Sample records for passive systems physics

  1. Second Law based definition of passivity/activity of devices

    NASA Astrophysics Data System (ADS)

    Sundqvist, Kyle M.; Ferry, David K.; Kish, Laszlo B.

    2017-10-01

    Recently, our efforts to clarify the old question, if a memristor is a passive or active device [1], triggered debates between engineers, who have had advanced definitions of passivity/activity of devices, and physicists with significantly different views about this seemingly simple question. This debate triggered our efforts to test the well-known engineering concepts about passivity/activity in a deeper way, challenging them by statistical physics. It is shown that the advanced engineering definition of passivity/activity of devices is self-contradictory when a thermodynamical system executing Johnson-Nyquist noise is present. A new, statistical physical, self-consistent definition based on the Second Law of Thermodynamics is introduced. It is also shown that, in a system with uniform temperature distribution, any rectifier circuitry that can rectify thermal noise must contain an active circuit element, according to both the engineering and statistical physical definitions.

  2. Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew D.; Grabaskas, David; Brunett, Acacia J.

    2016-01-01

    Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologiesmore » for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Centering on an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive reactor cavity cooling system following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. While this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability for the reactor cavity cooling system (and the reactor system in general) to the postulated transient event.« less

  3. Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

    DOE PAGES

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; ...

    2017-01-24

    We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.

    We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less

  5. Robust controller designs for second-order dynamic system: A virtual passive approach

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1990-01-01

    A robust controller design is presented for second-order dynamic systems. The controller is model-independent and itself is a virtual second-order dynamic system. Conditions on actuator and sensor placements are identified for controller designs that guarantee overall closed-loop stability. The dynamic controller can be viewed as a virtual passive damping system that serves to stabilize the actual dynamic system. The control gains are interpreted as virtual mass, spring, and dashpot elements that play the same roles as actual physical elements in stability analysis. Position, velocity, and acceleration feedback are considered. Simple examples are provided to illustrate the physical meaning of this controller design.

  6. Optical heterodyne accelerometry: passively stabilized, fully balanced velocity interferometer system for any reflector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttler, William T.; Lamoreaux, Steven K.

    2010-08-10

    We formalize the physics of an optical heterodyne accelerometer that allows measurement of low and high velocities from material surfaces under high strain. The proposed apparatus incorporates currently common optical velocimetry techniques used in shock physics, with interferometric techniques developed to self-stabilize and passively balance interferometers in quantum cryptography. The result is a robust telecom-fiber-based velocimetry system insensitive to modal and frequency dispersion that should work well in the presence of decoherent scattering processes, such as from ejecta clouds and shocked surfaces.

  7. KERENA safety concept in the context of the Fukushima accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharias, T.; Novotny, C.; Bielor, E.

    Within the last three years AREVA NP and E.On KK finalized the basic design of KERENA which is a medium sized innovative boiling water reactor, based on the operational experience of German BWR nuclear power plants (NPPs). It is a generation III reactor design with a net electrical output of about 1250 MW. It combines active safety equipment of service-proven designs with new passive safety components, both safety classified. The passive systems utilize basic laws of physics, such as gravity and natural convection, enabling them to function without electric power. Even actuation of these systems is performed thanks to basicmore » physic laws. The degree of diversity in component and system design, achieved by combining active and passive equipment, results in a very low core damage frequency. The Fukushima accident enhanced the world wide discussion about the safety of operating nuclear power plants. World wide stress tests for operating nuclear power plants are being performed embracing both natural and man made hazards. Beside the assessment of existing power plants, also new designs are analyzed regarding the system response to beyond design base accidents. KERENA's optimal combination of diversified cooling systems (active and passive) allows passing efficiently such tests, with a high level of confidence. This paper describes the passive safety components and the KERENA reactor behavior after a Fukushima like accident. (authors)« less

  8. Motion analysis report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.

    1985-01-01

    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.

  9. A Review of Passive RFID Tag Antenna-Based Sensors and Systems for Structural Health Monitoring Applications.

    PubMed

    Zhang, Jun; Tian, Gui Yun; Marindra, Adi M J; Sunny, Ali Imam; Zhao, Ao Bo

    2017-01-29

    In recent few years, the antenna and sensor communities have witnessed a considerable integration of radio frequency identification (RFID) tag antennas and sensors because of the impetus provided by internet of things (IoT) and cyber-physical systems (CPS). Such types of sensor can find potential applications in structural health monitoring (SHM) because of their passive, wireless, simple, compact size, and multimodal nature, particular in large scale infrastructures during their lifecycle. The big data from these ubiquitous sensors are expected to generate a big impact for intelligent monitoring. A remarkable number of scientific papers demonstrate the possibility that objects can be remotely tracked and intelligently monitored for their physical/chemical/mechanical properties and environment conditions. Most of the work focuses on antenna design, and significant information has been generated to demonstrate feasibilities. Further information is needed to gain deep understanding of the passive RFID antenna sensor systems in order to make them reliable and practical. Nevertheless, this information is scattered over much literature. This paper is to comprehensively summarize and clearly highlight the challenges and state-of-the-art methods of passive RFID antenna sensors and systems in terms of sensing and communication from system point of view. Future trends are also discussed. The future research and development in UK are suggested as well.

  10. Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano

    NASA Astrophysics Data System (ADS)

    Falaize, Antoine; Hélie, Thomas

    2017-03-01

    This paper deals with the time-domain simulation of an electro-mechanical piano: the Fender Rhodes. A simplified description of this multi-physical system is considered. It is composed of a hammer (nonlinear mechanical component), a cantilever beam (linear damped vibrating component) and a pickup (nonlinear magneto-electronic transducer). The approach is to propose a power-balanced formulation of the complete system, from which a guaranteed-passive simulation is derived to generate physically-based realistic sound synthesis. Theses issues are addressed in four steps. First, a class of Port-Hamiltonian Systems is introduced: these input-to-output systems fulfill a power balance that can be decomposed into conservative, dissipative and source parts. Second, physical models are proposed for each component and are recast in the port-Hamiltonian formulation. In particular, a finite-dimensional model of the cantilever beam is derived, based on a standard modal decomposition applied to the Euler-Bernoulli model. Third, these systems are interconnected, providing a nonlinear finite-dimensional Port-Hamiltonian System of the piano. Fourth, a passive-guaranteed numerical method is proposed. This method is built to preserve the power balance in the discrete-time domain, and more precisely, its decomposition structured into conservative, dissipative and source parts. Finally, simulations are performed for a set of physical parameters, based on empirical but realistic values. They provide a variety of audio signals which are perceptively relevant and qualitatively similar to some signals measured on a real instrument.

  11. Technological advances in powered wheelchairs.

    PubMed

    Edlich, Richard F; Nelson, Kenneth P; Foley, Marni L; Buschbacher, Ralph M; Long, William B; Ma, Eva K

    2004-01-01

    During the last 40 years, there have been revolutionary advances in power wheelchairs. These unique wheelchair systems, designed for the physically immobile patient, have become extremely diversified, allowing the user to achieve different positions, including tilt, recline, and, more recently, passive standing. Because of this wide diversity of powered wheelchair products, there is a growing realization of the need for certification of wheeled mobility suppliers. Legislation in Tennessee (Consumer Protection Act for Wheeled Mobility) passed in 2003 will ensure that wheeled mobility suppliers must have Assistive Technology Supplier certification and maintain their continuing education credits when fitting individuals in wheelchairs for long-term use. Fifteen other legislative efforts are currently underway in general assemblies throughout the US. Manufacturers, dealers, hospitals, and legislators are working toward the ultimate goal of passing federal legislation delineating the certification process of wheeled mobility suppliers. The most recent advance in the design of powered wheelchairs is the development of passive standing positions. The beneficial effects of passive standing have been documented by comprehensive scientific studies. These benefits include reduction of seating pressure, decreased bone demineralization, increased bladder pressure, enhanced orthostatic circulatory regulation, reduction in muscular tone, decrease in upper extremity muscle stress, and enhanced functional status in general. In February 2003, Permobil, Inc., introduced the powered Permobil Chairman 2K Stander wheelchair, which can tilt, recline, and stand. Other companies are now manufacturing powered wheelchairs that can achieve a passive standing position. These wheelchairs include the Chief SR Powerchair, VERTRAN, and LifeStand Compact. Another new addition to the wheelchair industry is the iBOT, which can elevate the user to reach cupboards and climb stairs but has no passive standing capabilities. In addition, the physically immobile patient must be seated on an ERGODYNAMIC Seating System 2000, which is inflated by the alternating pressure compressor 8080. This seating system has a deep center seam between the two ischial-support chambers, which provides a recess for the coccyx. The pre-ischial crossbar compartment inflates during each cycle to prevent the pelvis from slipping forward. It is essential that the physician of the immobile patient order two ERGODYNAMIC Seating Systems 2000 because the patient must have an additional seating system in the case one leaks. Moreover, two compressors are necessary because each compressor must be serviced after 2500 hours of use. For the protection of the consumer, these pressure relief systems must be supplied and serviced by a Certified Rehabilitation Technology Supplier such as Wheelchair Works Inc. Despite the indisputable scientific evidence of the medical benefits of passive standing for the immobile user, few individuals have access to these revolutionary wheelchairs. Consequently, it is mandatory that the medical community, headed by specialists in physical and occupational therapy as well as rehabilitation medicine, CRTS, and manufacturers collaborate in a national education campaign to convince Medicare/Medicaid and all commercial insurance companies to approve immediately these assisted technologies. This program is essential so that the physically immobilized patient can achieve the undisputed physical benefits of passive standing.

  12. A Review of Passive RFID Tag Antenna-Based Sensors and Systems for Structural Health Monitoring Applications

    PubMed Central

    Zhang, Jun; Tian, Gui Yun; Marindra, Adi M. J.; Sunny, Ali Imam; Zhao, Ao Bo

    2017-01-01

    In recent few years, the antenna and sensor communities have witnessed a considerable integration of radio frequency identification (RFID) tag antennas and sensors because of the impetus provided by internet of things (IoT) and cyber-physical systems (CPS). Such types of sensor can find potential applications in structural health monitoring (SHM) because of their passive, wireless, simple, compact size, and multimodal nature, particular in large scale infrastructures during their lifecycle. The big data from these ubiquitous sensors are expected to generate a big impact for intelligent monitoring. A remarkable number of scientific papers demonstrate the possibility that objects can be remotely tracked and intelligently monitored for their physical/chemical/mechanical properties and environment conditions. Most of the work focuses on antenna design, and significant information has been generated to demonstrate feasibilities. Further information is needed to gain deep understanding of the passive RFID antenna sensor systems in order to make them reliable and practical. Nevertheless, this information is scattered over much literature. This paper is to comprehensively summarize and clearly highlight the challenges and state-of-the-art methods of passive RFID antenna sensors and systems in terms of sensing and communication from system point of view. Future trends are also discussed. The future research and development in UK are suggested as well. PMID:28146067

  13. A Passive System Reliability Analysis for a Station Blackout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunett, Acacia; Bucknor, Matthew; Grabaskas, David

    2015-05-03

    The latest iterations of advanced reactor designs have included increased reliance on passive safety systems to maintain plant integrity during unplanned sequences. While these systems are advantageous in reducing the reliance on human intervention and availability of power, the phenomenological foundations on which these systems are built require a novel approach to a reliability assessment. Passive systems possess the unique ability to fail functionally without failing physically, a result of their explicit dependency on existing boundary conditions that drive their operating mode and capacity. Argonne National Laboratory is performing ongoing analyses that demonstrate various methodologies for the characterization of passivemore » system reliability within a probabilistic framework. Two reliability analysis techniques are utilized in this work. The first approach, the Reliability Method for Passive Systems, provides a mechanistic technique employing deterministic models and conventional static event trees. The second approach, a simulation-based technique, utilizes discrete dynamic event trees to treat time- dependent phenomena during scenario evolution. For this demonstration analysis, both reliability assessment techniques are used to analyze an extended station blackout in a pool-type sodium fast reactor (SFR) coupled with a reactor cavity cooling system (RCCS). This work demonstrates the entire process of a passive system reliability analysis, including identification of important parameters and failure metrics, treatment of uncertainties and analysis of results.« less

  14. Passive vs. Active Control of Rhythmic Ball Bouncing: The Role of Visual Information

    ERIC Educational Resources Information Center

    Siegler, Isabelle A.; Bardy, Benoit G.; Warren, William H.

    2010-01-01

    The simple task of bouncing a ball on a racket offers a model system for studying how human actors exploit the physics and information of the environment to control their behavior. Previous work shows that people take advantage of a passively stable solution for ball bouncing but can also use perceptual information to actively stabilize bouncing.…

  15. FoCa: a modular treatment planning system for proton radiotherapy with research and educational purposes

    NASA Astrophysics Data System (ADS)

    Sánchez-Parcerisa, D.; Kondrla, M.; Shaindlin, A.; Carabe, A.

    2014-12-01

    FoCa is an in-house modular treatment planning system, developed entirely in MATLAB, which includes forward dose calculation of proton radiotherapy plans in both active and passive modalities as well as a generic optimization suite for inverse treatment planning. The software has a dual education and research purpose. From the educational point of view, it can be an invaluable teaching tool for educating medical physicists, showing the insights of a treatment planning system from a well-known and widely accessible software platform. From the research point of view, its current and potential uses range from the fast calculation of any physical, radiobiological or clinical quantity in a patient CT geometry, to the development of new treatment modalities not yet available in commercial treatment planning systems. The physical models in FoCa were compared with the commissioning data from our institution and show an excellent agreement in depth dose distributions and longitudinal and transversal fluence profiles for both passive scattering and active scanning modalities. 3D dose distributions in phantom and patient geometries were compared with a commercial treatment planning system, yielding a gamma-index pass rate of above 94% (using FoCa’s most accurate algorithm) for all cases considered. Finally, the inverse treatment planning suite was used to produce the first prototype of intensity-modulated, passive-scattered proton therapy, using 13 passive scattering proton fields and multi-leaf modulation to produce a concave dose distribution on a cylindrical solid water phantom without any field-specific compensator.

  16. A hybrid continuous-wave terahertz imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolganova, Irina N., E-mail: in.dolganova@gmail.com; Zaytsev, Kirill I., E-mail: kirzay@gmail.ru; Metelkina, Anna A.

    2015-11-15

    A hybrid (active-passive mode) terahertz (THz) imaging system and an algorithm for imaging synthesis are proposed to enhance the THz image quality. The concept of image contrast is used to compare active and passive THz imaging. Combining the measurement of the self-emitted radiation of the object with the back-scattered source radiation measurement, it becomes possible to use the THz image to retrieve maximum information about the object. The experimental results confirm the advantages of hybrid THz imaging systems, which can be generalized for a wide range of applications in the material sciences, chemical physics, bio-systems, etc.

  17. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection.

    PubMed

    Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang

    2015-12-21

    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate.

  18. WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection †

    PubMed Central

    Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang

    2015-01-01

    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate. PMID:26703612

  19. Passive athermalization: required accuracy of the thermo-optical coefficients

    NASA Astrophysics Data System (ADS)

    Rogers, John R.

    2014-12-01

    Passive athermalization requires that the materials (both optical and mechanical) and optical powers be carefully selected in order for the image to stay adequately in focus at the plane of the detector as the various materials change in physical dimension and refractive index. For a large operational temperature range, the accuracy of the thermo-optical coefficients (dn/dT coefficients and the Coefficients of Thermal Expansion) can limit the performance of the final system. Based on an example lens designed to be passively athermalized over a 200°C temperature range, and using a Monte Carlo analysis technique, we examine the accuracy to which the expansion coefficients and dn/dT coefficients of the system must be known.

  20. Optimization of Wireless Power Transfer Systems Enhanced by Passive Elements and Metasurfaces

    NASA Astrophysics Data System (ADS)

    Lang, Hans-Dieter; Sarris, Costas D.

    2017-10-01

    This paper presents a rigorous optimization technique for wireless power transfer (WPT) systems enhanced by passive elements, ranging from simple reflectors and intermedi- ate relays all the way to general electromagnetic guiding and focusing structures, such as metasurfaces and metamaterials. At its core is a convex semidefinite relaxation formulation of the otherwise nonconvex optimization problem, of which tightness and optimality can be confirmed by a simple test of its solutions. The resulting method is rigorous, versatile, and general -- it does not rely on any assumptions. As shown in various examples, it is able to efficiently and reliably optimize such WPT systems in order to find their physical limitations on performance, optimal operating parameters and inspect their working principles, even for a large number of active transmitters and passive elements.

  1. Lumped versus distributed thermoregulatory control: results from a three-dimensional dynamic model.

    PubMed

    Werner, J; Buse, M; Foegen, A

    1989-01-01

    In this study we use a three-dimensional model of the human thermal system, the spatial grid of which is 0.5 ... 1.0 cm. The model is based on well-known physical heat-transfer equations, and all parameters of the passive system have definite physical values. According to the number of substantially different areas and organs, 54 spatially different values are attributed to each physical parameter. Compatibility of simulation and experiment was achieved solely on the basis of physical considerations and physiological basic data. The equations were solved using a modification of the alternating direction implicit method. On the basis of this complex description of the passive system close to reality, various lumped and distributed parameter control equations were tested for control of metabolic heat production, blood flow and sweat production. The simplest control equations delivering results on closed-loop control compatible with experimental evidence were determined. It was concluded that it is essential to take into account the spatial distribution of heat production, blood flow and sweat production, and that at least for control of shivering, distributed controller gains different from the pattern of distribution of muscle tissue are required. For sweat production this is not so obvious, so that for simulation of sweating control after homogeneous heat load a lumped parameter control may be justified. Based on these conclusions three-dimensional temperature profiles for cold and heat load and the dynamics for changes of the environmental conditions were computed. In view of the exact simulation of the passive system and the compatibility with experimentally attainable variables there is good evidence that those values extrapolated by the simulation are adequately determined. The model may be used both for further analysis of the real thermoregulatory mechanisms and for special applications in environmental and clinical health care.

  2. Active Detection for Exposing Intelligent Attacks in Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weerakkody, Sean; Ozel, Omur; Griffioen, Paul

    In this paper, we consider approaches for detecting integrity attacks carried out by intelligent and resourceful adversaries in control systems. Passive detection techniques are often incorporated to identify malicious behavior. Here, the defender utilizes finely-tuned algorithms to process information and make a binary decision, whether the system is healthy or under attack. We demonstrate that passive detection can be ineffective against adversaries with model knowledge and access to a set of input/output channels. We then propose active detection as a tool to detect attacks. In active detection, the defender leverages degrees of freedom he has in the system to detectmore » the adversary. Specifically, the defender will introduce a physical secret kept hidden from the adversary, which can be utilized to authenticate the dynamics. In this regard, we carefully review two approaches for active detection: physical watermarking at the control input, and a moving target approach for generating system dynamics. We examine practical considerations for implementing these technologies and discuss future research directions.« less

  3. Addition of Passive Dynamics to a Flapping Airfoil to Improve Performance

    NASA Astrophysics Data System (ADS)

    Asselin, Daniel; Young, Jay; Williamson, C. H. K.

    2017-11-01

    Animals which fly or swim typically employ flapping motions of their wings and fins in order to produce thrust and to maneuver. Small, unmanned vehicles might also exploit such motions and are of considerable interest for the purposes of surveillance, environmental monitoring, and search and rescue. Flapping refers to a combination of pitch and heave and has been shown to provide good thrust and efficiency (Read, et al. 2003) when both axes are independently controlled (an Active-Active system). In this study, we examine the performance of an airfoil actuated only in the heave direction but allowed to pitch passively under the control of a torsion spring (an Active-Passive system). The presence of the spring is simulated in software using a force-feedback control system called Cyber-Physical Fluid Dynamics, or CPFD (Mackowski & Williamson 2011, 2015, 2016). Adding passive pitch to active heave provides significantly improved thrust and efficiency compared with heaving alone, especially when the torsion spring stiffness is selected so that the system operates near resonance (in an Active-Passive system). In many cases, values of thrust and efficiency are comparable to or better than those obtained with two actively controlled degrees of freedom. By using carefully-designed passive dynamics in the pitch direction, we can eliminate one of the two actuators, saving cost, complexity, and weight, while maintaining performance. This work was supported by the Air Force Office of Scientific Research Grant No. FA9550-15-1-0243, monitored by Dr. Douglas Smith.

  4. A Methodology for Modeling Nuclear Power Plant Passive Component Aging in Probabilistic Risk Assessment under the Impact of Operating Conditions, Surveillance and Maintenance Activities

    NASA Astrophysics Data System (ADS)

    Guler Yigitoglu, Askin

    In the context of long operation of nuclear power plants (NPPs) (i.e., 60-80 years, and beyond), investigation of the aging of passive systems, structures and components (SSCs) is important to assess safety margins and to decide on reactor life extension as indicated within the U.S. Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) Program. In the traditional probabilistic risk assessment (PRA) methodology, evaluating the potential significance of aging of passive SSCs on plant risk is challenging. Although passive SSC failure rates can be added as initiating event frequencies or basic event failure rates in the traditional event-tree/fault-tree methodology, these failure rates are generally based on generic plant failure data which means that the true state of a specific plant is not reflected in a realistic manner on aging effects. Dynamic PRA methodologies have gained attention recently due to their capability to account for the plant state and thus address the difficulties in the traditional PRA modeling of aging effects of passive components using physics-based models (and also in the modeling of digital instrumentation and control systems). Physics-based models can capture the impact of complex aging processes (e.g., fatigue, stress corrosion cracking, flow-accelerated corrosion, etc.) on SSCs and can be utilized to estimate passive SSC failure rates using realistic NPP data from reactor simulation, as well as considering effects of surveillance and maintenance activities. The objectives of this dissertation are twofold: The development of a methodology for the incorporation of aging modeling of passive SSC into a reactor simulation environment to provide a framework for evaluation of their risk contribution in both the dynamic and traditional PRA; and the demonstration of the methodology through its application to pressurizer surge line pipe weld and steam generator tubes in commercial nuclear power plants. In the proposed methodology, a multi-state physics based model is selected to represent the aging process. The model is modified via sojourn time approach to reflect the operational and maintenance history dependence of the transition rates. Thermal-hydraulic parameters of the model are calculated via the reactor simulation environment and uncertainties associated with both parameters and the models are assessed via a two-loop Monte Carlo approach (Latin hypercube sampling) to propagate input probability distributions through the physical model. The effort documented in this thesis towards this overall objective consists of : i) defining a process for selecting critical passive components and related aging mechanisms, ii) aging model selection, iii) calculating the probability that aging would cause the component to fail, iv) uncertainty/sensitivity analyses, v) procedure development for modifying an existing PRA to accommodate consideration of passive component failures, and, vi) including the calculated failure probability in the modified PRA. The proposed methodology is applied to pressurizer surge line pipe weld aging and steam generator tube degradation in pressurized water reactors.

  5. Energetic Passivity of the Human Ankle Joint.

    PubMed

    Lee, Hyunglae; Hogan, Neville

    2016-12-01

    Understanding the passive or nonpassive behavior of the neuromuscular system is important to design and control robots that physically interact with humans, since it provides quantitative information to secure coupled stability while maximizing performance. This has become more important than ever apace with the increasing demand for robotic technologies in neurorehabilitation. This paper presents a quantitative characterization of passive and nonpassive behavior of the ankle of young healthy subjects, which provides a baseline for future studies in persons with neurological impairments and information for future developments of rehabilitation robots, such as exoskeletal devices and powered prostheses. Measurements using a wearable ankle robot actuating 2 degrees-of-freedom of the ankle combined with curl analysis and passivity analysis enabled characterization of both quasi-static and steady-state dynamic behavior of the ankle, unavailable from single DOF studies. Despite active neuromuscular control over a wide range of muscle activation, in young healthy subjects passive or dissipative ankle behavior predominated.

  6. London 2012 Paralympic swimming: passive drag and the classification system.

    PubMed

    Oh, Yim-Taek; Burkett, Brendan; Osborough, Conor; Formosa, Danielle; Payton, Carl

    2013-09-01

    The key difference between the Olympic and Paralympic Games is the use of classification systems within Paralympic sports to provide a fair competition for athletes with a range of physical disabilities. In 2009, the International Paralympic Committee mandated the development of new, evidence-based classification systems. This study aims to assess objectively the swimming classification system by determining the relationship between passive drag and level of swimming-specific impairment, as defined by the current swimming class. Data were collected on participants at the London 2012 Paralympic Games. The passive drag force of 113 swimmers (classes 3-14) was measured using an electro-mechanical towing device and load cell. Swimmers were towed on the surface of a swimming pool at 1.5 m/s while holding their most streamlined position. Passive drag ranged from 24.9 to 82.8 N; the normalised drag (drag/mass) ranged from 0.45 to 1.86 N/kg. Significant negative associations were found between drag and the swimming class (τ = -0.41, p < 0.01) and normalised drag and the swimming class (τ = -0.60, p < 0.01). The mean difference in drag between adjacent classes was inconsistent, ranging from 0 N (6 vs 7) to 11.9 N (5 vs 6). Reciprocal Ponderal Index (a measure of slenderness) correlated moderately with normalised drag (r(P) = -0.40, p < 0.01). Although swimmers with the lowest swimming class experienced the highest passive drag and vice versa, the inconsistent difference in mean passive drag between adjacent classes indicates that the current classification system does not always differentiate clearly between swimming groups.

  7. The development of differential inductors using double air-bridge structure based on integrated passive device technology

    NASA Astrophysics Data System (ADS)

    Li, Yang; Yao, Zhao; Fu, Xiao-Qian; Li, Zhi-Ming; Shan, Fu-Kai; Wang, Cong

    2017-05-01

    Recently, integrated passive devices have become increasingly popular; inductor realization, in particular, offers interesting high performance for RF modules and systems. In this paper, a development of differential inductor fabricated by integrated passive devices technology using a double air-bridge structure is presented. A study of the model development of the differential inductor is first demonstrated. In this model section, a segment box analysis method is applied to provide a clear presentation of the differential inductor. Compared with other work that only shows a brief description of the process, the integrated passive devices process used to fabricate the inductor in this study is elaborated on. Finally, a characterization of differential inductors with different physical layout parameters is illustrated based on inductance and quality factors, which provides a valuable reference for realizing high performance. The proposed work provides a good solution for the design, fabrication and practical application of RF modules and systems.

  8. Passive Optical Link Budget for LEO Space Surveillance

    NASA Astrophysics Data System (ADS)

    Wagner, P.; Hasenohr, T.; Hampf, D.; Sproll, F.; Humbert, L.; Rodmann, J.; Riede, W.

    The rising space debris population is becoming an increasing risk for space assets. Even objects with the size of 10mm can cause major damages to active spacecraft. Especially the orbits around 800km high are densely populated with space debris objects. To assess the risk of collisions with active satellites, the Earth orbits need to be surveyed permanently. Space debris laser ranging systems for example can deliver highly accurate positional data for precise orbit determination. Therefor a priori information about the objects coarse trajectory is needed. Such initial orbit information can be provided by wide angle optical sensors. The Institute of Technical Physics at the German Aerospace Center in Stuttgart runs an observatory to perform passive as well as laser optical measurements to LEO objects. In order to detect unknown objects, a wide-angle imaging system with a field of view in the range of 5° to 15° equipped with an astronomical CCD camera and a commercial off the shelf (COTS) lens was designed to continuously observe the night sky for LEO objects. This paper presents the passive optical link budget for observing LEO objects to show the benefits and limits of the physical performance of an optical surveillance system. A compact COTS system is able to detect objects with a couple of decimeters in size while a large aperture telescope can detect objects with diameters below 10cm. Additionally, data captured by a passive optical staring system with a 10 cm aperture was analyzed. It is shown that 90% of all objects with a radar cross section larger than 2m² are detected with such a system during twilight conditions. The smallest detected LEO object with this system has a size of 0.32m x 0.32m x 0.26m. These measurements are compared to the developed link budget which allows an estimation of the performance of larger systems.

  9. A new passive radon-thoron discriminative measurement system.

    PubMed

    Sciocchetti, G; Sciocchetti, A; Giovannoli, P; DeFelice, P; Cardellini, F; Cotellessa, G; Pagliari, M

    2010-10-01

    A new passive radon-thoron discriminative measurement system has been developed for monitoring radon and thoron individually. It consists of a 'couple' of passive integrating devices with a CR39 nuclear track detector (NTD). The experimental prototype is based on the application of a new concept of NTD instrument developed at ENEA, named Alpha-PREM, acronym of piston radon exposure meter, which allows controlling the detector exposure with a patented sampling technique (Int. Eu. Pat. and US Pat.). The 'twin diffusion chambers system' was based on two A-PREM devices consisting of the standard device, named NTD-Rn, and a modified version, named NTD-Rn/Tn, which was set up to improve thoron sampling efficiency of the diffusion chamber, without changing the geometry and the start/stop function of the NTD-Rn device. Coupling devices fitted on each device allowed getting a system, which works as a double-chamber structure when deployed at the monitoring position. In this paper both technical and physical aspects are considered.

  10. Cloud and aerosol studies using combined CPL and MAS data

    NASA Astrophysics Data System (ADS)

    Vaughan, Mark A.; Rodier, Sharon; Hu, Yongxiang; McGill, Matthew J.; Holz, Robert E.

    2004-11-01

    Current uncertainties in the role of aerosols and clouds in the Earth's climate system limit our abilities to model the climate system and predict climate change. These limitations are due primarily to difficulties of adequately measuring aerosols and clouds on a global scale. The A-train satellites (Aqua, CALIPSO, CloudSat, PARASOL, and Aura) will provide an unprecedented opportunity to address these uncertainties. The various active and passive sensors of the A-train will use a variety of measurement techniques to provide comprehensive observations of the multi-dimensional properties of clouds and aerosols. However, to fully achieve the potential of this ensemble requires a robust data analysis framework to optimally and efficiently map these individual measurements into a comprehensive set of cloud and aerosol physical properties. In this work we introduce the Multi-Instrument Data Analysis and Synthesis (MIDAS) project, whose goal is to develop a suite of physically sound and computationally efficient algorithms that will combine active and passive remote sensing data in order to produce improved assessments of aerosol and cloud radiative and microphysical properties. These algorithms include (a) the development of an intelligent feature detection algorithm that combines inputs from both active and passive sensors, and (b) identifying recognizable multi-instrument signatures related to aerosol and cloud type derived from clusters of image pixels and the associated vertical profile information. Classification of these signatures will lead to the automated identification of aerosol and cloud types. Testing of these new algorithms is done using currently existing and readily available active and passive measurements from the Cloud Physics Lidar and the MODIS Airborne Simulator, which simulate, respectively, the CALIPSO and MODIS A-train instruments.

  11. Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection

    NASA Technical Reports Server (NTRS)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.

  12. Chemical and physical passivation of type II strained-layer superlattice devices by means of thiolated self-assembled monolayers and polymer encapsulates

    NASA Astrophysics Data System (ADS)

    Henry, Nathan C.; Knorr, Daniel B.; Williams, Kristen S.; Baril, Neil; Nallon, Eric; Lenhart, Joseph L.; Andzelm, Jan W.; Pellegrino, Joseph; Tidrow, Meimei; Cleveland, Erin; Bandara, Sumith

    2015-05-01

    The efficacy of solution deposition of thiolated self-assembled monolayers (SAMs) has been explored for the purpose of passivating III-V type II superlattice (T2SL) photodetectors, more specifically a p-type heterojunction device. Sulfur passivation has previously been achieved on T2SL devices. However, degradation over time, temperature sensitivity and inconsistent reproducibility necessitate a physical encapsulate that can chemically bond to the chemical passivant. Thus, this research investigates two passivation methods, surface passivation with a thiol monolayer and passivation with a polymer encapsulant with a view toward future combination of these techniques. Analysis of the physical and chemical condition of the surface prior to deposition assisted in the development of ideal processes for optimized film quality. Successful deposition was facilitated by in situ oxide removal. Various commercially available functional (cysteamine) and non-functional (alkane) thiolated monolayers were investigated. Dark current was reduced by 3 orders of magnitude and achieved negligible surface leakage at low bias levels. The lowest dark current result, 7.69 × 10-6 A/cm2 at 50 mV, was achieved through passivation with cysteamine.

  13. Investigations of Physical Processes in Microgravity Relevant to Space Electrochemical Power Systems

    NASA Technical Reports Server (NTRS)

    Lvovich, Vadim F.; Green, Robert; Jakupca, Ian

    2015-01-01

    NASA has performed physical science microgravity flight experiments in the areas of combustion science, fluid physics, material science and fundamental physics research on the International Space Station (ISS) since 2001. The orbital conditions on the ISS provide an environment where gravity driven phenomena, such as buoyant convection, are nearly negligible. Gravity strongly affects fluid behavior by creating forces that drive motion, shape phase boundaries and compress gases. The need for a better understanding of fluid physics has created a vigorous, multidisciplinary research community whose ongoing vitality is marked by the continuous emergence of new fields in both basic and applied science. In particular, the low-gravity environment offers a unique opportunity for the study of fluid physics and transport phenomena that are very relevant to management of fluid - gas separations in fuel cell and electrolysis systems. Experiments conducted in space have yielded rich results. These results provided valuable insights into fundamental fluid and gas phase behavior that apply to space environments and could not be observed in Earth-based labs. As an example, recent capillary flow results have discovered both an unexpected sensitivity to symmetric geometries associated with fluid container shape, and identified key regime maps for design of corner or wedge-shaped passive gas-liquid phase separators. In this presentation we will also briefly review some of physical science related to flight experiments, such as boiling, that have applicability to electrochemical systems, along with ground-based (drop tower, low gravity aircraft) microgravity electrochemical research. These same buoyancy and interfacial phenomena effects will apply to electrochemical power and energy storage systems that perform two-phase separation, such as water-oxygen separation in life support electrolysis, and primary space power generation devices such as passive primary fuel cell.

  14. Scale Model Test and Transient Analysis of Steam Injector Driven Passive Core Injection System for Innovative-Simplified Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Ohmori, Shuichi; Narabayashi, Tadashi; Mori, Michitsugu

    A steam injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to serve also as a direct-contact feed-water heater that heats up feed-water by using extracted steam from turbine. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying "high-efficiency SI", which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feed-water heaters and emergency core cooling system of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a severe accident-free concept). This paper describes the results of the scale model test, and the transient analysis of SI-driven passive core injection system (PCIS).

  15. Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal

    NASA Astrophysics Data System (ADS)

    Liu, Tuo; Zhu, Xuefeng; Chen, Fei; Liang, Shanjun; Zhu, Jie

    2018-03-01

    Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum. This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on general parity-time symmetry physics and further reveals the unique functionalities enabled by the judiciously tailored unidirectional wave vectors in space.

  16. Comparison electrical stimulation and passive stretching for blood glucose control type 2 diabetes mellitus patients

    NASA Astrophysics Data System (ADS)

    Arsianti, Rika Wahyuni; Parman, Dewy Haryanti; Lesmana, Hendy

    2018-04-01

    Physical exercise is one of the cornerstones for management and treatment type 2 diabetes mellitus. But not all people are able to perform physical exercise because of their physical limitation condition. The strategy for those people in this study is electrical stimulation and passive stretching. The aim of this study is to find out the effect of electrical stimulation and passive stretching to lowering blood glucose level. 20 subjects is divided into electrical stimulation and passive stretching group. The provision of electrical stimulation on lower extremities muscles for 30 minutes for electrical stimulation group (N=10). And other underwent passive stretching for 30 minutes (N=10). The result shows that blood glucose level is decrease from 192.9 ± 10.7087 mg/dL to 165.3 ± 10.527 mg/dL for electrical stimulation intervention group while for the passive stretching group the blood glucose decrease from 153 ± 12.468 mg/dL to 136.1 ± 12.346 mg/dL. Both electrical stimulation and passive stretching are effective to lowering blood glucose level and can be proposed for those people restricted to perform exercise.

  17. Physics validation for design change of KSTAR passive stabilizer

    NASA Astrophysics Data System (ADS)

    Jeon, Y. M.; Kim, J. Y.; Oh, Y. K.; Yang, H. L.; Kim, W. C.; Kim, H. K.; Sabbagh, S. A.; Bialek, J. M.; Humphreys, D. A.; Welander, A. S.; Walker, M. L.

    2009-11-01

    Recently, the design of the passive stabilizer in KSTAR has been changed to improve controllability of the active control system and reduce the possibility of producing an additional error field. Originally the passive stabilizer in KSTAR was designed for RWM and vertical instability (or VDE) stabilizations and plasma startup efficiency, so that current bridges were designed and combined through 3D saddle-loop connections. Since the key design change is removing the current bridges, it's essential to assure satisfactory control performance for these instabilities under the design change. Control capability for n=1 RWM and achievable βN will be addressed as a primary goal of the passive stabilizer together with vertical instability control and effects on plasma startup. In addition, the changes in electro-magnetic force on conducting structures will be discussed qualitatively as a key engineering issue of the design change.

  18. Physically secured orthogonal frequency division multiplexing-passive optical network employing noise-based encryption and signal recovery process

    NASA Astrophysics Data System (ADS)

    Jin, Wei; Zhang, Chongfu; Yuan, Weicheng

    2016-02-01

    We propose a physically enhanced secure scheme for direct detection-orthogonal frequency division multiplexing-passive optical network (DD-OFDM-PON) and long reach coherent detection-orthogonal frequency division multiplexing-passive optical network (LRCO-OFDM-PON), by employing noise-based encryption and channel/phase estimation. The noise data generated by chaos mapping are used to substitute training sequences in preamble to realize channel estimation and frame synchronization, and also to be embedded on variable number of key-selected randomly spaced pilot subcarriers to implement phase estimation. Consequently, the information used for signal recovery is totally hidden as unpredictable noise information in OFDM frames to mask useful information and to prevent illegal users from correctly realizing OFDM demodulation, and thereby enhancing resistance to attackers. The levels of illegal-decryption complexity and implementation complexity are theoretically discussed. Through extensive simulations, the performances of the proposed channel/phase estimation and the security introduced by encrypted pilot carriers have been investigated in both DD-OFDM and LRCO-OFDM systems. In addition, in the proposed secure DD-OFDM/LRCO-OFDM PON models, both legal and illegal receiving scenarios have been considered. These results show that, by utilizing the proposed scheme, the resistance to attackers can be significantly enhanced in DD-OFDM-PON and LRCO-OFDM-PON systems without performance degradations.

  19. Sensitivity of Support Vector Machine Predictions of Passive Microwave Brightness Temperature Over Snow-covered Terrain in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    Ahmad, J. A.; Forman, B. A.

    2017-12-01

    High Mountain Asia (HMA) serves as a water supply source for over 1.3 billion people, primarily in south-east Asia. Most of this water originates as snow (or ice) that melts during the summer months and contributes to the run-off downstream. In spite of its critical role, there is still considerable uncertainty regarding the total amount of snow in HMA and its spatial and temporal variation. In this study, the NASA Land Information Systems (LIS) is used to model the hydrologic cycle over the Indus basin. In addition, the ability of support vector machines (SVM), a machine learning technique, to predict passive microwave brightness temperatures at a specific frequency and polarization as a function of LIS-derived land surface model output is explored in a sensitivity analysis. Multi-frequency, multi-polarization passive microwave brightness temperatures as measured by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over the Indus basin are used as training targets during the SVM training process. Normalized sensitivity coefficients (NSC) are then computed to assess the sensitivity of a well-trained SVM to each LIS-derived state variable. Preliminary results conform with the known first-order physics. For example, input states directly linked to physical temperature like snow temperature, air temperature, and vegetation temperature have positive NSC's whereas input states that increase volume scattering such as snow water equivalent or snow density yield negative NSC's. Air temperature exhibits the largest sensitivity coefficients due to its inherent, high-frequency variability. Adherence of this machine learning algorithm to the first-order physics bodes well for its potential use in LIS as the observation operator within a radiance data assimilation system aimed at improving regional- and continental-scale snow estimates.

  20. Irma 5.2 multi-sensor signature prediction model

    NASA Astrophysics Data System (ADS)

    Savage, James; Coker, Charles; Thai, Bea; Aboutalib, Omar; Chow, Anthony; Yamaoka, Neil; Kim, Charles

    2007-04-01

    The Irma synthetic signature prediction code is being developed by the Munitions Directorate of the Air Force Research Laboratory (AFRL/MN) to facilitate the research and development of multi-sensor systems. There are over 130 users within the Department of Defense, NASA, Department of Transportation, academia, and industry. Irma began as a high-resolution, physics-based Infrared (IR) target and background signature model for tactical weapon applications and has grown to include: a laser (or active) channel (1990), improved scene generator to support correlated frame-to-frame imagery (1992), and passive IR/millimeter wave (MMW) channel for a co-registered active/passive IR/MMW model (1994). Irma version 5.0 was released in 2000 and encompassed several upgrades to both the physical models and software; host support was expanded to Windows, Linux, Solaris, and SGI Irix platforms. In 2005, version 5.1 was released after an extensive verification and validation of an upgraded and reengineered active channel. Since 2005, the reengineering effort has focused on the Irma passive channel. Field measurements for the validation effort include the unpolarized data collection. Irma 5.2 is scheduled for release in the summer of 2007. This paper will report the validation test results of the Irma passive models and discuss the new features in Irma 5.2.

  1. Performance of active and passive control of an airfoil using CPFD

    NASA Astrophysics Data System (ADS)

    Asselin, Daniel; Young, Jay; Williamson, C. H. K.

    2016-11-01

    Birds and fish employ flapping motions of their wings and fins in order to produce thrust and maneuver in flight and underwater. There is considerable interest in designing aerial and submersible systems that mimic these motions for the purposes of surveillance, environmental monitoring, and search and rescue, among other applications. Flapping motions are typically composed of combined pitch and heave and can provide good thrust and efficiency (Read, et al. 2003). In this study, we examine the performance of an airfoil actuated only in the heave direction. Using a cyber-physical fluid dynamics system (Mackowski & Williamson 2011, 2015, 2016), we simulate the presence of a torsion spring to enable the airfoil to undergo a passively controlled pitching motion. The addition of passive pitching combined with active heaving ("Active-Passive" or AP) provides significantly improved thrust and efficiency compared with heaving alone. In many cases, values of thrust and efficiency are comparable to or better than those obtained with two actively controlled degrees of freedom ("Active-Active" or AA). By using carefully-designed passive dynamics in the pitch direction, we can eliminate one of the two actuators, saving cost, complexity, and weight, while maintaining or improving performance. This work was supported by the Air Force Office of Scientific Research Grant No. FA9550-15-1-0243, monitored by Dr. Douglas Smith.

  2. Methodology for the Incorporation of Passive Component Aging Modeling into the RAVEN/ RELAP-7 Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandelli, Diego; Rabiti, Cristian; Cogliati, Joshua

    2014-11-01

    Passive system, structure and components (SSCs) will degrade over their operation life and this degradation may cause to reduction in the safety margins of a nuclear power plant. In traditional probabilistic risk assessment (PRA) using the event-tree/fault-tree methodology, passive SSC failure rates are generally based on generic plant failure data and the true state of a specific plant is not reflected realistically. To address aging effects of passive SSCs in the traditional PRA methodology [1] does consider physics based models that account for the operating conditions in the plant, however, [1] does not include effects of surveillance/inspection. This paper representsmore » an overall methodology for the incorporation of aging modeling of passive components into the RAVEN/RELAP-7 environment which provides a framework for performing dynamic PRA. Dynamic PRA allows consideration of both epistemic and aleatory uncertainties (including those associated with maintenance activities) in a consistent phenomenological and probabilistic framework and is often needed when there is complex process/hardware/software/firmware/ human interaction [2]. Dynamic PRA has gained attention recently due to difficulties in the traditional PRA modeling of aging effects of passive components using physics based models and also in the modeling of digital instrumentation and control systems. RAVEN (Reactor Analysis and Virtual control Environment) [3] is a software package under development at the Idaho National Laboratory (INL) as an online control logic driver and post-processing tool. It is coupled to the plant transient code RELAP-7 (Reactor Excursion and Leak Analysis Program) also currently under development at INL [3], as well as RELAP 5 [4]. The overall methodology aims to: • Address multiple aging mechanisms involving large number of components in a computational feasible manner where sequencing of events is conditioned on the physical conditions predicted in a simulation environment such as RELAP-7. • Identify the risk-significant passive components, their failure modes and anticipated rates of degradation • Incorporate surveillance and maintenance activities and their effects into the plant state and into component aging progress. • Asses aging affects in a dynamic simulation environment 1. C. L. SMITH, V. N. SHAH, T. KAO, G. APOSTOLAKIS, “Incorporating Ageing Effects into Probabilistic Risk Assessment –A Feasibility Study Utilizing Reliability Physics Models,” NUREG/CR-5632, USNRC, (2001). 2. T. ALDEMIR, “A Survey of Dynamic Methodologies for Probabilistic Safety Assessment of Nuclear Power Plants, Annals of Nuclear Energy, 52, 113-124, (2013). 3. C. RABITI, A. ALFONSI, J. COGLIATI, D. MANDELLI and R. KINOSHITA “Reactor Analysis and Virtual Control Environment (RAVEN) FY12 Report,” INL/EXT-12-27351, (2012). 4. D. ANDERS et.al, "RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7," INL/EXT-12-25924, (2012).« less

  3. Screen time and passive school travel as independent predictors of cardiorespiratory fitness in youth.

    PubMed

    Sandercock, Gavin R H; Ogunleye, Ayodele A

    2012-05-01

    The most prevalent sedentary behaviours in children and adolescents are engagement with small screen media (screen-time) and passive travel (by motorised vehicle). The objective of this research was to assess the independence of these behaviours from one another and from physical activity as predictors of cardiorespiratory fitness in youth. We measured cardiorespiratory fitness in n=6819 10-16 year olds (53% male) who self-reported their physical activity (7-day recall) school travel and screen time habits. Travel was classified as active (walking, cycling) or passive; screen time as <2 h, 2-4 h or >4 h. The multivariate odds of being fit were higher in active travel (Boys: OR 1.32, 95% CI: 1.09-1.59; Girls: OR 1.46, 1.15-1.84) than in passive travel groups. Boys reporting low screen time were more likely to be fit than those reporting >4 h (OR 2.11, 95% CI: 1.68-2.63) as were girls (OR 1.66, 95% CI: 1.24-2.20). These odds remained significant after additionally controlling for physical activity. Passive travel and high screen time are independently associated with poor cardiorespiratory fitness in youth, and this relationship is independent of physical activity levels. A lifestyle involving high screen time and habitual passive school travel appears incompatible with healthful levels of cardiorespiratory fitness in youth. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Achieving bifunctional cloak via combination of passive and active schemes

    NASA Astrophysics Data System (ADS)

    Lan, Chuwen; Bi, Ke; Gao, Zehua; Li, Bo; Zhou, Ji

    2016-11-01

    In this study, a simple and delicate approach to realizing manipulation of multi-physics field simultaneously through combination of passive and active schemes is proposed. In the design, one physical field is manipulated with passive scheme while the other with active scheme. As a proof of this concept, a bifunctional device is designed and fabricated to behave as electric and thermal invisibility cloak simultaneously. It is found that the experimental results are consistent with the simulated ones well, confirming the feasibility of our method. Furthermore, the proposed method could also be extended to other multi-physics fields, which might lead to potential applications in thermal, electric, and acoustic areas.

  5. Use of a parallel artificial membrane system to evaluate passive absorption and elimination in small fish.

    PubMed

    Kwon, Jung-Hwan; Katz, Lynn E; Liljestrand, Howard M

    2006-12-01

    A parallel artificial lipid membrane system was developed to mimic passive mass transfer of hydrophobic organic chemicals in fish. In this physical model system, a membrane filter-supported lipid bilayer separates two aqueous phases that represent the external and internal aqueous environments of fish. To predict bioconcentration kinetics in small fish with this system, literature absorption and elimination rates were analyzed with an allometric diffusion model to quantify the mass transfer resistances in the aqueous and lipid phases of fish. The effect of the aqueous phase mass transfer resistance was controlled by adjusting stirring intensity to mimic bioconcentration rates in small fish. Twenty-three simple aromatic hydrocarbons were chosen as model compounds for purposes of evaluation. For most of the selected chemicals, literature absorption/elimination rates fall into the range predicted from measured membrane permeabilities and elimination rates of the selected chemicals determined by the diffusion model system.

  6. Development of chip passivated monolithic complementary MISFET circuits with beam leads

    NASA Technical Reports Server (NTRS)

    Ragonese, L. J.; Kim, M. J.; Corrie, B. L.; Brouillette, J. W.; Warr, R. E.

    1972-01-01

    The results are presented of a program to demonstrate the processes for fabricating complementary MISFET beam-leaded circuits, which, potentially, are comparable in quality to available bipolar beam-lead chips that use silicon nitride passivation in conjunction with a platinum-titanium-gold metal system. Materials and techniques, different from the bipolar case, were used in order to be more compatible with the special requirements of fully passivated complementary MISFET devices. Two types of circuits were designed and fabricated, a D-flip-flop and a three-input NOR/NAND gate. Fifty beam-leaded chips of each type were constructed. A quality and reliability assurance program was performed to identify failure mechanisms. Sample tests and inspections (including destructive) were developed to measure the physical characteristics of the circuits.

  7. Bounds on Herglotz functions and fundamental limits of broadband passive quasistatic cloaking

    NASA Astrophysics Data System (ADS)

    Cassier, Maxence; Milton, Graeme W.

    2017-07-01

    Using a sum rule, we derive new bounds on Herglotz functions that generalize those given in Bernland et al. [J. Phys. A: Math. Theor. 44(14), 145205 (2011)] and Gustafsson and Sjöberg [New J. Phys. 12(4), 043046 (2010)]. These bounds apply to a wide class of linear passive systems such as electromagnetic passive materials. Among these bounds, we describe the optimal ones and also discuss their meaning in various physical situations like in the case of a transparency window, where we exhibit sharp bounds. Then, we apply these bounds in the context of broadband passive cloaking in the quasistatic regime to refute the following challenging question: is it possible to construct a passive cloaking device that cloaks an object over a whole frequency band? Our rigorous approach, although limited to quasistatics, gives quantitative limitations on the cloaking effect over a finite frequency range by providing inequalities on the polarizability tensor associated with the cloaking device. We emphasize that our results hold for a cloak or object of any geometrical shape.

  8. Phantom-based interactive simulation system for dental treatment training.

    PubMed

    Sae-Kee, Bundit; Riener, Robert; Frey, Martin; Pröll, Thomas; Burgkart, Rainer

    2004-01-01

    In this paper, we propose a new interactive simulation system for dental treatment training. The system comprises a virtual reality environment and a force-torque measuring device to enhance the capabilities of a passive phantom of tooth anatomy in dental treatment training processes. The measuring device is connected to the phantom, and provides essential input data for generating the graphic animations of physical behaviors such as drilling and bleeding. The animation methods of those physical behaviors are also presented. This system is not only able to enhance interactivity and accessibility of the training system compared to conventional methods but it also provides possibilities of recording, evaluating, and verifying the training results.

  9. Coherent optical monolithic phased-array antenna steering system

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1994-01-01

    An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.

  10. Hybrid Active-Passive Systems for Control of Aircraft Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, Chris R.; Palumbo, Dan (Technical Monitor)

    2002-01-01

    It was proposed to continue with development and application in the two active-passive areas of Active Tuned Vibration Absorbers (ATVA) and smart foam applied to the reduction of interior noise in aircraft. In general the work was focused on making both techniques more efficient, practical and robust thus increasing their application potential. The work was also concerned with demonstrating the potential of these two technologies under realistic implementations as well as understanding the fundamental physics of the systems. The proposed work consisted of a three-year program and was tightly coordinated with related work being carried out in the Structural Acoustics Branch at NASA LaRC. The work was supervised and coordinated through all phases by Prof Chris Fuller of Va Tech.

  11. A non-imaging polarized terahertz passive system for detecting and identifying concealed explosives

    NASA Astrophysics Data System (ADS)

    Karam, Mostafa A.; Meyer, Doug

    2011-06-01

    Existing terahertz THz systems for detecting concealed explosives are not capable of identifying explosive type which leads to higher false alarm rates. Moreover, some of those systems are imaging systems that invade personal privacy, and require more processing and computational resources. Other systems have no polarization preference which makes them incapable of capturing the geometric features of an explosive. In this study a non-imaging polarized THz passive system for detecting and identifying concealed explosives overcoming the forgoing shortcomings is developed. The system employs a polarized passive THz sensor in acquiring emitted data from a scene that may have concealed explosives. The acquired data are decomposed into their natural resonance frequencies, and the number of those frequencies is used as criteria in detecting the explosive presence. If the presence of an explosive is confirmed, a set of physically based retrieval algorithms is used in extracting the explosive dielectric constant/refractive index value from natural resonance frequencies and amplitudes of associated signals. Comparing the refractive index value against a database of refractive indexes of known explosives identifies the explosive type. As an application, a system having a dual polarized radiometer operating within the frequency band of 0.62- 0.82 THz is presented and used in detecting and identifying person borne C-4 explosive concealed under a cotton garment. The system showed higher efficiencies in detecting and identifying the explosive.

  12. Physics of muscle contraction

    NASA Astrophysics Data System (ADS)

    Caruel, M.; Truskinovsky, L.

    2018-03-01

    In this paper we report, clarify and broaden various recent efforts to complement the chemistry-centered models of force generation in (skeletal) muscles by mechanics-centered models. The physical mechanisms of interest can be grouped into two classes: passive and active. The main passive effect is the fast force recovery which does not require the detachment of myosin cross-bridges from actin filaments and can operate without a specialized supply of metabolic fuel (ATP). In mechanical terms, it can be viewed as a collective folding-unfolding phenomenon in the system of interacting bi-stable units and modeled by near equilibrium Langevin dynamics. The active force generation mechanism operates at slow time scales, requires detachment and is crucially dependent on ATP hydrolysis. The underlying mechanical processes take place far from equilibrium and are represented by stochastic models with broken time reversal symmetry implying non-potentiality, correlated noise or multiple reservoirs. The modeling approaches reviewed in this paper deal with both active and passive processes and support from the mechanical perspective the biological point of view that phenomena involved in slow (active) and fast (passive) force generation are tightly intertwined. They reveal, however, that biochemical studies in solution, macroscopic physiological measurements and structural analysis do not provide by themselves all the necessary insights into the functioning of the organized contractile system. In particular, the reviewed body of work emphasizes the important role of long-range interactions and criticality in securing the targeted mechanical response in the physiological regime of isometric contractions. The importance of the purely mechanical micro-scale modeling is accentuated at the end of the paper where we address the puzzling issue of the stability of muscle response on the so called ‘descending limb’ of the isometric tetanus.

  13. Physics of muscle contraction.

    PubMed

    Caruel, M; Truskinovsky, L

    2018-03-01

    In this paper we report, clarify and broaden various recent efforts to complement the chemistry-centered models of force generation in (skeletal) muscles by mechanics-centered models. The physical mechanisms of interest can be grouped into two classes: passive and active. The main passive effect is the fast force recovery which does not require the detachment of myosin cross-bridges from actin filaments and can operate without a specialized supply of metabolic fuel (ATP). In mechanical terms, it can be viewed as a collective folding-unfolding phenomenon in the system of interacting bi-stable units and modeled by near equilibrium Langevin dynamics. The active force generation mechanism operates at slow time scales, requires detachment and is crucially dependent on ATP hydrolysis. The underlying mechanical processes take place far from equilibrium and are represented by stochastic models with broken time reversal symmetry implying non-potentiality, correlated noise or multiple reservoirs. The modeling approaches reviewed in this paper deal with both active and passive processes and support from the mechanical perspective the biological point of view that phenomena involved in slow (active) and fast (passive) force generation are tightly intertwined. They reveal, however, that biochemical studies in solution, macroscopic physiological measurements and structural analysis do not provide by themselves all the necessary insights into the functioning of the organized contractile system. In particular, the reviewed body of work emphasizes the important role of long-range interactions and criticality in securing the targeted mechanical response in the physiological regime of isometric contractions. The importance of the purely mechanical micro-scale modeling is accentuated at the end of the paper where we address the puzzling issue of the stability of muscle response on the so called 'descending limb' of the isometric tetanus.

  14. Mechanical catalysis on the centimetre scale

    PubMed Central

    Miyashita, Shuhei; Audretsch, Christof; Nagy, Zoltán; Füchslin, Rudolf M.; Pfeifer, Rolf

    2015-01-01

    Enzymes play important roles in catalysing biochemical transaction paths, acting as logical machines through the morphology of the processes. A key challenge in elucidating the nature of these systems, and for engineering manufacturing methods inspired by biochemical reactions, is to attain a comprehensive understanding of the stereochemical ground rules of enzymatic reactions. Here, we present a model of catalysis that can be performed magnetically by centimetre-sized passive floating units. The designed system, which is equipped with permanent magnets only, passively obeys the local causalities imposed by magnetic interactions, albeit it shows a spatial behaviour and an energy profile analogous to those of biochemical enzymes. In this process, the enzyme units trigger physical conformation changes of the target by levelling out the magnetic potential barrier (activation potential) to a funnel type and, thus, induce cascading conformation changes of the targeted substrate units reacting in parallel. The inhibitor units, conversely, suppress such changes by increasing the potential. Because the model is purely mechanical and established on a physics basis in the absence of turbulence, each performance can be explained by the morphology of the unit, extending the definition of catalysis to systems of alternative scales. PMID:25652461

  15. Mechanical catalysis on the centimetre scale.

    PubMed

    Miyashita, Shuhei; Audretsch, Christof; Nagy, Zoltán; Füchslin, Rudolf M; Pfeifer, Rolf

    2015-03-06

    Enzymes play important roles in catalysing biochemical transaction paths, acting as logical machines through the morphology of the processes. A key challenge in elucidating the nature of these systems, and for engineering manufacturing methods inspired by biochemical reactions, is to attain a comprehensive understanding of the stereochemical ground rules of enzymatic reactions. Here, we present a model of catalysis that can be performed magnetically by centimetre-sized passive floating units. The designed system, which is equipped with permanent magnets only, passively obeys the local causalities imposed by magnetic interactions, albeit it shows a spatial behaviour and an energy profile analogous to those of biochemical enzymes. In this process, the enzyme units trigger physical conformation changes of the target by levelling out the magnetic potential barrier (activation potential) to a funnel type and, thus, induce cascading conformation changes of the targeted substrate units reacting in parallel. The inhibitor units, conversely, suppress such changes by increasing the potential. Because the model is purely mechanical and established on a physics basis in the absence of turbulence, each performance can be explained by the morphology of the unit, extending the definition of catalysis to systems of alternative scales.

  16. Physical criteria for the interface passivation layer in hydrogenated amorphous/crystalline silicon heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Wang, Guanghong; Diao, Hongwei; Wang, Wenjing

    2018-01-01

    AFORS-HET (automat for simulation of heterostructures) simulation was utilized to explore the physical criteria for the passivation layer in hydrogenated amorphous/crystalline silicon heterojunction (SHJ) solar cells, by systematically investigating the solar cell current density-voltage (J-V) performance as a function of the interface defect density (D it) at the passivation layer/c-Si hetero-interface, the thickness (t) of the passivation layer, the bandgap (E g) of the passivation layer, and the density of dangling bond states (D db)/band tail states (D bt) in the band gap of the passivation layer. The corresponding impact regulations were presented clearly. Except for D it, the impacts of D db, D bt and E g are strongly dependent on the passivation layer thickness t. While t is smaller than 4-5 nm, the solar cell performance is less sensitive to the variation of D db, D bt and E g. Low D it at the a-Si:H/c-Si interface and small thickness t are the critical criteria for the passivation layer in such a case. However, if t has to be relatively larger, the microstructure, i.e. the material quality, including D db, D bt and E g, of the passivation layer should be controlled carefully. The mechanisms involved were analyzed and some applicable methods to prepare the passivation layer were proposed.

  17. Preliminary design of a simple passive toe exercise apparatus with a flexible metal hydride actuator for pressure ulcer prevention.

    PubMed

    Ino, Shuichi; Sato, Mitsuru; Hosono, Minako; Nakajima, Sawako; Yamashita, Kazuhiko; Izumi, Takashi

    2010-01-01

    In an aging society, social demands for home-based rehabilitation and assistive technologies by healthcare and welfare services are globally increasing. The progress of quality-of-life technologies and rehabilitation science is a very important and urgent issue for elderly and disabled individuals as well as for their caregivers. Thus, there is a substantial need to develop simple bedside apparatuses for both continuous exercise of joints and for power assistance for standing to prevent and manage disuse syndromes (e.g., pressure ulcers, joint contractures and muscular atrophy). Unfortunately, there are currently no commercially-available actuators compatible with the human requirements of flexibility, quietness, lightness and a high power-to-weight ratio. To fulfill the above demands, we have developed a novel actuation device using a metal hydride (MH) alloy and a laminate film, called the flexible MH actuator, as a human-friendly force generator for healthcare and welfare services. In this paper, we show the basic structure and characteristics of the flexible MH actuator used to create a passive exercise system for preventing disuse syndromes. To evaluate the efficiency of passive exercise for bedsore prevention, subcutaneous blood flow during passive exercise at common pressure-ulcer sites is measured by a laser blood flow meter. The force and range-of-motion angle required for a passive exercise apparatus is also examined with the help of a professional physical therapist. Based on these findings, a prototype of a passive exercise apparatus is fabricated using the flexible MH actuator technology, and its operation characteristics are preliminarily verified using a thermoelectric control system.

  18. Simulation of snow and soil water content as a basis for satellite retrievals

    USDA-ARS?s Scientific Manuscript database

    It is not yet possible to determine whether the snow has changed over time despite collection of passive microwave data for more than thirty years. Physically-based, but computationally simple snow and soil models have been coupled to form the basis of a data assimilation system for retrievals of sn...

  19. Continuous system modeling

    NASA Technical Reports Server (NTRS)

    Cellier, Francois E.

    1991-01-01

    A comprehensive and systematic introduction is presented for the concepts associated with 'modeling', involving the transition from a physical system down to an abstract description of that system in the form of a set of differential and/or difference equations, and basing its treatment of modeling on the mathematics of dynamical systems. Attention is given to the principles of passive electrical circuit modeling, planar mechanical systems modeling, hierarchical modular modeling of continuous systems, and bond-graph modeling. Also discussed are modeling in equilibrium thermodynamics, population dynamics, and system dynamics, inductive reasoning, artificial neural networks, and automated model synthesis.

  20. Assimilation of a knowledge base and physical models to reduce errors in passive-microwave classifications of sea ice

    NASA Technical Reports Server (NTRS)

    Maslanik, J. A.; Key, J.

    1992-01-01

    An expert system framework has been developed to classify sea ice types using satellite passive microwave data, an operational classification algorithm, spatial and temporal information, ice types estimated from a dynamic-thermodynamic model, output from a neural network that detects the onset of melt, and knowledge about season and region. The rule base imposes boundary conditions upon the ice classification, modifies parameters in the ice algorithm, determines a `confidence' measure for the classified data, and under certain conditions, replaces the algorithm output with model output. Results demonstrate the potential power of such a system for minimizing overall error in the classification and for providing non-expert data users with a means of assessing the usefulness of the classification results for their applications.

  1. Passive automatic anti-piracy defense system of ships

    NASA Astrophysics Data System (ADS)

    Szustakowski, M.; Życzkowski, M.; Ciurapiński, W.; Karol, M.; Kastek, M.; Stachowiak, R.; Markowski, P.

    2013-10-01

    The article describes the technological solution for ship self-defense against pirate attacks. The paper presents the design solutions in the field of direct physical protection. All the solutions are connected with the latest optoelectronic and microwave systems and sensors to detect, recognize and the threat posed by pirates. In particular, tests of effectiveness and the detection-range of technology demonstrator developed by a team of authors were carried out.

  2. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    PubMed Central

    Brennan, Robert W.

    2017-01-01

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452

  3. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    PubMed

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  4. Relationship among fish assemblages and main-channel-border physical habitats in the unimpounded Upper Mississippi River

    USGS Publications Warehouse

    Barko, V.A.; Herzog, D.P.; Hrabik, R.A.; Scheibe, J.S.

    2004-01-01

    Large rivers worldwide have been altered by the construction and maintenance of navigation channels, which include extensive bank revetments, wing dikes, and levees. Using 7 years of Long-Term Resource Monitoring Program (LTRMP) data collected from the unimpounded upper Mississippi River, we investigated assemblages in two main-channel-border physical habitats-those with wing dikes and those without wing dikes. Fishes were captured using daytime electrofishing, mini-fyke netting, large hoop netting, and small hoop netting. Our objectives were to (1) assess associations among fish species richness, physical measurements, and main-channel-border physical habitats using stepwise multiple regression and indicator variables; (2) identify abundant adult and young-of-year (age-0) families in both physical habitats to further investigate assemblage composition; and (3) calculate standardized species richness estimates within each physical habitat for adult and age-0 fishes to provide additional information on community structure. We found species richness was greater at wing dikes for both adult and age-0 fishes when compared with main channel borders. Stepwise multiple regression revealed significant relationships between adult species richness and passive gear deployment (e.g,, hoop nets and mini-fyke nets), physical habitat type, and river elevation, as well as interactions between physical habitat and passive gears, and physical habitat and transparency (i.e., Secchi depth). This model explained 56% of the variance in adult species richness. Approximately 15% of the variation in age-0 species richness was explained by the sample period, sample date, transparency, physical habitat, and depth of gear deployment. Long-term impacts of river modifications on fishes have not been well documented in many large river systems and warrant further study. The findings from this study provide baseline ecological information on fish assemblages using main channel borders in the unimpounded upper Mississippi River, information that will aid managers making channel maintenance decisions in large river systems.

  5. Effects of Passive Physical Exercise on Peripheral Vision in Muscular Dystrophic Children.

    ERIC Educational Resources Information Center

    Eickelberg, Warren; And Others

    1983-01-01

    The effects of passive exercise of the extremities on peripheral vision of muscular dystrophic children aged 9 to 13 years was investigated. Compared to control subjects, those who experienced six minutes of passive exercise evidenced increased peripheral vision. Curriculum revisions for muscular dystrophic children indicate the importance of…

  6. Small Radioisotope Power System Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis

    2013-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.

  7. Non-contacting "snubber bearing" for passive magnetic bearing systems

    DOEpatents

    Post, Richard F

    2017-08-22

    A new non-contacting magnetic "snubber" bearing is provided for application to rotating systems such as vehicular electromechanical battery systems subject to frequent accelerations. The design is such that in the equilibrium position the drag force of the snubber is very small (milliwatts). However in a typical case, if the rotor is displaced by as little as 2 millimeters a large restoring force is generated without any physical contact between the stationary and rotating parts of the snubber bearing.

  8. Asymptotic Stability of Interconnected Passive Non-Linear Systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Joshi, S. M.; Kelkar, A. G.

    1999-01-01

    This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.

  9. A concept of integrated environmental approach for building upgrades and new construction: Part 1—setting the stage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bomberg, Mark; Gibson, Michael; Zhang, Jian

    This article highlights the need for an active role for building physics in the development of near-zero energy buildings while analyzing an example of an integrated system for the upgrade of existing buildings. The science called either Building Physics in Europe or Building Science in North America has so far a passive role in explaining observed failures in construction practice. In its new role, it would be integrating modeling and testing to provide predictive capability, so much needed in the development of near-zero energy buildings. The authors attempt to create a compact package, applicable to different climates with small modificationsmore » of some hygrothermal properties of materials. This universal solution is based on a systems approach that is routine for building physics but in contrast to separately conceived sub-systems that are typical for the design of buildings today. One knows that the building structure, energy efficiency, indoor environmental quality, and moisture management all need to be considered to ensure durability of materials and control cost of near-zero energy buildings. These factors must be addressed through contributions of the whole design team. The same approach must be used for the retrofit of buildings. As this integrated design paradigm resulted from demands of sustainable built environment approach, building physics must drop its passive role and improve two critical domains of analysis: (i) linked, real-time hygrothermal and energy models capable of predicting the performance of existing buildings after renovation and (ii) basic methods of indoor environment and moisture management when the exterior of the building cannot be modified.« less

  10. Results of a Demonstration Assessment of Passive System Reliability Utilizing the Reliability Method for Passive Systems (RMPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia

    2015-04-26

    Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), amore » systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.« less

  11. Addressing the vulnerabilities of pass-thoughts

    NASA Astrophysics Data System (ADS)

    Fernandez, Gabriel C.; Danko, Amanda S.

    2016-05-01

    As biometrics become increasingly pervasive, consumer electronics are reaping the benefits of improved authentication methods. Leveraging the physical characteristics of a user reduces the burden of setting and remembering complex passwords, while enabling stronger security. Multi-factor systems lend further credence to this model, increasing security via multiple passive data points. In recent years, brainwaves have been shown to be another feasible source for biometric authentication. Physically unique to an individual in certain circumstances, the signals can also be changed by the user at will, making them more robust than static physical characteristics. No paradigm is impervious however, and even well-established medical technologies have deficiencies. In this work, a system for biometric authentication via brainwaves is constructed with electroencephalography (EEG). The efficacy of EEG biometrics via existing consumer electronics is evaluated, and vulnerabilities of such a system are enumerated. Impersonation attacks are performed to expose the extent to which the system is vulnerable. Finally, a multimodal system combining EEG with additional factors is recommended and outlined.

  12. Adaptive space warping to enhance passive haptics in an arthroscopy surgical simulator.

    PubMed

    Spillmann, Jonas; Tuchschmid, Stefan; Harders, Matthias

    2013-04-01

    Passive haptics, also known as tactile augmentation, denotes the use of a physical counterpart to a virtual environment to provide tactile feedback. Employing passive haptics can result in more realistic touch sensations than those from active force feedback, especially for rigid contacts. However, changes in the virtual environment would necessitate modifications of the physical counterparts. In recent work space warping has been proposed as one solution to overcome this limitation. In this technique virtual space is distorted such that a variety of virtual models can be mapped onto one single physical object. In this paper, we propose as an extension adaptive space warping; we show how this technique can be employed in a mixed-reality surgical training simulator in order to map different virtual patients onto one physical anatomical model. We developed methods to warp different organ geometries onto one physical mock-up, to handle different mechanical behaviors of the virtual patients, and to allow interactive modifications of the virtual structures, while the physical counterparts remain unchanged. Various practical examples underline the wide applicability of our approach. To the best of our knowledge this is the first practical usage of such a technique in the specific context of interactive medical training.

  13. Methodology Development for Passive Component Reliability Modeling in a Multi-Physics Simulation Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldemir, Tunc; Denning, Richard; Catalyurek, Umit

    Reduction in safety margin can be expected as passive structures and components undergo degradation with time. Limitations in the traditional probabilistic risk assessment (PRA) methodology constrain its value as an effective tool to address the impact of aging effects on risk and for quantifying the impact of aging management strategies in maintaining safety margins. A methodology has been developed to address multiple aging mechanisms involving large numbers of components (with possibly statistically dependent failures) within the PRA framework in a computationally feasible manner when the sequencing of events is conditioned on the physical conditions predicted in a simulation environment, suchmore » as the New Generation System Code (NGSC) concept. Both epistemic and aleatory uncertainties can be accounted for within the same phenomenological framework and maintenance can be accounted for in a coherent fashion. The framework accommodates the prospective impacts of various intervention strategies such as testing, maintenance, and refurbishment. The methodology is illustrated with several examples.« less

  14. Haemophilia & Exercise Project (HEP): the impact of 1-year sports therapy programme on physical performance in adult haemophilia patients.

    PubMed

    Czepa, D; von Mackensen, S; Hilberg, T

    2013-03-01

    Episodes of bleeding in people with haemophilia (PWH) are associated with reduced activity and limitations in physical performance. Within the scope of the 'Haemophilia & Exercise Project' (HEP) PWH were trained in a sports therapy programme. Aim of this study was to investigate subjective and objective physical performance in HEP-participants after 1 year training. Physical performance of 48 adult PWH was compared before and after sports therapy subjectively (HEP-Test-Q) and objectively regarding mobility (range of motion), strength and coordination (one-leg-stand) and endurance (12-min walk test). Sports therapy included an independent home training that had previously been trained in several collective sports camps. Forty-three controls without haemophilia and without training were compared to PWH. Of 48 PWH, 13 performed a regular training (active PWH); 12 HEP-participants were constantly passive (passive PWH). Twenty-three PWH and 24 controls dropped out because of incomplete data. The activity level increased by 100% in active PWH and remained constant in passive PWH, and in controls (P ≤ 0.05). Only mobility of the right knee was significantly improved in active PWH (+5.8 ± 5.3°) compared to passive PWH (-1.3 ± 8.6°). The 12-min walk test proved a longer walking distance for active PWH (+217 ± 199 m) compared to controls (-32 ± 217 m). Active PWH reported a better subjective physical performance in the HEP-Test-Q domains 'strength & coordination', 'endurance' and in the total score (+9.4 ± 13.8) compared to passive PWH (-5.3 ± 13.5) and controls (+3.7 ± 7.5). The 'mobility'-scale and one-leg-stand remained unchanged. Sports therapy increases the activity level and physical performance of PWH, whereby objective effects do not always correspond with subjective assessments. © 2012 Blackwell Publishing Ltd.

  15. Passivity-based Robust Control of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)

    2000-01-01

    This report provides a brief summary of the research work performed over the duration of the cooperative research agreement between NASA Langley Research Center and Kansas State University. The cooperative agreement which was originally for the duration the three years was extended by another year through no-cost extension in order to accomplish the goals of the project. The main objective of the research was to develop passivity-based robust control methodology for passive and non-passive aerospace systems. The focus of the first-year's research was limited to the investigation of passivity-based methods for the robust control of Linear Time-Invariant (LTI) single-input single-output (SISO), open-loop stable, minimum-phase non-passive systems. The second year's focus was mainly on extending the passivity-based methodology to a larger class of non-passive LTI systems which includes unstable and nonminimum phase SISO systems. For LTI non-passive systems, five different passification. methods were developed. The primary effort during the years three and four was on the development of passification methodology for MIMO systems, development of methods for checking robustness of passification, and developing synthesis techniques for passifying compensators. For passive LTI systems optimal synthesis procedure was also developed for the design of constant-gain positive real controllers. For nonlinear passive systems, numerical optimization-based technique was developed for the synthesis of constant as well as time-varying gain positive-real controllers. The passivity-based control design methodology developed during the duration of this project was demonstrated by its application to various benchmark examples. These example systems included longitudinal model of an F-18 High Alpha Research Vehicle (HARV) for pitch axis control, NASA's supersonic transport wind tunnel model, ACC benchmark model, 1-D acoustic duct model, piezo-actuated flexible link model, and NASA's Benchmark Active Controls Technology (BACT) Wing model. Some of the stability results for linear passive systems were also extended to nonlinear passive systems. Several publications and conference presentations resulted from this research.

  16. Anti-collision radio-frequency identification system using passive SAW tags

    NASA Astrophysics Data System (ADS)

    Sorokin, A. V.; Shepeta, A. P.

    2017-06-01

    Modern multi sensor systems should have high operating speed and resistance to climate impacts. Radiofrequency systems use passive SAW tags for identification items and vehicles. These tags find application in industry, traffic remote control systems, and railway remote traffic control systems for identification and speed measuring. However, collision of the passive SAW RFID tags hinders development passive RFID SAW technology in Industry. The collision problem for passive SAW tags leads for incorrect identification and encoding each tag. In our researching, we suggest approach for identification of several passive SAW tags in collision case.

  17. Stochastic dynamics of coupled active particles in an overdamped limit

    NASA Astrophysics Data System (ADS)

    Ann, Minjung; Lee, Kong-Ju-Bock; Park, Pyeong Jun

    2015-10-01

    We introduce a model for Brownian dynamics of coupled active particles in an overdamped limit. Our system consists of several identical active particles and one passive particle. Each active particle is elastically coupled to the passive particle and there is no direct coupling among the active particles. We investigate the dynamics of the system with respect to the number of active particles, viscous friction, and coupling between the active and passive particles. For this purpose, we consider an intracellular transport process as an application of our model and perform a Brownian dynamics simulation using realistic parameters for processive molecular motors such as kinesin-1. We determine an adequate energy conversion function for molecular motors and study the dynamics of intracellular transport by multiple motors. The results show that the average velocity of the coupled system is not affected by the number of active motors and that the stall force increases linearly as the number of motors increases. Our results are consistent with well-known experimental observations. We also examine the effects of coupling between the motors and the cargo, as well as of the spatial distribution of the motors around the cargo. Our model might provide a physical explanation of the cooperation among active motors in the cellular transport processes.

  18. Application of Terrestrial Microwave Remote Sensing to Agricultural Drought Monitoring

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Bolten, J. D.

    2014-12-01

    Root-zone soil moisture information is a valuable diagnostic for detecting the onset and severity of agricultural drought. Current attempts to globally monitor root-zone soil moisture are generally based on the application of soil water balance models driven by observed meteorological variables. Such systems, however, are prone to random error associated with: incorrect process model physics, poor parameter choices and noisy meteorological inputs. The presentation will describe attempts to remediate these sources of error via the assimilation of remotely-sensed surface soil moisture retrievals from satellite-based passive microwave sensors into a global soil water balance model. Results demonstrate the ability of satellite-based soil moisture retrieval products to significantly improve the global characterization of root-zone soil moisture - particularly in data-poor regions lacking adequate ground-based rain gage instrumentation. This success has lead to an on-going effort to implement an operational land data assimilation system at the United States Department of Agriculture's Foreign Agricultural Service (USDA FAS) to globally monitor variations in root-zone soil moisture availability via the integration of satellite-based precipitation and soil moisture information. Prospects for improving the performance of the USDA FAS system via the simultaneous assimilation of both passive and active-based soil moisture retrievals derived from the upcoming NASA Soil Moisture Active/Passive mission will also be discussed.

  19. Transdermal therapeutic systems for memantine delivery. Comparison of passive and iontophoretic transport.

    PubMed

    Del Río-Sancho, S; Serna-Jiménez, C E; Sebastián-Morelló, M; Calatayud-Pascual, M A; Balaguer-Fernández, C; Femenía-Font, A; Kalia, Y N; Merino, V; López-Castellano, A

    2017-01-30

    Memantine is a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist used in the treatment of moderate to severe dementia including the symptoms of Alzheimer's disease (AD). It is administered orally but compliance, swallowing problems and the routine use of multiple medications in elderly AD patients means that an alternative route of administration would be of interest. The aim of the present study was to develop memantine hydrochloride occlusive transdermal therapeutic systems (TTS) for passive and iontophoretic delivery across the skin. Polyvinyl pyrrolidone (PVP) and a mixture with polyvinyl alcohol (PVA) were employed as polymeric matrices. The study involved the TTS characterization in addition to quantification of the memantine transport across porcine skin in vitro. The evaluation of the TTS physical properties suggested that systems were made more mechanically resistant by including PVA (6%) or high concentrations of PVP (24%). Moreover, a linear correlation was observed between the concentration of PVP and the bioadhesion of the systems. Drug delivery experiments showed that the highest transdermal flux provided by a passive TTS (PVP 24% w/w limonene) was 8.89±0.81μgcm -2 h -1 whereas the highest iontophoretic transport was 46.4±3.6μgcm -2 h -1 . These innovative TTS would enable two dosage regimens that could lead to therapeutic plasma concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Cloud and Radiation Mission with Active and Passive Sensing from the Space Station

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1998-01-01

    A cloud and aerosol radiative forcing and physical process study involving active laser and radar profiling with a combination of passive radiometric sounders and imagers would use the space station as an observation platform. The objectives are to observe the full three dimensional cloud and aerosol structure and the associated physical parameters leading to a complete measurement of radiation forcing processes. The instruments would include specialized radar and lidar for cloud and aerosol profiling, visible, infrared and microwave imaging radiometers with comprehensive channels for cloud and aerosol observation and specialized sounders. The low altitude,. available power and servicing capability of the space station are significant advantages for the active sensors and multiple passive instruments.

  1. Passive Infrared Thermographic Imaging for Mobile Robot Object Identification

    NASA Astrophysics Data System (ADS)

    Hinders, M. K.; Fehlman, W. L.

    2010-02-01

    The usefulness of thermal infrared imaging as a mobile robot sensing modality is explored, and a set of thermal-physical features used to characterize passive thermal objects in outdoor environments is described. Objects that extend laterally beyond the thermal camera's field of view, such as brick walls, hedges, picket fences, and wood walls as well as compact objects that are laterally within the thermal camera's field of view, such as metal poles and tree trunks, are considered. Classification of passive thermal objects is a subtle process since they are not a source for their own emission of thermal energy. A detailed analysis is included of the acquisition and preprocessing of thermal images, as well as the generation and selection of thermal-physical features from these objects within thermal images. Classification performance using these features is discussed, as a precursor to the design of a physics-based model to automatically classify these objects.

  2. Passive RFID Localisation Framework in Smart Homes Healthcare Settings.

    PubMed

    Alsinglawi, Belal; Liu, Tony; Nguyen, Quang Vinh; Gunawardana, Upul; Maeder, Anthony; Simoff, Simeon

    2016-01-01

    In recent years, Smart Homes have become a solution to benefit impaired individuals and elderly in their daily life settings. In healthcare applications, pervasive technologies have enabled the practicality of personal monitoring using Indoor positioning technologies. Radio-Frequency Identification (RFID) is a promising technology, which is useful for non-invasive tracking of activities of daily living. Many implementations have focused on using battery-enabled tags like in RFID active tags, which require frequent maintenance and they are costly. Other systems can use wearable sensors requiring individuals to wear tags which may be inappropriate for elders. Successful implementations of a tracking system are dependent on multiple considerations beyond the physical performance of the solution, such as affordability and human acceptance. This paper presents a localisation framework using passive RFID sensors. It aims to provide a low cost solution for subject location in Smart Homes healthcare.

  3. Modelling of double air-bridged structured inductor implemented by a GaAs integrated passive device manufacturing process

    NASA Astrophysics Data System (ADS)

    Li, Yang; Yao, Zhao; Zhang, Chun-Wei; Fu, Xiao-Qian; Li, Zhi-Ming; Li, Nian-Qiang; Wang, Cong

    2017-05-01

    In order to provide excellent performance and show the development of a complicated structure in a module and system, this paper presents a double air-bridge-structured symmetrical differential inductor based on integrated passive device technology. Corresponding to the proposed complicated structure, a new manufacturing process fabricated on a high-resistivity GaAs substrate is described in detail. Frequency-independent physical models are presented with lump elements and the results of skin effect-based measurements. Finally, some key features of the inductor are compared; good agreement between the measurements and modeled circuit fully verifies the validity of the proposed modeling approach. Meanwhile, we also present a comparison of different coil turns for inductor performance. The proposed work can provide a good solution for the design, fabrication, modeling, and practical application of radio-frequency modules and systems.

  4. Design of the RWM Feedback Control System for NSTX

    NASA Astrophysics Data System (ADS)

    Bialek, James; Sabbagh, Steven; Paoletti, Franco

    2002-11-01

    The National Spherical Torus Experiment ( NSTX ) has been designed to investigate the physics of global mode stabilization at low aspect ratio. Present experiments are now probing performance limits determined by machine configuration and passive stabilization. For example, the ideal no-wall normalized beta limit has already been exceeded by greater than 20stabilized by a nearby perfectly conducting wall are observed to grow at a rate determined by nearby resistive structure. Sustained performance improvements may be obtained by using active feedback to suppress such long wavelength pressure driven instabilities, known as resistive wall modes (RWM). We report on the performance of several design options for an NSTX - RWM feedback control system. The VALEN feedback analysis code has been used to evaluate the performance of these configurations. We explicitly model the vacuum vessel, center stack casing, the 48 copper passive plates, their mounts, active feedback coils and sensor arrays. The highest performance system has both control coils and sensors inside the vacuum vessel. In this case it is possible to reach 94beta limit.

  5. Composting on Mars or the Moon: I. Comparative evaluation of process design alternatives

    NASA Technical Reports Server (NTRS)

    Finstein, M. S.; Strom, P. F.; Hogan, J. A.; Cowan, R. M.; Janes, H. W. (Principal Investigator)

    1999-01-01

    As a candidate technology for treating solid wastes and recovering resources in bioregenerative Advanced Life Support, composting potentially offers such advantages as compactness, low mass, near ambient reactor temperatures and pressures, reliability, flexibility, simplicity, and forgiveness of operational error or neglect. Importantly, the interactions among the physical, chemical, and biological factors that govern composting system behavior are well understood. This article comparatively evaluates five Generic Systems that describe the basic alternatives to composting facility design and control. These are: 1) passive aeration; 2) passive aeration abetted by mechanical agitation; 3) forced aeration--O2 feedback control; 4) forced aeration--temperature feedback control; 5) forced aeration--integrated O2 and temperature feedback control. Each of the five has a distinctive pattern of behavior and process performance characteristics. Only Systems 4 and 5 are judged to be viable candidates for ALS on alien worlds, though which is better suited in this application is yet to be determined.

  6. Parameter optimization of an inerter-based isolator for passive vibration control of Michelangelo's Rondanini Pietà

    NASA Astrophysics Data System (ADS)

    Siami, A.; Karimi, H. R.; Cigada, A.; Zappa, E.; Sabbioni, E.

    2018-01-01

    Preserving cultural heritage against earthquake and ambient vibrations can be an attractive topic in the field of vibration control. This paper proposes a passive vibration isolator methodology based on inerters for improving the performance of the isolation system of the famous statue of Michelangelo Buonarroti Pietà Rondanini. More specifically, a five-degree-of-freedom (5DOF) model of the statue and the anti-seismic and anti-vibration base is presented and experimentally validated. The parameters of this model are tuned according to the experimental tests performed on the assembly of the isolator and the structure. Then, the developed model is used to investigate the impact of actuation devices such as tuned mass-damper (TMD) and tuned mass-damper-inerter (TMDI) in vibration reduction of the structure. The effect of implementation of TMDI on the 5DOF model is shown based on physical limitations of the system parameters. Simulation results are provided to illustrate effectiveness of the passive element of TMDI in reduction of the vibration transmitted to the statue in vertical direction. Moreover, the optimal design parameters of the passive system such as frequency and damping coefficient will be calculated using two different performance indexes. The obtained optimal parameters have been evaluated by using two different optimization algorithms: the sequential quadratic programming method and the Firefly algorithm. The results prove significant reduction in the transmitted vibration to the structure in the presence of the proposed tuned TMDI, without imposing a large amount of mass or modification to the structure of the isolator.

  7. Seeing by exploring

    NASA Technical Reports Server (NTRS)

    Gregory, Richard L.

    1989-01-01

    The classical notion of how things are seen is that perception is passive, that the eyes are windows, and in floods reality. Physiological work of the 19th century cast doubt on this view that perception is passive acceptance of reality. Perception is not at the present time a popular topic for philosophers. This must be partly because scientific accounts of perception have now gone a long way away from appearances. They depend on physiological and psycho-physical experiments which require technical investigation and do not fall within traditional concepts of philosophy. Theories of visual perception are examined, both from a physical and psycho-physical standpoint.

  8. Aspects and Some Results on Passivity and Positivity of Dynamic Systems

    NASA Astrophysics Data System (ADS)

    De la Sen, M.

    2017-12-01

    This paper is devoted to discuss certain aspects of passivity results in dynamic systems and the characterization of the regenerative systems counterparts. In particular, the various concepts of passivity as standard passivity, strict input passivity, strict output passivity and very strict passivity (i.e. joint strict input and output passivity) are given and related to the existence of a storage function and a dissipation function. Later on, the obtained results are related to external positivity of systems and positivity or strict positivity of the transfer matrices and transfer functions in the time-invariant case. On the other hand, it is discussed how to achieve or how eventually to increase the passivity effects via linear feedback by the synthesis of the appropriate feed-forward or feedback controllers or, simply, by adding a positive parallel direct input-output matrix interconnection gain.

  9. Possibility of passive THz camera using for a temperature difference observing of objects placed inside the human body

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2014-06-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. We demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. We discuss some physical experiments, in which a person drinks hot, and warm, and cold water and he eats. After computer processing of images captured by passive THz camera TS4 we may see the pronounced temperature trace on skin of the human body. For proof of validity of our statement we make the similar physical experiment using the IR camera. Our investigation allows to increase field of the passive THz camera using for the detection of objects concealed in the human body because the difference in temperature between object and parts of human body will be reflected on the human skin. However, modern passive THz cameras have not enough resolution in a temperature to see this difference. That is why, we use computer processing to enhance the camera resolution for this application. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp.

  10. Field Demonstrations of Active Laser Ranging with Sub-mm Precision

    NASA Technical Reports Server (NTRS)

    Chen, Yijiang; Birnbaum, Kevin M.; Hemmati, Hamid

    2011-01-01

    Precision ranging between planets will provide valuable information for scientific studies of the solar system and fundamental physics. Current passive ranging techniques using retro-reflectors are limited to the Earth-Moon distance due to the 1/R? losses. We report on a laboratory realization and field implementation of active laser ranging in real-time with two terminals, emulating interplanetary distance. Sub-millimeter accuracy is demonstrated.

  11. Investigating the Department of Defense’s Implementation of Passive Radio Frequency Identification (RFID)

    DTIC Science & Technology

    2005-12-01

    Logistics Support Activity MIT Massachusetts Institution of Technology MRE Meals -Ready-to-Eat MRO Material Release Order MSC Military Sealift... increase once item tagging becomes mandated. Reader, middleware, specialized hardware, and physical infrastructure costs can add up too. Reader’s...that system integration revenues could surpass hardware by 2007 (Asif & Mandviwalla, 2005, p. 26). (4) Training. Training is another challenge

  12. DriveID: safety innovation through individuation.

    PubMed

    Sawyer, Ben; Teo, Grace; Mouloua, Mustapha

    2012-01-01

    The driving task is highly complex and places considerable perceptual, physical and cognitive demands on the driver. As driving is fundamentally an information processing activity, distracted or impaired drivers have diminished safety margins compared with non- distracted drivers (Hancock and Parasuraman, 1992; TRB 1998 a & b). This competition for sensory and decision making capacities can lead to failures that cost lives. Some groups, teens and elderly drivers for example, have patterns of systematically poor perceptual, physical and cognitive performance while driving. Although there are technologies developed to aid these different drivers, these systems are often misused and underutilized. The DriveID project aims to design and develop a passive, automated face identification system capable of robustly identifying the driver of the vehicle, retrieve a stored profile, and intelligently prescribing specific accident prevention systems and driving environment customizations.

  13. Physical Layer Secret-Key Generation Scheme for Transportation Security Sensor Network

    PubMed Central

    Yang, Bin; Zhang, Jianfeng

    2017-01-01

    Wireless Sensor Networks (WSNs) are widely used in different disciplines, including transportation systems, agriculture field environment monitoring, healthcare systems, and industrial monitoring. The security challenge of the wireless communication link between sensor nodes is critical in WSNs. In this paper, we propose a new physical layer secret-key generation scheme for transportation security sensor network. The scheme is based on the cooperation of all the sensor nodes, thus avoiding the key distribution process, which increases the security of the system. Different passive and active attack models are analyzed in this paper. We also prove that when the cooperative node number is large enough, even when the eavesdropper is equipped with multiple antennas, the secret-key is still secure. Numerical results are performed to show the efficiency of the proposed scheme. PMID:28657588

  14. Physical Layer Secret-Key Generation Scheme for Transportation Security Sensor Network.

    PubMed

    Yang, Bin; Zhang, Jianfeng

    2017-06-28

    Wireless Sensor Networks (WSNs) are widely used in different disciplines, including transportation systems, agriculture field environment monitoring, healthcare systems, and industrial monitoring. The security challenge of the wireless communication link between sensor nodes is critical in WSNs. In this paper, we propose a new physical layer secret-key generation scheme for transportation security sensor network. The scheme is based on the cooperation of all the sensor nodes, thus avoiding the key distribution process, which increases the security of the system. Different passive and active attack models are analyzed in this paper. We also prove that when the cooperative node number is large enough, even when the eavesdropper is equipped with multiple antennas, the secret-key is still secure. Numerical results are performed to show the efficiency of the proposed scheme.

  15. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar.

    PubMed

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-09-29

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system's capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.

  16. Effect of Caffeine on near Maximal Blood Pressure and Blood Pressure Recovery in Physically-Active, College-Aged Females

    PubMed Central

    CONNAHAN, LAURA E.; OTT, CHRISTOPHER A.; BARRY, VAUGHN W.

    2017-01-01

    The purpose of this study is to determine how caffeine affects exercise blood pressure (BP) and active and passive recovery BP after vigorous intensity exercise in physically active college-aged females. Fifteen physically active, ACSM stratified low-risk females (age (y): 23.53 ± 4.07, weight (kg): 60.34 ± 3.67, height (cm): 165.14 ± 7.20, BMI (kg/m2): 22.18 ± 1.55) participated in two Bruce protocol exercise tests. Before each test participants consumed 1) a placebo or 2) 3.3 mg·kg−1 of caffeine at least one hour before exercise in a counterbalanced double-blinded fashion. After reaching 85% of their age-predicted maximum heart rate, BP was taken and participants began an active (i.e. walking) recovery phase for 6 minutes followed by a passive (i.e. sitting) recovery phase. BP was assessed every two minutes in each phase. Recovery times were assessed until active and passive BP equaled 20 mmHg and 10 mmHg above resting, respectively. Participants completed each test 1–2 weeks a part. Maximal systolic and diastolic blood pressures were not significantly different between the two trials. Active recovery, passive recovery, and total recovery times were all significantly longer during the caffeine trial than the placebo trial. Furthermore, the time to reach age-predicted maximum heart rate was significantly shorter in the placebo trial than the caffeine trial. While caffeine consumption did not significantly affect maximal blood pressure, it did affect active and passive recovery time following vigorous intensity exercise in physically active females. Exercise endurance also improved after consuming caffeine in this population. PMID:28344739

  17. Effect of Caffeine on near Maximal Blood Pressure and Blood Pressure Recovery in Physically-Active, College-Aged Females.

    PubMed

    Connahan, Laura E; Ott, Christopher A; Barry, Vaughn W

    2017-01-01

    The purpose of this study is to determine how caffeine affects exercise blood pressure (BP) and active and passive recovery BP after vigorous intensity exercise in physically active college-aged females. Fifteen physically active, ACSM stratified low-risk females (age (y): 23.53 ± 4.07, weight (kg): 60.34 ± 3.67, height (cm): 165.14 ± 7.20, BMI (kg/m 2 ): 22.18 ± 1.55) participated in two Bruce protocol exercise tests. Before each test participants consumed 1) a placebo or 2) 3.3 mg·kg -1 of caffeine at least one hour before exercise in a counterbalanced double-blinded fashion. After reaching 85% of their age-predicted maximum heart rate, BP was taken and participants began an active (i.e. walking) recovery phase for 6 minutes followed by a passive (i.e. sitting) recovery phase. BP was assessed every two minutes in each phase. Recovery times were assessed until active and passive BP equaled 20 mmHg and 10 mmHg above resting, respectively. Participants completed each test 1-2 weeks a part. Maximal systolic and diastolic blood pressures were not significantly different between the two trials. Active recovery, passive recovery, and total recovery times were all significantly longer during the caffeine trial than the placebo trial. Furthermore, the time to reach age-predicted maximum heart rate was significantly shorter in the placebo trial than the caffeine trial. While caffeine consumption did not significantly affect maximal blood pressure, it did affect active and passive recovery time following vigorous intensity exercise in physically active females. Exercise endurance also improved after consuming caffeine in this population.

  18. Evaluation and Application of Satellite-Based Latent Heating Profile Estimation Methods

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Grecu, Mircea; Yang, Song; Tao, Wei-Kuo

    2004-01-01

    In recent years, methods for estimating atmospheric latent heating vertical structure from both passive and active microwave remote sensing have matured to the point where quantitative evaluation of these methods is the next logical step. Two approaches for heating algorithm evaluation are proposed: First, application of heating algorithms to synthetic data, based upon cloud-resolving model simulations, can be used to test the internal consistency of heating estimates in the absence of systematic errors in physical assumptions. Second, comparisons of satellite-retrieved vertical heating structures to independent ground-based estimates, such as rawinsonde-derived analyses of heating, provide an additional test. The two approaches are complementary, since systematic errors in heating indicated by the second approach may be confirmed by the first. A passive microwave and combined passive/active microwave heating retrieval algorithm are evaluated using the described approaches. In general, the passive microwave algorithm heating profile estimates are subject to biases due to the limited vertical heating structure information contained in the passive microwave observations. These biases may be partly overcome by including more environment-specific a priori information into the algorithm s database of candidate solution profiles. The combined passive/active microwave algorithm utilizes the much higher-resolution vertical structure information provided by spaceborne radar data to produce less biased estimates; however, the global spatio-temporal sampling by spaceborne radar is limited. In the present study, the passive/active microwave algorithm is used to construct a more physically-consistent and environment-specific set of candidate solution profiles for the passive microwave algorithm and to help evaluate errors in the passive algorithm s heating estimates. Although satellite estimates of latent heating are based upon instantaneous, footprint- scale data, suppression of random errors requires averaging to at least half-degree resolution. Analysis of mesoscale and larger space-time scale phenomena based upon passive and passive/active microwave heating estimates from TRMM, SSMI, and AMSR data will be presented at the conference.

  19. Physical-enhanced secure strategy in an OFDM-PON.

    PubMed

    Zhang, Lijia; Xin, Xiangjun; Liu, Bo; Yu, Jianjun

    2012-01-30

    The physical layer of optical access network is vulnerable to various attacks. As the dramatic increase of users and network capacity, the issue of physical-layer security becomes more and more important. This paper proposes a physical-enhanced secure strategy for orthogonal frequency division multiplexing passive optical network (OFDM-PON) by employing frequency domain chaos scrambling. The Logistic map is adopted for the chaos mapping. The chaos scrambling strategy can dynamically allocate the scrambling matrices for different OFDM frames according to the initial condition, which enhance the confidentiality of the physical layer. A mathematical model of this secure system is derived firstly, which achieves a secure transmission at physical layer in OFDM-PON. The results from experimental implementation using Logistic mapped chaos scrambling are also given to further demonstrate the efficiency of this secure strategy. An 10.125 Gb/s 64QAM-OFDM data with Logistic mapped chaos scrambling are successfully transmitted over 25-km single mode fiber (SMF), and the experimental results show that proposed security scheme can protect the system from eavesdropper and attacker, while keep a good performance for the legal ONU.

  20. 48 CFR 252.211-7006 - Passive Radio Frequency Identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... radio frequency identification (RFID) or item unique identification (IUID) information, order... CodeTM (EPC®) means an identification scheme for universally identifying physical objects via RFID tags... passive RFID technology. Exterior container means a MIL-STD-129 defined container, bundle, or assembly...

  1. 48 CFR 252.211-7006 - Passive Radio Frequency Identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... radio frequency identification (RFID) or item unique identification (IUID) information, order... CodeTM (EPC®) means an identification scheme for universally identifying physical objects via RFID tags... passive RFID technology. Exterior container means a MIL-STD-129 defined container, bundle, or assembly...

  2. 48 CFR 252.211-7006 - Passive Radio Frequency Identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... radio frequency identification (RFID) or item unique identification (IUID) information, order... CodeTM (EPC®) means an identification scheme for universally identifying physical objects via RFID tags... passive RFID technology. Exterior container means a MIL-STD-129 defined container, bundle, or assembly...

  3. AMISS - Active and passive MIcrowaves for Security and Subsurface imaging

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Slob, Evert; Turk, Ahmet Serdar; Crocco, Lorenzo; Catapano, Ilaria; Di Matteo, Francesca

    2013-04-01

    The FP7-IRSES project AMISS - Active and passive MIcrowaves for Security and Subsurface imaging is based on a well-combined network among research institutions of EU, Associate and Third Countries (National Research Council of Italy - Italy, Technische Universiteit Delft - The Netherlands, Yildiz Technical University - Turkey, Bauman Moscow State Technical University - Russia, Usikov Institute for Radio-physics and Electronics and State Research Centre of Superconductive Radioelectronics "Iceberg" - Ukraine and University of Sao Paulo - Brazil) with the aims of achieving scientific advances in the framework of microwave and millimeter imaging systems and techniques for security and safety social issues. In particular, the involved partners are leaders in the scientific areas of passive and active imaging and are sharing their complementary knowledge to address two main research lines. The first one regards the design, characterization and performance evaluation of new passive and active microwave devices, sensors and measurement set-ups able to mitigate clutter and increase information content. The second line faces the requirements to make State-of-the-Art processing tools compliant with the instrumentations developed in the first line, suitable to work in electromagnetically complex scenarios and able to exploit the unexplored possibilities offered by new instrumentations. The main goals of the project are: 1) Development/improvement and characterization of new sensors and systems for active and passive microwave imaging; 2) Set up, analysis and validation of state of art/novel data processing approach for GPR in critical infrastructure and subsurface imaging; 3) Integration of state of art and novel imaging hardware and characterization approaches to tackle realistic situations in security, safety and subsurface prospecting applications; 4) Development and feasibility study of bio-radar technology (system and data processing) for vital signs detection and detection/characterization of human beings in complex scenarios. These goals are planned to be reached following a plan of research activities and researchers secondments which cover a period of three years. ACKNOWLEDGMENTS This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157).

  4. Expanded opportunities of THz passive camera for the detection of concealed objects

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2013-10-01

    Among the security problems, the detection of object implanted into either the human body or animal body is the urgent problem. At the present time the main tool for the detection of such object is X-raying only. However, X-ray is the ionized radiation and therefore can not be used often. Other way for the problem solving is passive THz imaging using. In our opinion, using of the passive THz camera may help to detect the object implanted into the human body under certain conditions. The physical reason of such possibility arises from temperature trace on the human skin as a result of the difference in temperature between object and parts of human body. Modern passive THz cameras have not enough resolution in temperature to see this difference. That is why, we use computer processing to enhance the passive THz camera resolution for this application. After computer processing of images captured by passive THz camera TS4, developed by ThruVision Systems Ltd., we may see the pronounced temperature trace on the human body skin from the water, which is drunk by person, or other food eaten by person. Nevertheless, there are many difficulties on the way of full soution of this problem. We illustrate also an improvement of quality of the image captured by comercially available passive THz cameras using computer processing. In some cases, one can fully supress a noise on the image without loss of its quality. Using computer processing of the THz image of objects concealed on the human body, one may improve it many times. Consequently, the instrumental resolution of such device may be increased without any additional engineering efforts.

  5. Status of VESAS: a fully-electronic microwave imaging radiometer system

    NASA Astrophysics Data System (ADS)

    Schreiber, Eric; Peichl, Markus; Suess, Helmut

    2010-04-01

    Present applications of microwave remote sensing systems cover a large variety. One utilisation of the frequency range from 1 - 300 GHz is the domain of security and reconnaissance. Examples are the observation of critical infrastructures or the performance of security checks on people in order to detect concealed weapons or explosives, both being frequent threats in our world of growing international terrorism. The imaging capability of concealed objects is one of the main advantages of microwave remote sensing, because of the penetration performance of electromagnetic waves through dielectric materials in this frequency domain. The main physical effects used in passive microwave sensing rely on the naturally generated thermal radiation and the physical properties of matter, the latter being surface characteristics, chemical and physical composition, and the temperature of the material. As a consequence it is possible to discriminate objects having different material characteristics like ceramic weapons or plastic explosives with respect to the human body. Considering the use of microwave imaging with respect to people scanning systems in airports, railway stations, or stadiums, it is advantageous that passively operating devices generate no exposure on the scanned objects like actively operating devices do. For frequently used security gateways it is additionally important to have a high through-put rate in order to minimize the queue time. Consequently fast imaging systems are necessary. In this regard the conceptual idea of a fully-electronic microwave imaging radiometer system is introduced. The two-dimensional scanning mechanism is divided into a frequency scan in one direction and the method of aperture synthesis in the other. The overall goal here is to design a low-cost, fully-electronic imaging system with a frame rate of around one second at Ka band. This frequency domain around a center frequency of 37 GHz offers a well-balanced compromise between the achievable spatial resolution for a given size, and the penetration depth of the electromagnetic wave, which are conflictive requirements.

  6. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar

    PubMed Central

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-01-01

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system’s capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications. PMID:27690051

  7. Heavy-ion conformal irradiation in the shallow-seated tumor therapy terminal at HIRFL.

    PubMed

    Li, Qiang; Dai, Zhongying; Yan, Zheng; Jin, Xiaodong; Liu, Xinguo; Xiao, Guoqing

    2007-11-01

    Basic research related to heavy-ion cancer therapy has been done at the Institute of Modern Physics (IMP), Chinese Academy of Sciences since 1995. Now a plan of clinical trial with heavy ions has been launched at IMP. First, superficially placed tumor treatment with heavy ions is expected in the therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL), where carbon ion beams with energy up to 100 MeV/u can be supplied. The shallow-seated tumor therapy terminal at HIRFL is equipped with a passive beam delivery system including two orthogonal dipole magnets, which continuously scan pencil beams laterally and generate a broad and uniform irradiation field, a motor-driven energy degrader and a multi-leaf collimator. Two different types of range modulator, ripple filter and ridge filter with which Guassian-shaped physical dose and uniform biological effective dose Bragg peaks can be shaped for therapeutic ion beams respectively, have been designed and manufactured. Therefore, two-dimensional and three-dimensional conformal irradiations to tumors can be performed with the passive beam delivery system at the earlier therapy terminal. Both the conformal irradiation methods have been verified experimentally and carbon-ion conformal irradiations to patients with superficially placed tumors have been carried out at HIRFL since November 2006.

  8. Passive acoustic measurement of bedload grain size distribution using self-generated noise

    NASA Astrophysics Data System (ADS)

    Petrut, Teodor; Geay, Thomas; Gervaise, Cédric; Belleudy, Philippe; Zanker, Sebastien

    2018-01-01

    Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.

  9. PASSIVE SMOKING AND HEIGHT GROWTH OF PREADOLESCENT CHILDREN

    EPA Science Inventory

    The attained height and height growth of 9273 children participating in a longitudinal study of the health effects of air pollutants were analyzed to assess the association between passive exposure to cigarette smoke and physical growth between 6 and 11 years of age. Children wer...

  10. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

  11. European consensus on the concepts and measurement of the pathophysiological neuromuscular responses to passive muscle stretch.

    PubMed

    van den Noort, J C; Bar-On, L; Aertbeliën, E; Bonikowski, M; Braendvik, S M; Broström, E W; Buizer, A I; Burridge, J H; van Campenhout, A; Dan, B; Fleuren, J F; Grunt, S; Heinen, F; Horemans, H L; Jansen, C; Kranzl, A; Krautwurst, B K; van der Krogt, M; Lerma Lara, S; Lidbeck, C M; Lin, J-P; Martinez, I; Meskers, C; Metaxiotis, D; Molenaers, G; Patikas, D A; Rémy-Néris, O; Roeleveld, K; Shortland, A P; Sikkens, J; Sloot, L; Vermeulen, R J; Wimmer, C; Schröder, A S; Schless, S; Becher, J G; Desloovere, K; Harlaar, J

    2017-07-01

    To support clinical decision-making in central neurological disorders, a physical examination is used to assess responses to passive muscle stretch. However, what exactly is being assessed is expressed and interpreted in different ways. A clear diagnostic framework is lacking. Therefore, the aim was to arrive at unambiguous terminology about the concepts and measurement around pathophysiological neuromuscular response to passive muscle stretch. During two consensus meetings, 37 experts from 12 European countries filled online questionnaires based on a Delphi approach, followed by plenary discussion after rounds. Consensus was reached for agreement ≥75%. The term hyper-resistance should be used to describe the phenomenon of impaired neuromuscular response during passive stretch, instead of for example 'spasticity' or 'hypertonia'. From there, it is essential to distinguish non-neural (tissue-related) from neural (central nervous system related) contributions to hyper-resistance. Tissue contributions are elasticity, viscosity and muscle shortening. Neural contributions are velocity dependent stretch hyperreflexia and non-velocity dependent involuntary background activation. The term 'spasticity' should only be used next to stretch hyperreflexia, and 'stiffness' next to passive tissue contributions. When joint angle, moment and electromyography are recorded, components of hyper-resistance within the framework can be quantitatively assessed. A conceptual framework of pathophysiological responses to passive muscle stretch is defined. This framework can be used in clinical assessment of hyper-resistance and will improve communication between clinicians. Components within the framework are defined by objective parameters from instrumented assessment. These parameters need experimental validation in order to develop treatment algorithms based on the aetiology of the clinical phenomena. © 2017 EAN.

  12. Potential Application of a Thermoelectric Generator in Passive Cooling System of Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Wang, Dongqing; Liu, Yu; Jiang, Jin; Pang, Wei; Lau, Woon Ming; Mei, Jun

    2017-05-01

    In the design of nuclear power plants, various natural circulation passive cooling systems are considered to remove residual heat from the reactor core in the event of a power loss and maintain the plant's safety. These passive systems rely on gravity differences of fluids, resulting from density differentials, rather than using an external power-driven system. Unfortunately, a major drawback of such systems is their weak driving force, which can negatively impact safety. In such systems, there is a temperature difference between the heat source and the heat sink, which potentially offers a natural platform for thermoelectric generator (TEG) applications. While a previous study designed and analyzed a TEG-based passive core cooling system, this paper considers TEG applications in other passive cooling systems of nuclear power plants, after which the concept of a TEG-based passive cooling system is proposed. In such a system, electricity is produced using the system's temperature differences through the TEG, and this electricity is used to further enhance the cooling process.

  13. Synthesis Methods for Robust Passification and Control

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)

    2000-01-01

    The research effort under this cooperative agreement has been essentially the continuation of the work from previous grants. The ongoing work has primarily focused on developing passivity-based control techniques for Linear Time-Invariant (LTI) systems. During this period, there has been a significant progress made in the area of passivity-based control of LTI systems and some preliminary results have also been obtained for nonlinear systems, as well. The prior work has addressed optimal control design for inherently passive as well as non- passive linear systems. For exploiting the robustness characteristics of passivity-based controllers the passification methodology was developed for LTI systems that are not inherently passive. Various methods of passification were first proposed in and further developed. The robustness of passification was addressed for multi-input multi-output (MIMO) systems for certain classes of uncertainties using frequency-domain methods. For MIMO systems, a state-space approach using Linear Matrix Inequality (LMI)-based formulation was presented, for passification of non-passive LTI systems. An LMI-based robust passification technique was presented for systems with redundant actuators and sensors. The redundancy in actuators and sensors was used effectively for robust passification using the LMI formulation. The passification was designed to be robust to an interval-type uncertainties in system parameters. The passification techniques were used to design a robust controller for Benchmark Active Control Technology wing under parametric uncertainties. The results on passive nonlinear systems, however, are very limited to date. Our recent work in this area was presented, wherein some stability results were obtained for passive nonlinear systems that are affine in control.

  14. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast

    PubMed Central

    Blackwell, Robert; Edelmaier, Christopher; Sweezy-Schindler, Oliver; Lamson, Adam; Gergely, Zachary R.; O’Toole, Eileen; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Glaser, Matthew A.; Betterton, Meredith D.

    2017-01-01

    Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly—the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy. PMID:28116355

  15. Demonstration of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  16. A modular microfluidic architecture for integrated biochemical analysis.

    PubMed

    Shaikh, Kashan A; Ryu, Kee Suk; Goluch, Edgar D; Nam, Jwa-Min; Liu, Juewen; Thaxton, C Shad; Chiesl, Thomas N; Barron, Annelise E; Lu, Yi; Mirkin, Chad A; Liu, Chang

    2005-07-12

    Microfluidic laboratory-on-a-chip (LOC) systems based on a modular architecture are presented. The architecture is conceptualized on two levels: a single-chip level and a multiple-chip module (MCM) system level. At the individual chip level, a multilayer approach segregates components belonging to two fundamental categories: passive fluidic components (channels and reaction chambers) and active electromechanical control structures (sensors and actuators). This distinction is explicitly made to simplify the development process and minimize cost. Components belonging to these two categories are built separately on different physical layers and can communicate fluidically via cross-layer interconnects. The chip that hosts the electromechanical control structures is called the microfluidic breadboard (FBB). A single LOC module is constructed by attaching a chip comprised of a custom arrangement of fluid routing channels and reactors (passive chip) to the FBB. Many different LOC functions can be achieved by using different passive chips on an FBB with a standard resource configuration. Multiple modules can be interconnected to form a larger LOC system (MCM level). We demonstrated the utility of this architecture by developing systems for two separate biochemical applications: one for detection of protein markers of cancer and another for detection of metal ions. In the first case, free prostate-specific antigen was detected at 500 aM concentration by using a nanoparticle-based bio-bar-code protocol on a parallel MCM system. In the second case, we used a DNAzyme-based biosensor to identify the presence of Pb(2+) (lead) at a sensitivity of 500 nM in <1 nl of solution.

  17. Passive cooling system for top entry liquid metal cooled nuclear reactors

    DOEpatents

    Boardman, Charles E.; Hunsbedt, Anstein; Hui, Marvin M.

    1992-01-01

    A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

  18. Physical-layer network coding for passive optical interconnect in datacenter networks.

    PubMed

    Lin, Rui; Cheng, Yuxin; Guan, Xun; Tang, Ming; Liu, Deming; Chan, Chun-Kit; Chen, Jiajia

    2017-07-24

    We introduce physical-layer network coding (PLNC) technique in a passive optical interconnect (POI) architecture for datacenter networks. The implementation of the PLNC in the POI at 2.5 Gb/s and 10Gb/s have been experimentally validated while the gains in terms of network layer performances have been investigated by simulation. The results reveal that in order to realize negligible packet drop, the wavelengths usage can be reduced by half while a significant improvement in packet delay especially under high traffic load can be achieved by employing PLNC over POI.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelsen, Nicholas H.; Kolb, James D.; Kulkarni, Akshay G.

    Mechanical component response to shock environments must be predictable in order to ensure reliability and safety. Whether the shock input results from accidental drops during transportation to projectile impact scenarios, the system must irreversibly transition into a safe state that is incapable of triggering the component . With this critical need in mind, the 2017 Nuclear Weapons Summer Product Realization Institute (NW SPRINT) program objective sought the design of a passive shock failsafe with emphasis on additively manufactured (AM) components. Team Advanced and Exploratory (A&E) responded to the challenge by designing and delivering multiple passive shock sensing mech anisms thatmore » activate within a prescribed mechanical shock threshold. These AM failsafe designs were tuned and validated using analytical and computational techniques including the shock response spectrum (SRS) and finite element analysis (FEA). After rapid prototyping, the devices experienced physical shock tests conducted on Sandia drop tables to experimentally verify performance. Keywords: Additive manufacturing, dynamic system, failsafe, finite element analysis, mechanical shock, NW SPRINT, shock respon se spectrum« less

  20. The effect of uncontrolled moment and short-term, repeated passive stretching on maximum ankle joint dorsiflexion angle.

    PubMed

    Gatt, Alfred; Chockalingam, Nachiappan

    2012-06-01

    Trials investigating ankle joint measurement normally apply a known moment. Maximum ankle angle is affected by foot posture and stretching characteristics of the calf muscles. To investigate whether consistent maximum ankle angles could be achieved without applying a constant moment to all subjects, and whether short, repetitive stretching of the calf muscle tendon unit would produce a difference in the maximum ankle angle. Passive dorsiflexion in 14 healthy participants was captured using an optoelectronic motion analysis system, with the foot placed in 3 postures. The maximum ankle angles for both the neutral and supinated positions did not differ significantly. In general, the majority of subjects (92.8%) showed no increase in the maximum ankle dorsiflexion angle following repetitive brief passive stretching. Only one subject exhibited a significant increase in maximum ankle angle at the neutral position. Since the range of motion of the ankle joint is clearly determined by other physical factors, the maximum ankle dorsiflexion angle can be assessed at both neutral and supinated positions without moment being controlled. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Modeled Population Connectivity across the Hawaiian Archipelago

    PubMed Central

    Wren, Johanna L. K.; Kobayashi, Donald R.; Jia, Yanli; Toonen, Robert J.

    2016-01-01

    We present the first comprehensive estimate of connectivity of passive pelagic particles released from coral reef habitat throughout the Hawaiian Archipelago. Potential connectivity is calculated using a Lagrangian particle transport model coupled offline with currents generated by an oceanographic circulation model, MITgcm. The connectivity matrices show a surprising degree of self-recruitment and directional dispersal towards the northwest, from the Main Hawaiian Islands (MHI) to the northwestern Hawaiian Islands (NWHI). We identify three predicted connectivity breaks in the archipelago, that is, areas in the mid and northern part of the archipelago that have limited connections with surrounding islands and reefs. Predicted regions of limited connectivity generally match observed patterns of genetic structure reported for coral reef species in the uninhabited NWHI, but multiple genetic breaks observed in the inhabited MHI are not explained by passive dispersal. The better congruence in our modeling results based on physical transport of passive particles in the low-lying atolls of the uninhabited NWHI, but not in the anthropogenically impacted high islands of the MHI begs the question: what ultimately controls connectivity in this system? PMID:27930680

  2. Incremental passivity and output regulation for switched nonlinear systems

    NASA Astrophysics Data System (ADS)

    Pang, Hongbo; Zhao, Jun

    2017-10-01

    This paper studies incremental passivity and global output regulation for switched nonlinear systems, whose subsystems are not required to be incrementally passive. A concept of incremental passivity for switched systems is put forward. First, a switched system is rendered incrementally passive by the design of a state-dependent switching law. Second, the feedback incremental passification is achieved by the design of a state-dependent switching law and a set of state feedback controllers. Finally, we show that once the incremental passivity for switched nonlinear systems is assured, the output regulation problem is solved by the design of global nonlinear regulator controllers comprising two components: the steady-state control and the linear output feedback stabilising controllers, even though the problem for none of subsystems is solvable. Two examples are presented to illustrate the effectiveness of the proposed approach.

  3. Wireless passive radiation sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  4. A passivity criterion for sampled-data bilateral teleoperation systems.

    PubMed

    Jazayeri, Ali; Tavakoli, Mahdi

    2013-01-01

    A teleoperation system consists of a teleoperator, a human operator, and a remote environment. Conditions involving system and controller parameters that ensure the teleoperator passivity can serve as control design guidelines to attain maximum teleoperation transparency while maintaining system stability. In this paper, sufficient conditions for teleoperator passivity are derived for when position error-based controllers are implemented in discrete-time. This new analysis is necessary because discretization causes energy leaks and does not necessarily preserve the passivity of the system. The proposed criterion for sampled-data teleoperator passivity imposes lower bounds on the teleoperator's robots dampings, an upper bound on the sampling time, and bounds on the control gains. The criterion is verified through simulations and experiments.

  5. Adaptive fuzzy control of a class of nonaffine nonlinear system with input saturation based on passivity theorem.

    PubMed

    Molavi, Ali; Jalali, Aliakbar; Ghasemi Naraghi, Mahdi

    2017-07-01

    In this paper, based on the passivity theorem, an adaptive fuzzy controller is designed for a class of unknown nonaffine nonlinear systems with arbitrary relative degree and saturation input nonlinearity to track the desired trajectory. The system equations are in normal form and its unforced dynamic may be unstable. As relative degree one is a structural obstacle in system passivation approach, in this paper, backstepping method is used to circumvent this obstacle and passivate the system step by step. Because of the existence of uncertainty and disturbance in the system, exact passivation and reference tracking cannot be tackled, so the approximate passivation or passivation with respect to a set is obtained to hold the tracking error in a neighborhood around zero. Furthermore, in order to overcome the non-smoothness of the saturation input nonlinearity, a parametric smooth nonlinear function with arbitrary approximation error is used to approximate the input saturation. Finally, the simulation results for the theoretical and practical examples are given to validate the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Synthesis of Optimal Constant-Gain Positive-Real Controllers for Passive Systems

    NASA Technical Reports Server (NTRS)

    Mao, Y.; Kelkar, A. G.; Joshi, S. M.

    1999-01-01

    This paper presents synthesis methods for the design of constant-gain positive real controllers for passive systems. The results presented in this paper, in conjunction with the previous work by the authors on passification of non-passive systems, offer a useful synthesis tool for the design of passivity-based robust controllers for non-passive systems as well. Two synthesis approaches are given for minimizing an LQ-type performance index, resulting in optimal controller gains. Two separate algorithms, one for each of these approaches, are given. The synthesis techniques are demonstrated using two numerical examples: control of a flexible structure and longitudinal control of a fighter aircraft.

  7. Shifty: A Weight-Shifting Dynamic Passive Haptic Proxy to Enhance Object Perception in Virtual Reality.

    PubMed

    Zenner, Andre; Kruger, Antonio

    2017-04-01

    We define the concept of Dynamic Passive Haptic Feedback (DPHF) for virtual reality by introducing the weight-shifting physical DPHF proxy object Shifty. This concept combines actuators known from active haptics and physical proxies known from passive haptics to construct proxies that automatically adapt their passive haptic feedback. We describe the concept behind our ungrounded weight-shifting DPHF proxy Shifty and the implementation of our prototype. We then investigate how Shifty can, by automatically changing its internal weight distribution, enhance the user's perception of virtual objects interacted with in two experiments. In a first experiment, we show that Shifty can enhance the perception of virtual objects changing in shape, especially in length and thickness. Here, Shifty was shown to increase the user's fun and perceived realism significantly, compared to an equivalent passive haptic proxy. In a second experiment, Shifty is used to pick up virtual objects of different virtual weights. The results show that Shifty enhances the perception of weight and thus the perceived realism by adapting its kinesthetic feedback to the picked-up virtual object. In the same experiment, we additionally show that specific combinations of haptic, visual and auditory feedback during the pick-up interaction help to compensate for visual-haptic mismatch perceived during the shifting process.

  8. Spatial and Temporal Variations of Surface Characteristics on the Greenland Ice Sheet as Derived from Passive Microwave Observations

    NASA Technical Reports Server (NTRS)

    Anderson, Mark; Rowe, Clinton; Kuivinen, Karl; Mote, Thomas

    1996-01-01

    The primary goals of this research were to identify and begin to comprehend the spatial and temporal variations in surface characteristics of the Greenland ice sheet using passive microwave observations, physically-based models of the snowpack and field observations of snowpack and firn properties.

  9. Time-to-impact estimation in passive missile warning systems

    NASA Astrophysics Data System (ADS)

    Şahıngıl, Mehmet Cihan

    2017-05-01

    A missile warning system can detect the incoming missile threat(s) and automatically cue the other Electronic Attack (EA) systems in the suit, such as Directed Infrared Counter Measure (DIRCM) system and/or Counter Measure Dispensing System (CMDS). Most missile warning systems are currently based on passive sensor technology operating in either Solar Blind Ultraviolet (SBUV) or Midwave Infrared (MWIR) bands on which there is an intensive emission from the exhaust plume of the threatening missile. Although passive missile warning systems have some clear advantages over pulse-Doppler radar (PDR) based active missile warning systems, they show poorer performance in terms of time-to-impact (TTI) estimation which is critical for optimizing the countermeasures and also "passive kill assessment". In this paper, we consider this problem, namely, TTI estimation from passive measurements and present a TTI estimation scheme which can be used in passive missile warning systems. Our problem formulation is based on Extended Kalman Filter (EKF). The algorithm uses the area parameter of the threat plume which is derived from the used image frame.

  10. Interpreting the Weibull fitting parameters for diffusion-controlled release data

    NASA Astrophysics Data System (ADS)

    Ignacio, Maxime; Chubynsky, Mykyta V.; Slater, Gary W.

    2017-11-01

    We examine the diffusion-controlled release of molecules from passive delivery systems using both analytical solutions of the diffusion equation and numerically exact Lattice Monte Carlo data. For very short times, the release process follows a √{ t } power law, typical of diffusion processes, while the long-time asymptotic behavior is exponential. The crossover time between these two regimes is determined by the boundary conditions and initial loading of the system. We show that while the widely used Weibull function provides a reasonable fit (in terms of statistical error), it has two major drawbacks: (i) it does not capture the correct limits and (ii) there is no direct connection between the fitting parameters and the properties of the system. Using a physically motivated interpolating fitting function that correctly includes both time regimes, we are able to predict the values of the Weibull parameters which allows us to propose a physical interpretation.

  11. Passive haptics in a knee arthroscopy simulator: is it valid for core skills training?

    PubMed

    McCarthy, Avril D; Moody, Louise; Waterworth, Alan R; Bickerstaff, Derek R

    2006-01-01

    Previous investigation of a cost-effective virtual reality arthroscopic training system, the Sheffield Knee Arthroscopy Training System (SKATS), indicated the desirability of including haptic feedback. A formal task analysis confirmed the importance of knee positioning as a core skill for trainees learning to navigate the knee arthroscopically. The system cost and existing limb interface, which permits knee positioning, would be compromised by the addition of commercial active haptic devices available currently. The validation results obtained when passive haptic feedback (resistance provided by physical structures) is provided indicate that SKATS has construct, predictive and face validity for navigation and triangulation training. When tested using SKATS, experienced surgeons (n = 11) performed significantly faster, located significantly more pathologies, and showed significantly shorter arthroscope path lengths than a less experienced surgeon cohort (n = 12). After SKATS training sessions, novices (n = 3) showed significant improvements in: task completion time, shorter arthroscope path lengths, shorter probe path lengths, and fewer arthroscope tip contacts. Main improvements occurred after the first two practice sessions, indicating rapid familiarization and a training effect. Feedback from questionnaires completed by orthopaedic surgeons indicates that the system has face validity for its remit of basic arthroscopic training.

  12. A data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission

    NASA Astrophysics Data System (ADS)

    Entekhabi, D.; Jagdhuber, T.; Das, N. N.; Baur, M.; Link, M.; Piles, M.; Akbar, R.; Konings, A. G.; Mccoll, K. A.; Alemohammad, S. H.; Montzka, C.; Kunstmann, H.

    2016-12-01

    The active-passive soil moisture retrieval algorithm of NASA's SMAP mission depends on robust statistical estimation of active-passive covariation (β) and vegetation structure (Γ) parameters in order to provide reliable global measurements of soil moisture on an intermediate level (9km) compared to the native resolution of the radiometer (36km) and radar (3km) instruments. These parameters apply to the SMAP radiometer-radar combination over the period of record that was cut short with the end of the SMAP radar transmission. They also apply to the current SMAP radiometer and Sentinel 1A/B radar combination for high-resolution surface soil moisture mapping. However, the performance of the statistically-based approach is directly dependent on the selection of a representative time frame in which these parameters can be estimated assuming dynamic soil moisture and stationary soil roughness and vegetation cover. Here, we propose a novel, data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission. The algorithm does not depend on time series analyses and can be applied using minimum one pair of an active-passive acquisition. The algorithm stems from the physical link between microwave emission and scattering via conservation of energy. The formulation of the emission radiative transfer is combined with the Distorted Born Approximation of radar scattering for vegetated land surfaces. The two formulations are simultaneously solved for the covariation and vegetation structure parameters. Preliminary results from SMAP active-passive observations (April 13th to July 7th 2015) compare well with the time-series statistical approach and confirms the capability of this method to estimate these parameters. Moreover, the method is not restricted to a given frequency (applies to both L-band and C-band combinations for the radar) or incidence angle (all angles and not just the fixed 40° incidence). Therefore, the approach is applicable to the combination of SMAP and Sentinel-1A/B data for active-passive and high-resolution soil moisture estimation.

  13. Tropospheric Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr. (Editor)

    1982-01-01

    The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.

  14. Passive and active vibration isolation systems using inerter

    NASA Astrophysics Data System (ADS)

    Alujević, N.; Čakmak, D.; Wolf, H.; Jokić, M.

    2018-03-01

    This paper presents a theoretical study on passive and active vibration isolation schemes using inerter elements in a two degree of freedom (DOF) mechanical system. The aim of the work is to discuss basic capabilities and limitations of the vibration control systems at hand using simple and physically transparent models. Broad frequency band dynamic excitation of the source DOF is assumed. The purpose of the isolator system is to prevent vibration transmission to the receiving DOF. The frequency averaged kinetic energy of the receiving mass is used as the metric for vibration isolation quality. It is shown that the use of inerter element in the passive vibration isolation scheme can enhance the isolation effect. In the active case, a feedback disturbance rejection scheme is considered. Here, the error signal is the receiving body absolute velocity which is directly fed to a reactive force actuator between the source and the receiving bodies. In such a scheme, the so-called subcritical vibration isolation problems exist. These problems are characterised by the uncoupled natural frequency of the receiving body larger than the uncoupled natural frequency of the source body. In subcritical vibration isolation problems, the performance of the active control is limited by poor stability margins. This is because the stable feedback gain is restricted in a narrow range between a minimum and a maximum. However, with the inclusion of an inerter in the isolator, one of the two stability margins can be opened. This enables large, theoretically unlimited negative feedback gains and large active damping of the receiving body vibration. A simple expression for the required inertance is derived.

  15. Evaluation of Non-Chromate Passivations on Electroplated gamma-Phase Zinc Nickel

    NASA Astrophysics Data System (ADS)

    Volz, Steven Michael

    This research focused on the corrosion response and electrochemical behavior of electroplated low hydrogen embrittlement alkaline gamma-phase zinc nickel with passivation layers. The motivation was the need to replace hexavalent chromium conversion coatings in military grade electrical systems with a more environment friendly alternative. The passivation layers were employed for the purpose of mitigating corrosion attack while maintaining low contact resistance. Trivalent chromium-based passivations and cerium-based passivations were compared against the currently used hexavalent chromium conversion coating. The coating systems were compared using electrochemical impedance spectroscopy, cyclic potentiodymanic scans, salt spray exposure testing, electrical resistance measurements, microstructure analysis, and compositional analysis. Coating systems with lower open circuit had a lower corrosion current and performed better during salt spray testing. All of the systems evaluated had corrosion products consistent with oxidized zinc compounds but the morphology of the passivation was dependent on the passivation. The electrical contact resistance ranged from 1 to 108 mO/cm 2, after salt spray testing. Two versions of Trivalent chromium-based passivations, were able to meet military performance specifications after corrosion testing.

  16. Chaos without nonlinear dynamics.

    PubMed

    Corron, Ned J; Hayes, Scott T; Pethel, Shawn D; Blakely, Jonathan N

    2006-07-14

    A linear, second-order filter driven by randomly polarized pulses is shown to generate a waveform that is chaotic under time reversal. That is, the filter output exhibits determinism and a positive Lyapunov exponent when viewed backward in time. The filter is demonstrated experimentally using a passive electronic circuit, and the resulting waveform exhibits a Lorenz-like butterfly structure. This phenomenon suggests that chaos may be connected to physical theories whose underlying framework is not that of a traditional deterministic nonlinear dynamical system.

  17. Investigation of a Passive, Temporal, Neutron Monitoring System that Functions within the Confines of Start I

    DTIC Science & Technology

    2003-03-01

    was appreciated and their expertise was invaluable. I would also like to thank laboratory technician, Mr. Eric Taylor, whose assistance, skill...Sagdeev, “Detecting Nuclear Warheads,” in Reversing the Arms Race: How to Achieve and Verify Deep Reductions in the Nuclear Arsenals. Ed. F. von ... Hippel and R.Z. Sagdeev. New York: Gordon and Breach Science Publishers, 1990 7) Brigman, Charles J. Introduction To The Physics of Nuclear Weapon

  18. Testing the Feasibility of a Passive and Active Case Ascertainment System for Multiple Rare Conditions Simultaneously: The Experience in Three US States

    PubMed Central

    McDermott, Suzanne; Ruttenber, Margaret; Mann, Joshua; Smith, Michael G; Royer, Julie; Valdez, Rodolfo

    2016-01-01

    Background Owing to their low prevalence, single rare conditions are difficult to monitor through current state passive and active case ascertainment systems. However, such monitoring is important because, as a group, rare conditions have great impact on the health of affected individuals and the well-being of their caregivers. A viable approach could be to conduct passive and active case ascertainment of several rare conditions simultaneously. This is a report about the feasibility of such an approach. Objective To test the feasibility of a case ascertainment system with passive and active components aimed at monitoring 3 rare conditions simultaneously in 3 states of the United States (Colorado, Kansas, and South Carolina). The 3 conditions are spina bifida, muscular dystrophy, and fragile X syndrome. Methods Teams from each state evaluated the possibility of using current or modified versions of their local passive and active case ascertainment systems and datasets to monitor the 3 conditions. Together, these teams established the case definitions and selected the variables and the abstraction tools for the active case ascertainment approach. After testing the ability of their local passive and active case ascertainment system to capture all 3 conditions, the next steps were to report the number of cases detected actively and passively for each condition, to list the local barriers against the combined passive and active case ascertainment system, and to describe the experiences in trying to overcome these barriers. Results During the test period, the team from South Carolina was able to collect data on all 3 conditions simultaneously for all ages. The Colorado team was also able to collect data on all 3 conditions but, because of age restrictions in its passive and active case ascertainment system, it was able to report few cases of fragile X syndrome. The team from Kansas was able to collect data only on spina bifida. For all states, the implementation of an active component of the ascertainment system was problematic. The passive component appears viable with minor modifications. Conclusions Despite evident barriers, the joint passive and active case ascertainment of rare disorders using modified existing surveillance systems and datasets seems feasible, especially for systems that rely on passive case ascertainment. PMID:27574026

  19. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation.

    PubMed

    Shields, C Wyatt; Reyes, Catherine D; López, Gabriel P

    2015-03-07

    Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism.

  20. Microfluidic Cell Sorting: A Review of the Advances in the Separation of Cells from Debulking to Rare Cell Isolation

    PubMed Central

    Shields, C. Wyatt; Reyes, Catherine D.; López, Gabriel P.

    2015-01-01

    Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism. PMID:25598308

  1. Millimeter wave case study of operational deployments: retail, airport, military, courthouse, and customs

    NASA Astrophysics Data System (ADS)

    Tryon, Gary V.

    2008-04-01

    In the wake of the September 11, 2001 terrorist attack on America, our security and defense industry was instantly tasked with delivering technologies that could be used to help prevent future terrorist activities. The general public world wide is asking for solutions that will foster a safe society and travel environment. Our best defenses rest in our talents within a free open society to prevent dangerous individuals from boarding planes, entering buildings, courthouses, transportations hubs and military bases with weapons capable of causing damage and bodily harm in the first place. Passive millimeter wave (PMMW) whole body imaging systems are based upon the principle that every physical entity emits, reflects, and/or absorbs electromagnetic energy. The term "passive" means that this approach does not bombard the test subject with energy radiation to further induce the discovery of hidden objects. PMMW whole body imaging systems focus on the human body's natural emission and reflection of millimeter wavelength energy. In physics, "millimeter waves" (MMW) are defined as extremely high-frequency (30-300 GHz) electromagnetic oscillations. On the electromagnetic spectrum these waves are just larger than infrared waves, but smaller than radio waves. The wavelength of a MMW is between 1 millimeter and 10 millimeters. That is approximately the thickness of a large paperclip up to the diameter of an "AAA" battery.

  2. Passivity and Dissipativity as Design and Analysis Tools for Networked Control Systems

    ERIC Educational Resources Information Center

    Yu, Han

    2012-01-01

    In this dissertation, several control problems are studied that arise when passive or dissipative systems are interconnected and controlled over a communication network. Since communication networks can impact the systems' stability and performance, there is a need to extend the results on control of passive or dissipative systems to networked…

  3. Passive Thermal Management of Foil Bearings

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J. (Inventor)

    2015-01-01

    Systems and methods for passive thermal management of foil bearing systems are disclosed herein. The flow of the hydrodynamic film across the surface of bearing compliant foils may be disrupted to provide passive cooling and to improve the performance and reliability of the foil bearing system.

  4. High sensitivity broadband 360GHz passive receiver for TeraSCREEN

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Oldfield, Matthew; Maestrojuán, Itziar; Platt, Duncan; Brewster, Nick; Viegas, Colin; Alderman, Byron; Ellison, Brian N.

    2016-05-01

    TeraSCREEN is an EU FP7 Security project aimed at developing a combined active, with frequency channel centered at 360 GHz, and passive, with frequency channels centered at 94, 220 and 360 GHz, imaging system for border controls in airport and commercial ferry ports. The system will include automatic threat detection and classification and has been designed with a strong focus on the ethical, legal and practical aspects of operating in these environments and with the potential threats in mind. Furthermore, both the passive and active systems are based on array receivers with the active system consisting of a 16 element MIMO FMCW radar centered at 360 GHz with a bandwidth of 30 GHz utilizing a custom made direct digital synthesizer. The 16 element passive receiver system at 360 GHz uses commercial Gunn diode oscillators at 90 GHz followed by custom made 90 to 180 GHz frequency doublers supplying the local oscillator for 360 GHz sub-harmonic mixers. This paper describes the development of the passive antenna module, local oscillator chain, frequency mixers and detectors used in the passive receiver array of this system. The complete passive receiver chain is characterized in this paper.

  5. Comparison of passive and active leisure activities and life satisfaction with aging.

    PubMed

    Cho, Dongwook; Post, Jay; Kim, Sung Kyeom

    2018-03-01

    Many older adults face limitations to participating in active leisure activities as a result of their physical constraints from aging. Passive leisure activities become alternative leisure activities for older adults as a result of limited physical capacity. The present study sought to determine whether there exists a difference in the frequency of participation in passive and active leisure activities, and the effect of participation in passive and active leisure activities on the life satisfaction level of old adults. A total of 460 participants aged 60-95 years were randomly selected from 21 sites in the USA. The Life Satisfaction Index - Z and the Meaningful Activity Participation Assessment were analyzed to examine older adults' life satisfaction and frequency of active or passive activities. The results showed that participation in passive leisure activities, such reading, talking on the telephone and watching TV/listening to the radio, is more frequent among older adults (P = 0.000). The regression coefficient found that club/organization or volunteering (P = 0.008), homemaking/maintenance (P = 0.017) and traveling (P = 0.017) for active leisure activities were statistically significant predictors of Life Satisfaction Index - Z for older adults. The current study shows that older adults spent much more times participating in passive leisure activities, such as radio/watching TV, talking on the phone and reading. The result also showed that active leisure activities, such as club/organization or volunteering, home making/maintenance and traveling, were significant predictors of life satisfaction for older adults controlling for covariates. The current study suggests marketing and programming plans to overcome the constraints that influence older adults' life satisfaction. Geriatr Gerontol Int 2018; 18: 380-386. © 2017 Japan Geriatrics Society.

  6. Dual passivation of intrinsic defects at the compound semiconductor/oxide interface using an oxidant and a reductant.

    PubMed

    Kent, Tyler; Chagarov, Evgeniy; Edmonds, Mary; Droopad, Ravi; Kummel, Andrew C

    2015-05-26

    Studies have shown that metal oxide semiconductor field-effect transistors fabricated utilizing compound semiconductors as the channel are limited in their electrical performance. This is attributed to imperfections at the semiconductor/oxide interface which cause electronic trap states, resulting in inefficient modulation of the Fermi level. The physical origin of these states is still debated mainly because of the difficulty in assigning a particular electronic state to a specific physical defect. To gain insight into the exact source of the electronic trap states, density functional theory was employed to model the intrinsic physical defects on the InGaAs (2 × 4) surface and to model the effective passivation of these defects by utilizing both an oxidant and a reductant to eliminate metallic bonds and dangling-bond-induced strain at the interface. Scanning tunneling microscopy and spectroscopy were employed to experimentally determine the physical and electronic defects and to verify the effectiveness of dual passivation with an oxidant and a reductant. While subsurface chemisorption of oxidants on compound semiconductor substrates can be detrimental, it has been shown theoretically and experimentally that oxidants are critical to removing metallic defects at oxide/compound semiconductor interfaces present in nanoscale channels, oxides, and other nanostructures.

  7. Low-profile wireless passive resonators for sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Xun; An, Linan

    A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmittingmore » a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.« less

  8. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast

    NASA Astrophysics Data System (ADS)

    Betterton, Meredith; Blackwell, Robert; Edelmaier, Christopher; Sweezy-Schindler, Oliver; Lamson, Adam; Gergely, Zachary; O'Toole, Eileen; Crapo, Ammon; Hough, Loren; McIntosh, J. Richard; Glaser, Matthew

    Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and crosslinkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. Here we describe a physical model that exhibits de novo bipolar spindle formation. We began with previously published data on fission-yeast spindle-pole-body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive crosslinkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self assembly. By varying features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive crosslinkers alone. We also identify characteristic failed states of spindle assembly, which are avoided by creation and maintenance of antiparallel microtubule overlaps. DMR-0847685, DMR-1551095, DMR-1420736, K25GM110486, R01GM104976, R01GM033787.

  9. Nano-aggregates: emerging delivery tools for tumor therapy.

    PubMed

    Sharma, Vinod Kumar; Jain, Ankit; Soni, Vandana

    2013-01-01

    A plethora of formulation techniques have been reported in the literature for site-specific targeting of water-soluble and -insoluble anticancer drugs. Along with other vesicular and particulate carrier systems, nano-aggregates have recently emerged as a novel supramolecular colloidal carrier with promise for using poorly water-soluble drugs in molecular targeted therapies. Nano-aggregates possess some inherent properties such as size in the nanometers, high loading efficiency, and in vivo stability. Nano-aggregates can provide site-specific drug delivery via either a passive or active targeting mechanism. Nano-aggregates are formed from a polymer-drug conjugated amphiphilic block copolymer. They are suitable for encapsulation of poorly water-soluble drugs by covalent conjugation as well as physical encapsulation. Because of physical encapsulation, a maximum amount of drug can be loaded in nano-aggregates, which helps to achieve a sufficiently high drug concentration at the target site. Active transport can be achieved by conjugating a drug with vectors or ligands that bind specifically to receptors being overexpressed in the tumor cells. In this review, we explore synthesis and tumor targeting potential of nano-aggregates with active and passive mechanisms, and we discuss various characterization parameters, ex vivo studies, biodistribution studies, clinical trials, and patents.

  10. Complexity quantification of dense array EEG using sample entropy analysis.

    PubMed

    Ramanand, Pravitha; Nampoori, V P N; Sreenivasan, R

    2004-09-01

    In this paper, a time series complexity analysis of dense array electroencephalogram signals is carried out using the recently introduced Sample Entropy (SampEn) measure. This statistic quantifies the regularity in signals recorded from systems that can vary from the purely deterministic to purely stochastic realm. The present analysis is conducted with an objective of gaining insight into complexity variations related to changing brain dynamics for EEG recorded from the three cases of passive, eyes closed condition, a mental arithmetic task and the same mental task carried out after a physical exertion task. It is observed that the statistic is a robust quantifier of complexity suited for short physiological signals such as the EEG and it points to the specific brain regions that exhibit lowered complexity during the mental task state as compared to a passive, relaxed state. In the case of mental tasks carried out before and after the performance of a physical exercise, the statistic can detect the variations brought in by the intermediate fatigue inducing exercise period. This enhances its utility in detecting subtle changes in the brain state that can find wider scope for applications in EEG based brain studies.

  11. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  12. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  13. 48 CFR 211.275 - Passive radio frequency identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Passive radio frequency identification. 211.275 Section 211.275 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... Requirements Documents 211.275 Passive radio frequency identification. ...

  14. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles.

    PubMed

    Abid, Haider J; Chen, Jie; Nassar, Ameen A

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system.

  15. Integrated passive/active vibration absorber for multi-story buildings

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina J.; Ahmadi, Goodarz; Horta, Lucas G.

    1995-01-01

    Passive isolator, active vibration absorber, and an integrated passive/active (hybrid) control are studied for their effectiveness in reducing structural vibration under seismic excitations. For the passive isolator, a laminated rubber bearing base isolator which has been studied and used extensively by researchers and seismic designers is considered. An active vibration absorber concept, which can provide guaranteed closed-loop stability with minimum knowledge of the controlled system, is used to reduce the passive isolator displacement and to suppress the top floor vibration. A three-story building model is used for the numerical simulation. The performance of an active vibration absorber and a hybrid vibration controller in reducing peak structural responses is compared with the passively isolated structural response and with absence of vibration control systems under the N00W component of El Centro 1940 and N90W component of the Mexico City earthquake excitation records. The results show that the integrated passive/active vibration control system is most effective in suppressing the peak structural acceleration for the El Centro 1940 earthquake when compared with the passive or active vibration absorber alone. The active vibration absorber, however, is the only system that suppresses the peak acceleration of the structure for the Mexico City 1985 earthquake.

  16. Security scheme in IMDD-OFDM-PON system with the chaotic pilot interval and scrambling

    NASA Astrophysics Data System (ADS)

    Chen, Qianghua; Bi, Meihua; Fu, Xiaosong; Lu, Yang; Zeng, Ran; Yang, Guowei; Yang, Xuelin; Xiao, Shilin

    2018-01-01

    In this paper, a random chaotic pilot interval and permutations scheme without any requirement of redundant sideband information is firstly proposed for the physical layer security-enhanced intensity modulation direct detection orthogonal frequency division multiplexing passive optical network (IMDD-OFDM-PON) system. With the help of the position feature of inserting the pilot, a simple logistic chaos map is used to generate the random pilot interval and scramble the chaotic subcarrier allocation of each column pilot data for improving the physical layer confidentiality. Due to the dynamic chaotic permutations of pilot data, the enhanced key space of ∼103303 is achieved in OFDM-PON. Moreover, the transmission experiment of 10-Gb/s 16-QAM encrypted OFDM data is successfully demonstrated over 20-km single-mode fiber, which indicates that the proposed scheme not only improves the system security, but also can achieve the same performance as in the common IMDD-OFDM-PON system without encryption scheme.

  17. Using Research-Based Interactive Video Vignettes to Enhance Out-of-Class Learning in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Laws, Priscilla W.; Willis, Maxine C.; Jackson, David P.; Koenig, Kathleen; Teese, Robert

    2015-02-01

    Ever since the first generalized computer-assisted instruction system (PLATO1) was introduced over 50 years ago, educators have been adding computer-based materials to their classes. Today many textbooks have complete online versions that include video lectures and other supplements. In the past 25 years the web has fueled an explosion of online homework and course management systems, both as blended learning and online courses. Meanwhile, introductory physics instructors have been implementing new approaches to teaching based on the outcomes of Physics Education Research (PER). A common theme of PER-based instruction has been the use of active-learning strategies designed to help students overcome alternative conceptions that they often bring to the study of physics.2 Unfortunately, while classrooms have become more active, online learning typically relies on passive lecture videos or Kahn-style3 tablet drawings. To bring active learning online, the LivePhoto Physics Group has been developing Interactive Video Vignettes (IVVs) that add interactivity and PER-based elements to short presentations. These vignettes incorporate web-based video activities that contain interactive elements and typically require students to make predictions and analyze real-world phenomena.

  18. Clinical assessment of the physical activity pattern of chronic fatigue syndrome patients: a validation of three methods.

    PubMed

    Scheeres, Korine; Knoop, Hans; Meer, van der Jos; Bleijenberg, Gijs

    2009-04-01

    Effective treatment of chronic fatigue syndrome (CFS) with cognitive behavioural therapy (CBT) relies on a correct classification of so called 'fluctuating active' versus 'passive' patients. For successful treatment with CBT is it especially important to recognise the passive patients and give them a tailored treatment protocol. In the present study it was evaluated whether CFS patient's physical activity pattern can be assessed most accurately with the 'Activity Pattern Interview' (API), the International Physical Activity Questionnaire (IPAQ) or the CFS-Activity Questionnaire (CFS-AQ). The three instruments were validated compared to actometers. Actometers are until now the best and most objective instrument to measure physical activity, but they are too expensive and time consuming for most clinical practice settings. In total 226 CFS patients enrolled for CBT therapy answered the API at intake and filled in the two questionnaires. Directly after intake they wore the actometer for two weeks. Based on receiver operating characteristic (ROC) curves the validity of the three methods were assessed and compared. Both the API and the two questionnaires had an acceptable validity (0.64 to 0.71). None of the three instruments was significantly better than the others. The proportion of false predictions was rather high for all three instrument. The IPAQ had the highest proportion of correct passive predictions (sensitivity 70.1%). The validity of all three instruments appeared to be fair, and all showed rather high proportions of false classifications. Hence in fact none of the tested instruments could really be called satisfactory. Because the IPAQ showed to be the best in correctly predicting 'passive' CFS patients, which is most essentially related to treatment results, it was concluded that the IPAQ is the preferable alternative for an actometer when treating CFS patients in clinical practice.

  19. The CRF system mediates increased passive stress-coping behavior following the loss of a bonded partner in a monogamous rodent.

    PubMed

    Bosch, Oliver J; Nair, Hemanth P; Ahern, Todd H; Neumann, Inga D; Young, Larry J

    2009-05-01

    Social relationships significantly influence physiology and behavior, including the hypothalamo-pituitary-adrenal axis, anxiety, and mental health. Disruption of social bonds through separation or death often results in profound grieving, depression, and physical illness. As the monogamous prairie vole forms enduring, selective pair bonds with the mating partner, they provide an animal model to study the physiological consequences of pair bonding and, thus, the loss of the bonded partner. Male prairie voles were paired with a novel female or male sibling. After 5 days, half of the males of each group were separated from the partner. Elevated plus-maze, forced swim, and tail suspension tests were used to assess anxiety-like and passive stress-coping behaviors indicative of depressive-like behavior. Following 4 days of separation from the female but not the male partner, experimental males displayed increased passive stress-coping. This effect was abolished by long-term intracerebroventricular infusion of a nonselective corticotropin-releasing factor (CRF) receptor antagonist without disrupting the bond itself. Both CRF type 1 and 2 receptors were involved in the emergence of passive stress-coping behavior. Furthermore, pairing with a female was associated with elevated CRF mRNA in the bed nucleus of the stria terminalis, and partner loss elicited a pronounced increase in circulating corticosteroid and adrenal weight. We speculate that the CRF system may mediate an aversive affect following separation from the female partner, which may facilitate proximity seeking between the pair-bonded individuals. Hence, the prairie vole model may provide insights into brain mechanisms involved in the psychopathological consequences of partner loss.

  20. Materials for bioresorbable radio frequency electronics.

    PubMed

    Hwang, Suk-Won; Huang, Xian; Seo, Jung-Hun; Song, Jun-Kyul; Kim, Stanley; Hage-Ali, Sami; Chung, Hyun-Joong; Tao, Hu; Omenetto, Fiorenzo G; Ma, Zhenqiang; Rogers, John A

    2013-07-12

    Materials, device designs and manufacturing approaches are presented for classes of RF electronic components that are capable of complete dissolution in water or biofluids. All individual passive/active components as well as system-level examples such as wireless RF energy harvesting circuits exploit active materials that are biocompatible. The results provide diverse building blocks for physically transient forms of electronics, of particular potential value in bioresorbable medical implants with wireless power transmission and communication capabilities. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Autonomously acquiring declarative and procedural knowledge for ICAT systems

    NASA Technical Reports Server (NTRS)

    Kovarik, Vincent J., Jr.

    1993-01-01

    The construction of Intelligent Computer Aided Training (ICAT) systems is critically dependent on the ability to define and encode knowledge. This knowledge engineering effort can be broadly divided into two categories: domain knowledge and expert or task knowledge. Domain knowledge refers to the physical environment or system with which the expert interacts. Expert knowledge consists of the set of procedures and heuristics employed by the expert in performing their task. Both these areas are a significant bottleneck in the acquisition of knowledge for ICAT systems. This paper presents a research project in the area of autonomous knowledge acquisition using a passive observation concept. The system observes an expert and then generalizes the observations into production rules representing the domain expert's knowledge.

  2. Reinforcing value of smoking relative to physical activity and the effects of physical activity on smoking abstinence symptoms among young adults.

    PubMed

    Audrain-McGovern, Janet; Strasser, Andrew A; Ashare, Rebecca; Wileyto, E Paul

    2015-12-01

    This study sought to evaluate whether individual differences in the reinforcing value of smoking relative to physical activity (RRVS) moderated the effects of physical activity on smoking abstinence symptoms in young adult smokers. The repeated-measures within-subjects design included daily smokers (N = 79) 18-26 years old. RRVS was measured with a validated behavioral choice task. On 2 subsequent visits, participants completed self-report measures of craving, withdrawal, mood, and affective valence before and after they engaged in passive sitting or a bout of physical activity. RRVS did not moderate any effects of physical activity (ps > .05). Physical activity compared with passive sitting predicted decreased withdrawal symptoms, β = -5.23, 95% confidence interval (CI) [-6.93, -3.52] (p < .001), negative mood, β = -2.92, 95% CI [-4.13, -1.72] (p < .001), and urge to smoke. β = -7.13, 95% CI [-9.39, -4.86] (p < .001). Also, physical activity compared with passive sitting predicted increased positive affect, β = 3.08, 95% CI [1.87, 4.28] (p < .001) and pleasurable feelings, β = 1.07, 95% CI [0.58, 1.55] (p < .001), and greater time to first cigarette during the ad libitum smoking period, β = 211.76, 95% CI [32.54, 390.98] (p = .02). RRVS predicted higher levels of pleasurable feelings, β = 0.22, 95% CI [0.01, 0.43] (p = .045), increased odds of smoking versus remaining abstinent during the ad libitum smoking period, β = 0.04, 95% CI [0.01, 0.08] (p = .02), and reduced time to first cigarette, β = -163.00, 95% CI [-323.50, -2.49] (p = .047). Regardless of the RRVS, physical activity produced effects that may aid smoking cessation in young adult smokers. However, young adult smokers who have a higher RRVS will be less likely to choose to engage physical activity, especially when smoking is an alternative. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  3. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Excellent Passivation of p-Type Si Surface by Sol-Gel Al2O3 Films

    NASA Astrophysics Data System (ADS)

    Xiao, Hai-Qing; Zhou, Chun-Lan; Cao, Xiao-Ning; Wang, Wen-Jing; Zhao, Lei; Li, Hai-Ling; Diao, Hong-Wei

    2009-08-01

    Al2O3 films with a thickness of about 100 nm synthesized by spin coating and thermally treated are applied for field-induced surface passivation of p-type crystalline silicon. The level of surface passivation is determined by techniques based on photoconductance. An effective surface recombination velocity below 100 cm/s is obtained on 10Ω ·cm p-type c-Si wafers (Cz Si). A high density of negative fixed charges in the order of 1012 cm-2 is detected in the Al2O3 films and its impact on the level of surface passivation is demonstrated experimentally. Furthermore, a comparison between the surface passivation achieved for thermal SiO2 and plasma enhanced chemical vapor deposition SiNx:H films on the same c-Si is presented. The high negative fixed charge density explains the excellent passivation of p-type c-Si by Al2O3.

  4. Intervention for an Adolescent With Cerebral Palsy During Period of Accelerated Growth.

    PubMed

    Reubens, Rebecca; Silkwood-Sherer, Debbie J

    2016-01-01

    The purpose of this case report was to describe changes in body functions and structures, activities, and participation after a biweekly 10-week program of home physical therapy and hippotherapy using a weighted compressor belt. A 13-year-old boy with spastic diplegic cerebral palsy, Gross Motor Function Classification System level II, was referred because of accelerated growth and functional impairments that limited daily activities. The Modified Ashworth Scale, passive range of motion, 1-Minute Walk Test, Timed Up and Down Stairs, Pediatric Balance Scale, Pediatric Evaluation of Disability Inventory Computer Adaptive Test, and Dimensions of Mastery Questionnaire 17 were examined at baseline, 5, and 10 weeks. Data at 5 and 10 weeks demonstrated positive changes in passive range of motion, balance, strength, functional activities, and motivation, with additional improvements in endurance and speed after 10 weeks. This report reveals enhanced body functions and structures and activities and improved participation and motivation.

  5. Passive coherent location direct signal suppression using hardware mixing techniques

    NASA Astrophysics Data System (ADS)

    Kaiser, Sean A.; Christianson, Andrew J.; Narayanan, Ram M.

    2017-05-01

    Passive coherent location (PCL) is a radar technique, in which the system uses reflections from opportunistic illumination sources in the environment for detection and tracking. Typically, PCL uses civilian communication transmitters not ideally suited for radar. The physical geometry of PCL is developed on the basis of bistatic radar without control of the transmitter antenna or waveform design. This poses the problem that often the receiver is designed with two antennas and channels, one for reference and one for surveillance. The surveillance channel is also contaminated with the direct signal and thus direct signal suppression (DSS) techniques must be used. This paper proposes an analytical solution based around hardware for DSS which is compared to other methods available in the literature. The methods are tested in varying bistatic geometries and with varying target radar cross section (RCS) and signal-to-noise ratio (SNR).

  6. Aging and rejuvenation of active matter under topological constraints.

    PubMed

    Janssen, Liesbeth M C; Kaiser, Andreas; Löwen, Hartmut

    2017-07-18

    The coupling of active, self-motile particles to topological constraints can give rise to novel non-equilibrium dynamical patterns that lack any passive counterpart. Here we study the behavior of self-propelled rods confined to a compact spherical manifold by means of Brownian dynamics simulations. We establish the state diagram and find that short active rods at sufficiently high density exhibit a glass transition toward a disordered state characterized by persistent self-spinning motion. By periodically melting and revitrifying the spherical spinning glass, we observe clear signatures of time-dependent aging and rejuvenation physics. We quantify the crucial role of activity in these non-equilibrium processes, and rationalize the aging dynamics in terms of an absorbing-state transition toward a more stable active glassy state. Our results demonstrate both how concepts of passive glass phenomenology can carry over into the realm of active matter, and how topology can enrich the collective spatiotemporal dynamics in inherently non-equilibrium systems.

  7. Passive fire building protection system evaluation (case study: millennium ict centre)

    NASA Astrophysics Data System (ADS)

    Rahman, Vinky; Stephanie

    2018-03-01

    Passive fire protection system is a system that refers to the building design, both regarding of architecture and structure. This system usually consists of structural protection that protects the structure of the building and prevents the spread of fire and facilitate the evacuation process in case of fire. Millennium ICT Center is the largest electronic shopping center in Medan, Indonesia. As a public building that accommodates the crowd, this building needs a fire protection system by the standards. Therefore, the purpose of this study is to evaluate passive fire protection system of Millennium ICT Center building. The study was conducted to describe the facts of the building as well as direct observation to the research location. The collected data is then processed using the AHP (Analytical Hierarchy Process) method in its weighting process to obtain the reliability value of passive fire protection fire system. The results showed that there are some components of passive fire protection system in the building, but some are still unqualified. The first section in your paper

  8. Design of a vibration isolation system for a cycle ergometer to be used onboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Pearson, Lillian; Tait, Steven; Trevino, Maurice

    1991-01-01

    Low frequency vibrations generated during exercise using the cycle ergometer onboard the Space Shuttle are disrupting sensitive microgravity experiments. The design team is asked by NASA/USRA to generate alternatives for the design of a vibration isolation system for the cycle ergometer. It is the design team's objective to present alternative designs and a problem solution for a vibration isolation system for an exercise cycle ergometer to be used onboard the Space Shuttle. In the development of alternative designs, the design team emphasizes passive systems as opposed to active control systems. This decision is made because the team feels that passive systems are less complex than active control systems, external energy sources are not required, and mass is reduced due to the lack of machinery such as servomotors or compressors typical of active control systems. Eleven alternative designs are developed by the design team. From these alternatives, three active control systems are included to compare the benefits of active and passive systems. Also included in the alternatives is an isolation system designed by an independent engineer that was acquired late in the project. The eight alternatives using passive isolation systems are narrowed down by selection criteria to four considered to be the most promising by the design team. A feasibility analysis is performed on these four passive isolation systems. Based on the feasibility analysis, a final design solution is chosen and further developed. From the development of the design, the design team has concluded that passive systems are not effective at isolating vibrations for the low frequencies considered for this project. Recommendations are made for guidelines of passive isolation design and application of such systems.

  9. Hybrid microfluidics combined with active and passive approaches for continuous cell separation.

    PubMed

    Yan, Sheng; Zhang, Jun; Yuan, Dan; Li, Weihua

    2017-01-01

    Microfluidics, which is classified as either active or passive, is capable of separating cells of interest from a complex and heterogeneous sample. Active methods utilise external fields such as electric, magnetic, acoustic, and optical to drive cells for separation, while passive methods utilise channel structures, intrinsic hydrodynamic forces, and steric hindrances to manipulate cells. However, when processing complex biological samples such as whole blood with rare cells, separation with a single module microfluidic device is difficult. Hybrid microfluidics is an emerging technique, which utilises active and passive methods whilst fulfilling higher requirements for stable performance, versatility, and convenience, including (i) the ability to process multi-target cells, (ii) enhanced ability for multiplexed separation, (iii) higher sensitivity, and (iv) tunability for a wider operational range. This review introduces the fundamental physics and typical formats for subclasses of hybrid microfluidic devices based on their different physical fields; presents current examples of cell sorting to highlight the advantage and usefulness of hybrid microfluidics on biomedicine, and then discusses the challenges and perspective of future development and the promising direction of research in this field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bio-physical model provides insight into dispersal of plaice (Pleuronectes platessa L.) from putative spawning grounds to nursery areas on the west coast of Ireland

    NASA Astrophysics Data System (ADS)

    Zölck, Melanie; Brophy, Deirdre; Mohn, Christian; Minto, Cóilín; McGrath, David

    2015-05-01

    In this study we use an individual-based coupled physical biological model (ICPBM) to reconstruct the dispersal pathways of 0-group juveniles (young of the year) collected from nursery grounds in Galway Bay and to identify probable spawning ground locations for plaice on the west coast of Ireland. The relative importance of passive transport, behaviour and individual growth rates on successful larval delivery, from three putative spawning grounds to suitable nursery areas, was also investigated. Using a hydrodynamic Regional Ocean Modelling System (ROMS), combined with a particle tracking model, three model scenarios were tested: a passive tracer scenario (PTS), a linear growth scenario (LGS) and a temperature-dependent growth scenario (TDS). Hydrodynamic conditions were modelled and biological information (pelagic larval durations and size at settlement) incorporated. The LGS and TDS included vertical migration and tidally synchronised behaviour. Generalized Linear Model (GLM) comparisons showed that incorporation of behaviour and temperature-dependent growth, resulted in approximately two to three times more particles being delivered to sites of suitable depth for settlement (≤ 10 m), compared to passive transport alone (p < 0.001, LGS 19-78%; TDS 40-81%). The probability of successful delivery also varied significantly depending on the location, year and week of release (p < 0.05). A comparison of temperature histories between particles that were delivered to shallow inshore areas and those that failed to reach depths suitable for settlement indicated that dispersal to coastal nursery areas is facilitated by entrainment into a cool coastal current system. This study identifies a probable plaice spawning area in western Ireland and reconfirms the importance of including behaviour and growth in dispersal simulations. The model results suggest that differences in growth can influence larval delivery to potentially suitable nursery areas.

  11. Coarsening of physics for biogeochemical model in NEMO

    NASA Astrophysics Data System (ADS)

    Bricaud, Clement; Le Sommer, Julien; Madec, Gurvan; Deshayes, Julie; Chanut, Jerome; Perruche, Coralie

    2017-04-01

    Ocean mesoscale and submesoscale turbulence contribute to ocean tracer transport and to shaping ocean biogeochemical tracers distribution. Representing adequately tracer transport in ocean models therefore requires to increase model resolution so that the impact of ocean turbulence is adequately accounted for. But due to supercomputers power and storage limitations, global biogeochemical models are not yet run routinely at eddying resolution. Still, because the "effective resolution" of eddying ocean models is much coarser than the physical model grid resolution, tracer transport can be reconstructed to a large extent by computing tracer transport and diffusion with a model grid resolution close to the effective resolution of the physical model. This observation has motivated the implementation of a new capability in NEMO ocean model (http://www.nemo-ocean.eu/) that allows to run the physical model and the tracer transport model at different grid resolutions. In a first time, we present results obtained with this new capability applied to a synthetic age tracer in a global eddying model configuration. In this model configuration, ocean dynamic is computed at ¼° resolution but tracer transport is computed at 3/4° resolution. The solution obtained is compared to 2 reference setup ,one at ¼° resolution for both physics and passive tracer models and one at 3/4° resolution for both physics and passive tracer model. We discuss possible options for defining the vertical diffusivity coefficient for the tracer transport model based on information from the high resolution grid. We describe the impact of this choice on the distribution and one the penetration of the age tracer. In a second time we present results obtained by coupling the physics with the biogeochemical model PISCES. We look at the impact of this methodology on some tracers distribution and dynamic. The method described here can found applications in ocean forecasting, such as the Copernicus Marine service operated by Mercator-Ocean, and in Earth System Models for climate applications.

  12. Passive wall cooling panel with phase change material as a cooling agent

    NASA Astrophysics Data System (ADS)

    Majid, Masni A.; Tajudin, Rasyidah Ahmad; Salleh, Norhafizah; Hamid, Noor Azlina Abd

    2017-11-01

    The study was carried out to the determine performance of passive wall cooling panels by using Phase Change Materials as a cooling agent. This passive cooling system used cooling agent as natural energy storage without using any HVAC system. Eight full scale passive wall cooling panels were developed with the size 1500 mm (L) × 500 mm (W) × 100 mm (T). The cooling agent such as glycerine were filled in the tube with horizontal and vertical arrangement. The passive wall cooling panels were casting by using foamed concrete with density between 1200 kg/m3 - 1500 kg/m3. The passive wall cooling panels were tested in a small house and the differences of indoor and outdoor temperature was recorded. Passive wall cooling panels with glycerine as cooling agent in vertical arrangement showed the best performance with dropped of indoor air temperature within 3°C compared to outdoor air temperature. The lowest indoor air temperature recorded was 25°C from passive wall cooling panels with glycerine in vertical arrangement. From this study, the passive wall cooling system could be applied as it was environmental friendly and less maintenance.

  13. In vitro evaluation of a passive radio frequency identification microchip implanted in human molars subjected to compression forces, for forensic purposes of human identification

    PubMed Central

    Moreno, Freddy; Vallejo, Diego; Garzón, Herney; Moreno, Sandra

    2013-01-01

    Objective: To evaluate the in vitro behavior of a passive Radio Frequency Identification (RFID) microchip implanted in human molars subjected to compression forces to determine its technical and clinical viability. Materials and Methods: In vitro experimental study to evaluate the physical behavior of a passive RFID microchip (VeriChip™) implanted in human molars through resin restoration (Filtek P90™ Silorane 3M-ESPE®) to determine the clinical and technical possibilities of the implant and the viability to withstand compression forces exerted by the stomatognathic system during mastication. Results: Through the ANOVA test, it was found that the teeth on which a microchip was implanted show great resistance to compressive forces. It was also evident that teeth with microchips implanted in Class V cavities are more resistant than those implanted in Class I cavities. Conclusions: Although microchip dimensions are big, requiring a sufficiently large cavity, from the biomechanical point of view it is plausible to implant a microchip in a Class V cavity employing restoration material based on resin for forensic purposes of human identification. PMID:24255554

  14. A GeoWall with Physics and Astronomy Applications

    NASA Astrophysics Data System (ADS)

    Dukes, Phillip; Bruton, Dan

    2008-03-01

    A GeoWall is a passive stereoscopic projection system that can be used by students, teachers, and researchers for visualization of the structure and dynamics of three-dimensional systems and data. The type of system described here adequately provides 3-D visualization in natural color for large or small groups of viewers. The name ``GeoWall'' derives from its initial development to visualize data in the geosciences.1 An early GeoWall system was developed by Paul Morin at the electronic visualization laboratory at the University of Minnesota and was applied in an introductory geology course in spring of 2001. Since that time, several stereoscopic media, which are applicable to introductory-level physics and astronomy classes, have been developed and released into the public domain. In addition to the GeoWall's application in the classroom, there is considerable value in its use as part of a general science outreach program. In this paper we briefly describe the theory of operation of stereoscopic projection and the basic necessary components of a GeoWall system. Then we briefly describe how we are using a GeoWall as an instructional tool for the classroom and informal astronomy education and in research. Finally, we list sources for several of the free software media in physics and astronomy available for use with a GeoWall system.

  15. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles

    PubMed Central

    Abid, Haider J.; Chen, Jie; Nassar, Ameen A.

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system. PMID:27351020

  16. Low cost passive solar adobe house

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-12-21

    A brief description, photographs, and cost breakdown of a hybrid direct-gain passive solar adobe house constructed in the City of El Paso, Texas. The 3-panel active solar domestic hot water system acts as a back-up to the direct gain passive system.

  17. Passivation effect on optical and electrical properties of molecular beam epitaxy-grown HgCdTe/CdTe/Si layers

    NASA Astrophysics Data System (ADS)

    Kiran, Rajni; Mallick, Shubhrangshu; Hahn, Suk-Ryong; Lee, T. S.; Sivananthan, Sivalingam; Ghosh, Siddhartha; Wijewarnasuriya, P. S.

    2006-06-01

    The effects of passivation with two different passivants, ZnS and CdTe, and two different passivation techniques, physical vapor deposition (PVD) and molecular beam epitaxy (MBE), were quantified in terms of the minority carrier lifetime and extracted surface recombination velocity on both MBE-grown medium-wavelength ir (MWIR) and long-wavelength ir HgCdTe samples. A gradual increment of the minority carrier lifetime was reported as the passivation technique was changed from PVD ZnS to PVD CdTe, and finally to MBE CdTe, especially at low temperatures. A corresponding reduction in the extracted surface recombination velocity in the same order was also reported for the first time. Initial data on the 1/ f noise values of as-grown MWIR samples showed a reduction of two orders of noise power after 1200-Å ZnS deposition.

  18. Liquid metal cooled nuclear reactors with passive cooling system

    DOEpatents

    Hunsbedt, Anstein; Fanning, Alan W.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  19. Fault discovery protocol for passive optical networks

    NASA Astrophysics Data System (ADS)

    Hajduczenia, Marek; Fonseca, Daniel; da Silva, Henrique J. A.; Monteiro, Paulo P.

    2007-06-01

    All existing flavors of passive optical networks (PONs) provide an attractive alternative to legacy copper-based access lines deployed between a central office (CO) of the service provider (SP) and a customer site. One of the most challenging tasks for PON network planners is the reduction of the overall cost of employing protection schemes for the optical fiber plant while maintaining a reasonable level of survivability and reducing the downtime, thus ensuring acceptable levels of quality of service (QoS) for end subscribers. The recently growing volume of Ethernet PONs deployment [Kramer, IEEE 802.3, CFI (2006)], connected with low-cost electronic and optical components used in the optical network unit (ONU) modules, results in the situation where remote detection of faulty/active subscriber modules becomes indispensable for proper operation of an EPON system. The problem of the remote detection of faulty ONUs in the system is addressed where the upstream channel is flooded with the cw transmission from one or more damaged ONUs and standard communication is severed, providing a solution that is applicable in any type of PON network, regardless of the operating protocol, physical structure, and data rate.

  20. Probing dynamic hydrologic system of slowly-creeping landslides with passive seismic imaging: A comprehensive landslide monitoring site at Lantai, Ilan area in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, H. H.; Hsu, Y. J.; Kuo, C. Y.; Chen, C. C.; Kuo, L. W.; Chen, R. F.; Lin, C. R.; Lin, P. P.; Lin, C. W.; Lin, M. L.; Wang, K. L.

    2017-12-01

    A unique landslide monitoring project integrating multidisciplinary geophysics experiments such as GPS, inclinometer, piezometer, and spontaneous potential log has been established at Lantai, Ilan area to investigating the possible detachment depth range and the physical mechanism of a slowly creeping landslide. In parallel with this, a lately deployed local seismic network also lends an opportunity to employ the passive seismic imaging technique to detect the time-lapse changes of seismic velocity in and around the landslide area. Such technique that retrieves Green's functions by cross-correlation of continuous ambient noise has opened new opportunities to seismologically monitoring the environmental and tectonic events such as ground water variation, magma intrusion under volcanos, and co-seismic medium damage in recent years. Integrating these geophysical observations, we explore the primary controls of derived seismic velocity changes and especially the hydrological response of the landslide to the passage of Megi typhoon in the last September 2016, which could potentially further our understanding of the dynamic system of landslides and in turn help the hazard mitigation.

  1. Transient analysis of ”2 inch Direct Vessel Injection line break” in SPES-2 facility by using TRACE code

    NASA Astrophysics Data System (ADS)

    D'Amico, S.; Lombardo, C.; Moscato, I.; Polidori, M.; Vella, G.

    2015-11-01

    In the past few decades a lot of theoretical and experimental researches have been done to understand the physical phenomena characterizing nuclear accidents. In particular, after the Three Miles Island accident, several reactors have been designed to handle successfully LOCA events. This paper presents a comparison between experimental and numerical results obtained for the “2 inch Direct Vessel Injection line break” in SPES-2. This facility is an integral test facility built in Piacenza at the SIET laboratories and simulating the primary circuit, the relevant parts of the secondary circuits and the passive safety systems typical of the AP600 nuclear power plant. The numerical analysis here presented was performed by using TRACE and CATHARE thermal-hydraulic codes with the purpose of evaluating their prediction capability. The main results show that the TRACE model well predicts the overall behaviour of the plant during the transient, in particular it is able to simulate the principal thermal-hydraulic phenomena related to all passive safety systems. The performance of the presented CATHARE noding has suggested some possible improvements of the model.

  2. Thermal Design and Analysis of a Multi-Stage 30K Radiative Cooling System for EPIC

    NASA Technical Reports Server (NTRS)

    Chui, Talso; Bock, Jamie; Holmes, Warren; Raab, Jeff

    2009-01-01

    The Experimental Probe of Inflationary Cosmology (EPIC) is an implementation of the NASA Einstein Inflation Probe mission, to answer questions about the physics of Inflation in the early Universe by measuring the polarization of the Cosmic Microwave Background (CMB). The mission relies on a passive cooling system to cool the enclosure of a telescope to 30 K; a cryocooler then cools this enclosure to 18 K and the telescope to 4 K. Subsequently, an adiabatic demagnetization refrigerator further cools a large focal plane to approx.100 mK. For this mission, the telescope has an aperture of 1.4 m, and the spacecraft's symmetry axis is oriented approx. 45 degrees relative to the direction of the sun. The spacecraft will be spun at approx. 0.5 rpm around this axis, which then precesses on the sky at 1 rph. The passive system must both supply the necessary cooling power for the cryocooler and meet demanding temperature stability requirements. We describe the thermal design of a passive cooling system consisting of four V-groove radiators for shielding of solar radiation and cooling the telescope to 30 K. The design realizes loads of 20 and 68 mW at the 4 K and 18 K stages on the cooler, respectively. A lower cost option for reaching 40 K with three V-groove radiators is also described. The analysis includes radiation coupling between stages of the radiators and sunshields, and parasitic conduction in the bipod support, harnesses, and ADR leads. Dynamic effects are also estimated, including the very small variations in temperature due to the scan motion of the spacecraft.

  3. Westinghouse Small Modular Reactor passive safety system response to postulated events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M. C.; Wright, R. F.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor. This paper is part of a series of four describing the design and safety features of the Westinghouse SMR. This paper focuses in particular upon the passive safety features and the safety system response of the Westinghouse SMR. The Westinghouse SMR design incorporates many features to minimize the effects of, and in some cases eliminates the possibility of postulated accidents. The small size of the reactor and the low power density limits the potential consequences of an accident relative to a large plant. Themore » integral design eliminates large loop piping, which significantly reduces the flow area of postulated loss of coolant accidents (LOCAs). The Westinghouse SMR containment is a high-pressure, compact design that normally operates at a partial vacuum. This facilitates heat removal from the containment during LOCA events. The containment is submerged in water which also aides the heat removal and provides an additional radionuclide filter. The Westinghouse SMR safety system design is passive, is based largely on the passive safety systems used in the AP1000{sup R} reactor, and provides mitigation of all design basis accidents without the need for AC electrical power for a period of seven days. Frequent faults, such as reactivity insertion events and loss of power events, are protected by first shutting down the nuclear reaction by inserting control rods, then providing cold, borated water through a passive, buoyancy-driven flow. Decay heat removal is provided using a layered approach that includes the passive removal of heat by the steam drum and independent passive heat removal system that transfers heat from the primary system to the environment. Less frequent faults such as loss of coolant accidents are mitigated by passive injection of a large quantity of water that is readily available inside containment. An automatic depressurization system is used to reduce the reactor pressure in a controlled manner to facilitate the passive injection. Long-term decay heat removal is accomplished using the passive heat removal systems augmented by heat transfer through the containment vessel to the environment. The passive injection systems are designed so that the fuel remains covered and effectively cooled throughout the event. Like during the frequent faults, the passive systems provide effective cooling without the need for ac power for seven days following the accident. Connections are available to add additional water to indefinitely cool the plant. The response of the safety systems of the Westinghouse SMR to various initiating faults has been examined. Among them, two accidents; an extended station blackout event, and a LOCA event have been evaluated to demonstrate how the plant will remain safe in the unlikely event that either should occur. (authors)« less

  4. Magnetic-Field-Response Measurement-Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a response inflection. The "transmit-receive-compare" of sequential harmonics is repeated until the inflection is identified. The harmonic producing the amplitude inflection is the sensor resonant frequency. Resonant frequency and response amplitude are stored and then correlated to calibration data.

  5. Disinfection of Spacecraft Potable Water Systems by Passivation with Ionic Silver

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.; McCoy, LaShelle e.; Roberts, Michael S.

    2011-01-01

    Microbial growth is common on wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and physical disinfection methods. Advanced control technologies are needed to limit microorganisms and increase the reliability of life support systems required for long-duration human missions. Silver ions and compounds are widely used as antimicrobial agents for medical applications and continue to be used as a residual biocide in some spacecraft water systems. The National Aeronautics and Space Administration (NASA) has identified silver fluoride for use in the potable water system on the next generation spacecraft. Due to ionic interactions between silver fluoride in solution and wetted metallic surfaces, ionic silver is rapidly depleted from solution and loses its antimicrobial efficacy over time. This report describes research to prolong the antimicrobial efficacy of ionic silver by maintaining its solubility. Three types of metal coupons (lnconel 718, Stainless Steel 316, and Titanium 6AI-4V) used in spacecraft potable water systems were exposed to either a continuous flow of water amended with 0.4 mg/L ionic silver fluoride or to a static, pre-treatment passivation in 50 mg/L ionic silver fluoride with or without a surface oxidation pre-treatment. Coupons were then challenged in a high-shear, CDC bioreactor (BioSurface Technologies) by exposure to six bacteria previously isolated from spacecraft potable water systems. Continuous exposure to 0.4 mg/L ionic silver over the course of 24 hours during the flow phase resulted in a >7-log reduction. The residual effect of a 24-hour passivation treatment in 50 mg/L of ionic silver resulted in a >3-log reduction, whereas a two-week treatment resulted in a >4-log reduction. Results indicate that 0.4 mg/L ionic silver is an effective biocide against many bacteria and that a prepassivation of metal surfaces with silver can provide additional microbial control.

  6. EPMOSt: An Energy-Efficient Passive Monitoring System for Wireless Sensor Networks

    PubMed Central

    Garcia, Fernando P.; Andrade, Rossana M. C.; Oliveira, Carina T.; de Souza, José Neuman

    2014-01-01

    Monitoring systems are important for debugging and analyzing Wireless Sensor Networks (WSN). In passive monitoring, a monitoring network needs to be deployed in addition to the network to be monitored, named the target network. The monitoring network captures and analyzes packets transmitted by the target network. An energy-efficient passive monitoring system is necessary when we need to monitor a WSN in a real scenario because the lifetime of the monitoring network is extended and, consequently, the target network benefits from the monitoring for a longer time. In this work, we have identified, analyzed and compared the main passive monitoring systems proposed for WSN. During our research, we did not identify any passive monitoring system for WSN that aims to reduce the energy consumption of the monitoring network. Therefore, we propose an Energy-efficient Passive MOnitoring SysTem for WSN named EPMOSt that provides monitoring information using a Simple Network Management Protocol (SNMP) agent. Thus, any management tool that supports the SNMP protocol can be integrated with this monitoring system. Experiments with real sensors were performed in several scenarios. The results obtained show the energy efficiency of the proposed monitoring system and the viability of using it to monitor WSN in real scenarios. PMID:24949639

  7. Closed-form solutions for linear regulator-design of mechanical systems including optimal weighting matrix selection

    NASA Technical Reports Server (NTRS)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.

  8. Method for passive cooling liquid metal cooled nuclear reactors, and system thereof

    DOEpatents

    Hunsbedt, Anstein; Busboom, Herbert J.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

  9. Photonic Crystal Fibers

    DTIC Science & Technology

    2005-12-01

    passive and active versions of each fiber designed under this task. Crystal Fibre shall provide characteristics of the fiber fabricated to include core...passive version of multicore fiber iteration 2. 15. SUBJECT TERMS EOARD, Laser physics, Fibre Lasers, Photonic Crystal, Multicore, Fiber Laser 16...9 00* 0 " CRYSTAL FIBRE INT ODUCTION This report describes the photonic crystal fibers developed under agreement No FA8655-o5-a- 3046. All

  10. Time variability of viscosity parameter in differentially rotating discs

    NASA Astrophysics Data System (ADS)

    Rajesh, S. R.; Singh, Nishant K.

    2014-07-01

    We propose a mechanism to produce fluctuations in the viscosity parameter (α) in differentially rotating discs. We carried out a nonlinear analysis of a general accretion flow, where any perturbation on the background α was treated as a passive/slave variable in the sense of dynamical system theory. We demonstrate a complete physical picture of growth, saturation and final degradation of the perturbation as a result of the nonlinear nature of coupled system of equations. The strong dependence of this fluctuation on the radial location in the accretion disc and the base angular momentum distribution is demonstrated. The growth of fluctuations is shown to have a time scale comparable to the radial drift time and hence the physical significance is discussed. The fluctuation is found to be a power law in time in the growing phase and we briefly discuss its statistical significance.

  11. Advanced Aerodynamic Design of Passive Porosity Control Effectors

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Viken, Sally A.; Wood, Richard M.; Bauer, Steven X. S.

    2001-01-01

    This paper describes aerodynamic design work aimed at developing a passive porosity control effector system for a generic tailless fighter aircraft. As part of this work, a computational design tool was developed and used to layout passive porosity effector systems for longitudinal and lateral-directional control at a low-speed, high angle of attack condition. Aerodynamic analysis was conducted using the NASA Langley computational fluid dynamics code USM3D, in conjunction with a newly formulated surface boundary condition for passive porosity. Results indicate that passive porosity effectors can provide maneuver control increments that equal and exceed those of conventional aerodynamic effectors for low-speed, high-alpha flight, with control levels that are a linear function of porous area. This work demonstrates the tremendous potential of passive porosity to yield simple control effector systems that have no external moving parts and will preserve an aircraft's fixed outer mold line.

  12. Potential of pedestrian protection systems--a parameter study using finite element models of pedestrian dummy and generic passenger vehicles.

    PubMed

    Fredriksson, Rikard; Shin, Jaeho; Untaroiu, Costin D

    2011-08-01

    To study the potential of active, passive, and integrated (combined active and passive) safety systems in reducing pedestrian upper body loading in typical impact configurations. Finite element simulations using models of generic sedan car fronts and the Polar II pedestrian dummy were performed for 3 impact configurations at 2 impact speeds. Chest contact force, head injury criterion (HIC(15)), head angular acceleration, and the cumulative strain damage measure (CSDM(0.25)) were employed as injury parameters. Further, 3 countermeasures were modeled: an active autonomous braking system, a passive deployable countermeasure, and an integrated system combining the active and passive systems. The auto-brake system was modeled by reducing impact speed by 10 km/h (equivalent to ideal full braking over 0.3 s) and introducing a pitch of 1 degree and in-crash deceleration of 1 g. The deployable system consisted of a deployable hood, lifting 100 mm in the rear, and a lower windshield air bag. All 3 countermeasures showed benefit in a majority of impact configurations in terms of injury prevention. The auto-brake system reduced chest force in a majority of the configurations and decreased HIC(15), head angular acceleration, and CSDM in all configurations. Averaging all impact configurations, the auto-brake system showed reductions of injury predictors from 20 percent (chest force) to 82 percent (HIC). The passive deployable countermeasure reduced chest force and HIC(15) in a majority of configurations and head angular acceleration and CSDM in all configurations, although the CSDM decrease in 2 configurations was minimal. On average a reduction from 20 percent (CSDM) to 58 percent (HIC) was recorded in the passive deployable countermeasures. Finally, the integrated system evaluated in this study reduced all injury assessment parameters in all configurations compared to the reference situations. The average reductions achieved by the integrated system ranged from 56 percent (CSDM) to 85 percent (HIC). Both the active (autonomous braking) and passive deployable system studied had a potential to decrease pedestrian upper body loading. An integrated pedestrian safety system combining the active and passive systems increased the potential of the individual systems in reducing pedestrian head and chest loading.

  13. Physical analogs that help to better understand the modern concepts on continental stretching, hyperextension and rupturing

    NASA Astrophysics Data System (ADS)

    Zalan, Pedro

    2014-05-01

    Three facts helped to establish a revolution in the understanding of how mega-continents stretch, rupture and breakup to form new continents and related passive margins: (1) the penetration of the distal portions of the Iberia-Newfoundland conjugate margins by several ODP wells (late 70's/early 80's), with the discovery of hyperextended crust and exhumation of lower crust and mantle between typical continental and oceanic domains, (2) field works in the Alps and in the Pyrenees that re-interpreted sedimentary successions and associated "ophiolites" as remnants of old Tethyan passive margins that recorded structural domains similar to those found in Iberia-Newfoundland, and (3) the acquisition of long and ultra-deep reflection seismic sections that could image for the first time sub-crustal levels (25-40 km) in several passive margins around the world. The interpretation of such sections showed that the concepts developed in the Iberia-Newfoundland margins and in the Alps could be applied to a great extent to most passive margins, especially those surrounding the North and South Atlantic Oceans. The new concepts of (i) decoupled deformation (upper brittle X lower ductile) within the proximal domain of the continental crust, (ii) of coupled deformation (hyperextension) in the distal crust and, (iii) of exhumation of deeper levels in the outer domain, with the consequent change in the physical properties of the rising rocks, defined an end-member in the new classification of passive margins, the magma-poor type (as opposed to volcanic passive margins). These concepts, together with the new reflection seismic views of the entire crustal structure of passive margins, forced the re-interpretation of older refraction and potential field data and the re-drawing of long established models. Passive margins are prime targets for petroleum exploration, thus, the great interest raised by this subject in both the academy and in the industry. Interestingly enough, the deformation modes envisaged by Manatschal and Peron-Pinvidic in several works published in the last ten years, dealing with the development of conjugate rifted margins (stretching, thinning, hyperextension/exhumation, oceanization/breakup), can be found in physical analogs of geological nature and of mundane phenomena, in a much smaller scale than that of a continental rupture. Rocks strained and cut by normal faults, especially the brittle sedimentary rocks, display geometries and structural domains, which in turn were formed by the particular deformation modes, very similar to those published for the Norwegian, Angolan and Southeastern Brazilian margins. A non-geological and non-conventional physical analog is the everyday breakup of a chocolate bar. Given it is stuffed by a thick ductile filling and covered by a thin, brittle chocolate layer; it is incredible how such a common phenomenon can replicate the rupture and breakup of a mega-continent. Such physical analogs can be compared to ultra-deep seismic sections and raise a cloud of incertitude on the definition of hyperextension. Instead of representing the coupling of the deformation of the upper and lower crusts into a brittle mode, rather, hyperextension could correspond to their coupling into a plastic or, at least, into a semi-brittle mode, but not into an entirely brittle mode.

  14. Book Review

    NASA Astrophysics Data System (ADS)

    Clevers, J. G. P. W.

    2015-02-01

    About thirty years after the previous advanced textbook on Microwave Remote Sensing by Ulaby, Moore and Fung has been published as three separate volumes, now an up-to-date new textbook has been published. The 1000-page book covers theoretical models, system design and operation, and geoscientific applications of active and passive microwave remote sensing systems. It is designed as a textbook at the postgraduate level, as well as a reference for the practicing professional. The book is caught by a thorough introduction into the physics and mathematics of electrical engineering applied to microwave radiation. Here on overview of its chapters with a short description of its focus will be given.

  15. Locomotion Strategy and Magnitude of Ground Reaction Forces During Treadmill Training on ISS.

    PubMed

    Fomina, Elena; Savinkina, Alexandra

    2017-09-01

    Creation of the cosmonaut in-flight physical training process is currently based on the leading role of support afferents in the development of hypogravity changes in the motor system. We assume that the strength of support afferents is related to the magnitude of the ground reaction forces (GRF). For this purpose it was necessary to compare the GRF magnitude on the Russian BD-2 treadmill for different locomotion types (walking and running), modes (active and passive), and subjects. Relative GRF values were analyzed while subjects performed walking and running during active and passive modes of treadmill belt movement under 1 G (N = 6) and 0 G (N = 4) conditions. For different BD-2 modes and both types of locomotion, maximum GRF values varied in both 0 G and 1 G. Considerable individual variations were also found in the locomotion strategies, as well as in maximum GRF values. In 0 G, the smallest GRF values were observed for walking in active mode, and the largest during running in passive mode. In 1 G, GRF values were higher during running than while walking, but the difference between active and passive modes was not observed; we assume this was due to the uniqueness of the GRF profile. The maximum GRF recorded during walking and running in active and passive modes depended on the individual pattern of locomotion. The maximum GRF values that we recorded on BD-2 were close to values found by other researchers. The observations from this study could guide individualized countermeasures prescriptions for microgravity.Fomina E, Savinkina A. Locomotion strategy and magnitude of ground reaction forces during treadmill training on ISS. Aerosp Med Hum Perform. 2017; 88(9):841-849.

  16. Simulation and analysis of vertical displacement characteristics of three wheels reverse trike vehicle with PID controller application

    NASA Astrophysics Data System (ADS)

    Wibowo, Lambang, Lullus; Erick Chandra, N.; Muhayat, Nurul; Jaka S., B.

    2017-08-01

    The purpose of this research is to obtain a mathematical model (Full Vehicle Model) and compare the performance of passive and active suspension systems of a Three-Wheels Reverse Trike vehicle. Vehicle suspension system should able to provide good steering handling and passenger comfort. Vehicle suspension system generally only uses passive suspension components with fix spring and damper coefficients. An active suspension developed from the traditional (passive) suspension design can directly control the actuator force in the suspension system. In this paper, modeling and simulation of passive and active suspension system for a Full Vehicle Model is performed using Simulink-MATLAB software. Ziegler & Nichols tuning method is used to obtain controller parameters of Proportional Integral Derivative (PID) controller. Comparison between passive and active suspension with PID controller is conducted for disturbances input of single bump road surface profile 0.1 meters. The results are the displacement and acceleration of the vehicle body in the vertical direction of active suspension system with PID control is better in providing handling capabilities and comfort for the driver than of passive suspension system. The acceleration of 1,8G with the down time of 2.5 seconds is smaller than the acceleration of 2.5G with down time of 5.5 seconds.

  17. Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows

    NASA Astrophysics Data System (ADS)

    Ohkitani, Koji

    2002-04-01

    The nonlinear vortex stretching in incompressible Navier-Stokes turbulence is compared with a linear stretching process of passive vectors (PVs). In particular, we pay special attention to the difference of these processes under long and short time evolutions. For finite time evolution, we confirm our previous finding that the stretching effect of vorticity is weaker than that of general passive vectors for a majority of the initial conditions with the same energy spectra. The above difference can be explained qualitatively by examining the Biot-Savart formula. In order to see to what extent infinitesimal time development explains the above difference, we examine the probability density functions (PDFs) of the stretching rates of the passive vectors in the vicinity of a solution of Navier-Stokes equations. It is found that the PDFs are found to have a Gaussian distribution, suggesting that there are equally many PVs that stretched less and more than the vorticity. This suggests the importance of the vorticity-strain correlation built up over finite time in turbulence. We also discuss the case of Euler equations, where the dynamics of the Jacobian matrix relating the physical and material coordinates is examined numerically. A kind of alignment problem associated with the Cauchy-Green tensor is proposed and studied using the results of numerical simulations. It is found that vorticity tends to align itself with the most compressing eigenvector of the Cauchy-Green tensor. A two-dimensional counterpart of active-passive comparison is briefly studied. There is no essential difference between stretching of vorticity gradients and that of passive scalar gradients and a physical interpretation is given to it.

  18. Effect of intermittent normobaric hypoxia on aerobic capacity and cognitive function in older people.

    PubMed

    Schega, Lutz; Peter, Beate; Brigadski, Tanja; Leßmann, Volkmar; Isermann, Berend; Hamacher, Dennis; Törpel, Alexander

    2016-11-01

    Physical exercise, especially aerobic training, improves physical performance and cognitive function of older people. Furthermore, it has been speculated that age-associated deteriorations in physical performance and cognitive function could be counteracted through exposures to passive intermittent normobaric hypoxia (IH). Thus, the present investigation aimed at investigating the effect of passive IH combined with subsequent aerobic training on hematological parameters and aerobic physical performance (V˙O 2max ) as well as peripheral levels of the neurotrophin brain-derived neurotrophic factor (BDNF) and cognitive function. Randomized controlled trial in a repeated measure design. 34 older participants were randomly assigned to an intervention group (IG) or control group (CG). While IG was supplied with passive IH for 90min, CG breathed ambient air. Subsequently, both groups underwent 30min of aerobic training three times per week for four consecutive weeks. Aerobic physical performance and cognitive function was tested with spiroergometry and the Stroop test. Blood samples were taken to measure hematological parameters and the peripheral serum BDNF-level. We found increases in the values of hematological parameters, the time to exhaustion in the load test and an augmented and sustainable improvement in cognitive function within the IG of the older people only. However, in both groups, the V˙O 2max and serum BDNF-level did not increase. Based on these results, hypoxic training seems to be beneficial to enhance hematological parameters, physical performance and cognitive function in older people. The current hypoxic-dose was not able to enhance the serum BDNF-level or V˙O 2max . Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Assessment and Prediction of Natural Hazards from Satellite Imagery

    PubMed Central

    Gillespie, Thomas W.; Chu, Jasmine; Frankenberg, Elizabeth; Thomas, Duncan

    2013-01-01

    Since 2000, there have been a number of spaceborne satellites that have changed the way we assess and predict natural hazards. These satellites are able to quantify physical geographic phenomena associated with the movements of the earth’s surface (earthquakes, mass movements), water (floods, tsunamis, storms), and fire (wildfires). Most of these satellites contain active or passive sensors that can be utilized by the scientific community for the remote sensing of natural hazards over a number of spatial and temporal scales. The most useful satellite imagery for the assessment of earthquake damage comes from high-resolution (0.6 m to 1 m pixel size) passive sensors and moderate resolution active sensors that can quantify the vertical and horizontal movement of the earth’s surface. High-resolution passive sensors have been used to successfully assess flood damage while predictive maps of flood vulnerability areas are possible based on physical variables collected from passive and active sensors. Recent moderate resolution sensors are able to provide near real time data on fires and provide quantitative data used in fire behavior models. Limitations currently exist due to atmospheric interference, pixel resolution, and revisit times. However, a number of new microsatellites and constellations of satellites will be launched in the next five years that contain increased resolution (0.5 m to 1 m pixel resolution for active sensors) and revisit times (daily ≤ 2.5 m resolution images from passive sensors) that will significantly improve our ability to assess and predict natural hazards from space. PMID:25170186

  20. Miniature DMFCs with passive thermal-fluids management system

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Faghri, Amir

    A new miniature DMFC system that includes a fuel cell stack, a fuel tank and a passive ancillary system (termed "thermal-fluids management system" in this paper) is presented. The thermal-fluids management system utilizes passive approaches for fuel storage and delivery, air breathing, water management, CO 2 release and thermal management. With 5.1 g of neat methanol in the fuel cartridge, a prototype has successfully demonstrated 18 h of continuous operation with total power output of 1.56 Wh.

  1. Ubiquitous computing to support co-located clinical teams: using the semiotics of physical objects in system design.

    PubMed

    Bang, Magnus; Timpka, Toomas

    2007-06-01

    Co-located teams often use material objects to communicate messages in collaboration. Modern desktop computing systems with abstract graphical user interface (GUIs) fail to support this material dimension of inter-personal communication. The aim of this study is to investigate how tangible user interfaces can be used in computer systems to better support collaborative routines among co-located clinical teams. The semiotics of physical objects used in team collaboration was analyzed from data collected during 1 month of observations at an emergency room. The resulting set of communication patterns was used as a framework when designing an experimental system. Following the principles of augmented reality, physical objects were mapped into a physical user interface with the goal of maintaining the symbolic value of those objects. NOSTOS is an experimental ubiquitous computing environment that takes advantage of interaction devices integrated into the traditional clinical environment, including digital pens, walk-up displays, and a digital desk. The design uses familiar workplace tools to function as user interfaces to the computer in order to exploit established cognitive and collaborative routines. Paper-based tangible user interfaces and digital desks are promising technologies for co-located clinical teams. A key issue that needs to be solved before employing such solutions in practice is associated with limited feedback from the passive paper interfaces.

  2. Passive Microwave Rainfall Estimates from the GPM Mission

    NASA Astrophysics Data System (ADS)

    Kummerow, Christian; Petkovic, Veljko

    2017-04-01

    The Global Precipitation Measurement (GPM) mission was launched in February 2014 as a joint mission between JAXA from Japan and NASA from the United States. GPM carries a state of the art dual-frequency precipitation radar and a multi-channel passive microwave radiometer that acts not only to enhance the radar's retrieval capability, but also as a reference for a constellation of existing satellites carrying passive microwave sensors. In March of 2016, GPM released Version 4 of its precipitation products that consists of radar, radiometer, and combined radar/radiometer products. The precipitation products from these sensors or sensor combination are consistent by design and show relatively minor differences in the mean global sense. Closer examination of the biases, however, reveals regional biases between active and passive sensors that can be directly related top the nature of the convection. By looking at cloud systems instead of individual satellite pixels, the relationship between biases and the large scale environmental state become obvious. Organized convection, which occurs more readily in regimes with large Convective Available Potential Energy (CAPE) and shear tend to drive biases in different directions than isolated convection. This is true over both land and ocean. This talk will present the latest findings and explore these discrepancies from a physical perspective in order to gain some understanding between cloud structures, information content, and retrieval differences. This analysis will be used to then drive a bigger picture of how GPM's latest results inform the Global Water and Energy budgets.

  3. The link between exercise and titin passive stiffness.

    PubMed

    Lalande, Sophie; Mueller, Patrick J; Chung, Charles S

    2017-09-01

    What is the topic of this review? This review focuses on how in vivo and molecular measurements of cardiac passive stiffness can predict exercise tolerance and how exercise training can reduce cardiac passive stiffness. What advances does it highlight? This review highlights advances in understanding the relationship between molecular (titin-based) and in vivo (left ventricular) passive stiffness, how passive stiffness modifies exercise tolerance, and how exercise training may be therapeutic for cardiac diseases with increased passive stiffness. Exercise can help alleviate the negative effects of cardiovascular disease and cardiovascular co-morbidities associated with sedentary behaviour; this may be especially true in diseases that are associated with increased left ventricular passive stiffness. In this review, we discuss the inverse relationship between exercise tolerance and cardiac passive stiffness. Passive stiffness is the physical property of cardiac muscle to produce a resistive force when stretched, which, in vivo, is measured using the left ventricular end diastolic pressure-volume relationship or is estimated using echocardiography. The giant elastic protein titin is the major contributor to passive stiffness at physiological muscle (sarcomere) lengths. Passive stiffness can be modified by altering titin isoform size or by post-translational modifications. In both human and animal models, increased left ventricular passive stiffness is associated with reduced exercise tolerance due to impaired diastolic filling, suggesting that increased passive stiffness predicts reduced exercise tolerance. At the same time, exercise training itself may induce both short- and long-term changes in titin-based passive stiffness, suggesting that exercise may be a treatment for diseases associated with increased passive stiffness. Direct modification of passive stiffness to improve exercise tolerance is a potential therapeutic approach. Titin passive stiffness itself may be a treatment target based on the recent discovery of RNA binding motif 20, which modifies titin isoform size and passive stiffness. Translating these discoveries that link exercise and left ventricular passive stiffness may provide new methods to enhance exercise tolerance and treat patients with cardiovascular disease. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  4. Status and Progress of High-efficiency Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Xiao, Shaoqing; Xu, Shuyan

    High-efficiency Si solar cells have attracted more and more attention from researchers, scientists, engineers of photovoltaic (PV) industry for the past few decades. Many high-quality researchers and engineers in both academia and industry seek solutions to improve the cell efficiency and reduce the cost. This desire has stimulated a growing number of major research and research infrastructure programmes, and a rapidly increasing number of publications in this filed. This chapter reviews materials, devices and physics of high-efficiency Si solar cells developed over the last 20 years. In this chapter there is a fair number of topics, not only from the material viewpoint, introducing various materials that are required for high-efficiency Si solar cells, such as base materials (FZ-Si, CZ-Si, MCZ-Si and multi-Si), emitter materials (diffused emitter and deposited emitter), passivation materials (Al-back surface field, high-low junction, SiO2, SiO x , SiN x , Al2O3 and a-Si:H), and other functional materials (antireflective layer, TCO and metal electrode), but also from the device and physics point of view, elaborating on physics, cell concept, development and status of all kinds of high-efficiency Si solar cells, such as passivated emitter and rear contact (PERC), passivated emitter and rear locally diffused (PERL), passivated emitter and rear totally diffused (PERT), Pluto, interdigitated back-contacted (IBC), emitter-wrap-through (EWT), metallization-wrap-through (MWT), Heterojunction with intrinsic thin-layer (HIT) and so on. Some representative examples of high-efficiency Si solar cell materials and devices with excellent performance and competitive advantages are presented.

  5. Passive damping in EDS maglev systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rote, D. M.

    2002-05-03

    There continues to be strong interest in the subjects of damping and drag forces associated with electrodynamic suspension (EDS) systems. While electromagnetic drag forces resist the forward motion of a vehicle and therefore consume energy, damping forces control, at least in part, the response of the vehicle to disturbances. Ideally, one would like to reduce the drag forces as much as possible while retaining adequate damping forces to insure dynamic stability and satisfactory ride quality. These two goals turn out to be difficult to achieve in practice. It is well known that maglev systems tend to be intrinsically under damped.more » Consequently it is often necessary in a practical system design to enhance the damping passively or actively. For reasons of cost and simplicity, it is desirable to rely as much as possible on passive damping mechanisms. In this paper, rough estimates are made of the passive damping and drag forces caused by various mechanisms in EDS systems. No attention will be given to active control systems or secondary suspension systems which are obvious ways to augment passive damping mechanisms if the latter prove to be inadequate.« less

  6. Functional Safety of Hybrid Laser Safety Systems - How can a Combination between Passive and Active Components Prevent Accidents?

    NASA Astrophysics Data System (ADS)

    Lugauer, F. P.; Stiehl, T. H.; Zaeh, M. F.

    Modern laser systems are widely used in industry due to their excellent flexibility and high beam intensities. This leads to an increased hazard potential, because conventional laser safety barriers only offer a short protection time when illuminated with high laser powers. For that reason active systems are used more and more to prevent accidents with laser machines. These systems must fulfil the requirements of functional safety, e.g. according to IEC 61508, which causes high costs. The safety provided by common passive barriers is usually unconsidered in this context. In the presented approach, active and passive systems are evaluated from a holistic perspective. To assess the functional safety of hybrid safety systems, the failure probability of passive barriers is analysed and added to the failure probability of the active system.

  7. Passivity-Based Control for Two-Wheeled Robot Stabilization

    NASA Astrophysics Data System (ADS)

    Uddin, Nur; Aryo Nugroho, Teguh; Agung Pramudito, Wahyu

    2018-04-01

    A passivity-based control system design for two-wheeled robot (TWR) stabilization is presented. A TWR is a statically-unstable non-linear system. A control system is applied to actively stabilize the TWR. Passivity-based control method is applied to design the control system. The design results in a state feedback control law that makes the TWR closed loop system globally asymptotically stable (GAS). The GAS is proven mathematically. The TWR stabilization is demonstrated through computer simulation. The simulation results show that the designed control system is able to stabilize the TWR.

  8. Redesign of Water Distribution Systems for Passive ...

    EPA Pesticide Factsheets

    Journal article The purpose of this paper is to examine how water distribution systems could be designed or retrofitted to passively contain contaminants that might enter the water distribution system.

  9. Passive cooling system for a vehicle

    DOEpatents

    Hendricks, Terry Joseph; Thoensen, Thomas

    2005-11-15

    A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

  10. Passive Cooling System for a Vehicle

    DOEpatents

    Hendricks, T. J.; Thoensen, T.

    2005-11-15

    A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

  11. Validity and reliability of smartphone magnetometer-based goniometer evaluation of shoulder abduction--A pilot study.

    PubMed

    Johnson, Linda B; Sumner, Sean; Duong, Tina; Yan, Posu; Bajcsy, Ruzena; Abresch, R Ted; de Bie, Evan; Han, Jay J

    2015-12-01

    Goniometers are commonly used by physical therapists to measure range-of-motion (ROM) in the musculoskeletal system. These measurements are used to assist in diagnosis and to help monitor treatment efficacy. With newly emerging technologies, smartphone-based applications are being explored for measuring joint angles and movement. This pilot study investigates the intra- and inter-rater reliability as well as concurrent validity of a newly-developed smartphone magnetometer-based goniometer (MG) application for measuring passive shoulder abduction in both sitting and supine positions, and compare against the traditional universal goniometer (UG). This is a comparative study with repeated measurement design. Three physical therapists utilized both the smartphone MG and a traditional UG to measure various angles of passive shoulder abduction in a healthy subject, whose shoulder was positioned in eight different positions with pre-determined degree of abduction while seated or supine. Each therapist was blinded to the measured angles. Concordance correlation coefficients (CCCs), Bland-Altman plotting methods, and Analysis of Variance (ANOVA) were used for statistical analyses. Both traditional UG and smartphone MG were reliable in repeated measures of standardized joint angle positions (average CCC > 0.997) with similar variability in both measurement tools (standard deviation (SD) ± 4°). Agreement between the UG and MG measurements was greater than 0.99 in all positions. Our results show that the smartphone MG has equivalent reliability compared to the traditional UG when measuring passive shoulder abduction ROM. With concordant measures and comparable reliability to the UG, the newly developed MG application shows potential as a useful tool to assess joint angles. Published by Elsevier Ltd.

  12. The interaction of evaporative and convective instabilities

    NASA Astrophysics Data System (ADS)

    Ozen, O.

    Evaporative convection arises in a variety of natural and industrial processes, such as drying of lakebeds, heat pipe technology and dry-eye syndrome. The phenomenon of evaporative convection leads to an interfacial instability where an erstwhile flat surface becomes undulated as a control variable, such as temperature drop, exceeds a critical value. This instability has been investigated by others assuming that the vapor phase is infinitely deep and passive, i.e. vapor fluid dynamics has been ignored. However, when we look at some engineering processes, such as distillation columns, heat pipes and drying technologies where phase change takes place we might imagine that the assumption of an infinitely deep vapor layer or at least that of a passive vapor is inappropriate. Previous work on convection in bilayer systems with no phase-change suggests that active vapor layers play a major role in determining the stability of an interface. Hence, for the case of convection with phase-change, we will address this issue and try to answer the question whether the infinitely deep and passive vapor layer is a valid assumption. We have also investigated, theoretically, the gravity and surface tension gradient-driven instabilities occurring during the evaporation of a liquid into its own vapor taking into account the fluid dynamics of both phases and the finiteness of the domains of each phase, i.e. the liquid and its vapor are assumed to be confined between two horizontal plates, and different heating arrangements are applied. The effects of fluid layer depths, the evaporation rate and the temperature gradient applied across the fluids on the stability of the interface are studied. The modes of the flow pattern are determined for each scenario. The physics of the instability are explained and a comparison is made with the results of similar, yet physically different problems.

  13. Demise of faint satellites around isolated early-type galaxies

    NASA Astrophysics Data System (ADS)

    Park, Changbom; Hwang, Ho Seong; Park, Hyunbae; Lee, Jong Chul

    2018-02-01

    The hierarchical galaxy formation scenario in the Cold Dark Matter cosmology with a non-vanishing cosmological constant Λ and geometrically flat space (ΛCDM) has been very successful in explaining the large-scale distribution of galaxies. However, there have been claims that ΛCDM over-predicts the number of satellite galaxies associated with massive galaxies compared with observations—the missing satellite galaxy problem1-3. Isolated groups of galaxies hosted by passively evolving massive early-type galaxies are ideal laboratories for identifying the missing physics in the current theory4-11. Here, we report—based on a deep spectroscopic survey—that isolated massive and passive early-type galaxies without any signs of recent wet mergers or accretion episodes have almost no satellite galaxies fainter than the r-band absolute magnitude of about Mr = -14. If only early-type satellites are used, the cutoff is at the somewhat brighter magnitude of about Mr = -15. Such a cutoff has not been found in other nearby satellite galaxy systems hosted by late-type galaxies or those with merger features. Various physical properties of satellites depend strongly on the host-centric distance. Our observations indicate that the satellite galaxy luminosity function is largely determined by the interaction of satellites with the environment provided by their host.

  14. Use of video eyeglasses to decrease anxiety among children undergoing genital examinations.

    PubMed

    Berenson, A B; Wiemann, C M; Rickert, V I

    1998-06-01

    Our purpose was to compare three techniques in their ability to decrease anxiety induced by the pelvic examination among children of different races. Eighty-nine subjects between 3 and 8 years old of white, African-American, and Hispanic race or ethnicity were randomly assigned to one of three distraction techniques that was used during the genital examination: passive play (being read to), active play (singing, blowing bubbles), or viewing a movie through video eyeglasses. Levels of vocalized distress, as well as distress expressed by physical behavior and emotional support requested, were directly observed and recorded. Children also reported their level of satisfaction at the end of the examination. Multivariate analysis of covariance was used to evaluate the independent effects of each technique and race while we controlled for confounding variables. Levels of physical distress were lowest among children who used video glasses and highest among those randomly assigned to passive play (p = 0.02). Children randomized to video glasses also expressed higher levels of satisfaction than those randomized to active (p = 0.001) or passive (p = 0.05) play. No differences associated with race or ethnicity were detected. This study demonstrates that video glasses are more effective than active or passive play in reducing anxiety and improving satisfaction levels among children undergoing a genital examination.

  15. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, William; Walker, Iain

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met.more » ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM 2.5, formaldehyde and NO 2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.« less

  16. An inter-sensor comparison of the microwave signatures of Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.

    1986-01-01

    Active and passive microwave and physical properties of Arctic sea ice in the marginal ice zone were measured during the summer. Results of an intercomparison of data acquired by an aircraft synthetic aperture radar, a passive microwave imager and a helicopter-mounted scatterometer indicate that early-to-mid summer sea ice microwave signatures are dominated by snowpack characteristics. Measurements show that the greatest contrast between thin first-year and multiyear sea ice occurs when operating actively between 5 and 10 GHz. Significant information about the state of melt of snow and ice is contained in the active and passive microwave signatures.

  17. Instructive Video Retrieval for Surgical Skill Coaching Using Attribute Learning

    DTIC Science & Technology

    2015-06-28

    dance, sports, and surgery training. Most existing systems are either passive (for data capture only) or barely active (with limited automated...including dance, sports, and surgery training. Most existing systems are either passive (for data capture only) or barely active (with limited...sports, and surgery training. Most existing systems are either passive (for data capture only) or barely active (with limited automated feed- back to a

  18. Hydrodynamic interactions between a self-rotation rotator and passive particles

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhenyu; Lin, Jian-Zhong; Ku, Xiaoke

    2017-10-01

    In this paper, we numerically investigate the hydrodynamic interaction between a self-rotation rotator and passive particles in a two-dimensional confined cavity at two typical Reynolds numbers according to the different flow features. Both the fluid-particle interaction and particle-particle interaction through fluid media are taken into consideration. The results show that from the case of a rotator and one passive particle to the case of a rotator and two passive particles, the system becomes much more complex because the relative displacement between the rotator and the passive particles and the velocity of passive particles are strongly dependent on the Reynolds number and the initial position of passive particles. For the system of two particles, the passive particle gradually departs from the rotator although its relative displacement to the rotator exhibits a periodic oscillation at the lower Reynolds number. Furthermore, the relative distance between the two particles and the rotator's rotational frequency are responsible for the oscillation amplitude and frequency of the passive particle's velocity. For the system of three particles, the passive particle's velocities exhibit a superposition of a large amplitude oscillation and a small amplitude oscillation at the lower Reynolds number, and the large amplitude oscillation will disappear at the higher Reynolds number. The change of the included angle of the two passive particles is dependent on the initial positions of the passive particles at the lower Reynolds number, whereas the included angle of the two passive particles finally approaches a fixed value at the higher Reynolds number. It is interesting that the two passive particles periodically approach and depart from each other when the included angle is not equal to π, while all the three particles (including the rotator) keep the positions in a straight line when the included angle is equal to π because the interference between two passive particles disappears. In addition, the passive particle rotates not only around the rotator but also around its own axis, and the rotation speed of the former is far greater than that of the latter.

  19. High-throughput countercurrent microextraction in passive mode.

    PubMed

    Xie, Tingliang; Xu, Cong

    2018-05-15

    Although microextraction is much more efficient than conventional macroextraction, its practical application has been limited by low throughputs and difficulties in constructing robust countercurrent microextraction (CCME) systems. In this work, a robust CCME process was established based on a novel passive microextractor with four units without any moving parts. The passive microextractor has internal recirculation and can efficiently mix two immiscible liquids. The hydraulic characteristics as well as the extraction and back-extraction performance of the passive CCME were investigated experimentally. The recovery efficiencies of the passive CCME were 1.43-1.68 times larger than the best values achieved using cocurrent extraction. Furthermore, the total throughput of the passive CCME developed in this work was about one to three orders of magnitude higher than that of other passive CCME systems reported in the literature. Therefore, a robust CCME process with high throughputs has been successfully constructed, which may promote the application of passive CCME in a wide variety of fields.

  20. CALIPSO: Global Aerosol and Cloud Observations from Lidar and Passive Instruments

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Winker, D. M.; Pelon, J. R.; McCormick, M. P.

    2002-01-01

    CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Spaceborne Observations) is an approved satellite mission being developed through collaboration between NASA and the French space agency CNES. The mission is scheduled for launch in 2004 and will operate for 3 years as part of a five-satellite formation called the Aqua constellation. This constellation will provide a unique data set on aerosol and cloud optical and physical properties and aerosol-cloud interactions that will substantially increase our understanding of the climate system and the potential for climate change.

  1. An Investigation Into the Feasibility of Using a Modern Gravity Gradient Instrument for Passive Aircraft Navigation and Terrain Avoidance

    DTIC Science & Technology

    2009-03-01

    the research objectives for this study are presented. It should be noted that sensor cost was not considered for this study. Additionally, further...development costs ) for gravity compensation require- ments of its trident submarine inertial navigation systems and by the Air Force Geo- physics...52]: T (r, φ, λ) = GM ae Nmax∑ n=2 n∑ m=0 (a r )n+1 (Cnm cosmλ+ Snm sinmλ)P nm(cos φ) (31) 44 where r, φ, λ are the geocentric distance, lattitude and

  2. Cross sectional analysis of the association between mode of school transportation and physical fitness in children and adolescents.

    PubMed

    Ostergaard, Lars; Kolle, Elin; Steene-Johannessen, Jostein; Anderssen, Sigmund A; Andersen, Lars Bo

    2013-07-17

    To investigate the associations between body composition, cardiorespiratory and muscular fitness in relation to travel mode to school in children and adolescents. Children and adolescents from 40 elementary schools and 23 high schools representing all regions in Norway were invited to participate in the study. Anthropometry, cardiorespiratory and muscular fitness were tested at the school location. Questionnaires were used in order to register mode of transport to school, age, gender and levels of leisure time physical activity. A total of 1694 (i.e. 60% of all invited participants) children and adolescents at a mean age of 9.6 and 15.6 respectively (SD = 0.4 for both groups) were analyzed for associations with physical fitness variables. Males cycling to school had lower sum of skin folds than adolescents walking to school. Higher cardiorespiratory fitness in adolescents and male cyclists compared to walkers and passive commuters were observed. Among children, cycling and walking to school, higher isometric muscle endurance in the back extensors compared to passive commuters was observed. Based on this national representative cross-sectional examination of randomly selected children and adolescents there is evidence that active commuting, especially cycling, is associated with a favourable body composition and better cardiorespiratory and muscular fitness as compared to passive commuting.

  3. Exoskeletons for industrial application and their potential effects on physical work load.

    PubMed

    de Looze, Michiel P; Bosch, Tim; Krause, Frank; Stadler, Konrad S; O'Sullivan, Leonard W

    2016-05-01

    The aim of this review was to provide an overview of assistive exoskeletons that have specifically been developed for industrial purposes and to assess the potential effect of these exoskeletons on reduction of physical loading on the body. The search resulted in 40 papers describing 26 different industrial exoskeletons, of which 19 were active (actuated) and 7 were passive (non-actuated). For 13 exoskeletons, the effect on physical loading has been evaluated, mainly in terms of muscle activity. All passive exoskeletons retrieved were aimed to support the low back. Ten-forty per cent reductions in back muscle activity during dynamic lifting and static holding have been reported. Both lower body, trunk and upper body regions could benefit from active exoskeletons. Muscle activity reductions up to 80% have been reported as an effect of active exoskeletons. Exoskeletons have the potential to considerably reduce the underlying factors associated with work-related musculoskeletal injury. Practitioner Summary: Worldwide, a significant interest in industrial exoskeletons does exist, but a lack of specific safety standards and several technical issues hinder mainstay practical use of exoskeletons in industry. Specific issues include discomfort (for passive and active exoskeletons), weight of device, alignment with human anatomy and kinematics, and detection of human intention to enable smooth movement (for active exoskeletons).

  4. Multidisciplinary and biodanza intervention for the management of fibromyalgia.

    PubMed

    Carbonell-Baeza, Ana; Ruiz, Jonatan R; Aparicio, Virginia A; Martins-Pereira, Clelia M; Gatto-Cardia, M Claudia; Martinez, Jose M; Ortega, Francisco B; Delgado-Fernandez, Manuel

    2012-01-01

    To evaluate and compare the effectiveness of a 16-week multidisciplinary (exercise plus psychological therapy) and biodanza intervention in women with fibromyalgia. Thirty-eight women with fibromyalgia were distributed to a 16-week multidisciplinary (3-times/week) intervention (n=21) or Biodanza (1-time/week) intervention (n=17). We assessed tender point, body composition, physical fitness and psychological outcomes (Fibromyalgia Impact Questionnaire, the Short-Form Health Survey 36 questionnaire (SF-36), the Hospital Anxiety and Depression Scale, Vanderbilt Pain Management Inventory (VPMI), Rosenberg Self-Esteem Scale and General Self-Efficacy Scale). We observed a significant group*time interaction effect for the scales of SF-36 physical role (P=0.038) and social functioning (P=0.030) and for the passive coping scale in VPMI (P=0.043). Post hoc analysis revealed a significant improvement on social functioning (P=0.030) in the multidisciplinary group whereas it did not change in the Biodanza group. Post hoc analysis revealed a reduction in the use of passive coping (positive) (P less than 0.001) in the multidisciplinary group. There was no significant interaction or time effect in body composition and physical fitness. 16 weeks of multidisciplinary intervention induced greater benefits than a Biodanza intervention for social functioning and the use of passive coping strategies in women with fibromyalgia.

  5. Development of Facility Type Information Packages for Design of Air Force Facilities.

    DTIC Science & Technology

    1983-03-01

    solution. For example, the optimum size and loca- 19 tion of windows for the incorporation of a passive solar *l . heating system varies with location, time...conditioning load estimate M. Energy impact statement N. Majcom review comments 0. Solar energy systems 61 4 Information which could help in the development...and Passive solar systems. All facilities should have Scme aspects of passive solar incor- por3ted into the iesign. Active sclar systems should ze con

  6. Reinforcing value of smoking relative to physical activity and the effects of physical activity on smoking abstinence symptoms among young adults

    PubMed Central

    Audrain-McGovern, Janet; Strasser, Andrew A.; Ashare, Rebecca; Wileyto, E. Paul

    2015-01-01

    This study sought to evaluate whether individual differences in the reinforcing value of smoking relative to physical activity (RRVS) moderated the effects of physical activity on smoking abstinence symptoms in young adult smokers. The repeated measures within-subjects design included daily smokers (n=79) 18–26 years old. RRVS was measured with a validated behavioral choice task. On two subsequent visits, participants completed self-report measures of craving, withdrawal, mood, and affective valence before and after they engaged in passive sitting or a bout of physical activity. RRVS did not moderate any effects of physical activity (p’s > .05). Physical activity compared to passive sitting predicted decreased withdrawal symptoms (β=−5.23, CI= −6.93, −3.52; p<0.001), negative mood (β=−2.92, CI= −4.13, −1.72; p<0.001), and urge to smoke (β=−7.13, CI= −9.39, −4.86; p<0.001). Also, physical activity compared to passive sitting predicted increased positive affect (β=3.08, CI= 1.87, 4.28; p<0.001) and pleasurable feelings (β=1.07, CI= 0.58, 1.55; p<0.001), and greater time to first cigarette during the ad-libitum smoking period (β=211.76, CI= 32.54, 390.98; p=0.02). RRVS predicted higher levels of pleasurable feelings (β=0.22, CI= 0.01 – 0.43, p=0.045), increased odds of smoking versus remaining abstinent during the ad-libitum smoking period (β=0.04, CI= 0.01, 0.08; p=0.02), and reduced time to first cigarette (β=−163.00, CI = −323.50, −2.49; p=0.047). Regardless of the RRVS, physical activity produces effects that may aid smoking cessation in young adult smokers. However, young adult smokers who have a higher RRVS will be less likely to choose to engage physical activity, especially when smoking is an alternative. PMID:26348158

  7. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  8. Parameters influencing the course of passive drug loading into lipid nanoemulsions.

    PubMed

    Göke, Katrin; Bunjes, Heike

    2018-05-01

    Passive drug loading can be used to effectively identify suitable colloidal lipid carrier systems for poorly water-soluble drugs. This method comprises incubation of preformed carrier systems with drug powder and subsequent determination of the resulting drug load of the carrier particles. Until now, the passive loading mechanism is unknown, which complicates reliable routine use. In this work, the influence of drug characteristics on the course of passive loading was investigated systematically varying drug surface area and drug solubility. Fenofibrate and flufenamic acid were used as model drugs; the carrier system was a trimyristin nanodispersion. Loading progress was analyzed by UV spectroscopy or by a novel method based on differential scanning calorimetry. While increasing drug solubility by micelle incorporation did not speed up passive loading, a large drug surface area and high water solubility were key parameters for fast loading. Since both factors are crucial in drug dissolution as described by the Noyes-Whitney equation, these findings point to a dissolution-diffusion-based passive loading mechanism. Accordingly, passive loading also occurred when drug and carrier particles were separated by a dialysis membrane. Knowledge of the loading mechanism allows optimizing the conditions for future passive loading studies and assessing the limitations of the method. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Dense range map reconstruction from a versatile robotic sensor system with an active trinocular vision and a passive binocular vision.

    PubMed

    Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck

    2008-04-10

    One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.

  10. Solar Energy: Uses for Your Home. The CIRcular: Consumer Information Report 15.

    ERIC Educational Resources Information Center

    Bank of America NT & SA, San Francisco, CA.

    This report defines active and passive solar energy systems, describes home uses for solar energy, and offers guidelines for choosing and installing a system. Much of the information is specific to the state of California. Uses for solar energy which are presented include passive space heating, passive cooling, active space heating, household…

  11. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  12. A few questions related to information and symmetries in physics

    NASA Astrophysics Data System (ADS)

    Darvas, G.

    2017-01-01

    Information exchange between inanimate objects (like individual physical particles, or systems) involves special approaches, due to the peculiarity that conscious information emitters/recipients are excluded from the process. This paper aims at answering a part of some questions arising by such approaches. One can ask the question, whether is it possible to speak about physical information when there is no live recipient to accept, evaluate, and use it? Can one speak about "physical information" (e.g., signal exchange) between inanimate physical objects at all? (cf., Feynman diagrams.) If yes, what is the nature of that information? Is (physical) information a passive phenomenon, or its existence presumes activity? What does a signal represent if it is not observed and used at the other end, and where is that other end when one can say that the signal in question was lost without observation or use? I try to illustrate my personal answers with a few examples quoted from the history of 20th c. physics. My answers to the questions are not intended to be revelations and to provide final solutions, rather they serve as arguments and indicate that nothing is closed, the discussion is open.

  13. 77 FR 62270 - Proposed Revision Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... for Passive Advanced Light Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard... Passive Advanced Light Water Reactors.'' The current SRP does not contain guidance on the proposed RTNSS for Passive Advance Light Water Reactors. DATES: Submit comments by November 13, 2012. Comments...

  14. 48 CFR 552.211-92 - Radio Frequency Identification (RFID) using passive tags.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Identification (RFID) using passive tags. 552.211-92 Section 552.211-92 Federal Acquisition Regulations System... Provisions and Clauses 552.211-92 Radio Frequency Identification (RFID) using passive tags. As prescribed in 511.204(b)(11), insert the following clause: Radio Frequency Identification (RFID) Using Passive Tags...

  15. 48 CFR 552.211-92 - Radio Frequency Identification (RFID) using passive tags.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Identification (RFID) using passive tags. 552.211-92 Section 552.211-92 Federal Acquisition Regulations System... Provisions and Clauses 552.211-92 Radio Frequency Identification (RFID) using passive tags. As prescribed in 511.204(b)(11), insert the following clause: Radio Frequency Identification (RFID) Using Passive Tags...

  16. Passive fire protection in high density village (case study, Bustaman Semarang)

    NASA Astrophysics Data System (ADS)

    Sukawi, Sukawi; Wahyu Firmandhani, Satriya; Hardiman, Gagoek

    2017-12-01

    Fire hazard is the disaster that always has an unpredictable process of coming. When it comes, its level scope and the magnitude of the effects cannot be predicted. Dense settlements especially in big cities, among others Bustaman Kampong Semarang never escape from physical problems such as flooding and wildfire. If both are compared in dense settlements scope, so that, wild fire is the most potentially catastrophic. It is necessary to do a research on passive fire protection in a village of high density city such as Bustaman. Qualitative research was conducted using descriptive method to conduct observations and interviews in the Bustaman. Bustaman as a high density village, with narrow roads and dense rows of houses. The terraced buildings are also encountered, and found many buildings use combustible material. That environmental conditions can facilitate the propagation of flames in case of fire. To improve the established Bustaman's environment, in terms of the application of passive fire protection systems, it is recommended to utilize the road as the dividing buildings. Need to build the separation wall fireproof in every each series in several units of too long buildings and attempted open space procurement that separates rows of buildings that are too long, and also the replacement of combustible material with a material that is more incombustible.

  17. Turbiditic systems on passive margins: fifteen years of fruitful industry-academic exchanges.

    NASA Astrophysics Data System (ADS)

    Guillocheau, F.

    2012-04-01

    During the last fifteen years, with the oil discovery in deep offshore plays, new tools have been developed that deeply modified our knowledge on sedimentary gravity processes on passive margins: geometry, physical processes, but also the importance of the topography and the quantification of the stratigraphic parameters of control. The major breakthrough was of course the extensive 3D seismic data available around most of the world margins with a focus on gravity-tectonics dominated margins. The first major progress was the characterization of the sinuous channels infilling, their diversity and different models for their origin. This also was a better knowledge of the different types of slopes (graded vs. above-graded) and the extension of the concept of accommodation to deep-water environments (ponded, healed-slope, incised submarine valley and slope accommodation). The second step was the understanding of the synsedimentary deformations for the location and the growth of turbiditic systems on margins dominated by gravity tectonics, with the importance of the sedimentary flux and its variation through time and space. The third step is now the integration of the sedimentary system, from the upstream erosional catchment to the abyssal plain (source to sink approach), with the question of the sediment routing system. During the last 100 Ma, continents experienced major changes of both topography and climate. In the case of Africa, those are (1) the growth of the plateaus (and mainly the South African one) around 90-80 Ma (Late Cretaceous) and 40-20 Ma (Late Eocene-Early Miocene) and (2) a climate evolution from hot humid (50-40 Ma) to hot dry conditions since 20-15 Ma. This evolution changed the topography, the processes of erosion and the volume and nature (weathered vs. non weathered rocks) materials. Those are primary processes for controlling the deposition of turbiditic systems, and then to predict the location of sands. This will be discussed along the Atlantic margin of Africa. Keywords: Turbidite, Passive margins, Topography, Deformation, Source to sink

  18. Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton.

    PubMed

    Riani, Akram; Madani, Tarek; Hadri, Abdelhafid El; Benallegue, Abdelaziz

    2017-07-01

    This paper presents an adaptive control strategy for an upper-limb exoskeleton based on an on-line dynamic parameter estimator. The objective is to improve the control performance of this system that plays a critical role in assisting patients for shoulder, elbow and wrist joint movements. In general, the dynamic parameters of the human limb are unknown and differ from a person to another, which degrade the performances of the exoskeleton-human control system. For this reason, the proposed control scheme contains a supplementary loop based on a new efficient on-line estimator of the dynamic parameters. Indeed, the latter is acting upon the parameter adaptation of the controller to ensure the performances of the system in the presence of parameter uncertainties and perturbations. The exoskeleton used in this work is presented and a physical model of the exoskeleton interacting with a 7 Degree of Freedom (DoF) upper limb model is generated using the SimMechanics library of MatLab/Simulink. To illustrate the effectiveness of the proposed approach, an example of passive rehabilitation movements is performed using multi-body dynamic simulation. The aims is to maneuver the exoskeleton that drive the upper limb to track desired trajectories in the case of the passive arm movements.

  19. Simbol-X Background Minimization: Mirror Spacecraft Passive Shielding Trade-off Study

    NASA Astrophysics Data System (ADS)

    Fioretti, V.; Malaguti, G.; Bulgarelli, A.; Palumbo, G. G. C.; Ferri, A.; Attinà, P.

    2009-05-01

    The present work shows a quantitative trade-off analysis of the Simbol-X Mirror Spacecraft (MSC) passive shielding, in the phase space of the various parameters: mass budget, dimension, geometry and composition. A simplified physical (and geometrical) model of the sky screen, implemented by means of a GEANT4 simulation, has been developed to perform a performance-driven mass optimization and evaluate the residual background level on Simbol-X focal plane.

  20. AP1000{sup R} nuclear power plant safety overview for spent fuel cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorgemans, J.; Mulhollem, L.; Glavin, J.

    2012-07-01

    The AP1000{sup R} plant is an 1100-MWe class pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and costs. The AP1000 design uses passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems such as AC power, component cooling water, service water or HVAC. Furthermore, these passive features 'fail safe' during a non-LOCA event such that DC power and instrumentation are not required. The AP1000 also has simple, active, defense-in-depth systems to support normal plant operations. These active systems provide the first levelmore » of defense against more probable events and they provide investment protection, reduce the demands on the passive features and support the probabilistic risk assessment. The AP1000 passive safety approach allows the plant to achieve and maintain safe shutdown in case of an accident for 72 hours without operator action, meeting the expectations provided in the U.S. Utility Requirement Document and the European Utility Requirements for passive plants. Limited operator actions are required to maintain safe conditions in the spent fuel pool via passive means. In line with the AP1000 approach to safety described above, the AP1000 plant design features multiple, diverse lines of defense to ensure spent fuel cooling can be maintained for design-basis events and beyond design-basis accidents. During normal and abnormal conditions, defense-in-depth and other systems provide highly reliable spent fuel pool cooling. They rely on off-site AC power or the on-site standby diesel generators. For unlikely design basis events with an extended loss of AC power (i.e., station blackout) or loss of heat sink or both, spent fuel cooling can still be provided indefinitely: - Passive systems, requiring minimal or no operator actions, are sufficient for at least 72 hours under all possible pool heat load conditions. - After 3 days, several different means are provided to continue spent fuel cooling using installed plant equipment as well as off-site equipment with built-in connections. Even for beyond design basis accidents with postulated pool damage and multiple failures in the passive safety-related systems and in the defense-in-depth active systems, the AP1000 multiple spent fuel pool spray and fill systems provide additional lines of defense to prevent spent fuel damage. (authors)« less

  1. Belarusian female physicists: Statistics and perspectives

    NASA Astrophysics Data System (ADS)

    Fedotova, Julia; Tashlykova-Bushkevich, Iya

    2013-03-01

    The experience for women in physics remains challenging in Belarus. The proportion of female physics master's degree recipients is approximately 30%, while the percentage of female physics PhD recipients is 50%. Still, only a few female physicists occupy top positions in research laboratories, institutes, or universities. The basic problem for career-oriented female physicists in Belarus is public opinion, which cultivates a passive and dependent life philosophy for women. The Belarusian Women in Physics group was formed in 2003 as part of the Belarusian Physical Society.

  2. Passive perception system for day/night autonomous off-road navigation

    NASA Astrophysics Data System (ADS)

    Rankin, Arturo L.; Bergh, Charles F.; Goldberg, Steven B.; Bellutta, Paolo; Huertas, Andres; Matthies, Larry H.

    2005-05-01

    Passive perception of terrain features is a vital requirement for military related unmanned autonomous vehicle operations, especially under electromagnetic signature management conditions. As a member of Team Raptor, the Jet Propulsion Laboratory developed a self-contained passive perception system under the DARPA funded PerceptOR program. An environmentally protected forward-looking sensor head was designed and fabricated in-house to straddle an off-the-shelf pan-tilt unit. The sensor head contained three color cameras for multi-baseline daytime stereo ranging, a pair of cooled mid-wave infrared cameras for nighttime stereo ranging, and supporting electronics to synchronize captured imagery. Narrow-baseline stereo provided improved range data density in cluttered terrain, while wide-baseline stereo provided more accurate ranging for operation at higher speeds in relatively open areas. The passive perception system processed stereo images and outputted over a local area network terrain maps containing elevation, terrain type, and detected hazards. A novel software architecture was designed and implemented to distribute the data processing on a 533MHz quad 7410 PowerPC single board computer under the VxWorks real-time operating system. This architecture, which is general enough to operate on N processors, has been subsequently tested on Pentium-based processors under Windows and Linux, and a Sparc based-processor under Unix. The passive perception system was operated during FY04 PerceptOR program evaluations at Fort A. P. Hill, Virginia, and Yuma Proving Ground, Arizona. This paper discusses the Team Raptor passive perception system hardware and software design, implementation, and performance, and describes a road map to faster and improved passive perception.

  3. Irma 5.1 multisensor signature prediction model

    NASA Astrophysics Data System (ADS)

    Savage, James; Coker, Charles; Edwards, Dave; Thai, Bea; Aboutalib, Omar; Chow, Anthony; Yamaoka, Neil; Kim, Charles

    2006-05-01

    The Irma synthetic signature prediction code is being developed to facilitate the research and development of multi-sensor systems. Irma was one of the first high resolution, physics-based Infrared (IR) target and background signature models to be developed for tactical weapon applications. Originally developed in 1980 by the Munitions Directorate of the Air Force Research Laboratory (AFRL/MN), the Irma model was used exclusively to generate IR scenes. In 1988, a number of significant upgrades to Irma were initiated including the addition of a laser (or active) channel. This two-channel version was released to the user community in 1990. In 1992, an improved scene generator was incorporated into the Irma model, which supported correlated frame-to-frame imagery. A passive IR/millimeter wave (MMW) code was completed in 1994. This served as the cornerstone for the development of the co-registered active/passive IR/MMW model, Irma 4.0. In 2000, Irma version 5.0 was released which encompassed several upgrades to both the physical models and software. Circular polarization was added to the passive channel, and a Doppler capability was added to the active MMW channel. In 2002, the multibounce technique was added to the Irma passive channel. In the ladar channel, a user-friendly Ladar Sensor Assistant (LSA) was incorporated which provides capability and flexibility for sensor modeling. Irma 5.0 runs on several platforms including Windows, Linux, Solaris, and SGI Irix. Irma is currently used to support a number of civilian and military applications. The Irma user base includes over 130 agencies within the Air Force, Army, Navy, DARPA, NASA, Department of Transportation, academia, and industry. In 2005, Irma version 5.1 was released to the community. In addition to upgrading the Ladar channel code to an object oriented language (C++) and providing a new graphical user interface to construct scenes, this new release significantly improves the modeling of the ladar channel and includes polarization effects, time jittering, speckle effect, and atmospheric turbulence. More importantly, the Munitions Directorate has funded three field tests to verify and validate the re-engineered ladar channel. Each of the field tests was comprehensive and included one month of sensor characterization and a week of data collection. After each field test, the analysis included comparisons of Irma predicted signatures with measured signatures, and if necessary, refining the model to produce realistic imagery. This paper will focus on two areas of the Irma 5.1 development effort: report on the analysis results of the validation and verification of the Irma 5.1 ladar channel, and the software development plan and validation efforts of the Irma passive channel. As scheduled, the Irma passive code is being re-engineered using object oriented language (C++), and field data collection is being conducted to validate the re-engineered passive code. This software upgrade will remove many constraints and limitations of the legacy code including limits on image size and facet counts. The field test to validate the passive channel is expected to be complete in the second quarter of 2006.

  4. Passive Endwall Treatments for Enhancing Stability

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.

    2007-01-01

    These lecture notes were presented at the von Karman Institutes lecture series on Advances in Axial Compressor Aerodynamics, May 2006. They provide a fairly extensive overview of what's been learned from numerous investigations of various passive casing endwall technologies that have been proposed for alleviating the stall limiting physics associated with the compressor endwall flow field. The lecture notes are organized to give an appreciation for the inventiveness and understanding of the earliest compressor technologists and to provide a coherent thread of understanding that has arisen out of the early investigations. As such the lecture notes begin with a historical overview of casing treatments from their infancy through the earliest proposed concepts involving blowing, suction and flow recirculation. A summary of lessons learned from these early investigations is provided at the end of this section. The lecture notes then provide a somewhat more in-depth overview of recent advancements in the development of passive casing treatments from the late 1990's through 2006, including advancements in understanding the flow mechanism of circumferential groove casing treatments, and the development of discrete tip injection and self-recirculating casing treatments. At the conclusion of the lecture notes a final summary of lessons learned throughout the history of the development of passive casing treatments is provided. Finally, a list of future needs is given. It is hoped that these lecture notes will be a useful reference for future research endeavors to improve our understanding of the fluid physics of passive casing treatments and how they act to enhance compressor stability, and that they will perhaps provide a springboard for future research activities in this area of interest

  5. Sensor Failure Detection of FASSIP System using Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.

  6. Surface passivation for tight-binding calculations of covalent solids.

    PubMed

    Bernstein, N

    2007-07-04

    Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp(3) hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.

  7. Surface passivation for tight-binding calculations of covalent solids

    NASA Astrophysics Data System (ADS)

    Bernstein, N.

    2007-07-01

    Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp3 hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.

  8. The passive control of air pollution exposure in Dublin, Ireland: a combined measurement and modelling case study.

    PubMed

    Gallagher, J; Gill, L W; McNabola, A

    2013-08-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Numerical Simulation of the Emergency Condenser of the SWR-1000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krepper, Eckhard; Schaffrath, Andreas; Aszodi, Attila

    The SWR-1000 is a new innovative boiling water reactor (BWR) concept, which was developed by Siemens AG. This concept is characterized in particular by passive safety systems (e.g., four emergency condensers, four building condensers, eight passive pressure pulse transmitters, and six gravity-driven core-flooding lines). In the framework of the BWR Physics and Thermohydraulic Complementary Action to the European Union BWR Research and Development Cluster, emergency condenser tests were performed by Forschungszentrum Juelich at the NOKO test facility. Posttest calculations with ATHLET are presented, which aim at the determination of the removable power of the emergency condenser and its operation mode.more » The one-dimensional thermal-hydraulic code ATHLET was extended by the module KONWAR for the calculation of the heat transfer coefficient during condensation in horizontal tubes. In addition, results of conventional finite difference calculations using the code CFX-4 are presented, which investigate the natural convection during the heatup process at the secondary side of the NOKO test facility.« less

  10. Aging and rejuvenation of active matter under topological constraints

    DOE PAGES

    Janssen, Liesbeth M. C.; Kaiser, Andreas; Lowen, Hartmut

    2017-07-18

    The coupling of active, self-motile particles to topological constraints can give rise to novel nonequilibrium dynamical patterns that lack any passive counterpart. Here we study the behavior of self-propelled rods confined to a compact spherical manifold by means of Brownian dynamics simulations. We establish the state diagram and find that short active rods at sufficiently high density exhibit a glass transition toward a disordered state characterized by persistent self-spinning motion. By periodically melting and revitrifying the spherical spinning glass, we observe clear signatures of time-dependent aging and rejuvenation physics. We quantify the crucial role of activity in these nonequilibrium processes,more » and rationalize the aging dynamics in terms of an absorbing-state transition toward a more stable active glassy state. In conclusion, our results demonstrate both how concepts of passive glass phenomenology can carry over into the realm of active matter, and how topology can enrich the collective spatiotemporal dynamics in inherently non-equilibrium systems.« less

  11. Active and passive controls of Jeffrey nanofluid flow over a nonlinear stretching surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    This communication explores magnetohydrodynamic (MHD) boundary-layer flow of Jeffrey nanofluid over a nonlinear stretching surface with active and passive controls of nanoparticles. A nonlinear stretching surface generates the flow. Effects of thermophoresis and Brownian diffusion are considered. Jeffrey fluid is electrically conducted subject to non-uniform magnetic field. Low magnetic Reynolds number and boundary-layer approximations have been considered in mathematical modelling. The phenomena of impulsing the particles away from the surface in combination with non-zero mass flux condition is known as the condition of zero mass flux. Convergent series solutions for the nonlinear governing system are established through optimal homotopy analysis method (OHAM). Graphs have been sketched in order to analyze that how the temperature and concentration distributions are affected by distinct physical flow parameters. Skin friction coefficient and local Nusselt and Sherwood numbers are also computed and analyzed. Our findings show that the temperature and concentration distributions are increasing functions of Hartman number and thermophoresis parameter.

  12. Sea-level-induced seismicity and submarine landslide occurrence

    USGS Publications Warehouse

    Brothers, Daniel S.; Luttrell, Karen M.; Chaytor, Jason D.

    2013-01-01

    The temporal coincidence between rapid late Pleistocene sea-level rise and large-scale slope failures is widely documented. Nevertheless, the physical mechanisms that link these phenomena are poorly understood, particularly along nonglaciated margins. Here we investigate the causal relationships between rapid sea-level rise, flexural stress loading, and increased seismicity rates along passive margins. We find that Coulomb failure stress across fault systems of passive continental margins may have increased more than 1 MPa during rapid late Pleistocene–early Holocene sea-level rise, an amount sufficient to trigger fault reactivation and rupture. These results suggest that sea-level–modulated seismicity may have contributed to a number of poorly understood but widely observed phenomena, including (1) increased frequency of large-scale submarine landslides during rapid, late Pleistocene sea-level rise; (2) emplacement of coarse-grained mass transport deposits on deep-sea fans during the early stages of marine transgression; and (3) the unroofing and release of methane gas sequestered in continental slope sediments.

  13. Aging and rejuvenation of active matter under topological constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssen, Liesbeth M. C.; Kaiser, Andreas; Lowen, Hartmut

    The coupling of active, self-motile particles to topological constraints can give rise to novel nonequilibrium dynamical patterns that lack any passive counterpart. Here we study the behavior of self-propelled rods confined to a compact spherical manifold by means of Brownian dynamics simulations. We establish the state diagram and find that short active rods at sufficiently high density exhibit a glass transition toward a disordered state characterized by persistent self-spinning motion. By periodically melting and revitrifying the spherical spinning glass, we observe clear signatures of time-dependent aging and rejuvenation physics. We quantify the crucial role of activity in these nonequilibrium processes,more » and rationalize the aging dynamics in terms of an absorbing-state transition toward a more stable active glassy state. In conclusion, our results demonstrate both how concepts of passive glass phenomenology can carry over into the realm of active matter, and how topology can enrich the collective spatiotemporal dynamics in inherently non-equilibrium systems.« less

  14. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    NASA Technical Reports Server (NTRS)

    McMillan, Michelle L.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James

    2010-01-01

    Fail-safe inlet flow control may enable high-speed cruise efficiency, low noise signature, and reduced fuel-burn goals for hybrid wing-body aircraft. The objectives of this program are to develop flow control and prediction methodologies for boundary-layer ingesting (BLI) inlets used in these aircraft. This report covers the second of a three year program. The approach integrates experiments and numerical simulations. Both passive and active flow-control devices were tested in a small-scale wind tunnel. Hybrid actuation approaches, combining a passive microvane and active synthetic jet, were tested in various geometric arrangements. Detailed flow measurements were taken to provide insight into the flow physics. Results of the numerical simulations were correlated against experimental data. The sensitivity of results to grid resolution and turbulence models was examined. Aerodynamic benefits from microvanes and microramps were assessed when installed in an offset BLI inlet. Benefits were quantified in terms of recovery and distortion changes. Microvanes were more effective than microramps at improving recovery and distortion.

  15. Study on development of active-passive rehabilitation system for upper limbs: Hybrid-PLEMO

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Jin, Y.; Fukushima, K.; Akai, H.; Furusho, J.

    2009-02-01

    In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. Active-type (motor-driven) haptic devices can realize a lot of varieties of haptics. But they basically require high-cost safety system. On the other hand, passive-type (brake-based) haptic devices have inherent safety. However, the passive robot system has strong limitation on varieties of haptics. There are not sufficient evidences to clarify how the passive/active haptics effect to the rehabilitation of motor skills. In this paper, we developed an active-passive-switchable rehabilitation system with ER clutch/brake device named "Hybrid-PLEMO" in order to address these problems. In this paper, basic structures and haptic control methods of the Hybrid-PLEMO are described.

  16. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  17. Passive magnetic bearing configurations

    DOEpatents

    Post, Richard F [Walnut Creek, CA

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  18. Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems

    NASA Astrophysics Data System (ADS)

    Chan, Kwong Wah; Liao, Wei-Hsin

    2006-03-01

    Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.

  19. A chaotic modified-DFT encryption scheme for physical layer security and PAPR reduction in OFDM-PON

    NASA Astrophysics Data System (ADS)

    Fu, Xiaosong; Bi, Meihua; Zhou, Xuefang; Yang, Guowei; Li, Qiliang; Zhou, Zhao; Yang, Xuelin

    2018-05-01

    This letter proposes a modified discrete Fourier transform (DFT) encryption scheme with multi-dimensional chaos for the physical layer security and peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing passive optical network (OFDM-PON) system. This multiple-fold encryption algorithm is mainly composed by using the column vectors permutation and the random phase encryption in the standard DFT matrix, which can create ∼10551 key space. The transmission of ∼10 Gb/s encrypted OFDM signal is verified over 20-km standard single mode fiber (SMF). Moreover, experimental results show that, the proposed scheme can achieve ∼2.6-dB PAPR reduction and ∼1-dB improvement of receiver sensitivity if compared with the common OFDM-PON.

  20. Effects that passive cycling exercise have on muscle strength, duration of mechanical ventilation, and length of hospital stay in critically ill patients: a randomized clinical trial

    PubMed Central

    Machado, Aline dos Santos; Pires-Neto, Ruy Camargo; Carvalho, Maurício Tatsch Ximenes; Soares, Janice Cristina; Cardoso, Dannuey Machado; de Albuquerque, Isabella Martins

    2017-01-01

    ABSTRACT Objective: To evaluate the effects that passive cycling exercise, in combination with conventional physical therapy, have on peripheral muscle strength, duration of mechanical ventilation, and length of hospital stay in critically ill patients admitted to the ICU of a tertiary care university hospital. Methods: This was a randomized clinical trial involving 38 patients (≥ 18 years of age) on mechanical ventilation who were randomly divided into two groups: control (n = 16), receiving conventional physical therapy; and intervention (n = 22), receiving conventional physical therapy and engaging in passive cycling exercise five days per week. The mean age of the patients was 46.42 ± 16.25 years, and 23 were male. The outcomes studied were peripheral muscle strength, as measured by the Medical Research Council scale, duration of mechanical ventilation, and length of hospital stay. Results: There was a significant increase in peripheral muscle strength (baseline vs. final) in both groups (control: 40.81 ± 7.68 vs. 45.00 ± 6.89; and intervention: 38.73 ± 11.11 vs. 47.18 ± 8.75; p < 0.001 for both). However, the range of increase in strength was higher in the intervention group than in the control group (8.45 ± 5.20 vs. 4.18 ± 2.63; p = 0.005). There were no significant differences between the groups in terms of duration of mechanical ventilation or length of hospital stay. Conclusions: The results suggest that the performance of continuous passive mobilization on a cyclical basis helps to recover peripheral muscle strength in ICU patients. (ClinicalTrials.gov Identifier: NCT01769846 [http://www.clinicaltrials.gov/]) PMID:28538781

  1. Analysis of physical exercises and exercise protocols for space transportation system operation

    NASA Technical Reports Server (NTRS)

    Coleman, A. E.

    1982-01-01

    A quantitative evaluation of the Thornton-Whitmore treadmill was made so that informed management decisions regarding the role of this treadmill in operational flight crew exercise programs could be made. Specific tasks to be completed were: The Thornton-Whitmore passive treadmill as an exercise device at one-g was evaluated. Hardware, harness and restraint systems for use with the Thornton-Whitmore treadmill in the laboratory and in Shuttle flights were established. The quantitative and qualitative performance of human subjects on the Thorton-Whitmore treadmill with forces in excess of one-g, was evaluated. The performance of human subjects on the Thornton-Whitmore treadmill in weightlessness (onboard Shuttle flights) was also determined.

  2. Synthesis and analysis of precise spaceborne laser ranging systems, volume 1. [link analysis

    NASA Technical Reports Server (NTRS)

    Paddon, E. A.

    1977-01-01

    Measurement accuracy goals of 2 cm rms range estimation error and 0.003 cm/sec rms range rate estimation error, with no more than 1 cm (range) static bias error are requirements for laser measurement systems to be used in planned space-based earth physics investigations. Constraints and parameters were defined for links between a high altitude, transmit/receive satellite (HATRS), and one of three targets: a low altitude target satellite, passive (LATS), and active low altitude target, and a ground-based target, as well as with operations with a primary transmit/receive terminal intended to be carried as a shuttle payload, in conjunction with the Spacelab program.

  3. Ubiquitous computing technology for just-in-time motivation of behavior change.

    PubMed

    Intille, Stephen S

    2004-01-01

    This paper describes a vision of health care where "just-in-time" user interfaces are used to transform people from passive to active consumers of health care. Systems that use computational pattern recognition to detect points of decision, behavior, or consequences automatically can present motivational messages to encourage healthy behavior at just the right time. Further, new ubiquitous computing and mobile computing devices permit information to be conveyed to users at just the right place. In combination, computer systems that present messages at the right time and place can be developed to motivate physical activity and healthy eating. Computational sensing technologies can also be used to measure the impact of the motivational technology on behavior.

  4. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.M. McEligot; K. G. Condie; G. E. McCreery

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generationmore » IV program.« less

  5. Steady state and LOCA analysis of Kartini reactor using RELAP5/SCDAP code: The role of passive system

    NASA Astrophysics Data System (ADS)

    Antariksawan, Anhar R.; Wahyono, Puradwi I.; Taxwim

    2018-02-01

    Safety is the priority for nuclear installations, including research reactors. On the other hand, many studies have been done to validate the applicability of nuclear power plant based best estimate computer codes to the research reactor. This study aims to assess the applicability of the RELAP5/SCDAP code to Kartini research reactor. The model development, steady state and transient due to LOCA calculations have been conducted by using RELAP5/SCDAP. The calculation results are compared with available measurements data from Kartini research reactor. The results show that the RELAP5/SCDAP model steady state calculation agrees quite well with the available measurement data. While, in the case of LOCA transient simulations, the model could result in reasonable physical phenomena during the transient showing the characteristics and performances of the reactor against the LOCA transient. The role of siphon breaker hole and natural circulation in the reactor tank as passive system was important to keep reactor in safe condition. It concludes that the RELAP/SCDAP could be use as one of the tool to analyse the thermal-hydraulic safety of Kartini reactor. However, further assessment to improve the model is still needed.

  6. Smoking and atherosclerosis: mechanisms of disease and new therapeutic approaches.

    PubMed

    Siasos, Gerasimos; Tsigkou, Vasiliki; Kokkou, Eleni; Oikonomou, Evangelos; Vavuranakis, Manolis; Vlachopoulos, Charalambos; Verveniotis, Alexis; Limperi, Maria; Genimata, Vasiliki; Papavassiliou, Athanasios G; Stefanadis, Christodoulos; Tousoulis, Dimitris

    2014-01-01

    It has been clear that at least 1 billion adults worldwide are smokers and at least 700 million children are passive smokers at home. Smoking exerts a detrimental effect to many organ systems and is responsible for illnesses such as lung cancer, pneumonia, chronic obstructive pulmonary disease, cancer of head and neck, cancer of the urinary and gastrointestinal tract, periodontal disease, cataract and arthritis. Additionally, smoking is an important modifiable risk factor for the development of cardiovascular disease such as coronary artery disease, stable angina, acute coronary syndromes, sudden death, stroke, peripheral vascular disease, congestive heart failure, erectile dysfunction and aortic aneurysms via initiation and progression of atherosclerosis. A variety of studies has proved that cigarette smoking induces oxidative stress, vascular inflammation, platelet coagulation, vascular dysfunction and impairs serum lipid pro-file in both current and chronic smokers, active and passive smokers and results in detrimental effects on the cardiovascular system. The aim of this review is to depict the physical and biochemical properties of cigarette smoke and, furthermore, elucidate the main pathophysiological mechanisms of cigarette-induced atherosclerosis and overview the new therapeutic approaches for smoking cessation and augmentation of cardiovascular health.

  7. Magnitude, types and sex differentials of aggressive behaviour among school children in a rural area of West Bengal.

    PubMed

    Dutt, Debashis; Pandey, Girish Kumar; Pal, Dipak; Hazra, Suprakas; Dey, Tushar Kanti

    2013-04-01

    Aggression affects academic learning and emotional development, can damage school climate and if not controlled early and may precipitate extreme violence in the future. (1) To determine the magnitude and types of aggressive behavior in school children. (2) To identify the influence of age and sex on aggressive behavior. A cross-sectional study was conducted in Anandanagar High School, Singur village, West Bengal. Participants were 161 boys and 177 girls of classes VII to IX. The students were asked to complete a self-administered questionnaire indicating the types of aggressive behavior by them in the previous month and to assess themselves with reference to statements indicating verbal/physical aggression. Overall, 66.5% of the children were physically aggressive in the previous month: Boys 75.8%, girls 58.2% (P = 0.001); 56.8% were verbally aggressive: Boys 55.2%, girls 61% (P = 0.97). Verbal indirect passive aggression was more common among girls (55.3%) than among boys (22.3%) (P = 0.000 [1.17E(-09)]). Boys were more liable to physical aggression, viz. 60.2% of the boys would hit on provocation compared with only 9% of the girls (P = 0.000 [6.6E(-23)]). Regarding attributes indicating verbal aggression, girls were more argumentative (63.8%) than boys (55.2%) (P = 0.134) and disagreeing (41.8%) compared with boys (33.5%) (P = 0.145). With increasing age/class, physical direct active aggression decreased while physical indirect passive and verbal indirect passive aggression increased. No classes had been taken on anger control/management by school the authorities. Aggressive behavior was common both among boys and girls. Life skills education/counseling/classroom management strategies are recommended.

  8. Grade II whiplash injuries to the neck: what is the benefit for patients treated by different physical therapy modalities?

    PubMed Central

    Dehner, Christoph; Elbel, Martin; Strobel, Philipp; Scheich, Matthias; Schneider, Florian; Krischak, Gert; Kramer, Michael

    2009-01-01

    Background In a majority of cases, whiplash injuries are a domain of conservative therapy. Nevertheless it remains unclear whether physical therapy is of medical or economic benefit in patients with whiplash injuries. Methods Seventy patients with acute Quebec Task Force (QTF) grade II whiplash injuries were randomized to two therapy groups and received either active (APT) or passive (PPT) physical therapy. Patients were compared with regard to pain and range of motion with data obtained in an earlier study from a group with grade II whiplash injuries in which the therapy recommendation had been "act as usual" (AAU; n = 20). The above-mentioned parameters were assessed at 24 hours and two months after the injury. Furthermore patients' period of disability was documented after two months. Results After two months, patients in both the APT and PPT groups showed significant improvement in the median period of disability (active: 14 days; passive: 14 days) compared to the AAU group (49 days). No group difference was observed with regard to median improvement in range of motion (active: 120°; passive: 108°; activity as usual: 70°). The median pain reduction was significantly greater in the APT group (50.5) than in the PPT (39.2) or AAU group (28.8). Conclusion Our data show that active physical therapy results in enhanced pain reduction and shortening of post-injury disability. Therefore, active physical therapy should be considered the treatment of choice in patients with QTF grade II whiplash injuries. Trial registration The study complied with applicable German law and with the principles of the Helsinki Declaration and was approved by the institutional ethics commission. PMID:19149880

  9. An Overview of Magnetic Bearing Technology for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Clark, Daniel J.; Jansen, Mark J.; Montague, Gerald T.

    2004-01-01

    The idea of the magnetic bearing and its use in exotic applications has been conceptualized for many years, over a century, in fact. Patented, passive systems using permanent magnets date back over 150 years. More recently, scientists of the 1930s began investigating active systems using electromagnets for high-speed ultracentrifuges. However, passive magnetic bearings are physically unstable and active systems only provide proper stiffness and damping through sophisticated controllers and algorithms. This is precisely why, until the last decade, magnetic bearings did not become a practical alternative to rolling element bearings. Today, magnetic bearing technology has become viable because of advances in micro-processing controllers that allow for confident and robust active control. Further advances in the following areas: rotor and stator materials and designs which maximize flux, minimize energy losses, and minimize stress limitations; wire materials and coatings for high temperature operation; high-speed micro processing for advanced controller designs and extremely robust capabilities; back-up bearing technology for providing a viable touchdown surface; and precision sensor technology; have put magnetic bearings on the forefront of advanced, lubrication free support systems. This paper will discuss a specific joint program for the advancement of gas turbine engines and how it implies the vitality of magnetic bearings, a brief comparison between magnetic bearings and other bearing technologies in both their advantages and limitations, and an examination of foreseeable solutions to historically perceived limitations to magnetic bearing.

  10. Pure Gaussian state generation via dissipation: a quantum stochastic differential equation approach.

    PubMed

    Yamamoto, Naoki

    2012-11-28

    Recently, the complete characterization of a general Gaussian dissipative system having a unique pure steady state was obtained. This result provides a clear guideline for engineering an environment such that the dissipative system has a desired pure steady state such as a cluster state. In this paper, we describe the system in terms of a quantum stochastic differential equation (QSDE) so that the environment channels can be explicitly dealt with. Then, a physical meaning of that characterization, which cannot be seen without the QSDE representation, is clarified; more specifically, the nullifier dynamics of any Gaussian system generating a unique pure steady state is passive. In addition, again based on the QSDE framework, we provide a general and practical method to implement a desired dissipative Gaussian system, which has a structure of quantum state transfer.

  11. Passive solar addition to therapeutic pre-school. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-10-01

    This project consisted of designing and constructing a passive solar system on a new classroom addition to the Peanut Butter and Jelly Therapeutic Pre-School in Albuquerque, NM. The purpose of this project was to demonstrate the applicability of solar space heating systems to large institutional buildings, and to demonstrate the energy and cost savings available through the use of such systems. Preliminary estimates indicated that the passive solar systems will provide about 90 percent of the heating and cooling needs for the new classroom addition to the school.

  12. Simulation of an active solar energy system integrated in a passive building in order to obtain system efficiency

    NASA Astrophysics Data System (ADS)

    Ceacaru, Mihai C.

    2012-11-01

    In this work we present a simulation of an active solar energy system. This system belongs to the first passive office building (2086 square meters) in Romania and it is used for water heating consumption. This office building was opened in February 2009 and was built based on passive house design solutions. For this simulation, we use Solar Water Heating module, which belongs to the software RETSCREEN and this simulation is done for several cities in Romania. Results obtained will be compared graphically.

  13. Theoretical and practical aspects of improving the durability of steel reinforcement in transport designs, using passivation and plasticizing chemical additives

    NASA Astrophysics Data System (ADS)

    Velichko, Evgenij; Talipov, Linar

    2017-10-01

    The article deals with the problem of steel reinforcement corrosion in reinforced concrete structures exposed to aggressive media, in particular in reinforced concrete construction of transport infrastructure, in snowy areas, and subject to the influence of chlorides contained in applied deicing agents. Basic schemes for preventing the reinforcement corrosion in reinforced-concrete structures have been considered and analyzed. Prospects of primary protection against corrosion of reinforcement by introducing chemical additives with plasticizing/passivating action in a concrete mixture with mixing water have been considered in detail. The physical/chemical mechanism of the protective action of a superplasticizer together with a passivator has been highlighted.

  14. Microwave remote sensing of sea ice in the AIDJEX Main Experiment. [Arctic Ice Dynamics Joint Experiment

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Wayenberg, J.; Ramseyer, J. B.; Ramseier, R. O.; Vant, M. R.; Weaver, R.; Redmond, A.; Arsenault, L.; Gloersen, P.; Zwally, H. J.

    1978-01-01

    A microwave remote sensing program of sea ice in the Beaufort Sea was conducted during the Arctic Ice Dynamics Joint Experiment (AIDJEX). Several types of both passive and active sensors were used to perform surface and aircraft measurements during all seasons of the year. In situ observations were made of physical properties (salinity, temperature, density, surface roughness), dielectric properties, and passive microwave measurements were made of first-year, multiyear, and first-year/multiyear mixtures. Airborne passive microwave measurements were performed with the electronically scanning microwave radiometer while airborne active microwave measurements were performed by synthetic aperture radar, X- and L-band radar, and a scatterometer.

  15. Method and system to perform energy-extraction based active noise control

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul (Inventor); Joshi, Suresh M. (Inventor)

    2009-01-01

    A method to provide active noise control to reduce noise and vibration in reverberant acoustic enclosures such as aircraft, vehicles, appliances, instruments, industrial equipment and the like is presented. A continuous-time multi-input multi-output (MIMO) state space mathematical model of the plant is obtained via analytical modeling and system identification. Compensation is designed to render the mathematical model passive in the sense of mathematical system theory. The compensated system is checked to ensure robustness of the passive property of the plant. The check ensures that the passivity is preserved if the mathematical model parameters are perturbed from nominal values. A passivity-based controller is designed and verified using numerical simulations and then tested. The controller is designed so that the resulting closed-loop response shows the desired noise reduction.

  16. Storage of electric and magnetic energy in passive nonreciprocal networks

    NASA Technical Reports Server (NTRS)

    Smith, W. E.

    1969-01-01

    Examination of the relation of stored electric and magnetic energy within a system to the terminal behavior of nonreciprocal passive networks shows both similarities and important differences between wholly reciprocal systems and systems containing nonreciprocal elements.

  17. Comparison of the Electrochemical Behavior of Ti and Nanostructured Ti-Coated AISI 304 Stainless Steel in Strongly Acidic Solutions

    NASA Astrophysics Data System (ADS)

    Attarzadeh, Farid Reza; Elmkhah, Hassan; Fattah-Alhosseini, Arash

    2017-02-01

    In this study, the electrochemical behaviors of pure titanium (Ti) and nanostructured (NS) Ti-coated AISI 304 stainless steel (SS) in strongly acidic solutions of H2SO4 were investigated and compared. A type of physical vapor deposition method, cathodic arc evaporation, was applied to deposit NS Ti on 304 SS. Scanning electron microscope and X-ray diffraction were used to characterize surface coating morphology. Potentiodynamic polarization, electrochemical impedance spectroscopy, and Mott-Schottky (M-S) analysis were used to evaluate the passive behavior of the samples. Electrochemical measurements revealed that the passive behavior of NS Ti coating was better than that of pure Ti in 0.1 and 0.01 M H2SO4 solutions. M-S analysis indicated that the passive films behaved as n-type semiconductors in H2SO4 solutions and the deposition method did not affect the semiconducting type of passive films formed on the coated samples. In addition, this analysis showed that the NS Ti coating had lower donor densities. Finally, all electrochemical tests showed that the passive behavior of the Ti-coated samples was superior, mainly due to the formation of thicker, yet less defective passive films.

  18. A custom-tailored FAMOS burn-up meter for VVER 440 fuel assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, G.G.; Golochtchapov, S.; Glazov, A.G.

    1995-12-31

    The FAMOS fuel assembly monitoring system had been originally developed for monitoring irradiated fuel assemblies of the Karlsruhe Nuclear Research Center concentrating on neutron detection systems for special applications.The measurements in the past had demonstrated that FAMOS can perform precise measurements to control or measure with accuracy the main physical parameters of spent fuel. The FAMOS 3 system is specialized for burn-up determination of fuel assemblies. Thus it is possible to take into account the burn-up for the purposes of storage and transportation. The Kola NPP VVER 440 requirements necessitated developing an especially adopted FAMOS 3 system. In addition tomore » the passive neutron measurement, a gross gamma detection and a boron concentration monitoring system are implemented. The new system was constructed as well as tested in laboratory experiments. The monitoring system has been delivered to the customer and is ready for use.« less

  19. Feasibility study of a passive aeration reactor equipped with vertical pipes for compost stabilization of cow manure.

    PubMed

    Sylla, Youssouf Boundou; Kuroda, Masao; Yamada, Masayuki; Matsumoto, Naoko

    2006-10-01

    Pilot-scale composting was carried out with cow manure to evaluate the performances of two passive aeration systems: a conventional passive aeration system equipped with horizontal pipes and an unusual passive aeration method based on air delivery by means of vertical pipes. The effects of both types of passive aeration apparatus were investigated in order to determine the degree of composting rate by continuously monitoring temperature, moisture content, organic matter, electrical conductivity, pH and C/N ratio in the piles. Temperatures in the range of thermophily (55-65 degrees C) were reached in all runs within 1-2 days then lasting for about 1 week, a span long enough for pathogen abatement. Results suggest that passive aeration carried out by vertical pipes is more effective for air delivery into compost piles than conventional passive aeration of air adduction with horizontal pipes. The variation in the number of vertical pipes was revealed to be an important parameter for the control of composting rate and temperature. Composting rates estimated from the heat balance equation were substantially in agreement with those computed through the conversion ratio of total organic matter decrement. The conversion ratios and composting rates obtained in this study using passive aeration with vertical pipes were well aligned with those found using forced air delivery systems.

  20. Correlation studies of passive and active microwave data in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.

    1991-01-01

    The microwave radiative and backscatter characteristics of sea ice in an Arctic marginal ice zone have been studied using near-simultaneous passive and active synthetic aperture radar microwave data. Intermediate-resolution multichannel passive microwave data were registered and analyzed. Passive and active microwave data generally complement each other as the two sensors are especially sensitive to different physical properties of the sea ice. In the inner pack, undeformed first-year ice is observed to have low backscatter values but high brightness temperatures while multiyear ice has generally high backscatter values and low brightness temperatures. However, in the marginal ice zone, the signature and backscatter for multiyear ice are considerably different and closer to those of first-year ice. Some floes identified by photography as snow-covered thick ice have backscatter similar to that of new ice or open water while brash ice has backscatter similar to or higher than that of ridged ice.

  1. Cardiovascular remodeling induced by passive smoking.

    PubMed

    Minicucci, Marcos F; Azevedo, Paula S; Paiva, Sergio A R; Zornoff, Leonardo A M

    2009-12-01

    Coronary heart disease (CHD) is the most common cause of death in many developed countries. The major risk factors for CHD are smoking, high blood pressure, diabetes, high cholesterol levels, and lack of physical activity. Importantly, passive smoke also increases the risk for CHD. The mechanisms involved in the effects of passive smoke in CHD are complex and include endothelial dysfunction, lipoprotein modification, increased inflammation and platelet activation. Recently, several studies have shown that exposure to tobacco smoke can result in cardiac remodeling and compromised cardiac function. Potential mechanisms for these alterations are neurohumoral activation, oxidative stress, and MAPK activation. Although the vascular effects of cigarette smoke exposure are well known, the effects of tobacco smoking on the heart have received less attention. Therefore, this review will focus on the recent findings as to the effects of passive smoking in acute and chronic phases of vascular and cardiac remodeling.

  2. Global Precipitation Estimates from Cross-Track Passive Microwave Observations Using a Physically-Based Retrieval Scheme

    NASA Technical Reports Server (NTRS)

    Kidd, Chris; Matsui, Toshi; Chern, Jiundar; Mohr, Karen; Kummerow, Christian; Randel, Dave

    2015-01-01

    The estimation of precipitation across the globe from satellite sensors provides a key resource in the observation and understanding of our climate system. Estimates from all pertinent satellite observations are critical in providing the necessary temporal sampling. However, consistency in these estimates from instruments with different frequencies and resolutions is critical. This paper details the physically based retrieval scheme to estimate precipitation from cross-track (XT) passive microwave (PM) sensors on board the constellation satellites of the Global Precipitation Measurement (GPM) mission. Here the Goddard profiling algorithm (GPROF), a physically based Bayesian scheme developed for conically scanning (CS) sensors, is adapted for use with XT PM sensors. The present XT GPROF scheme utilizes a model-generated database to overcome issues encountered with an observational database as used by the CS scheme. The model database ensures greater consistency across meteorological regimes and surface types by providing a more comprehensive set of precipitation profiles. The database is corrected for bias against the CS database to ensure consistency in the final product. Statistical comparisons over western Europe and the United States show that the XT GPROF estimates are comparable with those from the CS scheme. Indeed, the XT estimates have higher correlations against surface radar data, while maintaining similar root-mean-square errors. Latitudinal profiles of precipitation show the XT estimates are generally comparable with the CS estimates, although in the southern midlatitudes the peak precipitation is shifted equatorward while over the Arctic large differences are seen between the XT and the CS retrievals.

  3. Effectiveness of postoperative physical therapy for upper-limb impairments after breast cancer treatment: a systematic review.

    PubMed

    De Groef, An; Van Kampen, Marijke; Dieltjens, Evi; Christiaens, Marie-Rose; Neven, Patrick; Geraerts, Inge; Devoogdt, Nele

    2015-06-01

    To systematically review the effectiveness of various postoperative physical therapy modalities and timing of physical therapy after treatment of breast cancer on pain and impaired range of motion (ROM) of the upper limb. We searched the following databases: PubMed/MEDLINE, Cumulative Index to Nursing and Allied Health Literature, Embase, Physiotherapy Evidence Database, and Cochrane. Articles published until October 2012 were included. Only (pseudo) randomized controlled trials and nonrandomized experimental trials investigating the effectiveness of passive mobilization, manual stretching, myofascial therapy, and/or exercise therapy and timing of physical therapy after treatment for breast cancer are reviewed. Primary outcomes are pain of the upper limb and/or ROM of the shoulder. Secondary outcomes are decreased shoulder strength, arm lymphedema, limitations in activities of daily living, decreased quality of life, and wound drainage volume. Physical therapy modalities had to be started in the first 6 weeks after surgery. Articles were selected by 2 independent researchers in 3 phases and compared for consensus. First the titles were analyzed, and then the selected abstracts and finally the full texts were reviewed. Eighteen randomized controlled trials were included in the review. Three studies investigated the effect of multifactorial therapy: 2 studies confirmed that the combination of general exercises and stretching is effective for the treatment of impaired ROM another study showed that passive mobilization combined with massage had no beneficial effects on pain and impaired ROM. Fifteen studies investigated the effectiveness of a single physical therapy modality. One study of poor quality found evidence supporting the beneficial effects of passive mobilization. The only study investigating the effect of stretching did not find any beneficial effects. No studies were found about the effectiveness of myofascial therapy in the postoperative phase. Five studies found that active exercises were more effective than no therapy or information on the treatment of impairments of the upper limb. Three studies supported the early start of exercises for recovery of shoulder ROM, whereas 4 studies supported the delay of exercises to avoid prolonged wound healing. Multifactorial physical therapy (ie, stretching, exercises) and active exercises were effective to treat postoperative pain and impaired ROM after treatment for breast cancer. High-quality studies are necessary to determine the effectiveness of passive mobilization, stretching, and myofascial therapy as part of the multifactorial treatment. In addition, the appropriate timing and content of the exercise programs need to be further investigated. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Passive Solar Heating Residences.

    DTIC Science & Technology

    1979-07-01

    concerned, as long as the basic system falls within one of the passive concepts, then it is a passive system. If a fan can increase the system~s...wood walls and roof is R-22, in the block walls (urea-formaldahyde foam sprayed in wall cavity) is R-30, and a 4" styro- foam board at the slab edge (R...is based cn 1,000 BTU/sq. ft./day, which is a clear day value. The south windows have reflectors which will increase the energy gained (30% by Steve

  5. Evaluation of multiple-frequency, active and passive acoustics as surrogates for bedload transport

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Pachman, Gregory; Lorang, Mark; Tonolla, Diego

    2015-01-01

    The use of multiple-frequency, active acoustics through deployment of acoustic Doppler current profilers (ADCPs) shows potential for estimating bedload in selected grain size categories. The U.S. Geological Survey (USGS), in cooperation with the University of Montana (UM), evaluated the use of multiple-frequency, active and passive acoustics as surrogates for bedload transport during a pilot study on the Kootenai River, Idaho, May 17-18, 2012. Four ADCPs with frequencies ranging from 600 to 2000 kHz were used to measure apparent moving bed velocities at 20 stations across the river in conjunction with physical bedload samples. Additionally, UM scientists measured the sound frequencies of moving particles with two hydrophones, considered passive acoustics, along longitudinal transects in the study reach. Some patterns emerged in the preliminary analysis which show promise for future studies. Statistically significant relations were successfully developed between apparent moving bed velocities measured by ADCPs with frequencies 1000 and 1200 kHz and bedload in 0.5 to 2.0 mm grain size categories. The 600 kHz ADCP seemed somewhat sensitive to the movement of gravel bedload in the size range 8.0 to 31.5 mm, but the relation was not statistically significant. The passive hydrophone surveys corroborated the sample results and could be used to map spatial variability in bedload transport and to select a measurement cross-section with moving bedload for active acoustic surveys and physical samples.

  6. Dynamic coupling of underactuated manipulators

    NASA Astrophysics Data System (ADS)

    Bergerman, Marcel; Lee, Christopher; Xu, Yangsheng

    1994-08-01

    In recent years, researchers have been turning their attention to so called underactuated systems, where the term underactuated refers to the fact that the system has more joints than control actuators. Some examples of underactuated systems are robot manipulators with failed actuators; free-floating space robots, where the base can be considered as a virtual passive linkage in inertia space; legged robots with passive joints; hyper-redundant (snake-like) robots with passive joints, etc. From the examples above, it is possible to justify the importance of the study of underactuated systems. For example, if some actuators of a conventional manipulator fail, the loss of one or more degrees of freedom may compromise an entire operation. In free-floating space systems, the base (satellite) can be considered as a 6-DOF device without positioning actuators. Finally, manipulators with passive joints and hyper-redundant robots with few actuators are important from the viewpoint of energy saving, lightweight design and compactness.

  7. "Riding the Rip": An Experiential and Integrated Human-Physical Geography Curriculum in Costa Rica

    ERIC Educational Resources Information Center

    Brannstrom, Christian; Houser, Chris

    2015-01-01

    Integrating research into short-term study abroad programs is challenging because of language, fieldwork logistics, and traditional learning models based on passive classroom experiences. Experiential learning often makes use of research as experience, but relatively few examples integrate human and physical geography. Here, we describe an…

  8. Active retrieval facilitates across-episode binding by modulating the content of memory

    PubMed Central

    Bridge, Donna J.; Voss, Joel L.

    2014-01-01

    The contents of memory can be updated when information from the current episode is bound with content retrieved from previous episodes. Little is known regarding factors that determine the memory content that is subject to this across-episode binding. We tested whether across-episode binding preferentially occurs for memory content that is currently “active” and identified relevant neural correlates. After studying objects at specific locations on scene backgrounds, subjects performed one of two retrieval tasks for the objects on different scene backgrounds. In an active condition, subjects recalled object locations, whereas subjects merely dragged objects to predetermined locations in a passive condition. Immediately following each object-location retrieval event, a novel face appeared on a blank screen. We hypothesized that the original episode content would be active in memory during face encoding in the active condition, but not in the passive condition (despite seeing the same content in both conditions). A ramification of the active condition would thus be preferential binding of original episode content to novel faces, with no such across-episode binding in the passive condition. Indeed, memory for faces was better when tested on the original background scenes in the active relative to passive condition, indicating that original episode content was bound with the active condition faces, whereas this occurred to a lesser extent for the passive condition faces. Likewise, early-onset negative ERP effects reflected binding of the face to the original episode content in the active but not the passive condition. In contrast, binding in the passive condition occurred only when faces were physically displayed on the original scenes during recognition testing, and a very similar early-onset negative ERP effect signaled binding in this condition. ERP correlates of binding were thus similar for across-episode and within-episode binding (and were distinct from other encoding and retrieval ERP signals in both cases), indicating that active retrieval modulated when binding occurred, not the nature of the binding process per se. These results suggest that active retrieval promotes binding of new information with contents of memory, whereas without active retrieval, these unrelated pieces of information might be bound only when they are physically paired. PMID:25173711

  9. Resonant Vibrations and Vibrational Heating of Physically Nonlinear Viscoelastic Shells and Their Damping Using Piezoelectric Sensor and Actuator

    NASA Astrophysics Data System (ADS)

    Kirichok, I. F.

    2017-09-01

    Forced axisymmetric resonant vibrations and vibrational heating of viscoelastic, physically nonlinear, closed, spherical, and infinitely long cylindrical shells and ring with piezoelectric sensor and actuator are considered. The effect of physical nonlinearity of passive material on the vibration amplitude and vibrational heating temperature is studied. The possibility of active damping of vibrations by piezoelectric sensors and actuators is demonstrated.

  10. Principles of passive and active cooling of mirror-based hybrid systems employing liquid metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anglart, Henryk

    This paper presents principles of passive and active cooling that are suitable to mirrorbased hybrid, nuclear fission/fusion systems. It is shown that liquid metal lead-bismuth cooling of the mirror machine with 25 m height and 1.5 GW thermal power is feasible both in the active mode during the normal operation and in the passive mode after the reactor shutdown. In the active mode the achievable required pumping power can well be below 50 MW, whereas the passive mode provides enough coolant flow to keep the clad temperature below the damage limits.

  11. Principles of passive and active cooling of mirror-based hybrid systems employing liquid metals

    NASA Astrophysics Data System (ADS)

    Anglart, Henryk

    2012-06-01

    This paper presents principles of passive and active cooling that are suitable to mirrorbased hybrid, nuclear fission/fusion systems. It is shown that liquid metal lead-bismuth cooling of the mirror machine with 25 m height and 1.5 GW thermal power is feasible both in the active mode during the normal operation and in the passive mode after the reactor shutdown. In the active mode the achievable required pumping power can well be below 50 MW, whereas the passive mode provides enough coolant flow to keep the clad temperature below the damage limits.

  12. The Ghost in the Machine: Fracking in the Earth's Complex Brittle Crust

    NASA Astrophysics Data System (ADS)

    Malin, P. E.

    2015-12-01

    This paper discusses in the impact of complex rock properties on practical applications like fracking and its associated seismic emissions. A variety of borehole measurements show that the complex physical properties of the upper crust cannot be characterized by averages on any scale. Instead they appear to follow 3 empirical rule: a power law distribution in physical scales, a lognormal distribution in populations, and a direct relation between changes in porosity and log(permeability). These rules can be directly related to the presence of fluid rich and seismically active fractures - from mineral grains to fault segments. (These are the "ghosts" referred to in the title.) In other physical systems, such behaviors arise on the boundaries of phase changes, and are studied as "critical state physics". In analogy to the 4 phases of water, crustal rocks progress upward from a un-fractured, ductile lower crust to nearly cohesionless surface alluvium. The crust in between is in an unstable transition. It is in this layer methods such as hydrofracking operate - be they in Oil and Gas, geothermal, or mining. As a result, nothing is predictable in these systems. Crustal models have conventionally been constructed assuming that in situ permeability and related properties are normally distributed. This approach is consistent with the use of short scale-length cores and logs to estimate properties. However, reservoir-scale flow data show that they are better fit to lognormal distributions. Such "long tail" distributions are observed for well productivity, ore vein grades, and induced seismic signals. Outcrop and well-log data show that many rock properties also show a power-law-type variation in scale lengths. In terms of Fourier power spectra, if peaks per km is k, then their power is proportional to 1/k. The source of this variation is related to pore-space connectivity, beginning with grain-fractures. We then show that a passive seismic method, Tomographic Fracture ImagingTM (TFI), can observe the distribution of this connectivity. Combined with TFI data, our fracture-connectivity model reveals the most significant crustal features and account for their range of passive and stimulated behaviors.

  13. Association between Patient History and Physical Examination and Osteoarthritis after Ankle Sprain.

    PubMed

    van Ochten, John M; de Vries, Anja D; van Putte, Nienke; Oei, Edwin H G; Bindels, Patrick J E; Bierma-Zeinstra, Sita M A; van Middelkoop, Marienke

    2017-09-01

    Structural abnormalities on MRI are frequent after an ankle sprain. To determine the association between patient history, physical examination and early osteoarthritis (OA) in patients after a previous ankle sprain, 98 patients with persistent complaints were selected from a cross-sectional study. Patient history taking and physical examination were applied and MRI was taken. Univariate and multivariable analyses were used to test possible associations. Signs of OA (cartilage loss, osteophytes and bone marrow edema) were seen in the talocrural joint (TCJ) in 40% and the talonavicular joint (TNJ) in 49%. Multivariable analysis showed a significant positive association between swelling (OR 3.58, 95%CI 1.13;11.4), a difference in ROM of passive plantar flexion (OR 1.09, 95%CI 1.01;1.18) and bone edema in the TCJ. A difference in ROM of passive plantar flexion (OR 1.07, 95%CI 1.00;1.15) and pain at the end range of dorsiflexion/plantar flexion (OR 5.23, 95%CI 1.88;14.58) were associated with osteophytes in the TNJ. Pain at the end of dorsiflexion/plantar flexion, a difference in ROM of passive plantar flexion and swelling seem to be associated with features of OA (bone marrow edema, osteophytes) in the TCJ and TNJ. Our findings may guide physicians to predict structural joint abnormalities as signs of osteoarthritis. 1b. © Georg Thieme Verlag KG Stuttgart · New York.

  14. LS Channel Estimation and Signal Separation for UHF RFID Tag Collision Recovery on the Physical Layer.

    PubMed

    Duan, Hanjun; Wu, Haifeng; Zeng, Yu; Chen, Yuebin

    2016-03-26

    In a passive ultra-high frequency (UHF) radio-frequency identification (RFID) system, tag collision is generally resolved on a medium access control (MAC) layer. However, some of collided tag signals could be recovered on a physical (PHY) layer and, thus, enhance the identification efficiency of the RFID system. For the recovery on the PHY layer, channel estimation is a critical issue. Good channel estimation will help to recover the collided signals. Existing channel estimates work well for two collided tags. When the number of collided tags is beyond two, however, the existing estimates have more estimation errors. In this paper, we propose a novel channel estimate for the UHF RFID system. It adopts an orthogonal matrix based on the information of preambles which is known for a reader and applies a minimum-mean-square-error (MMSE) criterion to estimate channels. From the estimated channel, we could accurately separate the collided signals and recover them. By means of numerical results, we show that the proposed estimate has lower estimation errors and higher separation efficiency than the existing estimates.

  15. Trapping behavior of Shockley-Read-Hall recombination centers in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Gogolin, R.; Harder, N. P.

    2013-08-01

    We investigate the correlation between increased apparent carrier lifetime in photoconductance-based lifetime measurements and actually reduced recombination lifetime as measured by photoluminescence measurements. These findings are further reconfirmed by I-V curve measurements of solar cells. In particular, we show experimental results for lifetime samples and solar cells with and without hydrogen passivation. In the samples and solar cells without hydrogen passivation, we find both a stronger trapping behavior and a lower recombination lifetime. Our model provides a consistent description of the observation of both, the increased apparent lifetime from carrier trapping and the decreasing recombination lifetime. In our model, both are caused by a single physical mechanism; i.e., by Recombination-Active-Trap (RAT) states. Upon fitting the experimental lifetime data, we find that the RAT-defect parameters for the hydrogen-passivated and non-hydrogen-passivated lifetime samples and solar cells are identical except for the defect concentration: hydrogen-passivation reduced the defect density by 50% in both, the lifetime samples and solar cells. We conclude that trapping should be considered as an indication for hidden, yet potentially strongly increased, low injection recombination activity.

  16. Passive magnetic bearing element with minimal power losses

    DOEpatents

    Post, R.F.

    1998-12-08

    Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in US Patent No. 5,495,221 entitled ``Dynamically Stable Magnetic Suspension/Bearing System.`` The improvements relate to increasing the magnitude of the force derivative, while at the same time reducing the power dissipated during the normal operation of the bearing system, to provide a passive bearing system that has virtually no losses under equilibrium conditions, that is, when the supported system is not subject to any accelerations except those of gravity. 8 figs.

  17. Passive magnetic bearing element with minimal power losses

    DOEpatents

    Post, Richard F.

    1998-01-01

    Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in U.S. Patent No. 5,495,221 entitled "Dynamically Stable Magnetic Suspension/Bearing System." The improvements relate to increasing the magnitude of the force derivative, while at the same time reducing the power dissipated during the normal operation of the bearing system, to provide a passive bearing system that has virtually no losses under equilibrium conditions, that is, when the supported system is not subject to any accelerations except those of gravity.

  18. Cargo Container Imaging with Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Forest, Tony

    2006-10-01

    The gas electron multiplier (GEM) , developed at CERN by Fabio Sauli, represents the latest innovation in micropattern gaseous detectors and has been utilized as a preamplification stage in applications ranging from fundamental physics experiments to medical imaging. Although cargo container inspection systems are currently in place using gamma-rays or X-rays, they are predominantly designed with a resolution to detect contraband. Current imaging systems also suffer from false alarms due to naturally radioactive cargo when radiation portal monitors are used for passive detection of nuclear materials. Detection of small shielded radioactive elements is even more problematic. Idaho State University has been developing a system to image cargo containers in order to detect small shielded radioactive cargo. The possible application of an imaging system with gas electron multiplication will be shown along with preliminary images using gaseous detectors instead of the scintillators currently in use.

  19. The high speed interconnect system architecture and operation

    NASA Astrophysics Data System (ADS)

    Anderson, Steven C.

    The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.

  20. Copepod Behavior Response in an Internal Wave Apparatus

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Jung, S.; Haas, K. A.

    2017-11-01

    This study is motivated to understand the bio-physical forcing in zooplankton transport in and near internal waves, where high levels of zooplankton densities have been observed in situ. A laboratory-scale internal wave apparatus was designed to create a standing internal wave for various physical arrangements that mimic conditions observed in the field. A theoretical analysis of a standing internal wave inside a two-layer stratification system including non-linear wave effects was conducted to derive the expressions for the independent variables controlling the wave motion. Focusing on a case with a density jump of 1.0 σt, a standing internal wave was generated with a clean interface and minimal mixing across the pycnocline. Spatial and frequency domain measurements of the internal wave were evaluated in the context of the theoretical analysis. Behavioral assays with a mixed population of three marine copepods were conducted in control (stagnant homogeneous fluid), stagnant density jump interface, and internal wave flow configurations. In the internal wave treatment, the copepods showed an acrobatic, orbital-like motion in and around the internal wave region (bounded by the crests and the troughs of the waves). Trajectories of passive, neutrally-buoyant particles in the internal wave flow reveal that they generally oscillate back-and-forth along fixed paths. Thus, we conclude that the looping, orbital trajectories of copepods in the region near the internal wave interface are due to animal behavior rather than passive transport.

  1. Operation Sun Beam, Shots Little Feller I, II and Johnie Boy. Project officers report. Project 6. 6. Electromagnetic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, W.D.; Livingston, P.M.; Rutter, R.L.

    Of considerable interest from both a physical and practical viewpoint is the coupling of electromagnetic energy from a nuclear explosion into various electrical systems in the vicinity of the burst. A series of electromagnetic measurements were made on Shots Little Feller I, Little Feller II, and Johnie Boy. It is clear from the records that radiation shielding must be given closer consideration in future tests. Due to equipment failure and radiation inactivation, only the Johnie Boy dynamic current measurement and the passive peak current indicators on all three events are interpretable.

  2. On a Three-Channel Cosmic Ray Detector based on Aluminum Blocks

    NASA Astrophysics Data System (ADS)

    Arceo, L.; Félix, J.

    2017-10-01

    There are many general purpose cosmic ray detectors based on plastic scintillators and electronic boards from the market. This is a new cosmic ray detector designed on three 2.54 cm × 5.08 cm × 20.32 cm Aluminum blocks in stack arrangement, and three Hamamatsu S12572-100P photodiodes. The photodiode board, the passive electronic board, and the discriminator board are own designed. The electronic signals are stored with a CompactRIO -cRIO- by National Instruments. It is presented the design, the construction, the data acquisition system algorithm, and the preliminary physical results.

  3. A global survey of adverse event following immunization surveillance systems for pregnant women and their infants.

    PubMed

    Cassidy, Christine; MacDonald, Noni E; Steenbeek, Audrey; Ortiz, Justin R; Zuber, Patrick L F; Top, Karina A

    2016-08-02

    Strengthening antenatal care as a platform for maternal immunization is a priority of the World Health Organization (WHO). Systematic surveillance for adverse events following immunization (AEFI) in pregnancy is needed to identify vaccine safety events. We sought to identify active and passive AEFI surveillance systems for pregnant women and infants. Representatives from all National Pharmacovigilance Centers and a convenience sample of vaccine safety experts were invited to complete a 14-item online survey in English, French or Spanish. The survey captured maternal immunization policies, and active and passive AEFI surveillance systems for pregnant women and infants in respondents' countries. The analysis was descriptive. We received responses from 51/185 (28%) invited persons from 47/148 (32%) countries representing all WHO regions, and low, middle and high-income countries. Thirty countries had national immunization policies targeting pregnant women. Eleven countries had active surveillance systems to detect serious AEFI in pregnant women and/or their infants, including six low and middle-income countries (LMIC). Thirty-nine countries had passive surveillance systems, including 23 LMIC. These active and passive surveillance programs cover approximately 8% and 56% of the worldwide annual birth cohort, respectively. Data from one active and four passive systems have been published. We identified 50 active and passive AEFI surveillance systems for pregnant women and infants, but few have published their findings. AEFI surveillance appears to be feasible in low and high resource settings. Further expansion of AEFI surveillance for pregnant women and sharing of vaccine safety information will provide additional evidence in support of maternal immunization policies.

  4. Prospective randomized study of arthroscopic rotator cuff repair using an early versus delayed postoperative physical therapy protocol.

    PubMed

    Cuff, Derek J; Pupello, Derek R

    2012-11-01

    This study evaluated patient outcomes and rotator cuff healing after arthroscopic rotator cuff repair using a postoperative physical therapy protocol with early passive motion compared with a delayed protocol that limited early passive motion. The study enrolled 68 patients (average age, 63.2 years) who met inclusion criteria. All patients had a full-thickness crescent-shaped tear of the supraspinatus that was repaired using a transosseous equivalent suture-bridge technique along with subacromial decompression. In the early group, 33 patients were randomized to passive elevation and rotation that began at postoperative day 2. In the delayed group, 35 patients began the same protocol at 6 weeks. Patients were monitored clinically for a minimum of 12 months, and rotator cuff healing was assessed using ultrasound imaging. Both groups had similar improvements in preoperative to postoperative American Shoulder and Elbow Surgeons scores (early group: 43.9 to 91.9, P < .0001; delayed group: 41.0 to 92.8, P < .0001) and Simple Shoulder Test scores (early group: 5.5 to 11.1, P < .0001; delayed group: 5.1 to 11.1, P < .0001). There were no significant differences in patient satisfaction, rotator cuff healing, or range of motion between the early and delayed groups. Patients in the early group and delayed group both demonstrated very similar outcomes and range of motion at 1 year. There was a slightly higher rotator cuff healing rate in the delayed passive range of motion group compared with the early passive range of motion group (91% vs 85%). Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  5. Passive range estimation using dual baseline triangulation

    NASA Astrophysics Data System (ADS)

    Pieper, Ronald J.; Cooper, Alfred W.; Pelegris, G.

    1996-03-01

    Modern combat systems based on active radar sensing suffer disadvantages against low-flying targets in cluttered backgrounds. Use of passive infrared sensors with these systems, either in cooperation or as an alternative, shows potential for improving target detection and declaration range for targets crossing the horizon. Realization of this potential requires fusion of target position data from dissimilar sensors, or passive sensor measurement of target range. The availability of passive sensors that can supply both range and bearing data on such targets would significantly extend the robustness of an integrated ship self-defense system. This paper considers a new method of range determination with passive sensors based on the principle of triangulation, extending the principle to two orthogonal baselines. The performance of single or double baseline triangulation depends on sensor bearing precision and direction to target. An expression for maximum triangulation range at a required accuracy is derived as a function of polar angle relative to the center of the dual-baseline system. Limitations in the dual- baseline model due to the geometrically assessed horizon are also considered.

  6. Mars transit vehicle thermal protection system: Issues, options, and trades

    NASA Technical Reports Server (NTRS)

    Brown, Norman

    1986-01-01

    A Mars mission is characterized by different mission phases. The thermal control of cryogenic propellant in a propulsive vehicle must withstand the different mission environments. Long term cryogenic storage may be achieved by passive or active systems. Passive cryo boiloff management features will include multilayer insulation, vapor cooled shield, and low conductance structural supports and penetrations. Active boiloff management incorporates the use of a refrigeration system. Key system trade areas include active verses passive system boiloff management (with respect to safety, reliability, and cost) and propellant tank insulation optimizations. Technology requirements include refrigeration technology advancements, insulation performance during long exposure, and cryogenic fluid transfer system for mission vehicle propellant tanking during vehicle buildip in LEO.

  7. Development of a portable passive-acoustic bedload monitoring system

    USDA-ARS?s Scientific Manuscript database

    A hydrophone-based passive acoustic bedload-monitoring system was designed, tested and deployed by researchers at the University of Mississippi and the National Sedimentation Laboratory in Oxford, MS. The hydrophone system was designed to be easily deployed and operated by non-experts. In addition, ...

  8. Validity of the Child Facial Coding System for the Assessment of Acute Pain in Children With Cerebral Palsy.

    PubMed

    Hadden, Kellie L; LeFort, Sandra; O'Brien, Michelle; Coyte, Peter C; Guerriere, Denise N

    2016-04-01

    The purpose of the current study was to examine the concurrent and discriminant validity of the Child Facial Coding System for children with cerebral palsy. Eighty-five children (mean = 8.35 years, SD = 4.72 years) were videotaped during a passive joint stretch with their physiotherapist and during 3 time segments: baseline, passive joint stretch, and recovery. Children's pain responses were rated from videotape using the Numerical Rating Scale and Child Facial Coding System. Results indicated that Child Facial Coding System scores during the passive joint stretch significantly correlated with Numerical Rating Scale scores (r = .72, P < .01). Child Facial Coding System scores were also significantly higher during the passive joint stretch than the baseline and recovery segments (P < .001). Facial activity was not significantly correlated with the developmental measures. These findings suggest that the Child Facial Coding System is a valid method of identifying pain in children with cerebral palsy. © The Author(s) 2015.

  9. Development of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony

    2011-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. The passive thermal management system relies on heat conduction within the cooling plate to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack rather than using a pumped loop cooling system to convectively remove the heat. Using the passive approach eliminates the need for a coolant pump and other cooling loop components which reduces fuel cell system mass and improves overall system reliability. Previous analysis had identified that low density, ultra-high thermal conductivity materials would be needed for the cooling plates in order to achieve the desired reductions in mass and the highly uniform thermal heat sink for each cell within a fuel cell stack. A pyrolytic graphite material was identified and fabricated into a thin plate using different methods. Also a development project with Thermacore, Inc. resulted in a planar heat pipe. Thermal conductivity tests were done using these materials. The results indicated that lightweight passive fuel cell cooling is feasible.

  10. Improving Global Analysis and Short-Range Forecast Using Rainfall and Moisture Observations Derived from TRMM and SSM/I Passive Microwave Instruments

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.; Kummerow, Christian D.; Simpson, Joanne

    2000-01-01

    The Global Precipitation Mission, a satellite project under consideration as a follow-on to the Tropical Rainfall Measuring Mission (TRMM) by the National Aeronautics and Space Agency (NASA) in the United States, the National Space Development Agency (NASDA) in Japan, and other international partners, comprises an improved TRMM-like satellite and a constellation of 8 satellites carrying passive microwave radiometers to provide global rainfall measurements at 3-hour intervals. The success of this concept relies on the merits of rainfall estimates derived from passive microwave radiometers. This article offers a proof-of-concept demonstration of the benefits of using, rainfall and total precipitable water (TPW) information derived from such instruments in global data assimilation with observations from the TRMM Microwave Imager (TMI) and 2 Special Sensor Microwave/Imager (SSM/I) instruments. Global analyses that optimally combine observations from diverse sources with physical models of atmospheric and land processes can provide a comprehensive description of the climate systems. Currently, such data analyses contain significant errors in primary hydrological fields such as precipitation and evaporation, especially in the tropics. We show that assimilating the 6-h averaged TMI and SSM/I surface rainrate and TPW retrievals improves not only the hydrological cycle but also key climate parameters such as clouds, radiation, and the upper tropospheric moisture in the analysis produced by the Goddard Earth Observing System (GEOS) Data Assimilation System, as verified against radiation measurements by the Clouds and the Earth's Radiant Energy System (CERES) instrument and brightness temperature observations by the TIROS Operational Vertical Sounder (TOVS) instruments. Typically, rainfall assimilation improves clouds and radiation in areas of active convection, as well as the latent heating and large-scale motions in the tropics, while TPW assimilation leads to reduced moisture biases and improved radiative fluxes in clear-sky regions. Ensemble forecasts initialized with analyses that incorporate TMI and SSM/I rainfall and TPW data also yield better short-range predictions of geopotential heights, winds, and precipitation in the tropics. This study offers a compelling illustration of the potential of using rainfall and TPW information derived from passive microwave instruments to significantly improve the quality of 4-dimensional global datasets for climate analysis and weather forecasting applications.

  11. Passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  12. Active-passive vibration absorber of beam-cart-seesaw system with piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Lin, J.; Huang, C. J.; Chang, Julian; Wang, S.-W.

    2010-09-01

    In contrast with fully controllable systems, a super articulated mechanical system (SAMS) is a controlled underactuated mechanical system in which the dimensions of the configuration space exceed the dimensions of the control input space. The objectives of the research are to develop a novel SAMS model which is called beam-cart-seesaw system, and renovate a novel approach for achieving a high performance active-passive piezoelectric vibration absorber for such system. The system consists of two mobile carts, which are coupled via rack and pinion mechanics to two parallel tracks mounted on pneumatic rodless cylinders. One cart carries an elastic beam, and the other cart acts as a counterbalance. One adjustable counterweight mass is also installed underneath the seesaw to serve as a passive damping mechanism to absorb impact and shock energy. The motion and control of a Bernoulli-Euler beam subjected to the modified cart/seesaw system are analyzed first. Moreover, gray relational grade is utilized to investigate the sensitivity of tuning the active proportional-integral-derivative (PID) controller to achieve desired vibration suppression performance. Consequently, it is shown that the active-passive vibration absorber can not only provide passive damping, but can also enhance the active action authority. The proposed software/hardware platform can also be profitable for the standardization of laboratory equipment, as well as for the development of entertainment tools.

  13. Identifying physical activity type in manual wheelchair users with spinal cord injury by means of accelerometers.

    PubMed

    García-Massó, X; Serra-Añó, P; Gonzalez, L M; Ye-Lin, Y; Prats-Boluda, G; Garcia-Casado, J

    2015-10-01

    This was a cross-sectional study. The main objective of this study was to develop and test classification algorithms based on machine learning using accelerometers to identify the activity type performed by manual wheelchair users with spinal cord injury (SCI). The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia. A total of 20 volunteers were asked to perform 10 physical activities, lying down, body transfers, moving items, mopping, working on a computer, watching TV, arm-ergometer exercises, passive propulsion, slow propulsion and fast propulsion, while fitted with four accelerometers placed on both wrists, chest and waist. The activities were grouped into five categories: sedentary, locomotion, housework, body transfers and moderate physical activity. Different machine learning algorithms were used to develop individual and group activity classifiers from the acceleration data for different combinations of number and position of the accelerometers. We found that although the accuracy of the classifiers for individual activities was moderate (55-72%), with higher values for a greater number of accelerometers, grouped activities were correctly classified in a high percentage of cases (83.2-93.6%). With only two accelerometers and the quadratic discriminant analysis algorithm we achieved a reasonably accurate group activity recognition system (>90%). Such a system with the minimum of intervention would be a valuable tool for studying physical activity in individuals with SCI.

  14. Global Passivity in Microscopic Thermodynamics

    NASA Astrophysics Data System (ADS)

    Uzdin, Raam; Rahav, Saar

    2018-04-01

    The main thread that links classical thermodynamics and the thermodynamics of small quantum systems is the celebrated Clausius inequality form of the second law. However, its application to small quantum systems suffers from two cardinal problems. (i) The Clausius inequality does not hold when the system and environment are initially correlated—a commonly encountered scenario in microscopic setups. (ii) In some other cases, the Clausius inequality does not provide any useful information (e.g., in dephasing scenarios). We address these deficiencies by developing the notion of global passivity and employing it as a tool for deriving thermodynamic inequalities on observables. For initially uncorrelated thermal environments the global passivity framework recovers the Clausius inequality. More generally, global passivity provides an extension of the Clausius inequality that holds even in the presences of strong initial system-environment correlations. Crucially, the present framework provides additional thermodynamic bounds on expectation values. To illustrate the role of the additional bounds, we use them to detect unaccounted heat leaks and weak feedback operations ("Maxwell demons") that the Clausius inequality cannot detect. In addition, it is shown that global passivity can put practical upper and lower bounds on the buildup of system-environment correlations for dephasing interactions. Our findings are highly relevant for experiments in various systems such as ion traps, superconducting circuits, atoms in optical cavities, and more.

  15. SPES-2, AP600 intergral system test S01007 2 inch CL to core make-up tank pressure balance line break

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacchiani, M.; Medich, C.; Rigamonti, M.

    1995-09-01

    The SPES-2 is a full height, full pressure experimental test facility reproducing the Westinghouse AP600 reactor with a scaling factor of 1/395. The experimental plant, designed and operated by SIET in Piacenza, consists of a full simulation of the AP600 primary core cooling system including all the passive and active safety systems. In 1992, Westinghouse, in cooperation with ENEL (Ente Nazionale per l` Energia Elettrica), ENEA (Enter per le numove Technlogie, l` Energia e l` Ambient), Siet (Societa Informazioni Esperienze Termoidraulich) and ANSALDO developed an experimental program to test the integrated behaviour of the AP600 passive safety systems. The SPES-2more » test matrix, concluded in November 1994, has examined the AP600 passive safety system response for a range of small break LOCAs at different locations on the primary system and on the passive system lines; single steam generator tube ruptures with passive and active safety systems and a main steam line break transient to demonstrate the boration capability of passive safety systems for rapid cooldown. Each of the tests has provided detailed experimental results for verification of the capability of the analysis methods to predict the integrated passive safety system behaviour. Cold and hot shakedown tests have been performed on the facility to check the characteristics of the plant before starting the experimental campaign. The paper first presents a description of the SPES-2 test facility then the main results of S01007 test {open_quotes}2{close_quotes} Cold Leg (CL) to Core Make-up Tank (CMT) pressure balance line break{close_quotes} are reported and compared with predictions performed using RELAP5/mod3/80 obtained by ANSALDO through agreement with U.S.N.R.C. (U.S. Nuclear Regulatory Commission). The SPES-2 nodalization and all the calculations here presented were performed by ANSALDO and sponsored by ENEL as a part of pre-test predictions for SPES-2.« less

  16. Incorporating Active Learning with Videos: A Case Study from Physics

    ERIC Educational Resources Information Center

    Lee, Kester J.; Sharma, Manjula D.

    2008-01-01

    Watching a video often results in passive learning and does not actively engage students. In this study, a class of 20 HSC Physics students were introduced to a teaching model that incorporated active learning principles with the watching of a video that explored the Meissner Effect and superconductors. Students would watch short sections of the…

  17. Analysis of maxillary arch force/couple systems for a simulated high canine malocclusion: Part 1. Passive ligation.

    PubMed

    Fok, Jonathan; Toogood, Roger W; Badawi, Hisham; Carey, Jason P; Major, Paul W

    2011-11-01

    To better understand the mechanics of bracket/archwire interaction through analysis of force and couple distribution along the maxillary arch. An orthodontic simulator was utilized to study high canine malocclusion. Force/couple distributions, referenced to the center of resistance (CR) of each tooth, produced by passive ligation brackets and round wire were measured. Tests were repeated for 12 bracket sets with 12 wires per set. Propagation of the force/couple systems around the arch was minimal. Binding was observed only on the teeth adjacent to the displaced canine. For most of the teeth, reduced resistance to sliding of the passive ligation bracket yielded minimal tangential and normal forces at the bracket and contributed to lower moments at CR. Some potential mechanical advantages of passive ligation systems are suggested for the case studied. In particular, limited propagation around the arch reduces the occurrence of unwanted force/couple systems.

  18. Passivating Li-Ion Batteries in Orbit at the End of the Spacecraft's Life

    NASA Astrophysics Data System (ADS)

    Alcindor, Peter; Kimber, Rick; Remy, Stephane; Prevot, Didier

    2014-08-01

    International focus on the "Clean Space Initiative", as discussed at the ESA workshop "EoL Electrical Passivation" held on October 11th 2013 identified new legislation (REACh, RoHS and LOS). This paper concerns itself with the prevention of Li-ion battery explosion post end of mission as the spacecraft systems remain active well beyond the initial design expectations and beyond classical reliability design predictions. The main risks to Li-ion energy storage battery systems is the prevention of over charging and over discharging, both these scenarios result in the build up of internal pressure ultimately resulting in venting of high pressure gas. To warrant against such risk legislation requires that batteries are "Passivated" within the predictable life of the spacecraft systems. This paper proposes a simple method for the passivation of Li-ion batteries that relies only on the normal systems that form part of most present day spacecraft heritage.

  19. Danish Passives and Subject Positions as a Mood System--A Content Analysis; and Paradigmatic Structure, Word Order and Grammaticalization. ROLIG-Papir 54.

    ERIC Educational Resources Information Center

    Heltoft, Lars; Jakobsen, Lisbeth Falster

    Two papers on linguistic theory are presented. The first examines the relationship between two subsystems of Danish grammar: (1) the morphology and meaning of the two passives (a morphological passive and a periphrastic passive); and (2) the word order rules and meanings attached to indefinite subjects, irrespective of voice. It is claimed that…

  20. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.

    PubMed

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix

    2015-09-25

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.

  1. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Tao; Hong, Jisang, E-mail: hongj@pknu.ac.kr

    2015-08-07

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same asmore » that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.« less

  2. Hydrodynamic Interactions in Active and Passive Matter

    NASA Astrophysics Data System (ADS)

    Krafnick, Ryan C.

    Active matter is present at all biological length scales, from molecular apparatuses interior to cells, to swimming microscopic organisms, to birds, fish, and people. Its properties are varied and its applications diverse, but our understanding of the fundamental driving forces of systems with these constituents remains incomplete. This thesis examines active matter suspensions, exploring the role of hydrodynamic interactions on the unique and emergent properties therein. Both qualitative and quantitative impacts are considered, and care is taken in determining the physical origin of the results in question. It is found that fluid dynamical interactions are fundamentally, qualitatively important, and much of the properties of a system can be explained with an effective energy density defined via the fluid fields arising from the embedded self-propelling entities themselves.

  3. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System.

    PubMed

    Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan

    2017-02-20

    In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequencydomain and achieves computational complexity reduction.

  4. Airborne infrared low level wind shear predictor

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.; Kurkowski, R. L.

    1984-01-01

    The operating principles and test performance of an airborne IR (13-16 micron) temperature-sensing detection and warning system for low-level wind shear (LLWS) are presented. The physics of LLWS phenomena and of the IR radiometer are introduced. The cold density-current outflow or gust front related to LLWS is observed in the IR spectrum of CO2 by a radiometer with + or - 0.5-C accuracy at 0.5-Hz sampling rate; LLWS alerts are given on the basis of specific criteria. Test results from the JAWS experiments conducted at Denver in July 1982, are presented graphically and discussed. The feasibility of the passive IR system is demonstrated, with an average warning time of 51 sec, corresponding to a distance from touchdown of about 2 miles.

  5. Normobaric hypoxic conditioning to maximize weight loss and ameliorate cardio-metabolic health in obese populations: a systematic review.

    PubMed

    Hobbins, L; Hunter, S; Gaoua, N; Girard, O

    2017-09-01

    Normobaric hypoxic conditioning (HC) is defined as exposure to systemic and/or local hypoxia at rest (passive) or combined with exercise training (active). HC has been previously used by healthy and athletic populations to enhance their physical capacity and improve performance in the lead up to competition. Recently, HC has also been applied acutely (single exposure) and chronically (repeated exposure over several weeks) to overweight and obese populations with the intention of managing and potentially increasing cardio-metabolic health and weight loss. At present, it is unclear what the cardio-metabolic health and weight loss responses of obese populations are in response to passive and active HC. Exploration of potential benefits of exposure to both passive and active HC may provide pivotal findings for improving health and well being in these individuals. A systematic literature search for articles published between 2000 and 2017 was carried out. Studies investigating the effects of normobaric HC as a novel therapeutic approach to elicit improvements in the cardio-metabolic health and weight loss of obese populations were included. Studies investigated passive ( n = 7; 5 animals, 2 humans), active ( n = 4; all humans) and a combination of passive and active ( n = 4; 3 animals, 1 human) HC to an inspired oxygen fraction ([Formula: see text]) between 4.8 and 15.0%, ranging between a single session and daily sessions per week, lasting from 5 days up to 8 mo. Passive HC led to reduced insulin concentrations (-37 to -22%) in obese animals and increased energy expenditure (+12 to +16%) in obese humans, whereas active HC lead to reductions in body weight (-4 to -2%) in obese animals and humans, and blood pressure (-8 to -3%) in obese humans compared with a matched workload in normoxic conditions. Inconclusive findings, however, exist in determining the impact of acute and chronic HC on markers such as triglycerides, cholesterol levels, and fitness capacity. Importantly, most of the studies that included animal models involved exposure to severe levels of hypoxia ([Formula: see text] = 5.0%; simulated altitude >10,000 m) that are not suitable for human populations. Overall, normobaric HC demonstrated observable positive findings in relation to insulin and energy expenditure (passive), and body weight and blood pressure (active), which may improve the cardio-metabolic health and body weight management of obese populations. However, further evidence on responses of circulating biomarkers to both passive and active HC in humans is warranted. Copyright © 2017 the American Physiological Society.

  6. Comparison of adult physical activity levels in three Swiss alpine communities with varying access to motorized transportation.

    PubMed

    Dombois, Oliver Thommen; Braun-Fahrländer, Charlotte; Martin-Diener, Eva

    2007-09-01

    To compare physical activity levels of residents of three Swiss alpine communities with varying access to motorized transport and to investigate whether socio-demographic factors, the settlement structure or means of transport affect these levels. Between January and February 2004 a computer assisted telephone interview was conducted with 901 randomly selected adults aged 18 years or older living in three Swiss alpine communities. In particular, information on moderate and vigorous intensity physical activities and on transport behaviour was collected. Respondents were categorized as 'sufficiently active' or 'insufficiently active' according to self-reported physical activity. People living in community 1 without access to motorized traffic were significantly more likely to be sufficiently active (Sex- and age-adjusted prevalences of sufficient total physical activity, 43.9% 95% CI: 38.3%-49.8%) compared to individuals living in the other two communities (community 2: 35.9%, 95% CI: 30.6%-41.6%, community 3: 32.7%, 95% CI: 27.5%-38.3%). The differences were due to higher levels of moderate physical activities. Vigorous physical activity levels did not differ between the communities. Community differences were explained by passive means of transport to work and for leisure time activities. Although the environment encountered in the three alpine communities is generally conducive to physical activity the majority of the participants did not achieve recommended activity levels. Passive mode of transport to work and during leisure time was strongly associated with insufficient total physical activity. Walking and cycling for transportation is thus a promising approach to promote health enhancing physical activity.

  7. Passive vs. active safety belt systems in Volkswagen rabbits : a comparison of owner use habits and attitudes

    DOT National Transportation Integrated Search

    1976-08-01

    The overall objective of this research is to measure usage of, and attitudes toward, the passive restraint system, compared with the active restraint system on 1975 model year Volkswagen Rabbits. Methods used to carry out the research include: Interv...

  8. Which Socio-Ecological Factors Associate with a Switch to or Maintenance of Active and Passive Transport during the Transition from Primary to Secondary School?

    PubMed Central

    Vanwolleghem, Griet; Van Dyck, Delfien; De Meester, Femke; De Bourdeaudhuij, Ilse; Cardon, Greet; Gheysen, Freja

    2016-01-01

    Objectives The aim was to investigate which individual, psychosocial and physical neighborhood environmental factors associate with children’s switch to or maintenance of active/passive transport to school and to leisure time destinations during the transition from primary to secondary school. Methods Children (n = 313) filled out a questionnaire in the last year of primary school and 2 years later to assess socio-demographic characteristics and self-reported transport. One of their parents completed a questionnaire to assess parental perceptions of psychosocial and physical neighborhood environmental factors. Results The increase of the home-school distance was significantly associated with children’s switch to or maintenance of passive transport to school compared to a switch to (OR = 0.81; p = 0.03) and maintenance (OR = 0.87; p = 0.03) of active transport to school. Low SES was associated with children’s switch to active transport to school compared to maintenance of active transport (OR = 3.67; p = 0.07). For transport to leisure time destinations, other factors such as parental perceived neighborhood safety from traffic and crime (OR = 2.78; p = 0.004), a positive social norm (OR = 1.49; p = 0.08), positive attitudes (OR = 1.39; p = 0.08) (i.e. more benefits, less barriers) towards their children’s physical activity and poor walking/cycling facilities in the neighborhood (OR = 0.70; p = 0.06) were associated with children’s maintenance of active transport to leisure time destinations compared to a switch to or maintenance of passive transport. Conclusions This longitudinal study can give directions for interventions promoting children’s active transport during the transition to secondary school. It is necessary to promote different possibilities at primary school for children to use active transport when going to secondary school. Walking/cycling a part of the home-school trip can be a possible solution for children who will be living at non-feasible distances from secondary school. Providing safe neighborhoods, combined with programs for parents stimulating a positive social norm and positive attitudes towards physical activity during primary school, can be effective. PMID:27232718

  9. Altered left ventricular performance in aging physically active mice with an ankle sprain injury.

    PubMed

    Turner, Michael J; Guderian, Sophie; Wikstrom, Erik A; Huot, Joshua R; Peck, Bailey D; Arthur, Susan T; Marino, Joseph S; Hubbard-Turner, Tricia

    2016-02-01

    We assessed the impact of differing physical activity levels throughout the lifespan, using a musculoskeletal injury model, on the age-related changes in left ventricular (LV) parameters in active mice. Forty male mice (CBA/J) were randomly placed into one of three running wheel groups (transected CFL group, transected ATFL/CFL group, SHAM group) or a SHAM Sedentary group (SHAMSED). Before surgery and every 6 weeks after surgery, LV parameters were measured under 2.5 % isoflurane inhalation. Group effects for daily distance run was significantly greater for the SHAM and lesser for the ATLF/CFL mice (p = 0.013) with distance run decreasing with age for all mice (p < 0.0001). Beginning at 6 months of age, interaction (group × age) was noted with LV posterior wall thickness-to-radius ratios (h/r) where h/r increased with age in the ATFL/CFL and SHAMSED mice while the SHAM and CFL mice exhibited decreased h/r with age (p = 0.0002). Passive filling velocity (E wave) was significantly greater in the SHAM mice and lowest for the ATFL/CFL and SHAMSED mice (p < 0.0001) beginning at 9 months of age. Active filling velocity (A wave) was not different between groups (p = 0.10). Passive-to-active filling velocity ratio (E/A ratio) was different between groups (p < 0.0001), with higher ratios for the SHAM mice and lower ratios for the ATFL/CFL and SHAMSED mice in response to physical activity beginning at 9 months of age. Passive-to-active filling velocity ratio decreased with age (p < 0.0001). Regular physical activity throughout the lifespan improved LV structure, passive filling velocity, and E/A ratio by 6 to 9 months of age and attenuated any negative alterations throughout the second half of life. The diastolic filling differences were found to be significantly related to the amount of activity performed by 9 months and at the end of the lifespan.

  10. Which Socio-Ecological Factors Associate with a Switch to or Maintenance of Active and Passive Transport during the Transition from Primary to Secondary School?

    PubMed

    Vanwolleghem, Griet; Van Dyck, Delfien; De Meester, Femke; De Bourdeaudhuij, Ilse; Cardon, Greet; Gheysen, Freja

    2016-01-01

    The aim was to investigate which individual, psychosocial and physical neighborhood environmental factors associate with children's switch to or maintenance of active/passive transport to school and to leisure time destinations during the transition from primary to secondary school. Children (n = 313) filled out a questionnaire in the last year of primary school and 2 years later to assess socio-demographic characteristics and self-reported transport. One of their parents completed a questionnaire to assess parental perceptions of psychosocial and physical neighborhood environmental factors. The increase of the home-school distance was significantly associated with children's switch to or maintenance of passive transport to school compared to a switch to (OR = 0.81; p = 0.03) and maintenance (OR = 0.87; p = 0.03) of active transport to school. Low SES was associated with children's switch to active transport to school compared to maintenance of active transport (OR = 3.67; p = 0.07). For transport to leisure time destinations, other factors such as parental perceived neighborhood safety from traffic and crime (OR = 2.78; p = 0.004), a positive social norm (OR = 1.49; p = 0.08), positive attitudes (OR = 1.39; p = 0.08) (i.e. more benefits, less barriers) towards their children's physical activity and poor walking/cycling facilities in the neighborhood (OR = 0.70; p = 0.06) were associated with children's maintenance of active transport to leisure time destinations compared to a switch to or maintenance of passive transport. This longitudinal study can give directions for interventions promoting children's active transport during the transition to secondary school. It is necessary to promote different possibilities at primary school for children to use active transport when going to secondary school. Walking/cycling a part of the home-school trip can be a possible solution for children who will be living at non-feasible distances from secondary school. Providing safe neighborhoods, combined with programs for parents stimulating a positive social norm and positive attitudes towards physical activity during primary school, can be effective.

  11. Analysis of virtual passive controllers for flexible space structures

    NASA Technical Reports Server (NTRS)

    Williams, Trevor W.

    1992-01-01

    The dynamics of flexible spacecraft are not usually well known before launch. This makes it important to develop controllers for such systems that can never be destabilized by perturbations in the structural model. Virtual passive controllers, or active vibration absorbers, possess this guaranteed stability property; they mimic a fictitious flexible structure attached to the true physical one. This report analyzes the properties of such controllers, and shows that disturbance absorption behavior can be naturally described in terms of a set of virtual zeros that they introduce into the closed-loop dynamics of the system. Based on this analysis, techniques are then derived for selecting the active vibration absorber internal parameters, i.e., the gain matrices of such controllers, so as to achieve specified control objectives. Finally, the effects on closed-loop stability of small delays in the feedback loop are investigated. Such delays would typically be introduced by a digital implementation of an active vibration absorber. It is shown that these delays only affect the real parts of the eigenvalues of a lightly-damped structure. Furthermore, it is only the high-frequency modes that are destabilized by delays; low-frequency modes are actually made more heavily damped. Eigenvalue perturbation methods are used to obtain accurate predictions of the critical delay at which a given system will become unstable; these methods also determine which mode is critical.

  12. Method of remote powering and detecting multiple UWB passive tags in an RFID system

    DOEpatents

    Dowla, Farid U [Castro Valley, CA; Nekoogar, Faranak [San Ramon, CA; Benzel, David M [Livermore, CA; Dallum, Gregory E [Livermore, CA; Spiridon, Alex [Palo Alto, CA

    2012-05-29

    A new Radio Frequency Identification (RFID), tracking, powering apparatus/system and method using coded Ultra-wideband (UWB) signaling is introduced. The proposed hardware and techniques disclosed herein utilize a plurality of passive UWB transponders in a field of an RFID-radar system. The radar system itself enables multiple passive tags to be remotely powered (activated) at about the same time frame via predetermined frequency UWB pulsed formats. Once such tags are in an activated state, an UWB radar transmits specific "interrogating codes" to put predetermined tags in an awakened status. Such predetermined tags can then communicate by a unique "response code" so as to be detected by an UWB system using radar methods.

  13. Natural circulating passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  14. Hybrid Damping System for an Electronic Equipment Mounting Shelf

    NASA Technical Reports Server (NTRS)

    Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry

    1997-01-01

    The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-II. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.

  15. Hybrid Damping System for an Electronic Equipment Mounting Shelf

    NASA Technical Reports Server (NTRS)

    Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry

    1997-01-01

    The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-11. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.

  16. Passive solar water heating: breadbox design for the Fred Young Farm Labor Center in Indio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melzer, B; Maeda, B

    1979-10-01

    An appropriate passive solar preheater for multifamily housing units in the Fred Young Farm Labor Center in Indio, California, was designed and analyzed. A brief summary of passive preheater systems and the key design features used in current designs is presented. The design features necessary for the site requirements are described. The eight preliminary preheater designs reviewed for the project are presented. The results of thermal performance simulation for the eight prototype systems are discussed. Alternative monitoring systems for the installation are described and evaluated. The consultants' recommendations, working drawings, and performance estimates of the system selected are presented. (MHR)

  17. Measure Guideline: Passive Vents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, David; Neri, Robin

    2016-02-05

    This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated sourcemore » of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.« less

  18. SEFRE: Semiexoskeleton Rehabilitation System.

    PubMed

    Chonnaparamutt, Winai; Supsi, Witsarut

    2016-01-01

    SEFRE (Shoulder-Elbow-Forearm Robotics Economic) rehabilitation system is presented in this paper. SEFRE Rehab System is composed of a robotic manipulator and an exoskeleton, so-called Forearm Supportive Mechanism (FSM). The controller of the system is developed as the Master PC consisting of five modules, that is, Intelligent Control (IC), Patient Communication (PC), Training with Game (TG), Progress Monitoring (PM), and Patient Supervision (PS). These modules support a patient to exercise with SEFRE in six modes, that is, Passive, Passive Stretching, Passive Guiding, Initiating Active, Active Assisted, and Active Resisted. To validate the advantages of the system, the preclinical trial was carried out at a national rehabilitation center. Here, the implement of the system and the preclinical results are presented as the verifications of SEFRE.

  19. Design of short-range terahertz wave passive detecting system

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Lou, Guowei; Zhu, Li; Qian, Songsong; Li, Ting

    2016-09-01

    Based on the study of radiation and transmission characteristics on THz waveband, a short-range passive detecting system is designed. The scheme originated from microwave passive detecting system. A prototype was developed following the design of key components including antennas and a harmonic mixer. The system operated at 0.36 THz. A dual-beam Cassegrain antenna was adopted for receiving signals which radiated by object and background. Local oscillator signal was generated by frequency multiplication. Harmonic mixing is adopted for reducing local oscillator signal frequency required by half. Superheterodyne technology is employed for signal acquisition. The system implemented easily. Tests and measurements were taken, which showed that the scheme was feasible and the performance of the prototype system met the design requirements.

  20. Physical understanding of trends in current collapse with atomic layer deposited dielectrics in AlGaN/GaN MOS heterojunction FETs

    NASA Astrophysics Data System (ADS)

    Ramanan, Narayanan; Lee, Bongmook; Misra, Veena

    2016-03-01

    Many passivation dielectrics are pursued for suppressing current collapse due to trapping/detrapping of access-region surface traps in AlGaN/GaN based metal oxide semiconductor heterojuction field effect transistors (MOS-HFETs). The suppression of current collapse can potentially be achieved either by reducing the interaction of surface traps with the gate via surface leakage current reduction, or by eliminating surface traps that can interact with the gate. But, the latter is undesirable since a high density of surface donor traps is required to sustain a high 2D electron gas density at the AlGaN/GaN heterointerface and provide a low ON-resistance. This presents a practical trade-off wherein a passivation dielectric with the optimal surface trap characteristics and minimal surface leakage is to be chosen. In this work, we compare MOS-HFETs fabricated with popular ALD gate/passivation dielectrics like SiO2, Al2O3, HfO2 and HfAlO along with an additional thick plasma-enhanced chemical vapor deposition SiO2 passivation. It is found that after annealing in N2 at 700 °C, the stack containing ALD HfAlO provides a combination of low surface leakage and a high density of shallow donor traps. Physics-based TCAD simulations confirm that this combination of properties helps quick de-trapping and minimal current collapse along with a low ON resistance.

  1. Stability of laser-propelled wafer satellites

    NASA Astrophysics Data System (ADS)

    Srinivasan, Prashant; Hughes, Gary B.; Lubin, Philip; Zhang, Qicheng; Madajian, Jonathan; Brashears, Travis; Kulkarni, Neeraj; Cohen, Alexander; Griswold, Janelle

    2016-09-01

    For interstellar missions, directed energy is envisioned to drive wafer-scale spacecraft to relativistic speeds. Spacecraft propulsion is provided by a large array of phase-locked lasers, either in Earth orbit or stationed on the ground. The directed-energy beam is focused on the spacecraft, which includes a reflective sail that propels the craft by reflecting the beam. Fluctuations and asymmetry in the beam will create rotational forces on the sail, so the sail geometry must possess an inherent, passive stabilizing effect. A hyperboloid shape is proposed, since changes in the incident beam angle due to yaw will passively counteract rotational forces. This paper explores passive stability properties of a hyperboloid reflector being bombarded by directed-energy beam. A 2D cross-section is analyzed for stability under simulated asymmetric loads. Passive stabilization is confirmed over a range of asymmetries. Realistic values of radiation pressure magnitude are drawn from the physics of light-mirror interaction. Estimates of beam asymmetry are drawn from optical modeling of a laser array far-field intensity using fixed and stochastic phase perturbations. A 3D multi-physics model is presented, using boundary conditions and forcing terms derived from beam simulations and lightmirror interaction models. The question of optimal sail geometry can be pursued, using concepts developed for the baseline hyperboloid. For example, higher curvature of the hyperboloid increases stability, but reduces effective thrust. A hyperboloid sail could be optimized by seeking the minimum curvature that is stable over the expected range of beam asymmetries.

  2. Combining Radiography and Passive Measurements for Radiological Threat Detection in Cargo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Erin A.; White, Timothy A.; Jarman, Kenneth D.

    Abstract Radiography is widely understood to provide information complimentary to passive detection: while not directly sensitive to radiological materials, radiography can reveal highly shielded regions which may mask a passive radiological signal. We present a method for combining radiographic and passive data which uses the radiograph to provide an estimate of scatter and attenuation for possible sources. This approach allows quantitative use of radiographic images without relying on image interpretation, and results in a probabilistic description of likely source locations and strengths. We present first results for this method for a simple modeled test case of a cargo container drivingmore » through a PVT portal. With this inversion approach, we address criteria for an integrated passive and radiographic screening system and how detection of SNM threats might be improved in such a system.« less

  3. A family of asymptotically stable control laws for flexible robots based on a passivity approach

    NASA Technical Reports Server (NTRS)

    Lanari, Leonardo; Wen, John T.

    1991-01-01

    A general family of asymptotically stabilizing control laws is introduced for a class of nonlinear Hamiltonian systems. The inherent passivity property of this class of systems and the Passivity Theorem are used to show the closed-loop input/output stability which is then related to the internal state space stability through the stabilizability and detectability condition. Applications of these results include fully actuated robots, flexible joint robots, and robots with link flexibility.

  4. Passivity-based sliding mode control for a polytopic stochastic differential inclusion system.

    PubMed

    Liu, Leipo; Fu, Zhumu; Song, Xiaona

    2013-11-01

    Passivity-based sliding mode control for a polytopic stochastic differential inclusion (PSDI) system is considered. A control law is designed such that the reachability of sliding motion is guaranteed. Moreover, sufficient conditions for mean square asymptotic stability and passivity of sliding mode dynamics are obtained by linear matrix inequalities (LMIs). Finally, two examples are given to illustrate the effectiveness of the proposed method. © 2013 ISA. Published by ISA. All rights reserved.

  5. Active and passive multispectral scanner for earth resources applications: An advanced applications flight experiment

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.; Peterson, L. M.; Thomson, F. J.; Work, E. A.; Kriegler, F. J.

    1977-01-01

    The development of an experimental airborne multispectral scanner to provide both active (laser illuminated) and passive (solar illuminated) data from a commonly registered surface scene is discussed. The system was constructed according to specifications derived in an initial programs design study. The system was installed in an aircraft and test flown to produce illustrative active and passive multi-spectral imagery. However, data was not collected nor analyzed for any specific application.

  6. The Utilization of Starute Decelerators for Improved Upper Atmosphere Measurements

    DTIC Science & Technology

    1974-12-01

    34 ECOM-5489, May 1973. 17. Miller, Walter B., and Donald R. Veazey , "An Integrated Error Description of Active and Passive Balloon Tracking Systems," ECOM...20. Miller, Walter B., and Donald R. Veazey , "Vertical Efficiency of Active and Passive Balloon Tracking Systems from a Standpoint of Integrated Error...5542, May 1974. 60. Miller, Walter B., and Donald R. Veazey , "On Increasing Vertical Efficiency of a Passive Balloon Tracking Device by Optimal Choice

  7. Experimental and numerical simulation of passive decay heat removal by sump cooling after cool melt down

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knebel, J.U.; Kuhn, D.; Mueller, U.

    1997-12-01

    This article presents the basic physical phenomena and scaling criteria of passive decay heat removal from a large coolant pool by single-phase and two-phase natural circulation. The physical significance of the dimensionless similarity groups derived is evaluated. The above results are applied to the SUCO program that is performed at the Forschungszentrum Karlsruhe. The SUCO program is a three-step series of scaled model experiments investigating the possibility of a sump cooling concept for future light water reactors. The sump cooling concept is based on passive safety features within the containment. The work is supported by the German utilities and themore » Siemens AG. The article gives results of temperature and velocity measurements in the 1:20 linearly scaled SUCOS-2D test facility. The experiments are backed up by numerical calculations using the commercial software package Fluent. Finally, using the similarity analysis from above, the experimental results of the model geometry are scaled-up to the conditions in the prototype, allowing a first statement with regard to the feasibility of the sump cooling concept. 11 refs., 9 figs., 3 tabs.« less

  8. The effect of passive exposure to tobacco smoke on perioperative respiratory complications and the duration of recovery.

    PubMed

    Simsek, Esen; Karaman, Yucel; Gonullu, Mustafa; Tekgul, Zeki; Cakmak, Meltem

    2016-01-01

    The incidence of perioperative respiratory complications and postoperative care unit recovery time investigated in patients with passive tobacco smoke exposure according to the degree of exposure. Total 270 patients ranging in age from 18 to 60 years with the ASA physical status I or II exposed and not exposed to passive tobacco smoke received general anesthesia for various elective surgical operations evaluated for the study. Patients divided into two groups as exposed and non-exposed to passive tobacco smoke, those exposed to passive smoke are also divided into two groups according to the degree of exposure. Patients taken to the postoperative care unit (PACU) at the end of the operation and monitorized until Modified Aldrete's Scores became 9 and more. Respiratory complications evaluated and recorded in intraoperative and postoperative period. A total of 251 patients were enrolled; 63 (25.1%) patients had airway complications, 11 (4.4%) had complications intraoperatively and 52 (20.7%) patients had complications postoperatively. There has been found significant relation with passive tobacco smoke exposure and high incidences of perioperative and postoperative respiratory complications. The risk of cough, desaturation and hypersecretion complications were found to be increased depending on the degree of exposure. There was significant relation between the degree of passive smoke exposure and the duration of PACU stay. Passive tobacco smoke exposed general anesthesia receiving patients also regarding to the degree of exposure having high rates of perioperative respiratory complications and prolongation of PACU stays when compared with unexposed patients. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. [The effect of passive exposure to tobacco smoke on perioperative respiratory complications and the duration of recovery].

    PubMed

    Simsek, Esen; Karaman, Yucel; Gonullu, Mustafa; Tekgul, Zeki; Cakmak, Meltem

    2016-01-01

    The incidence of perioperative respiratory complications and postoperative care unit recovery time investigated in patients with passive tobacco smoke exposure according to the degree of exposure. Total 270 patients ranging in age from 18 to 60 years with the ASA physical status I or II exposed and not exposed to passive tobacco smoke received general anesthesia for various elective surgical operations evaluated for the study. Patients divided into two groups as exposed and non-exposed to passive tobacco smoke, those exposed to passive smoke are also divided into two groups according to the degree of exposure. Patients taken to the postoperative care unit (PACU) at the end of the operation and monitorized until Modified Aldrete's Scores became 9 and more. Respiratory complications evaluated and recorded in intraoperative and postoperative period. A total of 251 patients were enrolled; 63 (25.1%) patients had airway complications, 11 (4.4%) had complications intraoperatively and 52 (20.7%) patients had complications postoperatively. There has been found significant relation with passive tobacco smoke exposure and high incidences of perioperative and postoperative respiratory complications. The risk of cough, desaturation and hypersecretion complications were found to be increased depending on the degree of exposure. There was significant relation between the degree of passive smoke exposure and the duration of PACU stay. Passive tobacco smoke exposed general anesthesia receiving patients also regarding to the degree of exposure having high rates of perioperative respiratory complications and prolongation of PACU stays when compared with unexposed patients. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  10. Child Maltreatment and Neural Systems Underlying Emotion Regulation.

    PubMed

    McLaughlin, Katie A; Peverill, Matthew; Gold, Andrea L; Alves, Sonia; Sheridan, Margaret A

    2015-09-01

    The strong associations between child maltreatment and psychopathology have generated interest in identifying neurodevelopmental processes that are disrupted following maltreatment. Previous research has focused largely on neural response to negative facial emotion. We determined whether child maltreatment was associated with neural responses during passive viewing of negative and positive emotional stimuli and effortful attempts to regulate emotional responses. A total of 42 adolescents aged 13 to 19 years, half with exposure to physical and/or sexual abuse, participated. Blood oxygen level-dependent (BOLD) response was measured during passive viewing of negative and positive emotional stimuli and attempts to modulate emotional responses using cognitive reappraisal. Maltreated adolescents exhibited heightened response in multiple nodes of the salience network, including amygdala, putamen, and anterior insula, to negative relative to neutral stimuli. During attempts to decrease responses to negative stimuli relative to passive viewing, maltreatment was associated with greater recruitment of superior frontal gyrus, dorsal anterior cingulate cortex, and frontal pole; adolescents with and without maltreatment down-regulated amygdala response to a similar degree. No associations were observed between maltreatment and neural response to positive emotional stimuli during passive viewing or effortful regulation. Child maltreatment heightens the salience of negative emotional stimuli. Although maltreated adolescents modulate amygdala responses to negative cues to a degree similar to that of non-maltreated youths, they use regions involved in effortful control to a greater degree to do so, potentially because greater effort is required to modulate heightened amygdala responses. These findings are promising, given the centrality of cognitive restructuring in trauma-focused treatments for children. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Interior design for passive solar homes

    NASA Astrophysics Data System (ADS)

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building from incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitably of various interior elements.

  12. Semi-active tuned liquid column damper implementation with real-time hybrid simulations

    NASA Astrophysics Data System (ADS)

    Riascos, Carlos; Marulanda Casas, Johannio; Thomson, Peter

    2016-04-01

    Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems.

  13. Impact of Active Control on Passive Safety Response Characteristics of Sodium-cooled Fast Reactors: I - Theoretical background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passerini, Stefano; Ponciroli, Roberto; Vilim, Richard B.

    Here, the interaction of the active control system with passive safety behavior is investigated for sodium-cooled fast reactors. A claim often made of advanced reactors is that they are passively safe against unprotected upset events. In practice, such upset events are not analyzed in the context of the plant control system, but rather the analyses are performed without considering the normally programmed response of the control system (open-loop approach). This represents an oversimplification of the safety case. The issue of passive safety override arises since the control system commands actuators whose motions have safety consequences. Depending on the upset involvingmore » the control system ( operator error, active control system failure, or inadvertent control system override), an actuator does not necessarily go in the same direction as needed for safety. So neglecting to account for control system action during an unprotected upset is nonconservative from a safety standpoint. It is important then, during the design of the plant, to consider the potential for the control system to work against the inherent and safe regulating effects of purposefully engineered temperature feedbacks.« less

  14. Impact of Active Control on Passive Safety Response Characteristics of Sodium-cooled Fast Reactors: I - Theoretical background

    DOE PAGES

    Passerini, Stefano; Ponciroli, Roberto; Vilim, Richard B.

    2017-06-21

    Here, the interaction of the active control system with passive safety behavior is investigated for sodium-cooled fast reactors. A claim often made of advanced reactors is that they are passively safe against unprotected upset events. In practice, such upset events are not analyzed in the context of the plant control system, but rather the analyses are performed without considering the normally programmed response of the control system (open-loop approach). This represents an oversimplification of the safety case. The issue of passive safety override arises since the control system commands actuators whose motions have safety consequences. Depending on the upset involvingmore » the control system ( operator error, active control system failure, or inadvertent control system override), an actuator does not necessarily go in the same direction as needed for safety. So neglecting to account for control system action during an unprotected upset is nonconservative from a safety standpoint. It is important then, during the design of the plant, to consider the potential for the control system to work against the inherent and safe regulating effects of purposefully engineered temperature feedbacks.« less

  15. Passive solar design strategies: Remodeling guidelines for conserving energy at home

    NASA Astrophysics Data System (ADS)

    The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler's typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house's need for purchased heating (and in some cases, cooling) energy - but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical, and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive Solar Design Strategies: Remodeling Guidelines For Conserving Energy At Home is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: the guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; the worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; and the worked example demonstrates how to complete the worksheets for a typical residence.

  16. Impact of hydrodynamics on effective interactions in suspensions of active and passive matter.

    PubMed

    Krafnick, Ryan C; García, Angel E

    2015-02-01

    Passive particles exhibit unique properties when immersed in an active bath of self-propelling entities. In particular, an effective attraction can appear between particles that repel each other when in a passive solution. Here we numerically study the effect of hydrodynamics on an active-passive hybrid system, where we observe qualitative differences as compared to simulations with excluded volume effects alone. The results shed light on an existing discrepancy in pair lifetimes between simulation and experiment, due to the hydrodynamically enhanced stability of coupled passive particles.

  17. A hybrid active/passive exhaust noise control system for locomotives.

    PubMed

    Remington, Paul J; Knight, J Scott; Hanna, Doug; Rowley, Craig

    2005-01-01

    A prototype hybrid system consisting of active and passive components for controlling far-field locomotive exhaust noise has been designed, assembled, and tested on a locomotive. The system consisted of a resistive passive silencer for controlling high-frequency broadband noise and a feedforward multiple-input, multiple-output active control system for suppressing low-frequency tonal noise. The active system used ten roof-mounted bandpass speaker enclosures with 2-12-in. speakers per enclosure as actuators, eight roof-mounted electret microphones as residual sensors, and an optical tachometer that sensed locomotive engine speed as a reference sensor. The system was installed on a passenger locomotive and tested in an operating rail yard. Details of the system are described and the near-field and far-field noise reductions are compared against the design goal.

  18. Cycling to School and Body Composition, Physical Fitness, and Metabolic Syndrome in Children and Adolescents.

    PubMed

    Ramírez-Vélez, Robinson; García-Hermoso, Antonio; Agostinis-Sobrinho, Cesar; Mota, Jorge; Santos, Rute; Correa-Bautista, Jorge Enrique; Amaya-Tambo, Deisy Constanza; Villa-González, Emilio

    2017-09-01

    To evaluate the association between cycling to/from school and body composition, physical fitness, and metabolic syndrome among a sample of Colombian children and adolescents. During the 2014-2015 school year, we examined a cross-sectional component of the Association for muscular strength with early manifestation of cardiovascular disease risk factors among Colombian children and adolescents (FUPRECOL) study. Participants included 2877 youths (54.5% girls) from Bogota, Colombia. A self-reported questionnaire was used to measure the frequency and mode of commuting to school. Four components of physical fitness were measured: (1) anthropometric (height, weight, body mass index, and waist circumference); (2) musculoskeletal (handgrip and standing long jump test); (3) motor (speed-agility test; 4 × 10-meter shuttle run); and (4) cardiorespiratory (20-m shuttle run test [20mSRT]). The prevalence of metabolic syndrome was determined by the definitions provided by the International Diabetes Federation. Twenty-three percent of the sample reported commuting by cycle. Active commuting boys had a likelihood of having an unhealthy 4 × 10 m value (OR, 0.72; 95% CI, 0.53-0.98; P = .038) compared with the reference group (passive commuters). Active commuting girls showed a lower likelihood of having unhealthy a 20mSRT value (OR, 0.81; 95% CI, 0.56-0.99; P = .047) and metabolic syndrome (OR, 0.61; 95% CI, 0.35-0.99; P = .048) compared with passive commuters. Regular cycling to school may to be associated with better physical fitness and a lower incidence of metabolic syndrome than passive transport, especially in girls. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A population based survey of ergonomic risk factors in Connecticut: distribution by industry, occupation, and demographics.

    PubMed

    Morse, Tim F; Warren, Nicholas; Dillon, Charles; Diva, Ulysses

    2007-05-01

    Risk factors for upper-extremity musculoskeletal disorders (MSD) include biomechanical factors (force, repetition, posture) and psychosocial factors (job stress). A population-based telephone survey of workers in Connecticut characterized these risk factors by industry, occupation, gender, and age. Risk factors were highly prevalent in the Connecticut workplace, but varied considerably by industry, occupation, gender, and age. Risk factors clustered based on (a) physically active occupations/industries (pushing/pulling, reaching, bent wrists, and tool use), (b) physically passive occupations/industries (static postures, stress, and computer use), and (c) repetitive motion exposures. Physically active patterns had the highest prevalence in construction/agriculture/mining, followed by (in order) wholesale/retail trade, utilities, manufacturing, services, government, and finance/insurance. Physically passive patterns tended to reverse this order, and repetitive motion followed a third pattern. Physically active risk factors were typically higher for males, though this varied by industry and occupation. All risk factors except for stress show a steady decrease with age. Almost 1,000,000 Connecticut workers are estimated to be exposed to repetitive work, bent wrists, and job stress. Workers in high exposure industries and occupations should be closely evaluated for risks, with outreach to industries for preventive ergonomic interventions as preferred to treatment for conditions that arise.

  20. On the role of distributed helicity in the formation of hurricanes.

    NASA Astrophysics Data System (ADS)

    Golbraikh, E.; Frick, P.; Stepanov, R.

    2016-02-01

    The problem of formation (suppression) of hurricanes is one of the most important problems in the physics of the atmosphere and ocean. Till now, no clear picture of the hurricanes formation. Many years ago, in the paper [1] has been proposed a model amplification spiral vortex (such as typhoons), based on the hydrodynamic alpha-effect (HAE). However, in contrast to magnetic alpha-effect, the role turbulent helicity in the behavior of the hydrodynamic systems of hitherto considered passive [2], and consequently, this theory has not has been developed. On the other hand, some experimental data and theoretical estimates indicate that the helicity can influence the process of the formation of large-scale vortices. In the present work, based on the theory of the distributed helicity [3], we show that under certain conditions, helicity ceases to be a passive scalar and strongly influences the transfer of energy from the large scale to small, leading to its accumulation on the large scales, with subsequent transfer into a mean flow. At the same time, we suggest that the influence on a hurricane can be carried out only at the stage of its formation, and we discuss of the behavior some of the parameters that are the predictors of the hurricanes occurrence. References [1] Moiseev, S. S., Sagdeev, R. Z., Tur, A. V., Khomenko, Shukurov, A. M, Physical mechanism of amplification of vortex disturbances in the atmosphere, Soviet Physics Doc., Vol. 28, p.926, 11/1983. [2] H. K. Moffat, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, Cam- bridge, 1978). [3] R. Stepanov, E. Golbraikh, P. Frick, A. Shestakov, Hindered energy cascade in highly helical isotropic turbulence, arXiv:1508.07236v2

  1. Passive safety injection system using borated water

    DOEpatents

    Conway, Lawrence E.; Schulz, Terry L.

    1993-01-01

    A passive safety injection system relies on differences in water density to induce natural circulatory flow patterns which help maintain prescribed concentrations of boric acid in borated water, and prevents boron from accumulating in the reactor vessel and possibly preventing heat transfer.

  2. Passive rejection of heat from an isotope heat source through an open door

    NASA Technical Reports Server (NTRS)

    Burns, R. K.

    1971-01-01

    The isotope heat-source design for a Brayton power system includes a door in the thermal insulation through which the heat can be passively rejected to space when the power system is not operating. The results of an analysis to predict the heat-source surface temperature and the heat-source heat-exchanger temperature during passive heat rejection as a function of insulation door opening angle are presented. They show that for a door opening angle greater than 20 deg, the temperatures are less than the steady-state temperatures during power system operation.

  3. Long-term performance of the passive thermal control systems of the IRAS spacecraft

    NASA Technical Reports Server (NTRS)

    Mason, P. V.

    1988-01-01

    Degradation of passive thermal control systems in space is a matter of serious concern and has been observed in many missions. The performance of the passive thermal control systems of the Infrared Astronomical Satellite (IRAS) over a period of three years is reported here. An exterior temperature of 200 K and a sunshade temperature of approximately 100 K were maintained over this period without significant degradation. The temperature of the telescope contained in the IRAS cryostat was also observed for two years after expenditure of the helium cryogen. It remained at 100 K with no degradation.

  4. New PANDA Tests to Investigate Effects of Light Gases on Passive Safety Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paladino, D.; Auban, O.; Candreia, P.

    The large- scale thermal-hydraulic PANDA facility (located at PSI in Switzerland), has been used over the last few years for investigating different passive decay- heat removal systems and containment phenomena for the next generation of light water reactors (Simplified Boiling Water Reactor: SBWR; European Simplified Boiling Water Reactor: ESBWR; Siedewasserreaktor: SWR-1000). Currently, as part of the European Commission 5. EURATOM Framework Programme project 'Testing and Enhanced Modelling of Passive Evolutionary Systems Technology for Containment Cooling' (TEMPEST), a new series of tests is being planned in the PANDA facility to experimentally investigate the distribution of non-condensable gases inside the containment andmore » their effect on the performance of the 'Passive Containment Cooling System' (PCCS). Hydrogen release caused by the metal-water reaction in the case of a postulated severe accident will be simulated in PANDA by injecting helium into the reactor pressure vessel. In order to provide suitable data for Computational Fluid Dynamic (CFD) code assessment and improvement, the instrumentation in PANDA has been upgraded for the new tests. In the present paper, a detailed discussion is given of the new PANDA tests to be performed to investigate the effects of light gas on passive safety systems. The tests are scheduled for the first half of the year 2002. (authors)« less

  5. Development of Passive Fuel Cell Thermal Management Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.

    2010-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.

  6. Estimating surface soil moisture from SMAP observations using a Neural Network technique.

    PubMed

    Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P

    2018-01-01

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.

  7. Passive Optical Technique to Measure Physical Properties of a Vibrating Surface

    DTIC Science & Technology

    2014-01-01

    it is not necessary to understand the details of a non-Lambertian BRDF to detect surface vibration phenomena, an accurate model incorporating physics...summarize the discussion of BRDF , while a physics-based BRDF model is not necessary to use scattered light as a surface vibration diagnostic, it may...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2014 2

  8. Life Prediction of Large Lithium-Ion Battery Packs with Active and Passive Balancing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ying; Smith, Kandler A; Zane, Regan

    Lithium-ion battery packs take a major part of large-scale stationary energy storage systems. One challenge in reducing battery pack cost is to reduce pack size without compromising pack service performance and lifespan. Prognostic life model can be a powerful tool to handle the state of health (SOH) estimate and enable active life balancing strategy to reduce cell imbalance and extend pack life. This work proposed a life model using both empirical and physical-based approaches. The life model described the compounding effect of different degradations on the entire cell with an empirical model. Then its lower-level submodels considered the complex physicalmore » links between testing statistics (state of charge level, C-rate level, duty cycles, etc.) and the degradation reaction rates with respect to specific aging mechanisms. The hybrid approach made the life model generic, robust and stable regardless of battery chemistry and application usage. The model was validated with a custom pack with both passive and active balancing systems implemented, which created four different aging paths in the pack. The life model successfully captured the aging trajectories of all four paths. The life model prediction errors on capacity fade and resistance growth were within +/-3% and +/-5% of the experiment measurements.« less

  9. One-Way Particle Transport Using Oscillatory Flow in Asymmetric Traps.

    PubMed

    Lee, Jaesung; Burns, Mark A

    2018-03-01

    One challenge of integrating of passive, microparticles manipulation techniques into multifunctional microfluidic devices is coupling the continuous-flow format of most systems with the often batch-type operation of particle separation systems. Here, a passive fluidic technique-one-way particle transport-that can conduct microparticle operations in a closed fluidic circuit is presented. Exploiting pass/capture interactions between microparticles and asymmetric traps, this technique accomplishes a net displacement of particles in an oscillatory flow field. One-way particle transport is achieved through four kinds of trap-particle interactions: mechanical capture of the particle, asymmetric interactions between the trap and the particle, physical collision of the particle with an obstacle, and lateral shift of the particle into a particle-trapping stream. The critical dimensions for those four conditions are found by numerically solving analytical mass balance equations formulated using the characteristics of the flow field in periodic obstacle arrays. Visual observation of experimental trap-particle dynamics in low Reynolds number flow (<0.01) confirms the validity of the theoretical predictions. This technique can transport hundreds of microparticles across trap rows in only a few fluid oscillations (<500 ms per oscillation) and separate particles by their size differences. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Gait and physical impairments in patients with acute ankle sprains who did not receive physical therapy.

    PubMed

    Punt, Ilona M; Ziltener, Jean-Luc; Laidet, Magali; Armand, Stéphane; Allet, Lara

    2015-01-01

    To assess ankle function 4 weeks after conservative management and to examine the correlation of function with gait. A prospective comparison study. Thirty patients with grade I or II acute ankle sprains were followed up after 4 weeks of conservative management not involving physical therapy. Participants underwent a clinical assessment and had to walk at a normal self-selected walking speed. Their results were compared with the data of 15 healthy subjects. Participants' joint swelling, muscle strength, passive mobility, and pain were assessed. In addition, patients' temporal-spatial, kinematic, and kinetic gait data were measured while walking. Muscle strength and passive mobility were significantly reduced on the injured side compared with the noninjured side (P < .001). During gait analysis, patients with ankle sprains showed slower walking speed, shorter step length, shorter single support time, reduced and delayed maximum plantar flexion, decreased maximum power, and decreased maximum moment (P < .050) compared with healthy persons. Decreased walking speed was mainly correlated with pain (R = -0.566, P = .001) and deficits in muscle strength of dorsiflexors (R = 0.506, P = .004). Four weeks after an ankle sprain, patients who did not receive physical therapy showed physical impairments of the ankle that were correlated with gait parameters. These findings might help fine-tune rehabilitation protocols. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  11. Restoration of physical performance capacity of athletes after prolonged restriction of their motor activity

    NASA Technical Reports Server (NTRS)

    Soldatov, A. D.; Finogeyev, V. I.

    1980-01-01

    The effects of different regimens of treatment following prolonged hypokinesia were studied in order to determine the most effective program. The types of programs considered were passive means, consisting of physical therapy; active means, consisting of athletic training; and a combined program. In the first stage of the experiment, the effects of a 10 day period of hypokinesia were studied. It was determined that the restoration programs must address the problems of: (1) increasing defense function and general tone of the body; (2) restore orthostatic stability; and (3) increase general endurance. In later stages, groups of athletes and nonathletes underwent 30 day periods of hypokinesia. Restoration was carefully monitored for groups treated with the various regimens. It was determined that the most effective treatment was a comprehensive program of passive and active therapy.

  12. Target detection using microwave irradiances from natural sources: A passive, local and global surveillance system

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1984-01-01

    Detection of metal objects on or near the Earth's surface was investigated using existing, passive, microwave sensors operating from Earth orbit. The range equations are derived from basic microwave principles and theories and the expressions are given explicitly to estimate the signal to noise ratio for detecting metal targets operating as bistatic scatterers. Actual measurements are made on a range of metal objects observed from orbit using existing passive microwave receiving systems. The details of the measurements and the results are tabulated and discussed. The advantages of a passive microwave sensor as it is applied to surveillance of metal objects as viewed from aerial platforms or from orbit, are examined.

  13. Robust Stabilization of Uncertain Systems Based on Energy Dissipation Concepts

    NASA Technical Reports Server (NTRS)

    Gupta, Sandeep

    1996-01-01

    Robust stability conditions obtained through generalization of the notion of energy dissipation in physical systems are discussed in this report. Linear time-invariant (LTI) systems which dissipate energy corresponding to quadratic power functions are characterized in the time-domain and the frequency-domain, in terms of linear matrix inequalities (LMls) and algebraic Riccati equations (ARE's). A novel characterization of strictly dissipative LTI systems is introduced in this report. Sufficient conditions in terms of dissipativity and strict dissipativity are presented for (1) stability of the feedback interconnection of dissipative LTI systems, (2) stability of dissipative LTI systems with memoryless feedback nonlinearities, and (3) quadratic stability of uncertain linear systems. It is demonstrated that the framework of dissipative LTI systems investigated in this report unifies and extends small gain, passivity, and sector conditions for stability. Techniques for selecting power functions for characterization of uncertain plants and robust controller synthesis based on these stability results are introduced. A spring-mass-damper example is used to illustrate the application of these methods for robust controller synthesis.

  14. Expanding the domain of drug delivery for HIV prevention: exploration of the transdermal route.

    PubMed

    Puri, Ashana; Sivaraman, Arunprasad; Zhang, Wei; Clark, Meredith R; Banga, Ajay K

    2017-01-01

    Constant efforts for HIV prevention using antiretroviral drugs, pre- and postexposure prophylactic agents, and microbicides are being made by researchers. Drug-delivery systems such as oral tablets and coitally dependent vaginal gels are short acting, require daily application, and are associated with user adherence issues, whereas the coitally independent systems such as injectables and biodegradable implants are long acting, lasting several months, during which time the termination of prophylaxis is impractical in case of adverse effects. An effective drug-delivery system to be used for an intermediate duration, if available, would be an attractive alternative option for users in terms of adherence. Transdermal delivery systems, overcoming most of the limitations of the other routes of administration and aiming to provide sustained delivery of drugs through skin, may be explored for HIV prevention. Passive and physical enhancement techniques may be designed strategically to improve the transdermal delivery of HIV preventive agents.

  15. The estimation of material and patch parameters in a PDE-based circular plate model

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, Ralph C.; Brown, D. E.; Metcalf, Vern L.; Silcox, R. J.

    1995-01-01

    The estimation of material and patch parameters for a system involving a circular plate, to which piezoceramic patches are bonded, is considered. A partial differential equation (PDE) model for the thin circular plate is used with the passive and active contributions form the patches included in the internal and external bending moments. This model contains piecewise constant parameters describing the density, flexural rigidity, Poisson ratio, and Kelvin-Voigt damping for the system as well as patch constants and a coefficient for viscous air damping. Examples demonstrating the estimation of these parameters with experimental acceleration data and a variety of inputs to the experimental plate are presented. By using a physically-derived PDE model to describe the system, parameter sets consistent across experiments are obtained, even when phenomena such as damping due to electric circuits affect the system dynamics.

  16. Maglev-rail intermodal equipment and suspension study. Final report, July 1991-February 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilcrease, E.E.; Gillam, C.M.

    1993-02-01

    The physical and operational characteristics of four existing and planned maglev systems were surveyed pertinent to the intermodal interface for each system. The maglev systems investigated were: Grumman New York State' (Configuration 002) Maglev; Transrapid Intercity (Transrapid 07) Maglev; HSST Passive Intermediate Speed (HSST-300) Maglev; and Japan Railways Vertical Magnet (Configuration MLU 002) Maglev. The focus of the study was to investigate the feasibility of using existing railroad right-of-way to access center-city terminals in one of three possible methods: Maglev vehicles traveling over existing railroad tracks with the use of steel guide wheels and some means of exterior propulsion; maglevmore » vehicles transferred onto modified railroad flatcars and transported over existing railroad tracks with locomotive power; or new grade-separated maglev guideways on existing railroad rights-of-way.« less

  17. Thermo-mechanical behavior of power electronic packaging assemblies: From characterization to predictive simulation of lifetimes

    NASA Astrophysics Data System (ADS)

    Dalverny, O.; Alexis, J.

    2018-02-01

    This article deals with thermo-mechanical behavior of power electronic modules used in several transportation applications as railway, aeronautic or automotive systems. Due to a multi-layered structures, involving different materials with a large variation of coefficient of thermal expansion, temperature variations originated from active or passive cycling (respectively from die dissipation or environmental constraint) induces strain and stresses field variations, giving fatigue phenomenon of the system. The analysis of the behavior of these systems and their dimensioning require the implementation of complex modeling strategies by both the multi-physical and the multi-scale character of the power modules. In this paper we present some solutions for studying the thermomechanical behavior of brazed assemblies as well as taking into account the interfaces represented by the numerous metallizations involved in the process assembly.

  18. Server Level Analysis of Network Operation Utilizing System Call Data

    DTIC Science & Technology

    2010-09-25

    Server DLL Inject 6 Executable Download and Execute 7 Execute Command 8 Execute net user /ADD 9 PassiveX ActiveX Inject Meterpreter Payload...10 PassiveX ActiveX Inject VNC Server Payload 11 PassiveX ActiveX Injection Payload 12 Recv Tag Findsock Meterpreter 13 Recv Tag Findsock

  19. Sizing criteria for a low footprint passive mine water treatment system.

    PubMed

    Sapsford, D J; Williams, K P

    2009-02-01

    The objective of this paper is to present data from a novel vertical flow mine water treatment system, demonstrate how these data can be used to generate sizing formulae for this technology, and present a comparison between the size of system based on these formulae and those of conventionally designed passive systems. The paper focuses on passive treatment of circum-neutral ferruginous mine waters bearing up to 50 mgl(-1) of iron in either ferrous or ferric form. The Vertical Flow Reactor (VFR) operates by passing mine water down through an accreting bed of ochre, the ochre bed being responsible for the intensification of iron removal by self-filtration and/or autocatalytic iron oxidation and precipitation. Key to the design and operation of the VFR system is the decrease in permeability in this ochre bed over time. The paper demonstrates that the VFR system can remove iron at many times the 10 g/m2/day removal rate - an often employed figure for the sizing of aerobic settling ponds and wetlands. The paper demonstrates that VFRs are viable and novel passive treatment system for mine waters with a smaller footprint than conventional systems.

  20. Summary of Fuel Cell Programs at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla

    2000-01-01

    The objective of this program is to develop passive ancillary component technology to be teamed with a hydrogen-oxygen unitized regenerative fuel cell (URFC) stack to form a revolutionary new regenerative fuel cell energy (RFC) storage system for aerospace applications. Replacement of active RFC ancillary components with passive components minimizes parasitic power losses and allows the RFC to operate as a H2/O2 battery. The goal of this program is to demonstrate an integrated passive lkW URFC system.

  1. Hydrotherapy: An innovative treatment for obese Malaysians

    NASA Astrophysics Data System (ADS)

    Noordin, M. Hazim M.; Ahmad, Hartini; Baharin, Shamsuddin

    2015-12-01

    Malaysia is ranked as a country with the most obese population in the Southeast Asia region, and placed sixth in the Asia Pacific. Obesity does not only influence the persons' mobility and quality of health, but could also link to medical leaves and absenteeism affecting the overall workforce productivity and efficiency. Routine physical activity is essential for good health and it is particularly important for those who are trying to lose weight or to maintain a healthy weight. However, it is disheartening to note that only 32.6 percent Malaysians above the age of 15 are involved in physical exercise or vigorous sports. There is an emergence of many types of hydrotherapy system, which are either active or passive and these can be at hospital settings, public places or in individual homes. Such hydrotherapy, if properly programmed can promote the physical activity amongst the obese in Malaysia. Current research on the use of active and passive hydrotherapy for obesity treatment was carried out. Subjects of both sexes and diverse age ranges, immersed themselves in a heated pool within hospital setting and in a bath tubs with high energy turbulent movement of medium temperature water. These hydrotherapy sessions provide a form of physical exercise in water as compared to on the land exercise. The findings of the hydrotherapy sessions have shown encouraging results. Quantitative data was analysed, with the help of descriptive statistics and paired sample t-test. Qualitative data was analysed manually with help of thematic analysis and specialised qualitative assessment software. This study reveals that hydrotherapy has improved patient's mobility, flexibility and exercise capability. Results reveal the reduction in the weight of subjects, with both quantitative and qualitative data results show that Hydrotherapy improved the quality of life in term of body pain reduction and general health improvement. Therefore, it can be concluded that the hydrotherapy can be seen as extensions of exercise and one of the methods in reducing body fat and weight.

  2. Enhanced photoelectrochemical water splitting performance of anodic TiO(2) nanotube arrays by surface passivation.

    PubMed

    Gui, Qunfang; Xu, Zhen; Zhang, Haifeng; Cheng, Chuanwei; Zhu, Xufei; Yin, Min; Song, Ye; Lu, Linfeng; Chen, Xiaoyuan; Li, Dongdong

    2014-10-08

    One-dimensional anodic titanium oxide nanotube (TONT) arrays provide a direct pathway for charge transport, and thus hold great potential as working electrodes for electrochemical energy conversion and storage devices. However, the prominent surface recombination due to the large amount surface defects hinders the performance improvement. In this work, the surface states of TONTs were passivated by conformal coating of high-quality Al2O3 onto the tubular structures using atomic layer deposition (ALD). The modified TONT films were subsequently employed as anodes for photoelectrochemical (PEC) water splitting. The photocurrent (0.5 V vs Ag/AgCl) recorded under air mass 1.5 global illumination presented 0.8 times enhancement on the electrode with passivation coating. The reduction of surface recombination rate is responsible for the substantially improved performance, which is proposed to have originated from a decreased interface defect density in combination with a field-effect passivation induced by a negative fixed charge in the Al2O3 shells. These results not only provide a physical insight into the passivation effect, but also can be utilized as a guideline to design other energy conversion devices.

  3. Integrated Passive Biological Treatment System/ Mine Waste Technology Program Report #16

    EPA Science Inventory

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 16, Integrated, Passive Biological Treatment System, funded by the United States Environmental Protection Agency (EPA) and jointly administered by EPA and the United States Depar...

  4. Combined Active and Passive Solar Space Heating and Solar Hot Water Systems for an Elementary School in Boise, Idaho.

    ERIC Educational Resources Information Center

    Smull, Neil A.; Armstrong, Gerald L.

    1979-01-01

    Amity Elementary School in Boise, Idaho, features a solar space heating and domestic hot water system along with an earth covering to accommodate the passive aspects of energy conservation. (Author/MLF)

  5. Job strain as a risk factor for leisure-time physical inactivity: an individual-participant meta-analysis of up to 170,000 men and women: the IPD-Work Consortium.

    PubMed

    Fransson, Eleonor I; Heikkilä, Katriina; Nyberg, Solja T; Zins, Marie; Westerlund, Hugo; Westerholm, Peter; Väänänen, Ari; Virtanen, Marianna; Vahtera, Jussi; Theorell, Töres; Suominen, Sakari; Singh-Manoux, Archana; Siegrist, Johannes; Sabia, Séverine; Rugulies, Reiner; Pentti, Jaana; Oksanen, Tuula; Nordin, Maria; Nielsen, Martin L; Marmot, Michael G; Magnusson Hanson, Linda L; Madsen, Ida E H; Lunau, Thorsten; Leineweber, Constanze; Kumari, Meena; Kouvonen, Anne; Koskinen, Aki; Koskenvuo, Markku; Knutsson, Anders; Kittel, France; Jöckel, Karl-Heinz; Joensuu, Matti; Houtman, Irene L; Hooftman, Wendela E; Goldberg, Marcel; Geuskens, Goedele A; Ferrie, Jane E; Erbel, Raimund; Dragano, Nico; De Bacquer, Dirk; Clays, Els; Casini, Annalisa; Burr, Hermann; Borritz, Marianne; Bonenfant, Sébastien; Bjorner, Jakob B; Alfredsson, Lars; Hamer, Mark; Batty, G David; Kivimäki, Mika

    2012-12-15

    Unfavorable work characteristics, such as low job control and too high or too low job demands, have been suggested to increase the likelihood of physical inactivity during leisure time, but this has not been verified in large-scale studies. The authors combined individual-level data from 14 European cohort studies (baseline years from 1985-1988 to 2006-2008) to examine the association between unfavorable work characteristics and leisure-time physical inactivity in a total of 170,162 employees (50% women; mean age, 43.5 years). Of these employees, 56,735 were reexamined after 2-9 years. In cross-sectional analyses, the odds for physical inactivity were 26% higher (odds ratio = 1.26, 95% confidence interval: 1.15, 1.38) for employees with high-strain jobs (low control/high demands) and 21% higher (odds ratio = 1.21, 95% confidence interval: 1.11, 1.31) for those with passive jobs (low control/low demands) compared with employees in low-strain jobs (high control/low demands). In prospective analyses restricted to physically active participants, the odds of becoming physically inactive during follow-up were 21% and 20% higher for those with high-strain (odds ratio = 1.21, 95% confidence interval: 1.11, 1.32) and passive (odds ratio = 1.20, 95% confidence interval: 1.11, 1.30) jobs at baseline. These data suggest that unfavorable work characteristics may have a spillover effect on leisure-time physical activity.

  6. Job Strain as a Risk Factor for Leisure-Time Physical Inactivity: An Individual-Participant Meta-Analysis of Up to 170,000 Men and Women

    PubMed Central

    Fransson, Eleonor I.; Heikkilä, Katriina; Nyberg, Solja T.; Zins, Marie; Westerlund, Hugo; Westerholm, Peter; Väänänen, Ari; Virtanen, Marianna; Vahtera, Jussi; Theorell, Töres; Suominen, Sakari; Singh-Manoux, Archana; Siegrist, Johannes; Sabia, Séverine; Rugulies, Reiner; Pentti, Jaana; Oksanen, Tuula; Nordin, Maria; Nielsen, Martin L.; Marmot, Michael G.; Magnusson Hanson, Linda L.; Madsen, Ida E. H.; Lunau, Thorsten; Leineweber, Constanze; Kumari, Meena; Kouvonen, Anne; Koskinen, Aki; Koskenvuo, Markku; Knutsson, Anders; Kittel, France; Jöckel, Karl-Heinz; Joensuu, Matti; Houtman, Irene L.; Hooftman, Wendela E.; Goldberg, Marcel; Geuskens, Goedele A.; Ferrie, Jane E.; Erbel, Raimund; Dragano, Nico; De Bacquer, Dirk; Clays, Els; Casini, Annalisa; Burr, Hermann; Borritz, Marianne; Bonenfant, Sébastien; Bjorner, Jakob B.; Alfredsson, Lars; Hamer, Mark; Batty, G. David; Kivimäki, Mika

    2012-01-01

    Unfavorable work characteristics, such as low job control and too high or too low job demands, have been suggested to increase the likelihood of physical inactivity during leisure time, but this has not been verified in large-scale studies. The authors combined individual-level data from 14 European cohort studies (baseline years from 1985–1988 to 2006–2008) to examine the association between unfavorable work characteristics and leisure-time physical inactivity in a total of 170,162 employees (50% women; mean age, 43.5 years). Of these employees, 56,735 were reexamined after 2–9 years. In cross-sectional analyses, the odds for physical inactivity were 26% higher (odds ratio = 1.26, 95% confidence interval: 1.15, 1.38) for employees with high-strain jobs (low control/high demands) and 21% higher (odds ratio = 1.21, 95% confidence interval: 1.11, 1.31) for those with passive jobs (low control/low demands) compared with employees in low-strain jobs (high control/low demands). In prospective analyses restricted to physically active participants, the odds of becoming physically inactive during follow-up were 21% and 20% higher for those with high-strain (odds ratio = 1.21, 95% confidence interval: 1.11, 1.32) and passive (odds ratio = 1.20, 95% confidence interval: 1.11, 1.30) jobs at baseline. These data suggest that unfavorable work characteristics may have a spillover effect on leisure-time physical activity. PMID:23144364

  7. Development of a passive sampler for gaseous mercury

    NASA Astrophysics Data System (ADS)

    Gustin, M. S.; Lyman, S. N.; Kilner, P.; Prestbo, E.

    2011-10-01

    Here we describe work toward development of the components of a cost effective passive sampling system for gaseous Hg that could be broadly deployed by nontechnical staff. The passive sampling system included an external shield to reduce turbulence and exposure to precipitation and dust, a diffusive housing that directly protects the collection surface during deployment and handling, and a collection surface. A protocol for cleaning and deploying the sampler and an analytical method were developed. Our final design consisted of a polycarbonate external shield enclosing a custom diffusive housing made from expanded PTFE tubing. Two collection surfaces were investigated, gold sputter-coated quartz plates and silver wires. Research showed the former would require extensive quality control for use, while the latter had interferences with other atmosphere constituents. Although the gold surface exhibited the best performance over space and time, gradual passivation would limit reuse. For both surfaces lack of contamination during shipping, deployment and storage indicated that the handling protocols developed worked well with nontechnical staff. We suggest that the basis for this passive sampling system is sound, but further exploration and development of a reliable collection surface is needed.

  8. A Fast and Self-Acting Release-Caging-Mechanism for Actively Driven Drop Tower Systems

    NASA Astrophysics Data System (ADS)

    Gierse, Andreas; Kaczmarczik, Ulrich; Greif, Andreas; Selig, Hanns; von Kampen, Peter; Könemann, Thorben; Lämmerzahl, Claus

    2017-10-01

    Today's and future scientific research programs ask for high quality microgravity conditions of 10-6 g on ground combined with high repetition rates of 100 flights per day or more. Accordingly, a new type of drop tower, the GraviTower Bremen, (GTB), has been suggested and is currently under development. As a first stage of development, a GTB-Prototype (GTB-Pro) has been designed which uses an active rope drive to accelerate a slider/drag shield and an experiment therein on a vertical parabola. During the free fall phase, the experiment is decoupled from the slider by a self-acting Release-Caging-Mechanism (RCM). Our prototype will provide 2.5 s of microgravity for experiments of up to 500 kg for at least 100 times per day. In this article, the final concept of the engineering of the active rope drive and the RCM are presented in detail. Based on extensive simulations aiming at an optimization of the whole system we developed a hydraulic rope drive system with minimized vibrational amplitude and low number of eigenfrequencies. The RCM achieves a very fast (≤ 0.1 s) self-acting release of the experiment from the slider by making use of the dynamics of the hydraulic rope drive. Furthermore, passive hydraulic stop dampers in the RCM build a passive and self-acting recoupling mechanism. This system is optimized for a fast decoupling to compensate for the time limitation posed by the chosen drive technology. The simulations included a comparison of different drive technologies, physical effects like the Coriolis force, and the dynamics of the RCM system itself.

  9. Education kits for fiber optics, optoelectronics, and optical communications

    NASA Astrophysics Data System (ADS)

    Hájek, Martin; Švrček, Miroslav

    2007-04-01

    Our company MIKROKOM, s.r.o. is engaged for many years in development of education equipment and kits for fiber optics, optoelectronics and optical communications. We would like to inform competitors of conference about results of this long-time development. Requirements on education kits and equipment in a modern and dynamic area as is optical communications and fiber optics are quite difficult. The education kits should to clearly introduce students to given issue - the most important physical principles and technical approaches, but it should to introduce also to new and modern technologies, which are quickly changing and developing. On the other hand should be these tools and kits reasonable for the schools. In our paper we would like to describe possible ways of development of this education kits and equipment and present our results of long-time work, which covers very wide range. On the one hand we developed equipment and kits for clear demonstration of physical effects using plastic optical fibers POF, next we prepare kits with a glass fibers, which are the most used fibers in practice and after as much as the kits, which covers broad range of passive and active elements of the optical networks and systems and which makes possible to create complex optical transmission connection. This kind of systems with using corresponding tools and equipment introduce the students to properties, manipulation, measurement and usage of optical fibers, traces and many active and passive components. Furthermore, with using different sorts of optical sources, photodetectors, fiber optics couplers etc., students can get acquainted with all optoelectronics transmission system, which uses different sorts of signals. Special part will be devoted also to effort mentioned before - to implement modern technologies such as e.g. Wavelength Division Multiplex (WDM) into the education kits. Our presentation will inform auditors about development of mentioned education kits and equipment and about their potentials and practical utility at school education.

  10. Active retrieval facilitates across-episode binding by modulating the content of memory.

    PubMed

    Bridge, Donna J; Voss, Joel L

    2014-10-01

    The contents of memory can be updated when information from the current episode is bound with content retrieved from previous episodes. Little is known regarding factors that determine the memory content that is subject to this across-episode binding. We tested whether across-episode binding preferentially occurs for memory content that is currently "active" and identified relevant neural correlates. After studying objects at specific locations on scene backgrounds, subjects performed one of two retrieval tasks for the objects on different scene backgrounds. In an active condition, subjects recalled object locations, whereas subjects merely dragged objects to predetermined locations in a passive condition. Immediately following each object-location retrieval event, a novel face appeared on a blank screen. We hypothesized that the original episode content would be active in memory during face encoding in the active condition, but not in the passive condition (despite seeing the same content in both conditions). A ramification of the active condition would thus be preferential binding of original episode content to novel faces, with no such across-episode binding in the passive condition. Indeed, memory for faces was better when tested on the original background scenes in the active relative to passive condition, indicating that original episode content was bound with the active condition faces, whereas this occurred to a lesser extent for the passive condition faces. Likewise, early-onset negative ERP effects reflected binding of the face to the original episode content in the active but not the passive condition. In contrast, binding in the passive condition occurred only when faces were physically displayed on the original scenes during recognition testing, and a very similar early-onset negative ERP effect signaled binding in this condition. ERP correlates of binding were thus similar for across-episode and within-episode binding (and were distinct from other encoding and retrieval ERP signals in both cases), indicating that active retrieval modulated when binding occurred, not the nature of the binding process per se. These results suggest that active retrieval promotes binding of new information with contents of memory, whereas without active retrieval, these unrelated pieces of information might be bound only when they are physically paired. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Thermal-hydraulic modeling needs for passive reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, J.M.

    1997-07-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered,more » but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.« less

  12. Toward a Theory of Childhood Learning Disorders, Hyperactivity, and Aggression

    PubMed Central

    Mawson, Anthony R.

    2012-01-01

    Learning disorders are often associated with persistent hyperactivity and aggression and are part of a spectrum of neurodevelopmental disorders. A potential clue to understanding these linked phenomena is that physical exercise and passive forms of stimulation are calming, enhance cognitive functions and learning, and are recommended as complementary treatments for these problems. The theory is proposed that hyperactivity and aggression are intense stimulation-seeking behaviors (SSBs) driven by increased brain retinergic activity, and the stimulation thus obtained activates opposing nitrergic systems which inhibit retinergic activity, induce a state of calm, and enhance cognition and learning. In persons with cognitive deficits and associated behavioral disorders, the retinergic system may be chronically overactivated and the nitrergic system chronically underactivated due to environmental exposures occurring pre- and/or postnatally that affect retinoid metabolism or expression. For such individuals, the intensity of stimulation generated by SSB may be insufficient to activate the inhibitory nitrergic system. A multidisciplinary research program is needed to test the model and, in particular, to determine the extent to which applied physical treatments can activate the nitrergic system directly, providing the necessary level of intensity of sensory stimulation to substitute for that obtained in maladaptive and harmful ways by SSB, thereby reducing SSB and enhancing cognitive skills and performance. PMID:23762766

  13. Toward a theory of childhood learning disorders, hyperactivity, and aggression.

    PubMed

    Mawson, Anthony R

    2012-01-01

    Learning disorders are often associated with persistent hyperactivity and aggression and are part of a spectrum of neurodevelopmental disorders. A potential clue to understanding these linked phenomena is that physical exercise and passive forms of stimulation are calming, enhance cognitive functions and learning, and are recommended as complementary treatments for these problems. The theory is proposed that hyperactivity and aggression are intense stimulation-seeking behaviors (SSBs) driven by increased brain retinergic activity, and the stimulation thus obtained activates opposing nitrergic systems which inhibit retinergic activity, induce a state of calm, and enhance cognition and learning. In persons with cognitive deficits and associated behavioral disorders, the retinergic system may be chronically overactivated and the nitrergic system chronically underactivated due to environmental exposures occurring pre- and/or postnatally that affect retinoid metabolism or expression. For such individuals, the intensity of stimulation generated by SSB may be insufficient to activate the inhibitory nitrergic system. A multidisciplinary research program is needed to test the model and, in particular, to determine the extent to which applied physical treatments can activate the nitrergic system directly, providing the necessary level of intensity of sensory stimulation to substitute for that obtained in maladaptive and harmful ways by SSB, thereby reducing SSB and enhancing cognitive skills and performance.

  14. Columbia County Habitat for Humanity Passive Townhomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, Jordan; Alaigh, Kunal; Dadia, Devanshi

    2016-03-18

    Columbia County (New York) Habitat for Humanity built a pair of townhomes to Passive House criteria with the purpose of exploring approaches for achieving Passive House performance and to eventually develop a prototype design for future projects. The project utilized a 2x6 frame wall with a structural insulated panel curtain wall and a ventilated attic over a sealed OSB ceiling air barrier. Mechanical systems include a single head, wall mounted ductless mini-split heat pump in each unit and a heat recovery ventilator. Costs were $26,000 per unit higher for Passive House construction compared with the same home built to ENERGYmore » STAR version 3 specifications, representing about 18% of total construction cost. This report discusses the cost components, energy modeling results and lessons from construction. Two alternative ventilation systems are analyzed: a central system; and, a point-source system with small through-wall units distributed throughout the house. The report includes a design and cost analysis of these two approaches.« less

  15. Building America Case Study: Columbia County Habitat for Humanity Passive Townhomes, Hudson, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-04-01

    Columbia County (New York) Habitat for Humanity built a pair of townhomes to Passive House criteria with the purpose of exploring approaches for achieving Passive House performance and to eventually develop a prototype design for future projects. The project utilized a 2x6 frame wall with a structural insulated panel curtain wall and a ventilated attic over a sealed OSB ceiling air barrier. Mechanical systems include a single head, wall mounted ductless mini-split heat pump in each unit and a heat recovery ventilator. Costs were $26,000 per unit higher for Passive House construction compared with the same home built to ENERGYmore » STAR version 3 specifications, representing about 18 percent of total construction cost. This report discusses the cost components, energy modeling results and lessons from construction. Two alternative ventilation systems are analyzed: a central system; and, a point-source system with small through-wall units distributed throughout the house. The report includes a design and cost analysis of these two approaches.« less

  16. Development of countermeasures for use in space missions. [to adaptive response to space flight

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E. T.; Pool, S.; Huntoon, C. S. L.; Leonard, J. I.

    1985-01-01

    Several measures used to mitigate the inappropriate adaptive responses of space flight are investigated. Weighlessness results in a cephalic fluid shift, which causes a reduction in the circulating blood volume, and removal of weight bearing forces from musculoskeletal systems. The physiological changes that occur from one-g initiated hypovolemia and zero-g initiated fluild shifts are analyzed and compared. The role of barorecptors on the activation of the adrenergic responses that occurs as a result of hypovolemia is studied. The proper selection and administration of in-flight and post flight countermeasures, which include passive and active physical conditioning techniques, drugs, and vitamins are examined.

  17. Fiber Bragg Grating Sensors for Harsh Environments

    PubMed Central

    Mihailov, Stephen J.

    2012-01-01

    Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments. PMID:22438744

  18. Home geriatric physiological measurements.

    PubMed

    Tamura, Toshiyo

    2012-10-01

    In an ageing society, the elderly can be monitored with numerous physiological, physical and passive devices. Sensors can be installed in the home for continuous mobility assistance and unobtrusive disease prevention. This review presents several modern sensors, which improve the quality of life and assist the elderly, disabled people and their caregivers. The main concept of geriatric sensors is that they are capable of providing assistance without limiting or disturbing the subject's daily routine, giving him or her greater comfort, pleasure and well-being. Furthermore, this review includes associated technologies of wearable/implantable monitoring systems and the 'smart-house' project. This review concludes by discussing future challenges of the future aged society.

  19. Chaos-based CAZAC scheme for secure transmission in OFDM-PON

    NASA Astrophysics Data System (ADS)

    Fu, Xiaosong; Bi, Meihua; Zhou, Xuefang; Yang, Guowei; Lu, Yang; Hu, Miao

    2018-01-01

    To effectively resist malicious eavesdropping and performance deterioration, a novel chaos-based secure transmission scheme is proposed to enhance the physical layer security and reduce peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing passive optical network (OFDM-PON). By the randomly extracting operation of common CAZAC values, the specially-designed constant amplitude zero autocorrelation (CAZAC) is created for system encryption and PAPR reduction enhancing the transmission security. This method is verified in {10-Gb/s encrypted OFDM-PON with 20-km fiber transmission. Results show that, compared to common OFDM-PON, our scheme achieves {3-dB PAPR reduction and {1-dB receiver sensitivity improvement.

  20. Reflection Paper on a Ubiquitous English Vocabulary Learning System: Evidence of Active/Passive Attitude vs. Usefulness/Ease-of-Use

    ERIC Educational Resources Information Center

    Lim, Jeff

    2013-01-01

    "A ubiquitous English vocabulary learning system: evidence of active/passive attitudes vs. usefulness/ease-of-use" introduces and develops "Ubiquitous English Vocabulary Learning" (UEFL) system. It introduces to the memorization using the video clips. According to their paper the video clip gives a better chance for students to…

  1. Development of a physically-based planar inductors VHDL-AMS model for integrated power converter design

    NASA Astrophysics Data System (ADS)

    Ammouri, Aymen; Ben Salah, Walid; Khachroumi, Sofiane; Ben Salah, Tarek; Kourda, Ferid; Morel, Hervé

    2014-05-01

    Design of integrated power converters needs prototype-less approaches. Specific simulations are required for investigation and validation process. Simulation relies on active and passive device models. Models of planar devices, for instance, are still not available in power simulator tools. There is, thus, a specific limitation during the simulation process of integrated power systems. The paper focuses on the development of a physically-based planar inductor model and its validation inside a power converter during transient switching. The planar inductor model remains a complex device to model, particularly when the skin, the proximity and the parasitic capacitances effects are taken into account. Heterogeneous simulation scheme, including circuit and device models, is successfully implemented in VHDL-AMS language and simulated in Simplorer platform. The mixed simulation results has been favorably tested and compared with practical measurements. It is found that the multi-domain simulation results and measurements data are in close agreement.

  2. Detecting terrorist nuclear weapons at sea: The 10th door problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaughter, D R

    2008-09-15

    While screening commercial cargo containers for the possible presence of WMD is important and necessary smugglers have successfully exploited the many other vehicles transporting cargo into the US including medium and small vessels at sea. These vessels provide a venue that is currently not screened and widely used. Physics limits that make screening of large vessels prohibitive impractical do not prohibit effective screening of the smaller vessels. While passive radiation detection is probably ineffective at sea active interrogation may provide a successful approach. The physics limits of active interrogation of ships at sea from standoff platforms are discussed. Autonomous platformsmore » that could carry interrogation systems at sea, both airborne and submersible, are summarized and their utilization discussed. An R&D program to investigate the limits of this approach to screening ships at sea is indicated and limitations estimated.« less

  3. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remotemore » power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.« less

  4. A Novel Approach to the Design of Passive Filters in Electric Grids

    NASA Astrophysics Data System (ADS)

    Filho da Costa Castro, José; Lima, Lucas Ramalho; Belchior, Fernando Nunes; Ribeiro, Paulo Fernando

    2016-12-01

    The design of shunt passive filters has been a topic of constant research since the 70's. Due to the lower cost, passive shunt filters are still considered a preferred option. This paper presents a novel approach for the placement and sizing of passive filters through ranking solutions based on the minimization of the total harmonic distortion (THDV) of the supply system rather than one specific bus, without neglecting the individual harmonic distortions. The developed method was implemented using Matlab/Simulink and applied to a test system. The results shown that is possible to minimize the total voltage harmonic distortion using a system approach during the filter selection. Additionally, since the method is mainly based on a heurist approach, it avoids the complexity associated with of use of advanced mathematical tools such as artificial intelligence techniques. The analyses contemplate a sinusoidal voltage utility and also the condition with background distortion utility.

  5. Building America Case Study: Design Guidance for Passive Vents in New Construction Multifamily Buildings, New York, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-02-01

    This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated sourcemore » of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.« less

  6. Wireless SAW passive tag temperature measurement in the collision case

    NASA Astrophysics Data System (ADS)

    Sorokin, A.; Shepeta, A.; Wattimena, M.

    2018-04-01

    This paper describes temperature measurement in the multisensor systems based on the radio-frequency identification SAW passive tags which are currently applied in the electric power systems and the switchgears. Different approaches of temperature measurement in the collision case are shown here. The study is based on the tag model with specific topology, which allows us to determine temperature through the response signal with time-frequency information. This research considers the collision case for several passive tags as the temperature sensors which are placed in the switchgear. This research proposal is to analyze the possibility of using several SAW passive sensors in the collision case. We consider the using of the different typical elements for passive surface acoustic wave tag which applies as an anticollision passive sensor. These wireless sensors based on the surface acoustic waves tags contain specifically coded structures. This topology makes possible the reliability of increasing tag identification and the temperature measurement in the collision case. As the results for this case we illustrate simultaneous measurement of at least six sensors.

  7. Diagnostic value of history-taking and physical examination for assessing meniscal tears of the knee in general practice.

    PubMed

    Wagemakers, Harry Pa; Heintjes, Edith M; Boks, Simone S; Berger, Marjolein Y; Verhaar, Jan An; Koes, Bart W; Bierma-Zeinstra, Sita Ma

    2008-01-01

    To assess the diagnostic value of history-taking and physical examination of meniscal tears in general practice. An observational study determining diagnostic values (sensitivity, specificity, predictive value, and likelihood ratios). General practice. Consecutive patients aged 18 to 65 years with a traumatic knee injury who consulted their general practitioner within 5 weeks after trauma. Participating patients filled out a questionnaire (history-taking) followed by a standardized physical examination. Assessment of meniscal tears was determined by means of magnetic resonance imaging (MRI) and was performed blinded for the results of physical examination and history-taking. Of the 134 patients included in this study, 47 had a meniscal tear. From history-taking, the determinants "age over 40 years," "continuation of activity impossible," and "weight-bearing during trauma" indicated an association with a meniscal tear after multivariate logistic regression analysis, whereas from physical examination only "pain at passive flexion" indicated an association. These associated determinants from history-taking showed some diagnostic value; the positive likelihood ratio (LR+) reached up to 2.0 for age over 40 years, whereas the isolated test pain at passive flexion from physical examination has less diagnostic value, with an LR+ of 1.3. Combining determinants from history-taking and physical examination improved the diagnostic value with a maximum LR+ of 5.8; however, this combination only applied to a limited number of patients. History-taking has some diagnostic value, whereas physical examination did not add any diagnostic value for detecting meniscal tears in general practice.

  8. Acute effects of high- and low-intensity exercise bouts on leukocyte counts.

    PubMed

    Neves, Pedro Rogério Da Silva; Tenório, Thiago Ricardo Dos Santos; Lins, Tatiana Acioli; Muniz, Maria Tereza Cartaxo; Pithon-Curi, Tânia Cristina; Botero, João Paulo; Do Prado, Wagner Luiz

    2015-06-01

    It is widely accepted that physical exercise may bring about changes in the immune system. Even acute bouts of exercise can alter the number and function of leukocytes, but the degree of white blood cell trafficking depends on the intensity and duration of exercise. The aim of this study was to analyze the acute and short-term effects of exercise intensity on leukocyte counts and leukocyte subsets. Nine physically healthy, active young males (21.0 ± 1.9 years) underwent three experimental trials: high exercise intensity [80% peak oxygen consumption (VO 2peak )], low exercise intensity (40% VO 2peak ), and the control condition (no exercise). Blood samples were collected prior to exercise, immediately after exercise, and 2 hours after exercise. Two-way analysis of variance for repeated measures was used to evaluate differences between the trials and the time-points, and to compare times within trials. There was a greater increase in the leukocyte count after high-intensity exercise, compared to the control condition ( p  < 0.01) and low-intensity exercise ( p  < 0.01). This effect was still present 2 hours after passive recovery ( p  < 0.01). When the same participants were submitted to different exercise intensities, the acute and short-term effects of exercise on white blood cells were intensity-dependent immediately after exercise (i.e., lymphocytosis and monocytosis) and 2 hours after passive recovery (i.e., neutrophilia).

  9. Role of passive remote sensors. Sensor System Panel report

    NASA Astrophysics Data System (ADS)

    1982-06-01

    Capabilities of present passive systems are described and the development of passive remote sensing systems for the more abundant tropospheric trace species is recommended. The combination of nadir-viewing spectrometers and solar occultation for tropospheric measurement of those gases having large stratospheric burdens is discussed. Development of a nadir-viewing instrument capable of obtaining continuous spectra in narrower bands is recommended. Gas filter radiometers for species specific measurements and development of a spectral survey instrument are discussed. Further development of aerosol retrieval algorithms, including polarization techniques, for obtaining aerosol thickness and size distributions is advised. Recommendations of specific investigations to be pursued are presented.

  10. Role of passive remote sensors. Sensor System Panel report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Capabilities of present passive systems are described and the development of passive remote sensing systems for the more abundant tropospheric trace species is recommended. The combination of nadir-viewing spectrometers and solar occultation for tropospheric measurement of those gases having large stratospheric burdens is discussed. Development of a nadir-viewing instrument capable of obtaining continuous spectra in narrower bands is recommended. Gas filter radiometers for species specific measurements and development of a spectral survey instrument are discussed. Further development of aerosol retrieval algorithms, including polarization techniques, for obtaining aerosol thickness and size distributions is advised. Recommendations of specific investigations to be pursued are presented.

  11. A Null Space Control of Two Wheels Driven Mobile Manipulator Using Passivity Theory

    NASA Astrophysics Data System (ADS)

    Shibata, Tsuyoshi; Murakami, Toshiyuki

    This paper describes a control strategy of null space motion of a two wheels driven mobile manipulator. Recently, robot is utilized in various industrial fields and it is preferable for the robot manipulator to have multiple degrees of freedom motion. Several studies of kinematics for null space motion have been proposed. However stability analysis of null space motion is not enough. Furthermore, these approaches apply to stable systems, but they do not apply unstable systems. Then, in this research, base of manipulator equips with two wheels driven mobile robot. This robot is called two wheels driven mobile manipulator, which becomes unstable system. In the proposed approach, a control design of null space uses passivity based stabilizing. A proposed controller is decided so that closed-loop system of robot dynamics satisfies passivity. This is passivity based control. Then, control strategy is that stabilizing of the robot system applies to work space observer based approach and null space control while keeping end-effector position. The validity of the proposed approach is verified by simulations and experiments of two wheels driven mobile manipulator.

  12. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vereb, F.; Winters, J.; Schulz, T.

    2012-07-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation inmore » the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)« less

  13. A modern diagnostic approach for automobile systems condition monitoring

    NASA Astrophysics Data System (ADS)

    Selig, M.; Shi, Z.; Ball, A.; Schmidt, K.

    2012-05-01

    An important topic in automotive research and development is the area of active and passive safety systems. In general, it is grouped in active safety systems to prevent accidents and passive systems to reduce the impact of a crash. An example for an active system is ABS while a seat belt tensioner represents the group of passive systems. Current developments in the automotive industry try to link active with passive system components to enable a complete event sequence, beginning with the warning of the driver about a critical situation till the automatic emergency call after an accident. The cross-linking has an impact on the current diagnostic approach, which is described in this paper. Therefore, this contribution introduces a new diagnostic approach for automotive mechatronic systems. The concept is based on monitoring the messages which are exchanged via the automotive communication systems, e.g. the CAN bus. According to the authors' assumption, the messages on the bus are changing between faultless and faulty vehicle condition. The transmitted messages of the sensors and control units are different depending on the condition of the car. First experiments are carried and in addition, the hardware design of a suitable diagnostic interface is presented. Finally, first results will be presented and discussed.

  14. Passive synthetic aperture radar imaging of ground moving targets

    NASA Astrophysics Data System (ADS)

    Wacks, Steven; Yazici, Birsen

    2012-05-01

    In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.

  15. Mechanism of protection from primary bovine viral diarrhea virus infection. I. The effects of dexamethasone.

    PubMed Central

    Shope, R E; Muscoplat, C C; Chen, A W; Johnson, D W

    1976-01-01

    A series of investigations was designed to study the role of cellular immunity and passive antibody in protecting neonatal calves from primary bovine viral diarrhea virus infection. Administration of corticosteroids (dexamethasone) in doses capable of suppressing cellular immunity markedly potentiated systemic bovine viral diarrhea virus infection in calves which lacked bovine viral diarrhea passive neutralizing antibody. Immunosuppressed calves did not form neutralizing antibody to bovine viral diarrhea virus and developed a fatal viremia. Calves with high levels of passive bovine viral diarrhea neutralizing antibodies were protected from the effect of corticosteroids. The results suggest an essential role for humoral passive antibody, but not for cellular immunity, in protection from primary systemic bovine viral diarrhea virus infection in calves. PMID:187303

  16. Performance and economics of residential solar space heating

    NASA Astrophysics Data System (ADS)

    Zehr, F. J.; Vineyard, T. A.; Barnes, R. W.; Oneal, D. L.

    1982-11-01

    The performance and economics of residential solar space heating were studied for various locations in the contiguous United States. Common types of active and passive solar heating systems were analyzed with respect to an average-size, single-family house designed to meet or exceed the thermal requirements of the Department of Housing and Urban Development Minimum Property Standards (HUD-MPS). The solar systems were evaluated in seventeen cities to provide a broad range of climatic conditions. Active systems evaluated consist of air and liquid flat plate collectors with single- and double-glazing: passive systems include Trombe wall, water wall, direct gain, and sunspace systems. The active system solar heating performance was computed using the University of Wisconsin's F-CHART computer program. The Los Alamos Scientific Laboratory's Solar Load Ratio (SLR) method was employed to compute solar heating performance for the passive systems. Heating costs were computed with gas, oil, and electricity as backups and as conventional heating system fuels.

  17. Mechanisms underlying ICU muscle wasting and effects of passive mechanical loading

    PubMed Central

    2012-01-01

    Introduction Critically ill ICU patients commonly develop severe muscle wasting and impaired muscle function, leading to delayed recovery, with subsequent increased morbidity and financial costs, and decreased quality of life for survivors. Critical illness myopathy (CIM) is a frequently observed neuromuscular disorder in ICU patients. Sepsis, systemic corticosteroid hormone treatment and post-synaptic neuromuscular blockade have been forwarded as the dominating triggering factors. Recent experimental results from our group using a unique experimental rat ICU model show that the mechanical silencing associated with CIM is the primary triggering factor. This study aims to unravel the mechanisms underlying CIM, and to evaluate the effects of a specific intervention aiming at reducing mechanical silencing in sedated and mechanically ventilated ICU patients. Methods Muscle gene/protein expression, post-translational modifications (PTMs), muscle membrane excitability, muscle mass measurements, and contractile properties at the single muscle fiber level were explored in seven deeply sedated and mechanically ventilated ICU patients (not exposed to systemic corticosteroid hormone treatment, post-synaptic neuromuscular blockade or sepsis) subjected to unilateral passive mechanical loading for 10 hours per day (2.5 hours, four times) for 9 ± 1 days. Results These patients developed a phenotype considered pathognomonic of CIM; that is, severe muscle wasting and a preferential myosin loss (P < 0.001). In addition, myosin PTMs specific to the ICU condition were observed in parallel with an increased sarcolemmal expression and cytoplasmic translocation of neuronal nitric oxide synthase. Passive mechanical loading for 9 ± 1 days resulted in a 35% higher specific force (P < 0.001) compared with the unloaded leg, although it was not sufficient to prevent the loss of muscle mass. Conclusion Mechanical silencing is suggested to be a primary mechanism underlying CIM; that is, triggering the myosin loss, muscle wasting and myosin PTMs. The higher neuronal nitric oxide synthase expression found in the ICU patients and its cytoplasmic translocation are forwarded as a probable mechanism underlying these modifications. The positive effect of passive loading on muscle fiber function strongly supports the importance of early physical therapy and mobilization in deeply sedated and mechanically ventilated ICU patients. PMID:23098317

  18. Public emergency department: the psychosocial impact on the physical domain of quality of life of nursing professionals

    PubMed Central

    Kogien, Moisés; Cedaro, José Juliano

    2014-01-01

    Objectives to determine the psychosocial factors of work related to harm caused in the physical domain of the quality of life of nursing professionals working in a public emergency department. Method cross-sectional, descriptive study addressing 189 nursing professionals. The Job Stress Scale and the short version of an instrument from the World Health Organization to assess quality of life were used to collect data. Robert Karasek's Demand-Control Model was the reference for the analysis of the psychosocial configuration. The risk for damage was computed with a confidence interval of 95%. Results In regard to the psychosocial environment, the largest proportion of workers reported low psychological demands (66.1%) and low social support (52.4%), while 60.9% of the professionals experienced work situations with a greater potential for harm: high demand job (22.8%) and passive work (38.1%). Conclusions low intellectual discernment, low social support and experiencing a high demand job or a passive job were the main risk factors for damage in the physical domain of quality of life. PMID:24553703

  19. Public emergency department: the psychosocial impact on the physical domain of quality of life of nursing professionals.

    PubMed

    Kogien, Moisés; Cedaro, José Juliano

    2014-01-01

    to determine the psychosocial factors of work related to harm caused in the physical domain of the quality of life of nursing professionals working in a public emergency department. cross-sectional, descriptive study addressing 189 nursing professionals. The Job Stress Scale and the short version of an instrument from the World Health Organization to assess quality of life were used to collect data. Robert Karasek's Demand-Control Model was the reference for the analysis of the psychosocial configuration. The risk for damage was computed with a confidence interval of 95%. In regard to the psychosocial environment, the largest proportion of workers reported low psychological demands (66.1%) and low social support (52.4%), while 60.9% of the professionals experienced work situations with a greater potential for harm: high demand job (22.8%) and passive work (38.1%). low intellectual discernment, low social support and experiencing a high demand job or a passive job were the main risk factors for damage in the physical domain of quality of life.

  20. Real-time maritime scene simulation for ladar sensors

    NASA Astrophysics Data System (ADS)

    Christie, Chad L.; Gouthas, Efthimios; Swierkowski, Leszek; Williams, Owen M.

    2011-06-01

    Continuing interest exists in the development of cost-effective synthetic environments for testing Laser Detection and Ranging (ladar) sensors. In this paper we describe a PC-based system for real-time ladar scene simulation of ships and small boats in a dynamic maritime environment. In particular, we describe the techniques employed to generate range imagery accompanied by passive radiance imagery. Our ladar scene generation system is an evolutionary extension of the VIRSuite infrared scene simulation program and includes all previous features such as ocean wave simulation, the physically-realistic representation of boat and ship dynamics, wake generation and simulation of whitecaps, spray, wake trails and foam. A terrain simulation extension is also under development. In this paper we outline the development, capabilities and limitations of the VIRSuite extensions.

  1. Indoor localization using pedestrian dead reckoning updated with RFID-based fiducials.

    PubMed

    House, Samuel; Connell, Sean; Milligan, Ian; Austin, Daniel; Hayes, Tamara L; Chiang, Patrick

    2011-01-01

    We describe a low-cost wearable system that tracks the location of individuals indoors using commonly available inertial navigation sensors fused with radio frequency identification (RFID) tags placed around the smart environment. While conventional pedestrian dead reckoning (PDR) calculated with an inertial measurement unit (IMU) is susceptible to sensor drift inaccuracies, the proposed wearable prototype fuses the drift-sensitive IMU with a RFID tag reader. Passive RFID tags placed throughout the smart-building then act as fiducial markers that update the physical locations of each user, thereby correcting positional errors and sensor inaccuracy. Experimental measurements taken for a 55 m × 20 m 2D floor space indicate an over 1200% improvement in average error rate of the proposed RFID-fused system over dead reckoning alone.

  2. Electron density measurements in STPX plasmas

    NASA Astrophysics Data System (ADS)

    Clark, Jerry; Williams, R.; Titus, J. B.; Mezonlin, E. D.; Akpovo, C.; Thomas, E.

    2017-10-01

    Diagnostics have been installed to measure the electron density of Spheromak Turbulent Physics Experiment (STPX) plasmas at Florida A. & M. University. An insertable probe, provided by Auburn University, consisting of a combination of a triple-tipped Langmuir probe and a radial array consisting of three ion saturation current / floating potential rings has been installed to measure instantaneous plasma density, temperature and plasma potential. As the ramp-up of the experimental program commences, initial electron density measurements from the triple-probe show that the electron density is on the order of 1019 particles/m3. For a passive measurement, a CO2 interferometer system has been designed and installed for measuring line-averaged densities and to corroborate the Langmuir measurements. We describe the design, calibration, and performance of these diagnostic systems on large volume STPX plasmas.

  3. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System

    PubMed Central

    Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan

    2017-01-01

    In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequency-domain and achieves computational complexity reduction. PMID:28230763

  4. Propagational characteristics in a warm hybrid plasmonic waveguide

    NASA Astrophysics Data System (ADS)

    Mahmodi Moghadam, M.; Shahmansouri, M.; Farokhi, B.

    2017-12-01

    We theoretically analyze the properties of guided modes in a warm planar conductor-gap-dielectric (CGD) system. The latter consists of a high index dielectric, separated from a warm metallic plasma with a low index nano-sized dielectric layer (gap) by using the hydrodynamic model coupled to Maxwell's equations. The effects of thermal pressure on the confinement and the propagation losses of Hybrid Plasmon Polariton (HPP) modes are studied. We found that the thermal effect leads to a reduction in the effective refractive index as well as in the propagation losses of the HPP mode. Furthermore, the cutoff thickness in the warm CGD waveguide is found to be smaller than that in a cold CGD waveguide. The results may be useful in understanding the essential physics of active/passive Plasmonic devices and chip-scale systems.

  5. Separation anxiety: Stress, tension and cytokinesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Krithika; Iglesias, Pablo A., E-mail: pi@jhu.edu; Robinson, Douglas N., E-mail: dnr@jhmi.edu

    Cytokinesis, the physical separation of a mother cell into two daughter cells, progresses through a series of well-defined changes in morphology. These changes involve distinct biochemical and mechanical processes. Here, we review the mechanical features of cells during cytokinesis, discussing both the material properties as well as sources of stresses, both active and passive, which lead to the observed changes in morphology. We also describe a mechanosensory feedback control system that regulates protein localization and shape progression during cytokinesis. -- Highlights: Black-Right-Pointing-Pointer Cytokinesis progresses through three distinct mechanical phases. Black-Right-Pointing-Pointer Cortical tension initially resists deformation of mother cell. Black-Right-Pointing-Pointer Latemore » in cytokinesis, cortical tension provides stress, enabling furrow ingression. Black-Right-Pointing-Pointer A mechanosensory feedback control system regulates cytokinesis.« less

  6. Influence of IR sensor technology on the military and civil defense

    NASA Astrophysics Data System (ADS)

    Becker, Latika

    2006-02-01

    Advances in basic infrared science and developments in pertinent technology applications have led to mature designs being incorporated in civil as well as military area defense systems. Military systems include both tactical and strategic, and civil area defense includes homeland security. Technical challenges arise in applying infrared sensor technology to detect and track targets for space and missile defense. Infrared sensors are valuable due to their passive capability, lower mass and power consumption, and their usefulness in all phases of missile defense engagements. Nanotechnology holds significant promise in the near future by offering unique material and physical properties to infrared components. This technology is rapidly developing. This presentation will review the current IR sensor technology, its applications, and future developments that will have an influence in military and civil defense applications.

  7. Development of a 32 Inch Diameter Levitated Ducted Fan Conceptual Design

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher a.; Solano, Paul A.; Thompson, William K.; Vrnak, Daniel R.

    2006-01-01

    The NASA John H. Glenn Research Center has developed a revolutionary 32 in. diameter Levitated Ducted Fan (LDF) conceptual design. The objective of this work is to develop a viable non-contact propulsion system utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help to reduce harmful emissions, reduce the Nation s dependence on fossil fuels, and mitigate many of the concerns and limitations encountered in conventional aircraft propulsors. The physical layout consists of a ducted fan drum rotor with blades attached at the outer diameter and supported by a stress tuner ring at the inner diameter. The rotor is contained within a stator. This concept exploits the unique physical dimensions and large available surface area to optimize a custom, integrated, electromagnetic system that provides both the levitation and propulsion functions. The rotor is driven by modulated electromagnetic fields between the rotor and the stator. When set in motion, the time varying magnetic fields interact with passive coils in the stator assembly to produce repulsive forces between the stator and the rotor providing magnetic suspension. LDF can provide significant improvements in aviation efficiency, reliability, and safety, and has potential application in ultra-efficient motors, computers, and space power systems.

  8. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions with Climate Data Record Applications

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2011-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201 I. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.

  9. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2012-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201l. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record -- provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica--parameters such as surface temperature.

  10. An islanding detection methodology combining decision trees and Sandia frequency shift for inverter-based distributed generations

    DOE PAGES

    Azim, Riyasat; Li, Fangxing; Xue, Yaosuo; ...

    2017-07-14

    Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less

  11. An islanding detection methodology combining decision trees and Sandia frequency shift for inverter-based distributed generations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azim, Riyasat; Li, Fangxing; Xue, Yaosuo

    Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less

  12. Upgrade to the Birmingham Irradiation Facility

    NASA Astrophysics Data System (ADS)

    Dervan, P.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Wilson, J.; Baca, M.

    2015-10-01

    The Birmingham Irradiation Facility was developed in 2013 at the University of Birmingham using the Medical Physics MC40 cyclotron. It can achieve High Luminosity LHC (HL-LHC) fluences of 1015 (1 MeV neutron equivalent (neq)) cm-2 in 80 s with proton beam currents of 1 μA and so can evaluate effectively the performance and durability of detector technologies and new components to be used for the HL-LHC. Irradiations of silicon sensors and passive materials can be carried out in a temperature controlled cold box which moves continuously through the homogenous beamspot. This movement is provided by a pre-configured XY-axis Cartesian robot scanning system. In 2014 the cooling system and cold box were upgraded from a recirculating glycol chiller system to a liquid nitrogen evaporative system. The new cooling system achieves a stable temperature of -50 °C in 30 min and aims to maintain sub-0 °C temperatures on the sensors during irradiations. This paper reviews the design, development, commissioning and performance of the new cooling system.

  13. A Magnetic Field Response Recorder: A New Tool for Measurement Acquisition

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2006-01-01

    A magnetic field response recorder was developed to facilitate a measurement acquisition method that uses magnetic fields to power and to interrogate all sensors. Sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic field responses when electrically activated by oscillating magnetic fields. When electrically activated, the sensor's magnetic field response attributes (frequency, amplitude and bandwidth) correspond to the one or more physical states that each sensor measures. The response recorder makes it possible to simultaneously measure two unrelated physical properties using this class of sensors. The recorder is programmable allowing it to analyze one or more response attributes simultaneously. A single sensor design will be used to demonstrate that the acquisition method and the sensor example can be used to for all phases of a component's life from manufacturing to damage that can destroy it.

  14. The Goddard Profiling Algorithm (GPROF): Description and Current Applications

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Yang, Song; Stout, John E.; Grecu, Mircea

    2004-01-01

    Atmospheric scientists use different methods for interpreting satellite data. In the early days of satellite meteorology, the analysis of cloud pictures from satellites was primarily subjective. As computer technology improved, satellite pictures could be processed digitally, and mathematical algorithms were developed and applied to the digital images in different wavelength bands to extract information about the atmosphere in an objective way. The kind of mathematical algorithm one applies to satellite data may depend on the complexity of the physical processes that lead to the observed image, and how much information is contained in the satellite images both spatially and at different wavelengths. Imagery from satellite-borne passive microwave radiometers has limited horizontal resolution, and the observed microwave radiances are the result of complex physical processes that are not easily modeled. For this reason, a type of algorithm called a Bayesian estimation method is utilized to interpret passive microwave imagery in an objective, yet computationally efficient manner.

  15. System and method of DPF passive enhancement through powertrain torque-speed management

    DOEpatents

    Sujan, Vivek A.; Frazier, Timothy R.

    2015-11-24

    This disclosure provides a method and system for determining recommendations for vehicle operation that reduce soot production in view of a diesel particulate filter (DPF) of an exhaust aftertreatment system. Recommendations generated can reduce excessive particulate matter (PM) production during transient engine events and provide for operating conditions favorable for passive regeneration. In this way, less frequent active regeneration of the DPF is needed and/or more opportunities are provided for passive regeneration. The system and method can utilize location and terrain information to anticipate and project a window of operation in view of reducing soot production and soot loading of the DPF, or provide the operator with instruction when such opportunities are present or will soon be encountered.

  16. Research on LQR optimal control method of active engine mount

    NASA Astrophysics Data System (ADS)

    Huan, Xie; Yu, Duan

    2018-04-01

    In this paper, the LQR control method is applied to the active mount of the engine, and a six-cylinder engine excitation model is established. Through the joint simulation of AMESim and MATLAB, the vibration isolation performance of the active mount system and the passive mount system is analyzed. Excited by the multi-engine operation, the simulation results of the vertical displacement, acceleration and dynamic deflection of the vehicle body show that the vibration isolation capability of the active mount system is superior to that of the passive mount system. It shows that compared with the passive mount, LQR active mount can greatly improve the vibration isolation performance, which proves the feasibility and effectiveness of the LQR control method.

  17. Local-Level Prognostics Health Management Systems Framework for Passive AdvSMR Components. Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Roy, Surajit; Hirt, Evelyn H.

    2014-09-12

    This report describes research results to date in support of the integration and demonstration of diagnostics technologies for prototypical AdvSMR passive components (to establish condition indices for monitoring) with model-based prognostics methods. The focus of the PHM methodology and algorithm development in this study is at the localized scale. Multiple localized measurements of material condition (using advanced nondestructive measurement methods), along with available measurements of the stressor environment, enhance the performance of localized diagnostics and prognostics of passive AdvSMR components and systems.

  18. A Non-Intrusive Cyber Physical Social Sensing Solution to People Behavior Tracking: Mechanism, Prototype, and Field Experiments.

    PubMed

    Jia, Yunjian; Zhou, Zhenyu; Chen, Fei; Duan, Peng; Guo, Zhen; Mumtaz, Shahid

    2017-01-13

    Tracking people's behaviors is a main category of cyber physical social sensing (CPSS)-related people-centric applications. Most tracking methods utilize camera networks or sensors built into mobile devices such as global positioning system (GPS) and Bluetooth. In this article, we propose a non-intrusive wireless fidelity (Wi-Fi)-based tracking method. To show the feasibility, we target tracking people's access behaviors in Wi-Fi networks, which has drawn a lot of interest from the academy and industry recently. Existing methods used for acquiring access traces either provide very limited visibility into media access control (MAC)-level transmission dynamics or sometimes are inflexible and costly. In this article, we present a passive CPSS system operating in a non-intrusive, flexible, and simplified manner to overcome above limitations. We have implemented the prototype on the off-the-shelf personal computer, and performed real-world deployment experiments. The experimental results show that the method is feasible, and people's access behaviors can be correctly tracked within a one-second delay.

  19. Numerical modeling of the fetal blood flow in the placental circulatory system

    NASA Astrophysics Data System (ADS)

    Shannon, Alexander; Gallucci, Sergio; Mirbod, Parisa

    2015-11-01

    The placenta is a unique organ of exchange between the growing fetus and the mother. It incorporates almost all functions of the adult body, acting as the fetal lung, digestive and immune systems, to mention a few. The exchange of oxygen and nutrients takes place at the surface of the villous tree. Using an idealized geometry of the fetal villous trees in the mouse placenta, in this study we performed 3D computational analysis of the unsteady fetal blood flow, gas, and nutrient transport over the chorionic plate. The fetal blood was treated as an incompressible Newtonian fluid, and the oxygen and nutrient were treated as a passive scalar dissolved in blood plasma. The flow was laminar, and a commercial CFD code (COMSOL Multiphysics) has been used for the simulation. COMSOL has been selected because it is multi-physics FEM software that allows for the seamless coupling of different physics represented by partial differential equations. The results clearly illustrate that the specific branching pattern and the in-plane curvature of the fetal villous trees affect the delivery of blood, gas and nutrient transport to the whole placenta.

  20. A Non-Intrusive Cyber Physical Social Sensing Solution to People Behavior Tracking: Mechanism, Prototype, and Field Experiments

    PubMed Central

    Jia, Yunjian; Zhou, Zhenyu; Chen, Fei; Duan, Peng; Guo, Zhen; Mumtaz, Shahid

    2017-01-01

    Tracking people’s behaviors is a main category of cyber physical social sensing (CPSS)-related people-centric applications. Most tracking methods utilize camera networks or sensors built into mobile devices such as global positioning system (GPS) and Bluetooth. In this article, we propose a non-intrusive wireless fidelity (Wi-Fi)-based tracking method. To show the feasibility, we target tracking people’s access behaviors in Wi-Fi networks, which has drawn a lot of interest from the academy and industry recently. Existing methods used for acquiring access traces either provide very limited visibility into media access control (MAC)-level transmission dynamics or sometimes are inflexible and costly. In this article, we present a passive CPSS system operating in a non-intrusive, flexible, and simplified manner to overcome above limitations. We have implemented the prototype on the off-the-shelf personal computer, and performed real-world deployment experiments. The experimental results show that the method is feasible, and people’s access behaviors can be correctly tracked within a one-second delay. PMID:28098772

  1. Self-reported knee joint instability is related to passive mechanical stiffness in medial knee osteoarthritis.

    PubMed

    Creaby, Mark W; Wrigley, Tim V; Lim, Boon-Whatt; Hinman, Rana S; Bryant, Adam L; Bennell, Kim L

    2013-11-20

    Self-reported knee joint instability compromises function in individuals with medial knee osteoarthritis and may be related to impaired joint mechanics. The purpose of this study was to evaluate the relationship between self-reported instability and the passive varus-valgus mechanical behaviour of the medial osteoarthritis knee. Passive varus-valgus angular laxity and stiffness were assessed using a modified isokinetic dynamometer in 73 participants with medial tibiofemoral osteoarthritis. All participants self-reported the absence or presence of knee instability symptoms and the degree to which instability affected daily activity on a 6-point likert scale. Forward linear regression modelling identified a significant inverse relationship between passive mid-range knee stiffness and symptoms of knee instability (r = 0.27; P < 0.05): reduced stiffness was indicative of more severe instability symptoms. Angular laxity and end-range stiffness were not related to instability symptoms (P > 0.05). Conceivably, a stiffer passive system may contribute toward greater joint stability during functional activities. Importantly however, net joint stiffness is influenced by both active and passive stiffness, and thus the active neuromuscular system may compensate for reduced passive stiffness in order to maintain joint stability. Future work is merited to examine the role of active stiffness in symptomatic joint stability.

  2. Self-reported knee joint instability is related to passive mechanical stiffness in medial knee osteoarthritis

    PubMed Central

    2013-01-01

    Background Self-reported knee joint instability compromises function in individuals with medial knee osteoarthritis and may be related to impaired joint mechanics. The purpose of this study was to evaluate the relationship between self-reported instability and the passive varus-valgus mechanical behaviour of the medial osteoarthritis knee. Methods Passive varus-valgus angular laxity and stiffness were assessed using a modified isokinetic dynamometer in 73 participants with medial tibiofemoral osteoarthritis. All participants self-reported the absence or presence of knee instability symptoms and the degree to which instability affected daily activity on a 6-point likert scale. Results Forward linear regression modelling identified a significant inverse relationship between passive mid-range knee stiffness and symptoms of knee instability (r = 0.27; P < 0.05): reduced stiffness was indicative of more severe instability symptoms. Angular laxity and end-range stiffness were not related to instability symptoms (P > 0.05). Conclusions Conceivably, a stiffer passive system may contribute toward greater joint stability during functional activities. Importantly however, net joint stiffness is influenced by both active and passive stiffness, and thus the active neuromuscular system may compensate for reduced passive stiffness in order to maintain joint stability. Future work is merited to examine the role of active stiffness in symptomatic joint stability. PMID:24252592

  3. Control issues of microgravity vibration isolation

    NASA Technical Reports Server (NTRS)

    Knospe, Carl R.; Hampton, Richard D.

    1991-01-01

    Active vibration isolation systems contemplated for microgravity space experiments may be designed to reach given performance requirements in a variety of ways. An analogy to passive isolation systems proves to be illustrative but lacks the flexibility as a design tool of a control systems approach and may lead to poor design. Control theory as applied to vibration isolation is reviewed and passive analogies discussed.

  4. ISS Expedition 18 Fluids and Combustion Facility (FCF) Combustion Integration Rack (CIR) Passive Rack Isolation System (

    NASA Image and Video Library

    2009-01-05

    ISS018-E-017796 (5 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works on the Fluids and Combustion Facility (FCF) Combustion Integration Rack (CIR) Passive Rack Isolation System (PaRIS) in the Destiny laboratory of the International Space Station.

  5. J3Gen: A PRNG for Low-Cost Passive RFID

    PubMed Central

    Melià-Seguí, Joan; Garcia-Alfaro, Joaquin; Herrera-Joancomartí, Jordi

    2013-01-01

    Pseudorandom number generation (PRNG) is the main security tool in low-cost passive radio-frequency identification (RFID) technologies, such as EPC Gen2. We present a lightweight PRNG design for low-cost passive RFID tags, named J3Gen. J3Gen is based on a linear feedback shift register (LFSR) configured with multiple feedback polynomials. The polynomials are alternated during the generation of sequences via a physical source of randomness. J3Gen successfully handles the inherent linearity of LFSR based PRNGs and satisfies the statistical requirements imposed by the EPC Gen2 standard. A hardware implementation of J3Gen is presented and evaluated with regard to different design parameters, defining the key-equivalence security and nonlinearity of the design. The results of a SPICE simulation confirm the power-consumption suitability of the proposal. PMID:23519344

  6. Enhanced multisensory integration and motor reactivation after active motor learning of audiovisual associations.

    PubMed

    Butler, Andrew J; James, Thomas W; James, Karin Harman

    2011-11-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent perception and recognition of associations among multiple senses has not been investigated. Twenty participants were included in an fMRI study that explored the impact of active motor learning on subsequent processing of unisensory and multisensory stimuli. Participants were exposed to visuo-motor associations between novel objects and novel sounds either through self-generated actions on the objects or by observing an experimenter produce the actions. Immediately after exposure, accuracy, RT, and BOLD fMRI measures were collected with unisensory and multisensory stimuli in associative perception and recognition tasks. Response times during audiovisual associative and unisensory recognition were enhanced by active learning, as was accuracy during audiovisual associative recognition. The difference in motor cortex activation between old and new associations was greater for the active than the passive group. Furthermore, functional connectivity between visual and motor cortices was stronger after active learning than passive learning. Active learning also led to greater activation of the fusiform gyrus during subsequent unisensory visual perception. Finally, brain regions implicated in audiovisual integration (e.g., STS) showed greater multisensory gain after active learning than after passive learning. Overall, the results show that active motor learning modulates the processing of multisensory associations.

  7. Evaluation of Vibration Response Imaging (VRI) Technique and Difference in VRI Indices Among Non-Smokers, Active Smokers, and Passive Smokers

    PubMed Central

    Jiang, Hongying; Chen, Jichao; Cao, Jinying; Mu, Lan; Hu, Zhenyu; He, Jian

    2015-01-01

    Background Vibration response imaging (VRI) is a new technology for lung imaging. Active smokers and non-smokers show differences in VRI findings, but no data are available for passive smokers. The aim of this study was to evaluate the use of VRI and to assess the differences in VRI findings among non-smokers, active smokers, and passive smokers. Material/Methods Healthy subjects (n=165: 63 non-smokers, 56 active smokers, and 46 passive smokers) with normal lung function were enrolled. Medical history, physical examination, lung function test, and VRI were performed for all subjects. Correlation between smoking index and VRI scores (VRIS) were performed. Results VRI images showed progressive and regressive stages representing the inspiratory and expiratory phases bilaterally in a vertical and synchronized manner in non-smokers. Vibration energy curves with low expiratory phase and plateau were present in 6.35% and 3.17%, respectively, of healthy non-smokers, 41.07% and 28.60% of smokers, and 39.13% and 30.43% of passive smokers, respectively. The massive energy peak in the non-smokers, smokers, and passive-smokers was 1.77±0.27, 1.57±0.29, and 1.66±0.33, respectively (all P<0.001). A weak but positive correlation was observed between VRIS and smoking index. Conclusions VRI can intuitively show the differences between non-smokers and smokers. VRI revealed that passive smoking can also harm the lungs. VRI could be used to visually persuade smokers to give up smoking. PMID:26212715

  8. Computer program system for dynamic simulation and stability analysis of passive and actively controlled spacecraft. Volume 1. Theory

    NASA Technical Reports Server (NTRS)

    Bodley, C. S.; Devers, D. A.; Park, C. A.

    1975-01-01

    A theoretical development and associated digital computer program system is presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system may be used to investigate total system dynamic characteristics including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. Additionally, the program system may be used for design of attitude control systems and for evaluation of total dynamic system performance including time domain response and frequency domain stability analyses. Volume 1 presents the theoretical developments including a description of the physical system, the equations of dynamic equilibrium, discussion of kinematics and system topology, a complete treatment of momentum wheel coupling, and a discussion of gravity gradient and environmental effects. Volume 2, is a program users' guide and includes a description of the overall digital program code, individual subroutines and a description of required program input and generated program output. Volume 3 presents the results of selected demonstration problems that illustrate all program system capabilities.

  9. Simulation of Rate-Related (Dead-Time) Losses In Passive Neutron Multiplicity Counting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, L.G.; Norman, P.I.; Leadbeater, T.W.

    Passive Neutron Multiplicity Counting (PNMC) based on Multiplicity Shift Register (MSR) electronics (a form of time correlation analysis) is a widely used non-destructive assay technique for quantifying spontaneously fissile materials such as Pu. At high event rates, dead-time losses perturb the count rates with the Singles, Doubles and Triples being increasingly affected. Without correction these perturbations are a major source of inaccuracy in the measured count rates and assay values derived from them. This paper presents the simulation of dead-time losses and investigates the effect of applying different dead-time models on the observed MSR data. Monte Carlo methods have beenmore » used to simulate neutron pulse trains for a variety of source intensities and with ideal detection geometry, providing an event by event record of the time distribution of neutron captures within the detection system. The action of the MSR electronics was modelled in software to analyse these pulse trains. Stored pulse trains were perturbed in software to apply the effects of dead-time according to the chosen physical process; for example, the ideal paralysable (extending) and non-paralysable models with an arbitrary dead-time parameter. Results of the simulations demonstrate the change in the observed MSR data when the system dead-time parameter is varied. In addition, the paralysable and non-paralysable models of deadtime are compared. These results form part of a larger study to evaluate existing dead-time corrections and to extend their application to correlated sources. (authors)« less

  10. Lifestyle as an important factor in control of overweight and obesity among schoolchildren from the rural environment.

    PubMed

    Sygit, Katarzyna; Kołłątaj, Witold; Goździewska, Małgorzta; Sygit, Marian; Kołłątaj, Barbara; Karwat, Irena Dorota

    2012-01-01

    Lifestyle of an individual is responsible for sixty percent of his/her state of health. Many studies of this problem indicate that in the style of life of schoolchildren, anti-health behaviours dominate over health promoting behaviours. The objective of the presented study was recognition of the lifestyle of the rural adolescents with overweight and obesity. The study covered adolescents aged 15-19, living in the rural environments of the West Pomeranian Region. Finally, the analysis covered 2,165 schoolchildren, and was performed with the use of a self-designed questionnaire form and the BMI was applied. The study showed that overweight occurred more often in the group of examined girls than boys, while obesity was twice as frequent among boys than among girls. Overweight schoolchildren (35.1%) had an adequate diet, while those obese--inadequate (78.3%). In the group of schoolchildren with overweight, passive leisure prevailed over active forms of leisure, 83.8% and 16.2%, respectively. Passive leisure was also dominant among obese respondents. Among as many as 81.8% of schoolchildren with overweight, physical activity was mediocre, while only 8.1% of them were active. The highest percentage of respondents with obesity were totally inactive physically. Obese schoolchildren relatively often experienced stressful situations. It is an alarming fact that both overweight and obese schoolchildren relatively often used psychoactive substances. A considerable number of respondents with overweight and obesity applied an adequate diet, preferred passive forms of leisure, experienced stressful situations, were characterized by low physical activity, and systematically used psychoactive substances.

  11. Gravitaxis of Euglena gracilis depends only partially on passive buoyancy

    NASA Astrophysics Data System (ADS)

    Richter, Peter R.; Schuster, Martin; Lebert, Michael; Streb, Christine; Häder, Donat-Peter

    In darkness, the unicellular freshwater flagellate Euglena gracilis shows a pronounced negative gravitactic behavior, and the cells swim actively upward in the water column. Up to now it was unclear whether this behavior is based on a passive (physical) alignment mechanism (e.g., buoyancy due to a fore-aft asymmetry of the cell body) or on an active physiological mechanism. A sounding rocket experiment was performed in which the effect of sub-1g-accelerations (0.05, 0.08, 0.12, and 0.2g) on untreated living cells and immobilized (fixation with liquid nitrogen) cells was observed. By means of computerized image analysis the angles of the cells long axis with respect to the acceleration vector were analyzed in order to calculate and compare the reorientation kinetics of the immobilized cells versus that of the controls. In both groups, the reorientation kinetics depended on the dose, but the reorientation of the living cells was about five times faster than that of the immobilized cells. This indicates that in young cells gravitaxis can be explained by a physical mechanism only to a small extend. In older cultures, in which the cells often have a drop shaped cell body, the physical reorientation is considerably faster, and a more pronounced influence of passive alignment caused by fore/aft asymmetry (drag-gravity model) can not be excluded. In addition to these results, Euglena gracilis cells seem to respond very sensitively to small accelerations when they are applied after a longer microgravity period. The data indicate that gravitactic orientation occurred at an acceleration as low as 0.05g.

  12. Patient-Reported Outcomes Associated With Use of Physical Therapist Services by Older Adults With a New Visit for Back Pain

    PubMed Central

    Sherman, Karen J.; Heagerty, Patrick J.; Mock, Charles; Jarvik, Jeffrey G.

    2015-01-01

    Background Among older adults, it is not clear how different types or amounts of physical therapy may be associated with improvements in back pain and function. Objective The study objective was to investigate the association between types or amounts of physical therapist services and 1-year outcomes among older adults with back pain. Design This was a prospective cohort study. Methods A total of 3,771 older adults who were enrolled in a cohort study and who had a new primary care visit for back pain participated. Physical therapy use was ascertained from electronic health records. The following patient-reported outcomes were collected over 12 months: back-related disability (Roland-Morris Disability Questionnaire) and back and leg pain intensity (11-point numerical rating scale). Marginal structural models were used to estimate average effects of different amounts of physical therapy use on disability and pain for all types of physical therapy and for active, passive, and manual physical therapy. Results A total of 1,285 participants (34.1%) received some physical therapy. There was no statistically significant gradient in relationships between physical therapy use and back-related disability score. The use of passive or manual therapy was not consistently associated with pain outcomes. Higher amounts of active physical therapy were associated with decreased back and leg pain and increased odds of clinically meaningful improvements in back and leg pain relative to results obtained with no active physical therapy. Limitations The fact that few participants had high amounts of physical therapy use limited precision and the ability to test for nonlinear relationships for the amount of use. Conclusions Higher amounts of active physical therapy were most consistently related to the greatest improvements in pain intensity; however, as with all observational studies, the results must be interpreted with caution. PMID:25278334

  13. Analysis of maxillary arch force/couple systems for a simulated high canine malocclusion: Part 2. Elastic ligation.

    PubMed

    Fok, Jonathan; Toogood, Roger W; Badawi, Hisham; Carey, Jason P; Major, Paul W

    2011-11-01

    To better understand the mechanics of bracket/archwire interaction through analysis of force and couple distribution along the maxillary arch using elastic ligation and to compare these results with passive ligation. An orthodontic simulator was used to study a high canine malocclusion. Force and couple distributions produced by elastic ligation and round wire were measured. Forces and couples were referenced to the center of resistance of each tooth. Tests were repeated for 12 bracket sets with 12 wires per set. Data were compared with those derived from similar tests for passive ligation. Propagation of the force/couple systems around the arch using elastic ligation was extensive. Elastic ligation produced significantly more resistance to sliding, contributing to higher forces and couples at the center of resistance than were observed for passive ligation. The results of this study suggest some potential mechanical advantages of passive over elastic ligation. In particular, limited propagation around the arch in passive ligation reduces the occurrence of unwanted force/couple systems compared with elastic ligation. These advantages may not transfer to a clinical setting because of the conditions of the tests; additional testing would be required to determine whether these advantages can be generalized.

  14. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  15. Cyber-Physical System Security With Deceptive Virtual Hosts for Industrial Control Networks

    DOE PAGES

    Vollmer, Todd; Manic, Milos

    2014-05-01

    A challenge facing industrial control network administrators is protecting the typically large number of connected assets for which they are responsible. These cyber devices may be tightly coupled with the physical processes they control and human induced failures risk dire real-world consequences. Dynamic virtual honeypots are effective tools for observing and attracting network intruder activity. This paper presents a design and implementation for self-configuring honeypots that passively examine control system network traffic and actively adapt to the observed environment. In contrast to prior work in the field, six tools were analyzed for suitability of network entity information gathering. Ettercap, anmore » established network security tool not commonly used in this capacity, outperformed the other tools and was chosen for implementation. Utilizing Ettercap XML output, a novel four-step algorithm was developed for autonomous creation and update of a Honeyd configuration. This algorithm was tested on an existing small campus grid and sensor network by execution of a collaborative usage scenario. Automatically created virtual hosts were deployed in concert with an anomaly behavior (AB) system in an attack scenario. Virtual hosts were automatically configured with unique emulated network stack behaviors for 92% of the targeted devices. The AB system alerted on 100% of the monitored emulated devices.« less

  16. The cognitive-behavioral system of leadership: cognitive antecedents of active and passive leadership behaviors

    PubMed Central

    Dóci, Edina; Stouten, Jeroen; Hofmans, Joeri

    2015-01-01

    In the present paper, we propose a cognitive-behavioral understanding of active and passive leadership. Building on core evaluations theory, we offer a model that explains the emergence of leaders’ active and passive behaviors, thereby predicting stable, inter-individual, as well as variable, intra-individual differences in both types of leadership behavior. We explain leaders’ stable behavioral tendencies by their fundamental beliefs about themselves, others, and the world (core evaluations), while their variable, momentary behaviors are explained by the leaders’ momentary appraisals of themselves, others, and the world (specific evaluations). By introducing interactions between the situation the leader enters, the leader’s beliefs, appraisals, and behavior, we propose a comprehensive system of cognitive mechanisms that underlie active and passive leadership behavior. PMID:26441721

  17. Methodology for the passive control of orbital inclination and mean local time to meet sun-synchronous orbit requirements

    NASA Technical Reports Server (NTRS)

    Folta, David; Kraft, Lauri

    1992-01-01

    The mean local time (MLT) of equatorial crossing of a sun-synchronous Earth-observing spacecraft orbit drifts with inclination; therefore, in order to maintain the MLT, the inclination must be controlled. Inclination may be maintained actively by costly out-of-plane maneuvers or passively by using the perturbing forces due to the sun and moon. This paper examines the passive control approach using the Earth Observing System (EOS) as a basis for the discussion. Applications to Landsat and National Oceanic and Atmospheric Administration (NOAA) spacecraft are presented for comparison. This technique is especially beneficial to spacecraft lacking propulsion systems. The results indicate that passive inclination control appears to be the preferable maintenance method when spacecraft weight restrictions, operational considerations, and scientific requirements apply.

  18. Adolescents who engage in active school transport are also more active in other contexts: A space-time investigation.

    PubMed

    Stewart, Tom; Duncan, Scott; Schipperijn, Jasper

    2017-01-01

    Although active school travel (AST) is important for increasing moderate-to-vigorous physical activity (MVPA), it is unclear how AST is related to context-specific physical activity and non-school travel. This study investigated how school travel is related to physical activity and travel behaviours across time- and space-classified domains. A total of 196 adolescents wore a Global Positioning System receiver and an accelerometer for 7 days. All data were classified into one of four domains: home, school, transport, or leisure. Generalized linear mixed models were used to compare domain-specific PA and non-school trips between active and passive school travellers. Active travellers accumulated 13 and 14 more min of MVPA on weekdays and weekend days, respectively. They also spent 15min less time in vehicular travel during non-school trips, and accrued an additional 9min of MVPA while walking on weekend days. However, those with no AST still achieved most of their MVPA in the transport domain. AST is related to out-of-school physical activity and transportation, but transport is also important for those who do not use AST. As such, future studies should consider overall mobility and destinations other than school when assessing travel and physical activity behaviours. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Ultrasonographic Findings of the Shoulder in Patients with Rheumatoid Arthritis and Comparison with Physical Examination

    PubMed Central

    Kim, Su Ho; Seo, Young-Il

    2007-01-01

    The objectives of this study were: 1) to identify the ultrasonographic (US) abnormalities and 2) to compare the findings of physical examination with US findings in rheumatoid arthritis (RA) patients with shoulder pain. We studied 30 RA patients. Physical examination was performed systemically as follows: 1) area of tenderness; 2) range of passive and active shoulder motion; 3) impingement tests; 4) maneuvers for determining the location of the tendon lesions. US investigations included the biceps, the supraspinatus, infraspinatus, and subscapularis tendons; the subacromial-subdeltoid bursa; and the glenohumeral and acromioclavicular joints. Thirty RA patients with 35 painful and 25 non-painful shoulders were examined. The range of motion affected the most by shoulder pain was abduction. The most frequent US finding of shoulder joint was effusion in the long head of the biceps tendon. Among the rotator cuff tendons, subscapularis was the most frequently involved. Tendon tear was also common among non-painful shoulders. Physical examination used for the diagnosis of shoulder pain had low sensitivity and specificity for detecting abnormalities in the rheumatoid shoulder joint. In conclusion, US abnormalities showed frequent tendon tears in our RA patients. Physical examination had low sensitivity and specificity for detecting rotator cuff tear in the rheumatoid shoulder joint. PMID:17728506

  20. Laser heterodyne detection techniques. [for atmospheric monitoring applications

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.

    1976-01-01

    The principles of heterodyne radiometry are examined, taking into account thermal radiation, the Dicke microwave radiometer, photomixing in the infrared, and signal-to-noise considerations. The passive heterodyne radiometer is considered and a description is presented of heterodyne techniques in active monitoring systems. Attention is given to gas emissivities in the infrared, component requirements, experimental heterodyne detection of gases, a comparison of the passive heterodyne radiometer with the Michelson interferometer-spectrometer, airborne monitoring applications, turbulence effects on passive heterodyne radiometry, sensitivity improvements with heterodyning, atmosphere-induced degradation of bistatic system performance, pollutant detection experiments with a bistatic system, and the airborne laser absorption spectrometer. Future improvements in spectral flexibility are also discussed.

  1. Physical and electrical characteristics of Si/SiC quantum dot superlattice solar cells with passivation layer of aluminum oxide

    NASA Astrophysics Data System (ADS)

    Tsai, Yi-Chia; Li, Yiming; Samukawa, Seiji

    2017-12-01

    In this work, we numerically simulate the silicon (Si)/silicon carbide (SiC) quantum dot superlattice solar cell (SiC-QDSL) with aluminum oxide (Al2O3-QDSL) passivation. By exploiting the passivation layer of Al2O3, the high photocurrent and the conversion efficiency can be achieved without losing the effective bandgap. Based on the two-photon transition mechanism in an AM1.5 and a one sun illumination, the simulated short-circuit current (J sc) of 4.77 mA cm-2 is very close to the experimentally measured 4.75 mA cm-2, which is higher than those of conventional SiC-QDSLs. Moreover, the efficiency fluctuation caused by the structural variation is less sensitive by using the passivation layer. A high conversion efficiency of 17.4% is thus estimated by adopting the QD’s geometry used in the experiment; and, it can be further boosted by applying a hexagonal QD formation with an inter-dot spacing of 0.3 nm.

  2. Physical and electrical characteristics of Si/SiC quantum dot superlattice solar cells with passivation layer of aluminum oxide.

    PubMed

    Tsai, Yi-Chia; Li, Yiming; Samukawa, Seiji

    2017-12-01

    In this work, we numerically simulate the silicon (Si)/silicon carbide (SiC) quantum dot superlattice solar cell (SiC-QDSL) with aluminum oxide (Al 2 O 3 -QDSL) passivation. By exploiting the passivation layer of Al 2 O 3 , the high photocurrent and the conversion efficiency can be achieved without losing the effective bandgap. Based on the two-photon transition mechanism in an AM1.5 and a one sun illumination, the simulated short-circuit current (J sc ) of 4.77 mA cm -2 is very close to the experimentally measured 4.75 mA cm -2 , which is higher than those of conventional SiC-QDSLs. Moreover, the efficiency fluctuation caused by the structural variation is less sensitive by using the passivation layer. A high conversion efficiency of 17.4% is thus estimated by adopting the QD's geometry used in the experiment; and, it can be further boosted by applying a hexagonal QD formation with an inter-dot spacing of 0.3 nm.

  3. Overcoming the Fundamental Bottlenecks to a new world-record silicon solar cell. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, Ajeet; Zimbardi, Francesco; Rounsaville, Brian

    The objective of the work performed within this contract is to reveal the materials and device physics that currently limit the experimental world record efficiency to 25% for single junction Si (2013), and to demonstrate 26.5% efficiency. The starting efficiency for this project was 23.9% in 2013. Four strategies are being combined throughout the project to achieve 26.5% cell efficiency: (1) passivated contacts via tunnel dielectrics, (2) emitter optimization and passivation through dopant profile engineering, (3) enhanced light trapping through development of photonic crystals and (4) base optimization.

  4. Mid-Infrared Photonic Devices Fabricated by Ultrafast Laser Inscription

    DTIC Science & Technology

    2016-07-01

    active and passive photonic devices in single crystal, ceramic and glass substrates. This range of devices span applications such as: astrophysics [16...waveguide has been published this year in Applied Physics Letters. Reference: Macdonald, J.R., et al., Compact mid-infrared Cr:ZnSe channel...waveguide laser. Applied Physics Letters, 2013. 102(16): p. 161110. High efficiency circular cladding WG laser The initial demonstration of square double

  5. Gated IR imaging with 128 × 128 HgCdTe electron avalanche photodiode FPA

    NASA Astrophysics Data System (ADS)

    Beck, Jeff; Woodall, Milton; Scritchfield, Richard; Ohlson, Martha; Wood, Lewis; Mitra, Pradip; Robinson, Jim

    2007-04-01

    The next generation of IR sensor systems will include active imaging capabilities. One example of such a system is a gated-active/passive system. The gated-active/passive system promises long-range target detection and identification. A detector that is capable of both active and passive modes of operation opens up the possibility of a self-aligned system that uses a single focal plane. The detector would need to be sensitive in the 3-5 μm band for passive mode operation. In the active mode, the detector would need to be sensitive in eye-safe range, e.g. 1.55 μm, and have internal gain to achieve the required system sensitivity. The MWIR HgCdTe electron injection avalanche photodiode (e-APD) not only provides state-of-the-art 3-5 μm spectral sensitivity, but also high avalanche photodiode gain without minimal excess noise. Gains of greater than 1000 have been measured in MWIR e-APDs with a gain independent excess noise factor of 1.3. This paper reports the application of the mid-wave HgCdTe e-APD for near-IR gated-active/passive imaging. Specifically a 128x128 FPA composed of 40 μm pitch, 4.2 μm to 5 μm cutoff, APD detectors with a custom readout integrated circuit was designed, fabricated, and tested. Median gains as high as 946 at 11 V bias with noise equivalent inputs as low as 0.4 photon were measured at 80 K. A gated imaging demonstration system was designed and built using commercially available parts. High resolution gated imagery out to 9 km was obtained with this system that demonstrated predicted MTF, precision gating, and sub 10 photon sensitivity.

  6. The physics of bat biosonar

    NASA Astrophysics Data System (ADS)

    Müller, Rolf

    2011-10-01

    Bats have evolved one of the most capable and at the same time parsimonious sensory systems found in nature. Using active and passive biosonar as a major - and often sufficient - far sense, different bat species are able to master a wide variety of sensory tasks under very dissimilar sets of constraints. Given the limited computational resources of the bat's brain, this performance is unlikely to be explained as the result of brute-force, black-box-style computations. Instead, the animals must rely heavily on in-built physics knowledge in order to ensure that all required information is encoded reliably into the acoustic signals received at the ear drum. To this end, bats can manipulate the emitted and received signals in the physical domain: By diffracting the outgoing and incoming ultrasonic waves with intricate baffle shapes (i.e., noseleaves and outer ears), the animals can generate selectivity filters that are joint functions of space and frequency. To achieve this, bats employ structural features such as resonance cavities and diffracting ridges. In addition, some bat species can dynamically adjust the shape of their selectivity filters through muscular actuation.

  7. Effects of whole-body cryotherapy in the management of adhesive capsulitis of the shoulder.

    PubMed

    Ma, Sang-Yeol; Je, Hyun Dong; Jeong, Ji Hoon; Kim, Hae-Young; Kim, Hyeong-Dong

    2013-01-01

    To compare 2 different treatment approaches, physical therapy modalities, and joint mobilization versus whole-body cryotherapy (WBC) combined with physical therapy modalities and joint mobilization, for symptoms of adhesive capsulitis (AC) of the shoulder. A randomized trial. Hospital. Patients with AC of the shoulder (N=30). Patients were randomly assigned to 2 groups. The WBC group received physical therapy modalities, passive joint mobilization of the shoulder, and WBC, whereas the non-WBC group received only physical therapy modalities and passive joint mobilization of the shoulder. Visual analog scale (VAS), active range of motion (ROM) of flexion, abduction, internal and external rotation of the shoulder, and the American Shoulder and Elbow Surgeons Standardized Shoulder Assessment Form (ASES) were measured before and after the intervention. A statistically significant difference between groups was found for the VAS, active ROM of flexion, abduction, internal rotation, and external rotation, and the ASES with greater improvements in the WBC group (Ps<.01). Overall, both groups showed a significant improvement in all outcome measures and ROM measures from pre to post at a level of P<.01. There is significant improvement with the addition of WBC to treatment interventions in this sample of patients. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Active/Passive Control of Sound Radiation from Panels using Constrained Layer Damping

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2003-01-01

    A hybrid passive/active noise control system utilizing constrained layer damping and model predictive feedback control is presented. This system is used to control the sound radiation of panels due to broadband disturbances. To facilitate the hybrid system design, a methodology for placement of constrained layer damping which targets selected modes based on their relative radiated sound power is developed. The placement methodology is utilized to determine two constrained layer damping configurations for experimental evaluation of a hybrid system. The first configuration targets the (4,1) panel mode which is not controllable by the piezoelectric control actuator, and the (2,3) and (5,2) panel modes. The second configuration targets the (1,1) and (3,1) modes. The experimental results demonstrate the improved reduction of radiated sound power using the hybrid passive/active control system as compared to the active control system alone.

  9. Development of an autonomous video rendezvous and docking system, phase 2

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.; Richardson, T. E.

    1983-01-01

    The critical elements of an autonomous video rendezvous and docking system were built and used successfully in a physical laboratory simulation. The laboratory system demonstrated that a small, inexpensive electronic package and a flight computer of modest size can analyze television images to derive guidance information for spacecraft. In the ultimate application, the system would use a docking aid consisting of three flashing lights mounted on a passive target spacecraft. Television imagery of the docking aid would be processed aboard an active chase vehicle to derive relative positions and attitudes of the two spacecraft. The demonstration system used scale models of the target spacecraft with working docking aids. A television camera mounted on a 6 degree of freedom (DOF) simulator provided imagery of the target to simulate observations from the chase vehicle. A hardware video processor extracted statistics from the imagery, from which a computer quickly computed position and attitude. Computer software known as a Kalman filter derived velocity information from position measurements.

  10. Monitoring of the physical status of Mars-500 subjects as a model of structuring an automated system in support of the training process in an exploration mission

    NASA Astrophysics Data System (ADS)

    Fomina, Elena; Savinkina, Alexandra; Kozlovskaya, Inesa; Lysova, Nataliya; Angeli, Tomas; Chernova, Maria; Uskov, Konstantin; Kukoba, Tatyana; Sonkin, Valentin; Ba, Norbert

    Physical training sessions aboard the ISS are performed under the permanent continuous control from Earth. Every week the instructors give their recommendations on how to proceed with the training considering the results of analysis of the daily records of training cosmonauts and data of the monthly fitness testing. It is obvious that in very long exploration missions this system of monitoring will be inapplicable. For this reason we venture to develop an automated system to control the physical training process using the current ISS locomotion test parameters as the leading criteria. Simulation of an extended exploration mission in experiment MARS-500 enabled the trial application of the automated system for assessing shifts in cosmonauts’ physical status in response to exercises of varying category and dismissal periods. Methods. Six subjects spent 520 days in the analog of an interplanetary vehicle at IBMP (Moscow). A variety of training regimens and facilities were used to maintain a high level of physical performance of the subjects. The resistance exercises involved expanders, strength training device (MDS) and vibrotraining device (Galileo). The cycling exercises were performed on the bicycle ergometer (VB-3) and a treadmill with the motor in or out of motion. To study the effect of prolonged periods of dismissal from training on physical performance, the training flow was interrupted for a month once in the middle and then at the end of isolation. In addition to the in-flight locomotion test integrated into the automated training control system, the physical status of subjects was attested by analysis of the records of the monthly incremental testing on the bicycle ergometer and MDS. Results. It was demonstrated that the recommended training regimens maintained high physical performance levels despite the limited motor activities in isolation. According to the locomotion testing, the subjects increased velocity significantly and reduced the physiological cost (heart rate/velocity ratio) considerably which suggested improvement of their physical status. On the contrary, dismissals from training caused a significant loss in subjects' preferential velocities together with a significant rise in the physiological cost of locomotion. In conclusion, passive training (treadmill motor out of motion) was shown to be the most effective regimen for maintaining physical performance in the condition of low-level motor activities. The results of the experiment evidence that further development of the automated training control system should go on with the emphasis placed on individualization of training regimens through incorporation additionally of neuromuscular and vegetative functional tests.

  11. Passive states as optimal inputs for single-jump lossy quantum channels

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Mari, Andrea; Lloyd, Seth; Giovannetti, Vittorio

    2016-06-01

    The passive states of a quantum system minimize the average energy among all the states with a given spectrum. We prove that passive states are the optimal inputs of single-jump lossy quantum channels. These channels arise from a weak interaction of the quantum system of interest with a large Markovian bath in its ground state, such that the interaction Hamiltonian couples only consecutive energy eigenstates of the system. We prove that the output generated by any input state ρ majorizes the output generated by the passive input state ρ0 with the same spectrum of ρ . Then, the output generated by ρ can be obtained applying a random unitary operation to the output generated by ρ0. This is an extension of De Palma et al. [IEEE Trans. Inf. Theory 62, 2895 (2016)], 10.1109/TIT.2016.2547426, where the same result is proved for one-mode bosonic Gaussian channels. We also prove that for finite temperature this optimality property can fail already in a two-level system, where the best input is a coherent superposition of the two energy eigenstates.

  12. Mixed H∞ and passive control for linear switched systems via hybrid control approach

    NASA Astrophysics Data System (ADS)

    Zheng, Qunxian; Ling, Youzhu; Wei, Lisheng; Zhang, Hongbin

    2018-03-01

    This paper investigates the mixed H∞ and passive control problem for linear switched systems based on a hybrid control strategy. To solve this problem, first, a new performance index is proposed. This performance index can be viewed as the mixed weighted H∞ and passivity performance. Then, the hybrid controllers are used to stabilise the switched systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. The design of state updating controllers not only depends on the pre-switching subsystem and the post-switching subsystem, but also depends on the measurable output signal. The hybrid controllers proposed in this paper can include some existing ones as special cases. Combine the multiple Lyapunov functions approach with the average dwell time technique, new sufficient conditions are obtained. Under the new conditions, the closed-loop linear switched systems are globally uniformly asymptotically stable with a mixed H∞ and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities. Finally, a numerical example and a practical example are given.

  13. Coated Rectangular Composite Archwires: A Comparison Of Self-Ligating And Conventional Bracket Systems During Sliding Mechanics

    NASA Astrophysics Data System (ADS)

    Woods, David Keith

    The purpose of this study was to analyze the resistance to sliding of coated rectangular fiber reinforced composite archwires using various brackets systems and second-order bracket angulations. Resistance to sliding was investigated for eight bracket systems: six self-ligating brackets (four passive and two passive-active) and two conventional brackets. A rectangular fiber reinforced composite archwire of 0.019 x 0.025-in dimension from BiomersRTM SimpliClear was drawn through a three-bracket model system at ten millimeters per minute for 2.5 millimeters. For each bracket, the resistance to sliding was measured at four bracket angulations (0°, 2.5°, 5°, and 10°) in a dry state at room temperature. The fiber reinforced composite archwire produced the lowest sliding resistance with the passive self-ligating bracket system (Damon DQ) at each bracket angulation tested. Overall, self-ligating bracket systems generated lower sliding resistance than conventionally ligated systems, and one passive/active self-ligating bracket system (In-Ovation-R). There was a significant increase in resistance to sliding as bracket angulation increased for all bracket systems tested. Microscopic analysis revealed increased perforation of the archwire coating material as bracket angulations were increased. Our findings show that the rectangular fiber reinforced composite archwire may be acceptable for sliding mechanics during the intermediate stages of orthodontic tooth movement, however more long-term studies are needed.

  14. Passively damped vibration welding system and method

    DOEpatents

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

    2013-04-02

    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  15. System-on-Chip Considerations for Heterogeneous Integration of CMOS and Fluidic Bio-Interfaces.

    PubMed

    Datta-Chaudhuri, Timir; Smela, Elisabeth; Abshire, Pamela A

    2016-12-01

    CMOS chips are increasingly used for direct sensing and interfacing with fluidic and biological systems. While many biosensing systems have successfully combined CMOS chips for readout and signal processing with passive sensing arrays, systems that co-locate sensing with active circuits on a single chip offer significant advantages in size and performance but increase the complexity of multi-domain design and heterogeneous integration. This emerging class of lab-on-CMOS systems also poses distinct and vexing technical challenges that arise from the disparate requirements of biosensors and integrated circuits (ICs). Modeling these systems must address not only circuit design, but also the behavior of biological components on the surface of the IC and any physical structures. Existing tools do not support the cross-domain simulation of heterogeneous lab-on-CMOS systems, so we recommend a two-step modeling approach: using circuit simulation to inform physics-based simulation, and vice versa. We review the primary lab-on-CMOS implementation challenges and discuss practical approaches to overcome them. Issues include new versions of classical challenges in system-on-chip integration, such as thermal effects, floor-planning, and signal coupling, as well as new challenges that are specifically attributable to biological and fluidic domains, such as electrochemical effects, non-standard packaging, surface treatments, sterilization, microfabrication of surface structures, and microfluidic integration. We describe these concerns as they arise in lab-on-CMOS systems and discuss solutions that have been experimentally demonstrated.

  16. Intuitive experimentation in the physical world.

    PubMed

    Bramley, Neil R; Gerstenberg, Tobias; Tenenbaum, Joshua B; Gureckis, Todd M

    2018-06-06

    Many aspects of our physical environment are hidden. For example, it is hard to estimate how heavy an object is from visual observation alone. In this paper we examine how people actively "experiment" within the physical world to discover such latent properties. In the first part of the paper, we develop a novel framework for the quantitative analysis of the information produced by physical interactions. We then describe two experiments that present participants with moving objects in "microworlds" that operate according to continuous spatiotemporal dynamics similar to everyday physics (i.e., forces of gravity, friction, etc.). Participants were asked to interact with objects in the microworlds in order to identify their masses, or the forces of attraction/repulsion that governed their movement. Using our modeling framework, we find that learners who freely interacted with the physical system selectively produced evidence that revealed the physical property consistent with their inquiry goal. As a result, their inferences were more accurate than for passive observers and, in some contexts, for yoked participants who watched video replays of an active learner's interactions. We characterize active learners' actions into a range of micro-experiment strategies and discuss how these might be learned or generalized from past experience. The technical contribution of this work is the development of a novel analytic framework and methodology for the study of interactively learning about the physical world. Its empirical contribution is the demonstration of sophisticated goal directed human active learning in a naturalistic context. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Orion Passive Thermal: Control Overview

    NASA Technical Reports Server (NTRS)

    Alvarez-Hermandez, Angel; Miller, Stephen W.

    2009-01-01

    A general overview of the NASA Orion Passive Thermal Control System (PTCS) is presented. The topics include: 1) Orion in CxP Hierarchy; 2) General Orion Description/Orientation; and 3) Orion PTCS Overview.

  18. Airborne Remote Observations of L-Band Radio Frequency Interference and Implications for Satellite Missions

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Srinivasan, Karthik; Limaye, Ashutosh

    2011-01-01

    Passive remote sensing of the Earth s surface and atmosphere from space has significant importance in operational and research environmental studies, in particular for the scientific understanding, monitoring and prediction of climate change and its impacts. Passive remote sensing requires the measurement of naturally occurring radiations, usually of very low power levels, which contain essential information on the physical process under investigation. As such, these sensed radio frequency bands are a unique natural resource enabling space borne passive sensing of the atmosphere and the Earth s surface that deserves adequate allocation to the Earth Exploration Satellite Service and absolute protection from interference. Unfortunately, radio frequency interference (RFI) is an increasing problem for Earth remote sensing, particularly for passive observations of natural emissions. Because these natural signals tend to be very weak, even low levels of interference received by a passive sensor may degrade the fidelity of scientific data. The characteristics of RFI (low-level interference and radar-pulse noise) are not well known because there has been no systematic surveillance, spectrum inventory or mapping of RFI. While conducting a flight experiment over central Tennessee in May 2010, RFI, a concern for any instrument operating in the passive L band frequency, was observed across 16 subbands between 1402-1427 MHz. Such a survey provides rare characterization data from which to further develop mitigation technologies as well as to identify bandwidths to avoid in future sensor formulation.

  19. Environmental tobacco smoke exposure and health disparities: 8-year longitudinal findings from a large cohort of Thai adults.

    PubMed

    Tran, Thanh Tam; Yiengprugsawan, Vasoontara; Chinwong, Dujrudee; Seubsman, Sam-Ang; Sleigh, Adrian

    2015-12-08

    In rich countries, smokers, active or passive, often belong to disadvantaged groups. Less is known of tobacco patterns in the developing world. Hence, we seek out to investigate mental and physical health consequences of smoke exposure as well as tobacco-related inequality in transitional middle-income Thailand. We studied a nationwide cohort of 87,151 middle-aged and older adults that we have been following for eight years (2005-2013) for emerging chronic diseases. Logistic regression was used to identify attributes associated with passive smoke exposure. Longitudinal associations between smoke exposure and wellbeing (SF-8) or psychological distress (Kessler 6) were investigated with multiple linear regression or multivariate logistic regression analysis. A high proportion of cohort members, especially females, were passive smokers at home and at public transport stations; males were more exposed at workplace and recreational places. We observed a social gradient with more passive smoking in poorer people. We also observed a dose response relationship linking graded smoke exposures (current, former, passive, non-exposed) to less wellbeing and more psychological distress (p-trend < 0.001). Female smokers in general had less wellbeing and more distress. Our findings add to current knowledge on the impact of active and passive smoking on health in a transitional economy. Promotion of smoking cessation programs both in public and at home could also potentially reduce adverse disparities in health and wellbeing in middle and lower income settings such as Thailand.

  20. Performance of fuel cell for energy supply of passive house

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badea, G.; Felseghi, R. A., E-mail: Raluca.FELSEGHI@insta.utcluj.ro; Mureşan, D.

    2015-12-23

    Hydrogen technology and passive house represent two concepts with a remarkable role for the efficiency and decarbonisation of energy systems in the residential buildings area. Through design and functionality, the passive house can make maximum use of all available energy resources. One of the solutions to supply energy of these types of buildings is the fuel cell, using this technology integrated into a system for generating electricity from renewable primary sources, which take the function of backup power (energy reserve) to cover peak load and meteorological intermittents. In this paper is presented the results of the case study that providemore » an analysis of the energy, environmental and financial performances regarding energy supply of passive house by power generation systems with fuel cell fed with electrolytic hydrogen produced by harnessing renewable energy sources available. Hybrid systems have been configured and operate in various conditions of use for five differentiated locations according to the main areas of solar irradiation from the Romanian map. Global performance of hybrid systems is directly influenced by the availability of renewable primary energy sources - particular geo-climatic characteristics of the building emplacement.« less

  1. Impact of building forms on thermal performance and thermal comfort conditions in religious buildings in hot climates: a case study in Sharjah city

    NASA Astrophysics Data System (ADS)

    Mushtaha, Emad; Helmy, Omar

    2017-11-01

    The common system used for thermal regulation in mosques of United Arab Emirates (UAE) is the heating, ventilating and air-conditioning (HVAC) system. This system increases demands on energy consumption and increases CO2 emission. A passive design approach is one of the measures to reduce these problems. This study involved an analytical examination of building forms, followed by testing the impact of these forms on its thermal performance and indoor thermal comfort. The tests were conducted using energy simulations software packages. Passive parameters such as shading devices, thermal insulation and natural ventilation were applied in six cases, including the baseline case within each form. The obtained results showed a significant effect of mosque forms as well as passive design techniques on the thermal comfort within the structures. The findings confirmed that the use of passive design alone would not help achieve thermal comfort, but reduce the annual energy consumption by10%. By integrating a hybrid air-conditioning system as another supporting approach, the annual energy consumption could be reduced by 67.5%, which allows for the designing of a much smaller HVAC system.

  2. Fast correlation method for passive-solar design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wray, W.O.; Biehl, F.A.; Kosiewicz, C.E.

    1982-01-01

    A passive-solar design manual for single-family detached residences and dormitory-type buildings is being developed. The design procedure employed in the manual is a simplification of the original monthly solar load ratio (SLR) method. The new SLR correlations involve a single constant for each system. The correlation constant appears as a scale factor permitting the use of a universal performance curve for all passive systems. Furthermore, by providing location-dependent correlations between the annual solar heating fraction (SHF) and the minimum monthly SHF, we have eliminated the need to perform an SLR calculation for each month of the heating season.

  3. A passive-solar design manual for the United States Navy

    NASA Astrophysics Data System (ADS)

    Wray, W. O.; Biehl, F. A.; Kosiewicz, C. E.; Miles, C. E.; Durlak, E. R.

    1982-06-01

    A passive solar design manual for single-family detached residences and dormitory-type buildings is developed. The design procedure employed in the manual is a simplification of the original monthly solar load ratio (SLR) method. The new SLR correlations involve a single constant for each system. The correlation constant appears as a scale factor permitting the use of a universal performance curve for all passive systems. Furthermore, by providing location-dependent correlations between the annual solar heating fraction (SHF) and the minimum monthly SHF, the need to perform an SLR calculation for each month of the heating season is eliminated.

  4. Passive-solar design manual for the United States Navy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wray, W.O.; Biehl, F.A.; Kosiewicz, C.R.

    1982-01-01

    A passive solar design manual for single-family detached residences and dormitory-type buildings is being developed. The design procedure employed in the manual is a simplification of the original monthly solar load ratio (SLR) method. The new SLR correlations involve a single constant for each system. The correlation constant appears as a scale factor permitting the use of a universal performance curve for all passive systems. Furthermore, by providing location-dependent correlations between the annual solar heating fraction (SHF)* and the minimum monthly SHF, we have eliminated the need to perform an SLR calculation for each month of the heating season.

  5. Sound source measurement by using a passive sound insulation and a statistical approach

    NASA Astrophysics Data System (ADS)

    Dragonetti, Raffaele; Di Filippo, Sabato; Mercogliano, Francesco; Romano, Rosario A.

    2015-10-01

    This paper describes a measurement technique developed by the authors that allows carrying out acoustic measurements inside noisy environments reducing background noise effects. The proposed method is based on the integration of a traditional passive noise insulation system with a statistical approach. The latter is applied to signals picked up by usual sensors (microphones and accelerometers) equipping the passive sound insulation system. The statistical approach allows improving of the sound insulation given only by the passive sound insulation system at low frequency. The developed measurement technique has been validated by means of numerical simulations and measurements carried out inside a real noisy environment. For the case-studies here reported, an average improvement of about 10 dB has been obtained in a frequency range up to about 250 Hz. Considerations on the lower sound pressure level that can be measured by applying the proposed method and the measurement error related to its application are reported as well.

  6. Corrosion control when using passively treated abandoned mine drainage as alternative makeup water for cooling systems.

    PubMed

    Hsieh, Ming-Kai; Chien, Shih-Hsiang; Li, Heng; Monnell, Jason D; Dzombak, David A; Vidic, Radisav D

    2011-09-01

    Passively treated abandoned mine drainage (AMD) is a promising alternative to fresh water as power plant cooling water system makeup water in mining regions where such water is abundant. Passive treatment and reuse of AMD can avoid the contamination of surface water caused by discharge of abandoned mine water, which typically is acidic and contains high concentrations of metals, especially iron. The purpose of this study was to evaluate the feasibility of reusing passively treated AMD in cooling systems with respect to corrosion control through laboratory experiments and pilot-scale field testing. The results showed that, with the addition of the inhibitor mixture orthophosphate and tolyltriazole, mild steel and copper corrosion rates were reduced to acceptable levels (< 0.127 mm/y and < 0.0076 mm/y, respectively). Aluminum had pitting corrosion problems in every condition tested, while cupronickel showed that, even in the absence of any inhibitor and in the presence of the biocide monochloramine, its corrosion rate was still very low (0.018 mm/y).

  7. Report from the Passive Microwave Data Set Management Workshop

    NASA Technical Reports Server (NTRS)

    Armstrong, Ed; Conover, Helen; Goodman, Michael; Krupp, Brian; Liu, Zhong; Moses, John; Ramapriyan, H. K.; Scott, Donna; Smith, Deborah; Weaver, Ronald

    2011-01-01

    Passive microwave data sets are some of the most important data sets in the Earth Observing System Data and Information System (EOSDIS), providing data as far back as the early 1970s. The widespread use of passive microwave (PM) radiometer data has led to their collection and distribution over the years at several different Earth science data centers. The user community is often confused by this proliferation and the uneven spread of information about the data sets. In response to this situation, a Passive Microwave Data Set Management Workshop was held 17 ]19 May 2011 at the Global Hydrology Resource Center, sponsored by the NASA Earth Science Data and Information System (ESDIS) Project. The workshop attendees reviewed all primary (Level 1 ]3) PM data sets from NASA and non ]NASA sensors held by NASA Distributed Active Archive Centers (DAACs), as well as high ]value data sets from other NASA ]funded organizations. This report provides the key findings and recommendations from the workshop as well as detailed tabluations of the datasets considered.

  8. Passively operated spool valve for drain-down freeze protection of thermosyphon water heaters. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-04-30

    The work done to extend the existing drain-down valve technology to provide passive drain-down freeze protection for thermosyphon-based solar water heaters is described. The basic design of the existing valve model is that of a spool valve, employing a cylindrical spool which moves axially in a mating cartridge to open and close o-rings at the two operating extremes (drain and operate) to perform the valving function. Three passive actuators to drive the basic valving mechanism were designed, fabricated, and tested. Two piping configurations used to integrate the spool valve with the thermosyphon system are described, as are the passive actuators.more » The three actuator designs are: photovoltaic driven, refrigerant-based bellows, and heat motor cable-drive designs. Costs are compared for the alternative actuator designs, and operating characteristics were examined for the thermosyphon system, including field tests. The market for the valve for thermosyphon systems is then assessed. (LEW)« less

  9. Active versus passive adverse event reporting after pediatric chiropractic manual therapy: study protocol for a cluster randomized controlled trial.

    PubMed

    Pohlman, Katherine A; Carroll, Linda; Tsuyuki, Ross T; Hartling, Lisa; Vohra, Sunita

    2017-12-01

    Patient safety performance can be assessed with several systems, including passive and active surveillance. Passive surveillance systems provide opportunity for health care personnel to confidentially and voluntarily report incidents, including adverse events, occurring in their work environment. Active surveillance systems systematically monitor patient encounters to seek detailed information about adverse events that occur in work environments; unlike passive surveillance, active surveillance allows for collection of both numerator (number of adverse events) and denominator (number of patients seen) data. Chiropractic manual therapy is commonly used in both adults and children, yet few studies have been done to evaluate the safety of chiropractic manual therapy for children. In an attempt to evaluate this, this study will compare adverse event reporting in passive versus active surveillance systems after chiropractic manual therapy in the pediatric population. This cluster randomized controlled trial aims to enroll 70 physicians of chiropractic (unit of randomization) to either passive or active surveillance system to report adverse events that occur after treatment for 60 consecutive pediatric (13 years of age and younger) patient visits (unit of analysis). A modified enrollment process with a two-phase consent procedure will be implemented to maintain provider blinding and minimize dropouts. The first phase of consent is for the provider to confirm their interest in a trial investigating the safety of chiropractic manual therapy. The second phase ensures that they understand the specific requirements for the group to which they were randomized. Percentages, incidence estimates, and 95% confidence intervals will be used to describe the count of reported adverse events in each group. The primary outcome will be the number and quality of the adverse event reports in the active versus the passive surveillance group. With 80% power and 5% one-sided significance level, the sample size was calculated to be 35 providers in each group, which includes an 11% lost to follow-up of chiropractors and 20% of patient visits. This study will be the first direct comparison of adverse event reporting using passive versus active surveillance. It is also the largest prospective evaluation of adverse events reported after chiropractic manual therapy in children, identified as a major gap in the academic literature. ClinicalTrials.gov, ID: NCT02268331 . Registered on 10 October 2014.

  10. Radio frequency identification enabled wireless sensing for intelligent food logistics.

    PubMed

    Zou, Zhuo; Chen, Qiang; Chen, Qing; Uysal, Ismail; Zheng, Lirong

    2014-06-13

    Future technologies and applications for the Internet of Things (IoT) will evolve the process of the food supply chain and create added value of business. Radio frequency identifications (RFIDs) and wireless sensor networks (WSNs) have been considered as the key technological enablers. Intelligent tags, powered by autonomous energy, are attached on objects, networked by short-range wireless links, allowing the physical parameters such as temperatures and humidities as well as the location information to seamlessly integrate with the enterprise information system over the Internet. In this paper, challenges, considerations and design examples are reviewed from system, implementation and application perspectives, particularly with focus on intelligent packaging and logistics for the fresh food tracking and monitoring service. An IoT platform with a two-layer network architecture is introduced consisting of an asymmetric tag-reader link (RFID layer) and an ad-hoc link between readers (WSN layer), which are further connected to the Internet via cellular or Wi-Fi. Then, we provide insights into the enabling technology of RFID with sensing capabilities. Passive, semi-passive and active RFID solutions are discussed. In particular, we describe ultra-wideband radio RFID which has been considered as one of the most promising techniques for ultra-low-power and low-cost wireless sensing. Finally, an example is provided in the form of an application in fresh food tracking services and corresponding field testing results.

  11. Active subjects of passive monitoring: responses to a passive monitoring system in low-income independent living

    PubMed Central

    BERRIDGE, CLARA

    2016-01-01

    Passive monitoring technology is beginning to be reimbursed by third-party payers in the United States of America. Given the low voluntary uptake of these technologies on the market, it is important to understand the concerns and perspectives of users, former users and non-users. In this paper, the range of ways older adults relate to passive monitoring in low-income independent-living residences is presented. This includes experiences of adoption, non-adoption, discontinuation and creative ‘misuse’. The analysis of interviews reveals three key insights. First, assumptions built into the technology about how older adults live present a problem for many users who experience unwanted disruptions and threats to their behavioural autonomy. Second, resident response is varied and challenges the dominant image of residents as passive subjects of a passive monitoring system. Third, the priorities of older adults (e.g. safety, autonomy, privacy, control, contact) are more diverse and multi-faceted than those of the housing organisation staff and family members (e.g. safety, efficiency) who drive the passive monitoring intervention. The tension between needs, desires and the daily lives of older adults and the technological solutions offered to them is made visible by their active responses, including resistance to them. This exposes the active and meaningful qualities of older adults’ decisions and practices. PMID:28239211

  12. Back-channel-etch amorphous indium-gallium-zinc oxide thin-film transistors: The impact of source/drain metal etch and final passivation

    NASA Astrophysics Data System (ADS)

    Nag, Manoj; Bhoolokam, Ajay; Steudel, Soeren; Chasin, Adrian; Myny, Kris; Maas, Joris; Groeseneken, Guido; Heremans, Paul

    2014-11-01

    We report on the impact of source/drain (S/D) metal (molybdenum) etch and the final passivation (SiO2) layer on the bias-stress stability of back-channel-etch (BCE) configuration based amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). It is observed that the BCE configurations TFTs suffer poor bias-stability in comparison to etch-stop-layer (ESL) TFTs. By analysis with transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), as well as by a comparative analysis of contacts formed by other metals, we infer that this poor bias-stability for BCE transistors having Mo S/D contacts is associated with contamination of the back channel interface, which occurs by Mo-containing deposits on the back channel during the final plasma process of the physical vapor deposited SiO2 passivation.

  13. Engineering multiphoton states for linear optics computation

    NASA Astrophysics Data System (ADS)

    Aniello, P.; Lupo, C.; Napolitano, M.; Paris, M. G. A.

    2007-03-01

    Transformations achievable by linear optical components allow to generate the whole unitary group only when restricted to the one-photon subspace of a multimode Fock space. In this paper, we address the more general problem of encoding quantum information by multiphoton states, and elaborating it via ancillary extensions, linear optical passive devices and photodetection. Our scheme stems in a natural way from the mathematical structures underlying the physics of linear optical passive devices. In particular, we analyze an economical procedure for mapping a fiducial 2-photon 2-mode state into an arbitrary 2-photon 2-mode state using ancillary resources and linear optical passive N-ports assisted by post-selection. We found that adding a single ancilla mode is enough to generate any desired target state. The effect of imperfect photodetection in post-selection is considered and a simple trade-off between success probability and fidelity is derived.

  14. Microwave and physical properties of sea ice in the winter marginal ice zone

    NASA Technical Reports Server (NTRS)

    Tucker, W. B., III; Perovich, D. K.; Gow, A. J.; Grenfell, T. C.; Onstott, R. G.

    1991-01-01

    Surface-based active and passive microwave measurements were made in conjunction with ice property measurements for several distinct ice types in the Fram Strait during March and April 1987. Synthesis aperture radar imagery downlinked from an aircraft was used to select study sites. The surface-based radar scattering cross section and emissivity spectra generally support previously inferred qualitative relationships between ice types, exhibiting expected separation between young, first-year and multiyear ice. Gradient ratios, calculated for both active and passive data, appear to allow clear separation of ice types when used jointly. Surface flooding of multiyear floes, resulting from excessive loading and perhaps wave action, causes both active and passive signatures to resemble those of first-year ice. This effect could possibly cause estimates of ice type percentages in the marginal ice zone to be in error when derived from aircraft- or satellite-born sensors.

  15. Impact of Passive Safety on FHR Instrumentation Systems Design and Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled high-temperature reactors (FHRs) will rely more extensively on passive safety than earlier reactor classes. 10CFR50 Appendix A, General Design Criteria for Nuclear Power Plants, establishes minimum design requirements to provide reasonable assurance of adequate safety. 10CFR50.69, Risk-Informed Categorization and Treatment of Structures, Systems and Components for Nuclear Power Reactors, provides guidance on how the safety significance of systems, structures, and components (SSCs) should be reflected in their regulatory treatment. The Nuclear Energy Institute (NEI) has provided 10 CFR 50.69 SSC Categorization Guideline (NEI-00-04) that factors in probabilistic risk assessment (PRA) model insights, as well as deterministic insights, throughmore » an integrated decision-making panel. Employing the PRA to inform deterministic requirements enables an appropriately balanced, technically sound categorization to be established. No FHR currently has an adequate PRA or set of design basis accidents to enable establishing the safety classification of its SSCs. While all SSCs used to comply with the general design criteria (GDCs) will be safety related, the intent is to limit the instrumentation risk significance through effective design and reliance on inherent passive safety characteristics. For example, FHRs have no safety-significant temperature threshold phenomena, thus enabling the primary and reserve reactivity control systems required by GDC 26 to be passively, thermally triggered at temperatures well below those for which core or primary coolant boundary damage would occur. Moreover, the passive thermal triggering of the primary and reserve shutdown systems may relegate the control rod drive motors to the control system, substantially decreasing the amount of safety-significant wiring needed. Similarly, FHR decay heat removal systems are intended to be running continuously to minimize the amount of safety-significant instrumentation needed to initiate operation of systems and components important to safety as required in GDC 20. This paper provides an overview of the design process employed to develop a pre-conceptual FHR instrumentation architecture intended to lower plant capital and operational costs by minimizing reliance on expensive, safety related, safety-significant instrumentation through the use of inherent passive features of FHRs.« less

  16. LWIR passive perception system for stealthy unmanned ground vehicle night operations

    NASA Astrophysics Data System (ADS)

    Lee, Daren; Rankin, Arturo; Huertas, Andres; Nash, Jeremy; Ahuja, Gaurav; Matthies, Larry

    2016-05-01

    Resupplying forward-deployed units in rugged terrain in the presence of hostile forces creates a high threat to manned air and ground vehicles. An autonomous unmanned ground vehicle (UGV) capable of navigating stealthily at night in off-road and on-road terrain could significantly increase the safety and success rate of such resupply missions for warfighters. Passive night-time perception of terrain and obstacle features is a vital requirement for such missions. As part of the ONR 30 Autonomy Team, the Jet Propulsion Laboratory developed a passive, low-cost night-time perception system under the ONR Expeditionary Maneuver Warfare and Combating Terrorism Applied Research program. Using a stereo pair of forward looking LWIR uncooled microbolometer cameras, the perception system generates disparity maps using a local window-based stereo correlator to achieve real-time performance while maintaining low power consumption. To overcome the lower signal-to-noise ratio and spatial resolution of LWIR thermal imaging technologies, a series of pre-filters were applied to the input images to increase the image contrast and stereo correlator enhancements were applied to increase the disparity density. To overcome false positives generated by mixed pixels, noisy disparities from repeated textures, and uncertainty in far range measurements, a series of consistency, multi-resolution, and temporal based post-filters were employed to improve the fidelity of the output range measurements. The stereo processing leverages multi-core processors and runs under the Robot Operating System (ROS). The night-time passive perception system was tested and evaluated on fully autonomous testbed ground vehicles at SPAWAR Systems Center Pacific (SSC Pacific) and Marine Corps Base Camp Pendleton, California. This paper describes the challenges, techniques, and experimental results of developing a passive, low-cost perception system for night-time autonomous navigation.

  17. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys

    PubMed Central

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H. Felix

    2015-01-01

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system’s functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements. PMID:26404270

  18. Intracochlear Scala Media Pressure Measurement: Implications for Models of Cochlear Mechanics.

    PubMed

    Kale, Sushrut S; Olson, Elizabeth S

    2015-12-15

    Models of the active cochlea build upon the underlying passive mechanics. Passive cochlear mechanics is based on physical and geometrical properties of the cochlea and the fluid-tissue interaction between the cochlear partition and the surrounding fluid. Although the fluid-tissue interaction between the basilar membrane and the fluid in scala tympani (ST) has been explored in both active and passive cochleae, there was no experimental data on the fluid-tissue interaction on the scala media (SM) side of the partition. To this aim, we measured sound-evoked intracochlear pressure in SM close to the partition using micropressure sensors. All the SM pressure data are from passive cochleae, likely because the SM cochleostomy led to loss of endocochlear potential. Thus, these experiments are studies of passive cochlear mechanics. SM pressure close to the tissue showed a pattern of peaks and notches, which could be explained as an interaction between fast and slow (i.e., traveling wave) pressure modes. In several animals SM and ST pressure were measured in the same cochlea. Similar to previous studies, ST-pressure was dominated by a slow, traveling wave mode at stimulus frequencies in the vicinity of the best frequency of the measurement location, and by a fast mode above best frequency. Antisymmetric pressure between SM and ST supported the classic single-partition cochlear models, or a dual-partition model with tight coupling between partitions. From the SM and ST pressure we calculated slow and fast modes, and from active ST pressure we extrapolated the passive findings to the active case. The passive slow mode estimated from SM and ST data was low-pass in nature, as predicted by cochlear models. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Intracochlear Scala Media Pressure Measurement: Implications for Models of Cochlear Mechanics

    PubMed Central

    Kale, Sushrut S.; Olson, Elizabeth S.

    2015-01-01

    Models of the active cochlea build upon the underlying passive mechanics. Passive cochlear mechanics is based on physical and geometrical properties of the cochlea and the fluid-tissue interaction between the cochlear partition and the surrounding fluid. Although the fluid-tissue interaction between the basilar membrane and the fluid in scala tympani (ST) has been explored in both active and passive cochleae, there was no experimental data on the fluid-tissue interaction on the scala media (SM) side of the partition. To this aim, we measured sound-evoked intracochlear pressure in SM close to the partition using micropressure sensors. All the SM pressure data are from passive cochleae, likely because the SM cochleostomy led to loss of endocochlear potential. Thus, these experiments are studies of passive cochlear mechanics. SM pressure close to the tissue showed a pattern of peaks and notches, which could be explained as an interaction between fast and slow (i.e., traveling wave) pressure modes. In several animals SM and ST pressure were measured in the same cochlea. Similar to previous studies, ST-pressure was dominated by a slow, traveling wave mode at stimulus frequencies in the vicinity of the best frequency of the measurement location, and by a fast mode above best frequency. Antisymmetric pressure between SM and ST supported the classic single-partition cochlear models, or a dual-partition model with tight coupling between partitions. From the SM and ST pressure we calculated slow and fast modes, and from active ST pressure we extrapolated the passive findings to the active case. The passive slow mode estimated from SM and ST data was low-pass in nature, as predicted by cochlear models. PMID:26682824

  20. A randomised controlled trial of an active telephone-based recruitment strategy to increase childcare-service staff attendance at a physical activity and nutrition training workshop.

    PubMed

    Yoong, Sze Lin; Wolfenden, Luke; Finch, Meghan; Williams, Amanda; Dodds, Pennie; Gillham, Karen; Wyse, Rebecca

    2013-12-01

    Centre-based childcare services represent a promising setting to target the prevention of excessive weight gain in preschool-aged children. Staff training is a key component of multi-strategy interventions to improve implementation of effective physical activity and nutrition promoting practices for obesity prevention in childcare services. This randomised controlled trial aimed to examine whether an active telephone-based strategy to invite childcare-service staff to attend a training workshop was effective in increasing the proportion of services with staff attending training, compared with a passive strategy. Services were randomised to an active telephone-based or a passive-recruitment strategy. Those in the active arm received an email invitation and one to three follow-up phone calls, whereas services in the passive arm were informed of the availability of training only via newsletters. The proportion of services with staff attending the training workshop was compared between the two arms. One hundred and twenty-eight services were included in this study. A significantly larger proportion (52%) of services in the active arm compared with those in the passive-strategy arm (3.1%) attended training (d.f.=1, χ2=34.3; P<0.001). An active, telephone-based recruitment strategy significantly increased the proportion of childcare services with staff attending training. Further strategies to improve staff attendance at training need to be identified and implemented. SO WHAT?: Active-recruitment strategies including follow-up telephone calls should be utilised to invite staff to participate in training, in order to maximise the use of training as an implementation strategy for obesity prevention in childcare services.

Top