie; Nassar, Ameen A.

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system. PMID:27351020

  4. Low cost passive solar adobe house

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-12-21

    A brief description, photographs, and cost breakdown of a hybrid direct-gain passive solar adobe house constructed in the City of El Paso, Texas. The 3-panel active solar domestic hot water system acts as a back-up to the direct gain passive system.

  5. Liquid metal cooled nuclear reactors with passive cooling system

    DOEpatents

    Hunsbedt, Anstein; Fanning, Alan W.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  6. Feasibility of Using Low-Cost Motion Capture for Automated Screening of Shoulder Motion Limitation after Breast Cancer Surgery.

    PubMed

    Gritsenko, Valeriya; Dailey, Eric; Kyle, Nicholas; Taylor, Matt; Whittacre, Sean; Swisher, Anne K

    2015-01-01

    To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery. Descriptive study of motion measured via 2 methods. Academic cancer center oncology clinic. 20 women (mean age = 60 yrs) were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery) following mastectomy (n = 4) or lumpectomy (n = 16) for breast cancer. Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle). Correlation of motion capture with goniometry and detection of motion limitation. Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70-0.80), while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more. Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation.

  7. Westinghouse Small Modular Reactor passive safety system response to postulated events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M. C.; Wright, R. F.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor. This paper is part of a series of four describing the design and safety features of the Westinghouse SMR. This paper focuses in particular upon the passive safety features and the safety system response of the Westinghouse SMR. The Westinghouse SMR design incorporates many features to minimize the effects of, and in some cases eliminates the possibility of postulated accidents. The small size of the reactor and the low power density limits the potential consequences of an accident relative to a large plant. Themore » integral design eliminates large loop piping, which significantly reduces the flow area of postulated loss of coolant accidents (LOCAs). The Westinghouse SMR containment is a high-pressure, compact design that normally operates at a partial vacuum. This facilitates heat removal from the containment during LOCA events. The containment is submerged in water which also aides the heat removal and provides an additional radionuclide filter. The Westinghouse SMR safety system design is passive, is based largely on the passive safety systems used in the AP1000{sup R} reactor, and provides mitigation of all design basis accidents without the need for AC electrical power for a period of seven days. Frequent faults, such as reactivity insertion events and loss of power events, are protected by first shutting down the nuclear reaction by inserting control rods, then providing cold, borated water through a passive, buoyancy-driven flow. Decay heat removal is provided using a layered approach that includes the passive removal of heat by the steam drum and independent passive heat removal system that transfers heat from the primary system to the environment. Less frequent faults such as loss of coolant accidents are mitigated by passive injection of a large quantity of water that is readily available inside containment. An automatic depressurization system is used to reduce the reactor pressure in a controlled manner to facilitate the passive injection. Long-term decay heat removal is accomplished using the passive heat removal systems augmented by heat transfer through the containment vessel to the environment. The passive injection systems are designed so that the fuel remains covered and effectively cooled throughout the event. Like during the frequent faults, the passive systems provide effective cooling without the need for ac power for seven days following the accident. Connections are available to add additional water to indefinitely cool the plant. The response of the safety systems of the Westinghouse SMR to various initiating faults has been examined. Among them, two accidents; an extended station blackout event, and a LOCA event have been evaluated to demonstrate how the plant will remain safe in the unlikely event that either should occur. (authors)« less

  8. Electric Motor Thermal Management R&D. Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, Kevin

    With the push to reduce component volumes, lower costs, and reduce weight without sacrificing performance or reliability, the challenges associated with thermal management increase for power electronics and electric motors. Thermal management for electric motors will become more important as the automotive industry continues the transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform, and as thermal management improves, there will be a direct trade-off between motor performance, efficiency, cost, and the sizingmore » of electric motors to operate within the thermal constraints. The goal of this research project is to support broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management. Work in FY15 focused on two areas related to motor thermal management: passive thermal performance and active convective cooling. Passive thermal performance emphasized the thermal impact of materials and thermal interfaces among materials within an assembled motor. The research tasks supported the publication of test methods and data for thermal contact resistances and direction-dependent thermal conductivity within an electric motor. Active convective cooling focused on measuring convective heat-transfer coefficients using automatic transmission fluid (ATF). Data for average convective heat transfer coefficients for direct impingement of ATF jets was published. Also, experimental hardware for mapping local-scale and stator-scale convective heat transfer coefficients for ATF jet impingement were developed.« less

  9. Soft robotics: a review and progress towards faster and higher torque actuators (presentation video)

    NASA Astrophysics Data System (ADS)

    Shepherd, Robert

    2014-03-01

    Last year, nearly 160,000 industrial robots were shipped worldwide—into a total market valued at 26 Bn (including hardware, software, and peripherals).[1] Service robots for professional (e.g., defense, medical, agriculture) and personal (e.g., household, handicap assistance, toys, and education) use accounted for 16,000 units, 3.4 Bn and 3,000,000 units, $1.2 Bn respectively.[1] The vast majority of these robotic systems use fully actuated, rigid components that take little advantage of passive dynamics. Soft robotics is a field that is taking advantage of compliant actuators and passive dynamics to achieve several goals: reduced design, manufacturing and control complexity, improved energy efficiency, more sophisticated motions, and safe human-machine interactions to name a few. The potential for societal impact is immense. In some instances, soft actuators have achieved commercial success; however, large scale adoption will require improved methods of controlling non-linear systems, greater reliability in their function, and increased utility from faster and more forceful actuation. In my talk, I will describe efforts from my work in the Whitesides group at Harvard to prove sophisticated motions in these machines using simple controls, as well capabilities unique to soft machines. I will also describe the potential for combinations of different classes of soft actuators (e.g., electrically and pneumatically actuated systems) to improve the utility of soft robots. 1. World Robotics - Industrial Robots 2013, 2013, International Federation of Robotics.

  10. EPMOSt: An Energy-Efficient Passive Monitoring System for Wireless Sensor Networks

    PubMed Central

    Garcia, Fernando P.; Andrade, Rossana M. C.; Oliveira, Carina T.; de Souza, José Neuman

    2014-01-01

    Monitoring systems are important for debugging and analyzing Wireless Sensor Networks (WSN). In passive monitoring, a monitoring network needs to be deployed in addition to the network to be monitored, named the target network. The monitoring network captures and analyzes packets transmitted by the target network. An energy-efficient passive monitoring system is necessary when we need to monitor a WSN in a real scenario because the lifetime of the monitoring network is extended and, consequently, the target network benefits from the monitoring for a longer time. In this work, we have identified, analyzed and compared the main passive monitoring systems proposed for WSN. During our research, we did not identify any passive monitoring system for WSN that aims to reduce the energy consumption of the monitoring network. Therefore, we propose an Energy-efficient Passive MOnitoring SysTem for WSN named EPMOSt that provides monitoring information using a Simple Network Management Protocol (SNMP) agent. Thus, any management tool that supports the SNMP protocol can be integrated with this monitoring system. Experiments with real sensors were performed in several scenarios. The results obtained show the energy efficiency of the proposed monitoring system and the viability of using it to monitor WSN in real scenarios. PMID:24949639

  11. Smart Novel Semi-Active Tuned Mass Damper for Fixed-Bottom and Floating Offshore Wind (Paper)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez Tsouroukdissian, Arturo; Lackner, Mathew; Cross-Whiter, John

    The intention of this paper is to present the results of a novel smart semi-active tuned mass damper (SA-TMD), which mitigates unwanted loads for both fixed-bottom and floating offshore wind systems. The paper will focus on the most challenging water depths for both fixed-bottom and floating systems. A close to 38m Monopile and 55m Tension Leg Platform (TLP) will be considered. A technical development and trade-off analysis will be presented comparing the new system with existing passive non-linear TMD (N-TMD) technology and semi-active. TheSATMD works passively and activates itself with low power source under unwanted dynamic loading in less thanmore » 60msec. It is composed of both variable stiffness and damping elements coupled to a central pendulum mass. The analysis has been done numerically in both FAST(NREL) and Orcaflex (Orcina), and integrated in the Wind Turbine system employing CAD/CAE. The results of this work will pave the way for experimental testing to complete the technology qualification process. The load reductions under extreme and fatigue cases reach up significant levels at tower base, consequently reducing LCOE for fixed-bottom to floating wind solutions. The nacelle acceleration is reduced substantially under severe random wind and sea states, reducing the risks of failure of electromechanical components and blades at the rotor nacelle assembly. The SA-TMD system isa new technology that has not been applied previously in wind solutions. Structural damping devices aim to increase offshore wind turbine system robustness and reliability, which eases multiple substructures installations and global stability.« less

  12. Improved Hot Carrier Reliability Characteristics of Metal Oxide Semiconductor Field Effect Transistors with High-k Gate Dielectric by Using High Pressure Deuterium Post Metallization Annealing

    NASA Astrophysics Data System (ADS)

    Park, Hokyung; Choi, Rino; Lee, Byoung Hun; Hwang, Hyunsang

    2007-09-01

    High pressure deuterium annealing on the hot carrier reliability characteristics of HfSiO metal oxide semiconductor field effect transistor (MOSFET) was investigated. Comparing with the conventional forming gas (H2/Ar=10%/96%, 480 °C, 30 min) annealed sample, MOSFET annealed in 5 atm pure deuterium ambient at 400 °C showed the improvement of linear drain current, reduction of interface trap density, and improvement of the hot carrier reliability characteristics. These improvements can be attributed to the effective passivation of the interface trap site after high pressure annealing and heavy mass effect of deuterium. These results indicate that high pressure pure deuterium annealing can be a promising process for improving device performance as well as hot carrier reliability, together.

  13. High power laser source for atom cooling based on reliable telecoms technology with all fibre frequency stabilisation

    NASA Astrophysics Data System (ADS)

    Legg, Thomas; Farries, Mark

    2017-02-01

    Cold atom interferometers are emerging as important tools for metrology. Designed into gravimeters they can measure extremely small changes in the local gravitational field strength and be used for underground surveying to detect buried utilities, mineshafts and sinkholes prior to civil works. To create a cold atom interferometer narrow linewidth, frequency stabilised lasers are required to cool the atoms and to setup and measure the atom interferometer. These lasers are commonly either GaAs diodes, Ti Sapphire lasers or frequency doubled InGaAsP diodes and fibre lasers. The InGaAsP DFB lasers are attractive because they are very reliable, mass-produced, frequency controlled by injection current and simply amplified to high powers with fibre amplifiers. In this paper a laser system suitable for Rb atom cooling, based on a 1560nm DFB laser and erbium doped fibre amplifier, is described. The laser output is frequency doubled with fibre coupled periodically poled LiNbO3 to a wavelength of 780nm. The output power exceeds 1 W at 780nm. The laser is stabilised at 1560nm against a fibre Bragg resonator that is passively temperature compensated. Frequency tuning over a range of 1 GHz is achieved by locking the laser to sidebands of the resonator that are generated by a phase modulator. This laser design is attractive for field deployable rugged systems because it uses all fibre coupled components with long term proven reliability.

  14. Method for passive cooling liquid metal cooled nuclear reactors, and system thereof

    DOEpatents

    Hunsbedt, Anstein; Busboom, Herbert J.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

  15. Advanced Aerodynamic Design of Passive Porosity Control Effectors

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Viken, Sally A.; Wood, Richard M.; Bauer, Steven X. S.

    2001-01-01

    This paper describes aerodynamic design work aimed at developing a passive porosity control effector system for a generic tailless fighter aircraft. As part of this work, a computational design tool was developed and used to layout passive porosity effector systems for longitudinal and lateral-directional control at a low-speed, high angle of attack condition. Aerodynamic analysis was conducted using the NASA Langley computational fluid dynamics code USM3D, in conjunction with a newly formulated surface boundary condition for passive porosity. Results indicate that passive porosity effectors can provide maneuver control increments that equal and exceed those of conventional aerodynamic effectors for low-speed, high-alpha flight, with control levels that are a linear function of porous area. This work demonstrates the tremendous potential of passive porosity to yield simple control effector systems that have no external moving parts and will preserve an aircraft's fixed outer mold line.

  16. Potential of pedestrian protection systems--a parameter study using finite element models of pedestrian dummy and generic passenger vehicles.

    PubMed

    Fredriksson, Rikard; Shin, Jaeho; Untaroiu, Costin D

    2011-08-01

    To study the potential of active, passive, and integrated (combined active and passive) safety systems in reducing pedestrian upper body loading in typical impact configurations. Finite element simulations using models of generic sedan car fronts and the Polar II pedestrian dummy were performed for 3 impact configurations at 2 impact speeds. Chest contact force, head injury criterion (HIC(15)), head angular acceleration, and the cumulative strain damage measure (CSDM(0.25)) were employed as injury parameters. Further, 3 countermeasures were modeled: an active autonomous braking system, a passive deployable countermeasure, and an integrated system combining the active and passive systems. The auto-brake system was modeled by reducing impact speed by 10 km/h (equivalent to ideal full braking over 0.3 s) and introducing a pitch of 1 degree and in-crash deceleration of 1 g. The deployable system consisted of a deployable hood, lifting 100 mm in the rear, and a lower windshield air bag. All 3 countermeasures showed benefit in a majority of impact configurations in terms of injury prevention. The auto-brake system reduced chest force in a majority of the configurations and decreased HIC(15), head angular acceleration, and CSDM in all configurations. Averaging all impact configurations, the auto-brake system showed reductions of injury predictors from 20 percent (chest force) to 82 percent (HIC). The passive deployable countermeasure reduced chest force and HIC(15) in a majority of configurations and head angular acceleration and CSDM in all configurations, although the CSDM decrease in 2 configurations was minimal. On average a reduction from 20 percent (CSDM) to 58 percent (HIC) was recorded in the passive deployable countermeasures. Finally, the integrated system evaluated in this study reduced all injury assessment parameters in all configurations compared to the reference situations. The average reductions achieved by the integrated system ranged from 56 percent (CSDM) to 85 percent (HIC). Both the active (autonomous braking) and passive deployable system studied had a potential to decrease pedestrian upper body loading. An integrated pedestrian safety system combining the active and passive systems increased the potential of the individual systems in reducing pedestrian head and chest loading.

  17. Tactile Acuity Charts: A Reliable Measure of Spatial Acuity

    PubMed Central

    Bruns, Patrick; Camargo, Carlos J.; Campanella, Humberto; Esteve, Jaume; Dinse, Hubert R.; Röder, Brigitte

    2014-01-01

    For assessing tactile spatial resolution it has recently been recommended to use tactile acuity charts which follow the design principles of the Snellen letter charts for visual acuity and involve active touch. However, it is currently unknown whether acuity thresholds obtained with this newly developed psychophysical procedure are in accordance with established measures of tactile acuity that involve passive contact with fixed duration and control of contact force. Here we directly compared tactile acuity thresholds obtained with the acuity charts to traditional two-point and grating orientation thresholds in a group of young healthy adults. For this purpose, two types of charts, using either Braille-like dot patterns or embossed Landolt rings with different orientations, were adapted from previous studies. Measurements with the two types of charts were equivalent, but generally more reliable with the dot pattern chart. A comparison with the two-point and grating orientation task data showed that the test-retest reliability of the acuity chart measurements after one week was superior to that of the passive methods. Individual thresholds obtained with the acuity charts agreed reasonably with the grating orientation threshold, but less so with the two-point threshold that yielded relatively distinct acuity estimates compared to the other methods. This potentially considerable amount of mismatch between different measures of tactile acuity suggests that tactile spatial resolution is a complex entity that should ideally be measured with different methods in parallel. The simple test procedure and high reliability of the acuity charts makes them a promising complement and alternative to the traditional two-point and grating orientation thresholds. PMID:24504346

  18. Discrete range clustering using Monte Carlo methods

    NASA Technical Reports Server (NTRS)

    Chatterji, G. B.; Sridhar, B.

    1993-01-01

    For automatic obstacle avoidance guidance during rotorcraft low altitude flight, a reliable model of the nearby environment is needed. Such a model may be constructed by applying surface fitting techniques to the dense range map obtained by active sensing using radars. However, for covertness, passive sensing techniques using electro-optic sensors are desirable. As opposed to the dense range map obtained via active sensing, passive sensing algorithms produce reliable range at sparse locations, and therefore, surface fitting techniques to fill the gaps in the range measurement are not directly applicable. Both for automatic guidance and as a display for aiding the pilot, these discrete ranges need to be grouped into sets which correspond to objects in the nearby environment. The focus of this paper is on using Monte Carlo methods for clustering range points into meaningful groups. One of the aims of the paper is to explore whether simulated annealing methods offer significant advantage over the basic Monte Carlo method for this class of problems. We compare three different approaches and present application results of these algorithms to a laboratory image sequence and a helicopter flight sequence.

  19. Simulation and analysis of vertical displacement characteristics of three wheels reverse trike vehicle with PID controller application

    NASA Astrophysics Data System (ADS)

    Wibowo, Lambang, Lullus; Erick Chandra, N.; Muhayat, Nurul; Jaka S., B.

    2017-08-01

    The purpose of this research is to obtain a mathematical model (Full Vehicle Model) and compare the performance of passive and active suspension systems of a Three-Wheels Reverse Trike vehicle. Vehicle suspension system should able to provide good steering handling and passenger comfort. Vehicle suspension system generally only uses passive suspension components with fix spring and damper coefficients. An active suspension developed from the traditional (passive) suspension design can directly control the actuator force in the suspension system. In this paper, modeling and simulation of passive and active suspension system for a Full Vehicle Model is performed using Simulink-MATLAB software. Ziegler & Nichols tuning method is used to obtain controller parameters of Proportional Integral Derivative (PID) controller. Comparison between passive and active suspension with PID controller is conducted for disturbances input of single bump road surface profile 0.1 meters. The results are the displacement and acceleration of the vehicle body in the vertical direction of active suspension system with PID control is better in providing handling capabilities and comfort for the driver than of passive suspension system. The acceleration of 1,8G with the down time of 2.5 seconds is smaller than the acceleration of 2.5G with down time of 5.5 seconds.

  20. An fMRI compatible wrist robotic interface to study brain development in neonates.

    PubMed

    Allievi, A G; Melendez-Calderon, A; Arichi, T; Edwards, A D; Burdet, E

    2013-06-01

    A comprehensive understanding of the mechanisms that underlie brain development in premature infants and newborns is crucial for the identification of interventional therapies and rehabilitative strategies. fMRI has the potential to identify such mechanisms, but standard techniques used in adults cannot be implemented in infant studies in a straightforward manner. We have developed an MR safe wrist stimulating robot to systematically investigate the functional brain activity related to both spontaneous and induced wrist movements in premature babies using fMRI. We present the technical aspects of this development and the results of validation experiments. Using the device, the cortical activity associated with both active and passive finger movements were reliably identified in a healthy adult subject. In two preterm infants, passive wrist movements induced a well localized positive BOLD response in the contralateral somatosensory cortex. Furthermore, in a single preterm infant, spontaneous wrist movements were found to be associated with an adjacent cluster of activity, at the level of the infant's primary motor cortex. The described device will allow detailed and objective fMRI studies of somatosensory and motor system development during early human life and following neonatal brain injury.

  1. Miniature DMFCs with passive thermal-fluids management system

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Faghri, Amir

    A new miniature DMFC system that includes a fuel cell stack, a fuel tank and a passive ancillary system (termed "thermal-fluids management system" in this paper) is presented. The thermal-fluids management system utilizes passive approaches for fuel storage and delivery, air breathing, water management, CO 2 release and thermal management. With 5.1 g of neat methanol in the fuel cartridge, a prototype has successfully demonstrated 18 h of continuous operation with total power output of 1.56 Wh.

  2. Validation of the Italian version of the dissociative experience scale for adolescents and young adults.

    PubMed

    De Pasquale, Concetta; Sciacca, Federica; Hichy, Zira

    2016-01-01

    The Dissociative Experience Scale for adolescent (A-DES), a 30-item, multidimensional, self-administered questionnaire, was validated using a large sample of American young people sample. We reported the linguistic validation process and the metric validity of the Italian version of A-DES in the Italy. A set of questionnaires was provided to a total of 633 participants from March 2015 to April 2016. The participants consisted of 282 boys and 351 girls, and their average age was between 18 and 24 years old. The translation process consisted of two consecutive steps: forward-backward translation and acceptability testing. The psychometric testing was applied to Italian students who were recruited from the Italian Public Schools and Universities in Sicily. Informed consent was obtained from all participants at the research. All individuals completed the A-DES. Reliability and validity were tested. The translated version was validated on a total of 633 Italian students. The reliability of A-DES total is .926. It is composed by 4 subscales: Dissociative amnesia, Absorption and imaginative involvement, Depersonalization and derealization, and Passive influence. The reliability of each subscale is: .756 for dissociative amnesia, .659 for absorption and imaginative involvement, .850 for depersonalization and derealization, and .743 for passive influence. The Italian version of the A-DES constitutes a useful instrument to measure dissociative experience in adolescents and young adults in Italy.

  3. Passive damping in EDS maglev systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rote, D. M.

    2002-05-03

    There continues to be strong interest in the subjects of damping and drag forces associated with electrodynamic suspension (EDS) systems. While electromagnetic drag forces resist the forward motion of a vehicle and therefore consume energy, damping forces control, at least in part, the response of the vehicle to disturbances. Ideally, one would like to reduce the drag forces as much as possible while retaining adequate damping forces to insure dynamic stability and satisfactory ride quality. These two goals turn out to be difficult to achieve in practice. It is well known that maglev systems tend to be intrinsically under damped.more » Consequently it is often necessary in a practical system design to enhance the damping passively or actively. For reasons of cost and simplicity, it is desirable to rely as much as possible on passive damping mechanisms. In this paper, rough estimates are made of the passive damping and drag forces caused by various mechanisms in EDS systems. No attention will be given to active control systems or secondary suspension systems which are obvious ways to augment passive damping mechanisms if the latter prove to be inadequate.« less

  4. Functional Safety of Hybrid Laser Safety Systems - How can a Combination between Passive and Active Components Prevent Accidents?

    NASA Astrophysics Data System (ADS)

    Lugauer, F. P.; Stiehl, T. H.; Zaeh, M. F.

    Modern laser systems are widely used in industry due to their excellent flexibility and high beam intensities. This leads to an increased hazard potential, because conventional laser safety barriers only offer a short protection time when illuminated with high laser powers. For that reason active systems are used more and more to prevent accidents with laser machines. These systems must fulfil the requirements of functional safety, e.g. according to IEC 61508, which causes high costs. The safety provided by common passive barriers is usually unconsidered in this context. In the presented approach, active and passive systems are evaluated from a holistic perspective. To assess the functional safety of hybrid safety systems, the failure probability of passive barriers is analysed and added to the failure probability of the active system.

  5. Advanced Propulsion and TPS for a Rapidly-Prototyped CEV

    NASA Astrophysics Data System (ADS)

    Hudson, Gary C.

    2005-02-01

    Transformational Space Corporation (t/Space) is developing for NASA the initial designs for the Crew Exploration Vehicle family, focusing on a Launch CEV for transporting NASA and civilian passengers from Earth to orbit. The t/Space methodology is rapid prototyping of major vehicle systems, and deriving detailed specifications from the resulting hardware, avoiding "written-in-advance" specs that can force the costly invention of new capabilities simply to meet such specs. A key technology shared by the CEV family is Vapor Pressurized propulsion (Vapak) for simplicity and reliability, which provides electrical power, life support gas and a heat sink in addition to propulsion. The CEV family also features active transpiration cooling of re-entry surfaces (for reusability) backed up by passive thermal protection.

  6. Interplanetary laser ranging - an emerging technology for planetary science missions

    NASA Astrophysics Data System (ADS)

    Dirkx, D.; Vermeersen, L. L. A.

    2012-09-01

    Interplanetary laser ranging (ILR) is an emerging technology for very high accuracy distance determination between Earth-based stations and spacecraft or landers at interplanetary distances. It has evolved from laser ranging to Earth-orbiting satellites, modified with active laser transceiver systems at both ends of the link instead of the passive space-based retroreflectors. It has been estimated that this technology can be used for mm- to cm-level accuracy range determination at interplanetary distances [2, 7]. Work is being performed in the ESPaCE project [6] to evaluate in detail the potential and limitations of this technology by means of bottom-up laser link simulation, allowing for a reliable performance estimate from mission architecture and hardware characteristics.

  7. Passivity-Based Control for Two-Wheeled Robot Stabilization

    NASA Astrophysics Data System (ADS)

    Uddin, Nur; Aryo Nugroho, Teguh; Agung Pramudito, Wahyu

    2018-04-01

    A passivity-based control system design for two-wheeled robot (TWR) stabilization is presented. A TWR is a statically-unstable non-linear system. A control system is applied to actively stabilize the TWR. Passivity-based control method is applied to design the control system. The design results in a state feedback control law that makes the TWR closed loop system globally asymptotically stable (GAS). The GAS is proven mathematically. The TWR stabilization is demonstrated through computer simulation. The simulation results show that the designed control system is able to stabilize the TWR.

  8. Redesign of Water Distribution Systems for Passive ...

    EPA Pesticide Factsheets

    Journal article The purpose of this paper is to examine how water distribution systems could be designed or retrofitted to passively contain contaminants that might enter the water distribution system.

  9. Passive cooling system for a vehicle

    DOEpatents

    Hendricks, Terry Joseph; Thoensen, Thomas

    2005-11-15

    A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

  10. Passive Cooling System for a Vehicle

    DOEpatents

    Hendricks, T. J.; Thoensen, T.

    2005-11-15

    A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

  11. The reliability and validity of qualitative scores for the Controlled Oral Word Association Test.

    PubMed

    Ross, Thomas P; Calhoun, Emily; Cox, Tara; Wenner, Carolyn; Kono, Whitney; Pleasant, Morgan

    2007-05-01

    The reliability and validity of two qualitative scoring systems for the Controlled Oral Word Association Test [Benton, A. L., Hamsher, de S. K., & Sivan, A. B. (1983). Multilingual aplasia examination (2nd ed.). Iowa City, IA: AJA Associates] were examined in 108 healthy young adults. The scoring systems developed by Troyer et al. [Troyer, A. K., Moscovich, M., & Winocur, G. (1997). Clustering and switching as two components of verbal fluency: Evidence from younger and older healthy adults. Neuropsychology, 11, 138-146] and by Abwender et al. [Abwender, D. A., Swan, J. G., Bowerman, J. T., & Connolly, S. W. (2001a). Qualitative analysis of verbal fluency output: Review and comparison of several scoring methods. Assessment, 8, 323-336] each demonstrated excellent interrater reliability (all indices at or above r(icc)=.9). Consistent with previous research [e.g., Ross, T. P. (2003). The reliability of cluster and switch scores for the COWAT. Archives of Clinical Psychology, 18, 153-164), test-retest reliability coefficients (N=53; M interval 44.6 days) for the qualitative scores were modest to poor (r(icc)=.6 to .4 range). Correlations among COWAT scores, measures of executive functioning, verbal learning, working memory, and vocabulary were examined. The idea that qualitative scores represent distinct executive functions such as cognitive flexibility or strategy utilization was not supported. We offer the interpretation that COWAT performance may require the ability to retrieve words in a non-routine manner while suppressing habitual responses and associated processing interference, presumably due to a spread of activation across semantic or lexical networks. This interpretation, though speculative at present, implies that clustering and switching on the COWAT may not be entirely deliberate, but rather an artifact of a passive (i.e., state-dependent) process. Ideas for future research, most noticeably experimental studies using cognitive methods (e.g., priming), are discussed.

  12. Humidity measurements in passive heat and moisture exchangers applications: a critical issue.

    PubMed

    Dubini, G; Fumero, R

    2000-01-01

    A reliable, quantitative assessment of humidification performances of passive heat and moisture exchangers in mechanically-ventilated patients is still to be achieved, although relevant efforts have been made to date. One of the major problems to tackle consists in the difficulty of humidity measurements, both in vivo (during either anaesthesia or intensive care unit treatments) and in vitro set-ups. In this paper a review of the basic operation principles of humidity sensors as well as an analysis of their usage within in vivo and in vitro tests are presented. Particular attention is devoted to the limitations arising from the specific measurement set-up, as they may affect the results notably.

  13. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, William; Walker, Iain

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met.more » ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM 2.5, formaldehyde and NO 2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.« less

  14. Methodology for the Incorporation of Passive Component Aging Modeling into the RAVEN/ RELAP-7 Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandelli, Diego; Rabiti, Cristian; Cogliati, Joshua

    2014-11-01

    Passive system, structure and components (SSCs) will degrade over their operation life and this degradation may cause to reduction in the safety margins of a nuclear power plant. In traditional probabilistic risk assessment (PRA) using the event-tree/fault-tree methodology, passive SSC failure rates are generally based on generic plant failure data and the true state of a specific plant is not reflected realistically. To address aging effects of passive SSCs in the traditional PRA methodology [1] does consider physics based models that account for the operating conditions in the plant, however, [1] does not include effects of surveillance/inspection. This paper representsmore » an overall methodology for the incorporation of aging modeling of passive components into the RAVEN/RELAP-7 environment which provides a framework for performing dynamic PRA. Dynamic PRA allows consideration of both epistemic and aleatory uncertainties (including those associated with maintenance activities) in a consistent phenomenological and probabilistic framework and is often needed when there is complex process/hardware/software/firmware/ human interaction [2]. Dynamic PRA has gained attention recently due to difficulties in the traditional PRA modeling of aging effects of passive components using physics based models and also in the modeling of digital instrumentation and control systems. RAVEN (Reactor Analysis and Virtual control Environment) [3] is a software package under development at the Idaho National Laboratory (INL) as an online control logic driver and post-processing tool. It is coupled to the plant transient code RELAP-7 (Reactor Excursion and Leak Analysis Program) also currently under development at INL [3], as well as RELAP 5 [4]. The overall methodology aims to: • Address multiple aging mechanisms involving large number of components in a computational feasible manner where sequencing of events is conditioned on the physical conditions predicted in a simulation environment such as RELAP-7. • Identify the risk-significant passive components, their failure modes and anticipated rates of degradation • Incorporate surveillance and maintenance activities and their effects into the plant state and into component aging progress. • Asses aging affects in a dynamic simulation environment 1. C. L. SMITH, V. N. SHAH, T. KAO, G. APOSTOLAKIS, “Incorporating Ageing Effects into Probabilistic Risk Assessment –A Feasibility Study Utilizing Reliability Physics Models,” NUREG/CR-5632, USNRC, (2001). 2. T. ALDEMIR, “A Survey of Dynamic Methodologies for Probabilistic Safety Assessment of Nuclear Power Plants, Annals of Nuclear Energy, 52, 113-124, (2013). 3. C. RABITI, A. ALFONSI, J. COGLIATI, D. MANDELLI and R. KINOSHITA “Reactor Analysis and Virtual Control Environment (RAVEN) FY12 Report,” INL/EXT-12-27351, (2012). 4. D. ANDERS et.al, "RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7," INL/EXT-12-25924, (2012).« less

  15. Instructive Video Retrieval for Surgical Skill Coaching Using Attribute Learning

    DTIC Science & Technology

    2015-06-28

    dance, sports, and surgery training. Most existing systems are either passive (for data capture only) or barely active (with limited automated...including dance, sports, and surgery training. Most existing systems are either passive (for data capture only) or barely active (with limited...sports, and surgery training. Most existing systems are either passive (for data capture only) or barely active (with limited automated feed- back to a

  16. Hydrodynamic interactions between a self-rotation rotator and passive particles

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhenyu; Lin, Jian-Zhong; Ku, Xiaoke

    2017-10-01

    In this paper, we numerically investigate the hydrodynamic interaction between a self-rotation rotator and passive particles in a two-dimensional confined cavity at two typical Reynolds numbers according to the different flow features. Both the fluid-particle interaction and particle-particle interaction through fluid media are taken into consideration. The results show that from the case of a rotator and one passive particle to the case of a rotator and two passive particles, the system becomes much more complex because the relative displacement between the rotator and the passive particles and the velocity of passive particles are strongly dependent on the Reynolds number and the initial position of passive particles. For the system of two particles, the passive particle gradually departs from the rotator although its relative displacement to the rotator exhibits a periodic oscillation at the lower Reynolds number. Furthermore, the relative distance between the two particles and the rotator's rotational frequency are responsible for the oscillation amplitude and frequency of the passive particle's velocity. For the system of three particles, the passive particle's velocities exhibit a superposition of a large amplitude oscillation and a small amplitude oscillation at the lower Reynolds number, and the large amplitude oscillation will disappear at the higher Reynolds number. The change of the included angle of the two passive particles is dependent on the initial positions of the passive particles at the lower Reynolds number, whereas the included angle of the two passive particles finally approaches a fixed value at the higher Reynolds number. It is interesting that the two passive particles periodically approach and depart from each other when the included angle is not equal to π, while all the three particles (including the rotator) keep the positions in a straight line when the included angle is equal to π because the interference between two passive particles disappears. In addition, the passive particle rotates not only around the rotator but also around its own axis, and the rotation speed of the former is far greater than that of the latter.

  17. High-throughput countercurrent microextraction in passive mode.

    PubMed

    Xie, Tingliang; Xu, Cong

    2018-05-15

    Although microextraction is much more efficient than conventional macroextraction, its practical application has been limited by low throughputs and difficulties in constructing robust countercurrent microextraction (CCME) systems. In this work, a robust CCME process was established based on a novel passive microextractor with four units without any moving parts. The passive microextractor has internal recirculation and can efficiently mix two immiscible liquids. The hydraulic characteristics as well as the extraction and back-extraction performance of the passive CCME were investigated experimentally. The recovery efficiencies of the passive CCME were 1.43-1.68 times larger than the best values achieved using cocurrent extraction. Furthermore, the total throughput of the passive CCME developed in this work was about one to three orders of magnitude higher than that of other passive CCME systems reported in the literature. Therefore, a robust CCME process with high throughputs has been successfully constructed, which may promote the application of passive CCME in a wide variety of fields.

  18. Telefetalcare: a first prototype of a wearable fetal electrocardiograph.

    PubMed

    Fanelli, A; Signorini, M G; Ferrario, M; Perego, P; Piccini, L; Andreoni, G; Magenes, G

    2011-01-01

    Fetal heart rate monitoring is fundamental to infer information about fetal health state during pregnancy. The cardiotocography (CTG) is the most common antepartum monitoring technique. Abdominal ECG recording represents the most valuable alternative to cardiotocography, as it allows passive, non invasive and long term fetal monitoring. Unluckily fetal ECG has low SNR and needs to be extracted from abdominal recordings using ad hoc algorithms. This work describes a prototype of a wearable fetal ECG electrocardiograph. The system has flat band frequency response between 1-60 Hz and guarantees good signal quality. It was tested on pregnant women between the 30(th) and 34(th) gestational week. Several electrodes configurations were tested, in order to identify the best solution. Implementation of a simple algorithm for FECG extraction permitted the reliable detection of maternal and fetal QRS complexes. The system will allow continuative and deep screening of fetal heart rate, introducing the possibility of home fetal monitoring.

  19. Humans Rapidly Learn Grammatical Structure in a New Musical Scale

    PubMed Central

    Loui, Psyche; Wessel, David L.; Hudson Kam, Carla L.

    2010-01-01

    Knowledge of musical rules and structures has been reliably demonstrated in humans of different ages, cultures, and levels of music training, and has been linked to our musical preferences. However, how humans acquire knowledge of and develop preferences for music remains unknown. The present study shows that humans rapidly develop knowledge and preferences when given limited exposure to a new musical system. Using a non-traditional, unfamiliar musical scale (Bohlen-Pierce scale), we created finite-state musical grammars from which we composed sets of melodies. After 25–30 min of passive exposure to the melodies, participants showed extensive learning as characterized by recognition, generalization, and sensitivity to the event frequencies in their given grammar, as well as increased preference for repeated melodies in the new musical system. Results provide evidence that a domain-general statistical learning mechanism may account for much of the human appreciation for music. PMID:20740059

  20. Humans Rapidly Learn Grammatical Structure in a New Musical Scale.

    PubMed

    Loui, Psyche; Wessel, David L; Hudson Kam, Carla L

    2010-06-01

    Knowledge of musical rules and structures has been reliably demonstrated in humans of different ages, cultures, and levels of music training, and has been linked to our musical preferences. However, how humans acquire knowledge of and develop preferences for music remains unknown. The present study shows that humans rapidly develop knowledge and preferences when given limited exposure to a new musical system. Using a non-traditional, unfamiliar musical scale (Bohlen-Pierce scale), we created finite-state musical grammars from which we composed sets of melodies. After 25-30 min of passive exposure to the melodies, participants showed extensive learning as characterized by recognition, generalization, and sensitivity to the event frequencies in their given grammar, as well as increased preference for repeated melodies in the new musical system. Results provide evidence that a domain-general statistical learning mechanism may account for much of the human appreciation for music.

  1. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective of the Advanced Turbine Cooling and Thermal Management program is to develop intelligent control and distribution methods for turbine cooling, while achieving a reduction in total cooling flow and assuring acceptable turbine component safety and reliability. The program also will develop embedded sensor technologies and cooling system models for real-time engine diagnostics and health management. Both active and passive control strategies will be investigated that include the capability of intelligent modulation of flow quantities, pressures, and temperatures both within the supply system and at the turbine component level. Thermal management system concepts were studied, with a goal of reducing HPT blade cooling air supply temperature. An assessment will be made of the use of this air by the active clearance control system as well. Turbine component cooling designs incorporating advanced, high-effectiveness cooling features, will be evaluated. Turbine cooling flow control concepts will be studied at the cooling system level and the component level. Specific cooling features or sub-elements of an advanced HPT blade cooling design will be downselected for core fabrication and casting demonstrations.

  2. Room-Temperature-Processed Flexible Amorphous InGaZnO Thin Film Transistor.

    PubMed

    Xiao, Xiang; Zhang, Letao; Shao, Yang; Zhou, Xiaoliang; He, Hongyu; Zhang, Shengdong

    2017-12-13

    A room-temperature flexible amorphous indium-gallium-zinc oxide thin film transistor (a-IGZO TFT) technology is developed on plastic substrates, in which both the gate dielectric and passivation layers of the TFTs are formed by an anodic oxidation (anodization) technique. While the gate dielectric Al 2 O 3 is grown with a conventional anodization on an Al:Nd gate electrode, the channel passivation layer Al 2 O 3 is formed using a localized anodization technique. The anodized Al 2 O 3 passivation layer shows a superior passivation effect to that of PECVD SiO 2 . The room-temperature-processed flexible a-IGZO TFT exhibits a field-effect mobility of 7.5 cm 2 /V·s, a subthreshold swing of 0.44 V/dec, an on-off ratio of 3.1 × 10 8 , and an acceptable gate-bias stability with threshold voltage shifts of 2.65 and -1.09 V under positive gate-bias stress and negative gate-bias stress, respectively. Bending and fatigue tests confirm that the flexible a-IGZO TFT also has a good mechanical reliability, with electrical performances remaining consistent up to a strain of 0.76% as well as after 1200 cycles of fatigue testing.

  3. Ultrasound shear wave elastography in the assessment of passive biceps brachii muscle stiffness: influences of sex and elbow position.

    PubMed

    Chen, Johnson; O'Dell, Michael; He, Wen; Du, Li-Juan; Li, Pai-Chi; Gao, Jing

    To assess differences in biceps brachii muscle (BBM) stiffness as evaluated by ultrasound shear wave elastography (SWE). The passive stiffness of the BBM was quantified with shear wave velocity (SWV) measurements obtained from 10 healthy volunteers (5 men and 5 women, mean age 50years, age range 42-63 years) with the elbow at full extension and 30° flexion in this IRB-approved study. Potential differences between two depths within the muscle, two elbow positions, the two arms, and sexes were assessed by using two-tailed t-test. The reproducibility of SWV measurements was tested by using intraclass correlation coefficient (ICC). Significantly higher passive BBM stiffness was found at full elbow extension compared to 30° of flexion (p≤0.00006 for both arms). Significantly higher passive stiffness in women was seen for the right arm (p=0.04 for both elbow positions). Good correlation of shear wave velocity measured at the different depths. The ICC for interobserver and intraobserver variation was high. SWE is a reliable quantitative tool for assessing BBM stiffness, with differences in stiffness based on elbow position demonstrated and based on sex suggested. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. NPS and Online WOM

    PubMed Central

    Raassens, Néomie

    2017-01-01

    The Net Promoter Score (NPS) is, according to Reichheld, the single most reliable indicator of company growth, and many companies use this recommendation-based technique for measuring customer loyalty. Despite its widespread adoption by many companies across multiple industries, the debate about NPS goes on. A major concern is that managers treat NPS as being equivalent across customers, which is often very misleading. By using a unique data set that combines customers’ promoter scores and online word-of-mouth (eWOM) behavior, this research studies how individual customers’ promoter scores are related to eWOM, including its relationship with the three categories of customers that are identified by the NPS paradigm (i.e., promoters, passives, and detractors). Based on a sample of 189 customers, their promoter scores and corresponding eWOM, the results show that there is a positive relationship between customers’ promoter scores and the valence of online messages. Further, while detractors and promoters are homogeneous with respect to the valence of the eWOM messages they spread, passives show message valence heterogeneity. Thus, although passives, the largest group of customers, have no weight in calculating the NPS, our results reveal that companies should flag passives for further attention and action. PMID:29046609

  5. Goniometric reliability in a clinical setting. Shoulder measurements.

    PubMed

    Riddle, D L; Rothstein, J M; Lamb, R L

    1987-05-01

    The purpose of this study was to examine the intratester and intertester reliabilities for clinical goniometric measurements of shoulder passive range of motion (PROM) using two different sizes of universal goniometers. Patients were measured without controlling therapist goniometric placement technique or patient position during measurements. Repeated PROM measurements of shoulder flexion, extension, abduction, shoulder horizontal abduction, horizontal adduction, lateral (external) rotation, and medial (internal) rotation were taken of two groups of 50 subjects each. The intratester intraclass correlation coefficients (ICCs) for all motions ranged from .87 to .99. The ICCs for the intertester reliability of PROM measurements of horizontal abduction, horizontal adduction, extension, and medial rotation ranged from .26 to .55. The intertester ICCs for PROM measurements of flexion, abduction, and lateral rotation ranged from .84 to .90. Goniometric PROM measurements for the shoulder appear to be highly reliable when taken by the same physical therapist, regardless of the size of the goniometer used. The degree of intertester reliability for these measurements appears to be range-of-motion specific.

  6. Ultrasonographic measurement of the acromiohumeral distance in spinal cord injury: Reliability and effects of shoulder positioning.

    PubMed

    Lin, Yen-Sheng; Boninger, Michael L; Day, Kevin A; Koontz, Alicia M

    2015-11-01

    To investigate the reliability of ultrasonographic measurement of acromiohumeral distance (AHD) and the effects of shoulder positioning on AHD among manual wheelchair users (MWUs) with spinal cord injury (SCI) and an able-bodied control group. Ten MWUs with SCI and 10 able-bodied subjects participated in this study. The ultrasonographic measurements of AHD from each subject were obtained by two raters during passive and active scapular plane arm elevation in neutral, 45°, 90° with and without resistance and in a weight relief raise position. The measurements were recorded again by each rater using the same procedures after a 30-minute time interval. All raters were blinded to each other's measurements. University Laboratories and Veteran Affairs Healthcare System. Intra-rater (intraclass correlation coefficient, ICC > 0.83) and inter-rater (ICC > 0.78) reliability was excellent for both the MWUs with SCI and able-bodied groups across all arm positions except for the 45° position in the control group for one of the raters (intra-rater: ICC < 0.40 and inter-rater: ICC < 0.60). AHD significantly reduced when the shoulder was in the 90° arm elevated positions with or without resistance. Findings from our study demonstrated that ultrasonography is a reliable means to evaluate AHD in both able bodied and individuals with SCI, who are known to have significant shoulder pathology. This technique could be used to develop reference measures and to identify changes in AHD caused by interventions.

  7. Hypersonic force measurements using internal balance based on optical micromachined Fabry-Perot interferometry.

    PubMed

    Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang

    2018-03-01

    Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.

  8. Hypersonic force measurements using internal balance based on optical micromachined Fabry-Perot interferometry

    NASA Astrophysics Data System (ADS)

    Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang

    2018-03-01

    Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.

  9. Evaluation of Masticatory Stimulation Effect on the Maxillary Transversal Growth in Ectodermal Dysplasia Children.

    PubMed

    Sfeir, Elia; Nahass, Mona G; Mourad, Ayman

    2017-01-01

    Severe oligodontia is one of the most important symptoms in children with hypohidrotic ectodermal dysplasia (HED). The growth of the maxilla is a key consideration in restoring their mouth. The aim of this study was to evaluate the transversal maxillary sutural growth, after passive masticatory stimulation, in HED children. We also thought to assess the efficiency and functional outcome of the proposed propriocep-tive passive expansion (PPE) prosthetic device. We studied 13 children (age 6-11 years) suffering from HED with severe oligodontia. Their maxilla was restored by a PPE device formed from two parts and joined by a passive slide system. Distance between the two parts was noted at the anterior and posterior regions at each control visit over an average of 23 months. We also conducted and filled a satisfaction questionnaire over the same period. We tested the hypothesis that the posterior expansion is greater than the anterior expansion (one-tailed Student's t-test with p-value <0.05). Best-fit linear and quadratic models were used to explore the relationship between age, duration of observation, and the rate of growth. The average opening of the device was 2.27 mm in the anterior region and 2.96 mm in the posterior region. The questionnaire response was positive for all children. There are no significant linear or quadratic relationships between the data at the 5% significance level. The posterior expansion is greater than the anterior expansion at the 5% significance level (p-value 0.000394). Further studies are mandatory to assess the reliability of our particular intervention and treatment modalities for these cases. The PPE device, we propose, assures function and esthetics in the long- term. It enhances stimulation by a passive way that leads to physiological growth of the palatal suture. Using this PPE device to restore the maxilla in children with HED promotes physiological growth. The passive nature of this prosthesis helps by eliminating the need for any changes or replacement over time. Sfeir E, Nahass MG, Mourad A. Evaluation of Masticatory Stimulation Effect on the Maxillary Transversal Growth in Ectodermal Dysplasia Children. Int J Clin Pediatr Dent 2017;10(1):55-61.

  10. Development of Facility Type Information Packages for Design of Air Force Facilities.

    DTIC Science & Technology

    1983-03-01

    solution. For example, the optimum size and loca- 19 tion of windows for the incorporation of a passive solar *l . heating system varies with location, time...conditioning load estimate M. Energy impact statement N. Majcom review comments 0. Solar energy systems 61 4 Information which could help in the development...and Passive solar systems. All facilities should have Scme aspects of passive solar incor- por3ted into the iesign. Active sclar systems should ze con

  11. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  12. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    NASA Technical Reports Server (NTRS)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  13. A passive sampler for airborne formaldehyde

    NASA Astrophysics Data System (ADS)

    Grosjean, Daniel; Williams, Edwin L.

    A simple, inexpensive passive sampler is described that is capable of reliable measurements of formaldehyde at the parts per billion (ppb) levels relevant to indoor and outdoor air quality. The passive sampler consists of a modified dual filter holder in which the upper stage serves as the diffusion barrier, the lower stage includes a 2,4-dinitrophenylhydrazine (DNPH)-coated filter which collects formaldehyde, and the space between the two stages serve as the diffusion gap. The measured sampling rate, 18.8 ± 1.8 ml min -1, was determined in experiments involving sampling of ppb levels of formaldehyde with the passive sampler and with DNPH-coated C 18 cartridges and agrees well with the value of 19.4 ± 2.0 ml min -1 calculated from theory. The measured sampling rate was independent of formaldehyde concentration (16-156 ppb) and sampling duration (1.5-72 h). The precision of the measurements for colocated passive samplers averaged 8.6% in purified and indoor air (office and museums) and 10.2% in photochemically polluted outdoor air. With a 1.2-μm pore size Teflon filter as the diffusion barrier, the detection limit is 32 ppb h, e.g. 4 ppb in an 8-h sample, 1.3 ppb in a 24-h sample, and so on. Perceived advantages and limitations of the sampler are discussed including flexibility, cost effectiveness and possible negative bias at high ambient levels of ozone.

  14. Solar Energy: Uses for Your Home. The CIRcular: Consumer Information Report 15.

    ERIC Educational Resources Information Center

    Bank of America NT & SA, San Francisco, CA.

    This report defines active and passive solar energy systems, describes home uses for solar energy, and offers guidelines for choosing and installing a system. Much of the information is specific to the state of California. Uses for solar energy which are presented include passive space heating, passive cooling, active space heating, household…

  15. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  16. Brief Report: Early VEPs to Pattern-Reversal in Adolescents and Adults with Autism

    ERIC Educational Resources Information Center

    Kovarski, K.; Thillay, A.; Houy-Durand, E.; Roux, S.; Bidet-Caulet, A.; Bonnet-Brilhault, F.; Batty, M.

    2016-01-01

    Autism spectrum disorder (ASD) is characterized by atypical visual perception both in the social and nonsocial domain. In order to measure a reliable visual response, visual evoked potentials were recorded during a passive pattern-reversal stimulation in adolescents and adults with and without ASD. While the present results show the same…

  17. 77 FR 62270 - Proposed Revision Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... for Passive Advanced Light Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard... Passive Advanced Light Water Reactors.'' The current SRP does not contain guidance on the proposed RTNSS for Passive Advance Light Water Reactors. DATES: Submit comments by November 13, 2012. Comments...

  18. 48 CFR 552.211-92 - Radio Frequency Identification (RFID) using passive tags.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Identification (RFID) using passive tags. 552.211-92 Section 552.211-92 Federal Acquisition Regulations System... Provisions and Clauses 552.211-92 Radio Frequency Identification (RFID) using passive tags. As prescribed in 511.204(b)(11), insert the following clause: Radio Frequency Identification (RFID) Using Passive Tags...

  19. 48 CFR 552.211-92 - Radio Frequency Identification (RFID) using passive tags.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Identification (RFID) using passive tags. 552.211-92 Section 552.211-92 Federal Acquisition Regulations System... Provisions and Clauses 552.211-92 Radio Frequency Identification (RFID) using passive tags. As prescribed in 511.204(b)(11), insert the following clause: Radio Frequency Identification (RFID) Using Passive Tags...

  20. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  1. Method for analyzing passive silicon carbide thermometry with a continuous dilatometer to determine irradiation temperature

    DOE PAGES

    Campbell, Anne A.; Porter, Wallace D.; Katoh, Yutai; ...

    2016-01-14

    Silicon carbide is used as a passive post-irradiation temperature monitor because the irradiation defects will anneal out above the irradiation temperature. The irradiation temperature is determined by measuring a property change after isochronal annealing, i.e., lattice spacing, dimensions, electrical resistivity, thermal diffusivity, or bulk density. However, such methods are time-consuming since the steps involved must be performed in a serial manner. This work presents the use of thermal expansion from continuous dilatometry to calculate the SiC irradiation temperature, which is an automated process requiring minimal setup time. Analysis software was written that performs the calculations to obtain the irradiation temperaturemore » and removes possible user-introduced error while standardizing the analysis. In addition, this method has been compared to an electrical resistivity and isochronal annealing investigation, and the results revealed agreement of the calculated temperatures. These results show that dilatometry is a reliable and less time-intensive process for determining irradiation temperature from passive SiC thermometry.« less

  2. Method for analyzing passive silicon carbide thermometry with a continuous dilatometer to determine irradiation temperature

    NASA Astrophysics Data System (ADS)

    Campbell, Anne A.; Porter, Wallace D.; Katoh, Yutai; Snead, Lance L.

    2016-03-01

    Silicon carbide is used as a passive post-irradiation temperature monitor because the irradiation defects will anneal out above the irradiation temperature. The irradiation temperature is determined by measuring a property change after isochronal annealing, i.e., lattice spacing, dimensions, electrical resistivity, thermal diffusivity, or bulk density. However, such methods are time-consuming since the steps involved must be performed in a serial manner. This work presents the use of thermal expansion from continuous dilatometry to calculate the SiC irradiation temperature, which is an automated process requiring minimal setup time. Analysis software was written that performs the calculations to obtain the irradiation temperature and removes possible user-introduced error while standardizing the analysis. This method has been compared to an electrical resistivity and isochronal annealing investigation, and the results revealed agreement of the calculated temperatures. These results show that dilatometry is a reliable and less time-intensive process for determining irradiation temperature from passive SiC thermometry.

  3. Simple online recognition of optical data strings based on conservative optical logic

    NASA Astrophysics Data System (ADS)

    Caulfield, H. John; Shamir, Joseph; Zavalin, Andrey I.; Silberman, Enrique; Qian, Lei; Vikram, Chandra S.

    2006-06-01

    Optical packet switching relies on the ability of a system to recognize header information on an optical signal. Unless the headers are very short with large Hamming distances, optical correlation fails and optical logic becomes attractive because it can handle long headers with Hamming distances as low as 1. Unfortunately, the only optical logic gates fast enough to keep up with current communication speeds involve semiconductor optical amplifiers and do not lend themselves to the incorporation of large numbers of elements for header recognition and would consume a lot of power as well. The ideal system would operate at any bandwidth with no power consumption. We describe how to design and build such a system by using passive optical logic. This too leads to practical problems that we discuss. We show theoretically various ways to use optical interferometric logic for reliable recognition of long data streams such as headers in optical communication. In addition, we demonstrate one particularly simple experimental approach using interferometric coinc gates.

  4. Development of Structural Health Management Technology for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    2003-01-01

    As part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, NASA has focused considerable resources on the development of technologies for Structural Health Management (SHM). The motivations for these efforts are to increase the safety and reliability of aerospace structural systems, while at the same time decreasing operating and maintenance costs. Research and development of SHM technologies has been supported under a variety of programs for both aircraft and spacecraft including the Space Launch Initiative, X-33, Next Generation Launch Technology, and Aviation Safety Program. The major focus of much of the research to date has been on the development and testing of sensor technologies. A wide range of sensor technologies are under consideration including fiber-optic sensors, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, most notably being extremely light weight, fiber-optic sensors are one of the leading candidates and have received considerable attention.

  5. Inherently Safe Fission Power System for Lunar Outposts

    NASA Astrophysics Data System (ADS)

    Schriener, Timothy M.; El-Genk, Mohamed S.

    2013-09-01

    This paper presents the Solid Core-Sectored Compact Reactor (SC-SCoRe) and power system for future lunar outposts. The power system nominally provides 38 kWe continuously for 21 years, employs static components and has no single point failures in reactor cooling or power generation. The reactor core has six sectors, each has a separate pair of primary and secondary loops with liquid NaK-56 working fluid, thermoelectric (TE) power conversion and heat-pipes radiator panels. The electromagnetic (EM) pumps in the primary and secondary loops, powered with separate TE power units, ensure operation reliability and passive decay heat removal from the reactor after shutdown. The reactor poses no radiological concerns during launch, and remains sufficiently subcritical, with the radial reflector dissembled, when submerged in wet sand and the core flooded with seawater, following a launch abort accident. After 300 years of storage below grade on the Moon, the total radioactivity in the post-operation reactor drops below 164 Ci, a low enough radioactivity for a recovery and safe handling of the reactor.

  6. NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2007-01-01

    NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.

  7. The forgotten cue: Daphnia bears a not yet described gravireceptive organ system

    NASA Astrophysics Data System (ADS)

    Laforsch, Christian; Fischer, Jessica; Wolfschoon Ribeiro, Bernard; Schoppmann, Kathrin; Trotter, Benjamin

    Gravity has been the only constant environmental factor in evolution of life. For plenty of pelagic organisms it is the only reliable cue for orientation in a three dimensional space especially in turbid or completely dark waters. However, there is a considerable lack of knowledge about gravisensing mechanisms in a huge variety of plankton organisms. Here we introduce a novel mechanoreceptive organ system in the model organism Daphnia functioning as a sinking receptor for the detection of the gravitational field. This organ is connected to two prominent appendages known as the postabdominal setae with so far unknown functioning. Our morphological and behavioural studies show, that the organ system is involved in gravisensing by a passive deflection mechanism not yet described in the animal kingdom. The description of this bifunctional mechanoreceptor will help to elucidate general gravity-related mechanisms valid for other organisms as well and may therefore increase our knowledge on the evolution of graviperception in aquatic ecosystems.

  8. Local Probing Spinel and Perovskite Complex Magnetic Systems

    NASA Astrophysics Data System (ADS)

    Oliveira, Goncalo Nuno de Pinho

    Noise is defined as unwanted sound, when perceived in excess can cause many harmful effects such as annoyance, interference with speech, and hearing loss, hence there is a need to control noise in practical situations. Noise can be controlled actively and/or passively, here we discuss the passive noise control techniques. Passive noise control involves using energy dissipating or reflecting materials such as absorbers or barriers respectively. Damping and isolating materials are also used in eliminating structure-borne noise. These materials exhibit properties such as reflection, absorption and transmission loss when incidence is by a sound source. Thus, there is a need to characterize the acoustical properties of these materials for practical use. The theoretical background of the random incident sound absorption with reverberation room and normal incident sound absorption using impedance tube are well documented. The Transfer Matrix method for measuring transmission loss and absorption coefficient using impedance tube is very attractive since it is rather inexpensive and fast. In this research, a low-cost Impedance Tube is constructed using transfer function method to measure both absorption and transmissibility of materials. Equipment and measurement instruments available in the laboratory were used in the construction of the tube, adhering to cost-effectiveness. Care has been taken for precise construction of tube to ensure better measurement results. Further various samples varying from hard non-porous to soft porous materials were tested for absorption and sound transmission loss. Absorption values were also compared with reverberation room method with the available samples further ensuring the reliability of the newly constructed tube for future measurements.

  9. Passive perception system for day/night autonomous off-road navigation

    NASA Astrophysics Data System (ADS)

    Rankin, Arturo L.; Bergh, Charles F.; Goldberg, Steven B.; Bellutta, Paolo; Huertas, Andres; Matthies, Larry H.

    2005-05-01

    Passive perception of terrain features is a vital requirement for military related unmanned autonomous vehicle operations, especially under electromagnetic signature management conditions. As a member of Team Raptor, the Jet Propulsion Laboratory developed a self-contained passive perception system under the DARPA funded PerceptOR program. An environmentally protected forward-looking sensor head was designed and fabricated in-house to straddle an off-the-shelf pan-tilt unit. The sensor head contained three color cameras for multi-baseline daytime stereo ranging, a pair of cooled mid-wave infrared cameras for nighttime stereo ranging, and supporting electronics to synchronize captured imagery. Narrow-baseline stereo provided improved range data density in cluttered terrain, while wide-baseline stereo provided more accurate ranging for operation at higher speeds in relatively open areas. The passive perception system processed stereo images and outputted over a local area network terrain maps containing elevation, terrain type, and detected hazards. A novel software architecture was designed and implemented to distribute the data processing on a 533MHz quad 7410 PowerPC single board computer under the VxWorks real-time operating system. This architecture, which is general enough to operate on N processors, has been subsequently tested on Pentium-based processors under Windows and Linux, and a Sparc based-processor under Unix. The passive perception system was operated during FY04 PerceptOR program evaluations at Fort A. P. Hill, Virginia, and Yuma Proving Ground, Arizona. This paper discusses the Team Raptor passive perception system hardware and software design, implementation, and performance, and describes a road map to faster and improved passive perception.

  10. Sensor Failure Detection of FASSIP System using Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.

  11. Surface passivation for tight-binding calculations of covalent solids.

    PubMed

    Bernstein, N

    2007-07-04

    Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp(3) hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.

  12. Surface passivation for tight-binding calculations of covalent solids

    NASA Astrophysics Data System (ADS)

    Bernstein, N.

    2007-07-01

    Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp3 hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.

  13. Rapid quantification of pharmaceuticals and pesticides in passive samplers using ultra high performance liquid chromatography coupled to high resolution mass spectrometry.

    PubMed

    Wille, Klaas; Claessens, Michiel; Rappé, Karen; Monteyne, Els; Janssen, Colin R; De Brabander, Hubert F; Vanhaecke, Lynn

    2011-12-23

    The presence of both pharmaceuticals and pesticides in the aquatic environment has become a well-known environmental issue during the last decade. An increasing demand however still exists for sensitive and reliable monitoring tools for these rather polar contaminants in the marine environment. In recent years, the great potential of passive samplers or equilibrium based sampling techniques for evaluation of the fate of these contaminants has been shown in literature. Therefore, we developed a new analytical method for the quantification of a high number of pharmaceuticals and pesticides in passive sampling devices. The analytical procedure consisted of extraction using 1:1 methanol/acetonitrile followed by detection with ultra-high performance liquid chromatography coupled to high resolution and high mass accuracy Orbitrap mass spectrometry. Validation of the analytical method resulted in limits of quantification and recoveries ranging between 0.2 and 20 ng per sampler sheet and between 87.9 and 105.2%, respectively. Determination of the sampler-water partition coefficients of all compounds demonstrated that several pharmaceuticals and most pesticides exert a high affinity for the polydimethylsiloxane passive samplers. Finally, the developed analytical methods were used to measure the time-weighted average (TWA) concentrations of the targeted pollutants in passive samplers, deployed at eight stations in the Belgian coastal zone. Propranolol, carbamazepine and seven pesticides were found to be very abundant in the passive samplers. These obtained long-term and large-scale TWA concentrations will contribute in assessing the environmental and human health risk of these emerging pollutants. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. On-road vehicle detection: a review.

    PubMed

    Sun, Zehang; Bebis, George; Miller, Ronald

    2006-05-01

    Developing on-board automotive driver assistance systems aiming to alert drivers about driving environments, and possible collision with other vehicles has attracted a lot of attention lately. In these systems, robust and reliable vehicle detection is a critical step. This paper presents a review of recent vision-based on-road vehicle detection systems. Our focus is on systems where the camera is mounted on the vehicle rather than being fixed such as in traffic/driveway monitoring systems. First, we discuss the problem of on-road vehicle detection using optical sensors followed by a brief review of intelligent vehicle research worldwide. Then, we discuss active and passive sensors to set the stage for vision-based vehicle detection. Methods aiming to quickly hypothesize the location of vehicles in an image as well as to verify the hypothesized locations are reviewed next. Integrating detection with tracking is also reviewed to illustrate the benefits of exploiting temporal continuity for vehicle detection. Finally, we present a critical overview of the methods discussed, we assess their potential for future deployment, and we present directions for future research.

  15. The passive control of air pollution exposure in Dublin, Ireland: a combined measurement and modelling case study.

    PubMed

    Gallagher, J; Gill, L W; McNabola, A

    2013-08-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Study on development of active-passive rehabilitation system for upper limbs: Hybrid-PLEMO

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Jin, Y.; Fukushima, K.; Akai, H.; Furusho, J.

    2009-02-01

    In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. Active-type (motor-driven) haptic devices can realize a lot of varieties of haptics. But they basically require high-cost safety system. On the other hand, passive-type (brake-based) haptic devices have inherent safety. However, the passive robot system has strong limitation on varieties of haptics. There are not sufficient evidences to clarify how the passive/active haptics effect to the rehabilitation of motor skills. In this paper, we developed an active-passive-switchable rehabilitation system with ER clutch/brake device named "Hybrid-PLEMO" in order to address these problems. In this paper, basic structures and haptic control methods of the Hybrid-PLEMO are described.

  17. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  18. Passive magnetic bearing configurations

    DOEpatents

    Post, Richard F [Walnut Creek, CA

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  19. Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems

    NASA Astrophysics Data System (ADS)

    Chan, Kwong Wah; Liao, Wei-Hsin

    2006-03-01

    Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.

  20. Improving detection sensitivity for partial discharge monitoring of high voltage equipment

    NASA Astrophysics Data System (ADS)

    Hao, L.; Lewin, P. L.; Swingler, S. G.

    2008-05-01

    Partial discharge (PD) measurements are an important technique for assessing the health of power apparatus. Previous published research by the authors has shown that an electro-optic system can be used for PD measurement of oil-filled power transformers. A PD signal generated within an oil-filled power transformer may reach a winding and then travel along the winding to the bushing core bar. The bushing, acting like a capacitor, can transfer the high frequency components of the partial discharge signal to its earthed tap point. Therefore, an effective PD current measurement can be implemented at the bushing tap by using a radio frequency current transducer around the bushing-tap earth connection. In addition, the use of an optical transmission technique not only improves the electrical noise immunity and provides the possibility of remote measurement but also realizes electrical isolation and enhances safety for operators. However, the bushing core bar can act as an aerial and in addition noise induced by the electro-optic modulation system may influence overall measurement sensitivity. This paper reports on a machine learning technique, namely the use of a support vector machine (SVM), to improve the detection sensitivity of the system. Comparison between the signal extraction performances of a passive hardware filter and the SVM technique has been assessed. The results obtained from the laboratory-based experiment have been analysed and indicate that the SVM approach provides better performance than the passive hardware filter and it can reliably detect discharge signals with apparent charge greater than 30 pC.

  1. Passive solar addition to therapeutic pre-school. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-10-01

    This project consisted of designing and constructing a passive solar system on a new classroom addition to the Peanut Butter and Jelly Therapeutic Pre-School in Albuquerque, NM. The purpose of this project was to demonstrate the applicability of solar space heating systems to large institutional buildings, and to demonstrate the energy and cost savings available through the use of such systems. Preliminary estimates indicated that the passive solar systems will provide about 90 percent of the heating and cooling needs for the new classroom addition to the school.

  2. Simulation of an active solar energy system integrated in a passive building in order to obtain system efficiency

    NASA Astrophysics Data System (ADS)

    Ceacaru, Mihai C.

    2012-11-01

    In this work we present a simulation of an active solar energy system. This system belongs to the first passive office building (2086 square meters) in Romania and it is used for water heating consumption. This office building was opened in February 2009 and was built based on passive house design solutions. For this simulation, we use Solar Water Heating module, which belongs to the software RETSCREEN and this simulation is done for several cities in Romania. Results obtained will be compared graphically.

  3. Molecular tailoring of interfaces for thin film on substrate systems

    NASA Astrophysics Data System (ADS)

    Grady, Martha Elizabeth

    Thin film on substrate systems appear most prevalently within the microelectronics industry, which demands that devices operate in smaller and smaller packages with greater reliability. The reliability of these multilayer film systems is strongly influenced by the adhesion of each of the bimaterial interfaces. During use, microelectronic components undergo thermo-mechanical cycling, which induces interfacial delaminations leading to failure of the overall device. The ability to tailor interfacial properties at the molecular level provides a mechanism to improve thin film adhesion, reliability and performance. This dissertation presents the investigation of molecular level control of interface properties in three thin film-substrate systems: photodefinable polyimide films on passivated silicon substrates, self-assembled monolayers at the interface of Au films and dielectric substrates, and mechanochemically active materials on rigid substrates. For all three materials systems, the effect of interfacial modifications on adhesion is assessed using a laser-spallation technique. Laser-induced stress waves are chosen because they dynamically load the thin film interface in a precise, noncontacting manner at high strain rates and are suitable for both weak and strong interfaces. Photodefinable polyimide films are used as dielectrics in flip chip integrated circuit packages to reduce the stress between silicon passivation layers and mold compound. The influence of processing parameters on adhesion is examined for photodefinable polyimide films on silicon (Si) substrates with three different passivation layers: silicon nitride (SiNx), silicon oxynitride (SiOxNy), and the native silicon oxide (SiO2). Interfacial strength increases when films are processed with an exposure step as well as a longer cure cycle. Additionally, the interfacial fracture energy is assessed using a dynamic delamination protocol. The high toughness of this interface (ca. 100 J/m2) makes it difficult to use more conventional interfacial fracture testing techniques. Self-assembled monolayers (SAMs) provide an enabling platform for molecular tailoring of the chemical and physical properties of an interface in an on-demand fashion. The SAM end-group functionality is systematically varied and the corresponding effect on interfacial adhesion between a transfer printed gold (Au) film and a fused silica substrate is measured. SAMs with four different end groups are investigated: methyl, amine, bromine and thiol. In addition to these four end groups, mixed monolayers of increasing molar ratio of thiol to methyl SAMs in solution are investigated. There is a strong dependence of interfacial chemistry on the adhesion strength of Au films. In addition to the chemical functionality of the SAM, surface roughness of the underlying substrate also has a significant impact on the interfacial strength. Thin films of mechanochemically active polymer are subjected to laser-generated, high amplitude acoustic pulses. Stress wave propagation through the film produces large amplitude stresses (>100 MPa) in short time frames (10-20 ns), leading to very high strain-rates (ca. 107-108 s -1). The polymer system, spiropyran (SP)- linked polystyrene (PS), undergoes a force-induced chemical reaction causing fluorescence and color change. Activation of SP is evident via a fluorescence signal in thin films subject to high strain-rates. In contrast, quasi-static loading of bulk SP-linked PS samples failed to result in SP activation. Mechanoresponsive coatings have potential to indicate deformation under shockwave loading conditions. In addition to SP-linked polymer films, the activation of spiropyran interfacial molecules with different side groups is characterized as they adsorb onto a SAM platform with preferential amine terminating chemistry. The reactivity of SP monolayers due to UV irradiation is evaluated by water contact angle goniometry and fluorescence spectroscopy. Side groups on the interfacial spiropyran molecule affect the reactivity and the proximity of neighboring spiropyrans can prevent efficient mobility.

  4. Neural Correlates of Human Action Observation in Hearing and Deaf Subjects

    PubMed Central

    Corina, David; Chiu, Yi-Shiuan; Knapp, Heather; Greenwald, Ralf; Jose-Robertson, Lucia San; Braun, Allen

    2007-01-01

    Accumulating evidence has suggested the existence of a human action recognition system involving inferior frontal, parietal, and superior temporal regions that may participate in both the perception and execution of actions. However, little is known about the specificity of this system in response to different forms of human action. Here we present data from PET neuroimaging studies from passive viewing of three distinct action types, intransitive self-oriented actions (e.g., stretching, rubbing one’s eyes, etc.), transitive object-oriented actions (e.g., opening a door, lifting a cup to the lips to drink), and the abstract, symbolic actions–signs used in American Sign Language. Our results show that these different classes of human actions engage a frontal/parietal/STS human action recognition system in a highly similar fashion. However, the results indicate that this neural consistency across motion classes is true primarily for hearing subjects. Data from deaf signers shows a non-uniform response to different classes of human actions. As expected, deaf signers engaged left-hemisphere perisylvian language areas during the perception of signed language signs. Surprisingly, these subjects did not engage the expected frontal/parietal/STS circuitry during passive viewing of non-linguistic actions, but rather reliably activated middle-occipital temporal-ventral regions which are known to participate in the detection of human bodies, faces, and movements. Comparisons with data from hearing subjects establish statistically significant contributions of middle-occipital temporal-ventral during the processing of non-linguistic actions in deaf signers. These results suggest that during human motion processing, deaf individuals may engage specialized neural systems that allow for rapid, online differentiation of meaningful linguistic actions from non-linguistic human movements. PMID:17459349

  5. ICE-Based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator

    NASA Astrophysics Data System (ADS)

    Bandura, K.; Cliche, J. F.; Dobbs, M. A.; Gilbert, A. J.; Ittah, D.; Mena Parra, J.; Smecher, G.

    2016-03-01

    New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2,048 digitizer inputs across 400MHz of bandwidth. Measured in N2× bandwidth, it is the largest radio correlator that is currently commissioning. Its digital back-end must exchange and reorganize the 6.6terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256 graphics processing unit (GPU) node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. ‘corner-turn’). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct, passive copper, full-mesh, high speed serial connections between sixteen circuit boards in a crate, to exchange data between crates, and to offload the data to a cluster of 256 GPU nodes using standard 10Gbit/s Ethernet links. The GPU nodes complete the corner-turn by combining data from all crates and then computing visibilities. Eye diagrams and frame error counters confirm error-free operation of the corner-turn network in both the currently operating CHIME Pathfinder telescope (a prototype for the full CHIME telescope) and a representative fraction of the full CHIME hardware providing an end-to-end system validation. An analysis of an equivalent corner-turn system built with Ethernet switches instead of custom passive data links is provided.

  6. Method and system to perform energy-extraction based active noise control

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul (Inventor); Joshi, Suresh M. (Inventor)

    2009-01-01

    A method to provide active noise control to reduce noise and vibration in reverberant acoustic enclosures such as aircraft, vehicles, appliances, instruments, industrial equipment and the like is presented. A continuous-time multi-input multi-output (MIMO) state space mathematical model of the plant is obtained via analytical modeling and system identification. Compensation is designed to render the mathematical model passive in the sense of mathematical system theory. The compensated system is checked to ensure robustness of the passive property of the plant. The check ensures that the passivity is preserved if the mathematical model parameters are perturbed from nominal values. A passivity-based controller is designed and verified using numerical simulations and then tested. The controller is designed so that the resulting closed-loop response shows the desired noise reduction.

  7. Storage of electric and magnetic energy in passive nonreciprocal networks

    NASA Technical Reports Server (NTRS)

    Smith, W. E.

    1969-01-01

    Examination of the relation of stored electric and magnetic energy within a system to the terminal behavior of nonreciprocal passive networks shows both similarities and important differences between wholly reciprocal systems and systems containing nonreciprocal elements.

  8. Data quality control and tools in passive seismic experiments exemplified on the Czech broadband seismic pool MOBNET in the AlpArray collaborative project

    NASA Astrophysics Data System (ADS)

    Vecsey, Luděk; Plomerová, Jaroslava; Jedlička, Petr; Munzarová, Helena; Babuška, Vladislav; AlpArray Working Group

    2017-12-01

    This paper focuses on major issues related to the data reliability and network performance of 20 broadband (BB) stations of the Czech (CZ) MOBNET (MOBile NETwork) seismic pool within the AlpArray seismic experiments. Currently used high-resolution seismological applications require high-quality data recorded for a sufficiently long time interval at seismological observatories and during the entire time of operation of the temporary stations. In this paper we present new hardware and software tools we have been developing during the last two decades while analysing data from several international passive experiments. The new tools help to assure the high-quality standard of broadband seismic data and eliminate potential errors before supplying data to seismological centres. Special attention is paid to crucial issues like the detection of sensor misorientation, timing problems, interchange of record components and/or their polarity reversal, sensor mass centring, or anomalous channel amplitudes due to, for example, imperfect gain. Thorough data quality control should represent an integral constituent of seismic data recording, preprocessing, and archiving, especially for data from temporary stations in passive seismic experiments. Large international seismic experiments require enormous efforts from scientists from different countries and institutions to gather hundreds of stations to be deployed in the field during a limited time period. In this paper, we demonstrate the beneficial effects of the procedures we have developed for acquiring a reliable large set of high-quality data from each group participating in field experiments. The presented tools can be applied manually or automatically on data from any seismic network.

  9. Feasibility study of a passive aeration reactor equipped with vertical pipes for compost stabilization of cow manure.

    PubMed

    Sylla, Youssouf Boundou; Kuroda, Masao; Yamada, Masayuki; Matsumoto, Naoko

    2006-10-01

    Pilot-scale composting was carried out with cow manure to evaluate the performances of two passive aeration systems: a conventional passive aeration system equipped with horizontal pipes and an unusual passive aeration method based on air delivery by means of vertical pipes. The effects of both types of passive aeration apparatus were investigated in order to determine the degree of composting rate by continuously monitoring temperature, moisture content, organic matter, electrical conductivity, pH and C/N ratio in the piles. Temperatures in the range of thermophily (55-65 degrees C) were reached in all runs within 1-2 days then lasting for about 1 week, a span long enough for pathogen abatement. Results suggest that passive aeration carried out by vertical pipes is more effective for air delivery into compost piles than conventional passive aeration of air adduction with horizontal pipes. The variation in the number of vertical pipes was revealed to be an important parameter for the control of composting rate and temperature. Composting rates estimated from the heat balance equation were substantially in agreement with those computed through the conversion ratio of total organic matter decrement. The conversion ratios and composting rates obtained in this study using passive aeration with vertical pipes were well aligned with those found using forced air delivery systems.

  10. Passive Solar Heating Residences.

    DTIC Science & Technology

    1979-07-01

    concerned, as long as the basic system falls within one of the passive concepts, then it is a passive system. If a fan can increase the system~s...wood walls and roof is R-22, in the block walls (urea-formaldahyde foam sprayed in wall cavity) is R-30, and a 4" styro- foam board at the slab edge (R...is based cn 1,000 BTU/sq. ft./day, which is a clear day value. The south windows have reflectors which will increase the energy gained (30% by Steve

  11. Performance tests of the 5 TW, 1 kHz, passively CEP-stabilized ELI-ALPS SYLOS few-cycle laser system (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stanislauskas, Tomas; Budriūnas, Rimantas; Veitas, Gediminas; Gadonas, Darius; Adamonis, Jonas; Aleknavičius, Aidas; Masian, Gžegož; Kuprionis, Zenonas; Hoff, Dominik; Paulus, Gerhard G.; Börzsönyi, Ádám.; Toth, Szabolcs; Kovacs, Mate; Csontos, János; López-Martens, Rodrigo; Osvay, Károly

    2017-05-01

    ELI-ALPS in Hungary, one of the three pillars of the Extreme Light Infrastructure, aims at providing diverse light sources, including energetic attosecond pulses at the highest possible repetition rates. One of the main laser systems for driving plasma and gas-based HHG stages, is a state-of-the-art 1 kHz few-cycle laser called SYLOS. Targeted pulse parameters are an energy of 100 mJ and a duration shorter than two optical cycles (<6 fs), with outstanding energy, phase and pointing stability as well as high spatiotemporal quality. The first phase of the laser system has already set a new standard in kHz laser system engineering and technology. The performance and reliability of the SYLOS laser have been consistently tested over the course of a six-month trial period. During this time the system was running at least 8 hours a day at full power for more than 5 months. The current output parameters are 5 TW peak power, 45 mJ pulse energy with 9 fs duration and 300 mrad CEP stability, while the spectrum spans over 300 nm around 840 nm central wavelength. The layout follows the general scheme NOPCPA architecture with a passively CEP-stabilized front-end. The pulses are negatively chirped for the amplification process and compressed by a combination of large aperture bulk glass blocks and positively chirped mirrors under vacuum conditions at the output. During the trial period, the laser system demonstrated outstanding reliability. Daily startup and shutdown procedures take only a few minutes, and the command-control system enables pulse parameters to be modified instantly. Controlling the delays of individual NOPCPA stages makes it possible to tailor the output spectrum of the pulses and tune the central wavelength between 770 nm and 940 nm. We performed several experimental tests to find out the pulse characteristics. Pulse duration was verified with Wizzler, chirp-scan, autocorrelation methods and a stereo-ATI independently. All of them confirmed the sub-9 fs pulse duration. We recorded the long-term waveform and pointing stabilities of the beam in order to find out the effect of the temperature load on optical elements. Excluding a short initial warm up time, stable signals were observed in general. The in-loop and out-of-loop CEP stability was cross-checked between f-to-2f and stereo-ATI devices. Moreover, the inherent CEP stability of the system without feedback loop was also found to be surprisingly robust thanks to the passive CEP stabilization of the front-end. The polarization contrast was better than 1000:1. The temporal contrast was also measured independently with Sequoia and Tundra cross-correlators, and on the ns scale with a fast photodiode and GHz oscilloscope as well. Results showed that the pulse pedestal generally consists of parametric superfluorescence below the 1E-7 level and about 100 ps long, well in accordance with the pump duration. Delaying the pump pulse allows us to shift the seed pulse to the front and reach a pre-pulse pedestal below 1E-11 at 30 ps before the pulse peak. Detailed findings on all the examined pulse characteristics of the SYLOS laser will be reported in this presentation.

  12. Highly Reliable PON Optical Splitters for Optical Access Networks in Outside Environments

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi; Araki, Noriyuki; Fujimoto, Hisashi

    Broadband optical access services are spreading throughout the world, and the number of fiber to the home (FTTH) subscribers is increasing rapidly. Telecom operators are constructing passive optical networks (PONs) to provide optical access services. Externally installed optical splitters for PONs are very important passive devices in optical access networks, and they must provide satisfactory performance as outdoor plant over long periods. Therefore, we calculate the failure rate of optical access networks and assign a failure rate to the optical splitters in optical access networks. The maximum cumulative failure rate of 1 × 8 optical splitters was calculated as 0.025 for an optical access fiber length of 2.1km and a 20-year operating lifetime. We examined planar lightwave circuit (PLC) type optical splitters for use as outside plant in terms of their optical characteristics and environmental reliability. We confirmed that PLC type optical splitters have sufficient optical performance for a PON splitter and sufficient reliability as outside plant in accordance with ITU-T standard values. We estimated the lifetimes of three kinds of PLC type optical splitters by using accelerated aging tests. The estimated failure rate of these splitters installed in optical access networks was below the target value for the cumulative failure rate, and we confirmed that they have sufficient reliability to maintain the quality of the network service. We developed 1 × 8 optical splitter modules with plug and socket type optical connectors and optical fiber cords for optical aerial closures designed for use as outside plant. These technologies make it easy to install optical splitters in an aerial optical closure. The optical splitter modules have sufficient optical performance levels for PONs because the insertion loss at the commercially used wavelengths of 1.31 and 1.55µm is less than the criterion established by ITU-T Recommendation G.671 for optical splitters. We performed a temperature cycling test, and a low temperature storage and damp heat test to confirm the long-term reliability of these modules. They exhibited sufficient reliability as regards heat and moisture because the maximum loss change was less than 0.3dB.

  13. Dynamic coupling of underactuated manipulators

    NASA Astrophysics Data System (ADS)

    Bergerman, Marcel; Lee, Christopher; Xu, Yangsheng

    1994-08-01

    In recent years, researchers have been turning their attention to so called underactuated systems, where the term underactuated refers to the fact that the system has more joints than control actuators. Some examples of underactuated systems are robot manipulators with failed actuators; free-floating space robots, where the base can be considered as a virtual passive linkage in inertia space; legged robots with passive joints; hyper-redundant (snake-like) robots with passive joints, etc. From the examples above, it is possible to justify the importance of the study of underactuated systems. For example, if some actuators of a conventional manipulator fail, the loss of one or more degrees of freedom may compromise an entire operation. In free-floating space systems, the base (satellite) can be considered as a 6-DOF device without positioning actuators. Finally, manipulators with passive joints and hyper-redundant robots with few actuators are important from the viewpoint of energy saving, lightweight design and compactness.

  14. Principles of passive and active cooling of mirror-based hybrid systems employing liquid metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anglart, Henryk

    This paper presents principles of passive and active cooling that are suitable to mirrorbased hybrid, nuclear fission/fusion systems. It is shown that liquid metal lead-bismuth cooling of the mirror machine with 25 m height and 1.5 GW thermal power is feasible both in the active mode during the normal operation and in the passive mode after the reactor shutdown. In the active mode the achievable required pumping power can well be below 50 MW, whereas the passive mode provides enough coolant flow to keep the clad temperature below the damage limits.

  15. Principles of passive and active cooling of mirror-based hybrid systems employing liquid metals

    NASA Astrophysics Data System (ADS)

    Anglart, Henryk

    2012-06-01

    This paper presents principles of passive and active cooling that are suitable to mirrorbased hybrid, nuclear fission/fusion systems. It is shown that liquid metal lead-bismuth cooling of the mirror machine with 25 m height and 1.5 GW thermal power is feasible both in the active mode during the normal operation and in the passive mode after the reactor shutdown. In the active mode the achievable required pumping power can well be below 50 MW, whereas the passive mode provides enough coolant flow to keep the clad temperature below the damage limits.

  16. NEPP Evaluation of Automotive Grade Tantalum Chip Capacitors

    NASA Technical Reports Server (NTRS)

    Sampson, Mike; Brusse, Jay

    2018-01-01

    Automotive grade tantalum (Ta) chip capacitors are available at lower cost with smaller physical size and higher volumetric efficiency compared to military/space grade capacitors. Designers of high reliability aerospace and military systems would like to take advantage of these attributes while maintaining the high standards for long-term reliable operation they are accustomed to when selecting military-qualified established reliability tantalum chip capacitors (e.g., MIL-PRF-55365). The objective for this evaluation was to assess the long-term performance of off-the-shelf automotive grade Ta chip capacitors (i.e., manufacturer self-qualified per AEC Q-200). Two (2) lots of case size D manganese dioxide (MnO2) cathode Ta chip capacitors from 1 manufacturer were evaluated. The evaluation consisted of construction analysis, basic electrical parameter characterization, extended long-term (2000 hours) life testing and some accelerated stress testing. Tests and acceptance criteria were based upon manufacturer datasheets and the Automotive Electronics Council's AEC Q-200 qualification specification for passive electronic components. As-received a few capacitors were marginally above the specified tolerance for capacitance and ESR. X-ray inspection found that the anodes for some devices may not be properly aligned within the molded encapsulation leaving less than 1 mil thickness of the encapsulation. This evaluation found that the long-term life performance of automotive grade Ta chip capacitors is generally within specification limits suggesting these capacitors may be suitable for some space applications.

  17. Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control.

    PubMed

    Bing, Chenchen; Hong, Yu; Hernandez, Christopher; Rich, Megan; Cheng, Bingbing; Munaweera, Imalka; Szczepanski, Debra; Xi, Yin; Bolding, Mark; Exner, Agata; Chopra, Rajiv

    2018-05-22

    Focused ultrasound combined with bubble-based agents serves as a non-invasive way to open the blood-brain barrier (BBB). Passive acoustic detection was well studied recently to monitor the acoustic emissions induced by the bubbles under ultrasound energy, but the ability to perform reliable BBB opening with a real-time feedback control algorithm has not been fully evaluated. This study focuses on characterizing the acoustic emissions of different types of bubbles: Optison, Definity, and a custom-made nanobubble. Their performance on reliable BBB opening under real-time feedback control based on acoustic detection was evaluated both in-vitro and in-vivo. The experiments were conducted using a 0.5 MHz focused ultrasound transducer with in-vivo focal pressure ranges from 0.1-0.7 MPa. Successful feedback control was achieved with all three agents when combining with infusion injection. Localized opening was confirmed with Evans blue dye leakage. Microscopic images were acquired to review the opening effects. Under similar total gas volume, nanobubble showed a more reliable opening effect compared to Optison and Definity (p < 0.05). The conclusions obtained from this study confirm the possibilities of performing stable opening using a feedback control algorithm combined with infusion injection. It also opens another potential research area of BBB opening using sub-micron bubbles.

  18. The status of ABWR-II development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiroyuki, Okada; Hideya Kitamura; Kumiaki, Moriya

    This paper reports on the current development status of the ABWR-II project, a next generation reactor design based on the ABWR. In the early 90's, a program to develop the next generation reactor for the 21. century was launched, at a time when the first ABWR was still under construction. At the initial stage of this project, development of a 'user friendly' plant design was the primary objective. Thus, the main focus was placed on selecting a design with features promoting ease of operation and maintenance. Meanwhile, the circumstances surrounding the Japanese nuclear power industry changed. The delay of FBRmore » development and the deregulation of the power generation market have significantly boosted the role of light water reactors, and accelerated the need to improve LWR economics. For these reasons, economic competitiveness became an overriding objective in the development of the ABWR-II, with no less importance placed on achieving the highest standards of safety. Several new features were adopted to enhance economic performance: 1700 MW electric output, large fuel bundles, simplified MSIV, large capacity SRV. An output of 1700 MWe was selected for compatibility with the Japanese power grid, and with consideration of current reactor pressure vessel manufacturing capability. Large fuel bundles will contribute to a shortened refueling outage period and a reduction of CRDs. For enhanced safety, the reference design implements a modified ECCS with four subdivision RHR, a diversified power source incorporating gas turbine generators (GTG), an advanced RCIC (ARCIC) and passive heat removal systems consisting of a passive containment cooling system (PCCS) and a passive reactor cooling system (PRCS). The modified ECCS configuration also enables on-line maintenance. While current reactors rely on complex accident management (AM) procedures, implemented by operators in the event of a serious accident, the ABWR-II incorporated severe accident countermeasures at the design stage, to eliminate the need of operator induced AM procedures. The ABWR-II represents one of the most promising and reliable options for the future replacement of older units, without incurring excessive R and D costs. (authors)« less

  19. Toward an Integrated Solution to Mitigate the Impact of Volcanic Ash to Aviation

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Dezitter, Fabien; Fairlie, T. Duncan; Krotkov, Nickolay; Lekki, John; Lindsay, Francis; Pavolonis, Mike; Pieri, David; Prata, Fred; Vernier, Jean-Paul

    2015-01-01

    The science community is making a concerted effort to improve the reliability of dispersion models for the forecasting of volcanic ash plumes. Toward this end, it has been observed that the assimilation of diverse, accurate and frequent surface, airborne and satellite observations of the source and distal ash plumes may hold the key. Various international research organizations and operational agencies make these observations using a variety of active and passive remote sensing systems and use them to initialize atmospheric trajectory and dispersion models. These observation systems range from surface LIDAR and ceilometers, to airborne radiometers and nephelometers, to satellite radiometers, multi-spectral imagers, LIDAR and UV-photometers. None of these systems alone is a panacea, however, their synergistic application holds great promise toward solving this complex problem. Additionally, the aeronautical and science communities are working to better understand the quantitative thresholds and tolerances of aviation systems to volcanic ash to better inform scientists of the accuracy requirements for dispersion model forecasts. A number of the most recent and promising efforts in all of these area are discussed in this presentation.

  20. Passive magnetic bearing element with minimal power losses

    DOEpatents

    Post, R.F.

    1998-12-08

    Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in US Patent No. 5,495,221 entitled ``Dynamically Stable Magnetic Suspension/Bearing System.`` The improvements relate to increasing the magnitude of the force derivative, while at the same time reducing the power dissipated during the normal operation of the bearing system, to provide a passive bearing system that has virtually no losses under equilibrium conditions, that is, when the supported system is not subject to any accelerations except those of gravity. 8 figs.

  1. Passive magnetic bearing element with minimal power losses

    DOEpatents

    Post, Richard F.

    1998-01-01

    Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in U.S. Patent No. 5,495,221 entitled "Dynamically Stable Magnetic Suspension/Bearing System." The improvements relate to increasing the magnitude of the force derivative, while at the same time reducing the power dissipated during the normal operation of the bearing system, to provide a passive bearing system that has virtually no losses under equilibrium conditions, that is, when the supported system is not subject to any accelerations except those of gravity.

  2. A comparison of passive and active estimates of sleep in a cohort with schizophrenia.

    PubMed

    Staples, Patrick; Torous, John; Barnett, Ian; Carlson, Kenzie; Sandoval, Luis; Keshavan, Matcheri; Onnela, Jukka-Pekka

    2017-10-16

    Sleep abnormalities are considered an important feature of schizophrenia, yet convenient and reliable sleep monitoring remains a challenge. Smartphones offer a novel solution to capture both self-reported and objective measures of sleep in schizophrenia. In this three-month observational study, 17 subjects with a diagnosis of schizophrenia currently in treatment downloaded Beiwe, a platform for digital phenotyping, on their personal Apple or Android smartphones. Subjects were given tri-weekly ecological momentary assessments (EMAs) on their own smartphones, and passive data including accelerometer, GPS, screen use, and anonymized call and text message logs was continuously collected. We compare the in-clinic assessment of sleep quality, assessed with the Pittsburgh Sleep Questionnaire Inventory (PSQI), to EMAs, as well as sleep estimates based on passively collected accelerometer data. EMAs and passive data classified 85% (11/13) of subjects as exhibiting high or low sleep quality compared to the in-clinic assessments among subjects who completed at least one in-person PSQI. Phone-based accelerometer data used to infer sleep duration was moderately correlated with subject self-assessment of sleep duration (r = 0.69, 95% CI 0.23-0.90). Active and passive phone data predicts concurrent PSQI scores for all subjects with mean average error of 0.75 and future PSQI scores with a mean average error of 1.9, with scores ranging from 0-14. These results suggest sleep monitoring via personal smartphones is feasible for subjects with schizophrenia in a scalable and affordable manner. SMARTPHONES CAN TRACK SCHIZOPHRENIA-RELATED SLEEP ABNORMALITIES: Smartphones may one-day offer accessible, clinically-useful insights into schizophrenia patients' sleep quality. Despite the clinical relevance of sleep to disease severity, monitoring technologies still evade convenience and reliability. In search of a preferential method, a group of Harvard University researchers led by Patrick Staples investigated the validity of data collected via patients' own mobile phones. The team, with a cohort of 17 schizophrenia patients, compared the quality of data produced by smartphone sensors and smartphone-delivered questionnaires to that of an in-clinic evaluation. The results significantly showed that smartphone monitoring could generate information that approached the accuracy of in-clinic assessments. The team noted some areas for improvement; however, this study provides convincing justifications for further research into this non-invasive, low-cost, scalable method to monitor the sleep quality of schizophrenic patients.

  3. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection.

    PubMed

    Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang

    2015-12-21

    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate.

  4. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection †

    PubMed Central

    Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang

    2015-01-01

    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate. PMID:26703612

  5. NPS and Online WOM: Investigating the Relationship Between Customers' Promoter Scores and eWOM Behavior.

    PubMed

    Raassens, Néomie; Haans, Hans

    2017-08-01

    The Net Promoter Score (NPS) is, according to Reichheld, the single most reliable indicator of company growth, and many companies use this recommendation-based technique for measuring customer loyalty. Despite its widespread adoption by many companies across multiple industries, the debate about NPS goes on. A major concern is that managers treat NPS as being equivalent across customers, which is often very misleading. By using a unique data set that combines customers' promoter scores and online word-of-mouth (eWOM) behavior, this research studies how individual customers' promoter scores are related to eWOM, including its relationship with the three categories of customers that are identified by the NPS paradigm (i.e., promoters, passives, and detractors). Based on a sample of 189 customers, their promoter scores and corresponding eWOM, the results show that there is a positive relationship between customers' promoter scores and the valence of online messages. Further, while detractors and promoters are homogeneous with respect to the valence of the eWOM messages they spread, passives show message valence heterogeneity. Thus, although passives, the largest group of customers, have no weight in calculating the NPS, our results reveal that companies should flag passives for further attention and action.

  6. Performance of an off-grid solar home in northwestern Vermont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawlings, L.K.

    1997-12-31

    In 1995 an off-grid integrated solar home was built in Middlesex, VT for Peter Clark and Gloria DeSousa. This home was included as a pilot home in the US DOE PV:BONUS program to develop factory-built integrated solar homes. The home incorporates a 1.44 KW PV system, 0.6 KW of wind turbine capacity, and very high-efficiency electrical loads. The home also features passive solar design, high-efficiency heating systems, and a greenhouse-based septic treatment system. The performance of the PV system and the wind system, and the total power usage of the household, are measured and recorded by a data acquisition system.more » The home`s electrical loads have operated very efficiently, using on average about one tenth the power used by the average American residence. The PV system has operated reliably and efficiently, providing about 97% of the power needs of the home. The wind turbines have operated efficiently, but the wind regime at the site has not been sufficient to generate more than 1% of the total power needs. The other 2% has been provided by a gasoline backup generator.« less

  7. A global survey of adverse event following immunization surveillance systems for pregnant women and their infants.

    PubMed

    Cassidy, Christine; MacDonald, Noni E; Steenbeek, Audrey; Ortiz, Justin R; Zuber, Patrick L F; Top, Karina A

    2016-08-02

    Strengthening antenatal care as a platform for maternal immunization is a priority of the World Health Organization (WHO). Systematic surveillance for adverse events following immunization (AEFI) in pregnancy is needed to identify vaccine safety events. We sought to identify active and passive AEFI surveillance systems for pregnant women and infants. Representatives from all National Pharmacovigilance Centers and a convenience sample of vaccine safety experts were invited to complete a 14-item online survey in English, French or Spanish. The survey captured maternal immunization policies, and active and passive AEFI surveillance systems for pregnant women and infants in respondents' countries. The analysis was descriptive. We received responses from 51/185 (28%) invited persons from 47/148 (32%) countries representing all WHO regions, and low, middle and high-income countries. Thirty countries had national immunization policies targeting pregnant women. Eleven countries had active surveillance systems to detect serious AEFI in pregnant women and/or their infants, including six low and middle-income countries (LMIC). Thirty-nine countries had passive surveillance systems, including 23 LMIC. These active and passive surveillance programs cover approximately 8% and 56% of the worldwide annual birth cohort, respectively. Data from one active and four passive systems have been published. We identified 50 active and passive AEFI surveillance systems for pregnant women and infants, but few have published their findings. AEFI surveillance appears to be feasible in low and high resource settings. Further expansion of AEFI surveillance for pregnant women and sharing of vaccine safety information will provide additional evidence in support of maternal immunization policies.

  8. Passive range estimation using dual baseline triangulation

    NASA Astrophysics Data System (ADS)

    Pieper, Ronald J.; Cooper, Alfred W.; Pelegris, G.

    1996-03-01

    Modern combat systems based on active radar sensing suffer disadvantages against low-flying targets in cluttered backgrounds. Use of passive infrared sensors with these systems, either in cooperation or as an alternative, shows potential for improving target detection and declaration range for targets crossing the horizon. Realization of this potential requires fusion of target position data from dissimilar sensors, or passive sensor measurement of target range. The availability of passive sensors that can supply both range and bearing data on such targets would significantly extend the robustness of an integrated ship self-defense system. This paper considers a new method of range determination with passive sensors based on the principle of triangulation, extending the principle to two orthogonal baselines. The performance of single or double baseline triangulation depends on sensor bearing precision and direction to target. An expression for maximum triangulation range at a required accuracy is derived as a function of polar angle relative to the center of the dual-baseline system. Limitations in the dual- baseline model due to the geometrically assessed horizon are also considered.

  9. Development of a portable passive-acoustic bedload monitoring system

    USDA-ARS?s Scientific Manuscript database

    A hydrophone-based passive acoustic bedload-monitoring system was designed, tested and deployed by researchers at the University of Mississippi and the National Sedimentation Laboratory in Oxford, MS. The hydrophone system was designed to be easily deployed and operated by non-experts. In addition, ...

  10. Validity of the Child Facial Coding System for the Assessment of Acute Pain in Children With Cerebral Palsy.

    PubMed

    Hadden, Kellie L; LeFort, Sandra; O'Brien, Michelle; Coyte, Peter C; Guerriere, Denise N

    2016-04-01

    The purpose of the current study was to examine the concurrent and discriminant validity of the Child Facial Coding System for children with cerebral palsy. Eighty-five children (mean = 8.35 years, SD = 4.72 years) were videotaped during a passive joint stretch with their physiotherapist and during 3 time segments: baseline, passive joint stretch, and recovery. Children's pain responses were rated from videotape using the Numerical Rating Scale and Child Facial Coding System. Results indicated that Child Facial Coding System scores during the passive joint stretch significantly correlated with Numerical Rating Scale scores (r = .72, P < .01). Child Facial Coding System scores were also significantly higher during the passive joint stretch than the baseline and recovery segments (P < .001). Facial activity was not significantly correlated with the developmental measures. These findings suggest that the Child Facial Coding System is a valid method of identifying pain in children with cerebral palsy. © The Author(s) 2015.

  11. Ultrasonographic measurement of the acromiohumeral distance in spinal cord injury: Reliability and effects of shoulder positioning

    PubMed Central

    Lin, Yen-Sheng; Boninger, Michael L.; Day, Kevin A.

    2015-01-01

    Objective To investigate the reliability of ultrasonographic measurement of acromiohumeral distance (AHD) and the effects of shoulder positioning on AHD among manual wheelchair users (MWUs) with spinal cord injury (SCI) and an able-bodied control group. Methods Ten MWUs with SCI and 10 able-bodied subjects participated in this study. The ultrasonographic measurements of AHD from each subject were obtained by two raters during passive and active scapular plane arm elevation in neutral, 45°, 90° with and without resistance and in a weight relief raise position. The measurements were recorded again by each rater using the same procedures after a 30-minute time interval. All raters were blinded to each other's measurements. Setting University Laboratories and Veteran Affairs Healthcare System. Results Intra-rater (intraclass correlation coefficient, ICC > 0.83) and inter-rater (ICC > 0.78) reliability was excellent for both the MWUs with SCI and able-bodied groups across all arm positions except for the 45° position in the control group for one of the raters (intra-rater: ICC < 0.40 and inter-rater: ICC < 0.60). AHD significantly reduced when the shoulder was in the 90° arm elevated positions with or without resistance. Conclusion Findings from our study demonstrated that ultrasonography is a reliable means to evaluate AHD in both able bodied and individuals with SCI, who are known to have significant shoulder pathology. This technique could be used to develop reference measures and to identify changes in AHD caused by interventions. PMID:24968117

  12. Passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  13. Development of a High Reliability Compact Air Independent PEMFC Power System

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Wynne, Bob

    2013-01-01

    Autonomous Underwater Vehicles (AUV's) have received increasing attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Compact, neutrally buoyant power systems are needed for both small and large vehicles. Historically, batteries have been employed in these applications, but the energy density and therefore mission duration are limited with current battery technologies. Vehicles with stored energy requirements greater than approximately 10 kWh have an alternate means to get long duration power. High efficiency Proton Exchange Membrane (PEM) fuel cell systems utilizing pure hydrogen and oxygen reactants show the potential for an order of magnitude energy density improvement over batteries as long as the subsystems are compact. One key aspect to achieving a compact and energy dense system is the design of the fuel cell balance of plant (BOP). Recent fuel cell work, initially focused on NASA applications requiring high reliability, has developed systems that can meet target power and energy densities. Passive flow through systems using ejector driven reactant (EDR) circulation have been developed to provide high reactant flow and water management within the stack, with minimal parasitic losses compared to blowers. The ejectors and recirculation loops, along with valves and other BOP instrumentation, have been incorporated within the stack end plate. In addition, components for water management and reactant conditioning have been incorporated within the stack to further minimize the BOP. These BOP systems are thermally and functionally integrated into the stack hardware and fit into the small volumes required for AUV and future NASA applications to maximize the volume available for reactants. These integrated systems provide a compact solution for the fuel cell BOP and maximize the efficiency and reliability of the system. Designs have been developed for multiple applications ranging from less than 1 kWe to 70 kWe. These systems occupy a very small portion of the overall energy system, allowing most of the system volume to be used for reactants. The fuel cell systems have been optimized to use reactants efficiently with high stack efficiency and low parasitic losses. The resulting compact, highly efficient fuel cell system provides exceptional reactant utilization and energy density. Key design variables and supporting test data are presented. Future development activities are described.

  14. Active-passive vibration absorber of beam-cart-seesaw system with piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Lin, J.; Huang, C. J.; Chang, Julian; Wang, S.-W.

    2010-09-01

    In contrast with fully controllable systems, a super articulated mechanical system (SAMS) is a controlled underactuated mechanical system in which the dimensions of the configuration space exceed the dimensions of the control input space. The objectives of the research are to develop a novel SAMS model which is called beam-cart-seesaw system, and renovate a novel approach for achieving a high performance active-passive piezoelectric vibration absorber for such system. The system consists of two mobile carts, which are coupled via rack and pinion mechanics to two parallel tracks mounted on pneumatic rodless cylinders. One cart carries an elastic beam, and the other cart acts as a counterbalance. One adjustable counterweight mass is also installed underneath the seesaw to serve as a passive damping mechanism to absorb impact and shock energy. The motion and control of a Bernoulli-Euler beam subjected to the modified cart/seesaw system are analyzed first. Moreover, gray relational grade is utilized to investigate the sensitivity of tuning the active proportional-integral-derivative (PID) controller to achieve desired vibration suppression performance. Consequently, it is shown that the active-passive vibration absorber can not only provide passive damping, but can also enhance the active action authority. The proposed software/hardware platform can also be profitable for the standardization of laboratory equipment, as well as for the development of entertainment tools.

  15. Health Monitoring Technology for Thermal Protection Systems on Reusable Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Watters, D. G.; Heinemann, J. M.; Karunaratne, K. S.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Integrated subsystem health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles (RLVs) in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. This talk summarizes a joint effort between NASA Ames and industry partners to develop rapid non-contact diagnostic tools for health and performance monitoring of thermal protection systems (TPS) on future RLVs. The specific goals for TPS health monitoring are to increase the speed and reliability of TPS inspections for improved operability at lower cost. The technology being developed includes a 3-D laser scanner for examining the exterior surface of the TPS, and a subsurface microsensor suite for monitoring the health and performance of the TPS. The sensor suite consists of passive overlimit sensors and sensors for continuous parameter monitoring in flight. The sensors are integrated with radio-frequency identification (RFID) microchips to enable wireless communication of-the sensor data to an external reader that may be a hand-held scanner or a large portal. Prototypes of the laser system and both types of subsurface sensors have been developed. The laser scanner was tested on Shuttle Orbiter Columbia and was able to dimension surface chips and holes on a variety of TPS materials. The temperature-overlimit microsensor has a diameter under 0.05 inch (suitable for placement in gaps between ceramic TPS tiles) and can withstand 700 F for 15 minutes.

  16. Detection and analysis of emitted radiation for advanced monitoring and control of combustors

    NASA Astrophysics Data System (ADS)

    Ballester, J.; Sanz, A.; Hernandez, R.; Smolarz, A.

    2005-09-01

    The permanent optimization of combustion equipment could provide very important benefits in terms of efficiency, reliability and reduced pollution. However, current capabilities for monitoring and control of industrial flames are very limited; the lack of reliable diagnostic techniques is, most probably, the main obstacle to achieve those goals. Novel instrumentation systems based on the processing of the radiation emitted by the flames could help greatly to fill this gap, as radiation signals are known to contain very rich information about flame properties Optical sensors offer the benefit of being selective, rapid and able to gather data from extremely hostile environments. Passive optical sensors offer the further advantages of simplicity and low cost. With the rapidly growing capability of sensor hardware, there is an increased interest and need to develop data interpretation strategies that will allow optical flame emission data to be converted into meaningful combustor state information. The present work describes new results achieved on the use of optical sensors for the development of advanced monitoring systems of lean-premixed flames representative of gas turbine combustors. Different complementary signals have been analyzed: broad band emission using a Si photodiode, a narrow band around 310 nm measured with a photomultiplier and measurement of UV+VIS emission spectra. The signals have been processed using both conventional and advanced methods. The results obtained demonstrate that optical sensors can yield useful, instantaneous information on the actual flame properties, not available with the sensors currently used in practical combustion systems.

  17. Global Passivity in Microscopic Thermodynamics

    NASA Astrophysics Data System (ADS)

    Uzdin, Raam; Rahav, Saar

    2018-04-01

    The main thread that links classical thermodynamics and the thermodynamics of small quantum systems is the celebrated Clausius inequality form of the second law. However, its application to small quantum systems suffers from two cardinal problems. (i) The Clausius inequality does not hold when the system and environment are initially correlated—a commonly encountered scenario in microscopic setups. (ii) In some other cases, the Clausius inequality does not provide any useful information (e.g., in dephasing scenarios). We address these deficiencies by developing the notion of global passivity and employing it as a tool for deriving thermodynamic inequalities on observables. For initially uncorrelated thermal environments the global passivity framework recovers the Clausius inequality. More generally, global passivity provides an extension of the Clausius inequality that holds even in the presences of strong initial system-environment correlations. Crucially, the present framework provides additional thermodynamic bounds on expectation values. To illustrate the role of the additional bounds, we use them to detect unaccounted heat leaks and weak feedback operations ("Maxwell demons") that the Clausius inequality cannot detect. In addition, it is shown that global passivity can put practical upper and lower bounds on the buildup of system-environment correlations for dephasing interactions. Our findings are highly relevant for experiments in various systems such as ion traps, superconducting circuits, atoms in optical cavities, and more.

  18. SPES-2, AP600 intergral system test S01007 2 inch CL to core make-up tank pressure balance line break

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacchiani, M.; Medich, C.; Rigamonti, M.

    1995-09-01

    The SPES-2 is a full height, full pressure experimental test facility reproducing the Westinghouse AP600 reactor with a scaling factor of 1/395. The experimental plant, designed and operated by SIET in Piacenza, consists of a full simulation of the AP600 primary core cooling system including all the passive and active safety systems. In 1992, Westinghouse, in cooperation with ENEL (Ente Nazionale per l` Energia Elettrica), ENEA (Enter per le numove Technlogie, l` Energia e l` Ambient), Siet (Societa Informazioni Esperienze Termoidraulich) and ANSALDO developed an experimental program to test the integrated behaviour of the AP600 passive safety systems. The SPES-2more » test matrix, concluded in November 1994, has examined the AP600 passive safety system response for a range of small break LOCAs at different locations on the primary system and on the passive system lines; single steam generator tube ruptures with passive and active safety systems and a main steam line break transient to demonstrate the boration capability of passive safety systems for rapid cooldown. Each of the tests has provided detailed experimental results for verification of the capability of the analysis methods to predict the integrated passive safety system behaviour. Cold and hot shakedown tests have been performed on the facility to check the characteristics of the plant before starting the experimental campaign. The paper first presents a description of the SPES-2 test facility then the main results of S01007 test {open_quotes}2{close_quotes} Cold Leg (CL) to Core Make-up Tank (CMT) pressure balance line break{close_quotes} are reported and compared with predictions performed using RELAP5/mod3/80 obtained by ANSALDO through agreement with U.S.N.R.C. (U.S. Nuclear Regulatory Commission). The SPES-2 nodalization and all the calculations here presented were performed by ANSALDO and sponsored by ENEL as a part of pre-test predictions for SPES-2.« less

  19. Analysis of maxillary arch force/couple systems for a simulated high canine malocclusion: Part 1. Passive ligation.

    PubMed

    Fok, Jonathan; Toogood, Roger W; Badawi, Hisham; Carey, Jason P; Major, Paul W

    2011-11-01

    To better understand the mechanics of bracket/archwire interaction through analysis of force and couple distribution along the maxillary arch. An orthodontic simulator was utilized to study high canine malocclusion. Force/couple distributions, referenced to the center of resistance (CR) of each tooth, produced by passive ligation brackets and round wire were measured. Tests were repeated for 12 bracket sets with 12 wires per set. Propagation of the force/couple systems around the arch was minimal. Binding was observed only on the teeth adjacent to the displaced canine. For most of the teeth, reduced resistance to sliding of the passive ligation bracket yielded minimal tangential and normal forces at the bracket and contributed to lower moments at CR. Some potential mechanical advantages of passive ligation systems are suggested for the case studied. In particular, limited propagation around the arch reduces the occurrence of unwanted force/couple systems.

  20. Reliability Factors for Electronic Components in a Storage Environment

    DTIC Science & Technology

    1977-09-01

    Other moisture-induced failure mechanisms include crack propagation in brittle materials such as ceramic seals, glass passivation layers, nitride ...for Aluminum -Gold .... .............. ... 80 4-5 Fatigue S-N Curve Typical for Most Metals and Polymers . 85 4-6 Comparison of Surface Damageý Within...8 Aluminum -Silicon Phase Diagram ...... ............... 96 5-1 Evaluation of Gases from Microcircuit Package .... ....... 121 6-1 Plot of Resistivity

  1. Multi-access fiber optic data bus using FDM/FSK

    NASA Technical Reports Server (NTRS)

    Zanger, H.

    1984-01-01

    The major thrust was to develop a T coupler with very low (0.1 0.2dB) in-line loss. This is essential to any multiaccess bus structure where the word multi implies fifteen or more nodes on the bus, and it is tacitly assumed to be a passive bus. (Reliability considerations tend to exclude the use of active nodes - repeater nodes.)

  2. Danish Passives and Subject Positions as a Mood System--A Content Analysis; and Paradigmatic Structure, Word Order and Grammaticalization. ROLIG-Papir 54.

    ERIC Educational Resources Information Center

    Heltoft, Lars; Jakobsen, Lisbeth Falster

    Two papers on linguistic theory are presented. The first examines the relationship between two subsystems of Danish grammar: (1) the morphology and meaning of the two passives (a morphological passive and a periphrastic passive); and (2) the word order rules and meanings attached to indefinite subjects, irrespective of voice. It is claimed that…

  3. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.

    PubMed

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix

    2015-09-25

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.

  4. Can passive mobilization provide clinically-relevant brain stimulation? A pilot EEG and NIRS study on healthy subjects.

    PubMed

    Pittaccio, Simone; Garavaglia, Lorenzo; Molteni, Erika; Guanziroli, Eleonora; Zappasodi, Filippo; Beretta, Elena; Strazzer, Sandra; Molteni, Franco; Villa, Elena; Passaretti, Francesca

    2013-01-01

    Lower limb rehabilitation is a fundamental part of post-acute care in neurological disease. Early commencement of active workout is often prevented by paresis, thus physical treatment may be delayed until patients regain some voluntary command of their muscles. Passive mobilization of the affected joints is mostly delivered in order to safeguard tissue properties and shun circulatory problems. The present paper investigates the potential role of early passive motion in stimulating cortical areas of the brain devoted to the control of the lower limb. An electro-mechanical mobilizer for the ankle joint (Toe-Up!) was implemented utilizing specially-designed shape-memory-alloy-based actuators. This device was constructed to be usable by bedridden subjects. Besides, the slowness and gentleness of the imparted motion, make it suitable for patients in a very early stage of their recovery. The mobilizer underwent technical checks to confirm reliability and passed the required safety tests for electric biomedical devices. Four healthy volunteers took part in the pre-clinical phase of the study. The protocol consisted in measuring of brain activity by EEG and NIRS in four different conditions: rest, active dorsiflexion of the ankle, passive mobilization of the ankle, and assisted motion of the same joint. The acquired data were processed to obtain maps of cortical activation, which were then compared. The measurements collected so far show that there is a similar pattern of activity between active and passive/assisted particularly in the contralateral premotor areas. This result, albeit based on very few observations, might suggest that passive motion provides somatosensory afferences that are processed in a similar manner as for voluntary control. Should this evidence be confirmed by further trials on healthy individuals and neurological patients, it could form a basis for a clinical use of early passive exercise in supporting central functional recovery.

  5. Ranger© - An Affordable, Advanced, Next-Generation, Dual-Pol, X-Band Weather Radar

    NASA Astrophysics Data System (ADS)

    Stedronsky, Richard

    2014-05-01

    The Enterprise Electronics Corporation (EEC) Ranger© system is a new generation, X-band (3 cm), Adaptive Polarization Doppler Weather Surveillance Radar that fills the gap between high-cost, high-power traditional radar systems and the passive ground station weather sensors. Developed in partnership with the University of Oklahoma Advanced Radar Research Center (ARRC), the system uses relatively low power solid-state transmitters and pulse compression technology to attain nearly the same performance capabilities of much more expensive traditional radar systems. The Ranger© also employs Adaptive Dual Polarization (ADP) techniques to allow Alternating or Simultaneous Dual Polarization capability with total control over the transmission polarization state using dual independent coherent transmitters. Ranger© has been designed using the very latest technology available in the industry and the technical and manufacturing experience gained through over four decades of successful radar system design and production at EEC. The entire Ranger© design concept emphasizes precision, stability, reliability, and value using proven solid state technology combined with the most advanced motion control system ever conceived for weather radar. Key applications include meteorology, hydrology, aviation, offshore oil/gas drilling, wind energy, and outdoor event situational awareness.

  6. A search for passive protoplanetary discs in the Taurus-Auriga star-forming region

    NASA Astrophysics Data System (ADS)

    Duchêne, Gaspard; Becker, Adam; Yang, Yizhe; Bouy, Hervé; De Rosa, Robert J.; Patience, Jennifer; Girard, Julien H.

    2017-08-01

    We conducted a 12-month monitoring campaign of 33 T Tauri stars (TTS) in Taurus. Our goal was to monitor objects that possess a disc but have a weak H α line, a common accretion tracer for young stars, in order to determine whether they host a passive circumstellar disc. We used medium-resolution optical spectroscopy to assess the accretion status of the objects and to measure the H α line. We found no convincing examples of passive discs: only transition disc and debris disc systems in our sample are non-accreting. Among accretors, we found no example of flickering accretion, leading to an upper limit of 2.2 per cent on the duty cycle of accretion gaps, assuming that all accreting TTS experience such events. When combining literature results with our observations, we found that the reliability of traditional H α-based criteria to test for accretion is high but imperfect, particularly for low-mass TTS. We found a significant correlation between stellar mass and the full width at 10 per cent of the peak (W10) of the H α line that does not seem to be related to variations in free-fall velocity. Finally, our data revealed a positive correlation between the H α equivalent width and its W10, indicative of a systematic modulation in the line profile whereby the high-velocity wings of the line are proportionally more enhanced than its core when the line luminosity increases. We argue that this supports the hypothesis that the mass accretion rate on the central star is correlated with the H α W10 through a common physical mechanism.

  7. ESAC RFI Survey in the SMOS 1400-1427MHz Passive Band

    NASA Astrophysics Data System (ADS)

    Castillo-Fraile, Manuel; Uranga, Ekhi

    2016-08-01

    The SMOS (Soil Moisture and Ocean Salinity) satellite was launched on 2 November 2009, and it is the ESA second Earth Explorer Opportunity mission. After 6 years of successful Operations, the status of the SMOS mission is excellent, and it is providing very reliable acquisition, nominal and NRT data processing, archiving, and dissemination services of Level 1 and Level 2 processed data around the entire Planet. However, SMOS observations are significantly affected by RF interferences in several World areas. In this context, a new RFI detection and monitoring tool has been implemented at ESAC to provide to the national radiofrequency authorities with a proper detection and localization method of the illegal ground emitters in order to ensure the protection of the SMOS 1400- 1427MHz Passive Band for scientific applications.

  8. Passive vs. active safety belt systems in Volkswagen rabbits : a comparison of owner use habits and attitudes

    DOT National Transportation Integrated Search

    1976-08-01

    The overall objective of this research is to measure usage of, and attitudes toward, the passive restraint system, compared with the active restraint system on 1975 model year Volkswagen Rabbits. Methods used to carry out the research include: Interv...

  9. Method of remote powering and detecting multiple UWB passive tags in an RFID system

    DOEpatents

    Dowla, Farid U [Castro Valley, CA; Nekoogar, Faranak [San Ramon, CA; Benzel, David M [Livermore, CA; Dallum, Gregory E [Livermore, CA; Spiridon, Alex [Palo Alto, CA

    2012-05-29

    A new Radio Frequency Identification (RFID), tracking, powering apparatus/system and method using coded Ultra-wideband (UWB) signaling is introduced. The proposed hardware and techniques disclosed herein utilize a plurality of passive UWB transponders in a field of an RFID-radar system. The radar system itself enables multiple passive tags to be remotely powered (activated) at about the same time frame via predetermined frequency UWB pulsed formats. Once such tags are in an activated state, an UWB radar transmits specific "interrogating codes" to put predetermined tags in an awakened status. Such predetermined tags can then communicate by a unique "response code" so as to be detected by an UWB system using radar methods.

  10. Natural circulating passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  11. Addition of Passive Dynamics to a Flapping Airfoil to Improve Performance

    NASA Astrophysics Data System (ADS)

    Asselin, Daniel; Young, Jay; Williamson, C. H. K.

    2017-11-01

    Animals which fly or swim typically employ flapping motions of their wings and fins in order to produce thrust and to maneuver. Small, unmanned vehicles might also exploit such motions and are of considerable interest for the purposes of surveillance, environmental monitoring, and search and rescue. Flapping refers to a combination of pitch and heave and has been shown to provide good thrust and efficiency (Read, et al. 2003) when both axes are independently controlled (an Active-Active system). In this study, we examine the performance of an airfoil actuated only in the heave direction but allowed to pitch passively under the control of a torsion spring (an Active-Passive system). The presence of the spring is simulated in software using a force-feedback control system called Cyber-Physical Fluid Dynamics, or CPFD (Mackowski & Williamson 2011, 2015, 2016). Adding passive pitch to active heave provides significantly improved thrust and efficiency compared with heaving alone, especially when the torsion spring stiffness is selected so that the system operates near resonance (in an Active-Passive system). In many cases, values of thrust and efficiency are comparable to or better than those obtained with two actively controlled degrees of freedom. By using carefully-designed passive dynamics in the pitch direction, we can eliminate one of the two actuators, saving cost, complexity, and weight, while maintaining performance. This work was supported by the Air Force Office of Scientific Research Grant No. FA9550-15-1-0243, monitored by Dr. Douglas Smith.

  12. Hybrid Damping System for an Electronic Equipment Mounting Shelf

    NASA Technical Reports Server (NTRS)

    Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry

    1997-01-01

    The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-II. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.

  13. Hybrid Damping System for an Electronic Equipment Mounting Shelf

    NASA Technical Reports Server (NTRS)

    Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry

    1997-01-01

    The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-11. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.

  14. Passive solar water heating: breadbox design for the Fred Young Farm Labor Center in Indio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melzer, B; Maeda, B

    1979-10-01

    An appropriate passive solar preheater for multifamily housing units in the Fred Young Farm Labor Center in Indio, California, was designed and analyzed. A brief summary of passive preheater systems and the key design features used in current designs is presented. The design features necessary for the site requirements are described. The eight preliminary preheater designs reviewed for the project are presented. The results of thermal performance simulation for the eight prototype systems are discussed. Alternative monitoring systems for the installation are described and evaluated. The consultants' recommendations, working drawings, and performance estimates of the system selected are presented. (MHR)

  15. Electric Motor Thermal Management R&D (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, K.

    2014-11-01

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize themore » passive thermal performance, the effective thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. The active cooling performance of automatic transmission fluid (ATF) jets was also measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings. Ford's Mercon LV was the ATF evaluated in this study. The presentation provides an overview of prior work with a focus on describing future plans for research to be performed during FY15.« less

  16. Gripping characteristics of an electromagnetically activated magnetorheological fluid-based gripper

    NASA Astrophysics Data System (ADS)

    Choi, Young T.; Hartzell, Christine M.; Leps, Thomas; Wereley, Norman M.

    2018-05-01

    The design and test of a magnetorheological fluid (MRF)-based universal gripper (MR gripper) are presented in this study. The MR gripper was developed to have a simple design, but with the ability to produce reliable gripping and handling of a wide range of simple objects. The MR gripper design consists of a bladder mounted atop an electromagnet, where the bladder is filled with an MRF, which was formulated to have long-term stable sedimentation stability, that was synthesized using a high viscosity linear polysiloxane (HVLP) carrier fluid with a carbonyl iron particle (CIP) volume fraction of 35%. Two bladders were fabricated: a magnetizable bladder using a magnetorheological elastomer (MRE), and a passive (non-magnetizable) silicone rubber bladder. The holding force and applied (initial compression) force of the MR gripper for a bladder fill volume of 75% were experimentally measured, for both magnetizable and passive bladders, using a servohydraulic material testing machine for a range of objects. The gripping performance of the MR gripper using an MRE bladder was compared to that of the MR gripper using a passive bladder.

  17. Passive field reflectance measurements

    NASA Astrophysics Data System (ADS)

    Weber, Christian; Schinca, Daniel C.; Tocho, Jorge O.; Videla, Fabian

    2008-10-01

    The results of reflectance measurements performed with a three-band passive radiometer with independent channels for solar irradiance reference are presented. Comparative operation between the traditional method that uses downward-looking field and reference white panel measurements and the new approach involving duplicated downward- and upward-looking spectral channels (each latter one with its own diffuser) is analyzed. The results indicate that the latter method performs in very good agreement with the standard method and is more suitable for passive sensors under rapidly changing atmospheric conditions (such as clouds, dust, mist, smog and other scatterers), since a more reliable synchronous recording of reference and incident light is achieved. Besides, having separate channels for the reference and the signal allows a better balancing of gains in the amplifiers for each spectral channel. We show the results obtained in the determination of the normalized difference vegetation index (NDVI) corresponding to the period 2004-2007 field experiments concerning weed detection in soybean stubbles and fertilizer level assessment in wheat. The method may be used to refine sensor-based nitrogen fertilizer rate recommendations and to determine suitable zones for herbicide applications.

  18. Impedance feedback control of microfluidic valves for reliable post processing combinatorial droplet injection.

    PubMed

    Axt, Brant; Hsieh, Yi-Fan; Nalayanda, Divya; Wang, Tza-Huei

    2017-09-01

    Droplet microfluidics has found use in many biological assay applications as a means of high-throughput sample processing. One of the challenges of the technology, however, is the ability to control and merge droplets on-demand as they flow through the microdevices. It is in the interest of developing lab-on-chip devices to be able to combinatorically program additive mixing steps for more complex multistep and multiplex assays. Existing technologies to merge droplets are either passive in nature or require highly predictable droplet movement for feedforward control, making them vulnerable to errors during high throughput operation. In this paper, we describe and demonstrate a microfluidic valve-based device for the purpose of combinatorial droplet injection at any stage in a multistep assay. Microfluidic valves are used to robustly control fluid flow, droplet generation, and droplet mixing in the device on-demand, while on-chip impedance measurements taken in real time are used as feedback to accurately time the droplet injections. The presented system is contrasted to attempts without feedback, and is shown to be 100% reliable over long durations. Additionally, content detection and discretionary injections are explored and successfully executed.

  19. Use of CYPRES™ cutters with a Kevlar clamp band for hold-down and release of the Icarus De-Orbit Sail payload on TechDemoSat-1

    NASA Astrophysics Data System (ADS)

    Kingston, J.; Hobbs, S.; Roberts, P.; Juanes-Vallejo, C.; Robinson, F.; Sewell, R.; Snapir, B.; Llop, J. Virgili; Patel, M.

    2014-07-01

    TechDemoSat-1 is a UK-funded technology demonstration satellite, carrying 8 payloads provided by UK organisations, which is due to be launched in the first quarter of 2014. Cranfield University has supplied a De-Orbit Sail (DOS) payload to allow the mission to comply with end-of-life debris mitigation guidelines. The payload provides a passive, simple, and low-cost means of mitigating debris proliferation in Low Earth Orbit, by enhancing spacecraft aerodynamic drag at end-of-life and reducing time to natural orbital decay and re-entry. This paper describes the use of small commercial electro-explosive devices (EEDs), produced for use as parachute tether-cutters in reserve chute deployment systems, as low-cost but high-reliability release mechanisms for space applications. A testing campaign, including thermal vacuum and mechanical vibration, is described, which demonstrates the suitability of these CYPRES™ cutters, with a flexible Kevlar clamp band, for use as a hold-down and release mechanism (HDRM) for a deployable de-orbit sail. The HDRM is designed to be three-failure-tolerant, highly reliable, yet simple and low-cost.

  20. SEFRE: Semiexoskeleton Rehabilitation System.

    PubMed

    Chonnaparamutt, Winai; Supsi, Witsarut

    2016-01-01

    SEFRE (Shoulder-Elbow-Forearm Robotics Economic) rehabilitation system is presented in this paper. SEFRE Rehab System is composed of a robotic manipulator and an exoskeleton, so-called Forearm Supportive Mechanism (FSM). The controller of the system is developed as the Master PC consisting of five modules, that is, Intelligent Control (IC), Patient Communication (PC), Training with Game (TG), Progress Monitoring (PM), and Patient Supervision (PS). These modules support a patient to exercise with SEFRE in six modes, that is, Passive, Passive Stretching, Passive Guiding, Initiating Active, Active Assisted, and Active Resisted. To validate the advantages of the system, the preclinical trial was carried out at a national rehabilitation center. Here, the implement of the system and the preclinical results are presented as the verifications of SEFRE.

  1. Design of short-range terahertz wave passive detecting system

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Lou, Guowei; Zhu, Li; Qian, Songsong; Li, Ting

    2016-09-01

    Based on the study of radiation and transmission characteristics on THz waveband, a short-range passive detecting system is designed. The scheme originated from microwave passive detecting system. A prototype was developed following the design of key components including antennas and a harmonic mixer. The system operated at 0.36 THz. A dual-beam Cassegrain antenna was adopted for receiving signals which radiated by object and background. Local oscillator signal was generated by frequency multiplication. Harmonic mixing is adopted for reducing local oscillator signal frequency required by half. Superheterodyne technology is employed for signal acquisition. The system implemented easily. Tests and measurements were taken, which showed that the scheme was feasible and the performance of the prototype system met the design requirements.

  2. Evaluation of polyurethane foam passive air sampler (PUF) as a tool for occupational PAH measurements.

    PubMed

    Strandberg, Bo; Julander, Anneli; Sjöström, Mattias; Lewné, Marie; Koca Akdeva, Hatice; Bigert, Carolina

    2018-01-01

    Routine monitoring of workplace exposure to polycyclic aromatic hydrocarbons (PAHs) is performed mainly via active sampling. However, active samplers have several drawbacks and, in some cases, may even be unusable. Polyurethane foam (PUF) as personal passive air samplers constitute good alternatives for PAH monitoring in occupational air (8 h). However, PUFs must be further tested to reliably yield detectable levels of PAHs in short exposure times (1-3 h) and under extreme occupational conditions. Therefore, we compared the personal exposure monitoring performance of a passive PUF sampler with that of an active air sampler and determined the corresponding uptake rates (Rs). These rates were then used to estimate the occupational exposure of firefighters and police forensic specialists to 32 PAHs. The work environments studied were heavily contaminated by PAHs with (for example) benzo(a)pyrene ranging from 0.2 to 56 ng m -3 , as measured via active sampling. We show that, even after short exposure times, PUF can reliably accumulate both gaseous and particle-bound PAHs. The Rs-values are almost independent of variables such as the concentration and the wind speed. Therefore, by using the Rs-values (2.0-20 m 3 day -1 ), the air concentrations can be estimated within a factor of two for gaseous PAHs and a factor of 10 for particulate PAHs. With very short sampling times (1 h), our method can serve as a (i) simple and user-friendly semi-quantitative screening tool for estimating and tracking point sources of PAH in micro-environments and (ii) complement to the traditional active pumping methods. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Combining Radiography and Passive Measurements for Radiological Threat Detection in Cargo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Erin A.; White, Timothy A.; Jarman, Kenneth D.

    Abstract Radiography is widely understood to provide information complimentary to passive detection: while not directly sensitive to radiological materials, radiography can reveal highly shielded regions which may mask a passive radiological signal. We present a method for combining radiographic and passive data which uses the radiograph to provide an estimate of scatter and attenuation for possible sources. This approach allows quantitative use of radiographic images without relying on image interpretation, and results in a probabilistic description of likely source locations and strengths. We present first results for this method for a simple modeled test case of a cargo container drivingmore » through a PVT portal. With this inversion approach, we address criteria for an integrated passive and radiographic screening system and how detection of SNM threats might be improved in such a system.« less

  4. A family of asymptotically stable control laws for flexible robots based on a passivity approach

    NASA Technical Reports Server (NTRS)

    Lanari, Leonardo; Wen, John T.

    1991-01-01

    A general family of asymptotically stabilizing control laws is introduced for a class of nonlinear Hamiltonian systems. The inherent passivity property of this class of systems and the Passivity Theorem are used to show the closed-loop input/output stability which is then related to the internal state space stability through the stabilizability and detectability condition. Applications of these results include fully actuated robots, flexible joint robots, and robots with link flexibility.

  5. Passivity-based sliding mode control for a polytopic stochastic differential inclusion system.

    PubMed

    Liu, Leipo; Fu, Zhumu; Song, Xiaona

    2013-11-01

    Passivity-based sliding mode control for a polytopic stochastic differential inclusion (PSDI) system is considered. A control law is designed such that the reachability of sliding motion is guaranteed. Moreover, sufficient conditions for mean square asymptotic stability and passivity of sliding mode dynamics are obtained by linear matrix inequalities (LMIs). Finally, two examples are given to illustrate the effectiveness of the proposed method. © 2013 ISA. Published by ISA. All rights reserved.

  6. Active and passive multispectral scanner for earth resources applications: An advanced applications flight experiment

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.; Peterson, L. M.; Thomson, F. J.; Work, E. A.; Kriegler, F. J.

    1977-01-01

    The development of an experimental airborne multispectral scanner to provide both active (laser illuminated) and passive (solar illuminated) data from a commonly registered surface scene is discussed. The system was constructed according to specifications derived in an initial programs design study. The system was installed in an aircraft and test flown to produce illustrative active and passive multi-spectral imagery. However, data was not collected nor analyzed for any specific application.

  7. The Utilization of Starute Decelerators for Improved Upper Atmosphere Measurements

    DTIC Science & Technology

    1974-12-01

    34 ECOM-5489, May 1973. 17. Miller, Walter B., and Donald R. Veazey , "An Integrated Error Description of Active and Passive Balloon Tracking Systems," ECOM...20. Miller, Walter B., and Donald R. Veazey , "Vertical Efficiency of Active and Passive Balloon Tracking Systems from a Standpoint of Integrated Error...5542, May 1974. 60. Miller, Walter B., and Donald R. Veazey , "On Increasing Vertical Efficiency of a Passive Balloon Tracking Device by Optimal Choice

  8. Tactical Approaches for Making a Successful Satellite Passive Microwave ESDR

    NASA Astrophysics Data System (ADS)

    Hardman, M.; Brodzik, M. J.; Gotberg, J.; Long, D. G.; Paget, A. C.

    2014-12-01

    Our NASA MEaSUREs project is producing a new, enhanced resolution gridded Earth System Data Record for the entire satellite passive microwave (SMMR, SSM/I-SSMIS and AMSR-E) time series. Our project goals are twofold: to produce a well-documented, consistently processed, high-quality historical record at higher spatial resolutions than have previously been available, and to transition the production software to the NSIDC DAAC for ongoing processing after our project completion. In support of these goals, our distributed team at BYU and NSIDC faces project coordination challenges to produce a high-quality data set that our user community will accept as a replacement for the currently available historical versions of these data. We work closely with our DAAC liaison on format specifications, data and metadata plans, and project progress. In order for the user community to understand and support our project, we have solicited a team of Early Adopters who are reviewing and evaluating a prototype version of the data. Early Adopter feedback will be critical input to our final data content and format decisions. For algorithm transparency and accountability, we have released an Algorithm Theoretical Basis Document (ATBD) and detailed supporting technical documentation, with rationale for all algorithm implementation decisions. For distributed team management, we are using collaborative tools for software revision control and issue tracking. For reliably transitioning a research-quality image reconstruction software system to production-quality software suitable for use at the DAAC, we have adopted continuous integration methods for running automated regression testing. Our presentation will summarize bothadvantages and challenges of each of these tactics in ensuring production of a successful ESDR and an enduring production software system.

  9. Electrode replacement does not affect classification accuracy in dual-session use of a passive brain-computer interface for assessing cognitive workload

    PubMed Central

    Estepp, Justin R.; Christensen, James C.

    2015-01-01

    The passive brain-computer interface (pBCI) framework has been shown to be a very promising construct for assessing cognitive and affective state in both individuals and teams. There is a growing body of work that focuses on solving the challenges of transitioning pBCI systems from the research laboratory environment to practical, everyday use. An interesting issue is what impact methodological variability may have on the ability to reliably identify (neuro)physiological patterns that are useful for state assessment. This work aimed at quantifying the effects of methodological variability in a pBCI design for detecting changes in cognitive workload. Specific focus was directed toward the effects of replacing electrodes over dual sessions (thus inducing changes in placement, electromechanical properties, and/or impedance between the electrode and skin surface) on the accuracy of several machine learning approaches in a binary classification problem. In investigating these methodological variables, it was determined that the removal and replacement of the electrode suite between sessions does not impact the accuracy of a number of learning approaches when trained on one session and tested on a second. This finding was confirmed by comparing to a control group for which the electrode suite was not replaced between sessions. This result suggests that sensors (both neurological and peripheral) may be removed and replaced over the course of many interactions with a pBCI system without affecting its performance. Future work on multi-session and multi-day pBCI system use should seek to replicate this (lack of) effect between sessions in other tasks, temporal time courses, and data analytic approaches while also focusing on non-stationarity and variable classification performance due to intrinsic factors. PMID:25805963

  10. Electrode replacement does not affect classification accuracy in dual-session use of a passive brain-computer interface for assessing cognitive workload.

    PubMed

    Estepp, Justin R; Christensen, James C

    2015-01-01

    The passive brain-computer interface (pBCI) framework has been shown to be a very promising construct for assessing cognitive and affective state in both individuals and teams. There is a growing body of work that focuses on solving the challenges of transitioning pBCI systems from the research laboratory environment to practical, everyday use. An interesting issue is what impact methodological variability may have on the ability to reliably identify (neuro)physiological patterns that are useful for state assessment. This work aimed at quantifying the effects of methodological variability in a pBCI design for detecting changes in cognitive workload. Specific focus was directed toward the effects of replacing electrodes over dual sessions (thus inducing changes in placement, electromechanical properties, and/or impedance between the electrode and skin surface) on the accuracy of several machine learning approaches in a binary classification problem. In investigating these methodological variables, it was determined that the removal and replacement of the electrode suite between sessions does not impact the accuracy of a number of learning approaches when trained on one session and tested on a second. This finding was confirmed by comparing to a control group for which the electrode suite was not replaced between sessions. This result suggests that sensors (both neurological and peripheral) may be removed and replaced over the course of many interactions with a pBCI system without affecting its performance. Future work on multi-session and multi-day pBCI system use should seek to replicate this (lack of) effect between sessions in other tasks, temporal time courses, and data analytic approaches while also focusing on non-stationarity and variable classification performance due to intrinsic factors.

  11. Interior design for passive solar homes

    NASA Astrophysics Data System (ADS)

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building from incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitably of various interior elements.

  12. Evaluation of Masticatory Stimulation Effect on the Maxillary Transversal Growth in Ectodermal Dysplasia Children

    PubMed Central

    Nahass, Mona G; Mourad, Ayman

    2017-01-01

    Aims Severe oligodontia is one of the most important symptoms in children with hypohidrotic ectodermal dysplasia (HED). The growth of the maxilla is a key consideration in restoring their mouth. The aim of this study was to evaluate the transversal maxillary sutural growth, after passive masticatory stimulation, in HED children. We also thought to assess the efficiency and functional outcome of the proposed propriocep-tive passive expansion (PPE) prosthetic device. Materials and methods We studied 13 children (age 6-11 years) suffering from HED with severe oligodontia. Their maxilla was restored by a PPE device formed from two parts and joined by a passive slide system. Distance between the two parts was noted at the anterior and posterior regions at each control visit over an average of 23 months. We also conducted and filled a satisfaction questionnaire over the same period. We tested the hypothesis that the posterior expansion is greater than the anterior expansion (one-tailed Student’s t-test with p-value <0.05). Best-fit linear and quadratic models were used to explore the relationship between age, duration of observation, and the rate of growth. Results The average opening of the device was 2.27 mm in the anterior region and 2.96 mm in the posterior region. The questionnaire response was positive for all children. There are no significant linear or quadratic relationships between the data at the 5% significance level. The posterior expansion is greater than the anterior expansion at the 5% significance level (p-value 0.000394). Limitations Further studies are mandatory to assess the reliability of our particular intervention and treatment modalities for these cases. Conclusion The PPE device, we propose, assures function and esthetics in the long- term. It enhances stimulation by a passive way that leads to physiological growth of the palatal suture. Clinical significance Using this PPE device to restore the maxilla in children with HED promotes physiological growth. The passive nature of this prosthesis helps by eliminating the need for any changes or replacement over time. How to cite this article Sfeir E, Nahass MG, Mourad A. Evaluation of Masticatory Stimulation Effect on the Maxillary Transversal Growth in Ectodermal Dysplasia Children. Int J Clin Pediatr Dent 2017;10(1):55-61. PMID:28377657

  13. Impact of Active Control on Passive Safety Response Characteristics of Sodium-cooled Fast Reactors: I - Theoretical background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passerini, Stefano; Ponciroli, Roberto; Vilim, Richard B.

    Here, the interaction of the active control system with passive safety behavior is investigated for sodium-cooled fast reactors. A claim often made of advanced reactors is that they are passively safe against unprotected upset events. In practice, such upset events are not analyzed in the context of the plant control system, but rather the analyses are performed without considering the normally programmed response of the control system (open-loop approach). This represents an oversimplification of the safety case. The issue of passive safety override arises since the control system commands actuators whose motions have safety consequences. Depending on the upset involvingmore » the control system ( operator error, active control system failure, or inadvertent control system override), an actuator does not necessarily go in the same direction as needed for safety. So neglecting to account for control system action during an unprotected upset is nonconservative from a safety standpoint. It is important then, during the design of the plant, to consider the potential for the control system to work against the inherent and safe regulating effects of purposefully engineered temperature feedbacks.« less

  14. Impact of Active Control on Passive Safety Response Characteristics of Sodium-cooled Fast Reactors: I - Theoretical background

    DOE PAGES

    Passerini, Stefano; Ponciroli, Roberto; Vilim, Richard B.

    2017-06-21

    Here, the interaction of the active control system with passive safety behavior is investigated for sodium-cooled fast reactors. A claim often made of advanced reactors is that they are passively safe against unprotected upset events. In practice, such upset events are not analyzed in the context of the plant control system, but rather the analyses are performed without considering the normally programmed response of the control system (open-loop approach). This represents an oversimplification of the safety case. The issue of passive safety override arises since the control system commands actuators whose motions have safety consequences. Depending on the upset involvingmore » the control system ( operator error, active control system failure, or inadvertent control system override), an actuator does not necessarily go in the same direction as needed for safety. So neglecting to account for control system action during an unprotected upset is nonconservative from a safety standpoint. It is important then, during the design of the plant, to consider the potential for the control system to work against the inherent and safe regulating effects of purposefully engineered temperature feedbacks.« less

  15. Unified Communications for Space Inventory Management

    NASA Technical Reports Server (NTRS)

    Gifford, Kevin K.; Fink, Patrick W.; Barton, Richard; Ngo, Phong H.

    2009-01-01

    To help assure mission success for long-duration exploration activities, NASA is actively pursuing wireless technologies that promote situational awareness and autonomy. Wireless technologies are typically extensible, offer freedom from wire tethers, readily support redundancy, offer potential for decreased wire weight, and can represent dissimilar implementation for increased reliability. In addition, wireless technologies can enable additional situational awareness that otherwise would be infeasible. For example, addition of wired sensors, the need for which might not have been apparent at the outset of a program, night be extremely costly due in part to the necessary routing of cables through the vehicle. RFID, or radio frequency identification, is a wireless technology with the potential for significant savings and increased reliability and safety in space operations. Perhaps the most obvious savings relate to the application of inventory management. A fully automated inventory management system is highly desirable for long-term sustaining operations in space environments. This assertion is evidenced by inventory activities on the International Space Station, which represents the most extensive inventory tracking experience base in the history of space operations. In the short tern, handheld RFID readers offer substantial savings owing to reduced crew time for inventory audits. Over the long term, a combination of improved RFID technology and operational concepts modified to fully utilize the technology should result in space based inventory management that is highly reliable and requires very little crew time. In addition to inventory management, RFID is likely to find space applications in real-time location and tracking systems. These could vary from coarse-resolution RFID portals to the high resolution afforded by ultra-wideband (UWB) RFID. Longer range RFID technologies that leverage passive surface acoustic wave (SAW) devices are being investigated to track assets on a lunar or planetary surface.

  16. Passive solar design strategies: Remodeling guidelines for conserving energy at home

    NASA Astrophysics Data System (ADS)

    The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler's typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house's need for purchased heating (and in some cases, cooling) energy - but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical, and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive Solar Design Strategies: Remodeling Guidelines For Conserving Energy At Home is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: the guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; the worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; and the worked example demonstrates how to complete the worksheets for a typical residence.

  17. Impact of hydrodynamics on effective interactions in suspensions of active and passive matter.

    PubMed

    Krafnick, Ryan C; García, Angel E

    2015-02-01

    Passive particles exhibit unique properties when immersed in an active bath of self-propelling entities. In particular, an effective attraction can appear between particles that repel each other when in a passive solution. Here we numerically study the effect of hydrodynamics on an active-passive hybrid system, where we observe qualitative differences as compared to simulations with excluded volume effects alone. The results shed light on an existing discrepancy in pair lifetimes between simulation and experiment, due to the hydrodynamically enhanced stability of coupled passive particles.

  18. A hybrid active/passive exhaust noise control system for locomotives.

    PubMed

    Remington, Paul J; Knight, J Scott; Hanna, Doug; Rowley, Craig

    2005-01-01

    A prototype hybrid system consisting of active and passive components for controlling far-field locomotive exhaust noise has been designed, assembled, and tested on a locomotive. The system consisted of a resistive passive silencer for controlling high-frequency broadband noise and a feedforward multiple-input, multiple-output active control system for suppressing low-frequency tonal noise. The active system used ten roof-mounted bandpass speaker enclosures with 2-12-in. speakers per enclosure as actuators, eight roof-mounted electret microphones as residual sensors, and an optical tachometer that sensed locomotive engine speed as a reference sensor. The system was installed on a passenger locomotive and tested in an operating rail yard. Details of the system are described and the near-field and far-field noise reductions are compared against the design goal.

  19. A scale space feature based registration technique for fusion of satellite imagery

    NASA Technical Reports Server (NTRS)

    Raghavan, Srini; Cromp, Robert F.; Campbell, William C.

    1997-01-01

    Feature based registration is one of the most reliable methods to register multi-sensor images (both active and passive imagery) since features are often more reliable than intensity or radiometric values. The only situation where a feature based approach will fail is when the scene is completely homogenous or densely textural in which case a combination of feature and intensity based methods may yield better results. In this paper, we present some preliminary results of testing our scale space feature based registration technique, a modified version of feature based method developed earlier for classification of multi-sensor imagery. The proposed approach removes the sensitivity in parameter selection experienced in the earlier version as explained later.

  20. The science of spinal motion palpation: a review and update with implications for assessment and intervention

    PubMed Central

    Nyberg, Richard Edward; Russell Smith, A

    2013-01-01

    Spinal motion palpation (SMP) is a standard component of a manual therapy examination despite questionable reliability. The present research is inconclusive as to the relevance of the findings from SMP, with respect to the patient’s pain complaints. Differences in the testing methods and interpretation of spinal mobility testing are problematic. If SMP is to be a meaningful component of a spinal examination, the methods for testing and interpretation must be carefully scrutinized. The intent of this narrative review is to facilitate a better understanding of how SMP should provide the examiner with relevant information for assessment and treatment of patients with spinal pain disorders. The concept of just noticeable difference is presented and applied to SMP as a suggestion for determining the neutral zone behavior of a spinal segment. In addition, the use of a lighter, or more passive receptive palpation technique, is considered as a means for increasing tactile discrimination of spinal movement behavior. Further understanding of the scientific basis of testing SMP may improve intra- and inter-examiner reliability. The significance of the findings from SMP should be considered in context of the patient’s functional problem. Methodological changes may be indicated for the performance of SMP techniques, such as central posterior-anterior (PA) pressure and passive intervertebral motion tests, in order to improve reliability. Instructors of manual therapy involved in teaching SMP should be knowledgeable of the neurophysiological processes of touch sensation so as to best advise students in the application of the various testing techniques. PMID:24421627

  1. Remote detection of carbon monoxide by FTIR for simulating field detection in industrial process

    NASA Astrophysics Data System (ADS)

    Gao, Qiankun; Liu, Wenqing; Zhang, Yujun; Gao, Mingguang; Xu, Liang; Li, Xiangxian; Jin, Ling

    2016-10-01

    In order to monitor carbon monoxide in industrial production, we developed a passive gas radiation measurement system based on Fourier transform infrared spectroscopy and carried out infrared radiation measurement experiment of carbon monoxide detection in simulated industrial production environment by this system. The principle, condition, device and data processing method of the experiment are introduced in this paper. In order to solve the problem of light path jitter in the actual industrial field, we simulated the noise in the industrial environment. We combine the advantages of MATHEMATICA software in the aspects of graph processing and symbolic computation to data processing to improve the signal noise ratio and noise suppression. Based on the HITRAN database, the nonlinear least square fitting method was used to calculate the concentration of the CO spectra before and after the data processing. By comparing the calculated concentration, the data processed by MATHEMATICA is reliable and necessary in the industrial production environment.

  2. A High-Performance Vacuum Cleaner for Bed Bug Sampling: A Useful Tool for Medical Entomology.

    PubMed

    Bérenger, Jean-Michel; Almeras, Lionel; Leulmi, Hamza; Parola, Philippe

    2015-05-01

    Arthropods can be captured by two modes: a passive mode using traps or an active mode mainly based on the use of mouth or powered aspirators. These apparatuses are useful tools for collecting large numbers of crawling, flying, resting, or jumping arthropod specimens, particularly small specimens, such as mosquitoes or sandflies, for laboratory experiments or breeding. Different aspirator models are used to collect various arthropod specimens. However, to our knowledge, no specific system is currently available for the reliable sampling of live bed bugs in the field. Thus, we described a new system based on a classic autonomous house aspirator that requires few modifications for the collecting bed bugs. The low weight and size of this apparatus is advantageous, and it provides for rapid and secure bed bug sampling for medical entomology purposes. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Next-generation bidirectional Triple-play services using RSOA based WDM Radio on Free-Space Optics PON

    NASA Astrophysics Data System (ADS)

    Mandal, Gour Chandra; Mukherjee, Rahul; Das, Binoy; Patra, Ardhendu Sekhar

    2018-03-01

    An innovative low cost reflective semiconductor amplifier (RSOA) based bidirectional Triple-play services (TPS) using wavelength division multiplexed radio on free-space-optics passive optical network (WDM-RoFSO-PON) is proposed and experimentally demonstrated to transmit data, voice and video services simultaneously. In this paper, the TPS (10 Gb/s data/voice and 1.49 Gb/s HDTV signal) are successfully transmitted over a 500 m free-space link in downstream and RSOA is utilized at the receiving site to broadcast 1.25 Gb/s data/voice signal over same free-space link in upstream by reusing the carrier, that makes the system cost-effective. High receiver sensitivity and signal-to-noise ratio (SNR), low bit-error-rate (BER) and low error vector magnitude (EVM), and excellent eye-diagrams in our proposed network build the system more reliable and stable with acceptable performance. Therefore, proposed WDM-RoFSO-PON could be the viable solution for future ubiquitous multiservice wireless network in the scenario of TPS.

  4. Sensitive Adsorptive Voltammetric Method for Determination of Bisphenol A by Gold Nanoparticle/Polyvinylpyrrolidone-Modified Pencil Graphite Electrode

    PubMed Central

    Yaman, Yesim Tugce; Abaci, Serdar

    2016-01-01

    A novel electrochemical sensor gold nanoparticle (AuNP)/polyvinylpyrrolidone (PVP) modified pencil graphite electrode (PGE) was developed for the ultrasensitive determination of Bisphenol A (BPA). The gold nanoparticles were electrodeposited by constant potential electrolysis and PVP was attached by passive adsorption onto the electrode surface. The electrode surfaces were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The parameters that affected the experimental conditions were researched and optimized. The AuNP/PVP/PGE sensor provided high sensitivity and selectivity for BPA recognition by using square wave adsorptive stripping voltammetry (SWAdSV). Under optimized conditions, the detection limit was found to be 1.0 nM. This new sensor system offered the advantages of simple fabrication which aided the expeditious replication, low cost, fast response, high sensitivity and low background current for BPA. This new sensor system was successfully tested for the detection of the amount of BPA in bottled drinking water with high reliability. PMID:27231912

  5. Immediate prosthesis over implants retained using abutments with flexible screws: A preliminary study.

    PubMed

    Peñarrocha-Oltra, David; Serra-Pastor, Blanca; Balaguer-Martí, José-Carlos; Peñarrocha-Diago, Miguel; Agustín-Panadero, Rubén

    2017-12-01

    Immediate loading protocols for the rehabilitation of edentulous or partially edentulous patients have become very popular, due to the conveniences they afford in comparison with conventional loading techniques. A preliminary study was carried out with 8 patients subjected to dental implant treatment with an immediate loading protocol involving a novel system of abutments with flexible screws. Implant survival was analyzed, together with marginal bone loss and patient and dentist satisfaction. A total of 35 implants were subjected to immediate loading using the abutments with flexible screws. The mean patient and dentist satisfaction score was 9.1 and 8.5, respectively. After 12 months the dental implant survival rate was 95.8%, with a mean marginal bone loss of 0.51 ± 0.12 mm. The novel system of abutments with flexible screws offers a good alternative to conventional immediate loading, since it allows rapid and simple manufacture of a reliable passive fit, fixed interim prosthesis after surgery. Key words: Dental implants, Flexafit®, Immediate loading, Immediate prosthesis.

  6. Passive safety injection system using borated water

    DOEpatents

    Conway, Lawrence E.; Schulz, Terry L.

    1993-01-01

    A passive safety injection system relies on differences in water density to induce natural circulatory flow patterns which help maintain prescribed concentrations of boric acid in borated water, and prevents boron from accumulating in the reactor vessel and possibly preventing heat transfer.

  7. Passive rejection of heat from an isotope heat source through an open door

    NASA Technical Reports Server (NTRS)

    Burns, R. K.

    1971-01-01

    The isotope heat-source design for a Brayton power system includes a door in the thermal insulation through which the heat can be passively rejected to space when the power system is not operating. The results of an analysis to predict the heat-source surface temperature and the heat-source heat-exchanger temperature during passive heat rejection as a function of insulation door opening angle are presented. They show that for a door opening angle greater than 20 deg, the temperatures are less than the steady-state temperatures during power system operation.

  8. Motion analysis report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.

    1985-01-01

    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.

  9. Long-term performance of the passive thermal control systems of the IRAS spacecraft

    NASA Technical Reports Server (NTRS)

    Mason, P. V.

    1988-01-01

    Degradation of passive thermal control systems in space is a matter of serious concern and has been observed in many missions. The performance of the passive thermal control systems of the Infrared Astronomical Satellite (IRAS) over a period of three years is reported here. An exterior temperature of 200 K and a sunshade temperature of approximately 100 K were maintained over this period without significant degradation. The temperature of the telescope contained in the IRAS cryostat was also observed for two years after expenditure of the helium cryogen. It remained at 100 K with no degradation.

  10. New PANDA Tests to Investigate Effects of Light Gases on Passive Safety Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paladino, D.; Auban, O.; Candreia, P.

    The large- scale thermal-hydraulic PANDA facility (located at PSI in Switzerland), has been used over the last few years for investigating different passive decay- heat removal systems and containment phenomena for the next generation of light water reactors (Simplified Boiling Water Reactor: SBWR; European Simplified Boiling Water Reactor: ESBWR; Siedewasserreaktor: SWR-1000). Currently, as part of the European Commission 5. EURATOM Framework Programme project 'Testing and Enhanced Modelling of Passive Evolutionary Systems Technology for Containment Cooling' (TEMPEST), a new series of tests is being planned in the PANDA facility to experimentally investigate the distribution of non-condensable gases inside the containment andmore » their effect on the performance of the 'Passive Containment Cooling System' (PCCS). Hydrogen release caused by the metal-water reaction in the case of a postulated severe accident will be simulated in PANDA by injecting helium into the reactor pressure vessel. In order to provide suitable data for Computational Fluid Dynamic (CFD) code assessment and improvement, the instrumentation in PANDA has been upgraded for the new tests. In the present paper, a detailed discussion is given of the new PANDA tests to be performed to investigate the effects of light gas on passive safety systems. The tests are scheduled for the first half of the year 2002. (authors)« less

  11. In Vivo Imaging of Influenza Virus Infection in Immunized Mice

    PubMed Central

    Czakó, Rita; Vogel, Leatrice; Lamirande, Elaine W.; Bock, Kevin W.; Moore, Ian N.; Ellebedy, Ali H.; Ahmed, Rafi

    2017-01-01

    ABSTRACT Immunization is the cornerstone of seasonal influenza control and represents an important component of pandemic preparedness strategies. Using a bioluminescent reporter virus, we demonstrate the application of noninvasive in vivo imaging system (IVIS) technology to evaluate the preclinical efficacy of candidate vaccines and immunotherapy in a mouse model of influenza. Sequential imaging revealed distinct spatiotemporal kinetics of bioluminescence in groups of mice passively or actively immunized by various strategies that accelerated the clearance of the challenge virus at different rates and by distinct mechanisms. Imaging findings were consistent with conclusions derived from virus titers in the lungs and, notably, were more informative than conventional efficacy endpoints in some cases. Our findings demonstrate the reliability of IVIS as a qualitative approach to support preclinical evaluation of candidate medical countermeasures for influenza in mice. PMID:28559489

  12. Target detection using microwave irradiances from natural sources: A passive, local and global surveillance system

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1984-01-01

    Detection of metal objects on or near the Earth's surface was investigated using existing, passive, microwave sensors operating from Earth orbit. The range equations are derived from basic microwave principles and theories and the expressions are given explicitly to estimate the signal to noise ratio for detecting metal targets operating as bistatic scatterers. Actual measurements are made on a range of metal objects observed from orbit using existing passive microwave receiving systems. The details of the measurements and the results are tabulated and discussed. The advantages of a passive microwave sensor as it is applied to surveillance of metal objects as viewed from aerial platforms or from orbit, are examined.

  13. Assessment of PDMS-water partition coefficients: implications for passive environmental sampling of hydrophobic organic compounds

    USGS Publications Warehouse

    DiFilippo, Erica L.; Eganhouse, Robert P.

    2010-01-01

    Solid-phase microextraction (SPME) has shown potential as an in situ passive-sampling technique in aquatic environments. The reliability of this method depends upon accurate determination of the partition coefficient between the fiber coating and water (Kf). For some hydrophobic organic compounds (HOCs), Kf values spanning 4 orders of magnitude have been reported for polydimethylsiloxane (PDMS) and water. However, 24% of the published data examined in this review did not pass the criterion for negligible depletion, resulting in questionable Kf values. The range in reported Kf is reduced to just over 2 orders of magnitude for some polychlorinated biphenyls (PCBs) when these questionable values are removed. Other factors that could account for the range in reported Kf, such as fiber-coating thickness and fiber manufacturer, were evaluated and found to be insignificant. In addition to accurate measurement of Kf, an understanding of the impact of environmental variables, such as temperature and ionic strength, on partitioning is essential for application of laboratory-measured Kf values to field samples. To date, few studies have measured Kf for HOCs at conditions other than at 20 degrees or 25 degrees C in distilled water. The available data indicate measurable variations in Kf at different temperatures and different ionic strengths. Therefore, if the appropriate environmental variables are not taken into account, significant error will be introduced into calculated aqueous concentrations using this passive sampling technique. A multiparameter linear solvation energy relationship (LSER) was developed to estimate log Kf in distilled water at 25 degrees C based on published physicochemical parameters. This method provided a good correlation (R2 = 0.94) between measured and predicted log Kf values for several compound classes. Thus, an LSER approach may offer a reliable means of predicting log Kf for HOCs whose experimental log Kf values are presently unavailable. Future research should focus on understanding the impact of environmental variables on Kf. Obtaining the data needed for an LSER approach to estimate Kf for all environmentally relevant HOCs would be beneficial to the application of SPME as a passive-sampling technique.

  14. Server Level Analysis of Network Operation Utilizing System Call Data

    DTIC Science & Technology

    2010-09-25

    Server DLL Inject 6 Executable Download and Execute 7 Execute Command 8 Execute net user /ADD 9 PassiveX ActiveX Inject Meterpreter Payload...10 PassiveX ActiveX Inject VNC Server Payload 11 PassiveX ActiveX Injection Payload 12 Recv Tag Findsock Meterpreter 13 Recv Tag Findsock

  15. Telepathology in cytopathology: challenges and opportunities.

    PubMed

    Collins, Brian T

    2013-01-01

    Telepathology in cytopathology is becoming more commonly utilized, and newer technologic infrastructures afford the laboratory a variety of options. The options and design of a telepathology system are driven by the clinical needs. This is primarily focused on providing rapid on-site evaluation service for fine needle aspiration. The clinical requirements and needs of a system are described. Available tools to design and implement a telepathology system are covered, including methods of image capture, network connectivity and remote viewing options. The primary telepathology method currently used and described involves the delivery via a network connection of a live video image to a remote site which is passively viewed by an internet web-based browser. By utilizing live video information and a voice connection to the on-site location, the remote viewer can collect clinical information and direct their view of the slides. Telepathology systems for use in cytopathology can be designed and implemented with commercially available infrastructure. It is necessary for the laboratory to validate the designed system and adhere to the required regulatory requirements. Telepathology for cytopathology can be reliably utilized by adapting existing technology, and newer advances hold great promise for further applications in the cytopathology laboratory. Copyright © 2013 S. Karger AG, Basel.

  16. A novel design for scintillator-based neutron and gamma imaging in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Geppert-Kleinrath, Verena; Cutler, Theresa; Danly, Chris; Madden, Amanda; Merrill, Frank; Tybo, Josh; Volegov, Petr; Wilde, Carl

    2017-10-01

    The LANL Advanced Imaging team has been providing reliable 2D neutron imaging of the burning fusion fuel at NIF for years, revealing possible multi-dimensional asymmetries in the fuel shape, and therefore calling for additional views. Adding a passive imaging system using image plate techniques along a new polar line of sight has recently demonstrated the merit of 3D neutron image reconstruction. Now, the team is in the process of designing a new active neutron imaging system for an additional equatorial view. The design will include a gamma imaging system as well, to allow for the imaging of carbon in the ablator of the NIF fuel capsules, constraining the burning fuel shape even further. The selection of ideal scintillator materials for a position-sensitive detector system is the key component for the new design. A comprehensive study of advanced scintillators has been carried out at the Los Alamos Neutron Science Center and the OMEGA Laser Facility in Rochester, NY. Neutron radiography using a fast-gated CCD camera system delivers measurements of resolution, light output and noise characteristics. The measured performance parameters inform the novel design, for which we conclude the feasibility of monolithic scintillators over pixelated counterparts.

  17. Sizing criteria for a low footprint passive mine water treatment system.

    PubMed

    Sapsford, D J; Williams, K P

    2009-02-01

    The objective of this paper is to present data from a novel vertical flow mine water treatment system, demonstrate how these data can be used to generate sizing formulae for this technology, and present a comparison between the size of system based on these formulae and those of conventionally designed passive systems. The paper focuses on passive treatment of circum-neutral ferruginous mine waters bearing up to 50 mgl(-1) of iron in either ferrous or ferric form. The Vertical Flow Reactor (VFR) operates by passing mine water down through an accreting bed of ochre, the ochre bed being responsible for the intensification of iron removal by self-filtration and/or autocatalytic iron oxidation and precipitation. Key to the design and operation of the VFR system is the decrease in permeability in this ochre bed over time. The paper demonstrates that the VFR system can remove iron at many times the 10 g/m2/day removal rate - an often employed figure for the sizing of aerobic settling ponds and wetlands. The paper demonstrates that VFRs are viable and novel passive treatment system for mine waters with a smaller footprint than conventional systems.

  18. Freshly dissociated mature hippocampal astrocytes exhibit passive membrane conductance and low membrane resistance similarly to syncytial coupled astrocytes

    PubMed Central

    Du, Yixing; Ma, Baofeng; Kiyoshi, Conrad M.; Alford, Catherine C.; Wang, Wei

    2015-01-01

    Mature astrocytes exhibit a linear current-to-voltage K+ membrane conductance (passive conductance) and an extremely low membrane resistance (Rm) in situ. The combination of these electrophysiological characteristics establishes a highly negative and stable membrane potential that is essential for basic functions, such as K+ spatial buffering and neurotransmitter uptake. However, astrocytes are coupled extensively in situ. It remains to be determined whether the observed passive behavior and low Rm are attributable to the intrinsic properties of membrane ion channels or to gap junction coupling in functionally mature astrocytes. In the present study, freshly dissociated hippocampal tissues were used as a new model to examine this basic question in young adult animals. The morphologically intact single astrocytes could be reliably dissociated from animals postnatal day 21 and older. At this animal age, dissociated single astrocytes exhibit passive conductance and resting membrane potential similar to those exhibited by astrocytes in situ. To precisely measure the Rm from single astrocytes, dual-patch single-astrocyte recording was performed. We show that dissociated single astrocytes exhibit a low Rm similarly to syncytial coupled astrocytes. Functionally, the symmetric expression of high-K+ conductance enabled rapid change in the intracellular K+ concentrations in response to changing K+ drive force. Altogether, we demonstrate that freshly dissociated tissue preparation is a highly useful model for study of the functional expression and regulation of ion channels, receptors, and transporters in astrocytes and that passive behavior and low Rm are the intrinsic properties of mature astrocytes. PMID:25810481

  19. Summary of Fuel Cell Programs at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla

    2000-01-01

    The objective of this program is to develop passive ancillary component technology to be teamed with a hydrogen-oxygen unitized regenerative fuel cell (URFC) stack to form a revolutionary new regenerative fuel cell energy (RFC) storage system for aerospace applications. Replacement of active RFC ancillary components with passive components minimizes parasitic power losses and allows the RFC to operate as a H2/O2 battery. The goal of this program is to demonstrate an integrated passive lkW URFC system.

  20. Advanced technology lightweight fuel cell program

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1981-01-01

    The potential of the alkaline electrolyte fuel cell as the power source in a multi hundred kilowatt orbital energy storage system was studied. The total system weight of an electrolysis cell energy storage system was determined. The tests demonstrated: (1) the performance stability of a platinum on carbon anode catalyst configuration after 5000 hours of testing has no loss in performance; (2) capability of the alkaline fuel cell to operate to a cyclical load profile; (3) suitability of a lightweight graphite electrolyte reservoir plate for use in the alkaline fuel cell; (4) long life potential of a hybrid polysulfone cell edge frame construction; and (5) long term stability of a fiber reinforced potassium titanate matrix structure. The power section tested operates with passive water removal eliminating the requirement for a dynamic hydrogen pump water separator thereby allowing a powerplant design with reduced weight, lower parasite power, and a potential for high reliability and extended endurance. It is concluded that two perovskites are unsuitable for use as a catalyst or as a catalyst support at the cathode of an alkaline fuel cell.

  1. Integrated Passive Biological Treatment System/ Mine Waste Technology Program Report #16

    EPA Science Inventory

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 16, Integrated, Passive Biological Treatment System, funded by the United States Environmental Protection Agency (EPA) and jointly administered by EPA and the United States Depar...

  2. Combined Active and Passive Solar Space Heating and Solar Hot Water Systems for an Elementary School in Boise, Idaho.

    ERIC Educational Resources Information Center

    Smull, Neil A.; Armstrong, Gerald L.

    1979-01-01

    Amity Elementary School in Boise, Idaho, features a solar space heating and domestic hot water system along with an earth covering to accommodate the passive aspects of energy conservation. (Author/MLF)

  3. Active Cells for Multifunctional Structures

    DTIC Science & Technology

    2014-09-24

    techniques to explore a variety of cell designs.  Designed a simplified active cell using Nitinol as the actuation method and relying on Joule heating...for contraction of the cell.  Developed manufacturing techniques for reliably creating Nitinol spring coils in a variety of diameters and gauges...design of the active cells to maximum the stroked length of the active cells by tuning the stiffness of a passive spring in parallel with the Nitinol

  4. Ion plated electronic tube device

    DOEpatents

    Meek, T.T.

    1983-10-18

    An electronic tube and associated circuitry which is produced by ion plating techniques. The process is carried out in an automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  5. Passive moment about the hip in straight leg raising.

    PubMed

    Lee, R Y; Munn, J

    2000-06-01

    The purpose of this examine is to study the load-deformation characteristics of the hip in straight leg raising. An experimental study in which passive moment about the hip was determined as a function of hip angle. Straight leg raising is widely employed in clinical examination, and there is little information on its mechanical characteristics. Fourteen healthy volunteers were recruited for this study. Three trials of straight leg raise tests were performed while subjects lay supine on a plinth that was fitted with load cells. An electrogoniometer was employed to measure hip flexion during the test. Resistive moment at the hip was determined using a dynamic biomechanical model. The present experimental method was shown to be highly reliable. The moment-angle curves of all subjects were shown to follow an exponential function. Stiffness and strain energy of posterior hip tissues could be derived from the moment-angle curves. Evaluation of such elastic properties is clinically important as they may be altered with injuries of the tissues. Clinically, contracture of hamstring muscles and other posterior hip tissues is evaluated by measuring the available range of hip flexion in straight leg raising. However, this does not provide any information on the elastic properties of the tissues. The present study reports a reliable method of evaluating such properties.

  6. Comparison of Saliva Collection Methods for the Determination of Salivary Cortisol Levels in Rhesus Macaques (Macaca mulatta), Cynomolgus Macaques (Macaca fascicularis), and African Green Monkeys (Chlorocebus aethiops)

    PubMed Central

    Rapp-Santos, Kamala J; Altamura, Louis A; Norris, Sarah L; Lugo-Roman, Luis A; Rico, Pedro J; Hofer, Christian C

    2017-01-01

    The ability to quickly and accurately determine cortisol as a biomarker for stress is a valuable tool in assessing the wellbeing of NHP. In this study, 2 methods of collecting saliva (a commercial collection device and passive drool) and the resulting free salivary cortisol levels were compared with total serum cortisol concentration in rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicularis) and African green monkeys (Chlorocebus aethiops) at 2 collection time points. Serum and salivary cortisol levels were determined using a competitive quantitative ELISA. In addition, both saliva collection methods were evaluated for volume collected and ease of use. Compared with passive drool, the experimental collection device was more reliable in collecting sufficient volumes of saliva, and the resulting salivary cortisol values demonstrated stronger correlation with serum cortisol concentration in all species and collection days except cynomolgus macaques on day 1. This saliva collection device allows quick and reliable sample collection for the determination of salivary cortisol levels. In addition, the results might provide a useful tool for evaluating hypothalamic-pituitary-adrenal axis activity or the physiologic stress reaction in NHP as well as a biomarker of psychologic stress states in a variety of situations. PMID:28315649

  7. Second Law based definition of passivity/activity of devices

    NASA Astrophysics Data System (ADS)

    Sundqvist, Kyle M.; Ferry, David K.; Kish, Laszlo B.

    2017-10-01

    Recently, our efforts to clarify the old question, if a memristor is a passive or active device [1], triggered debates between engineers, who have had advanced definitions of passivity/activity of devices, and physicists with significantly different views about this seemingly simple question. This debate triggered our efforts to test the well-known engineering concepts about passivity/activity in a deeper way, challenging them by statistical physics. It is shown that the advanced engineering definition of passivity/activity of devices is self-contradictory when a thermodynamical system executing Johnson-Nyquist noise is present. A new, statistical physical, self-consistent definition based on the Second Law of Thermodynamics is introduced. It is also shown that, in a system with uniform temperature distribution, any rectifier circuitry that can rectify thermal noise must contain an active circuit element, according to both the engineering and statistical physical definitions.

  8. London 2012 Paralympic swimming: passive drag and the classification system.

    PubMed

    Oh, Yim-Taek; Burkett, Brendan; Osborough, Conor; Formosa, Danielle; Payton, Carl

    2013-09-01

    The key difference between the Olympic and Paralympic Games is the use of classification systems within Paralympic sports to provide a fair competition for athletes with a range of physical disabilities. In 2009, the International Paralympic Committee mandated the development of new, evidence-based classification systems. This study aims to assess objectively the swimming classification system by determining the relationship between passive drag and level of swimming-specific impairment, as defined by the current swimming class. Data were collected on participants at the London 2012 Paralympic Games. The passive drag force of 113 swimmers (classes 3-14) was measured using an electro-mechanical towing device and load cell. Swimmers were towed on the surface of a swimming pool at 1.5 m/s while holding their most streamlined position. Passive drag ranged from 24.9 to 82.8 N; the normalised drag (drag/mass) ranged from 0.45 to 1.86 N/kg. Significant negative associations were found between drag and the swimming class (τ = -0.41, p < 0.01) and normalised drag and the swimming class (τ = -0.60, p < 0.01). The mean difference in drag between adjacent classes was inconsistent, ranging from 0 N (6 vs 7) to 11.9 N (5 vs 6). Reciprocal Ponderal Index (a measure of slenderness) correlated moderately with normalised drag (r(P) = -0.40, p < 0.01). Although swimmers with the lowest swimming class experienced the highest passive drag and vice versa, the inconsistent difference in mean passive drag between adjacent classes indicates that the current classification system does not always differentiate clearly between swimming groups.

  9. Thermal-hydraulic modeling needs for passive reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, J.M.

    1997-07-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered,more » but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.« less

  10. Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr; Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr

    2016-04-18

    Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized formore » deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.« less

  11. Analysis of trace contaminants in hot gas streams using time-weighted average solid-phase microextraction: proof of concept.

    PubMed

    Woolcock, Patrick J; Koziel, Jacek A; Cai, Lingshuang; Johnston, Patrick A; Brown, Robert C

    2013-03-15

    Time-weighted average (TWA) passive sampling using solid-phase microextraction (SPME) and gas chromatography was investigated as a new method of collecting, identifying and quantifying contaminants in process gas streams. Unlike previous TWA-SPME techniques using the retracted fiber configuration (fiber within needle) to monitor ambient conditions or relatively stagnant gases, this method was developed for fast-moving process gas streams at temperatures approaching 300 °C. The goal was to develop a consistent and reliable method of analyzing low concentrations of contaminants in hot gas streams without performing time-consuming exhaustive extraction with a slipstream. This work in particular aims to quantify trace tar compounds found in a syngas stream generated from biomass gasification. This paper evaluates the concept of retracted SPME at high temperatures by testing the three essential requirements for TWA passive sampling: (1) zero-sink assumption, (2) consistent and reliable response by the sampling device to changing concentrations, and (3) equal concentrations in the bulk gas stream relative to the face of the fiber syringe opening. Results indicated the method can accurately predict gas stream concentrations at elevated temperatures. Evidence was also discovered to validate the existence of a second boundary layer within the fiber during the adsorption/absorption process. This limits the technique to operating within reasonable mass loadings and loading rates, established by appropriate sampling depths and times for concentrations of interest. A limit of quantification for the benzene model tar system was estimated at 0.02 g m(-3) (8 ppm) with a limit of detection of 0.5 mg m(-3) (200 ppb). Using the appropriate conditions, the technique was applied to a pilot-scale fluidized-bed gasifier to verify its feasibility. Results from this test were in good agreement with literature and prior pilot plant operation, indicating the new method can measure low concentrations of tar in gasification streams. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates.

    PubMed

    Roche-Labarbe, Nadege; Fenoglio, Angela; Radhakrishnan, Harsha; Kocienski-Filip, Marcia; Carp, Stefan A; Dubb, Jay; Boas, David A; Grant, P Ellen; Franceschini, Maria Angela

    2014-01-15

    The hemodynamic functional response is used as a reliable marker of neuronal activity in countless studies of brain function and cognition. In newborns and infants, however, conflicting results have appeared in the literature concerning the typical response, and there is little information on brain metabolism and functional activation. Measurement of all hemodynamic components and oxygen metabolism is critical for understanding neurovascular coupling in the developing brain. To this end, we combined multiple near infrared spectroscopy techniques to measure oxy- and deoxy-hemoglobin concentrations, cerebral blood volume (CBV), and relative cerebral blood flow (CBF) in the somatosensory cortex of 6 preterm neonates during passive tactile stimulation of the hand. By combining these measures we estimated relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2). CBF starts increasing immediately after stimulus onset, and returns to baseline before blood volume. This is consistent with the model of pre-capillary arteriole active dilation driving the CBF response, with a subsequent CBV increase influenced by capillaries and veins dilating passively to accommodate the extra blood. rCMRO2 estimated using the steady-state formulation shows a biphasic pattern: an increase immediately after stimulus onset, followed by a post-stimulus undershoot due to blood flow returning faster to baseline than oxygenation. However, assuming a longer mean transit time from the arterial to the venous compartment, due to the immature vascular system of premature infants, reduces the post-stimulus undershoot and increases the flow/consumption ratio to values closer to adult values reported in the literature. We are the first to report changes in local rCBF and rCMRO2 during functional activation in preterm infants. The ability to measure these variables in addition to hemoglobin concentration changes is critical for understanding neurovascular coupling in the developing brain, and for using this coupling as a reliable functional imaging marker in neonates. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Field testing of a new flow-through directional passive air sampler applied to monitoring ambient nitrogen dioxide.

    PubMed

    Lin, Chun; McKenna, Paul; Timmis, Roger; Jones, Kevin C

    2010-07-08

    This paper reports the first field deployment and testing of a directional passive air sampler (DPAS) which can be used to cost-effectively identify and quantify air pollutants and their sources. The sampler was used for ambient nitrogen dioxide (NO(2)) over ten weeks from twelve directional sectors in an urban setting, and tested alongside an automatic chemiluminescent monitor. The time-integrated passive directional results were compared with the directional analysis of the active monitoring results using wind data recorded at a weather station. The DPAS discriminated air pollutant signals directionally. The attempts to derive quantitative data yielded reasonable results--usually within a factor of two of those obtained by the chemiluminescent analyser. Ultimately, whether DPAS approaches are adopted will depend on their reliability, added value and cost. It is argued that added value was obtained here from the DPAS approach applied in a routine monitoring situation, by identifying source sectors. Both the capital and running costs of DPAS were <5% of those for the automatic monitor. It is envisaged that different sorbents or sampling media will enable this rotatable DPAS design to be used for other airborne pollutants. In summary, there are reasons to be optimistic that directional passive air sampling, together with careful interpretation of results, will be of added value to air quality practitioners in future.

  14. Passive tick surveillance, dog seropositivity, and incidence of human Lyme disease

    USGS Publications Warehouse

    Johnson, Jaree L.; Ginsberg, Howard S.; Zhioua, Elyes; Whitworth, Ulysses G.; Markowski, Daniel; Hyland, Kerwin E.; Hu, Renjie

    2004-01-01

    Data on nymphal Ixodes scapularis ticks submitted by the public to the University of Rhode Island Tick Research Laboratory for testing from 1991 to 2000 were compared with human case data from the Rhode Island Department of Health to determine the efficacy of passive tick surveillance at assessing human risk of Lyme disease. Numbers of ticks submitted were highly correlated with human cases by county (r = 0.998, n = 5 counties) and by town (r = 0.916, n = 37 towns), as were the numbers of positive ticks submitted (r = 0.989 by county, r = 0.787 by town). Human cases were correlated with ticks submitted by town each year, and with positive ticks in all but 2 years. Thus, passive tick surveillance effectively assessed geographical risk of human Lyme disease. In contrast, tick submissions through time were not correlated with human cases from year to year. Dog seropositivity was significantly correlated with human cases by county in both years tested, but by town in only one of two years. Numbers of ticks submitted were correlated with dog seropositivity by county but not by town, apparently because of high variability among towns with small sample sizes. Our results suggest that passive tick surveillance, using ticks submitted by the public for Lyme spirochete testing, can be used to assess the geographical distribution of Lyme disease risk, but cannot reliably predict Lyme incidence from year to year.

  15. Estimation of Saliva Cotinine Cut-Off Points for Active and Passive Smoking during Pregnancy—Polish Mother and Child Cohort (REPRO_PL)

    PubMed Central

    Polanska, Kinga; Krol, Anna; Kaluzny, Pawel; Ligocka, Danuta; Mikolajewska, Karolina; Shaheen, Seif; Walton, Robert; Hanke, Wojciech

    2016-01-01

    A reliable assessment of smoking status has significant public health implications and is essential for research purposes. The aim of this study was to determine optimal saliva cotinine cut-off values for smoking during pregnancy. The analyses were based on data from 1771 women from the Polish Mother and Child Cohort. Saliva cotinine concentrations were assessed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-ESI + MS/MS). The saliva cotinine cut-off value for active smoking was established at 10 ng/mL (sensitivity 96%, specificity 95%) and for passive smoking at 1.5 ng/mL (sensitivity 63%, specificity 71%). About 5% of the self-reported non-smoking women were classified as smokers based on the cotinine cut-off value. Significantly more younger, single, and less educated self-reported non-smokers had a cotinine concentration higher than 10 ng/mL compared to those who were older, married, and who had a university degree. Close to 30% of the non-smokers who indicated that smoking was not allowed in their home could be classified as exposed to passive smoking based on the cut-off value. The study suggests that self-reported smoking status is a valid measure of active smoking, whereas in the case of passive smoking, a combination of questionnaire data and biomarker verification may be required. PMID:27941658

  16. Robotic vision techniques for space operations

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1994-01-01

    Automation and robotics for space applications are being pursued for increased productivity, enhanced reliability, increased flexibility, higher safety, and for the automation of time-consuming tasks and those activities which are beyond the capacity of the crew. One of the key functional elements of an automated robotic system is sensing and perception. As the robotics era dawns in space, vision systems will be required to provide the key sensory data needed for multifaceted intelligent operations. In general, the three-dimensional scene/object description, along with location, orientation, and motion parameters will be needed. In space, the absence of diffused lighting due to a lack of atmosphere gives rise to: (a) high dynamic range (10(exp 8)) of scattered sunlight intensities, resulting in very high contrast between shadowed and specular portions of the scene; (b) intense specular reflections causing target/scene bloom; and (c) loss of portions of the image due to shadowing and presence of stars, Earth, Moon, and other space objects in the scene. In this work, developments for combating the adverse effects described earlier and for enhancing scene definition are discussed. Both active and passive sensors are used. The algorithm for selecting appropriate wavelength, polarization, look angle of vision sensors is based on environmental factors as well as the properties of the target/scene which are to be perceived. The environment is characterized on the basis of sunlight and other illumination incident on the target/scene and the temperature profiles estimated on the basis of the incident illumination. The unknown geometrical and physical parameters are then derived from the fusion of the active and passive microwave, infrared, laser, and optical data.

  17. Columbia County Habitat for Humanity Passive Townhomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, Jordan; Alaigh, Kunal; Dadia, Devanshi

    2016-03-18

    Columbia County (New York) Habitat for Humanity built a pair of townhomes to Passive House criteria with the purpose of exploring approaches for achieving Passive House performance and to eventually develop a prototype design for future projects. The project utilized a 2x6 frame wall with a structural insulated panel curtain wall and a ventilated attic over a sealed OSB ceiling air barrier. Mechanical systems include a single head, wall mounted ductless mini-split heat pump in each unit and a heat recovery ventilator. Costs were $26,000 per unit higher for Passive House construction compared with the same home built to ENERGYmore » STAR version 3 specifications, representing about 18% of total construction cost. This report discusses the cost components, energy modeling results and lessons from construction. Two alternative ventilation systems are analyzed: a central system; and, a point-source system with small through-wall units distributed throughout the house. The report includes a design and cost analysis of these two approaches.« less

  18. Building America Case Study: Columbia County Habitat for Humanity Passive Townhomes, Hudson, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-04-01

    Columbia County (New York) Habitat for Humanity built a pair of townhomes to Passive House criteria with the purpose of exploring approaches for achieving Passive House performance and to eventually develop a prototype design for future projects. The project utilized a 2x6 frame wall with a structural insulated panel curtain wall and a ventilated attic over a sealed OSB ceiling air barrier. Mechanical systems include a single head, wall mounted ductless mini-split heat pump in each unit and a heat recovery ventilator. Costs were $26,000 per unit higher for Passive House construction compared with the same home built to ENERGYmore » STAR version 3 specifications, representing about 18 percent of total construction cost. This report discusses the cost components, energy modeling results and lessons from construction. Two alternative ventilation systems are analyzed: a central system; and, a point-source system with small through-wall units distributed throughout the house. The report includes a design and cost analysis of these two approaches.« less

  19. Reflection Paper on a Ubiquitous English Vocabulary Learning System: Evidence of Active/Passive Attitude vs. Usefulness/Ease-of-Use

    ERIC Educational Resources Information Center

    Lim, Jeff

    2013-01-01

    "A ubiquitous English vocabulary learning system: evidence of active/passive attitudes vs. usefulness/ease-of-use" introduces and develops "Ubiquitous English Vocabulary Learning" (UEFL) system. It introduces to the memorization using the video clips. According to their paper the video clip gives a better chance for students to…

  20. A Novel Approach to the Design of Passive Filters in Electric Grids

    NASA Astrophysics Data System (ADS)

    Filho da Costa Castro, José; Lima, Lucas Ramalho; Belchior, Fernando Nunes; Ribeiro, Paulo Fernando

    2016-12-01

    The design of shunt passive filters has been a topic of constant research since the 70's. Due to the lower cost, passive shunt filters are still considered a preferred option. This paper presents a novel approach for the placement and sizing of passive filters through ranking solutions based on the minimization of the total harmonic distortion (THDV) of the supply system rather than one specific bus, without neglecting the individual harmonic distortions. The developed method was implemented using Matlab/Simulink and applied to a test system. The results shown that is possible to minimize the total voltage harmonic distortion using a system approach during the filter selection. Additionally, since the method is mainly based on a heurist approach, it avoids the complexity associated with of use of advanced mathematical tools such as artificial intelligence techniques. The analyses contemplate a sinusoidal voltage utility and also the condition with background distortion utility.

  1. Surface recombination velocity imaging of wet-cleaned silicon wafers using quantitative heterodyne lock-in carrierography

    NASA Astrophysics Data System (ADS)

    Sun, Qiming; Melnikov, Alexander; Mandelis, Andreas; Pagliaro, Robert H.

    2018-01-01

    InGaAs-camera based heterodyne lock-in carrierography (HeLIC) is developed for surface recombination velocity (SRV) imaging characterization of bare (oxide-free) hydrogen passivated Si wafer surfaces. Samples prepared using four different hydrofluoric special-solution etching conditions were tested, and a quantitative assessment of their surface quality vs. queue-time after the hydrogen passivation process was made. The data acquisition time for an SRV image was about 3 min. A "round-trip" frequency-scan mode was introduced to minimize the effects of signal transients on data self-consistency. Simultaneous best fitting of HeLIC amplitude-frequency dependencies at various queue-times was used to guarantee the reliability of resolving surface and bulk carrier recombination/transport properties. The dynamic range of the measured SRV values was established from 0.1 to 100 m/s.

  2. Absorption of nicotine and carbon monoxide from passive smoking under natural conditions of exposure.

    PubMed Central

    Jarvis, M J; Russell, M A; Feyerabend, C

    1983-01-01

    Seven non-smokers were exposed to tobacco smoke under natural conditions for two hours in a public house. Measures of nicotine and cotinine in plasma, saliva, and urine and expired air carbon monoxide all showed reliable increases. The concentrations of carbon monoxide and nicotine after exposure averaged 15.7% and 7.5% respectively of the values found in heavy smokers. Although the increase in expired air carbon monoxide of 5.9 ppm was similar to increases in smokers after a single cigarette, the amount of nicotine absorbed was between a tenth and a third of the amount taken in from one cigarette. Since this represented a relatively extreme acute natural exposure, any health risks of passive smoking probably depend less on quantitative factors than on qualitative differences between sidestream and mainstream smoke. PMID:6648864

  3. A population survey on legislative measures to restrict smoking in Ontario: 4. Variables related to knowledge of active and passive smoking health effects and to predicted behavior of smokers and nonsmokers.

    PubMed

    Pederson, L L; Bull, S B; Ashley, M J; Lefcoe, N M

    1989-01-01

    Results from the further analysis of a population survey on legislative measures to restrict smoking revealed that identification of subgroups of smokers is more reliable than identification of subgroups of nonsmokers when a variety of attitudes were the measures of interest. A similar pattern emerged when analyses were carried out on knowledge of active and passive smoking health effects and on predicted personal and general compliance. Because distinct sets of variables were found to be related to distinct outcomes, program planning for changes in knowledge and behavior might, of necessity, have to be different. Media messages might be useful for changes in knowledge, while actual experience might be more important for attitude and behavior change.

  4. Role of passive remote sensors. Sensor System Panel report

    NASA Astrophysics Data System (ADS)

    1982-06-01

    Capabilities of present passive systems are described and the development of passive remote sensing systems for the more abundant tropospheric trace species is recommended. The combination of nadir-viewing spectrometers and solar occultation for tropospheric measurement of those gases having large stratospheric burdens is discussed. Development of a nadir-viewing instrument capable of obtaining continuous spectra in narrower bands is recommended. Gas filter radiometers for species specific measurements and development of a spectral survey instrument are discussed. Further development of aerosol retrieval algorithms, including polarization techniques, for obtaining aerosol thickness and size distributions is advised. Recommendations of specific investigations to be pursued are presented.

  5. Role of passive remote sensors. Sensor System Panel report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Capabilities of present passive systems are described and the development of passive remote sensing systems for the more abundant tropospheric trace species is recommended. The combination of nadir-viewing spectrometers and solar occultation for tropospheric measurement of those gases having large stratospheric burdens is discussed. Development of a nadir-viewing instrument capable of obtaining continuous spectra in narrower bands is recommended. Gas filter radiometers for species specific measurements and development of a spectral survey instrument are discussed. Further development of aerosol retrieval algorithms, including polarization techniques, for obtaining aerosol thickness and size distributions is advised. Recommendations of specific investigations to be pursued are presented.

  6. A Null Space Control of Two Wheels Driven Mobile Manipulator Using Passivity Theory

    NASA Astrophysics Data System (ADS)

    Shibata, Tsuyoshi; Murakami, Toshiyuki

    This paper describes a control strategy of null space motion of a two wheels driven mobile manipulator. Recently, robot is utilized in various industrial fields and it is preferable for the robot manipulator to have multiple degrees of freedom motion. Several studies of kinematics for null space motion have been proposed. However stability analysis of null space motion is not enough. Furthermore, these approaches apply to stable systems, but they do not apply unstable systems. Then, in this research, base of manipulator equips with two wheels driven mobile robot. This robot is called two wheels driven mobile manipulator, which becomes unstable system. In the proposed approach, a control design of null space uses passivity based stabilizing. A proposed controller is decided so that closed-loop system of robot dynamics satisfies passivity. This is passivity based control. Then, control strategy is that stabilizing of the robot system applies to work space observer based approach and null space control while keeping end-effector position. The validity of the proposed approach is verified by simulations and experiments of two wheels driven mobile manipulator.

  7. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vereb, F.; Winters, J.; Schulz, T.

    2012-07-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation inmore » the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)« less

  8. A modern diagnostic approach for automobile systems condition monitoring

    NASA Astrophysics Data System (ADS)

    Selig, M.; Shi, Z.; Ball, A.; Schmidt, K.

    2012-05-01

    An important topic in automotive research and development is the area of active and passive safety systems. In general, it is grouped in active safety systems to prevent accidents and passive systems to reduce the impact of a crash. An example for an active system is ABS while a seat belt tensioner represents the group of passive systems. Current developments in the automotive industry try to link active with passive system components to enable a complete event sequence, beginning with the warning of the driver about a critical situation till the automatic emergency call after an accident. The cross-linking has an impact on the current diagnostic approach, which is described in this paper. Therefore, this contribution introduces a new diagnostic approach for automotive mechatronic systems. The concept is based on monitoring the messages which are exchanged via the automotive communication systems, e.g. the CAN bus. According to the authors' assumption, the messages on the bus are changing between faultless and faulty vehicle condition. The transmitted messages of the sensors and control units are different depending on the condition of the car. First experiments are carried and in addition, the hardware design of a suitable diagnostic interface is presented. Finally, first results will be presented and discussed.

  9. Passive synthetic aperture radar imaging of ground moving targets

    NASA Astrophysics Data System (ADS)

    Wacks, Steven; Yazici, Birsen

    2012-05-01

    In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.

  10. Mechanism of protection from primary bovine viral diarrhea virus infection. I. The effects of dexamethasone.

    PubMed Central

    Shope, R E; Muscoplat, C C; Chen, A W; Johnson, D W

    1976-01-01

    A series of investigations was designed to study the role of cellular immunity and passive antibody in protecting neonatal calves from primary bovine viral diarrhea virus infection. Administration of corticosteroids (dexamethasone) in doses capable of suppressing cellular immunity markedly potentiated systemic bovine viral diarrhea virus infection in calves which lacked bovine viral diarrhea passive neutralizing antibody. Immunosuppressed calves did not form neutralizing antibody to bovine viral diarrhea virus and developed a fatal viremia. Calves with high levels of passive bovine viral diarrhea neutralizing antibodies were protected from the effect of corticosteroids. The results suggest an essential role for humoral passive antibody, but not for cellular immunity, in protection from primary systemic bovine viral diarrhea virus infection in calves. PMID:187303

  11. Performance and economics of residential solar space heating

    NASA Astrophysics Data System (ADS)

    Zehr, F. J.; Vineyard, T. A.; Barnes, R. W.; Oneal, D. L.

    1982-11-01

    The performance and economics of residential solar space heating were studied for various locations in the contiguous United States. Common types of active and passive solar heating systems were analyzed with respect to an average-size, single-family house designed to meet or exceed the thermal requirements of the Department of Housing and Urban Development Minimum Property Standards (HUD-MPS). The solar systems were evaluated in seventeen cities to provide a broad range of climatic conditions. Active systems evaluated consist of air and liquid flat plate collectors with single- and double-glazing: passive systems include Trombe wall, water wall, direct gain, and sunspace systems. The active system solar heating performance was computed using the University of Wisconsin's F-CHART computer program. The Los Alamos Scientific Laboratory's Solar Load Ratio (SLR) method was employed to compute solar heating performance for the passive systems. Heating costs were computed with gas, oil, and electricity as backups and as conventional heating system fuels.

  12. KERENA safety concept in the context of the Fukushima accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharias, T.; Novotny, C.; Bielor, E.

    Within the last three years AREVA NP and E.On KK finalized the basic design of KERENA which is a medium sized innovative boiling water reactor, based on the operational experience of German BWR nuclear power plants (NPPs). It is a generation III reactor design with a net electrical output of about 1250 MW. It combines active safety equipment of service-proven designs with new passive safety components, both safety classified. The passive systems utilize basic laws of physics, such as gravity and natural convection, enabling them to function without electric power. Even actuation of these systems is performed thanks to basicmore » physic laws. The degree of diversity in component and system design, achieved by combining active and passive equipment, results in a very low core damage frequency. The Fukushima accident enhanced the world wide discussion about the safety of operating nuclear power plants. World wide stress tests for operating nuclear power plants are being performed embracing both natural and man made hazards. Beside the assessment of existing power plants, also new designs are analyzed regarding the system response to beyond design base accidents. KERENA's optimal combination of diversified cooling systems (active and passive) allows passing efficiently such tests, with a high level of confidence. This paper describes the passive safety components and the KERENA reactor behavior after a Fukushima like accident. (authors)« less

  13. Proton Exchange Membrane (PEM) Fuel Cells for Space Applications

    NASA Technical Reports Server (NTRS)

    Bradley, Karla

    2004-01-01

    This presentation will provide a summary of the PEM fuel cell development at the National Aeronautics and Space Administration, Johnson Space Center (NASA, JSC) in support of future space applications. Fuel cells have been used for space power generation due to their high energy storage density for multi-day missions. The Shuttle currently utilizes the alkaline fuel cell technology, which has highly safe and reliable performance. However, the alkaline technology has a limited life due to the corrosion inherent to the alkaline technology. PEM fuel cells are under development by industry for transportation, residential and commercial stationary power applications. NASA is trying to incorporate some of this stack technology development in the PEM fuel cells for space. NASA has some unique design and performance parameters which make developing a PEM fuel cell system more challenging. Space fuel cell applications utilize oxygen, rather than air, which yields better performance but increases the hazard level. To reduce the quantity of reactants that need to be flown in space, NASA also utilizes water separation and reactant recirculation. Due to the hazards of utilizing active components for recirculation and water separation, NASA is trying to develop passive recirculation and water separation methods. However, the ability to develop recirculation components and water separators that are gravity-independent and successfully operate over the full range of power levels is one of the greatest challenges to developing a safe and reliable PEM fuel cell system. PEM stack, accessory component, and system tests that have been performed for space power applications will be discussed.

  14. System and method of DPF passive enhancement through powertrain torque-speed management

    DOEpatents

    Sujan, Vivek A.; Frazier, Timothy R.

    2015-11-24

    This disclosure provides a method and system for determining recommendations for vehicle operation that reduce soot production in view of a diesel particulate filter (DPF) of an exhaust aftertreatment system. Recommendations generated can reduce excessive particulate matter (PM) production during transient engine events and provide for operating conditions favorable for passive regeneration. In this way, less frequent active regeneration of the DPF is needed and/or more opportunities are provided for passive regeneration. The system and method can utilize location and terrain information to anticipate and project a window of operation in view of reducing soot production and soot loading of the DPF, or provide the operator with instruction when such opportunities are present or will soon be encountered.

  15. Research on LQR optimal control method of active engine mount

    NASA Astrophysics Data System (ADS)

    Huan, Xie; Yu, Duan

    2018-04-01

    In this paper, the LQR control method is applied to the active mount of the engine, and a six-cylinder engine excitation model is established. Through the joint simulation of AMESim and MATLAB, the vibration isolation performance of the active mount system and the passive mount system is analyzed. Excited by the multi-engine operation, the simulation results of the vertical displacement, acceleration and dynamic deflection of the vehicle body show that the vibration isolation capability of the active mount system is superior to that of the passive mount system. It shows that compared with the passive mount, LQR active mount can greatly improve the vibration isolation performance, which proves the feasibility and effectiveness of the LQR control method.

  16. Local-Level Prognostics Health Management Systems Framework for Passive AdvSMR Components. Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Roy, Surajit; Hirt, Evelyn H.

    2014-09-12

    This report describes research results to date in support of the integration and demonstration of diagnostics technologies for prototypical AdvSMR passive components (to establish condition indices for monitoring) with model-based prognostics methods. The focus of the PHM methodology and algorithm development in this study is at the localized scale. Multiple localized measurements of material condition (using advanced nondestructive measurement methods), along with available measurements of the stressor environment, enhance the performance of localized diagnostics and prognostics of passive AdvSMR components and systems.

  17. Self-reported knee joint instability is related to passive mechanical stiffness in medial knee osteoarthritis.

    PubMed

    Creaby, Mark W; Wrigley, Tim V; Lim, Boon-Whatt; Hinman, Rana S; Bryant, Adam L; Bennell, Kim L

    2013-11-20

    Self-reported knee joint instability compromises function in individuals with medial knee osteoarthritis and may be related to impaired joint mechanics. The purpose of this study was to evaluate the relationship between self-reported instability and the passive varus-valgus mechanical behaviour of the medial osteoarthritis knee. Passive varus-valgus angular laxity and stiffness were assessed using a modified isokinetic dynamometer in 73 participants with medial tibiofemoral osteoarthritis. All participants self-reported the absence or presence of knee instability symptoms and the degree to which instability affected daily activity on a 6-point likert scale. Forward linear regression modelling identified a significant inverse relationship between passive mid-range knee stiffness and symptoms of knee instability (r = 0.27; P < 0.05): reduced stiffness was indicative of more severe instability symptoms. Angular laxity and end-range stiffness were not related to instability symptoms (P > 0.05). Conceivably, a stiffer passive system may contribute toward greater joint stability during functional activities. Importantly however, net joint stiffness is influenced by both active and passive stiffness, and thus the active neuromuscular system may compensate for reduced passive stiffness in order to maintain joint stability. Future work is merited to examine the role of active stiffness in symptomatic joint stability.

  18. Self-reported knee joint instability is related to passive mechanical stiffness in medial knee osteoarthritis

    PubMed Central

    2013-01-01

    Background Self-reported knee joint instability compromises function in individuals with medial knee osteoarthritis and may be related to impaired joint mechanics. The purpose of this study was to evaluate the relationship between self-reported instability and the passive varus-valgus mechanical behaviour of the medial osteoarthritis knee. Methods Passive varus-valgus angular laxity and stiffness were assessed using a modified isokinetic dynamometer in 73 participants with medial tibiofemoral osteoarthritis. All participants self-reported the absence or presence of knee instability symptoms and the degree to which instability affected daily activity on a 6-point likert scale. Results Forward linear regression modelling identified a significant inverse relationship between passive mid-range knee stiffness and symptoms of knee instability (r = 0.27; P < 0.05): reduced stiffness was indicative of more severe instability symptoms. Angular laxity and end-range stiffness were not related to instability symptoms (P > 0.05). Conclusions Conceivably, a stiffer passive system may contribute toward greater joint stability during functional activities. Importantly however, net joint stiffness is influenced by both active and passive stiffness, and thus the active neuromuscular system may compensate for reduced passive stiffness in order to maintain joint stability. Future work is merited to examine the role of active stiffness in symptomatic joint stability. PMID:24252592

  19. Control issues of microgravity vibration isolation

    NASA Technical Reports Server (NTRS)

    Knospe, Carl R.; Hampton, Richard D.

    1991-01-01

    Active vibration isolation systems contemplated for microgravity space experiments may be designed to reach given performance requirements in a variety of ways. An analogy to passive isolation systems proves to be illustrative but lacks the flexibility as a design tool of a control systems approach and may lead to poor design. Control theory as applied to vibration isolation is reviewed and passive analogies discussed.

  20. ISS Expedition 18 Fluids and Combustion Facility (FCF) Combustion Integration Rack (CIR) Passive Rack Isolation System (

    NASA Image and Video Library

    2009-01-05

    ISS018-E-017796 (5 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works on the Fluids and Combustion Facility (FCF) Combustion Integration Rack (CIR) Passive Rack Isolation System (PaRIS) in the Destiny laboratory of the International Space Station.

  1. Self-optimizing approach for automated laser resonator alignment

    NASA Astrophysics Data System (ADS)

    Brecher, C.; Schmitt, R.; Loosen, P.; Guerrero, V.; Pyschny, N.; Pavim, A.; Gatej, A.

    2012-02-01

    Nowadays, the assembly of laser systems is dominated by manual operations, involving elaborate alignment by means of adjustable mountings. From a competition perspective, the most challenging problem in laser source manufacturing is price pressure, a result of cost competition exerted mainly from Asia. From an economical point of view, an automated assembly of laser systems defines a better approach to produce more reliable units at lower cost. However, the step from today's manual solutions towards an automated assembly requires parallel developments regarding product design, automation equipment and assembly processes. This paper introduces briefly the idea of self-optimizing technical systems as a new approach towards highly flexible automation. Technically, the work focuses on the precision assembly of laser resonators, which is one of the final and most crucial assembly steps in terms of beam quality and laser power. The paper presents a new design approach for miniaturized laser systems and new automation concepts for a robot-based precision assembly, as well as passive and active alignment methods, which are based on a self-optimizing approach. Very promising results have already been achieved, considerably reducing the duration and complexity of the laser resonator assembly. These results as well as future development perspectives are discussed.

  2. A Fiber Bragg Grating-Based Dynamic Tension Detection System for Overhead Transmission Line Galloping.

    PubMed

    Ma, Guo-Ming; Li, Ya-Bo; Mao, Nai-Qiang; Shi, Cheng; Zhang, Bo; Li, Cheng-Rong

    2018-01-26

    Galloping of overhead transmission lines (OHTLs) may induce conductor breakage and tower collapse, and there is no effective method for long distance distribution on-line galloping monitoring. To overcome the drawbacks of the conventional galloping monitoring systems, such as sensitivity to electromagnetic interference, the need for onsite power, and short lifetimes, a novel optical remote passive measuring system is proposed in the paper. Firstly, to solve the hysteresis and eccentric load problem in tension sensing, and to extent the dynamic response range, an 'S' type elastic element structure with flanges was proposed. Then, a tension experiment was carried out to demonstrate the dynamic response characteristics. Moreover, the designed tension sensor was stretched continuously for 30 min to observe its long time stability. Last but not the least, the sensor was mounted on a 70 m conductor model, and the conductor was oscillated at different frequencies to investigate the dynamic performance of the sensor. The experimental results demonstrate the sensor is suitable for the OHTL galloping detection. Compared with the conventional sensors for OHTL monitoring, the system has many advantages, such as easy installation, no flashover risk, distribution monitoring, better bandwidth, improved accuracy and higher reliability.

  3. Technical Note: A minimally invasive experimental system for pCO2 manipulation in plankton cultures using passive gas exchange (atmospheric carbon control simulator)

    NASA Astrophysics Data System (ADS)

    Love, Brooke A.; Olson, M. Brady; Wuori, Tristen

    2017-05-01

    As research into the biotic effects of ocean acidification has increased, the methods for simulating these environmental changes in the laboratory have multiplied. Here we describe the atmospheric carbon control simulator (ACCS) for the maintenance of plankton under controlled pCO2 conditions, designed for species sensitive to the physical disturbance introduced by the bubbling of cultures and for studies involving trophic interaction. The system consists of gas mixing and equilibration components coupled with large-volume atmospheric simulation chambers. These chambers allow gas exchange to counteract the changes in carbonate chemistry induced by the metabolic activity of the organisms. The system is relatively low cost, very flexible, and when used in conjunction with semi-continuous culture methods, it increases the density of organisms kept under realistic conditions, increases the allowable time interval between dilutions, and/or decreases the metabolically driven change in carbonate chemistry during these intervals. It accommodates a large number of culture vessels, which facilitate multi-trophic level studies and allow the tracking of variable responses within and across plankton populations to ocean acidification. It also includes components that increase the reliability of gas mixing systems using mass flow controllers.

  4. Hypervelocity Impact (HVI). Volume 1; General Introduction

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. This volume contains an executive summary, overview of the method, brief descriptions of all targets, and highlights of results and conclusions.

  5. A 21st Century Approach to Electronic Device Reliability

    DTIC Science & Technology

    2013-10-25

    roughness due to growth of Au-rich grains that ultimately led to cracks in passivation . The two primary degradation mechanisms were Au inter-diffusion...pumping occurred when the devices were illuminated with blue, violet, and UV light. In these cases, the drain current response to green and red...of the AFRL devices as shown in Figure 45. Both devices responded nearly identically in that the only change occurred during UV illumination. This

  6. dc-plasma-sprayed electronic-tube device

    DOEpatents

    Meek, T.T.

    1982-01-29

    An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  7. A newly developed spinal simulator.

    PubMed

    Chester, R; Watson, M J

    2000-11-01

    A number of studies indicate poor intra-therapist and inter-therapist reliability in the performance of graded, passive oscillatory movements to the lumbar spine. However, it has been suggested that therapists can be trained to be more consistent in their performance of these techniques if given reliable quantitative feedback. The intention of this study was to develop equipment, analogous to the lumbar spine that could be used for both teaching and research purposes. Equipment has been updated and connected to a personal IBM compatible computer. Custom designed software allows concurrent and accurate feedback to students on their performance and in a form suitable for advanced data analysis using statistical packages. The uses and implications of this equipment are discussed. Copyright 2000 Harcourt Publishers Ltd.

  8. Semi-passive in-situ pilot scale bioreactor successfully removed sulfate and metals from mine impacted water under subarctic climatic conditions.

    PubMed

    Nielsen, Guillaume; Hatam, Ido; Abuan, Karl A; Janin, Amelie; Coudert, Lucie; Blais, Jean Francois; Mercier, Guy; Baldwin, Susan A

    2018-04-23

    Mine drainage contaminated with metals is a major environmental threat since it is a source of water pollution with devastating effects on aquatic ecosystems. Conventional active treatment technologies are prohibitively expensive and so there is increasing demand to develop reliable, cost-effective and sustainable passive or semi-passive treatment. These are promising alternatives since they leverage the metabolism of microorganisms native to the disturbed site at in situ or close to in situ conditions. Since this is a biological approach, it is not clear if semi-passive treatment would be effective in remote locations with extremely cold weather such as at mines in the subarctic. In this study we tested the hypothesis that sulfate-reducing bacteria, which are microorganisms that promote metal precipitation, exist in subarctic mine environments and their activity can be stimulated by adding a readily available carbon source. An experiment was setup at a closed mine in the Yukon Territory, Canada, where leaching of Zn and Cd occurs. To test if semi-passive treatment could precipitate these metals and prevent further leaching from waste rock, molasses as a carbon source was added to anaerobic bioreactors mimicking the belowground in-situ conditions. Microbial community analysis confirmed that sulfate-reducing bacteria became enriched in the bioreactors upon addition of molasses. The population composition remained fairly stable over the 14 month operating period despite temperature shifts from 17 to 5 °C. Sulfate reduction functionality was confirmed by quantification of the gene for dissimilatory sulfite reductase. Metals were removed from underground mine drainage fed into the bioreactors with Zn removal efficiency varying between 20.9% in winter and 89.3% in summer, and Cd removal efficiency between 39% in winter and 90.5% in summer. This study demonstrated that stimulation of native SRB in MIW was possible and that in situ semi-passive treatment can be effective in removing metals despite the cold climate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Sexual Dysfunctional Beliefs Questionnaire (SDBQ): Translation and Psychometric Properties of the Iranian Version.

    PubMed

    Abdolmanafi, Atefe; Azadfallah, Parviz; Fata, Ladan; Roosta, Mohsen; Peixoto, Maria Manuela; Nobre, Pedro

    2015-08-01

    The sexual dysfunctional beliefs questionnaire (SDBQ) is a validated measure for assessing dysfunctional sexual beliefs. The aim of this study was to translate and validate the SDBQ to Iranian context. In order to translate the questionnaire from English into Persian, a forward-backward procedure was applied. After linguistic validation, the psychometric properties of the Iranian version were assessed for both men and women. A total of 387 participants (226 women and 161 men) completed the SDBQ. A principle component analysis with varimax rotation was performed for both the male and female samples. Reliability was evaluated by calculating Cronbach's alpha (internal consistency) and test-retest coefficients (intraclass correlation coefficient). The results from the principle component analysis identified six factors in the female version: sexual conservatism and female sexual passivity, beliefs about masturbation, body image beliefs, sexual desire and pleasure as a sin, age-related beliefs, and denying affection primacy. In the male version six factors were also identified: sex as an abuse of men's power, beliefs related to women's satisfaction, sexual conservatism, female sexual power, "macho" beliefs, and restrictive attitudes toward sex. Findings support the original six-factor solution for the male sample. For the female sample, although a six-factor solution was found, original motherhood-related beliefs were included in the sexual conservatism and female sexual passivity factor, and a new dimension has emerged, related to masturbation beliefs. Additionally, results indicated that the SDBQ had good internal consistency and test-retest reliability in both male and female versions. Current findings support the reliability and validity of the SDBQ in an Iranian sample and suggest its applicability to assess sexual beliefs in both clinical samples and the general population in Iran. © 2015 International Society for Sexual Medicine.

  10. [The modified method registration of kinesthetic evoked potentials and its application for research of proprioceptive sensitivity disorders at spondylogenic cervical myelopathy].

    PubMed

    Gordeev, S A; Voronin, S G

    2016-01-01

    To analyze the efficacy of modified (passive radiocarpal articulation flexion/extension) and «standard» (passive radiocarpal articulation flexion) methods of kinesthetic evoked potentials for proprioceptive sensitivity assessment in healthy subjects and patients with spondylotic cervical myelopathy. The study included 14 healthy subjects (4 women and 10 men, mean age 54.1±10.5 years) and 8 patients (2 women and 6 men, mean age 55.8±10.9 years) with spondylotic cervical myelopathy. Muscle-joint sensation was examined during the clinical study. A modified method of kinesthetic evoked potentials was developed. This method differed from the "standard" one by the organization of a cycle including several passive movements,where each new movement differed from the preceding one by the direction. The modified method of kinesthetic evoked potentials ensures more reliable kinesthetic sensitivity assessment due to movement variability. Asignificant increaseof the latent periods of the early components of the response was found in patients compared to healthy subjects. The modified method of kinesthetic evoked potentials can be used for objective diagnosis of proprioceptive sensitivity disorders in patients with spondylotic cervical myelopathy.

  11. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring.

    PubMed

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-09-20

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods.

  12. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring

    PubMed Central

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-01-01

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods. PMID:27657070

  13. Analysis of maxillary arch force/couple systems for a simulated high canine malocclusion: Part 2. Elastic ligation.

    PubMed

    Fok, Jonathan; Toogood, Roger W; Badawi, Hisham; Carey, Jason P; Major, Paul W

    2011-11-01

    To better understand the mechanics of bracket/archwire interaction through analysis of force and couple distribution along the maxillary arch using elastic ligation and to compare these results with passive ligation. An orthodontic simulator was used to study a high canine malocclusion. Force and couple distributions produced by elastic ligation and round wire were measured. Forces and couples were referenced to the center of resistance of each tooth. Tests were repeated for 12 bracket sets with 12 wires per set. Data were compared with those derived from similar tests for passive ligation. Propagation of the force/couple systems around the arch using elastic ligation was extensive. Elastic ligation produced significantly more resistance to sliding, contributing to higher forces and couples at the center of resistance than were observed for passive ligation. The results of this study suggest some potential mechanical advantages of passive over elastic ligation. In particular, limited propagation around the arch in passive ligation reduces the occurrence of unwanted force/couple systems compared with elastic ligation. These advantages may not transfer to a clinical setting because of the conditions of the tests; additional testing would be required to determine whether these advantages can be generalized.

  14. Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radisav Vidic; David Dzombak; Ming-Kai Hsieh

    2009-06-30

    This study evaluated the feasibility of using three impaired waters - secondary treated municipal wastewater, passively treated abandoned mine drainage (AMD), and effluent from ash sedimentation ponds at power plants - for use as makeup water in recirculating cooling water systems at thermoelectric power plants. The evaluation included assessment of water availability based on proximity and relevant regulations as well as feasibility of managing cooling water quality with traditional chemical management schemes. Options for chemical treatment to prevent corrosion, scaling, and biofouling were identified through review of current practices, and were tested at bench and pilot-scale. Secondary treated wastewater ismore » the most widely available impaired water that can serve as a reliable source of cooling water makeup. There are no federal regulations specifically related to impaired water reuse but a number of states have introduced regulations with primary focus on water aerosol 'drift' emitted from cooling towers, which has the potential to contain elevated concentrations of chemicals and microorganisms and may pose health risk to the public. It was determined that corrosion, scaling, and biofouling can be controlled adequately in cooling systems using secondary treated municipal wastewater at 4-6 cycles of concentration. The high concentration of dissolved solids in treated AMD rendered difficulties in scaling inhibition and requires more comprehensive pretreatment and scaling controls. Addition of appropriate chemicals can adequately control corrosion, scaling and biological growth in ash transport water, which typically has the best water quality among the three waters evaluated in this study. The high TDS in the blowdown from pilot-scale testing units with both passively treated mine drainage and secondary treated municipal wastewater and the high sulfate concentration in the mine drainage blowdown water were identified as the main challenges for blowdown disposal. Membrane treatment (nanofiltration or reverse osmosis) can be employed to reduce TDS and sulfate concentrations to acceptable levels for reuse of the blowdown in the cooling systems as makeup water.« less

  15. Comparison of technologies for deorbiting spacecraft from low-earth-orbit at end of mission

    NASA Astrophysics Data System (ADS)

    Sánchez-Arriaga, G.; Sanmartín, J. R.; Lorenzini, E. C.

    2017-09-01

    An analytical comparison of four technologies for deorbiting spacecraft from Low-Earth-Orbit at end of mission is presented. Basic formulas based on simple physical models of key figures of merit for each device are found. Active devices - rockets and electrical thrusters - and passive technologies - drag augmentation devices and electrodynamic tethers - are considered. A basic figure of merit is the deorbit device-to-spacecraft mass ratio, which is, in general, a function of environmental variables, technology development parameters and deorbit time. For typical state-of-the-art values, equal deorbit time, middle inclination and initial altitude of 850 km, the analysis indicates that tethers are about one and two orders of magnitude lighter than active technologies and drag augmentation devices, respectively; a tether needs a few percent mass-ratio for a deorbit time of a couple of weeks. For high inclination, the performance drop of the tether system is moderate: mass ratio and deorbit time increase by factors of 2 and 4, respectively. Besides collision risk with other spacecraft and system mass considerations, such as main driving factors for deorbit space technologies, the analysis addresses other important constraints, like deorbit time, system scalability, manoeuver capability, reliability, simplicity, attitude control requirement, and re-entry and multi-mission capability (deorbit and re-boost) issues. The requirements and constraints are used to make a critical assessment of the four technologies as functions of spacecraft mass and initial orbit (altitude and inclination). Emphasis is placed on electrodynamic tethers, including the latest advances attained in the FP7/Space project BETs. The superiority of tape tethers as compared to round and multi-line tethers in terms of deorbit mission performance is highlighted, as well as the importance of an optimal geometry selection, i.e. tape length, width, and thickness, as function of spacecraft mass and initial orbit. Tether system configuration, deployment and dynamical issues, including a simple passive way to mitigate the well-known dynamical instability of electrodynamic tethers, are also discussed.

  16. Passive language mapping combining real-time oscillation analysis with cortico-cortical evoked potentials for awake craniotomy.

    PubMed

    Tamura, Yukie; Ogawa, Hiroshi; Kapeller, Christoph; Prueckl, Robert; Takeuchi, Fumiya; Anei, Ryogo; Ritaccio, Anthony; Guger, Christoph; Kamada, Kyousuke

    2016-12-01

    OBJECTIVE Electrocortical stimulation (ECS) is the gold standard for functional brain mapping; however, precise functional mapping is still difficult in patients with language deficits. High gamma activity (HGA) between 80 and 140 Hz on electrocorticography is assumed to reflect localized cortical processing, whereas the cortico-cortical evoked potential (CCEP) can reflect bidirectional responses evoked by monophasic pulse stimuli to the language cortices when there is no patient cooperation. The authors propose the use of "passive" mapping by combining HGA mapping and CCEP recording without active tasks during conscious resections of brain tumors. METHODS Five patients, each with an intraaxial tumor in their dominant hemisphere, underwent conscious resection of their lesion with passive mapping. The authors performed functional localization for the receptive language area, using real-time HGA mapping, by listening passively to linguistic sounds. Furthermore, single electrical pulses were delivered to the identified receptive temporal language area to detect CCEPs in the frontal lobe. All mapping results were validated by ECS, and the sensitivity and specificity were evaluated. RESULTS Linguistic HGA mapping quickly identified the language area in the temporal lobe. Electrical stimulation by linguistic HGA mapping to the identified temporal receptive language area evoked CCEPs on the frontal lobe. The combination of linguistic HGA and frontal CCEPs needed no patient cooperation or effort. In this small case series, the sensitivity and specificity were 93.8% and 89%, respectively. CONCLUSIONS The described technique allows for simple and quick functional brain mapping with higher sensitivity and specificity than ECS mapping. The authors believe that this could improve the reliability of functional brain mapping and facilitate rational and objective operations. Passive mapping also sheds light on the underlying physiological mechanisms of language in the human brain.

  17. Precipitation Retrievals in typhoon domain combining of FY3C MWHTS Observations and WRF Predicted Models

    NASA Astrophysics Data System (ADS)

    Jieying, HE; Shengwei, ZHANG; Na, LI

    2017-02-01

    A passive sub-millimeter precipitation retrievals algorithm is provided based on Microwave Humidity and Temperature Sounder (MWHTS) onboard the Chinese Feng Yun 3C (FY-3C) satellite. Using the validated global reference physical model NCEP/WRF/VDISORT), NCEP data per 6 hours are downloaded to run the Weather Research and Forecast model WRF, and derive the typical precipitation data from the whole world. The precipitation retrieval algorithm can operate either on land or on seawater for global. To simply the calculation procedure and save the training time, principle component analysis (PCA) was adapted to filter out the redundancy caused by scanning angle and surface effects, as well as system noise. According to the comparison and validation combing with other precipitation sources, it is demonstrated that the retrievals are reliable for surface precipitation rate higher than 0.1 mm/h at 15km resolution.

  18. Active micromixer using surface acoustic wave streaming

    DOEpatents

    Branch,; Darren W. , Meyer; Grant D. , Craighead; Harold, G [Ithaca, NY

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  19. StressHacker: Towards Practical Stress Monitoring in the Wild with Smartwatches.

    PubMed

    Hao, Tian; Walter, Kimberly N; Ball, Marion J; Chang, Hung-Yang; Sun, Si; Zhu, Xinxin

    2017-01-01

    In modern life, the nonstop and pervasive stress tends to keep us on long-lasting high alert, which over time, could lead to a broad range of health problems from depression, metabolic disorders to heart diseases. However, there is a stunning lack of practical tools for effective stress management that can help people navigate through their daily stress. This paper presents the feasibility evaluation of StressHacker, a smartwatch-based system designed to continuously and passively monitor one's stress level using bio-signals obtained from the on-board sensors. With the proliferation of smartwatches, StressHacker is highly accessible and suited for daily use. Our preliminary evaluation is based on 300 hours of data collected in a real-life setting (12 subjects, 29 days). The result suggests that StressHacker is capable of reliably capturing daily stress dynamics (precision = 86.1%, recall = 91.2%), thus with great potential to enable seamless and personalized stress management.

  20. A new fun and robust version of an fMRI localizer for the frontotemporal language system.

    PubMed

    Scott, Terri L; Gallée, Jeanne; Fedorenko, Evelina

    2017-07-01

    A set of brain regions in the frontal, temporal, and parietal lobes supports high-level linguistic processing. These regions can be reliably identified in individual subjects using fMRI, by contrasting neural responses to meaningful and structured language stimuli vs. stimuli matched for low-level properties but lacking meaning and/or structure. We here present a novel version of a language 'localizer,' which should be suitable for diverse populations including children and/or clinical populations who may have difficulty with reading or cognitively demanding tasks. In particular, we contrast responses to auditorily presented excerpts from engaging interviews or stories, and acoustically degraded versions of these materials. This language localizer is appealing because it uses (a) naturalistic and engaging linguistic materials, (b) auditory presentation, (c) a passive listening task, and can be easily adapted to new stimulus materials enabling comparisons of language activation in children and speakers of diverse languages.

Top