Sample records for password authentication scheme

  1. A privacy preserving secure and efficient authentication scheme for telecare medical information systems.

    PubMed

    Mishra, Raghavendra; Barnwal, Amit Kumar

    2015-05-01

    The Telecare medical information system (TMIS) presents effective healthcare delivery services by employing information and communication technologies. The emerging privacy and security are always a matter of great concern in TMIS. Recently, Chen at al. presented a password based authentication schemes to address the privacy and security. Later on, it is proved insecure against various active and passive attacks. To erase the drawbacks of Chen et al.'s anonymous authentication scheme, several password based authentication schemes have been proposed using public key cryptosystem. However, most of them do not present pre-smart card authentication which leads to inefficient login and password change phases. To present an authentication scheme with pre-smart card authentication, we present an improved anonymous smart card based authentication scheme for TMIS. The proposed scheme protects user anonymity and satisfies all the desirable security attributes. Moreover, the proposed scheme presents efficient login and password change phases where incorrect input can be quickly detected and a user can freely change his password without server assistance. Moreover, we demonstrate the validity of the proposed scheme by utilizing the widely-accepted BAN (Burrows, Abadi, and Needham) logic. The proposed scheme is also comparable in terms of computational overheads with relevant schemes.

  2. Enhanced smartcard-based password-authenticated key agreement using extended chaotic maps.

    PubMed

    Lee, Tian-Fu; Hsiao, Chia-Hung; Hwang, Shi-Han; Lin, Tsung-Hung

    2017-01-01

    A smartcard based password-authenticated key agreement scheme enables a legal user to log in to a remote authentication server and access remote services through public networks using a weak password and a smart card. Lin recently presented an improved chaotic maps-based password-authenticated key agreement scheme that used smartcards to eliminate the weaknesses of the scheme of Guo and Chang, which does not provide strong user anonymity and violates session key security. However, the improved scheme of Lin does not exhibit the freshness property and the validity of messages so it still fails to withstand denial-of-service and privileged-insider attacks. Additionally, a single malicious participant can predetermine the session key such that the improved scheme does not exhibit the contributory property of key agreements. This investigation discusses these weaknesses and proposes an enhanced smartcard-based password-authenticated key agreement scheme that utilizes extended chaotic maps. The session security of this enhanced scheme is based on the extended chaotic map-based Diffie-Hellman problem, and is proven in the real-or-random and the sequence of games models. Moreover, the enhanced scheme ensures the freshness of communicating messages by appending timestamps, and thereby avoids the weaknesses in previous schemes.

  3. Enhanced smartcard-based password-authenticated key agreement using extended chaotic maps

    PubMed Central

    Lee, Tian-Fu; Hsiao, Chia-Hung; Hwang, Shi-Han

    2017-01-01

    A smartcard based password-authenticated key agreement scheme enables a legal user to log in to a remote authentication server and access remote services through public networks using a weak password and a smart card. Lin recently presented an improved chaotic maps-based password-authenticated key agreement scheme that used smartcards to eliminate the weaknesses of the scheme of Guo and Chang, which does not provide strong user anonymity and violates session key security. However, the improved scheme of Lin does not exhibit the freshness property and the validity of messages so it still fails to withstand denial-of-service and privileged-insider attacks. Additionally, a single malicious participant can predetermine the session key such that the improved scheme does not exhibit the contributory property of key agreements. This investigation discusses these weaknesses and proposes an enhanced smartcard-based password-authenticated key agreement scheme that utilizes extended chaotic maps. The session security of this enhanced scheme is based on the extended chaotic map-based Diffie-Hellman problem, and is proven in the real-or-random and the sequence of games models. Moreover, the enhanced scheme ensures the freshness of communicating messages by appending timestamps, and thereby avoids the weaknesses in previous schemes. PMID:28759615

  4. An Improved and Secure Anonymous Biometric-Based User Authentication with Key Agreement Scheme for the Integrated EPR Information System.

    PubMed

    Jung, Jaewook; Kang, Dongwoo; Lee, Donghoon; Won, Dongho

    2017-01-01

    Nowadays, many hospitals and medical institutes employ an authentication protocol within electronic patient records (EPR) services in order to provide protected electronic transactions in e-medicine systems. In order to establish efficient and robust health care services, numerous studies have been carried out on authentication protocols. Recently, Li et al. proposed a user authenticated key agreement scheme according to EPR information systems, arguing that their scheme is able to resist various types of attacks and preserve diverse security properties. However, this scheme possesses critical vulnerabilities. First, the scheme cannot prevent off-line password guessing attacks and server spoofing attack, and cannot preserve user identity. Second, there is no password verification process with the failure to identify the correct password at the beginning of the login phase. Third, the mechanism of password change is incompetent, in that it induces inefficient communication in communicating with the server to change a user password. Therefore, we suggest an upgraded version of the user authenticated key agreement scheme that provides enhanced security. Our security and performance analysis shows that compared to other related schemes, our scheme not only improves the security level, but also ensures efficiency.

  5. An Improved and Secure Anonymous Biometric-Based User Authentication with Key Agreement Scheme for the Integrated EPR Information System

    PubMed Central

    Kang, Dongwoo; Lee, Donghoon; Won, Dongho

    2017-01-01

    Nowadays, many hospitals and medical institutes employ an authentication protocol within electronic patient records (EPR) services in order to provide protected electronic transactions in e-medicine systems. In order to establish efficient and robust health care services, numerous studies have been carried out on authentication protocols. Recently, Li et al. proposed a user authenticated key agreement scheme according to EPR information systems, arguing that their scheme is able to resist various types of attacks and preserve diverse security properties. However, this scheme possesses critical vulnerabilities. First, the scheme cannot prevent off-line password guessing attacks and server spoofing attack, and cannot preserve user identity. Second, there is no password verification process with the failure to identify the correct password at the beginning of the login phase. Third, the mechanism of password change is incompetent, in that it induces inefficient communication in communicating with the server to change a user password. Therefore, we suggest an upgraded version of the user authenticated key agreement scheme that provides enhanced security. Our security and performance analysis shows that compared to other related schemes, our scheme not only improves the security level, but also ensures efficiency. PMID:28046075

  6. Enhanced Two-Factor Authentication and Key Agreement Using Dynamic Identities in Wireless Sensor Networks.

    PubMed

    Chang, I-Pin; Lee, Tian-Fu; Lin, Tsung-Hung; Liu, Chuan-Ming

    2015-11-30

    Key agreements that use only password authentication are convenient in communication networks, but these key agreement schemes often fail to resist possible attacks, and therefore provide poor security compared with some other authentication schemes. To increase security, many authentication and key agreement schemes use smartcard authentication in addition to passwords. Thus, two-factor authentication and key agreement schemes using smartcards and passwords are widely adopted in many applications. Vaidya et al. recently presented a two-factor authentication and key agreement scheme for wireless sensor networks (WSNs). Kim et al. observed that the Vaidya et al. scheme fails to resist gateway node bypassing and user impersonation attacks, and then proposed an improved scheme for WSNs. This study analyzes the weaknesses of the two-factor authentication and key agreement scheme of Kim et al., which include vulnerability to impersonation attacks, lost smartcard attacks and man-in-the-middle attacks, violation of session key security, and failure to protect user privacy. An efficient and secure authentication and key agreement scheme for WSNs based on the scheme of Kim et al. is then proposed. The proposed scheme not only solves the weaknesses of previous approaches, but also increases security requirements while maintaining low computational cost.

  7. Security enhanced multi-factor biometric authentication scheme using bio-hash function.

    PubMed

    Choi, Younsung; Lee, Youngsook; Moon, Jongho; Won, Dongho

    2017-01-01

    With the rapid development of personal information and wireless communication technology, user authentication schemes have been crucial to ensure that wireless communications are secure. As such, various authentication schemes with multi-factor authentication have been proposed to improve the security of electronic communications. Multi-factor authentication involves the use of passwords, smart cards, and various biometrics to provide users with the utmost privacy and data protection. Cao and Ge analyzed various authentication schemes and found that Younghwa An's scheme was susceptible to a replay attack where an adversary masquerades as a legal server and a user masquerading attack where user anonymity is not provided, allowing an adversary to execute a password change process by intercepting the user's ID during login. Cao and Ge improved upon Younghwa An's scheme, but various security problems remained. This study demonstrates that Cao and Ge's scheme is susceptible to a biometric recognition error, slow wrong password detection, off-line password attack, user impersonation attack, ID guessing attack, a DoS attack, and that their scheme cannot provide session key agreement. Then, to address all weaknesses identified in Cao and Ge's scheme, this study proposes a security enhanced multi-factor biometric authentication scheme and provides a security analysis and formal analysis using Burrows-Abadi-Needham logic. Finally, the efficiency analysis reveals that the proposed scheme can protect against several possible types of attacks with only a slightly high computational cost.

  8. Enhanced Two-Factor Authentication and Key Agreement Using Dynamic Identities in Wireless Sensor Networks

    PubMed Central

    Chang, I-Pin; Lee, Tian-Fu; Lin, Tsung-Hung; Liu, Chuan-Ming

    2015-01-01

    Key agreements that use only password authentication are convenient in communication networks, but these key agreement schemes often fail to resist possible attacks, and therefore provide poor security compared with some other authentication schemes. To increase security, many authentication and key agreement schemes use smartcard authentication in addition to passwords. Thus, two-factor authentication and key agreement schemes using smartcards and passwords are widely adopted in many applications. Vaidya et al. recently presented a two-factor authentication and key agreement scheme for wireless sensor networks (WSNs). Kim et al. observed that the Vaidya et al. scheme fails to resist gateway node bypassing and user impersonation attacks, and then proposed an improved scheme for WSNs. This study analyzes the weaknesses of the two-factor authentication and key agreement scheme of Kim et al., which include vulnerability to impersonation attacks, lost smartcard attacks and man-in-the-middle attacks, violation of session key security, and failure to protect user privacy. An efficient and secure authentication and key agreement scheme for WSNs based on the scheme of Kim et al. is then proposed. The proposed scheme not only solves the weaknesses of previous approaches, but also increases security requirements while maintaining low computational cost. PMID:26633396

  9. Security enhanced multi-factor biometric authentication scheme using bio-hash function

    PubMed Central

    Lee, Youngsook; Moon, Jongho

    2017-01-01

    With the rapid development of personal information and wireless communication technology, user authentication schemes have been crucial to ensure that wireless communications are secure. As such, various authentication schemes with multi-factor authentication have been proposed to improve the security of electronic communications. Multi-factor authentication involves the use of passwords, smart cards, and various biometrics to provide users with the utmost privacy and data protection. Cao and Ge analyzed various authentication schemes and found that Younghwa An’s scheme was susceptible to a replay attack where an adversary masquerades as a legal server and a user masquerading attack where user anonymity is not provided, allowing an adversary to execute a password change process by intercepting the user’s ID during login. Cao and Ge improved upon Younghwa An’s scheme, but various security problems remained. This study demonstrates that Cao and Ge’s scheme is susceptible to a biometric recognition error, slow wrong password detection, off-line password attack, user impersonation attack, ID guessing attack, a DoS attack, and that their scheme cannot provide session key agreement. Then, to address all weaknesses identified in Cao and Ge’s scheme, this study proposes a security enhanced multi-factor biometric authentication scheme and provides a security analysis and formal analysis using Burrows-Abadi-Needham logic. Finally, the efficiency analysis reveals that the proposed scheme can protect against several possible types of attacks with only a slightly high computational cost. PMID:28459867

  10. Secure and Efficient Two-Factor User Authentication Scheme with User Anonymity for Network Based E-Health Care Applications.

    PubMed

    Li, Xiong; Niu, Jianwei; Karuppiah, Marimuthu; Kumari, Saru; Wu, Fan

    2016-12-01

    Benefited from the development of network and communication technologies, E-health care systems and telemedicine have got the fast development. By using the E-health care systems, patient can enjoy the remote medical service provided by the medical server. Medical data are important privacy information for patient, so it is an important issue to ensure the secure of transmitted medical data through public network. Authentication scheme can thwart unauthorized users from accessing services via insecure network environments, so user authentication with privacy protection is an important mechanism for the security of E-health care systems. Recently, based on three factors (password, biometric and smart card), an user authentication scheme for E-health care systems was been proposed by Amin et al., and they claimed that their scheme can withstand most of common attacks. Unfortunate, we find that their scheme cannot achieve the untraceability feature of the patient. Besides, their scheme lacks a password check mechanism such that it is inefficient to find the unauthorized login by the mistake of input a wrong password. Due to the same reason, their scheme is vulnerable to Denial of Service (DoS) attack if the patient updates the password mistakenly by using a wrong password. In order improve the security level of authentication scheme for E-health care application, a robust user authentication scheme with privacy protection is proposed for E-health care systems. Then, security prove of our scheme are analysed. Security and performance analyses show that our scheme is more powerful and secure for E-health care systems when compared with other related schemes.

  11. Exploring the Use of Discrete Gestures for Authentication

    NASA Astrophysics Data System (ADS)

    Chong, Ming Ki; Marsden, Gary

    Research in user authentication has been a growing field in HCI. Previous studies have shown that peoples’ graphical memory can be used to increase password memorability. On the other hand, with the increasing number of devices with built-in motion sensors, kinesthetic memory (or muscle memory) can also be exploited for authentication. This paper presents a novel knowledge-based authentication scheme, called gesture password, which uses discrete gestures as password elements. The research presents a study of multiple password retention using PINs and gesture passwords. The study reports that although participants could use kinesthetic memory to remember gesture passwords, retention of PINs is far superior to retention of gesture passwords.

  12. An Improvement of Robust and Efficient Biometrics Based Password Authentication Scheme for Telecare Medicine Information Systems Using Extended Chaotic Maps.

    PubMed

    Moon, Jongho; Choi, Younsung; Kim, Jiye; Won, Dongho

    2016-03-01

    Recently, numerous extended chaotic map-based password authentication schemes that employ smart card technology were proposed for Telecare Medical Information Systems (TMISs). In 2015, Lu et al. used Li et al.'s scheme as a basis to propose a password authentication scheme for TMISs that is based on biometrics and smart card technology and employs extended chaotic maps. Lu et al. demonstrated that Li et al.'s scheme comprises some weaknesses such as those regarding a violation of the session-key security, a vulnerability to the user impersonation attack, and a lack of local verification. In this paper, however, we show that Lu et al.'s scheme is still insecure with respect to issues such as a violation of the session-key security, and that it is vulnerable to both the outsider attack and the impersonation attack. To overcome these drawbacks, we retain the useful properties of Lu et al.'s scheme to propose a new password authentication scheme that is based on smart card technology and requires the use of chaotic maps. Then, we show that our proposed scheme is more secure and efficient and supports security properties.

  13. On the security flaws in ID-based password authentication schemes for telecare medical information systems.

    PubMed

    Mishra, Dheerendra

    2015-01-01

    Telecare medical information systems (TMIS) enable healthcare delivery services. However, access of these services via public channel raises security and privacy issues. In recent years, several smart card based authentication schemes have been introduced to ensure secure and authorized communication between remote entities over the public channel for the (TMIS). We analyze the security of some of the recently proposed authentication schemes of Lin, Xie et al., Cao and Zhai, and Wu and Xu's for TMIS. Unfortunately, we identify that these schemes failed to satisfy desirable security attributes. In this article we briefly discuss four dynamic ID-based authentication schemes and demonstrate their failure to satisfy desirable security attributes. The study is aimed to demonstrate how inefficient password change phase can lead to denial of server scenario for an authorized user, and how an inefficient login phase causes the communication and computational overhead and decrease the performance of the system. Moreover, we show the vulnerability of Cao and Zhai's scheme to known session specific temporary information attack, vulnerability of Wu and Xu's scheme to off-line password guessing attack, and vulnerability of Xie et al.'s scheme to untraceable on-line password guessing attack.

  14. Cryptanalysis and improvement of Yan et al.'s biometric-based authentication scheme for telecare medicine information systems.

    PubMed

    Mishra, Dheerendra; Mukhopadhyay, Sourav; Chaturvedi, Ankita; Kumari, Saru; Khan, Muhammad Khurram

    2014-06-01

    Remote user authentication is desirable for a Telecare Medicine Information System (TMIS) for the safety, security and integrity of transmitted data over the public channel. In 2013, Tan presented a biometric based remote user authentication scheme and claimed that his scheme is secure. Recently, Yan et al. demonstrated some drawbacks in Tan's scheme and proposed an improved scheme to erase the drawbacks of Tan's scheme. We analyze Yan et al.'s scheme and identify that their scheme is vulnerable to off-line password guessing attack, and does not protect anonymity. Moreover, in their scheme, login and password change phases are inefficient to identify the correctness of input where inefficiency in password change phase can cause denial of service attack. Further, we design an improved scheme for TMIS with the aim to eliminate the drawbacks of Yan et al.'s scheme.

  15. Security enhanced anonymous multiserver authenticated key agreement scheme using smart cards and biometrics.

    PubMed

    Choi, Younsung; Nam, Junghyun; Lee, Donghoon; Kim, Jiye; Jung, Jaewook; Won, Dongho

    2014-01-01

    An anonymous user authentication scheme allows a user, who wants to access a remote application server, to achieve mutual authentication and session key establishment with the server in an anonymous manner. To enhance the security of such authentication schemes, recent researches combined user's biometrics with a password. However, these authentication schemes are designed for single server environment. So when a user wants to access different application servers, the user has to register many times. To solve this problem, Chuang and Chen proposed an anonymous multiserver authenticated key agreement scheme using smart cards together with passwords and biometrics. Chuang and Chen claimed that their scheme not only supports multiple servers but also achieves various security requirements. However, we show that this scheme is vulnerable to a masquerade attack, a smart card attack, a user impersonation attack, and a DoS attack and does not achieve perfect forward secrecy. We also propose a security enhanced anonymous multiserver authenticated key agreement scheme which addresses all the weaknesses identified in Chuang and Chen's scheme.

  16. A Robust and Effective Smart-Card-Based Remote User Authentication Mechanism Using Hash Function

    PubMed Central

    Odelu, Vanga; Goswami, Adrijit

    2014-01-01

    In a remote user authentication scheme, a remote server verifies whether a login user is genuine and trustworthy, and also for mutual authentication purpose a login user validates whether the remote server is genuine and trustworthy. Several remote user authentication schemes using the password, the biometrics, and the smart card have been proposed in the literature. However, most schemes proposed in the literature are either computationally expensive or insecure against several known attacks. In this paper, we aim to propose a new robust and effective password-based remote user authentication scheme using smart card. Our scheme is efficient, because our scheme uses only efficient one-way hash function and bitwise XOR operations. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. We perform the simulation for the formal security analysis using the widely accepted AVISPA (Automated Validation Internet Security Protocols and Applications) tool to ensure that our scheme is secure against passive and active attacks. Furthermore, our scheme supports efficiently the password change phase always locally without contacting the remote server and correctly. In addition, our scheme performs significantly better than other existing schemes in terms of communication, computational overheads, security, and features provided by our scheme. PMID:24892078

  17. A robust and effective smart-card-based remote user authentication mechanism using hash function.

    PubMed

    Das, Ashok Kumar; Odelu, Vanga; Goswami, Adrijit

    2014-01-01

    In a remote user authentication scheme, a remote server verifies whether a login user is genuine and trustworthy, and also for mutual authentication purpose a login user validates whether the remote server is genuine and trustworthy. Several remote user authentication schemes using the password, the biometrics, and the smart card have been proposed in the literature. However, most schemes proposed in the literature are either computationally expensive or insecure against several known attacks. In this paper, we aim to propose a new robust and effective password-based remote user authentication scheme using smart card. Our scheme is efficient, because our scheme uses only efficient one-way hash function and bitwise XOR operations. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. We perform the simulation for the formal security analysis using the widely accepted AVISPA (Automated Validation Internet Security Protocols and Applications) tool to ensure that our scheme is secure against passive and active attacks. Furthermore, our scheme supports efficiently the password change phase always locally without contacting the remote server and correctly. In addition, our scheme performs significantly better than other existing schemes in terms of communication, computational overheads, security, and features provided by our scheme.

  18. An authentication scheme for secure access to healthcare services.

    PubMed

    Khan, Muhammad Khurram; Kumari, Saru

    2013-08-01

    Last few decades have witnessed boom in the development of information and communication technologies. Health-sector has also been benefitted with this advancement. To ensure secure access to healthcare services some user authentication mechanisms have been proposed. In 2012, Wei et al. proposed a user authentication scheme for telecare medical information system (TMIS). Recently, Zhu pointed out offline password guessing attack on Wei et al.'s scheme and proposed an improved scheme. In this article, we analyze both of these schemes for their effectiveness in TMIS. We show that Wei et al.'s scheme and its improvement proposed by Zhu fail to achieve some important characteristics necessary for secure user authentication. We find that security problems of Wei et al.'s scheme stick with Zhu's scheme; like undetectable online password guessing attack, inefficacy of password change phase, traceability of user's stolen/lost smart card and denial-of-service threat. We also identify that Wei et al.'s scheme lacks forward secrecy and Zhu's scheme lacks session key between user and healthcare server. We therefore propose an authentication scheme for TMIS with forward secrecy which preserves the confidentiality of air messages even if master secret key of healthcare server is compromised. Our scheme retains advantages of Wei et al.'s scheme and Zhu's scheme, and offers additional security. The security analysis and comparison results show the enhanced suitability of our scheme for TMIS.

  19. An improved and effective secure password-based authentication and key agreement scheme using smart cards for the telecare medicine information system.

    PubMed

    Das, Ashok Kumar; Bruhadeshwar, Bezawada

    2013-10-01

    Recently Lee and Liu proposed an efficient password based authentication and key agreement scheme using smart card for the telecare medicine information system [J. Med. Syst. (2013) 37:9933]. In this paper, we show that though their scheme is efficient, their scheme still has two security weaknesses such as (1) it has design flaws in authentication phase and (2) it has design flaws in password change phase. In order to withstand these flaws found in Lee-Liu's scheme, we propose an improvement of their scheme. Our improved scheme keeps also the original merits of Lee-Liu's scheme. We show that our scheme is efficient as compared to Lee-Liu's scheme. Further, through the security analysis, we show that our scheme is secure against possible known attacks. In addition, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to show that our scheme is secure against passive and active attacks.

  20. Security Analysis and Improvement of 'a More Secure Anonymous User Authentication Scheme for the Integrated EPR Information System'.

    PubMed

    Islam, S K Hafizul; Khan, Muhammad Khurram; Li, Xiong

    2015-01-01

    Over the past few years, secure and privacy-preserving user authentication scheme has become an integral part of the applications of the healthcare systems. Recently, Wen has designed an improved user authentication system over the Lee et al.'s scheme for integrated electronic patient record (EPR) information system, which has been analyzed in this study. We have found that Wen's scheme still has the following inefficiencies: (1) the correctness of identity and password are not verified during the login and password change phases; (2) it is vulnerable to impersonation attack and privileged-insider attack; (3) it is designed without the revocation of lost/stolen smart card; (4) the explicit key confirmation and the no key control properties are absent, and (5) user cannot update his/her password without the help of server and secure channel. Then we aimed to propose an enhanced two-factor user authentication system based on the intractable assumption of the quadratic residue problem (QRP) in the multiplicative group. Our scheme bears more securities and functionalities than other schemes found in the literature.

  1. Security Analysis and Improvement of ‘a More Secure Anonymous User Authentication Scheme for the Integrated EPR Information System’

    PubMed Central

    Islam, SK Hafizul; Khan, Muhammad Khurram; Li, Xiong

    2015-01-01

    Over the past few years, secure and privacy-preserving user authentication scheme has become an integral part of the applications of the healthcare systems. Recently, Wen has designed an improved user authentication system over the Lee et al.’s scheme for integrated electronic patient record (EPR) information system, which has been analyzed in this study. We have found that Wen’s scheme still has the following inefficiencies: (1) the correctness of identity and password are not verified during the login and password change phases; (2) it is vulnerable to impersonation attack and privileged-insider attack; (3) it is designed without the revocation of lost/stolen smart card; (4) the explicit key confirmation and the no key control properties are absent, and (5) user cannot update his/her password without the help of server and secure channel. Then we aimed to propose an enhanced two-factor user authentication system based on the intractable assumption of the quadratic residue problem (QRP) in the multiplicative group. Our scheme bears more securities and functionalities than other schemes found in the literature. PMID:26263401

  2. Biometrics based authentication scheme for session initiation protocol.

    PubMed

    Xie, Qi; Tang, Zhixiong

    2016-01-01

    Many two-factor challenge-response based session initiation protocol (SIP) has been proposed, but most of them are vulnerable to smart card stolen attacks and password guessing attacks. In this paper, we propose a novel three-factor SIP authentication scheme using biometrics, password and smart card, and utilize the pi calculus-based formal verification tool ProVerif to prove that the proposed protocol achieves security and authentication. Furthermore, our protocol is highly efficient when compared to other related protocols.

  3. Security Enhanced Anonymous Multiserver Authenticated Key Agreement Scheme Using Smart Cards and Biometrics

    PubMed Central

    Choi, Younsung; Nam, Junghyun; Lee, Donghoon; Kim, Jiye; Jung, Jaewook; Won, Dongho

    2014-01-01

    An anonymous user authentication scheme allows a user, who wants to access a remote application server, to achieve mutual authentication and session key establishment with the server in an anonymous manner. To enhance the security of such authentication schemes, recent researches combined user's biometrics with a password. However, these authentication schemes are designed for single server environment. So when a user wants to access different application servers, the user has to register many times. To solve this problem, Chuang and Chen proposed an anonymous multiserver authenticated key agreement scheme using smart cards together with passwords and biometrics. Chuang and Chen claimed that their scheme not only supports multiple servers but also achieves various security requirements. However, we show that this scheme is vulnerable to a masquerade attack, a smart card attack, a user impersonation attack, and a DoS attack and does not achieve perfect forward secrecy. We also propose a security enhanced anonymous multiserver authenticated key agreement scheme which addresses all the weaknesses identified in Chuang and Chen's scheme. PMID:25276847

  4. A user anonymity preserving three-factor authentication scheme for telecare medicine information systems.

    PubMed

    Tan, Zuowen

    2014-03-01

    The telecare medicine information system enables the patients gain health monitoring at home and access medical services over internet or mobile networks. In recent years, the schemes based on cryptography have been proposed to address the security and privacy issues in the telecare medicine information systems. However, many schemes are insecure or they have low efficiency. Recently, Awasthi and Srivastava proposed a three-factor authentication scheme for telecare medicine information systems. In this paper, we show that their scheme is vulnerable to the reflection attacks. Furthermore, it fails to provide three-factor security and the user anonymity. We propose a new three-factor authentication scheme for the telecare medicine information systems. Detailed analysis demonstrates that the proposed scheme provides mutual authentication, server not knowing password and freedom of password, biometric update and three-factor security. Moreover, the new scheme provides the user anonymity. As compared with the previous three-factor authentication schemes, the proposed scheme is more secure and practical.

  5. A Temporal Credential-Based Mutual Authentication with Multiple-Password Scheme for Wireless Sensor Networks

    PubMed Central

    Zhang, Ruisheng; Liu, Qidong

    2017-01-01

    Wireless sensor networks (WSNs), which consist of a large number of sensor nodes, have become among the most important technologies in numerous fields, such as environmental monitoring, military surveillance, control systems in nuclear reactors, vehicle safety systems, and medical monitoring. The most serious drawback for the widespread application of WSNs is the lack of security. Given the resource limitation of WSNs, traditional security schemes are unsuitable. Approaches toward withstanding related attacks with small overhead have thus recently been studied by many researchers. Numerous studies have focused on the authentication scheme for WSNs, but most of these works cannot achieve the security performance and overhead perfectly. Nam et al. proposed a two-factor authentication scheme with lightweight sensor computation for WSNs. In this paper, we review this scheme, emphasize its drawbacks, and propose a temporal credential-based mutual authentication with a multiple-password scheme for WSNs. Our scheme uses multiple passwords to achieve three-factor security performance and generate a session key between user and sensor nodes. The security analysis phase shows that our scheme can withstand related attacks, including a lost password threat, and the comparison phase shows that our scheme involves a relatively small overhead. In the comparison of the overhead phase, the result indicates that more than 95% of the overhead is composed of communication and not computation overhead. Therefore, the result motivates us to pay further attention to communication overhead than computation overhead in future research. PMID:28135288

  6. A Temporal Credential-Based Mutual Authentication with Multiple-Password Scheme for Wireless Sensor Networks.

    PubMed

    Liu, Xin; Zhang, Ruisheng; Liu, Qidong

    2017-01-01

    Wireless sensor networks (WSNs), which consist of a large number of sensor nodes, have become among the most important technologies in numerous fields, such as environmental monitoring, military surveillance, control systems in nuclear reactors, vehicle safety systems, and medical monitoring. The most serious drawback for the widespread application of WSNs is the lack of security. Given the resource limitation of WSNs, traditional security schemes are unsuitable. Approaches toward withstanding related attacks with small overhead have thus recently been studied by many researchers. Numerous studies have focused on the authentication scheme for WSNs, but most of these works cannot achieve the security performance and overhead perfectly. Nam et al. proposed a two-factor authentication scheme with lightweight sensor computation for WSNs. In this paper, we review this scheme, emphasize its drawbacks, and propose a temporal credential-based mutual authentication with a multiple-password scheme for WSNs. Our scheme uses multiple passwords to achieve three-factor security performance and generate a session key between user and sensor nodes. The security analysis phase shows that our scheme can withstand related attacks, including a lost password threat, and the comparison phase shows that our scheme involves a relatively small overhead. In the comparison of the overhead phase, the result indicates that more than 95% of the overhead is composed of communication and not computation overhead. Therefore, the result motivates us to pay further attention to communication overhead than computation overhead in future research.

  7. A secure and efficient password-based user authentication scheme using smart cards for the integrated EPR information system.

    PubMed

    Lee, Tian-Fu; Chang, I-Pin; Lin, Tsung-Hung; Wang, Ching-Cheng

    2013-06-01

    The integrated EPR information system supports convenient and rapid e-medicine services. A secure and efficient authentication scheme for the integrated EPR information system provides safeguarding patients' electronic patient records (EPRs) and helps health care workers and medical personnel to rapidly making correct clinical decisions. Recently, Wu et al. proposed an efficient password-based user authentication scheme using smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various malicious attacks. However, their scheme is still vulnerable to lost smart card and stolen verifier attacks. This investigation discusses these weaknesses and proposes a secure and efficient authentication scheme for the integrated EPR information system as alternative. Compared with related approaches, the proposed scheme not only retains a lower computational cost and does not require verifier tables for storing users' secrets, but also solves the security problems in previous schemes and withstands possible attacks.

  8. A Multiserver Biometric Authentication Scheme for TMIS using Elliptic Curve Cryptography.

    PubMed

    Chaudhry, Shehzad Ashraf; Khan, Muhammad Tawab; Khan, Muhammad Khurram; Shon, Taeshik

    2016-11-01

    Recently several authentication schemes are proposed for telecare medicine information system (TMIS). Many of such schemes are proved to have weaknesses against known attacks. Furthermore, numerous such schemes cannot be used in real time scenarios. Because they assume a single server for authentication across the globe. Very recently, Amin et al. (J. Med. Syst. 39(11):180, 2015) designed an authentication scheme for secure communication between a patient and a medical practitioner using a trusted central medical server. They claimed their scheme to extend all security requirements and emphasized the efficiency of their scheme. However, the analysis in this article proves that the scheme designed by Amin et al. is vulnerable to stolen smart card and stolen verifier attacks. Furthermore, their scheme is having scalability issues along with inefficient password change and password recovery phases. Then we propose an improved scheme. The proposed scheme is more practical, secure and lightweight than Amin et al.'s scheme. The security of proposed scheme is proved using the popular automated tool ProVerif.

  9. A more secure anonymous user authentication scheme for the integrated EPR information system.

    PubMed

    Wen, Fengtong

    2014-05-01

    Secure and efficient user mutual authentication is an essential task for integrated electronic patient record (EPR) information system. Recently, several authentication schemes have been proposed to meet this requirement. In a recent paper, Lee et al. proposed an efficient and secure password-based authentication scheme used smart cards for the integrated EPR information system. This scheme is believed to have many abilities to resist a range of network attacks. Especially, they claimed that their scheme could resist lost smart card attack. However, we reanalyze the security of Lee et al.'s scheme, and show that it fails to protect off-line password guessing attack if the secret information stored in the smart card is compromised. This also renders that their scheme is insecure against user impersonation attacks. Then, we propose a new user authentication scheme for integrated EPR information systems based on the quadratic residues. The new scheme not only resists a range of network attacks but also provides user anonymity. We show that our proposed scheme can provide stronger security.

  10. Robust and efficient biometrics based password authentication scheme for telecare medicine information systems using extended chaotic maps.

    PubMed

    Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Xie, Dong; Yang, Yixian

    2015-06-01

    The Telecare Medicine Information Systems (TMISs) provide an efficient communicating platform supporting the patients access health-care delivery services via internet or mobile networks. Authentication becomes an essential need when a remote patient logins into the telecare server. Recently, many extended chaotic maps based authentication schemes using smart cards for TMISs have been proposed. Li et al. proposed a secure smart cards based authentication scheme for TMISs using extended chaotic maps based on Lee's and Jiang et al.'s scheme. In this study, we show that Li et al.'s scheme has still some weaknesses such as violation the session key security, vulnerability to user impersonation attack and lack of local verification. To conquer these flaws, we propose a chaotic maps and smart cards based password authentication scheme by applying biometrics technique and hash function operations. Through the informal and formal security analyses, we demonstrate that our scheme is resilient possible known attacks including the attacks found in Li et al.'s scheme. As compared with the previous authentication schemes, the proposed scheme is more secure and efficient and hence more practical for telemedical environments.

  11. Design of a Secure Authentication and Key Agreement Scheme Preserving User Privacy Usable in Telecare Medicine Information Systems.

    PubMed

    Arshad, Hamed; Rasoolzadegan, Abbas

    2016-11-01

    Authentication and key agreement schemes play a very important role in enhancing the level of security of telecare medicine information systems (TMISs). Recently, Amin and Biswas demonstrated that the authentication scheme proposed by Giri et al. is vulnerable to off-line password guessing attacks and privileged insider attacks and also does not provide user anonymity. They also proposed an improved authentication scheme, claiming that it resists various security attacks. However, this paper demonstrates that Amin and Biswas's scheme is defenseless against off-line password guessing attacks and replay attacks and also does not provide perfect forward secrecy. This paper also shows that Giri et al.'s scheme not only suffers from the weaknesses pointed out by Amin and Biswas, but it also is vulnerable to replay attacks and does not provide perfect forward secrecy. Moreover, this paper proposes a novel authentication and key agreement scheme to overcome the mentioned weaknesses. Security and performance analyses show that the proposed scheme not only overcomes the mentioned security weaknesses, but also is more efficient than the previous schemes.

  12. Cryptanalysis and Improvement of "A Secure Password Authentication Mechanism for Seamless Handover in Proxy Mobile IPv6 Networks".

    PubMed

    Alizadeh, Mojtaba; Zamani, Mazdak; Baharun, Sabariah; Abdul Manaf, Azizah; Sakurai, Kouichi; Anada, Hiroaki; Anada, Hiroki; Keshavarz, Hassan; Ashraf Chaudhry, Shehzad; Khurram Khan, Muhammad

    2015-01-01

    Proxy Mobile IPv6 is a network-based localized mobility management protocol that supports mobility without mobile nodes' participation in mobility signaling. The details of user authentication procedure are not specified in this standard, hence, many authentication schemes have been proposed for this standard. In 2013, Chuang et al., proposed an authentication method for PMIPv6, called SPAM. However, Chuang et al.'s Scheme protects the network against some security attacks, but it is still vulnerable to impersonation and password guessing attacks. In addition, we discuss other security drawbacks such as lack of revocation procedure in case of loss or stolen device, and anonymity issues of the Chuang et al.'s scheme. We further propose an enhanced authentication method to mitigate the security issues of SPAM method and evaluate our scheme using BAN logic.

  13. Cryptanalysis and Improvement of "A Secure Password Authentication Mechanism for Seamless Handover in Proxy Mobile IPv6 Networks"

    PubMed Central

    Alizadeh, Mojtaba; Zamani, Mazdak; Baharun, Sabariah; Abdul Manaf, Azizah; Sakurai, Kouichi; Anada, Hiroki; Keshavarz, Hassan; Ashraf Chaudhry, Shehzad; Khurram Khan, Muhammad

    2015-01-01

    Proxy Mobile IPv6 is a network-based localized mobility management protocol that supports mobility without mobile nodes’ participation in mobility signaling. The details of user authentication procedure are not specified in this standard, hence, many authentication schemes have been proposed for this standard. In 2013, Chuang et al., proposed an authentication method for PMIPv6, called SPAM. However, Chuang et al.’s Scheme protects the network against some security attacks, but it is still vulnerable to impersonation and password guessing attacks. In addition, we discuss other security drawbacks such as lack of revocation procedure in case of loss or stolen device, and anonymity issues of the Chuang et al.’s scheme. We further propose an enhanced authentication method to mitigate the security issues of SPAM method and evaluate our scheme using BAN logic. PMID:26580963

  14. Security analysis of a chaotic map-based authentication scheme for telecare medicine information systems.

    PubMed

    Yau, Wei-Chuen; Phan, Raphael C-W

    2013-12-01

    Many authentication schemes have been proposed for telecare medicine information systems (TMIS) to ensure the privacy, integrity, and availability of patient records. These schemes are crucial for TMIS systems because otherwise patients' medical records become susceptible to tampering thus hampering diagnosis or private medical conditions of patients could be disclosed to parties who do not have a right to access such information. Very recently, Hao et al. proposed a chaotic map-based authentication scheme for telecare medicine information systems in a recent issue of Journal of Medical Systems. They claimed that the authentication scheme can withstand various attacks and it is secure to be used in TMIS. In this paper, we show that this authentication scheme is vulnerable to key-compromise impersonation attacks, off-line password guessing attacks upon compromising of a smart card, and parallel session attacks. We also exploit weaknesses in the password change phase of the scheme to mount a denial-of-service attack. Our results show that this scheme cannot be used to provide security in a telecare medicine information system.

  15. Improvement of a uniqueness-and-anonymity-preserving user authentication scheme for connected health care.

    PubMed

    Xie, Qi; Liu, Wenhao; Wang, Shengbao; Han, Lidong; Hu, Bin; Wu, Ting

    2014-09-01

    Patient's privacy-preserving, security and mutual authentication between patient and the medical server are the important mechanism in connected health care applications, such as telecare medical information systems and personally controlled health records systems. In 2013, Wen showed that Das et al.'s scheme is vulnerable to the replay attack, user impersonation attacks and off-line guessing attacks, and then proposed an improved scheme using biometrics, password and smart card to overcome these weaknesses. However, we show that Wen's scheme is still vulnerable to off-line password guessing attacks, does not provide user's anonymity and perfect forward secrecy. Further, we propose an improved scheme to fix these weaknesses, and use the applied pi calculus based formal verification tool ProVerif to prove the security and authentication.

  16. Three-Factor User Authentication and Key Agreement Using Elliptic Curve Cryptosystem in Wireless Sensor Networks.

    PubMed

    Park, YoHan; Park, YoungHo

    2016-12-14

    Secure communication is a significant issue in wireless sensor networks. User authentication and key agreement are essential for providing a secure system, especially in user-oriented mobile services. It is also necessary to protect the identity of each individual in wireless environments to avoid personal privacy concerns. Many authentication and key agreement schemes utilize a smart card in addition to a password to support security functionalities. However, these schemes often fail to provide security along with privacy. In 2015, Chang et al. analyzed the security vulnerabilities of previous schemes and presented the two-factor authentication scheme that provided user privacy by using dynamic identities. However, when we cryptanalyzed Chang et al.'s scheme, we found that it does not provide sufficient security for wireless sensor networks and fails to provide accurate password updates. This paper proposes a security-enhanced authentication and key agreement scheme to overcome these security weaknesses using biometric information and an elliptic curve cryptosystem. We analyze the security of the proposed scheme against various attacks and check its viability in the mobile environment.

  17. Three-Factor User Authentication and Key Agreement Using Elliptic Curve Cryptosystem in Wireless Sensor Networks

    PubMed Central

    Park, YoHan; Park, YoungHo

    2016-01-01

    Secure communication is a significant issue in wireless sensor networks. User authentication and key agreement are essential for providing a secure system, especially in user-oriented mobile services. It is also necessary to protect the identity of each individual in wireless environments to avoid personal privacy concerns. Many authentication and key agreement schemes utilize a smart card in addition to a password to support security functionalities. However, these schemes often fail to provide security along with privacy. In 2015, Chang et al. analyzed the security vulnerabilities of previous schemes and presented the two-factor authentication scheme that provided user privacy by using dynamic identities. However, when we cryptanalyzed Chang et al.’s scheme, we found that it does not provide sufficient security for wireless sensor networks and fails to provide accurate password updates. This paper proposes a security-enhanced authentication and key agreement scheme to overcome these security weaknesses using biometric information and an elliptic curve cryptosystem. We analyze the security of the proposed scheme against various attacks and check its viability in the mobile environment. PMID:27983616

  18. Security analysis and improvement of a privacy authentication scheme for telecare medical information systems.

    PubMed

    Wu, Fan; Xu, Lili

    2013-08-01

    Nowadays, patients can gain many kinds of medical service on line via Telecare Medical Information Systems(TMIS) due to the fast development of computer technology. So security of communication through network between the users and the server is very significant. Authentication plays an important part to protect information from being attacked by malicious attackers. Recently, Jiang et al. proposed a privacy enhanced scheme for TMIS using smart cards and claimed their scheme was better than Chen et al.'s. However, we have showed that Jiang et al.'s scheme has the weakness of ID uselessness and is vulnerable to off-line password guessing attack and user impersonation attack if an attacker compromises the legal user's smart card. Also, it can't resist DoS attack in two cases: after a successful impersonation attack and wrong password input in Password change phase. Then we propose an improved mutual authentication scheme used for a telecare medical information system. Remote monitoring, checking patients' past medical history record and medical consultant can be applied in the system where information transmits via Internet. Finally, our analysis indicates that the suggested scheme overcomes the disadvantages of Jiang et al.'s scheme and is practical for TMIS.

  19. Privacy Enhancements for Inexact Biometric Templates

    NASA Astrophysics Data System (ADS)

    Ratha, Nalini; Chikkerur, Sharat; Connell, Jonathan; Bolle, Ruud

    Traditional authentication schemes utilize tokens or depend on some secret knowledge possessed by the user for verifying his or her identity. Although these techniques are widely used, they have several limitations. Both tokenand knowledge-based approaches cannot differentiate between an authorized user and an impersonator having access to the tokens or passwords. Biometrics-based authentication schemes overcome these limitations while offering usability advantages in the area of password management. However, despite its obvious advantages, the use of biometrics raises several security and privacy concerns.

  20. Privacy-Preserving Authentication of Users with Smart Cards Using One-Time Credentials

    NASA Astrophysics Data System (ADS)

    Park, Jun-Cheol

    User privacy preservation is critical to prevent many sophisticated attacks that are based on the user's server access patterns and ID-related information. We propose a password-based user authentication scheme that provides strong privacy protection using one-time credentials. It eliminates the possibility of tracing a user's authentication history and hides the user's ID and password even from servers. In addition, it is resistant against user impersonation even if both a server's verification database and a user's smart card storage are disclosed. We also provide a revocation scheme for a user to promptly invalidate the user's credentials on a server when the user's smart card is compromised. The schemes use lightweight operations only such as computing hashes and bitwise XORs.

  1. Security enhancement of a biometric based authentication scheme for telecare medicine information systems with nonce.

    PubMed

    Mishra, Dheerendra; Mukhopadhyay, Sourav; Kumari, Saru; Khan, Muhammad Khurram; Chaturvedi, Ankita

    2014-05-01

    Telecare medicine information systems (TMIS) present the platform to deliver clinical service door to door. The technological advances in mobile computing are enhancing the quality of healthcare and a user can access these services using its mobile device. However, user and Telecare system communicate via public channels in these online services which increase the security risk. Therefore, it is required to ensure that only authorized user is accessing the system and user is interacting with the correct system. The mutual authentication provides the way to achieve this. Although existing schemes are either vulnerable to attacks or they have higher computational cost while an scalable authentication scheme for mobile devices should be secure and efficient. Recently, Awasthi and Srivastava presented a biometric based authentication scheme for TMIS with nonce. Their scheme only requires the computation of the hash and XOR functions.pagebreak Thus, this scheme fits for TMIS. However, we observe that Awasthi and Srivastava's scheme does not achieve efficient password change phase. Moreover, their scheme does not resist off-line password guessing attack. Further, we propose an improvement of Awasthi and Srivastava's scheme with the aim to remove the drawbacks of their scheme.

  2. Keystroke Dynamics-Based Credential Hardening Systems

    NASA Astrophysics Data System (ADS)

    Bartlow, Nick; Cukic, Bojan

    abstract Keystroke dynamics are becoming a well-known method for strengthening username- and password-based credential sets. The familiarity and ease of use of these traditional authentication schemes combined with the increased trustworthiness associated with biometrics makes them prime candidates for application in many web-based scenarios. Our keystroke dynamics system uses Breiman’s random forests algorithm to classify keystroke input sequences as genuine or imposter. The system is capable of operating at various points on a traditional ROC curve depending on application-specific security needs. As a username/password authentication scheme, our approach decreases the system penetration rate associated with compromised passwords up to 99.15%. Beyond presenting results demonstrating the credential hardening effect of our scheme, we look into the notion that a user’s familiarity to components of a credential set can non-trivially impact error rates.

  3. A secure and robust password-based remote user authentication scheme using smart cards for the integrated EPR information system.

    PubMed

    Das, Ashok Kumar

    2015-03-01

    An integrated EPR (Electronic Patient Record) information system of all the patients provides the medical institutions and the academia with most of the patients' information in details for them to make corrective decisions and clinical decisions in order to maintain and analyze patients' health. In such system, the illegal access must be restricted and the information from theft during transmission over the insecure Internet must be prevented. Lee et al. proposed an efficient password-based remote user authentication scheme using smart card for the integrated EPR information system. Their scheme is very efficient due to usage of one-way hash function and bitwise exclusive-or (XOR) operations. However, in this paper, we show that though their scheme is very efficient, their scheme has three security weaknesses such as (1) it has design flaws in password change phase, (2) it fails to protect privileged insider attack and (3) it lacks the formal security verification. We also find that another recently proposed Wen's scheme has the same security drawbacks as in Lee at al.'s scheme. In order to remedy these security weaknesses found in Lee et al.'s scheme and Wen's scheme, we propose a secure and efficient password-based remote user authentication scheme using smart cards for the integrated EPR information system. We show that our scheme is also efficient as compared to Lee et al.'s scheme and Wen's scheme as our scheme only uses one-way hash function and bitwise exclusive-or (XOR) operations. Through the security analysis, we show that our scheme is secure against possible known attacks. Furthermore, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool and show that our scheme is secure against passive and active attacks.

  4. Security analysis and enhancements of an effective biometric-based remote user authentication scheme using smart cards.

    PubMed

    An, Younghwa

    2012-01-01

    Recently, many biometrics-based user authentication schemes using smart cards have been proposed to improve the security weaknesses in user authentication system. In 2011, Das proposed an efficient biometric-based remote user authentication scheme using smart cards that can provide strong authentication and mutual authentication. In this paper, we analyze the security of Das's authentication scheme, and we have shown that Das's authentication scheme is still insecure against the various attacks. Also, we proposed the enhanced scheme to remove these security problems of Das's authentication scheme, even if the secret information stored in the smart card is revealed to an attacker. As a result of security analysis, we can see that the enhanced scheme is secure against the user impersonation attack, the server masquerading attack, the password guessing attack, and the insider attack and provides mutual authentication between the user and the server.

  5. Security Analysis and Enhancements of an Effective Biometric-Based Remote User Authentication Scheme Using Smart Cards

    PubMed Central

    An, Younghwa

    2012-01-01

    Recently, many biometrics-based user authentication schemes using smart cards have been proposed to improve the security weaknesses in user authentication system. In 2011, Das proposed an efficient biometric-based remote user authentication scheme using smart cards that can provide strong authentication and mutual authentication. In this paper, we analyze the security of Das's authentication scheme, and we have shown that Das's authentication scheme is still insecure against the various attacks. Also, we proposed the enhanced scheme to remove these security problems of Das's authentication scheme, even if the secret information stored in the smart card is revealed to an attacker. As a result of security analysis, we can see that the enhanced scheme is secure against the user impersonation attack, the server masquerading attack, the password guessing attack, and the insider attack and provides mutual authentication between the user and the server. PMID:22899887

  6. A secure smart-card based authentication and key agreement scheme for telecare medicine information systems.

    PubMed

    Lee, Tian-Fu; Liu, Chuan-Ming

    2013-06-01

    A smart-card based authentication scheme for telecare medicine information systems enables patients, doctors, nurses, health visitors and the medicine information systems to establish a secure communication platform through public networks. Zhu recently presented an improved authentication scheme in order to solve the weakness of the authentication scheme of Wei et al., where the off-line password guessing attacks cannot be resisted. This investigation indicates that the improved scheme of Zhu has some faults such that the authentication scheme cannot execute correctly and is vulnerable to the attack of parallel sessions. Additionally, an enhanced authentication scheme based on the scheme of Zhu is proposed. The enhanced scheme not only avoids the weakness in the original scheme, but also provides users' anonymity and authenticated key agreements for secure data communications.

  7. An Efficient User Authentication and User Anonymity Scheme with Provably Security for IoT-Based Medical Care System.

    PubMed

    Li, Chun-Ta; Wu, Tsu-Yang; Chen, Chin-Ling; Lee, Cheng-Chi; Chen, Chien-Ming

    2017-06-23

    In recent years, with the increase in degenerative diseases and the aging population in advanced countries, demands for medical care of older or solitary people have increased continually in hospitals and healthcare institutions. Applying wireless sensor networks for the IoT-based telemedicine system enables doctors, caregivers or families to monitor patients' physiological conditions at anytime and anyplace according to the acquired information. However, transmitting physiological data through the Internet concerns the personal privacy of patients. Therefore, before users can access medical care services in IoT-based medical care system, they must be authenticated. Typically, user authentication and data encryption are most critical for securing network communications over a public channel between two or more participants. In 2016, Liu and Chung proposed a bilinear pairing-based password authentication scheme for wireless healthcare sensor networks. They claimed their authentication scheme cannot only secure sensor data transmission, but also resist various well-known security attacks. In this paper, we demonstrate that Liu-Chung's scheme has some security weaknesses, and we further present an improved secure authentication and data encryption scheme for the IoT-based medical care system, which can provide user anonymity and prevent the security threats of replay and password/sensed data disclosure attacks. Moreover, we modify the authentication process to reduce redundancy in protocol design, and the proposed scheme is more efficient in performance compared with previous related schemes. Finally, the proposed scheme is provably secure in the random oracle model under ECDHP.

  8. An Extended Chaotic Maps-Based Three-Party Password-Authenticated Key Agreement with User Anonymity

    PubMed Central

    Lu, Yanrong; Li, Lixiang; Zhang, Hao; Yang, Yixian

    2016-01-01

    User anonymity is one of the key security features of an authenticated key agreement especially for communicating messages via an insecure network. Owing to the better properties and higher performance of chaotic theory, the chaotic maps have been introduced into the security schemes, and hence numerous key agreement schemes have been put forward under chaotic-maps. Recently, Xie et al. released an enhanced scheme under Farash et al.’s scheme and claimed their improvements could withstand the security loopholes pointed out in the scheme of Farash et al., i.e., resistance to the off-line password guessing and user impersonation attacks. Nevertheless, through our careful analysis, the improvements were released by Xie et al. still could not solve the problems troubled in Farash et al‥ Besides, Xie et al.’s improvements failed to achieve the user anonymity and the session key security. With the purpose of eliminating the security risks of the scheme of Xie et al., we design an anonymous password-based three-party authenticated key agreement under chaotic maps. Both the formal analysis and the formal security verification using AVISPA are presented. Also, BAN logic is used to show the correctness of the enhancements. Furthermore, we also demonstrate that the design thwarts most of the common attacks. We also make a comparison between the recent chaotic-maps based schemes and our enhancements in terms of performance. PMID:27101305

  9. Smartphone-based secure authenticated session sharing in Internet of Personal Things

    NASA Astrophysics Data System (ADS)

    Krishnan, Ram; Ninglekhu, Jiwan

    2015-03-01

    In the context of password-based authentication, a user can only memorize limited number of usernames and passwords. They are generally referred to as user-credentials. Longer character length of passwords further adds complication in mastering them. The expansion of the Internet and our growing dependency on it, has made it almost impossible for us to handle the big pool of user-credentials. Using simple, same or similar passwords is considered a poor practice, as it can easily be compromised by password cracking tools and social engineering attacks. Therefore, a robust and painless technique to manage personal credentials for websites is desirable. In this paper, a novel technique for user-credentials management via a smart mobile device such as a smartphone in a local network is proposed. We present a secure user-credential management scheme in which user's account login (username) and password associated with websites domain name is saved into the mobile device's database using a mobile application. We develop a custom browser extension application for client and use it to import user's credentials linked with the corresponding website from the mobile device via the local Wi-Fi network connection. The browser extension imports and identifies the authentication credentials and pushes them into the target TextBox locations in the webpage, ready for the user to execute. This scheme is suitably demonstrated between two personal devices in a local network.

  10. Chaotic maps and biometrics-based anonymous three-party authenticated key exchange protocol without using passwords

    NASA Astrophysics Data System (ADS)

    Xie, Qi; Hu, Bin; Chen, Ke-Fei; Liu, Wen-Hao; Tan, Xiao

    2015-11-01

    In three-party password authenticated key exchange (AKE) protocol, since two users use their passwords to establish a secure session key over an insecure communication channel with the help of the trusted server, such a protocol may suffer the password guessing attacks and the server has to maintain the password table. To eliminate the shortages of password-based AKE protocol, very recently, according to chaotic maps, Lee et al. [2015 Nonlinear Dyn. 79 2485] proposed a first three-party-authenticated key exchange scheme without using passwords, and claimed its security by providing a well-organized BAN logic test. Unfortunately, their protocol cannot resist impersonation attack, which is demonstrated in the present paper. To overcome their security weakness, by using chaotic maps, we propose a biometrics-based anonymous three-party AKE protocol with the same advantages. Further, we use the pi calculus-based formal verification tool ProVerif to show that our AKE protocol achieves authentication, security and anonymity, and an acceptable efficiency. Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ12F02005), the Major State Basic Research Development Program of China (Grant No. 2013CB834205), and the National Natural Science Foundation of China (Grant No. 61070153).

  11. An Efficient User Authentication and User Anonymity Scheme with Provably Security for IoT-Based Medical Care System

    PubMed Central

    Wu, Tsu-Yang; Chen, Chin-Ling; Lee, Cheng-Chi; Chen, Chien-Ming

    2017-01-01

    In recent years, with the increase in degenerative diseases and the aging population in advanced countries, demands for medical care of older or solitary people have increased continually in hospitals and healthcare institutions. Applying wireless sensor networks for the IoT-based telemedicine system enables doctors, caregivers or families to monitor patients’ physiological conditions at anytime and anyplace according to the acquired information. However, transmitting physiological data through the Internet concerns the personal privacy of patients. Therefore, before users can access medical care services in IoT-based medical care system, they must be authenticated. Typically, user authentication and data encryption are most critical for securing network communications over a public channel between two or more participants. In 2016, Liu and Chung proposed a bilinear pairing-based password authentication scheme for wireless healthcare sensor networks. They claimed their authentication scheme cannot only secure sensor data transmission, but also resist various well-known security attacks. In this paper, we demonstrate that Liu–Chung’s scheme has some security weaknesses, and we further present an improved secure authentication and data encryption scheme for the IoT-based medical care system, which can provide user anonymity and prevent the security threats of replay and password/sensed data disclosure attacks. Moreover, we modify the authentication process to reduce redundancy in protocol design, and the proposed scheme is more efficient in performance compared with previous related schemes. Finally, the proposed scheme is provably secure in the random oracle model under ECDHP. PMID:28644381

  12. RUASN: a robust user authentication framework for wireless sensor networks.

    PubMed

    Kumar, Pardeep; Choudhury, Amlan Jyoti; Sain, Mangal; Lee, Sang-Gon; Lee, Hoon-Jae

    2011-01-01

    In recent years, wireless sensor networks (WSNs) have been considered as a potential solution for real-time monitoring applications and these WSNs have potential practical impact on next generation technology too. However, WSNs could become a threat if suitable security is not considered before the deployment and if there are any loopholes in their security, which might open the door for an attacker and hence, endanger the application. User authentication is one of the most important security services to protect WSN data access from unauthorized users; it should provide both mutual authentication and session key establishment services. This paper proposes a robust user authentication framework for wireless sensor networks, based on a two-factor (password and smart card) concept. This scheme facilitates many services to the users such as user anonymity, mutual authentication, secure session key establishment and it allows users to choose/update their password regularly, whenever needed. Furthermore, we have provided the formal verification using Rubin logic and compare RUASN with many existing schemes. As a result, we found that the proposed scheme possesses many advantages against popular attacks, and achieves better efficiency at low computation cost.

  13. An enhanced password authentication scheme for session initiation protocol with perfect forward secrecy.

    PubMed

    Qiu, Shuming; Xu, Guoai; Ahmad, Haseeb; Guo, Yanhui

    2018-01-01

    The Session Initiation Protocol (SIP) is an extensive and esteemed communication protocol employed to regulate signaling as well as for controlling multimedia communication sessions. Recently, Kumari et al. proposed an improved smart card based authentication scheme for SIP based on Farash's scheme. Farash claimed that his protocol is resistant against various known attacks. But, we observe some accountable flaws in Farash's protocol. We point out that Farash's protocol is prone to key-compromise impersonation attack and is unable to provide pre-verification in the smart card, efficient password change and perfect forward secrecy. To overcome these limitations, in this paper we present an enhanced authentication mechanism based on Kumari et al.'s scheme. We prove that the proposed protocol not only overcomes the issues in Farash's scheme, but it can also resist against all known attacks. We also provide the security analysis of the proposed scheme with the help of widespread AVISPA (Automated Validation of Internet Security Protocols and Applications) software. At last, comparing with the earlier proposals in terms of security and efficiency, we conclude that the proposed protocol is efficient and more secure.

  14. User Authentication and Authorization Challenges in a Networked Library Environment.

    ERIC Educational Resources Information Center

    Machovec, George S.

    1997-01-01

    Discusses computer user authentication and authorization issues when libraries need to let valid users access databases and information services without making the process too difficult for either party. Common solutions are explained, including filtering, passwords, and kerberos (cryptographic authentication scheme for secure use over public…

  15. Robust biometrics based authentication and key agreement scheme for multi-server environments using smart cards.

    PubMed

    Lu, Yanrong; Li, Lixiang; Yang, Xing; Yang, Yixian

    2015-01-01

    Biometrics authenticated schemes using smart cards have attracted much attention in multi-server environments. Several schemes of this type where proposed in the past. However, many of them were found to have some design flaws. This paper concentrates on the security weaknesses of the three-factor authentication scheme by Mishra et al. After careful analysis, we find their scheme does not really resist replay attack while failing to provide an efficient password change phase. We further propose an improvement of Mishra et al.'s scheme with the purpose of preventing the security threats of their scheme. We demonstrate the proposed scheme is given to strong authentication against several attacks including attacks shown in the original scheme. In addition, we compare the performance and functionality with other multi-server authenticated key schemes.

  16. Robust Biometrics Based Authentication and Key Agreement Scheme for Multi-Server Environments Using Smart Cards

    PubMed Central

    Lu, Yanrong; Li, Lixiang; Yang, Xing; Yang, Yixian

    2015-01-01

    Biometrics authenticated schemes using smart cards have attracted much attention in multi-server environments. Several schemes of this type where proposed in the past. However, many of them were found to have some design flaws. This paper concentrates on the security weaknesses of the three-factor authentication scheme by Mishra et al. After careful analysis, we find their scheme does not really resist replay attack while failing to provide an efficient password change phase. We further propose an improvement of Mishra et al.’s scheme with the purpose of preventing the security threats of their scheme. We demonstrate the proposed scheme is given to strong authentication against several attacks including attacks shown in the original scheme. In addition, we compare the performance and functionality with other multi-server authenticated key schemes. PMID:25978373

  17. A Hash Based Remote User Authentication and Authenticated Key Agreement Scheme for the Integrated EPR Information System.

    PubMed

    Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi; Wang, Chun-Cheng

    2015-11-01

    To protect patient privacy and ensure authorized access to remote medical services, many remote user authentication schemes for the integrated electronic patient record (EPR) information system have been proposed in the literature. In a recent paper, Das proposed a hash based remote user authentication scheme using passwords and smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various passive and active attacks. However, in this paper, we found that Das's authentication scheme is still vulnerable to modification and user duplication attacks. Thereafter we propose a secure and efficient authentication scheme for the integrated EPR information system based on lightweight hash function and bitwise exclusive-or (XOR) operations. The security proof and performance analysis show our new scheme is well-suited to adoption in remote medical healthcare services.

  18. An improved authenticated key agreement protocol for telecare medicine information system.

    PubMed

    Liu, Wenhao; Xie, Qi; Wang, Shengbao; Hu, Bin

    2016-01-01

    In telecare medicine information systems (TMIS), identity authentication of patients plays an important role and has been widely studied in the research field. Generally, it is realized by an authenticated key agreement protocol, and many such protocols were proposed in the literature. Recently, Zhang et al. pointed out that Islam et al.'s protocol suffers from the following security weaknesses: (1) Any legal but malicious patient can reveal other user's identity; (2) An attacker can launch off-line password guessing attack and the impersonation attack if the patient's identity is compromised. Zhang et al. also proposed an improved authenticated key agreement scheme with privacy protection for TMIS. However, in this paper, we point out that Zhang et al.'s scheme cannot resist off-line password guessing attack, and it fails to provide the revocation of lost/stolen smartcard. In order to overcome these weaknesses, we propose an improved protocol, the security and authentication of which can be proven using applied pi calculus based formal verification tool ProVerif.

  19. An improved anonymous authentication scheme for roaming in ubiquitous networks.

    PubMed

    Lee, Hakjun; Lee, Donghoon; Moon, Jongho; Jung, Jaewook; Kang, Dongwoo; Kim, Hyoungshick; Won, Dongho

    2018-01-01

    With the evolution of communication technology and the exponential increase of mobile devices, the ubiquitous networking allows people to use our data and computing resources anytime and everywhere. However, numerous security concerns and complicated requirements arise as these ubiquitous networks are deployed throughout people's lives. To meet the challenge, the user authentication schemes in ubiquitous networks should ensure the essential security properties for the preservation of the privacy with low computational cost. In 2017, Chaudhry et al. proposed a password-based authentication scheme for the roaming in ubiquitous networks to enhance the security. Unfortunately, we found that their scheme remains insecure in its protection of the user privacy. In this paper, we prove that Chaudhry et al.'s scheme is vulnerable to the stolen-mobile device and user impersonation attacks, and its drawbacks comprise the absence of the incorrect login-input detection, the incorrectness of the password change phase, and the absence of the revocation provision. Moreover, we suggest a possible way to fix the security flaw in Chaudhry et al's scheme by using the biometric-based authentication for which the bio-hash is applied in the implementation of a three-factor authentication. We prove the security of the proposed scheme with the random oracle model and formally verify its security properties using a tool named ProVerif, and analyze it in terms of the computational and communication cost. The analysis result shows that the proposed scheme is suitable for resource-constrained ubiquitous environments.

  20. An improved anonymous authentication scheme for roaming in ubiquitous networks

    PubMed Central

    Lee, Hakjun; Lee, Donghoon; Moon, Jongho; Jung, Jaewook; Kang, Dongwoo; Kim, Hyoungshick

    2018-01-01

    With the evolution of communication technology and the exponential increase of mobile devices, the ubiquitous networking allows people to use our data and computing resources anytime and everywhere. However, numerous security concerns and complicated requirements arise as these ubiquitous networks are deployed throughout people’s lives. To meet the challenge, the user authentication schemes in ubiquitous networks should ensure the essential security properties for the preservation of the privacy with low computational cost. In 2017, Chaudhry et al. proposed a password-based authentication scheme for the roaming in ubiquitous networks to enhance the security. Unfortunately, we found that their scheme remains insecure in its protection of the user privacy. In this paper, we prove that Chaudhry et al.’s scheme is vulnerable to the stolen-mobile device and user impersonation attacks, and its drawbacks comprise the absence of the incorrect login-input detection, the incorrectness of the password change phase, and the absence of the revocation provision. Moreover, we suggest a possible way to fix the security flaw in Chaudhry et al’s scheme by using the biometric-based authentication for which the bio-hash is applied in the implementation of a three-factor authentication. We prove the security of the proposed scheme with the random oracle model and formally verify its security properties using a tool named ProVerif, and analyze it in terms of the computational and communication cost. The analysis result shows that the proposed scheme is suitable for resource-constrained ubiquitous environments. PMID:29505575

  1. An Efficient and Practical Smart Card Based Anonymity Preserving User Authentication Scheme for TMIS using Elliptic Curve Cryptography.

    PubMed

    Amin, Ruhul; Islam, S K Hafizul; Biswas, G P; Khan, Muhammad Khurram; Kumar, Neeraj

    2015-11-01

    In the last few years, numerous remote user authentication and session key agreement schemes have been put forwarded for Telecare Medical Information System, where the patient and medical server exchange medical information using Internet. We have found that most of the schemes are not usable for practical applications due to known security weaknesses. It is also worth to note that unrestricted number of patients login to the single medical server across the globe. Therefore, the computation and maintenance overhead would be high and the server may fail to provide services. In this article, we have designed a medical system architecture and a standard mutual authentication scheme for single medical server, where the patient can securely exchange medical data with the doctor(s) via trusted central medical server over any insecure network. We then explored the security of the scheme with its resilience to attacks. Moreover, we formally validated the proposed scheme through the simulation using Automated Validation of Internet Security Schemes and Applications software whose outcomes confirm that the scheme is protected against active and passive attacks. The performance comparison demonstrated that the proposed scheme has lower communication cost than the existing schemes in literature. In addition, the computation cost of the proposed scheme is nearly equal to the exiting schemes. The proposed scheme not only efficient in terms of different security attacks, but it also provides an efficient login, mutual authentication, session key agreement and verification and password update phases along with password recovery.

  2. A secure and efficient uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care.

    PubMed

    Das, Ashok Kumar; Goswami, Adrijit

    2013-06-01

    Connected health care has several applications including telecare medicine information system, personally controlled health records system, and patient monitoring. In such applications, user authentication can ensure the legality of patients. In user authentication for such applications, only the legal user/patient himself/herself is allowed to access the remote server, and no one can trace him/her according to transmitted data. Chang et al. proposed a uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care (Chang et al., J Med Syst 37:9902, 2013). Their scheme uses the user's personal biometrics along with his/her password with the help of the smart card. The user's biometrics is verified using BioHashing. Their scheme is efficient due to usage of one-way hash function and exclusive-or (XOR) operations. In this paper, we show that though their scheme is very efficient, their scheme has several security weaknesses such as (1) it has design flaws in login and authentication phases, (2) it has design flaws in password change phase, (3) it fails to protect privileged insider attack, (4) it fails to protect the man-in-the middle attack, and (5) it fails to provide proper authentication. In order to remedy these security weaknesses in Chang et al.'s scheme, we propose an improvement of their scheme while retaining the original merit of their scheme. We show that our scheme is efficient as compared to Chang et al.'s scheme. Through the security analysis, we show that our scheme is secure against possible attacks. Further, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to ensure that our scheme is secure against passive and active attacks. In addition, after successful authentication between the user and the server, they establish a secret session key shared between them for future secure communication.

  3. RUASN: A Robust User Authentication Framework for Wireless Sensor Networks

    PubMed Central

    Kumar, Pardeep; Choudhury, Amlan Jyoti; Sain, Mangal; Lee, Sang-Gon; Lee, Hoon-Jae

    2011-01-01

    In recent years, wireless sensor networks (WSNs) have been considered as a potential solution for real-time monitoring applications and these WSNs have potential practical impact on next generation technology too. However, WSNs could become a threat if suitable security is not considered before the deployment and if there are any loopholes in their security, which might open the door for an attacker and hence, endanger the application. User authentication is one of the most important security services to protect WSN data access from unauthorized users; it should provide both mutual authentication and session key establishment services. This paper proposes a robust user authentication framework for wireless sensor networks, based on a two-factor (password and smart card) concept. This scheme facilitates many services to the users such as user anonymity, mutual authentication, secure session key establishment and it allows users to choose/update their password regularly, whenever needed. Furthermore, we have provided the formal verification using Rubin logic and compare RUASN with many existing schemes. As a result, we found that the proposed scheme possesses many advantages against popular attacks, and achieves better efficiency at low computation cost. PMID:22163888

  4. Applications of Multi-Channel Safety Authentication Protocols in Wireless Networks.

    PubMed

    Chen, Young-Long; Liau, Ren-Hau; Chang, Liang-Yu

    2016-01-01

    People can use their web browser or mobile devices to access web services and applications which are built into these servers. Users have to input their identity and password to login the server. The identity and password may be appropriated by hackers when the network environment is not safe. The multiple secure authentication protocol can improve the security of the network environment. Mobile devices can be used to pass the authentication messages through Wi-Fi or 3G networks to serve as a second communication channel. The content of the message number is not considered in a multiple secure authentication protocol. The more excessive transmission of messages would be easier to collect and decode by hackers. In this paper, we propose two schemes which allow the server to validate the user and reduce the number of messages using the XOR operation. Our schemes can improve the security of the authentication protocol. The experimental results show that our proposed authentication protocols are more secure and effective. In regard to applications of second authentication communication channels for a smart access control system, identity identification and E-wallet, our proposed authentication protocols can ensure the safety of person and property, and achieve more effective security management mechanisms.

  5. On the Security of a Two-Factor Authentication and Key Agreement Scheme for Telecare Medicine Information Systems.

    PubMed

    Arshad, Hamed; Teymoori, Vahid; Nikooghadam, Morteza; Abbassi, Hassan

    2015-08-01

    Telecare medicine information systems (TMISs) aim to deliver appropriate healthcare services in an efficient and secure manner to patients. A secure mechanism for authentication and key agreement is required to provide proper security in these systems. Recently, Bin Muhaya demonstrated some security weaknesses of Zhu's authentication and key agreement scheme and proposed a security enhanced authentication and key agreement scheme for TMISs. However, we show that Bin Muhaya's scheme is vulnerable to off-line password guessing attacks and does not provide perfect forward secrecy. Furthermore, in order to overcome the mentioned weaknesses, we propose a new two-factor anonymous authentication and key agreement scheme using the elliptic curve cryptosystem. Security and performance analyses demonstrate that the proposed scheme not only overcomes the weaknesses of Bin Muhaya's scheme, but also is about 2.73 times faster than Bin Muhaya's scheme.

  6. An enhanced password authentication scheme for session initiation protocol with perfect forward secrecy

    PubMed Central

    2018-01-01

    The Session Initiation Protocol (SIP) is an extensive and esteemed communication protocol employed to regulate signaling as well as for controlling multimedia communication sessions. Recently, Kumari et al. proposed an improved smart card based authentication scheme for SIP based on Farash’s scheme. Farash claimed that his protocol is resistant against various known attacks. But, we observe some accountable flaws in Farash’s protocol. We point out that Farash’s protocol is prone to key-compromise impersonation attack and is unable to provide pre-verification in the smart card, efficient password change and perfect forward secrecy. To overcome these limitations, in this paper we present an enhanced authentication mechanism based on Kumari et al.’s scheme. We prove that the proposed protocol not only overcomes the issues in Farash’s scheme, but it can also resist against all known attacks. We also provide the security analysis of the proposed scheme with the help of widespread AVISPA (Automated Validation of Internet Security Protocols and Applications) software. At last, comparing with the earlier proposals in terms of security and efficiency, we conclude that the proposed protocol is efficient and more secure. PMID:29547619

  7. An Improvement of Robust Biometrics-Based Authentication and Key Agreement Scheme for Multi-Server Environments Using Smart Cards.

    PubMed

    Moon, Jongho; Choi, Younsung; Jung, Jaewook; Won, Dongho

    2015-01-01

    In multi-server environments, user authentication is a very important issue because it provides the authorization that enables users to access their data and services; furthermore, remote user authentication schemes for multi-server environments have solved the problem that has arisen from user's management of different identities and passwords. For this reason, numerous user authentication schemes that are designed for multi-server environments have been proposed over recent years. In 2015, Lu et al. improved upon Mishra et al.'s scheme, claiming that their remote user authentication scheme is more secure and practical; however, we found that Lu et al.'s scheme is still insecure and incorrect. In this paper, we demonstrate that Lu et al.'s scheme is vulnerable to outsider attack and user impersonation attack, and we propose a new biometrics-based scheme for authentication and key agreement that can be used in multi-server environments; then, we show that our proposed scheme is more secure and supports the required security properties.

  8. A Secure Mobile-Based Authentication System for e-Banking

    NASA Astrophysics Data System (ADS)

    Rifà-Pous, Helena

    Financial information is extremely sensitive. Hence, electronic banking must provide a robust system to authenticate its customers and let them access their data remotely. On the other hand, such system must be usable, affordable, and portable. We propose a challenge-response based one-time password (OTP) scheme that uses symmetric cryptography in combination with a hardware security module. The proposed protocol safeguards passwords from keyloggers and phishing attacks. Besides, this solution provides convenient mobility for users who want to bank online anytime and anywhere, not just from their own trusted computers.

  9. Robust anonymous authentication scheme for telecare medical information systems.

    PubMed

    Xie, Qi; Zhang, Jun; Dong, Na

    2013-04-01

    Patient can obtain sorts of health-care delivery services via Telecare Medical Information Systems (TMIS). Authentication, security, patient's privacy protection and data confidentiality are important for patient or doctor accessing to Electronic Medical Records (EMR). In 2012, Chen et al. showed that Khan et al.'s dynamic ID-based authentication scheme has some weaknesses and proposed an improved scheme, and they claimed that their scheme is more suitable for TMIS. However, we show that Chen et al.'s scheme also has some weaknesses. In particular, Chen et al.'s scheme does not provide user's privacy protection and perfect forward secrecy, is vulnerable to off-line password guessing attack and impersonation attack once user's smart card is compromised. Further, we propose a secure anonymity authentication scheme to overcome their weaknesses even an adversary can know all information stored in smart card.

  10. Efficient biometric authenticated key agreements based on extended chaotic maps for telecare medicine information systems.

    PubMed

    Lou, Der-Chyuan; Lee, Tian-Fu; Lin, Tsung-Hung

    2015-05-01

    Authenticated key agreements for telecare medicine information systems provide patients, doctors, nurses and health visitors with accessing medical information systems and getting remote services efficiently and conveniently through an open network. In order to have higher security, many authenticated key agreement schemes appended biometric keys to realize identification except for using passwords and smartcards. Due to too many transmissions and computational costs, these authenticated key agreement schemes are inefficient in communication and computation. This investigation develops two secure and efficient authenticated key agreement schemes for telecare medicine information systems by using biometric key and extended chaotic maps. One scheme is synchronization-based, while the other nonce-based. Compared to related approaches, the proposed schemes not only retain the same security properties with previous schemes, but also provide users with privacy protection and have fewer transmissions and lower computational cost.

  11. How to Speak an Authentication Secret Securely from an Eavesdropper

    NASA Astrophysics Data System (ADS)

    O'Gorman, Lawrence; Brotman, Lynne; Sammon, Michael

    When authenticating over the telephone or mobile headphone, the user cannot always assure that no eavesdropper hears the password or authentication secret. We describe an eavesdropper-resistant, challenge-response authentication scheme for spoken authentication where an attacker can hear the user’s voiced responses. This scheme entails the user to memorize a small number of plaintext-ciphertext pairs. At authentication, these are challenged in random order and interspersed with camouflage elements. It is shown that the response can be made to appear random so that no information on the memorized secret can be learned by eavesdroppers. We describe the method along with parameter value tradeoffs of security strength, authentication time, and memory effort. This scheme was designed for user authentication of wireless headsets used for hands-free communication by healthcare staff at a hospital.

  12. An efficient biometric and password-based remote user authentication using smart card for Telecare Medical Information Systems in multi-server environment.

    PubMed

    Maitra, Tanmoy; Giri, Debasis

    2014-12-01

    The medical organizations have introduced Telecare Medical Information System (TMIS) to provide a reliable facility by which a patient who is unable to go to a doctor in critical or urgent period, can communicate to a doctor through a medical server via internet from home. An authentication mechanism is needed in TMIS to hide the secret information of both parties, namely a server and a patient. Recent research includes patient's biometric information as well as password to design a remote user authentication scheme that enhances the security level. In a single server environment, one server is responsible for providing services to all the authorized remote patients. However, the problem arises if a patient wishes to access several branch servers, he/she needs to register to the branch servers individually. In 2014, Chuang and Chen proposed an remote user authentication scheme for multi-server environment. In this paper, we have shown that in their scheme, an non-register adversary can successfully logged-in into the system as a valid patient. To resist the weaknesses, we have proposed an authentication scheme for TMIS in multi-server environment where the patients can register to a root telecare server called registration center (RC) in one time to get services from all the telecare branch servers through their registered smart card. Security analysis and comparison shows that our proposed scheme provides better security with low computational and communication cost.

  13. An Improved Biometrics-Based Remote User Authentication Scheme with User Anonymity

    PubMed Central

    Kumari, Saru

    2013-01-01

    The authors review the biometrics-based user authentication scheme proposed by An in 2012. The authors show that there exist loopholes in the scheme which are detrimental for its security. Therefore the authors propose an improved scheme eradicating the flaws of An's scheme. Then a detailed security analysis of the proposed scheme is presented followed by its efficiency comparison. The proposed scheme not only withstands security problems found in An's scheme but also provides some extra features with mere addition of only two hash operations. The proposed scheme allows user to freely change his password and also provides user anonymity with untraceability. PMID:24350272

  14. An improved biometrics-based remote user authentication scheme with user anonymity.

    PubMed

    Khan, Muhammad Khurram; Kumari, Saru

    2013-01-01

    The authors review the biometrics-based user authentication scheme proposed by An in 2012. The authors show that there exist loopholes in the scheme which are detrimental for its security. Therefore the authors propose an improved scheme eradicating the flaws of An's scheme. Then a detailed security analysis of the proposed scheme is presented followed by its efficiency comparison. The proposed scheme not only withstands security problems found in An's scheme but also provides some extra features with mere addition of only two hash operations. The proposed scheme allows user to freely change his password and also provides user anonymity with untraceability.

  15. Security Analysis and Improvement of an Anonymous Authentication Scheme for Roaming Services

    PubMed Central

    Lee, Youngsook; Paik, Juryon

    2014-01-01

    An anonymous authentication scheme for roaming services in global mobility networks allows a mobile user visiting a foreign network to achieve mutual authentication and session key establishment with the foreign-network operator in an anonymous manner. In this work, we revisit He et al.'s anonymous authentication scheme for roaming services and present previously unpublished security weaknesses in the scheme: (1) it fails to provide user anonymity against any third party as well as the foreign agent, (2) it cannot protect the passwords of mobile users due to its vulnerability to an offline dictionary attack, and (3) it does not achieve session-key security against a man-in-the-middle attack. We also show how the security weaknesses of He et al.'s scheme can be addressed without degrading the efficiency of the scheme. PMID:25302330

  16. Security analysis and improvement of an anonymous authentication scheme for roaming services.

    PubMed

    Lee, Youngsook; Paik, Juryon

    2014-01-01

    An anonymous authentication scheme for roaming services in global mobility networks allows a mobile user visiting a foreign network to achieve mutual authentication and session key establishment with the foreign-network operator in an anonymous manner. In this work, we revisit He et al.'s anonymous authentication scheme for roaming services and present previously unpublished security weaknesses in the scheme: (1) it fails to provide user anonymity against any third party as well as the foreign agent, (2) it cannot protect the passwords of mobile users due to its vulnerability to an offline dictionary attack, and (3) it does not achieve session-key security against a man-in-the-middle attack. We also show how the security weaknesses of He et al.'s scheme can be addressed without degrading the efficiency of the scheme.

  17. A study on user authentication methodology using numeric password and fingerprint biometric information.

    PubMed

    Ju, Seung-hwan; Seo, Hee-suk; Han, Sung-hyu; Ryou, Jae-cheol; Kwak, Jin

    2013-01-01

    The prevalence of computers and the development of the Internet made us able to easily access information. As people are concerned about user information security, the interest of the user authentication method is growing. The most common computer authentication method is the use of alphanumerical usernames and passwords. The password authentication systems currently used are easy, but only if you know the password, as the user authentication is vulnerable. User authentication using fingerprints, only the user with the information that is specific to the authentication security is strong. But there are disadvantage such as the user cannot change the authentication key. In this study, we proposed authentication methodology that combines numeric-based password and biometric-based fingerprint authentication system. Use the information in the user's fingerprint, authentication keys to obtain security. Also, using numeric-based password can to easily change the password; the authentication keys were designed to provide flexibility.

  18. A Study on User Authentication Methodology Using Numeric Password and Fingerprint Biometric Information

    PubMed Central

    Ju, Seung-hwan; Seo, Hee-suk; Han, Sung-hyu; Ryou, Jae-cheol

    2013-01-01

    The prevalence of computers and the development of the Internet made us able to easily access information. As people are concerned about user information security, the interest of the user authentication method is growing. The most common computer authentication method is the use of alphanumerical usernames and passwords. The password authentication systems currently used are easy, but only if you know the password, as the user authentication is vulnerable. User authentication using fingerprints, only the user with the information that is specific to the authentication security is strong. But there are disadvantage such as the user cannot change the authentication key. In this study, we proposed authentication methodology that combines numeric-based password and biometric-based fingerprint authentication system. Use the information in the user's fingerprint, authentication keys to obtain security. Also, using numeric-based password can to easily change the password; the authentication keys were designed to provide flexibility. PMID:24151601

  19. A Round-Efficient Authenticated Key Agreement Scheme Based on Extended Chaotic Maps for Group Cloud Meeting.

    PubMed

    Lin, Tsung-Hung; Tsung, Chen-Kun; Lee, Tian-Fu; Wang, Zeng-Bo

    2017-12-03

    The security is a critical issue for business purposes. For example, the cloud meeting must consider strong security to maintain the communication privacy. Considering the scenario with cloud meeting, we apply extended chaotic map to present passwordless group authentication key agreement, termed as Passwordless Group Authentication Key Agreement (PL-GAKA). PL-GAKA improves the computation efficiency for the simple group password-based authenticated key agreement (SGPAKE) proposed by Lee et al. in terms of computing the session key. Since the extended chaotic map has equivalent security level to the Diffie-Hellman key exchange scheme applied by SGPAKE, the security of PL-GAKA is not sacrificed when improving the computation efficiency. Moreover, PL-GAKA is a passwordless scheme, so the password maintenance is not necessary. Short-term authentication is considered, hence the communication security is stronger than other protocols by dynamically generating session key in each cloud meeting. In our analysis, we first prove that each meeting member can get the correct information during the meeting. We analyze common security issues for the proposed PL-GAKA in terms of session key security, mutual authentication, perfect forward security, and data integrity. Moreover, we also demonstrate that communicating in PL-GAKA is secure when suffering replay attacks, impersonation attacks, privileged insider attacks, and stolen-verifier attacks. Eventually, an overall comparison is given to show the performance between PL-GAKA, SGPAKE and related solutions.

  20. A secure user anonymity-preserving three-factor remote user authentication scheme for the telecare medicine information systems.

    PubMed

    Das, Ashok Kumar

    2015-03-01

    Recent advanced technology enables the telecare medicine information system (TMIS) for the patients to gain the health monitoring facility at home and also to access medical services over the Internet of mobile networks. Several remote user authentication schemes have been proposed in the literature for TMIS. However, most of them are either insecure against various known attacks or they are inefficient. Recently, Tan proposed an efficient user anonymity preserving three-factor authentication scheme for TMIS. In this paper, we show that though Tan's scheme is efficient, it has several security drawbacks such as (1) it fails to provide proper authentication during the login phase, (2) it fails to provide correct updation of password and biometric of a user during the password and biometric update phase, and (3) it fails to protect against replay attack. In addition, Tan's scheme lacks the formal security analysis and verification. Later, Arshad and Nikooghadam also pointed out some security flaws in Tan's scheme and then presented an improvement on Tan's s scheme. However, we show that Arshad and Nikooghadam's scheme is still insecure against the privileged-insider attack through the stolen smart-card attack, and it also lacks the formal security analysis and verification. In order to withstand those security loopholes found in both Tan's scheme, and Arshad and Nikooghadam's scheme, we aim to propose an effective and more secure three-factor remote user authentication scheme for TMIS. Our scheme provides the user anonymity property. Through the rigorous informal and formal security analysis using random oracle models and the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool, we show that our scheme is secure against various known attacks, including the replay and man-in-the-middle attacks. Furthermore, our scheme is also efficient as compared to other related schemes.

  1. A digital memories based user authentication scheme with privacy preservation.

    PubMed

    Liu, JunLiang; Lyu, Qiuyun; Wang, Qiuhua; Yu, Xiangxiang

    2017-01-01

    The traditional username/password or PIN based authentication scheme, which still remains the most popular form of authentication, has been proved insecure, unmemorable and vulnerable to guessing, dictionary attack, key-logger, shoulder-surfing and social engineering. Based on this, a large number of new alternative methods have recently been proposed. However, most of them rely on users being able to accurately recall complex and unmemorable information or using extra hardware (such as a USB Key), which makes authentication more difficult and confusing. In this paper, we propose a Digital Memories based user authentication scheme adopting homomorphic encryption and a public key encryption design which can protect users' privacy effectively, prevent tracking and provide multi-level security in an Internet & IoT environment. Also, we prove the superior reliability and security of our scheme compared to other schemes and present a performance analysis and promising evaluation results.

  2. Security analysis and enhanced user authentication in proxy mobile IPv6 networks.

    PubMed

    Kang, Dongwoo; Jung, Jaewook; Lee, Donghoon; Kim, Hyoungshick; Won, Dongho

    2017-01-01

    The Proxy Mobile IPv6 (PMIPv6) is a network-based mobility management protocol that allows a Mobile Node(MN) connected to the PMIPv6 domain to move from one network to another without changing the assigned IPv6 address. The user authentication procedure in this protocol is not standardized, but many smartcard based authentication schemes have been proposed. Recently, Alizadeh et al. proposed an authentication scheme for the PMIPv6. However, it could allow an attacker to derive an encryption key that must be securely shared between MN and the Mobile Access Gate(MAG). As a result, outsider adversary can derive MN's identity, password and session key. In this paper, we analyze Alizadeh et al.'s scheme regarding security and propose an enhanced authentication scheme that uses a dynamic identity to satisfy anonymity. Furthermore, we use BAN logic to show that our scheme can successfully generate and communicate with the inter-entity session key.

  3. A digital memories based user authentication scheme with privacy preservation

    PubMed Central

    Liu, JunLiang; Lyu, Qiuyun; Wang, Qiuhua; Yu, Xiangxiang

    2017-01-01

    The traditional username/password or PIN based authentication scheme, which still remains the most popular form of authentication, has been proved insecure, unmemorable and vulnerable to guessing, dictionary attack, key-logger, shoulder-surfing and social engineering. Based on this, a large number of new alternative methods have recently been proposed. However, most of them rely on users being able to accurately recall complex and unmemorable information or using extra hardware (such as a USB Key), which makes authentication more difficult and confusing. In this paper, we propose a Digital Memories based user authentication scheme adopting homomorphic encryption and a public key encryption design which can protect users’ privacy effectively, prevent tracking and provide multi-level security in an Internet & IoT environment. Also, we prove the superior reliability and security of our scheme compared to other schemes and present a performance analysis and promising evaluation results. PMID:29190659

  4. An Improvement of Robust Biometrics-Based Authentication and Key Agreement Scheme for Multi-Server Environments Using Smart Cards

    PubMed Central

    Moon, Jongho; Choi, Younsung; Jung, Jaewook; Won, Dongho

    2015-01-01

    In multi-server environments, user authentication is a very important issue because it provides the authorization that enables users to access their data and services; furthermore, remote user authentication schemes for multi-server environments have solved the problem that has arisen from user’s management of different identities and passwords. For this reason, numerous user authentication schemes that are designed for multi-server environments have been proposed over recent years. In 2015, Lu et al. improved upon Mishra et al.’s scheme, claiming that their remote user authentication scheme is more secure and practical; however, we found that Lu et al.’s scheme is still insecure and incorrect. In this paper, we demonstrate that Lu et al.’s scheme is vulnerable to outsider attack and user impersonation attack, and we propose a new biometrics-based scheme for authentication and key agreement that can be used in multi-server environments; then, we show that our proposed scheme is more secure and supports the required security properties. PMID:26709702

  5. Understanding security failures of two authentication and key agreement schemes for telecare medicine information systems.

    PubMed

    Mishra, Dheerendra

    2015-03-01

    Smart card based authentication and key agreement schemes for telecare medicine information systems (TMIS) enable doctors, nurses, patients and health visitors to use smart cards for secure login to medical information systems. In recent years, several authentication and key agreement schemes have been proposed to present secure and efficient solution for TMIS. Most of the existing authentication schemes for TMIS have either higher computation overhead or are vulnerable to attacks. To reduce the computational overhead and enhance the security, Lee recently proposed an authentication and key agreement scheme using chaotic maps for TMIS. Xu et al. also proposed a password based authentication and key agreement scheme for TMIS using elliptic curve cryptography. Both the schemes provide better efficiency from the conventional public key cryptography based schemes. These schemes are important as they present an efficient solution for TMIS. We analyze the security of both Lee's scheme and Xu et al.'s schemes. Unfortunately, we identify that both the schemes are vulnerable to denial of service attack. To understand the security failures of these cryptographic schemes which are the key of patching existing schemes and designing future schemes, we demonstrate the security loopholes of Lee's scheme and Xu et al.'s scheme in this paper.

  6. A Round-Efficient Authenticated Key Agreement Scheme Based on Extended Chaotic Maps for Group Cloud Meeting

    PubMed Central

    Lee, Tian-Fu; Wang, Zeng-Bo

    2017-01-01

    The security is a critical issue for business purposes. For example, the cloud meeting must consider strong security to maintain the communication privacy. Considering the scenario with cloud meeting, we apply extended chaotic map to present passwordless group authentication key agreement, termed as Passwordless Group Authentication Key Agreement (PL-GAKA). PL-GAKA improves the computation efficiency for the simple group password-based authenticated key agreement (SGPAKE) proposed by Lee et al. in terms of computing the session key. Since the extended chaotic map has equivalent security level to the Diffie–Hellman key exchange scheme applied by SGPAKE, the security of PL-GAKA is not sacrificed when improving the computation efficiency. Moreover, PL-GAKA is a passwordless scheme, so the password maintenance is not necessary. Short-term authentication is considered, hence the communication security is stronger than other protocols by dynamically generating session key in each cloud meeting. In our analysis, we first prove that each meeting member can get the correct information during the meeting. We analyze common security issues for the proposed PL-GAKA in terms of session key security, mutual authentication, perfect forward security, and data integrity. Moreover, we also demonstrate that communicating in PL-GAKA is secure when suffering replay attacks, impersonation attacks, privileged insider attacks, and stolen-verifier attacks. Eventually, an overall comparison is given to show the performance between PL-GAKA, SGPAKE and related solutions. PMID:29207509

  7. An advanced temporal credential-based security scheme with mutual authentication and key agreement for wireless sensor networks.

    PubMed

    Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi

    2013-07-24

    Wireless sensor networks (WSNs) can be quickly and randomly deployed in any harsh and unattended environment and only authorized users are allowed to access reliable sensor nodes in WSNs with the aid of gateways (GWNs). Secure authentication models among the users, the sensor nodes and GWN are important research issues for ensuring communication security and data privacy in WSNs. In 2013, Xue et al. proposed a temporal-credential-based mutual authentication and key agreement scheme for WSNs. However, in this paper, we point out that Xue et al.'s scheme cannot resist stolen-verifier, insider, off-line password guessing, smart card lost problem and many logged-in users' attacks and these security weaknesses make the scheme inapplicable to practical WSN applications. To tackle these problems, we suggest a simple countermeasure to prevent proposed attacks while the other merits of Xue et al.'s authentication scheme are left unchanged.

  8. An Advanced Temporal Credential-Based Security Scheme with Mutual Authentication and Key Agreement for Wireless Sensor Networks

    PubMed Central

    Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi

    2013-01-01

    Wireless sensor networks (WSNs) can be quickly and randomly deployed in any harsh and unattended environment and only authorized users are allowed to access reliable sensor nodes in WSNs with the aid of gateways (GWNs). Secure authentication models among the users, the sensor nodes and GWN are important research issues for ensuring communication security and data privacy in WSNs. In 2013, Xue et al. proposed a temporal-credential-based mutual authentication and key agreement scheme for WSNs. However, in this paper, we point out that Xue et al.'s scheme cannot resist stolen-verifier, insider, off-line password guessing, smart card lost problem and many logged-in users' attacks and these security weaknesses make the scheme inapplicable to practical WSN applications. To tackle these problems, we suggest a simple countermeasure to prevent proposed attacks while the other merits of Xue et al.'s authentication scheme are left unchanged. PMID:23887085

  9. Press touch code: A finger press based screen size independent authentication scheme for smart devices.

    PubMed

    Ranak, M S A Noman; Azad, Saiful; Nor, Nur Nadiah Hanim Binti Mohd; Zamli, Kamal Z

    2017-01-01

    Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards. In this paper, we propose a new screen size independent password-based authentication scheme, which also offers an affordable defense against shoulder surfing, brute force, and smudge attacks. In the proposed scheme, the Press Touch (PT)-a.k.a., Force Touch in Apple's MacBook, Apple Watch, ZTE's Axon 7 phone; 3D Touch in iPhone 6 and 7; and so on-is transformed into a new type of code, named Press Touch Code (PTC). We design and implement three variants of it, namely mono-PTC, multi-PTC, and multi-PTC with Grid, on the Android Operating System. An in-lab experiment and a comprehensive survey have been conducted on 105 participants to demonstrate the effectiveness of the proposed scheme.

  10. Press touch code: A finger press based screen size independent authentication scheme for smart devices

    PubMed Central

    Ranak, M. S. A. Noman; Nor, Nur Nadiah Hanim Binti Mohd; Zamli, Kamal Z.

    2017-01-01

    Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards. In this paper, we propose a new screen size independent password-based authentication scheme, which also offers an affordable defense against shoulder surfing, brute force, and smudge attacks. In the proposed scheme, the Press Touch (PT)—a.k.a., Force Touch in Apple’s MacBook, Apple Watch, ZTE’s Axon 7 phone; 3D Touch in iPhone 6 and 7; and so on—is transformed into a new type of code, named Press Touch Code (PTC). We design and implement three variants of it, namely mono-PTC, multi-PTC, and multi-PTC with Grid, on the Android Operating System. An in-lab experiment and a comprehensive survey have been conducted on 105 participants to demonstrate the effectiveness of the proposed scheme. PMID:29084262

  11. Secure anonymity-preserving password-based user authentication and session key agreement scheme for telecare medicine information systems.

    PubMed

    Sutrala, Anil Kumar; Das, Ashok Kumar; Odelu, Vanga; Wazid, Mohammad; Kumari, Saru

    2016-10-01

    Information and communication and technology (ICT) has changed the entire paradigm of society. ICT facilitates people to use medical services over the Internet, thereby reducing the travel cost, hospitalization cost and time to a greater extent. Recent advancements in Telecare Medicine Information System (TMIS) facilitate users/patients to access medical services over the Internet by gaining health monitoring facilities at home. Amin and Biswas recently proposed a RSA-based user authentication and session key agreement protocol usable for TMIS, which is an improvement over Giri et al.'s RSA-based user authentication scheme for TMIS. In this paper, we show that though Amin-Biswas's scheme considerably improves the security drawbacks of Giri et al.'s scheme, their scheme has security weaknesses as it suffers from attacks such as privileged insider attack, user impersonation attack, replay attack and also offline password guessing attack. A new RSA-based user authentication scheme for TMIS is proposed, which overcomes the security pitfalls of Amin-Biswas's scheme and also preserves user anonymity property. The careful formal security analysis using the two widely accepted Burrows-Abadi-Needham (BAN) logic and the random oracle models is done. Moreover, the informal security analysis of the scheme is also done. These security analyses show the robustness of our new scheme against the various known attacks as well as attacks found in Amin-Biswas's scheme. The simulation of the proposed scheme using the widely accepted Automated Validation of Internet Security Protocols and Applications (AVISPA) tool is also done. We present a new user authentication and session key agreement scheme for TMIS, which fixes the mentioned security pitfalls found in Amin-Biswas's scheme, and we also show that the proposed scheme provides better security than other existing schemes through the rigorous security analysis and verification tool. Furthermore, we present the formal security verification of our scheme using the widely accepted AVISPA tool. High security and extra functionality features allow our proposed scheme to be applicable for telecare medicine information systems which is used for e-health care medical applications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Security analysis and enhanced user authentication in proxy mobile IPv6 networks

    PubMed Central

    Kang, Dongwoo; Jung, Jaewook; Lee, Donghoon; Kim, Hyoungshick

    2017-01-01

    The Proxy Mobile IPv6 (PMIPv6) is a network-based mobility management protocol that allows a Mobile Node(MN) connected to the PMIPv6 domain to move from one network to another without changing the assigned IPv6 address. The user authentication procedure in this protocol is not standardized, but many smartcard based authentication schemes have been proposed. Recently, Alizadeh et al. proposed an authentication scheme for the PMIPv6. However, it could allow an attacker to derive an encryption key that must be securely shared between MN and the Mobile Access Gate(MAG). As a result, outsider adversary can derive MN’s identity, password and session key. In this paper, we analyze Alizadeh et al.’s scheme regarding security and propose an enhanced authentication scheme that uses a dynamic identity to satisfy anonymity. Furthermore, we use BAN logic to show that our scheme can successfully generate and communicate with the inter-entity session key. PMID:28719621

  13. Multi-factor challenge/response approach for remote biometric authentication

    NASA Astrophysics Data System (ADS)

    Al-Assam, Hisham; Jassim, Sabah A.

    2011-06-01

    Although biometric authentication is perceived to be more reliable than traditional authentication schemes, it becomes vulnerable to many attacks when it comes to remote authentication over open networks and raises serious privacy concerns. This paper proposes a biometric-based challenge-response approach to be used for remote authentication between two parties A and B over open networks. In the proposed approach, a remote authenticator system B (e.g. a bank) challenges its client A who wants to authenticate his/her self to the system by sending a one-time public random challenge. The client A responds by employing the random challenge along with secret information obtained from a password and a token to produce a one-time cancellable representation of his freshly captured biometric sample. The one-time biometric representation, which is based on multi-factor, is then sent back to B for matching. Here, we argue that eavesdropping of the one-time random challenge and/or the resulting one-time biometric representation does not compromise the security of the system, and no information about the original biometric data is leaked. In addition to securing biometric templates, the proposed protocol offers a practical solution for the replay attack on biometric systems. Moreover, we propose a new scheme for generating a password-based pseudo random numbers/permutation to be used as a building block in the proposed approach. The proposed scheme is also designed to provide protection against repudiation. We illustrate the viability and effectiveness of the proposed approach by experimental results based on two biometric modalities: fingerprint and face biometrics.

  14. An Enhanced Lightweight Anonymous Authentication Scheme for a Scalable Localization Roaming Service in Wireless Sensor Networks.

    PubMed

    Chung, Youngseok; Choi, Seokjin; Lee, Youngsook; Park, Namje; Won, Dongho

    2016-10-07

    More security concerns and complicated requirements arise in wireless sensor networks than in wired networks, due to the vulnerability caused by their openness. To address this vulnerability, anonymous authentication is an essential security mechanism for preserving privacy and providing security. Over recent years, various anonymous authentication schemes have been proposed. Most of them reveal both strengths and weaknesses in terms of security and efficiency. Recently, Farash et al. proposed a lightweight anonymous authentication scheme in ubiquitous networks, which remedies the security faults of previous schemes. However, their scheme still suffers from certain weaknesses. In this paper, we prove that Farash et al.'s scheme fails to provide anonymity, authentication, or password replacement. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Considering the limited capability of sensor nodes, we utilize only low-cost functions, such as one-way hash functions and bit-wise exclusive-OR operations. The security and lightness of the proposed scheme mean that it can be applied to roaming service in localized domains of wireless sensor networks, to provide anonymous authentication of sensor nodes.

  15. An Enhanced Lightweight Anonymous Authentication Scheme for a Scalable Localization Roaming Service in Wireless Sensor Networks

    PubMed Central

    Chung, Youngseok; Choi, Seokjin; Lee, Youngsook; Park, Namje; Won, Dongho

    2016-01-01

    More security concerns and complicated requirements arise in wireless sensor networks than in wired networks, due to the vulnerability caused by their openness. To address this vulnerability, anonymous authentication is an essential security mechanism for preserving privacy and providing security. Over recent years, various anonymous authentication schemes have been proposed. Most of them reveal both strengths and weaknesses in terms of security and efficiency. Recently, Farash et al. proposed a lightweight anonymous authentication scheme in ubiquitous networks, which remedies the security faults of previous schemes. However, their scheme still suffers from certain weaknesses. In this paper, we prove that Farash et al.’s scheme fails to provide anonymity, authentication, or password replacement. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Considering the limited capability of sensor nodes, we utilize only low-cost functions, such as one-way hash functions and bit-wise exclusive-OR operations. The security and lightness of the proposed scheme mean that it can be applied to roaming service in localized domains of wireless sensor networks, to provide anonymous authentication of sensor nodes. PMID:27739417

  16. Integrating Visual Mnemonics and Input Feedback With Passphrases to Improve the Usability and Security of Digital Authentication.

    PubMed

    Juang, Kevin; Greenstein, Joel

    2018-04-01

    We developed a new authentication system based on passphrases instead of passwords. Our new system incorporates a user-generated mnemonic picture displayed during login, definition tooltips, error correction to reduce typographical errors, a decoy-based input masking technique, and random passphrase generation using either a specialized wordlist or a sentence template. Passphrases exhibit a greater level of security than traditional passwords, but their wider adoption has been hindered by human factors issues. Our assertion is that the added features of our system work particularly well with passphrases and help address these shortcomings. We conducted a study to evaluate our new system with a customized 1,450-word list and our new system with a 6-word sentence structure against the control conditions of a user-created passphrase of at least 24 characters and a system-generated passphrase using a 10,326-word list. Fifty participants completed two sessions so that we could measure the usability and security of the authentication schemes. With the new system conditions, memorability was improved, and security was equivalent to or better than the control conditions. Usability and overall ratings also favored the new system conditions over the control conditions. Our research presents a new authentication system using innovative techniques that improve on the usability and security of existing password and passphrase authentication systems. In computer security, drastic changes should never happen overnight, but we recommend that our contributions be incorporated into current authentication systems to help facilitate a transition from passwords to usable passphrases.

  17. Unbreakable distributed storage with quantum key distribution network and password-authenticated secret sharing

    PubMed Central

    Fujiwara, M.; Waseda, A.; Nojima, R.; Moriai, S.; Ogata, W.; Sasaki, M.

    2016-01-01

    Distributed storage plays an essential role in realizing robust and secure data storage in a network over long periods of time. A distributed storage system consists of a data owner machine, multiple storage servers and channels to link them. In such a system, secret sharing scheme is widely adopted, in which secret data are split into multiple pieces and stored in each server. To reconstruct them, the data owner should gather plural pieces. Shamir’s (k, n)-threshold scheme, in which the data are split into n pieces (shares) for storage and at least k pieces of them must be gathered for reconstruction, furnishes information theoretic security, that is, even if attackers could collect shares of less than the threshold k, they cannot get any information about the data, even with unlimited computing power. Behind this scenario, however, assumed is that data transmission and authentication must be perfectly secure, which is not trivial in practice. Here we propose a totally information theoretically secure distributed storage system based on a user-friendly single-password-authenticated secret sharing scheme and secure transmission using quantum key distribution, and demonstrate it in the Tokyo metropolitan area (≤90 km). PMID:27363566

  18. Unbreakable distributed storage with quantum key distribution network and password-authenticated secret sharing.

    PubMed

    Fujiwara, M; Waseda, A; Nojima, R; Moriai, S; Ogata, W; Sasaki, M

    2016-07-01

    Distributed storage plays an essential role in realizing robust and secure data storage in a network over long periods of time. A distributed storage system consists of a data owner machine, multiple storage servers and channels to link them. In such a system, secret sharing scheme is widely adopted, in which secret data are split into multiple pieces and stored in each server. To reconstruct them, the data owner should gather plural pieces. Shamir's (k, n)-threshold scheme, in which the data are split into n pieces (shares) for storage and at least k pieces of them must be gathered for reconstruction, furnishes information theoretic security, that is, even if attackers could collect shares of less than the threshold k, they cannot get any information about the data, even with unlimited computing power. Behind this scenario, however, assumed is that data transmission and authentication must be perfectly secure, which is not trivial in practice. Here we propose a totally information theoretically secure distributed storage system based on a user-friendly single-password-authenticated secret sharing scheme and secure transmission using quantum key distribution, and demonstrate it in the Tokyo metropolitan area (≤90 km).

  19. Cryptanalysis and security improvements of 'two-factor user authentication in wireless sensor networks'.

    PubMed

    Khan, Muhammad Khurram; Alghathbar, Khaled

    2010-01-01

    User authentication in wireless sensor networks (WSN) is a critical security issue due to their unattended and hostile deployment in the field. Since sensor nodes are equipped with limited computing power, storage, and communication modules; authenticating remote users in such resource-constrained environments is a paramount security concern. Recently, M.L. Das proposed a two-factor user authentication scheme in WSNs and claimed that his scheme is secure against different kinds of attack. However, in this paper, we show that the M.L. Das-scheme has some critical security pitfalls and cannot be recommended for real applications. We point out that in his scheme: users cannot change/update their passwords, it does not provide mutual authentication between gateway node and sensor node, and is vulnerable to gateway node bypassing attack and privileged-insider attack. To overcome the inherent security weaknesses of the M.L. Das-scheme, we propose improvements and security patches that attempt to fix the susceptibilities of his scheme. The proposed security improvements can be incorporated in the M.L. Das-scheme for achieving a more secure and robust two-factor user authentication in WSNs.

  20. A user authentication scheme using physiological and behavioral biometrics for multitouch devices.

    PubMed

    Koong, Chorng-Shiuh; Yang, Tzu-I; Tseng, Chien-Chao

    2014-01-01

    With the rapid growth of mobile network, tablets and smart phones have become sorts of keys to access personal secured services in our daily life. People use these devices to manage personal finances, shop on the Internet, and even pay at vending machines. Besides, it also helps us get connected with friends and business partners through social network applications, which were widely used as personal identifications in both real and virtual societies. However, these devices use inherently weak authentication mechanism, based upon passwords and PINs that is not changed all the time. Although forcing users to change password periodically can enhance the security level, it may also be considered annoyances for users. Biometric technologies are straightforward because of the simple authentication process. However, most of the traditional biometrics methodologies require diverse equipment to acquire biometric information, which may be expensive and not portable. This paper proposes a multibiometric user authentication scheme with both physiological and behavioral biometrics. Only simple rotations with fingers on multitouch devices are required to enhance the security level without annoyances for users. In addition, the user credential is replaceable to prevent from the privacy leakage.

  1. A User Authentication Scheme Using Physiological and Behavioral Biometrics for Multitouch Devices

    PubMed Central

    Koong, Chorng-Shiuh; Tseng, Chien-Chao

    2014-01-01

    With the rapid growth of mobile network, tablets and smart phones have become sorts of keys to access personal secured services in our daily life. People use these devices to manage personal finances, shop on the Internet, and even pay at vending machines. Besides, it also helps us get connected with friends and business partners through social network applications, which were widely used as personal identifications in both real and virtual societies. However, these devices use inherently weak authentication mechanism, based upon passwords and PINs that is not changed all the time. Although forcing users to change password periodically can enhance the security level, it may also be considered annoyances for users. Biometric technologies are straightforward because of the simple authentication process. However, most of the traditional biometrics methodologies require diverse equipment to acquire biometric information, which may be expensive and not portable. This paper proposes a multibiometric user authentication scheme with both physiological and behavioral biometrics. Only simple rotations with fingers on multitouch devices are required to enhance the security level without annoyances for users. In addition, the user credential is replaceable to prevent from the privacy leakage. PMID:25147864

  2. A robust uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care.

    PubMed

    Wen, Fengtong

    2013-12-01

    User authentication plays an important role to protect resources or services from being accessed by unauthorized users. In a recent paper, Das et al. proposed a secure and efficient uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care. This scheme uses three factors, e.g. biometrics, password, and smart card, to protect the security. It protects user privacy and is believed to have many abilities to resist a range of network attacks, even if the secret information stored in the smart card is compromised. In this paper, we analyze the security of Das et al.'s scheme, and show that the scheme is in fact insecure against the replay attack, user impersonation attacks and off-line guessing attacks. Then, we also propose a robust uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care. Compared with the existing schemes, our protocol uses a different user authentication mechanism to resist replay attack. We show that our proposed scheme can provide stronger security than previous protocols. Furthermore, we demonstrate the validity of the proposed scheme through the BAN (Burrows, Abadi, and Needham) logic.

  3. An enhanced biometric-based authentication scheme for telecare medicine information systems using elliptic curve cryptosystem.

    PubMed

    Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2015-03-01

    The telecare medical information systems (TMISs) enable patients to conveniently enjoy telecare services at home. The protection of patient's privacy is a key issue due to the openness of communication environment. Authentication as a typical approach is adopted to guarantee confidential and authorized interaction between the patient and remote server. In order to achieve the goals, numerous remote authentication schemes based on cryptography have been presented. Recently, Arshad et al. (J Med Syst 38(12): 2014) presented a secure and efficient three-factor authenticated key exchange scheme to remedy the weaknesses of Tan et al.'s scheme (J Med Syst 38(3): 2014). In this paper, we found that once a successful off-line password attack that results in an adversary could impersonate any user of the system in Arshad et al.'s scheme. In order to thwart these security attacks, an enhanced biometric and smart card based remote authentication scheme for TMISs is proposed. In addition, the BAN logic is applied to demonstrate the completeness of the enhanced scheme. Security and performance analyses show that our enhanced scheme satisfies more security properties and less computational cost compared with previously proposed schemes.

  4. One Time Passwords in Everything (OPIE): Experiences with Building and Using Stringer Authentication

    DTIC Science & Technology

    1995-01-01

    opiepasswd(1). The name change brings it more in line with its UNIX counterpart passwd (1), which should make both programs easier to remember for users. This...char * passwd ) int opiehash(char *x, unsigned algorithm) The one-time password schemes implemented in OPIE, as rst described in [Hal94], compute a...seed, passwd ); while (sequence-- != 0) opiehash(result, algorithm); opiebtoe(result,words); Send words. : : : 6 Deployment Every machine that has

  5. 31 CFR 363.19 - What should I do if I become aware that my password or other form of authentication has become...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that my password or other form of authentication has become compromised? 363.19 Section 363.19 Money... that my password or other form of authentication has become compromised? If you become aware that your password has become compromised, that any other form of authentication has been compromised, lost, stolen...

  6. Secure privacy-preserving biometric authentication scheme for telecare medicine information systems.

    PubMed

    Li, Xuelei; Wen, Qiaoyan; Li, Wenmin; Zhang, Hua; Jin, Zhengping

    2014-11-01

    Healthcare delivery services via telecare medicine information systems (TMIS) can help patients to obtain their desired telemedicine services conveniently. However, information security and privacy protection are important issues and crucial challenges in healthcare information systems, where only authorized patients and doctors can employ telecare medicine facilities and access electronic medical records. Therefore, a secure authentication scheme is urgently required to achieve the goals of entity authentication, data confidentiality and privacy protection. This paper investigates a new biometric authentication with key agreement scheme, which focuses on patient privacy and medical data confidentiality in TMIS. The new scheme employs hash function, fuzzy extractor, nonce and authenticated Diffie-Hellman key agreement as primitives. It provides patient privacy protection, e.g., hiding identity from being theft and tracked by unauthorized participant, and preserving password and biometric template from being compromised by trustless servers. Moreover, key agreement supports secure transmission by symmetric encryption to protect patient's medical data from being leaked. Finally, the analysis shows that our proposal provides more security and privacy protection for TMIS.

  7. A Survey of Authentication Schemes in Telecare Medicine Information Systems.

    PubMed

    Aslam, Muhammad Umair; Derhab, Abdelouahid; Saleem, Kashif; Abbas, Haider; Orgun, Mehmet; Iqbal, Waseem; Aslam, Baber

    2017-01-01

    E-Healthcare is an emerging field that provides mobility to its users. The protected health information of the users are stored at a remote server (Telecare Medical Information System) and can be accessed by the users at anytime. Many authentication protocols have been proposed to ensure the secure authenticated access to the Telecare Medical Information System. These protocols are designed to provide certain properties such as: anonymity, untraceability, unlinkability, privacy, confidentiality, availability and integrity. They also aim to build a key exchange mechanism, which provides security against some attacks such as: identity theft, password guessing, denial of service, impersonation and insider attacks. This paper reviews these proposed authentication protocols and discusses their strengths and weaknesses in terms of ensured security and privacy properties, and computation cost. The schemes are divided in three broad categories of one-factor, two-factor and three-factor authentication schemes. Inter-category and intra-category comparison has been performed for these schemes and based on the derived results we propose future directions and recommendations that can be very helpful to the researchers who work on the design and implementation of authentication protocols.

  8. A provably-secure ECC-based authentication scheme for wireless sensor networks.

    PubMed

    Nam, Junghyun; Kim, Moonseong; Paik, Juryon; Lee, Youngsook; Won, Dongho

    2014-11-06

    A smart-card-based user authentication scheme for wireless sensor networks (in short, a SUA-WSN scheme) is designed to restrict access to the sensor data only to users who are in possession of both a smart card and the corresponding password. While a significant number of SUA-WSN schemes have been suggested in recent years, their intended security properties lack formal definitions and proofs in a widely-accepted model. One consequence is that SUA-WSN schemes insecure against various attacks have proliferated. In this paper, we devise a security model for the analysis of SUA-WSN schemes by extending the widely-accepted model of Bellare, Pointcheval and Rogaway (2000). Our model provides formal definitions of authenticated key exchange and user anonymity while capturing side-channel attacks, as well as other common attacks. We also propose a new SUA-WSN scheme based on elliptic curve cryptography (ECC), and prove its security properties in our extended model. To the best of our knowledge, our proposed scheme is the first SUA-WSN scheme that provably achieves both authenticated key exchange and user anonymity. Our scheme is also computationally competitive with other ECC-based (non-provably secure) schemes.

  9. A Provably-Secure ECC-Based Authentication Scheme for Wireless Sensor Networks

    PubMed Central

    Nam, Junghyun; Kim, Moonseong; Paik, Juryon; Lee, Youngsook; Won, Dongho

    2014-01-01

    A smart-card-based user authentication scheme for wireless sensor networks (in short, a SUA-WSN scheme) is designed to restrict access to the sensor data only to users who are in possession of both a smart card and the corresponding password. While a significant number of SUA-WSN schemes have been suggested in recent years, their intended security properties lack formal definitions and proofs in a widely-accepted model. One consequence is that SUA-WSN schemes insecure against various attacks have proliferated. In this paper, we devise a security model for the analysis of SUA-WSN schemes by extending the widely-accepted model of Bellare, Pointcheval and Rogaway (2000). Our model provides formal definitions of authenticated key exchange and user anonymity while capturing side-channel attacks, as well as other common attacks. We also propose a new SUA-WSN scheme based on elliptic curve cryptography (ECC), and prove its security properties in our extended model. To the best of our knowledge, our proposed scheme is the first SUA-WSN scheme that provably achieves both authenticated key exchange and user anonymity. Our scheme is also computationally competitive with other ECC-based (non-provably secure) schemes. PMID:25384009

  10. On the security of two remote user authentication schemes for telecare medical information systems.

    PubMed

    Kim, Kee-Won; Lee, Jae-Dong

    2014-05-01

    The telecare medical information systems (TMISs) support convenient and rapid health-care services. A secure and efficient authentication scheme for TMIS provides safeguarding patients' electronic patient records (EPRs) and helps health care workers and medical personnel to rapidly making correct clinical decisions. Recently, Kumari et al. proposed a password based user authentication scheme using smart cards for TMIS, and claimed that the proposed scheme could resist various malicious attacks. However, we point out that their scheme is still vulnerable to lost smart card and cannot provide forward secrecy. Subsequently, Das and Goswami proposed a secure and efficient uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care. They simulated their scheme for the formal security verification using the widely-accepted automated validation of Internet security protocols and applications (AVISPA) tool to ensure that their scheme is secure against passive and active attacks. However, we show that their scheme is still vulnerable to smart card loss attacks and cannot provide forward secrecy property. The proposed cryptanalysis discourages any use of the two schemes under investigation in practice and reveals some subtleties and challenges in designing this type of schemes.

  11. A uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care.

    PubMed

    Chang, Ya-Fen; Yu, Shih-Hui; Shiao, Ding-Rui

    2013-04-01

    Connected health care provides new opportunities for improving financial and clinical performance. Many connected health care applications such as telecare medicine information system, personally controlled health records system, and patient monitoring have been proposed. Correct and quality care is the goal of connected heath care, and user authentication can ensure the legality of patients. After reviewing authentication schemes for connected health care applications, we find that many of them cannot protect patient privacy such that others can trace users/patients by the transmitted data. And the verification tokens used by these authentication schemes to authenticate users or servers are only password, smart card and RFID tag. Actually, these verification tokens are not unique and easy to copy. On the other hand, biometric characteristics, such as iris, face, voiceprint, fingerprint and so on, are unique, easy to be verified, and hard to be copied. In this paper, a biometrics-based user authentication scheme will be proposed to ensure uniqueness and anonymity at the same time. With the proposed scheme, only the legal user/patient himself/herself can access the remote server, and no one can trace him/her according to transmitted data.

  12. A lightweight and secure two factor anonymous authentication protocol for Global Mobility Networks.

    PubMed

    Baig, Ahmed Fraz; Hassan, Khwaja Mansoor Ul; Ghani, Anwar; Chaudhry, Shehzad Ashraf; Khan, Imran; Ashraf, Muhammad Usman

    2018-01-01

    Global Mobility Networks(GLOMONETs) in wireless communication permits the global roaming services that enable a user to leverage the mobile services in any foreign country. Technological growth in wireless communication is also accompanied by new security threats and challenges. A threat-proof authentication protocol in wireless communication may overcome the security flaws by allowing only legitimate users to access a particular service. Recently, Lee et al. found Mun et al. scheme vulnerable to different attacks and proposed an advanced secure scheme to overcome the security flaws. However, this article points out that Lee et al. scheme lacks user anonymity, inefficient user authentication, vulnerable to replay and DoS attacks and Lack of local password verification. Furthermore, this article presents a more robust anonymous authentication scheme to handle the threats and challenges found in Lee et al.'s protocol. The proposed protocol is formally verified with an automated tool(ProVerif). The proposed protocol has superior efficiency in comparison to the existing protocols.

  13. A lightweight and secure two factor anonymous authentication protocol for Global Mobility Networks

    PubMed Central

    2018-01-01

    Global Mobility Networks(GLOMONETs) in wireless communication permits the global roaming services that enable a user to leverage the mobile services in any foreign country. Technological growth in wireless communication is also accompanied by new security threats and challenges. A threat-proof authentication protocol in wireless communication may overcome the security flaws by allowing only legitimate users to access a particular service. Recently, Lee et al. found Mun et al. scheme vulnerable to different attacks and proposed an advanced secure scheme to overcome the security flaws. However, this article points out that Lee et al. scheme lacks user anonymity, inefficient user authentication, vulnerable to replay and DoS attacks and Lack of local password verification. Furthermore, this article presents a more robust anonymous authentication scheme to handle the threats and challenges found in Lee et al.’s protocol. The proposed protocol is formally verified with an automated tool(ProVerif). The proposed protocol has superior efficiency in comparison to the existing protocols. PMID:29702675

  14. A Secure Dynamic Identity and Chaotic Maps Based User Authentication and Key Agreement Scheme for e-Healthcare Systems.

    PubMed

    Li, Chun-Ta; Lee, Cheng-Chi; Weng, Chi-Yao; Chen, Song-Jhih

    2016-11-01

    Secure user authentication schemes in many e-Healthcare applications try to prevent unauthorized users from intruding the e-Healthcare systems and a remote user and a medical server can establish session keys for securing the subsequent communications. However, many schemes does not mask the users' identity information while constructing a login session between two or more parties, even though personal privacy of users is a significant topic for e-Healthcare systems. In order to preserve personal privacy of users, dynamic identity based authentication schemes are hiding user's real identity during the process of network communications and only the medical server knows login user's identity. In addition, most of the existing dynamic identity based authentication schemes ignore the inputs verification during login condition and this flaw may subject to inefficiency in the case of incorrect inputs in the login phase. Regarding the use of secure authentication mechanisms for e-Healthcare systems, this paper presents a new dynamic identity and chaotic maps based authentication scheme and a secure data protection approach is employed in every session to prevent illegal intrusions. The proposed scheme can not only quickly detect incorrect inputs during the phases of login and password change but also can invalidate the future use of a lost/stolen smart card. Compared the functionality and efficiency with other authentication schemes recently, the proposed scheme satisfies desirable security attributes and maintains acceptable efficiency in terms of the computational overheads for e-Healthcare systems.

  15. Secure Biometric Multi-Logon System Based on Current Authentication Technologies

    NASA Astrophysics Data System (ADS)

    Tait, Bobby L.

    The need for accurate authentication in the current IT world is of utmost importance. Users rely on current IT technologies to facilitate in day to day interactions with nearly all environments. Strong authentication technologies like the various biometric technologies have been in existence for many years. Many of these technologies, for instance fingerprint biometrics, have reached maturity. However, passwords and pins are still the most commonly used authentication mechanisms at this stage. An average user has to be authenticated in various situations during daily interaction with his or her environment, by means of a pin or a password. This results in many different passwords and pins that the user has to remember. The user will eventually either start documenting these passwords and pins, or often, simply use the same password and pin for all authentication situations.

  16. An enhanced biometric authentication scheme for telecare medicine information systems with nonce using chaotic hash function.

    PubMed

    Das, Ashok Kumar; Goswami, Adrijit

    2014-06-01

    Recently, Awasthi and Srivastava proposed a novel biometric remote user authentication scheme for the telecare medicine information system (TMIS) with nonce. Their scheme is very efficient as it is based on efficient chaotic one-way hash function and bitwise XOR operations. In this paper, we first analyze Awasthi-Srivastava's scheme and then show that their scheme has several drawbacks: (1) incorrect password change phase, (2) fails to preserve user anonymity property, (3) fails to establish a secret session key beween a legal user and the server, (4) fails to protect strong replay attack, and (5) lacks rigorous formal security analysis. We then a propose a novel and secure biometric-based remote user authentication scheme in order to withstand the security flaw found in Awasthi-Srivastava's scheme and enhance the features required for an idle user authentication scheme. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. In addition, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool and show that our scheme is secure against passive and active attacks, including the replay and man-in-the-middle attacks. Our scheme is also efficient as compared to Awasthi-Srivastava's scheme.

  17. J-PAKE: Authenticated Key Exchange without PKI

    NASA Astrophysics Data System (ADS)

    Hao, Feng; Ryan, Peter

    Password Authenticated Key Exchange (PAKE) is one of the important topics in cryptography. It aims to address a practical security problem: how to establish secure communication between two parties solely based on a shared password without requiring a Public Key Infrastructure (PKI). After more than a decade of extensive research in this field, there have been several PAKE protocols available. The EKE and SPEKE schemes are perhaps the two most notable examples. Both techniques are however patented. In this paper, we review these techniques in detail and summarize various theoretical and practical weaknesses. In addition, we present a new PAKE solution called J-PAKE. Our strategy is to depend on well-established primitives such as the Zero-Knowledge Proof (ZKP). So far, almost all of the past solutions have avoided using ZKP for the concern on efficiency. We demonstrate how to effectively integrate the ZKP into the protocol design and meanwhile achieve good efficiency. Our protocol has comparable computational efficiency to the EKE and SPEKE schemes with clear advantages on security.

  18. An Anonymous User Authentication and Key Agreement Scheme Based on a Symmetric Cryptosystem in Wireless Sensor Networks.

    PubMed

    Jung, Jaewook; Kim, Jiye; Choi, Younsung; Won, Dongho

    2016-08-16

    In wireless sensor networks (WSNs), a registered user can login to the network and use a user authentication protocol to access data collected from the sensor nodes. Since WSNs are typically deployed in unattended environments and sensor nodes have limited resources, many researchers have made considerable efforts to design a secure and efficient user authentication process. Recently, Chen et al. proposed a secure user authentication scheme using symmetric key techniques for WSNs. They claim that their scheme assures high efficiency and security against different types of attacks. After careful analysis, however, we find that Chen et al.'s scheme is still vulnerable to smart card loss attack and is susceptible to denial of service attack, since it is invalid for verification to simply compare an entered ID and a stored ID in smart card. In addition, we also observe that their scheme cannot preserve user anonymity. Furthermore, their scheme cannot quickly detect an incorrect password during login phase, and this flaw wastes both communication and computational overheads. In this paper, we describe how these attacks work, and propose an enhanced anonymous user authentication and key agreement scheme based on a symmetric cryptosystem in WSNs to address all of the aforementioned vulnerabilities in Chen et al.'s scheme. Our analysis shows that the proposed scheme improves the level of security, and is also more efficient relative to other related schemes.

  19. Robust ECC-based authenticated key agreement scheme with privacy protection for Telecare medicine information systems.

    PubMed

    Zhang, Liping; Zhu, Shaohui

    2015-05-01

    To protect the transmission of the sensitive medical data, a secure and efficient authenticated key agreement scheme should be deployed when the healthcare delivery session is established via Telecare Medicine Information Systems (TMIS) over the unsecure public network. Recently, Islam and Khan proposed an authenticated key agreement scheme using elliptic curve cryptography for TMIS. They claimed that their proposed scheme is provably secure against various attacks in random oracle model and enjoys some good properties such as user anonymity. In this paper, however, we point out that any legal but malicious patient can reveal other user's identity. Consequently, their scheme suffers from server spoofing attack and off-line password guessing attack. Moreover, if the malicious patient performs the same time of the registration as other users, she can further launch the impersonation attack, man-in-the-middle attack, modification attack, replay attack, and strong replay attack successfully. To eliminate these weaknesses, we propose an improved ECC-based authenticated key agreement scheme. Security analysis demonstrates that the proposed scheme can resist various attacks and enables the patient to enjoy the remote healthcare services with privacy protection. Through the performance evaluation, we show that the proposed scheme achieves a desired balance between security and performance in comparisons with other related schemes.

  20. Password-free network security through joint use of audio and video

    NASA Astrophysics Data System (ADS)

    Civanlar, Mehmet R.; Chen, Tsuhan

    1997-01-01

    REmote authentication is vital for many network based applications. As the number of such applications increases, user friendliness of the authentication process, particularly as it relates to password management, becomes as important as its reliability. The multimedia capabilities of the modern terminal equipment can provide the basis for a dependable and easy to use authentication system which does not require the user to memorize passwords. This paper outlines our implementation of an authentication system based on the joint use of the speech and facial video of a user. Our implementation shows that the voice and the video of the associated lip movements, when used together, can be very effective for password free authentication.

  1. A secure chaotic maps and smart cards based password authentication and key agreement scheme with user anonymity for telecare medicine information systems.

    PubMed

    Li, Chun-Ta; Lee, Cheng-Chi; Weng, Chi-Yao

    2014-09-01

    Telecare medicine information system (TMIS) is widely used for providing a convenient and efficient communicating platform between patients at home and physicians at medical centers or home health care (HHC) organizations. To ensure patient privacy, in 2013, Hao et al. proposed a chaotic map based authentication scheme with user anonymity for TMIS. Later, Lee showed that Hao et al.'s scheme is in no provision for providing fairness in session key establishment and gave an efficient user authentication and key agreement scheme using smart cards, in which only few hashing and Chebyshev chaotic map operations are required. In addition, Jiang et al. discussed that Hao et al.'s scheme can not resist stolen smart card attack and they further presented an improved scheme which attempts to repair the security pitfalls found in Hao et al.'s scheme. In this paper, we found that both Lee's and Jiang et al.'s authentication schemes have a serious security problem in that a registered user's secret parameters may be intentionally exposed to many non-registered users and this problem causing the service misuse attack. Therefore, we propose a slight modification on Lee's scheme to prevent the shortcomings. Compared with previous schemes, our improved scheme not only inherits the advantages of Lee's and Jiang et al.'s authentication schemes for TMIS but also remedies the serious security weakness of not being able to withstand service misuse attack.

  2. Extended Password Recovery Attacks against APOP, SIP, and Digest Authentication

    NASA Astrophysics Data System (ADS)

    Sasaki, Yu; Wang, Lei; Ohta, Kazuo; Kunihiro, Noboru

    In this paper, we propose password recovery attacks against challenge-response authentication protocols. Our attacks use a message difference for a MD5 collision attack proposed in IEICE 2008. First, we show how to efficiently find a message pair that collides with the above message difference. Second, we show that a password used in authenticated post office protocol (APOP) can be recovered practically. We also show that the password recovery attack can be applied to a session initiation protocol (SIP) and digest authentication. Our attack can recover up to the first 31 password characters in a short time and up to the first 60 characters faster than the naive search method. We have implemented our attack and confirmed that 31 characters can be successfully recovered.

  3. On the security of a dynamic ID-based authentication scheme for telecare medical information systems.

    PubMed

    Lin, Han-Yu

    2013-04-01

    Telecare medical information systems (TMISs) are increasingly popular technologies for healthcare applications. Using TMISs, physicians and caregivers can monitor the vital signs of patients remotely. Since the database of TMISs stores patients' electronic medical records (EMRs), only authorized users should be granted the access to this information for the privacy concern. To keep the user anonymity, recently, Chen et al. proposed a dynamic ID-based authentication scheme for telecare medical information system. They claimed that their scheme is more secure and robust for use in a TMIS. However, we will demonstrate that their scheme fails to satisfy the user anonymity due to the dictionary attacks. It is also possible to derive a user password in case of smart card loss attacks. Additionally, an improved scheme eliminating these weaknesses is also presented.

  4. An Anonymous User Authentication and Key Agreement Scheme Based on a Symmetric Cryptosystem in Wireless Sensor Networks

    PubMed Central

    Jung, Jaewook; Kim, Jiye; Choi, Younsung; Won, Dongho

    2016-01-01

    In wireless sensor networks (WSNs), a registered user can login to the network and use a user authentication protocol to access data collected from the sensor nodes. Since WSNs are typically deployed in unattended environments and sensor nodes have limited resources, many researchers have made considerable efforts to design a secure and efficient user authentication process. Recently, Chen et al. proposed a secure user authentication scheme using symmetric key techniques for WSNs. They claim that their scheme assures high efficiency and security against different types of attacks. After careful analysis, however, we find that Chen et al.’s scheme is still vulnerable to smart card loss attack and is susceptible to denial of service attack, since it is invalid for verification to simply compare an entered ID and a stored ID in smart card. In addition, we also observe that their scheme cannot preserve user anonymity. Furthermore, their scheme cannot quickly detect an incorrect password during login phase, and this flaw wastes both communication and computational overheads. In this paper, we describe how these attacks work, and propose an enhanced anonymous user authentication and key agreement scheme based on a symmetric cryptosystem in WSNs to address all of the aforementioned vulnerabilities in Chen et al.’s scheme. Our analysis shows that the proposed scheme improves the level of security, and is also more efficient relative to other related schemes. PMID:27537890

  5. A secure and efficient chaotic map-based authenticated key agreement scheme for telecare medicine information systems.

    PubMed

    Mishra, Dheerendra; Srinivas, Jangirala; Mukhopadhyay, Sourav

    2014-10-01

    Advancement in network technology provides new ways to utilize telecare medicine information systems (TMIS) for patient care. Although TMIS usually faces various attacks as the services are provided over the public network. Recently, Jiang et al. proposed a chaotic map-based remote user authentication scheme for TMIS. Their scheme has the merits of low cost and session key agreement using Chaos theory. It enhances the security of the system by resisting various attacks. In this paper, we analyze the security of Jiang et al.'s scheme and demonstrate that their scheme is vulnerable to denial of service attack. Moreover, we demonstrate flaws in password change phase of their scheme. Further, our aim is to propose a new chaos map-based anonymous user authentication scheme for TMIS to overcome the weaknesses of Jiang et al.'s scheme, while also retaining the original merits of their scheme. We also show that our scheme is secure against various known attacks including the attacks found in Jiang et al.'s scheme. The proposed scheme is comparable in terms of the communication and computational overheads with Jiang et al.'s scheme and other related existing schemes. Moreover, we demonstrate the validity of the proposed scheme through the BAN (Burrows, Abadi, and Needham) logic.

  6. Efficient and Security Enhanced Anonymous Authentication with Key Agreement Scheme in Wireless Sensor Networks

    PubMed Central

    Jung, Jaewook; Moon, Jongho; Lee, Donghoon; Won, Dongho

    2017-01-01

    At present, users can utilize an authenticated key agreement protocol in a Wireless Sensor Network (WSN) to securely obtain desired information, and numerous studies have investigated authentication techniques to construct efficient, robust WSNs. Chang et al. recently presented an authenticated key agreement mechanism for WSNs and claimed that their authentication mechanism can both prevent various types of attacks, as well as preserve security properties. However, we have discovered that Chang et al’s method possesses some security weaknesses. First, their mechanism cannot guarantee protection against a password guessing attack, user impersonation attack or session key compromise. Second, the mechanism results in a high load on the gateway node because the gateway node should always maintain the verifier tables. Third, there is no session key verification process in the authentication phase. To this end, we describe how the previously-stated weaknesses occur and propose a security-enhanced version for WSNs. We present a detailed analysis of the security and performance of our authenticated key agreement mechanism, which not only enhances security compared to that of related schemes, but also takes efficiency into consideration. PMID:28335572

  7. Efficient and Security Enhanced Anonymous Authentication with Key Agreement Scheme in Wireless Sensor Networks.

    PubMed

    Jung, Jaewook; Moon, Jongho; Lee, Donghoon; Won, Dongho

    2017-03-21

    At present, users can utilize an authenticated key agreement protocol in a Wireless Sensor Network (WSN) to securely obtain desired information, and numerous studies have investigated authentication techniques to construct efficient, robust WSNs. Chang et al. recently presented an authenticated key agreement mechanism for WSNs and claimed that their authentication mechanism can both prevent various types of attacks, as well as preserve security properties. However, we have discovered that Chang et al's method possesses some security weaknesses. First, their mechanism cannot guarantee protection against a password guessing attack, user impersonation attack or session key compromise. Second, the mechanism results in a high load on the gateway node because the gateway node should always maintain the verifier tables. Third, there is no session key verification process in the authentication phase. To this end, we describe how the previously-stated weaknesses occur and propose a security-enhanced version for WSNs. We present a detailed analysis of the security and performance of our authenticated key agreement mechanism, which not only enhances security compared to that of related schemes, but also takes efficiency into consideration.

  8. Backup key generation model for one-time password security protocol

    NASA Astrophysics Data System (ADS)

    Jeyanthi, N.; Kundu, Sourav

    2017-11-01

    The use of one-time password (OTP) has ushered new life into the existing authentication protocols used by the software industry. It introduced a second layer of security to the traditional username-password authentication, thus coining the term, two-factor authentication. One of the drawbacks of this protocol is the unreliability of the hardware token at the time of authentication. This paper proposes a simple backup key model that can be associated with the real world applications’user database, which would allow a user to circumvent the second authentication stage, in the event of unavailability of the hardware token.

  9. Cryptanalysis and Enhancement of Anonymity Preserving Remote User Mutual Authentication and Session Key Agreement Scheme for E-Health Care Systems.

    PubMed

    Amin, Ruhul; Islam, S K Hafizul; Biswas, G P; Khan, Muhammad Khurram; Li, Xiong

    2015-11-01

    The E-health care systems employ IT infrastructure for maximizing health care resources utilization as well as providing flexible opportunities to the remote patient. Therefore, transmission of medical data over any public networks is necessary in health care system. Note that patient authentication including secure data transmission in e-health care system is critical issue. Although several user authentication schemes for accessing remote services are available, their security analysis show that none of them are free from relevant security attacks. We reviewed Das et al.'s scheme and demonstrated their scheme lacks proper protection against several security attacks such as user anonymity, off-line password guessing attack, smart card theft attack, user impersonation attack, server impersonation attack, session key discloser attack. In order to overcome the mentioned security pitfalls, this paper proposes an anonymity preserving remote patient authentication scheme usable in E-health care systems. We then validated the security of the proposed scheme using BAN logic that ensures secure mutual authentication and session key agreement. We also presented the experimental results of the proposed scheme using AVISPA software and the results ensure that our scheme is secure under OFMC and CL-AtSe models. Moreover, resilience of relevant security attacks has been proved through both formal and informal security analysis. The performance analysis and comparison with other schemes are also made, and it has been found that the proposed scheme overcomes the security drawbacks of the Das et al.'s scheme and additionally achieves extra security requirements.

  10. Interception and modification of network authentication packets with the purpose of allowing alternative authentication modes

    DOEpatents

    Kent, Alexander Dale [Los Alamos, NM

    2008-09-02

    Methods and systems in a data/computer network for authenticating identifying data transmitted from a client to a server through use of a gateway interface system which are communicately coupled to each other are disclosed. An authentication packet transmitted from a client to a server of the data network is intercepted by the interface, wherein the authentication packet is encrypted with a one-time password for transmission from the client to the server. The one-time password associated with the authentication packet can be verified utilizing a one-time password token system. The authentication packet can then be modified for acceptance by the server, wherein the response packet generated by the server is thereafter intercepted, verified and modified for transmission back to the client in a similar but reverse process.

  11. Provably Secure Password-based Authentication in TLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdalla, Michel; Emmanuel, Bresson; Chevassut, Olivier

    2005-12-20

    In this paper, we show how to design an efficient, provably secure password-based authenticated key exchange mechanism specifically for the TLS (Transport Layer Security) protocol. The goal is to provide a technique that allows users to employ (short) passwords to securely identify themselves to servers. As our main contribution, we describe a new password-based technique for user authentication in TLS, called Simple Open Key Exchange (SOKE). Loosely speaking, the SOKE ciphersuites are unauthenticated Diffie-Hellman ciphersuites in which the client's Diffie-Hellman ephemeral public value is encrypted using a simple mask generation function. The mask is simply a constant value raised tomore » the power of (a hash of) the password.The SOKE ciphersuites, in advantage over previous pass-word-based authentication ciphersuites for TLS, combine the following features. First, SOKE has formal security arguments; the proof of security based on the computational Diffie-Hellman assumption is in the random oracle model, and holds for concurrent executions and for arbitrarily large password dictionaries. Second, SOKE is computationally efficient; in particular, it only needs operations in a sufficiently large prime-order subgroup for its Diffie-Hellman computations (no safe primes). Third, SOKE provides good protocol flexibility because the user identity and password are only required once a SOKE ciphersuite has actually been negotiated, and after the server has sent a server identity.« less

  12. Secure password-based authenticated key exchange for web services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Fang; Meder, Samuel; Chevassut, Olivier

    This paper discusses an implementation of an authenticated key-exchange method rendered on message primitives defined in the WS-Trust and WS-SecureConversation specifications. This IEEE-specified cryptographic method (AuthA) is proven-secure for password-based authentication and key exchange, while the WS-Trust and WS-Secure Conversation are emerging Web Services Security specifications that extend the WS-Security specification. A prototype of the presented protocol is integrated in the WSRF-compliant Globus Toolkit V4. Further hardening of the implementation is expected to result in a version that will be shipped with future Globus Toolkit releases. This could help to address the current unavailability of decent shared-secret-based authentication options inmore » the Web Services and Grid world. Future work will be to integrate One-Time-Password (OTP) features in the authentication protocol.« less

  13. Are Password Management Applications Viable? An Analysis of User Training and Reactions

    ERIC Educational Resources Information Center

    Ciampa, Mark

    2011-01-01

    Passwords have the distinction of being the most widely-used form of authentication--and the most vulnerable. With the dramatic increase today in the number of accounts that require passwords, overwhelmed users usually resort to creating weak passwords or reusing the same password for multiple accounts, thus making passwords the weakest link in…

  14. Efficient and anonymous two-factor user authentication in wireless sensor networks: achieving user anonymity with lightweight sensor computation.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Han, Sangchul; Kim, Moonseong; Paik, Juryon; Won, Dongho

    2015-01-01

    A smart-card-based user authentication scheme for wireless sensor networks (hereafter referred to as a SCA-WSN scheme) is designed to ensure that only users who possess both a smart card and the corresponding password are allowed to gain access to sensor data and their transmissions. Despite many research efforts in recent years, it remains a challenging task to design an efficient SCA-WSN scheme that achieves user anonymity. The majority of published SCA-WSN schemes use only lightweight cryptographic techniques (rather than public-key cryptographic techniques) for the sake of efficiency, and have been demonstrated to suffer from the inability to provide user anonymity. Some schemes employ elliptic curve cryptography for better security but require sensors with strict resource constraints to perform computationally expensive scalar-point multiplications; despite the increased computational requirements, these schemes do not provide user anonymity. In this paper, we present a new SCA-WSN scheme that not only achieves user anonymity but also is efficient in terms of the computation loads for sensors. Our scheme employs elliptic curve cryptography but restricts its use only to anonymous user-to-gateway authentication, thereby allowing sensors to perform only lightweight cryptographic operations. Our scheme also enjoys provable security in a formal model extended from the widely accepted Bellare-Pointcheval-Rogaway (2000) model to capture the user anonymity property and various SCA-WSN specific attacks (e.g., stolen smart card attacks, node capture attacks, privileged insider attacks, and stolen verifier attacks).

  15. Efficient and Anonymous Two-Factor User Authentication in Wireless Sensor Networks: Achieving User Anonymity with Lightweight Sensor Computation

    PubMed Central

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Han, Sangchul; Kim, Moonseong; Paik, Juryon; Won, Dongho

    2015-01-01

    A smart-card-based user authentication scheme for wireless sensor networks (hereafter referred to as a SCA-WSN scheme) is designed to ensure that only users who possess both a smart card and the corresponding password are allowed to gain access to sensor data and their transmissions. Despite many research efforts in recent years, it remains a challenging task to design an efficient SCA-WSN scheme that achieves user anonymity. The majority of published SCA-WSN schemes use only lightweight cryptographic techniques (rather than public-key cryptographic techniques) for the sake of efficiency, and have been demonstrated to suffer from the inability to provide user anonymity. Some schemes employ elliptic curve cryptography for better security but require sensors with strict resource constraints to perform computationally expensive scalar-point multiplications; despite the increased computational requirements, these schemes do not provide user anonymity. In this paper, we present a new SCA-WSN scheme that not only achieves user anonymity but also is efficient in terms of the computation loads for sensors. Our scheme employs elliptic curve cryptography but restricts its use only to anonymous user-to-gateway authentication, thereby allowing sensors to perform only lightweight cryptographic operations. Our scheme also enjoys provable security in a formal model extended from the widely accepted Bellare-Pointcheval-Rogaway (2000) model to capture the user anonymity property and various SCA-WSN specific attacks (e.g., stolen smart card attacks, node capture attacks, privileged insider attacks, and stolen verifier attacks). PMID:25849359

  16. From Legion to Avaki: The Persistence of Vision

    DTIC Science & Technology

    2006-01-01

    person, but what component, is requesting an action. 5.3.1 Authentication Users authenticate themselves to a Legion grid with the login paradigm...password supplied during login is compared to the password in the state of the authentication object in order to permit or deny subsequent access to...In either case, the credential is protected by the security of the underlying operating system. Although login is the most commonly used method

  17. On the security of a simple three-party key exchange protocol without server's public keys.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Park, Minkyu; Paik, Juryon; Won, Dongho

    2014-01-01

    Authenticated key exchange protocols are of fundamental importance in securing communications and are now extensively deployed for use in various real-world network applications. In this work, we reveal major previously unpublished security vulnerabilities in the password-based authenticated three-party key exchange protocol according to Lee and Hwang (2010): (1) the Lee-Hwang protocol is susceptible to a man-in-the-middle attack and thus fails to achieve implicit key authentication; (2) the protocol cannot protect clients' passwords against an offline dictionary attack; and (3) the indistinguishability-based security of the protocol can be easily broken even in the presence of a passive adversary. We also propose an improved password-based authenticated three-party key exchange protocol that addresses the security vulnerabilities identified in the Lee-Hwang protocol.

  18. On the Security of a Simple Three-Party Key Exchange Protocol without Server's Public Keys

    PubMed Central

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Park, Minkyu; Paik, Juryon; Won, Dongho

    2014-01-01

    Authenticated key exchange protocols are of fundamental importance in securing communications and are now extensively deployed for use in various real-world network applications. In this work, we reveal major previously unpublished security vulnerabilities in the password-based authenticated three-party key exchange protocol according to Lee and Hwang (2010): (1) the Lee-Hwang protocol is susceptible to a man-in-the-middle attack and thus fails to achieve implicit key authentication; (2) the protocol cannot protect clients' passwords against an offline dictionary attack; and (3) the indistinguishability-based security of the protocol can be easily broken even in the presence of a passive adversary. We also propose an improved password-based authenticated three-party key exchange protocol that addresses the security vulnerabilities identified in the Lee-Hwang protocol. PMID:25258723

  19. Password-only authenticated three-party key exchange with provable security in the standard model.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Kim, Junghwan; Kang, Hyun-Kyu; Kim, Jinsoo; Paik, Juryon; Won, Dongho

    2014-01-01

    Protocols for password-only authenticated key exchange (PAKE) in the three-party setting allow two clients registered with the same authentication server to derive a common secret key from their individual password shared with the server. Existing three-party PAKE protocols were proven secure under the assumption of the existence of random oracles or in a model that does not consider insider attacks. Therefore, these protocols may turn out to be insecure when the random oracle is instantiated with a particular hash function or an insider attack is mounted against the partner client. The contribution of this paper is to present the first three-party PAKE protocol whose security is proven without any idealized assumptions in a model that captures insider attacks. The proof model we use is a variant of the indistinguishability-based model of Bellare, Pointcheval, and Rogaway (2000), which is one of the most widely accepted models for security analysis of password-based key exchange protocols. We demonstrated that our protocol achieves not only the typical indistinguishability-based security of session keys but also the password security against undetectable online dictionary attacks.

  20. Simple group password-based authenticated key agreements for the integrated EPR information system.

    PubMed

    Lee, Tian-Fu; Chang, I-Pin; Wang, Ching-Cheng

    2013-04-01

    The security and privacy are important issues for electronic patient records (EPRs). The goal of EPRs is sharing the patients' medical histories such as the diagnosis records, reports and diagnosis image files among hospitals by the Internet. So the security issue for the integrated EPR information system is essential. That is, to ensure the information during transmission through by the Internet is secure and private. The group password-based authenticated key agreement (GPAKE) allows a group of users like doctors, nurses and patients to establish a common session key by using password authentication. Then the group of users can securely communicate by using this session key. Many approaches about GAPKE employ the public key infrastructure (PKI) in order to have higher security. However, it not only increases users' overheads and requires keeping an extra equipment for storing long-term secret keys, but also requires maintaining the public key system. This investigation presents a simple group password-based authenticated key agreement (SGPAKE) protocol for the integrated EPR information system. The proposed SGPAKE protocol does not require using the server or users' public keys. Each user only remembers his weak password shared with a trusted server, and then can obtain a common session key. Then all users can securely communicate by using this session key. The proposed SGPAKE protocol not only provides users with convince, but also has higher security.

  1. Improving computer security for authentication of users: influence of proactive password restrictions.

    PubMed

    Proctor, Robert W; Lien, Mei-Ching; Vu, Kim-Phuong L; Schultz, E Eugene; Salvendy, Gavriel

    2002-05-01

    Entering a username-password combination is a widely used procedure for identification and authentication in computer systems. However, it is a notoriously weak method, in that the passwords adopted by many users are easy to crack. In an attempt to improve security, proactive password checking may be used, in which passwords must meet several criteria to be more resistant to cracking. In two experiments, we examined the influence of proactive password restrictions on the time that it took to generate an acceptable password and to use it subsequently to long in. The required length was a minimum of five characters in Experiment 1 and eight characters in Experiment 2. In both experiments, one condition had only the length restriction, and the other had additional restrictions. The additional restrictions greatly increased the time it took to generate the password but had only a small effect on the time it took to use it subsequently to long in. For the five-character passwords, 75% were cracked when no other restrictions were imposed, and this was reduced to 33% with the additional restrictions. For the eight-character passwords, 17% were cracked with no other restrictions, and 12.5% with restrictions. The results indicate that increasing the minimum character length reduces crackability and increases security, regardless of whether additional restrictions are imposed.

  2. Security Proof for Password Authentication in TLS-Verifier-based Three-Party Group Diffie-Hellman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevassut, Olivier; Milner, Joseph; Pointcheval, David

    2008-04-21

    The internet has grown greatly in the past decade, by some numbers exceeding 47 million active web sites and a total aggregate exceeding100 million web sites. What is common practice today on the Internet is that servers have public keys, but clients are largely authenticated via short passwords. Protecting these passwords by not storing them in the clear on institutions's servers has become a priority. This paper develops password-based ciphersuites for the Transport Layer Security (TLS) protocol that are: (1) resistant to server compromise; (2) provably secure; (3) believed to be free from patent and licensing restrictions based on anmore » analysis of relevant patents in the area.« less

  3. Password-Only Authenticated Three-Party Key Exchange with Provable Security in the Standard Model

    PubMed Central

    Nam, Junghyun; Kim, Junghwan; Kang, Hyun-Kyu; Kim, Jinsoo; Paik, Juryon

    2014-01-01

    Protocols for password-only authenticated key exchange (PAKE) in the three-party setting allow two clients registered with the same authentication server to derive a common secret key from their individual password shared with the server. Existing three-party PAKE protocols were proven secure under the assumption of the existence of random oracles or in a model that does not consider insider attacks. Therefore, these protocols may turn out to be insecure when the random oracle is instantiated with a particular hash function or an insider attack is mounted against the partner client. The contribution of this paper is to present the first three-party PAKE protocol whose security is proven without any idealized assumptions in a model that captures insider attacks. The proof model we use is a variant of the indistinguishability-based model of Bellare, Pointcheval, and Rogaway (2000), which is one of the most widely accepted models for security analysis of password-based key exchange protocols. We demonstrated that our protocol achieves not only the typical indistinguishability-based security of session keys but also the password security against undetectable online dictionary attacks. PMID:24977229

  4. The Effect of Password Management Procedures on the Entropy of User Selected Passwords

    ERIC Educational Resources Information Center

    Enamait, John D.

    2012-01-01

    Maintaining the security of information contained within computer systems poses challenges for users and administrators. Attacks on information systems continue to rise. Specifically, attacks that target user authentication are increasingly popular. These attacks are based on the common perception that traditional alphanumeric passwords are weak…

  5. 31 CFR 363.17 - Who is liable if someone else accesses my TreasuryDirect ® account using my password?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., password, and any other form(s) of authentication we may require. We will treat any transactions conducted using your password as having been authorized by you. We are not liable for any loss, liability, cost, or expense that you may incur as a result of transactions made using your password. [72 FR 30978...

  6. Authentication systems for securing clinical documentation workflows. A systematic literature review.

    PubMed

    Schwartze, J; Haarbrandt, B; Fortmeier, D; Haux, R; Seidel, C

    2014-01-01

    Integration of electronic signatures embedded in health care processes in Germany challenges health care service and supply facilities. The suitability of the signature level of an eligible authentication procedure is confirmed for a large part of documents in clinical practice. However, the concrete design of such a procedure remains unclear. To create a summary of usable user authentication systems suitable for clinical workflows. A Systematic literature review based on nine online bibliographic databases. Search keywords included authentication, access control, information systems, information security and biometrics with terms user authentication, user identification and login in title or abstract. Searches were run between 7 and 12 September 2011. Relevant conference proceedings were searched manually in February 2013. Backward reference search of selected results was done. Only publications fully describing authentication systems used or usable were included. Algorithms or purely theoretical concepts were excluded. Three authors did selection independently. DATA EXTRACTION AND ASSESSMENT: Semi-structured extraction of system characteristics was done by the main author. Identified procedures were assessed for security and fulfillment of relevant laws and guidelines as well as for applicability. Suitability for clinical workflows was derived from the assessments using a weighted sum proposed by Bonneau. Of 7575 citations retrieved, 55 publications meet our inclusion criteria. They describe 48 different authentication systems; 39 were biometric and nine graphical password systems. Assessment of authentication systems showed high error rates above European CENELEC standards and a lack of applicability of biometric systems. Graphical passwords did not add overall value compared to conventional passwords. Continuous authentication can add an additional layer of safety. Only few systems are suitable partially or entirely for use in clinical processes. Suitability strongly depends on national or institutional requirements. Four authentication systems seem to fulfill requirements of authentication procedures for clinical workflows. Research is needed in the area of continuous authentication with biometric methods. A proper authentication system should combine all factors of authentication implementing and connecting secure individual measures.

  7. Multi-factor authentication using quantum communication

    DOEpatents

    Hughes, Richard John; Peterson, Charles Glen; Thrasher, James T.; Nordholt, Jane E.; Yard, Jon T.; Newell, Raymond Thorson; Somma, Rolando D.

    2018-02-06

    Multi-factor authentication using quantum communication ("QC") includes stages for enrollment and identification. For example, a user enrolls for multi-factor authentication that uses QC with a trusted authority. The trusted authority transmits device factor information associated with a user device (such as a hash function) and user factor information associated with the user (such as an encrypted version of a user password). The user device receives and stores the device factor information and user factor information. For multi-factor authentication that uses QC, the user device retrieves its stored device factor information and user factor information, then transmits the user factor information to the trusted authority, which also retrieves its stored device factor information. The user device and trusted authority use the device factor information and user factor information (more specifically, information such as a user password that is the basis of the user factor information) in multi-factor authentication that uses QC.

  8. Practical and Secure Recovery of Disk Encryption Key Using Smart Cards

    NASA Astrophysics Data System (ADS)

    Omote, Kazumasa; Kato, Kazuhiko

    In key-recovery methods using smart cards, a user can recover the disk encryption key in cooperation with the system administrator, even if the user has lost the smart card including the disk encryption key. However, the disk encryption key is known to the system administrator in advance in most key-recovery methods. Hence user's disk data may be read by the system administrator. Furthermore, if the disk encryption key is not known to the system administrator in advance, it is difficult to achieve a key authentication. In this paper, we propose a scheme which enables to recover the disk encryption key when the user's smart card is lost. In our scheme, the disk encryption key is not preserved anywhere and then the system administrator cannot know the key before key-recovery phase. Only someone who has a user's smart card and knows the user's password can decrypt that user's disk data. Furthermore, we measured the processing time required for user authentication in an experimental environment using a virtual machine monitor. As a result, we found that this processing time is short enough to be practical.

  9. A reliable user authentication and key agreement scheme for Web-based Hospital-acquired Infection Surveillance Information System.

    PubMed

    Wu, Zhen-Yu; Tseng, Yi-Ju; Chung, Yufang; Chen, Yee-Chun; Lai, Feipei

    2012-08-01

    With the rapid development of the Internet, both digitization and electronic orientation are required on various applications in the daily life. For hospital-acquired infection control, a Web-based Hospital-acquired Infection Surveillance System was implemented. Clinical data from different hospitals and systems were collected and analyzed. The hospital-acquired infection screening rules in this system utilized this information to detect different patterns of defined hospital-acquired infection. Moreover, these data were integrated into the user interface of a signal entry point to assist physicians and healthcare providers in making decisions. Based on Service-Oriented Architecture, web-service techniques which were suitable for integrating heterogeneous platforms, protocols, and applications, were used. In summary, this system simplifies the workflow of hospital infection control and improves the healthcare quality. However, it is probable for attackers to intercept the process of data transmission or access to the user interface. To tackle the illegal access and to prevent the information from being stolen during transmission over the insecure Internet, a password-based user authentication scheme is proposed for information integrity.

  10. SSO - Single-Sign-On Profile: Authentication Mechanisms Version 2.0

    NASA Astrophysics Data System (ADS)

    Taffoni, Giuliano; Schaaf, André; Rixon, Guy; Major, Brian; Taffoni, Giuliano

    2017-05-01

    Approved client-server authentication mechanisms are described for the IVOA single-sign-on profile: No Authentication; HTTP Basic Authentication; TLS with passwords; TLS with client certificates; Cookies; Open Authentication; Security Assertion Markup Language; OpenID. Normative rules are given for the implementation of these mechanisms, mainly by reference to pre-existing standards. The Authorization mechanisms are out of the scope of this document.

  11. Secure Server Login by Using Third Party and Chaotic System

    NASA Astrophysics Data System (ADS)

    Abdulatif, Firas A.; zuhiar, Maan

    2018-05-01

    Server is popular among all companies and it used by most of them but due to the security threat on the server make this companies are concerned when using it so that in this paper we will design a secure system based on one time password and third parity authentication (smart phone). The proposed system make security to the login process of server by using one time password to authenticate person how have permission to login and third parity device (smart phone) as other level of security.

  12. A Secure and Robust User Authenticated Key Agreement Scheme for Hierarchical Multi-medical Server Environment in TMIS.

    PubMed

    Das, Ashok Kumar; Odelu, Vanga; Goswami, Adrijit

    2015-09-01

    The telecare medicine information system (TMIS) helps the patients to gain the health monitoring facility at home and access medical services over the Internet of mobile networks. Recently, Amin and Biswas presented a smart card based user authentication and key agreement security protocol usable for TMIS system using the cryptographic one-way hash function and biohashing function, and claimed that their scheme is secure against all possible attacks. Though their scheme is efficient due to usage of one-way hash function, we show that their scheme has several security pitfalls and design flaws, such as (1) it fails to protect privileged-insider attack, (2) it fails to protect strong replay attack, (3) it fails to protect strong man-in-the-middle attack, (4) it has design flaw in user registration phase, (5) it has design flaw in login phase, (6) it has design flaw in password change phase, (7) it lacks of supporting biometric update phase, and (8) it has flaws in formal security analysis. In order to withstand these security pitfalls and design flaws, we aim to propose a secure and robust user authenticated key agreement scheme for the hierarchical multi-server environment suitable in TMIS using the cryptographic one-way hash function and fuzzy extractor. Through the rigorous security analysis including the formal security analysis using the widely-accepted Burrows-Abadi-Needham (BAN) logic, the formal security analysis under the random oracle model and the informal security analysis, we show that our scheme is secure against possible known attacks. Furthermore, we simulate our scheme using the most-widely accepted and used Automated Validation of Internet Security Protocols and Applications (AVISPA) tool. The simulation results show that our scheme is also secure. Our scheme is more efficient in computation and communication as compared to Amin-Biswas's scheme and other related schemes. In addition, our scheme supports extra functionality features as compared to other related schemes. As a result, our scheme is very appropriate for practical applications in TMIS.

  13. Assessment of Web-Based Authentication Methods in the U.S.: Comparing E-Learning Systems to Internet Healthcare Information Systems

    ERIC Educational Resources Information Center

    Mattord, Herbert J.

    2012-01-01

    Organizations continue to rely on password-based authentication methods to control access to many Web-based systems. This research study developed a benchmarking instrument intended to assess authentication methods used in Web-based information systems (IS). It developed an Authentication Method System Index (AMSI) to analyze collected data from…

  14. Beyond Passwords: Usage and Policy Transformation

    DTIC Science & Technology

    2007-03-01

    case scenario for lost productivity due to users leaving their CAC at work, in their computer, is costing 261 work years per year with an estimated ...one for your CAC) are you currently using? ..................................................................................................... 43...PASSWORDS: USAGE AND POLICY TRANSFORMATION I. Introduction Background Currently , the primary method for network authentication on the

  15. Comparing Intentions to Use University-Provided vs Vendor-Provided Multibiometric Authentication in Online Exams

    ERIC Educational Resources Information Center

    Levy, Yair; Ramim, Michelle M.; Furnell, Steven M.; Clarke, Nathan L.

    2011-01-01

    Purpose: Concerns for information security in e-learning systems have been raised previously. In the pursuit for better authentication approaches, few schools have implemented students' authentication during online exams beyond passwords. This paper aims to assess e-learners' intention to provide multibiometric data and use of multibiometrics…

  16. A Secure Three-Factor User Authentication and Key Agreement Protocol for TMIS With User Anonymity.

    PubMed

    Amin, Ruhul; Biswas, G P

    2015-08-01

    Telecare medical information system (TMIS) makes an efficient and convenient connection between patient(s)/user(s) and doctor(s) over the insecure internet. Therefore, data security, privacy and user authentication are enormously important for accessing important medical data over insecure communication. Recently, many user authentication protocols for TMIS have been proposed in the literature and it has been observed that most of the protocols cannot achieve complete security requirements. In this paper, we have scrutinized two (Mishra et al., Xu et al.) remote user authentication protocols using smart card and explained that both the protocols are suffering against several security weaknesses. We have then presented three-factor user authentication and key agreement protocol usable for TMIS, which fix the security pitfalls of the above mentioned schemes. The informal cryptanalysis makes certain that the proposed protocol provides well security protection on the relevant security attacks. Furthermore, the simulator AVISPA tool confirms that the protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. The security functionalities and performance comparison analysis confirm that our protocol not only provide strong protection on security attacks, but it also achieves better complexities along with efficient login and password change phase as well as session key verification property.

  17. A Comparison of Password Techniques for Multilevel Authentication Mechanisms

    DTIC Science & Technology

    1990-06-01

    an individual user’s perceptions, personal interests and personal history . This information is unique to the individual and is neither commonly...a user may associative passwords profile around the Beatles . In this case, cues may include "abbey", "john", "yellow" and "george" and have responses

  18. Preventing Shoulder-Surfing Attack with the Concept of Concealing the Password Objects' Information

    PubMed Central

    Ho, Peng Foong; Kam, Yvonne Hwei-Syn; Wee, Mee Chin

    2014-01-01

    Traditionally, picture-based password systems employ password objects (pictures/icons/symbols) as input during an authentication session, thus making them vulnerable to “shoulder-surfing” attack because the visual interface by function is easily observed by others. Recent software-based approaches attempt to minimize this threat by requiring users to enter their passwords indirectly by performing certain mental tasks to derive the indirect password, thus concealing the user's actual password. However, weaknesses in the positioning of distracter and password objects introduce usability and security issues. In this paper, a new method, which conceals information about the password objects as much as possible, is proposed. Besides concealing the password objects and the number of password objects, the proposed method allows both password and distracter objects to be used as the challenge set's input. The correctly entered password appears to be random and can only be derived with the knowledge of the full set of password objects. Therefore, it would be difficult for a shoulder-surfing adversary to identify the user's actual password. Simulation results indicate that the correct input object and its location are random for each challenge set, thus preventing frequency of occurrence analysis attack. User study results show that the proposed method is able to prevent shoulder-surfing attack. PMID:24991649

  19. Detecting and Preventing Sybil Attacks in Wireless Sensor Networks Using Message Authentication and Passing Method.

    PubMed

    Dhamodharan, Udaya Suriya Raj Kumar; Vayanaperumal, Rajamani

    2015-01-01

    Wireless sensor networks are highly indispensable for securing network protection. Highly critical attacks of various kinds have been documented in wireless sensor network till now by many researchers. The Sybil attack is a massive destructive attack against the sensor network where numerous genuine identities with forged identities are used for getting an illegal entry into a network. Discerning the Sybil attack, sinkhole, and wormhole attack while multicasting is a tremendous job in wireless sensor network. Basically a Sybil attack means a node which pretends its identity to other nodes. Communication to an illegal node results in data loss and becomes dangerous in the network. The existing method Random Password Comparison has only a scheme which just verifies the node identities by analyzing the neighbors. A survey was done on a Sybil attack with the objective of resolving this problem. The survey has proposed a combined CAM-PVM (compare and match-position verification method) with MAP (message authentication and passing) for detecting, eliminating, and eventually preventing the entry of Sybil nodes in the network. We propose a scheme of assuring security for wireless sensor network, to deal with attacks of these kinds in unicasting and multicasting.

  20. Detecting and Preventing Sybil Attacks in Wireless Sensor Networks Using Message Authentication and Passing Method

    PubMed Central

    Dhamodharan, Udaya Suriya Raj Kumar; Vayanaperumal, Rajamani

    2015-01-01

    Wireless sensor networks are highly indispensable for securing network protection. Highly critical attacks of various kinds have been documented in wireless sensor network till now by many researchers. The Sybil attack is a massive destructive attack against the sensor network where numerous genuine identities with forged identities are used for getting an illegal entry into a network. Discerning the Sybil attack, sinkhole, and wormhole attack while multicasting is a tremendous job in wireless sensor network. Basically a Sybil attack means a node which pretends its identity to other nodes. Communication to an illegal node results in data loss and becomes dangerous in the network. The existing method Random Password Comparison has only a scheme which just verifies the node identities by analyzing the neighbors. A survey was done on a Sybil attack with the objective of resolving this problem. The survey has proposed a combined CAM-PVM (compare and match-position verification method) with MAP (message authentication and passing) for detecting, eliminating, and eventually preventing the entry of Sybil nodes in the network. We propose a scheme of assuring security for wireless sensor network, to deal with attacks of these kinds in unicasting and multicasting. PMID:26236773

  1. User Authentication: A State-of-the-Art Review

    DTIC Science & Technology

    1991-09-01

    etc/ passwd , is publicly readable. Although the passwords in the file are encrypted, the encryption routine is read:.ly accessible. Encrypting a guess...version 4.0, and AT&T’s System V release 3.2 and System V/MLS, have addressed the problem by moving the passwords from /etc/ passwd into a shadow file that

  2. Australian DefenceScience. Volume 16, Number 2, Winter

    DTIC Science & Technology

    2008-01-01

    Making Virtual Advisers speedily interactive To provide an authentically interactive experience for humans working with Virtual Advisers, the Virtual...peer trusted and strong authentication for checking of security credentials without recourse to third parties or infrastructure, thus eliminating...multiple passwords, or carry around multiple security tokens.” Each CodeStick device is readied for use with a biometric authentication process. Since

  3. The Password Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walkup, Elizabeth

    Passwords are an ubiquitous, established part of the Internet today, but they are also a huge security headache. Single sign-on, OAuth, and password managers are some of the solutions to this problem. OAuth is a new, popular method that allows people to use large, common authentication providers for many web applications. However, it comes at the expense of some privacy: OAuth makes users easy to track across websites, applications, and devices. Password managers put the power in the hands of the users, but this vulnerability survey reveals that you have to be extremely careful which program you choose. All inmore » all, password managers are the solution of choice for home users and small organizations, but large companies will probably want to invest in their own SSO solutions.« less

  4. The Emperor’s New Password Manager: Security Analysis of Web-based Password Managers

    DTIC Science & Technology

    2014-07-07

    POST re- quest, LastPass will store h’ as authenticating Alice. Mallory can then use otp’ to log-in to LastPass us- ing otp’. Of course , decrypting the...everywhere. [36] M. Rochkind. Security, forms, and error handling. In Expert PHP and MySQL , pages 191–247. Springer, 2013. [37] D. Silver, S. Jana, E

  5. An authentication scheme to healthcare security under wireless sensor networks.

    PubMed

    Hsiao, Tsung-Chih; Liao, Yu-Ting; Huang, Jen-Yan; Chen, Tzer-Shyong; Horng, Gwo-Boa

    2012-12-01

    In recent years, Taiwan has been seeing an extension of the average life expectancy and a drop in overall fertility rate, initiating our country into an aged society. Due to this phenomenon, how to provide the elderly and patients with chronic diseases a suitable healthcare environment has become a critical issue presently. Therefore, we propose a new scheme that integrates healthcare services with wireless sensor technology in which sensor nodes are employed to measure patients' vital signs. Data collected from these sensor nodes are then transmitted to mobile devices of the medical staff and system administrator, promptly enabling them to understand the patients' condition in real time, which will significantly improve patients' healthcare quality. As per the personal data protection act, patients' vital signs can only be accessed by authorized medical staff. In order to protect patients', the system administrator will verify the medical staff's identity through the mobile device using a smart card and password mechanism. Accordingly, only the verified medical staff can obtain patients' vital signs data such as their blood pressure, pulsation, and body temperature, etc.. Besides, the scheme includes a time-bounded characteristic that allows the verified staff access to data without having to have to re-authenticate and re-login into the system within a set period of time. Consequently, the time-bounded property also increases the work efficiency of the system administrator and user.

  6. Fulfillment of HTTP Authentication Based on Alcatel OmniSwitch 9700

    NASA Astrophysics Data System (ADS)

    Liu, Hefu

    This paper provides a way of HTTP authentication On Alcatel OmniSwitch 9700. Authenticated VLANs control user access to network resources based on VLAN assignment and user authentication. The user can be authenticated through the switch via any standard Web browser software. Web browser client displays the username and password prompts. Then a way for HTML forms can be given to pass HTTP authentication data when it's submitted. A radius server will provide a database of user information that the switch checks whenever it tries to authenticate through the switch. Before or after authentication, the client can get an address from a Dhcp server.

  7. User-Centered Authentication: LDAP, WRAP, X.509, XML (SIG LAN: Library Automation and Networks).

    ERIC Educational Resources Information Center

    Coble, Jim

    2000-01-01

    Presents an abstract for a planned panel session on technologies for user-centered authentication and authorization currently deployed in pilot or production implementations in academic computing. Presentations included: "Implementing LSAP for Single-Password Access to Campus Resources" (Layne Nordgren); "Implementing a Scalable…

  8. Strengthening Authentication

    ERIC Educational Resources Information Center

    Gale, Doug

    2007-01-01

    The basics of authentication are straightforward. One can prove his or her identity in three ways: (1) something one "has" (for example, a key or a birth certificate); (2) something one "knows" (such as a password); or (3) something one "is" (such as one's fingerprints, used in biometric technologies). In the world of computers and networks, the…

  9. E-SAP: Efficient-Strong Authentication Protocol for Healthcare Applications Using Wireless Medical Sensor Networks

    PubMed Central

    Kumar, Pardeep; Lee, Sang-Gon; Lee, Hoon-Jae

    2012-01-01

    A wireless medical sensor network (WMSN) can sense humans’ physiological signs without sacrificing patient comfort and transmit patient vital signs to health professionals’ hand-held devices. The patient physiological data are highly sensitive and WMSNs are extremely vulnerable to many attacks. Therefore, it must be ensured that patients’ medical signs are not exposed to unauthorized users. Consequently, strong user authentication is the main concern for the success and large scale deployment of WMSNs. In this regard, this paper presents an efficient, strong authentication protocol, named E-SAP, for healthcare application using WMSNs. The proposed E-SAP includes: (1) a two-factor (i.e., password and smartcard) professional authentication; (2) mutual authentication between the professional and the medical sensor; (3) symmetric encryption/decryption for providing message confidentiality; (4) establishment of a secure session key at the end of authentication; and (5) professionals can change their password. Further, the proposed protocol requires three message exchanges between the professional, medical sensor node and gateway node, and achieves efficiency (i.e., low computation and communication cost). Through the formal analysis, security analysis and performance analysis, we demonstrate that E-SAP is more secure against many practical attacks, and allows a tradeoff between the security and the performance cost for healthcare application using WMSNs. PMID:22438729

  10. E-SAP: efficient-strong authentication protocol for healthcare applications using wireless medical sensor networks.

    PubMed

    Kumar, Pardeep; Lee, Sang-Gon; Lee, Hoon-Jae

    2012-01-01

    A wireless medical sensor network (WMSN) can sense humans' physiological signs without sacrificing patient comfort and transmit patient vital signs to health professionals' hand-held devices. The patient physiological data are highly sensitive and WMSNs are extremely vulnerable to many attacks. Therefore, it must be ensured that patients' medical signs are not exposed to unauthorized users. Consequently, strong user authentication is the main concern for the success and large scale deployment of WMSNs. In this regard, this paper presents an efficient, strong authentication protocol, named E-SAP, for healthcare application using WMSNs. The proposed E-SAP includes: (1) a two-factor (i.e., password and smartcard) professional authentication; (2) mutual authentication between the professional and the medical sensor; (3) symmetric encryption/decryption for providing message confidentiality; (4) establishment of a secure session key at the end of authentication; and (5) professionals can change their password. Further, the proposed protocol requires three message exchanges between the professional, medical sensor node and gateway node, and achieves efficiency (i.e., low computation and communication cost). Through the formal analysis, security analysis and performance analysis, we demonstrate that E-SAP is more secure against many practical attacks, and allows a tradeoff between the security and the performance cost for healthcare application using WMSNs.

  11. Evaluating authentication options for mobile health applications in younger and older adults

    PubMed Central

    Khan, Hassan; Hengartner, Urs; Ong, Stephanie; Logan, Alexander G.; Vogel, Daniel; Gebotys, Robert; Yang, Jilan

    2018-01-01

    Objective Apps promoting patient self-management may improve health outcomes. However, methods to secure stored information on mobile devices may adversely affect usability. We tested the reliability and usability of common user authentication techniques in younger and older adults. Methodology Usability testing was conducted in two age groups, 18 to 30 years and 50 years and older. After completing a demographic questionnaire, each participant tested four authentication options in random order: four-digit personal identification number (PIN), graphical password (GRAPHICAL), Android pattern-lock (PATTERN), and a swipe-style Android fingerprint scanner (FINGERPRINT). Participants rated each option using the Systems Usability Scale (SUS). Results A total of 59 older and 43 younger participants completed the study. Overall, PATTERN was the fastest option (3.44s), and PIN had the fewest errors per attempt (0.02). Participants were able to login using PIN, PATTERN, and GRAPHICAL at least 98% of the time. FINGERPRINT was the slowest (26.97s), had an average of 1.46 errors per attempt, and had a successful login rate of 85%. Overall, PIN and PATTERN had higher SUS scores than FINGERPRINT and GRAPHICAL. Compared to younger participants, older participants were also less likely to find PATTERN to be tiring, annoying or time consuming and less likely to consider PIN to be time consuming. Younger participants were more likely to rate GRAPHICAL as annoying, time consuming and tiring than older participants. Conclusions On mobile devices, PIN and pattern-lock outperformed graphical passwords and swipe-style fingerprints. All participants took longer to authenticate using the swipe-style fingerprint compared to other options. Older participants also took two to three seconds longer to authenticate using the PIN, pattern and graphical passwords though this did not appear to affect perceived usability. PMID:29300736

  12. Evaluating authentication options for mobile health applications in younger and older adults.

    PubMed

    Grindrod, Kelly; Khan, Hassan; Hengartner, Urs; Ong, Stephanie; Logan, Alexander G; Vogel, Daniel; Gebotys, Robert; Yang, Jilan

    2018-01-01

    Apps promoting patient self-management may improve health outcomes. However, methods to secure stored information on mobile devices may adversely affect usability. We tested the reliability and usability of common user authentication techniques in younger and older adults. Usability testing was conducted in two age groups, 18 to 30 years and 50 years and older. After completing a demographic questionnaire, each participant tested four authentication options in random order: four-digit personal identification number (PIN), graphical password (GRAPHICAL), Android pattern-lock (PATTERN), and a swipe-style Android fingerprint scanner (FINGERPRINT). Participants rated each option using the Systems Usability Scale (SUS). A total of 59 older and 43 younger participants completed the study. Overall, PATTERN was the fastest option (3.44s), and PIN had the fewest errors per attempt (0.02). Participants were able to login using PIN, PATTERN, and GRAPHICAL at least 98% of the time. FINGERPRINT was the slowest (26.97s), had an average of 1.46 errors per attempt, and had a successful login rate of 85%. Overall, PIN and PATTERN had higher SUS scores than FINGERPRINT and GRAPHICAL. Compared to younger participants, older participants were also less likely to find PATTERN to be tiring, annoying or time consuming and less likely to consider PIN to be time consuming. Younger participants were more likely to rate GRAPHICAL as annoying, time consuming and tiring than older participants. On mobile devices, PIN and pattern-lock outperformed graphical passwords and swipe-style fingerprints. All participants took longer to authenticate using the swipe-style fingerprint compared to other options. Older participants also took two to three seconds longer to authenticate using the PIN, pattern and graphical passwords though this did not appear to affect perceived usability.

  13. Biometrics Go Mainstream

    ERIC Educational Resources Information Center

    Gale, Doug

    2006-01-01

    Authentication is based on something one knows (e.g., a password), something one has (e.g., a driver's license), or something one is (e.g., a fingerprint). The last of these refers to the use of biometrics for authentication. With the blink of an eye, the touch of a finger, or the uttering of a pass-phrase, colleges and schools can now get deadly…

  14. National Authentication Framework Implementation Study

    DTIC Science & Technology

    2009-12-01

    Identifiers RA Registration Authority SAML Security Assertion Markup Language SFA Single-factor Authentication SMS Short Messaging System SOA ...written on  paper  disclosed;  passwords stored in electronic file  copied. 1,2,3,4 Eaves‐  dropping The token secret or authenticator is  revealed to...Internet 2.0 and the growing interest in systems developed based upon the Service- Oriented Architecture ( SOA ). While core specifications upon which

  15. TOKEN: Trustable Keystroke-Based Authentication for Web-Based Applications on Smartphones

    NASA Astrophysics Data System (ADS)

    Nauman, Mohammad; Ali, Tamleek

    Smartphones are increasingly being used to store personal information as well as to access sensitive data from the Internet and the cloud. Establishment of the identity of a user requesting information from smartphones is a prerequisite for secure systems in such scenarios. In the past, keystroke-based user identification has been successfully deployed on production-level mobile devices to mitigate the risks associated with naïve username/password based authentication. However, these approaches have two major limitations: they are not applicable to services where authentication occurs outside the domain of the mobile device - such as web-based services; and they often overly tax the limited computational capabilities of mobile devices. In this paper, we propose a protocol for keystroke dynamics analysis which allows web-based applications to make use of remote attestation and delegated keystroke analysis. The end result is an efficient keystroke-based user identification mechanism that strengthens traditional password protected services while mitigating the risks of user profiling by collaborating malicious web services.

  16. Strong Password-Based Authentication in TLS Using the Three-PartyGroup Diffie-Hellman Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdalla, Michel; Bresson, Emmanuel; Chevassut, Olivier

    2006-08-26

    The Internet has evolved into a very hostile ecosystem where"phishing'' attacks are common practice. This paper shows that thethree-party group Diffie-Hellman key exchange can help protect againstthese attacks. We have developed a suite of password-based cipher suitesfor the Transport Layer Security (TLS) protocol that are not onlyprovably secure but also assumed to be free from patent and licensingrestrictions based on an analysis of relevant patents in thearea.

  17. A Secured Authentication Protocol for SIP Using Elliptic Curves Cryptography

    NASA Astrophysics Data System (ADS)

    Chen, Tien-Ho; Yeh, Hsiu-Lien; Liu, Pin-Chuan; Hsiang, Han-Chen; Shih, Wei-Kuan

    Session initiation protocol (SIP) is a technology regularly performed in Internet Telephony, and Hyper Text Transport Protocol (HTTP) as digest authentication is one of the major methods for SIP authentication mechanism. In 2005, Yang et al. pointed out that HTTP could not resist server spoofing attack and off-line guessing attack and proposed a secret authentication with Diffie-Hellman concept. In 2009, Tsai proposed a nonce based authentication protocol for SIP. In this paper, we demonstrate that their protocol could not resist the password guessing attack and insider attack. Furthermore, we propose an ECC-based authentication mechanism to solve their issues and present security analysis of our protocol to show that ours is suitable for applications with higher security requirement.

  18. Secure access to patient's health records using SpeechXRays a mutli-channel biometrics platform for user authentication.

    PubMed

    Spanakis, Emmanouil G; Spanakis, Marios; Karantanas, Apostolos; Marias, Kostas

    2016-08-01

    The most commonly used method for user authentication in ICT services or systems is the application of identification tools such as passwords or personal identification numbers (PINs). The rapid development in ICT technology regarding smart devices (laptops, tablets and smartphones) has allowed also the advance of hardware components that capture several biometric traits such as fingerprints and voice. These components are aiming among others to overcome weaknesses and flaws of password usage under the prism of improved user authentication with higher level of security, privacy and usability. To this respect, the potential application of biometrics for secure user authentication regarding access in systems with sensitive data (i.e. patient's data from electronic health records) shows great potentials. SpeechXRays aims to provide a user recognition platform based on biometrics of voice acoustics analysis and audio-visual identity verification. Among others, the platform aims to be applied as an authentication tool for medical personnel in order to gain specific access to patient's electronic health records. In this work a short description of SpeechXrays implementation tool regarding eHealth is provided and analyzed. This study explores security and privacy issues, and offers a comprehensive overview of biometrics technology applications in addressing the e-Health security challenges. We present and describe the necessary requirement for an eHealth platform concerning biometric security.

  19. Robust Speaker Authentication Based on Combined Speech and Voiceprint Recognition

    NASA Astrophysics Data System (ADS)

    Malcangi, Mario

    2009-08-01

    Personal authentication is becoming increasingly important in many applications that have to protect proprietary data. Passwords and personal identification numbers (PINs) prove not to be robust enough to ensure that unauthorized people do not use them. Biometric authentication technology may offer a secure, convenient, accurate solution but sometimes fails due to its intrinsically fuzzy nature. This research aims to demonstrate that combining two basic speech processing methods, voiceprint identification and speech recognition, can provide a very high degree of robustness, especially if fuzzy decision logic is used.

  20. A biometric authentication model using hand gesture images.

    PubMed

    Fong, Simon; Zhuang, Yan; Fister, Iztok; Fister, Iztok

    2013-10-30

    A novel hand biometric authentication method based on measurements of the user's stationary hand gesture of hand sign language is proposed. The measurement of hand gestures could be sequentially acquired by a low-cost video camera. There could possibly be another level of contextual information, associated with these hand signs to be used in biometric authentication. As an analogue, instead of typing a password 'iloveu' in text which is relatively vulnerable over a communication network, a signer can encode a biometric password using a sequence of hand signs, 'i' , 'l' , 'o' , 'v' , 'e' , and 'u'. Subsequently the features from the hand gesture images are extracted which are integrally fuzzy in nature, to be recognized by a classification model for telling if this signer is who he claimed himself to be, by examining over his hand shape and the postures in doing those signs. It is believed that everybody has certain slight but unique behavioral characteristics in sign language, so are the different hand shape compositions. Simple and efficient image processing algorithms are used in hand sign recognition, including intensity profiling, color histogram and dimensionality analysis, coupled with several popular machine learning algorithms. Computer simulation is conducted for investigating the efficacy of this novel biometric authentication model which shows up to 93.75% recognition accuracy.

  1. Guidelines for Network Security in the Learning Environment.

    ERIC Educational Resources Information Center

    Littman, Marlyn Kemper

    1996-01-01

    Explores security challenges and practical approaches to safeguarding school networks against invasion. Highlights include security problems; computer viruses; privacy assaults; Internet invasions; building a security policy; authentication; passwords; encryption; firewalls; and acceptable use policies. (Author/LRW)

  2. Centralized Authentication with Kerberos 5, Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachsmann, A

    Account administration in a distributed Unix/Linux environment can become very complicated and messy if done by hand. Large sites use special tools to deal with this problem. I will describe how even very small installations like your three computer network at home can take advantage of the very same tools. The problem in a distributed environment is that password and shadow files need to be changed individually on each machine if an account change occurs. Account changes include: password change, addition/removal of accounts, name change of an account (UID/GID changes are a big problem in any case), additional or removedmore » login privileges to a (group of) computer(s), etc. In this article, I will show how Kerberos 5 solves the authentication problem in a distributed computing environment. A second article will describe a solution for the authorization problem.« less

  3. Setting a disordered password on a photonic memory

    NASA Astrophysics Data System (ADS)

    Su, Shih-Wei; Gou, Shih-Chuan; Chew, Lock Yue; Chang, Yu-Yen; Yu, Ite A.; Kalachev, Alexey; Liao, Wen-Te

    2017-06-01

    An all-optical method of setting a disordered password on different schemes of photonic memory is theoretically studied. While photons are regarded as ideal information carriers, it is imperative to implement such data protection on all-optical storage. However, we wish to address the intrinsic risk of data breaches in existing schemes of photonic memory. We theoretically demonstrate a protocol using spatially disordered laser fields to encrypt data stored on an optical memory, namely, encrypted photonic memory. To address the broadband storage, we also investigate a scheme of disordered echo memory with a high fidelity approaching unity. The proposed method increases the difficulty for the eavesdropper to retrieve the stored photon without the preset password even when the randomized and stored photon state is nearly perfectly cloned. Our results pave ways to significantly reduce the exposure of memories, required for long-distance communication, to eavesdropping and therefore restrict the optimal attack on communication protocols. The present scheme also increases the sensitivity of detecting any eavesdropper and so raises the security level of photonic information technology.

  4. Vein matching using artificial neural network in vein authentication systems

    NASA Astrophysics Data System (ADS)

    Noori Hoshyar, Azadeh; Sulaiman, Riza

    2011-10-01

    Personal identification technology as security systems is developing rapidly. Traditional authentication modes like key; password; card are not safe enough because they could be stolen or easily forgotten. Biometric as developed technology has been applied to a wide range of systems. According to different researchers, vein biometric is a good candidate among other biometric traits such as fingerprint, hand geometry, voice, DNA and etc for authentication systems. Vein authentication systems can be designed by different methodologies. All the methodologies consist of matching stage which is too important for final verification of the system. Neural Network is an effective methodology for matching and recognizing individuals in authentication systems. Therefore, this paper explains and implements the Neural Network methodology for finger vein authentication system. Neural Network is trained in Matlab to match the vein features of authentication system. The Network simulation shows the quality of matching as 95% which is a good performance for authentication system matching.

  5. Using cloud models of heartbeats as the entity identifier to secure mobile devices.

    PubMed

    Fu, Donglai; Liu, Yanhua

    2017-01-01

    Mobile devices are extensively used to store more private and often sensitive information. Therefore, it is important to protect them against unauthorised access. Authentication ensures that authorised users can use mobile devices. However, traditional authentication methods, such as numerical or graphic passwords, are vulnerable to passive attacks. For example, an adversary can steal the password by snooping from a shorter distance. To avoid these problems, this study presents a biometric approach that uses cloud models of heartbeats as the entity identifier to secure mobile devices. Here, it is identified that these concepts including cloud model or cloud have nothing to do with cloud computing. The cloud model appearing in the study is the cognitive model. In the proposed method, heartbeats are collected by two ECG electrodes that are connected to one mobile device. The backward normal cloud generator is used to generate ECG standard cloud models characterising the heartbeat template. When a user tries to have access to their mobile device, cloud models regenerated by fresh heartbeats will be compared with ECG standard cloud models to determine if the current user can use this mobile device. This authentication method was evaluated from three aspects including accuracy, authentication time and energy consumption. The proposed method gives 86.04% of true acceptance rate with 2.73% of false acceptance rate. One authentication can be done in 6s, and this processing consumes about 2000 mW of power.

  6. Implementation of a single sign-on system between practice, research and learning systems.

    PubMed

    Purkayastha, Saptarshi; Gichoya, Judy W; Addepally, Siva Abhishek

    2017-03-29

    Multiple specialized electronic medical systems are utilized in the health enterprise. Each of these systems has their own user management, authentication and authorization process, which makes it a complex web for navigation and use without a coherent process workflow. Users often have to remember multiple passwords, login/logout between systems that disrupt their clinical workflow. Challenges exist in managing permissions for various cadres of health care providers. This case report describes our experience of implementing a single sign-on system, used between an electronic medical records system and a learning management system at a large academic institution with an informatics department responsible for student education and a medical school affiliated with a hospital system caring for patients and conducting research. At our institution, we use OpenMRS for research registry tracking of interventional radiology patients as well as to provide access to medical records to students studying health informatics. To provide authentication across different users of the system with different permissions, we developed a Central Authentication Service (CAS) module for OpenMRS, released under the Mozilla Public License and deployed it for single sign-on across the academic enterprise. The module has been in implementation since August 2015 to present, and we assessed usability of the registry and education system before and after implementation of the CAS module. 54 students and 3 researchers were interviewed. The module authenticates users with appropriate privileges in the medical records system, providing secure access with minimal disruption to their workflow. No passwords requests were sent and users reported ease of use, with streamlined workflow. The project demonstrates that enterprise-wide single sign-on systems should be used in healthcare to reduce complexity like "password hell", improve usability and user navigation. We plan to extend this to work with other systems used in the health care enterprise.

  7. Password-only authenticated three-party key exchange proven secure against insider dictionary attacks.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Paik, Juryon; Won, Dongho

    2014-01-01

    While a number of protocols for password-only authenticated key exchange (PAKE) in the 3-party setting have been proposed, it still remains a challenging task to prove the security of a 3-party PAKE protocol against insider dictionary attacks. To the best of our knowledge, there is no 3-party PAKE protocol that carries a formal proof, or even definition, of security against insider dictionary attacks. In this paper, we present the first 3-party PAKE protocol proven secure against both online and offline dictionary attacks as well as insider and outsider dictionary attacks. Our construct can be viewed as a protocol compiler that transforms any 2-party PAKE protocol into a 3-party PAKE protocol with 2 additional rounds of communication. We also present a simple and intuitive approach of formally modelling dictionary attacks in the password-only 3-party setting, which significantly reduces the complexity of proving the security of 3-party PAKE protocols against dictionary attacks. In addition, we investigate the security of the well-known 3-party PAKE protocol, called GPAKE, due to Abdalla et al. (2005, 2006), and demonstrate that the security of GPAKE against online dictionary attacks depends heavily on the composition of its two building blocks, namely a 2-party PAKE protocol and a 3-party key distribution protocol.

  8. Using a Personal Device to Strengthen Password Authentication from an Untrusted Computer

    NASA Astrophysics Data System (ADS)

    Mannan, Mohammad; van Oorschot, P. C.

    Keylogging and phishing attacks can extract user identity and sensitive account information for unauthorized access to users' financial accounts. Most existing or proposed solutions are vulnerable to session hijacking attacks. We propose a simple approach to counter these attacks, which cryptographically separates a user's long-term secret input from (typically untrusted) client PCs; a client PC performs most computations but has access only to temporary secrets. The user's long-term secret (typically short and low-entropy) is input through an independent personal trusted device such as a cellphone. The personal device provides a user's long-term secrets to a client PC only after encrypting the secrets using a pre-installed, "correct" public key of a remote service (the intended recipient of the secrets). The proposed protocol (MP-Auth) realizes such an approach, and is intended to safeguard passwords from keyloggers, other malware (including rootkits), phishing attacks and pharming, as well as to provide transaction security to foil session hijacking. We report on a prototype implementation of MP-Auth, and provide a comparison of web authentication techniques that use an additional factor of authentication (e.g. a cellphone, PDA or hardware token).

  9. A biometric authentication model using hand gesture images

    PubMed Central

    2013-01-01

    A novel hand biometric authentication method based on measurements of the user’s stationary hand gesture of hand sign language is proposed. The measurement of hand gestures could be sequentially acquired by a low-cost video camera. There could possibly be another level of contextual information, associated with these hand signs to be used in biometric authentication. As an analogue, instead of typing a password ‘iloveu’ in text which is relatively vulnerable over a communication network, a signer can encode a biometric password using a sequence of hand signs, ‘i’ , ‘l’ , ‘o’ , ‘v’ , ‘e’ , and ‘u’. Subsequently the features from the hand gesture images are extracted which are integrally fuzzy in nature, to be recognized by a classification model for telling if this signer is who he claimed himself to be, by examining over his hand shape and the postures in doing those signs. It is believed that everybody has certain slight but unique behavioral characteristics in sign language, so are the different hand shape compositions. Simple and efficient image processing algorithms are used in hand sign recognition, including intensity profiling, color histogram and dimensionality analysis, coupled with several popular machine learning algorithms. Computer simulation is conducted for investigating the efficacy of this novel biometric authentication model which shows up to 93.75% recognition accuracy. PMID:24172288

  10. Computer-Access-Code Matrices

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1990-01-01

    Authorized users respond to changing challenges with changing passwords. Scheme for controlling access to computers defeats eavesdroppers and "hackers". Based on password system of challenge and password or sign, challenge, and countersign correlated with random alphanumeric codes in matrices of two or more dimensions. Codes stored on floppy disk or plug-in card and changed frequently. For even higher security, matrices of four or more dimensions used, just as cubes compounded into hypercubes in concurrent processing.

  11. A novel chaotic stream cipher and its application to palmprint template protection

    NASA Astrophysics Data System (ADS)

    Li, Heng-Jian; Zhang, Jia-Shu

    2010-04-01

    Based on a coupled nonlinear dynamic filter (NDF), a novel chaotic stream cipher is presented in this paper and employed to protect palmprint templates. The chaotic pseudorandom bit generator (PRBG) based on a coupled NDF, which is constructed in an inverse flow, can generate multiple bits at one iteration and satisfy the security requirement of cipher design. Then, the stream cipher is employed to generate cancelable competitive code palmprint biometrics for template protection. The proposed cancelable palmprint authentication system depends on two factors: the palmprint biometric and the password/token. Therefore, the system provides high-confidence and also protects the user's privacy. The experimental results of verification on the Hong Kong PolyU Palmprint Database show that the proposed approach has a large template re-issuance ability and the equal error rate can achieve 0.02%. The performance of the palmprint template protection scheme proves the good practicability and security of the proposed stream cipher.

  12. Mobile Device Management

    DTIC Science & Technology

    2012-01-01

    password policies (or smart card authentication), disabling compo- nents of the operating system that were deemed unsafe, allowing users to only install...written nearly 100 applications for the iOS and Android platforms with over 1,500,000 downloads on iTunes and Google Play. CPT Braunstein is a

  13. A novel, privacy-preserving cryptographic approach for sharing sequencing data

    PubMed Central

    Cassa, Christopher A; Miller, Rachel A; Mandl, Kenneth D

    2013-01-01

    Objective DNA samples are often processed and sequenced in facilities external to the point of collection. These samples are routinely labeled with patient identifiers or pseudonyms, allowing for potential linkage to identity and private clinical information if intercepted during transmission. We present a cryptographic scheme to securely transmit externally generated sequence data which does not require any patient identifiers, public key infrastructure, or the transmission of passwords. Materials and methods This novel encryption scheme cryptographically protects participant sequence data using a shared secret key that is derived from a unique subset of an individual’s genetic sequence. This scheme requires access to a subset of an individual’s genetic sequence to acquire full access to the transmitted sequence data, which helps to prevent sample mismatch. Results We validate that the proposed encryption scheme is robust to sequencing errors, population uniqueness, and sibling disambiguation, and provides sufficient cryptographic key space. Discussion Access to a set of an individual’s genotypes and a mutually agreed cryptographic seed is needed to unlock the full sequence, which provides additional sample authentication and authorization security. We present modest fixed and marginal costs to implement this transmission architecture. Conclusions It is possible for genomics researchers who sequence participant samples externally to protect the transmission of sequence data using unique features of an individual’s genetic sequence. PMID:23125421

  14. Practical security and privacy attacks against biometric hashing using sparse recovery

    NASA Astrophysics Data System (ADS)

    Topcu, Berkay; Karabat, Cagatay; Azadmanesh, Matin; Erdogan, Hakan

    2016-12-01

    Biometric hashing is a cancelable biometric verification method that has received research interest recently. This method can be considered as a two-factor authentication method which combines a personal password (or secret key) with a biometric to obtain a secure binary template which is used for authentication. We present novel practical security and privacy attacks against biometric hashing when the attacker is assumed to know the user's password in order to quantify the additional protection due to biometrics when the password is compromised. We present four methods that can reconstruct a biometric feature and/or the image from a hash and one method which can find the closest biometric data (i.e., face image) from a database. Two of the reconstruction methods are based on 1-bit compressed sensing signal reconstruction for which the data acquisition scenario is very similar to biometric hashing. Previous literature introduced simple attack methods, but we show that we can achieve higher level of security threats using compressed sensing recovery techniques. In addition, we present privacy attacks which reconstruct a biometric image which resembles the original image. We quantify the performance of the attacks using detection error tradeoff curves and equal error rates under advanced attack scenarios. We show that conventional biometric hashing methods suffer from high security and privacy leaks under practical attacks, and we believe more advanced hash generation methods are necessary to avoid these attacks.

  15. Password-Only Authenticated Three-Party Key Exchange Proven Secure against Insider Dictionary Attacks

    PubMed Central

    Nam, Junghyun; Choo, Kim-Kwang Raymond

    2014-01-01

    While a number of protocols for password-only authenticated key exchange (PAKE) in the 3-party setting have been proposed, it still remains a challenging task to prove the security of a 3-party PAKE protocol against insider dictionary attacks. To the best of our knowledge, there is no 3-party PAKE protocol that carries a formal proof, or even definition, of security against insider dictionary attacks. In this paper, we present the first 3-party PAKE protocol proven secure against both online and offline dictionary attacks as well as insider and outsider dictionary attacks. Our construct can be viewed as a protocol compiler that transforms any 2-party PAKE protocol into a 3-party PAKE protocol with 2 additional rounds of communication. We also present a simple and intuitive approach of formally modelling dictionary attacks in the password-only 3-party setting, which significantly reduces the complexity of proving the security of 3-party PAKE protocols against dictionary attacks. In addition, we investigate the security of the well-known 3-party PAKE protocol, called GPAKE, due to Abdalla et al. (2005, 2006), and demonstrate that the security of GPAKE against online dictionary attacks depends heavily on the composition of its two building blocks, namely a 2-party PAKE protocol and a 3-party key distribution protocol. PMID:25309956

  16. 75 FR 32915 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-10

    ... used to authenticate authorized desktop and laptop computer users. Computer servers are scanned monthly... data is also used for management and statistical reports and studies. Routine uses of records... duties. The computer files are password protected with access restricted to authorized users. Records are...

  17. Securing TCP/IP and Dial-up Access to Administrative Data.

    ERIC Educational Resources Information Center

    Conrad, L. Dean

    1992-01-01

    This article describes Arizona State University's solution to security risk inherent in general access systems such as TCP/IP (Transmission Control Protocol/INTERNET Protocol). Advantages and disadvantages of various options are compared, and the process of selecting a log-on authentication approach involving generation of a different password at…

  18. 76 FR 45902 - Agency Information Collection Activities: Proposed Request and Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... will allow our users to maintain one User ID, consisting of a self-selected Username and Password, to...) Registration and identity verification; (2) enhancement of the User ID; and (3) authentication. The...- person identification verification process for individuals who cannot or are not willing to register...

  19. Online Learning Integrity Approaches: Current Practices and Future Solutions

    ERIC Educational Resources Information Center

    Lee-Post, Anita; Hapke, Holly

    2017-01-01

    The primary objective of this paper is to help institutions respond to the stipulation of the Higher Education Opportunity Act of 2008 by adopting cost-effective academic integrity solutions without compromising the convenience and flexibility of online learning. Current user authentication solutions such as user ID and password, security…

  20. A Strategic Design of an Opto-Chemical Security Device with Resettable and Reconfigurable Password Based Upon Dual Channel Two-in-One Chemosensor Molecule.

    PubMed

    Majumdar, Tapas; Haldar, Basudeb; Mallick, Arabinda

    2017-02-20

    A simple strategy is proposed to design and develop an intelligent device based on dual channel ion responsive spectral properties of a commercially available molecule, harmine (HM). The system can process different sets of opto-chemical inputs generating different patterns as fluorescence outputs at specific wavelengths which can provide an additional level of protection exploiting both password and pattern recognitions. The proposed system could have the potential to come up with highly secured combinatorial locks at the molecular level that could pose valuable real time and on-site applications for user authentication.

  1. A Strategic Design of an Opto-Chemical Security Device with Resettable and Reconfigurable Password Based Upon Dual Channel Two-in-One Chemosensor Molecule

    NASA Astrophysics Data System (ADS)

    Majumdar, Tapas; Haldar, Basudeb; Mallick, Arabinda

    2017-02-01

    A simple strategy is proposed to design and develop an intelligent device based on dual channel ion responsive spectral properties of a commercially available molecule, harmine (HM). The system can process different sets of opto-chemical inputs generating different patterns as fluorescence outputs at specific wavelengths which can provide an additional level of protection exploiting both password and pattern recognitions. The proposed system could have the potential to come up with highly secured combinatorial locks at the molecular level that could pose valuable real time and on-site applications for user authentication.

  2. Lightweight ECC based RFID authentication integrated with an ID verifier transfer protocol.

    PubMed

    He, Debiao; Kumar, Neeraj; Chilamkurti, Naveen; Lee, Jong-Hyouk

    2014-10-01

    The radio frequency identification (RFID) technology has been widely adopted and being deployed as a dominant identification technology in a health care domain such as medical information authentication, patient tracking, blood transfusion medicine, etc. With more and more stringent security and privacy requirements to RFID based authentication schemes, elliptic curve cryptography (ECC) based RFID authentication schemes have been proposed to meet the requirements. However, many recently published ECC based RFID authentication schemes have serious security weaknesses. In this paper, we propose a new ECC based RFID authentication integrated with an ID verifier transfer protocol that overcomes the weaknesses of the existing schemes. A comprehensive security analysis has been conducted to show strong security properties that are provided from the proposed authentication scheme. Moreover, the performance of the proposed authentication scheme is analyzed in terms of computational cost, communicational cost, and storage requirement.

  3. ESnet authentication services and trust federations

    NASA Astrophysics Data System (ADS)

    Muruganantham, Dhivakaran; Helm, Mike; Genovese, Tony

    2005-01-01

    ESnet provides authentication services and trust federation support for SciDAC projects, collaboratories, and other distributed computing applications. The ESnet ATF team operates the DOEGrids Certificate Authority, available to all DOE Office of Science programs, plus several custom CAs, including one for the National Fusion Collaboratory and one for NERSC. The secure hardware and software environment developed to support CAs is suitable for supporting additional custom authentication and authorization applications that your program might require. Seamless, secure interoperation across organizational and international boundaries is vital to collaborative science. We are fostering the development of international PKI federations by founding the TAGPMA, the American regional PMA, and the worldwide IGTF Policy Management Authority (PMA), as well as participating in European and Asian regional PMAs. We are investigating and prototyping distributed authentication technology that will allow us to support the "roaming scientist" (distributed wireless via eduroam), as well as more secure authentication methods (one-time password tokens).

  4. A robust anonymous biometric-based authenticated key agreement scheme for multi-server environments

    PubMed Central

    Huang, Yuanfei; Ma, Fangchao

    2017-01-01

    In order to improve the security in remote authentication systems, numerous biometric-based authentication schemes using smart cards have been proposed. Recently, Moon et al. presented an authentication scheme to remedy the flaws of Lu et al.’s scheme, and claimed that their improved protocol supports the required security properties. Unfortunately, we found that Moon et al.’s scheme still has weaknesses. In this paper, we show that Moon et al.’s scheme is vulnerable to insider attack, server spoofing attack, user impersonation attack and guessing attack. Furthermore, we propose a robust anonymous multi-server authentication scheme using public key encryption to remove the aforementioned problems. From the subsequent formal and informal security analysis, we demonstrate that our proposed scheme provides strong mutual authentication and satisfies the desirable security requirements. The functional and performance analysis shows that the improved scheme has the best secure functionality and is computational efficient. PMID:29121050

  5. A robust anonymous biometric-based authenticated key agreement scheme for multi-server environments.

    PubMed

    Guo, Hua; Wang, Pei; Zhang, Xiyong; Huang, Yuanfei; Ma, Fangchao

    2017-01-01

    In order to improve the security in remote authentication systems, numerous biometric-based authentication schemes using smart cards have been proposed. Recently, Moon et al. presented an authentication scheme to remedy the flaws of Lu et al.'s scheme, and claimed that their improved protocol supports the required security properties. Unfortunately, we found that Moon et al.'s scheme still has weaknesses. In this paper, we show that Moon et al.'s scheme is vulnerable to insider attack, server spoofing attack, user impersonation attack and guessing attack. Furthermore, we propose a robust anonymous multi-server authentication scheme using public key encryption to remove the aforementioned problems. From the subsequent formal and informal security analysis, we demonstrate that our proposed scheme provides strong mutual authentication and satisfies the desirable security requirements. The functional and performance analysis shows that the improved scheme has the best secure functionality and is computational efficient.

  6. A User Authentication Scheme Based on Elliptic Curves Cryptography for Wireless Ad Hoc Networks

    PubMed Central

    Chen, Huifang; Ge, Linlin; Xie, Lei

    2015-01-01

    The feature of non-infrastructure support in a wireless ad hoc network (WANET) makes it suffer from various attacks. Moreover, user authentication is the first safety barrier in a network. A mutual trust is achieved by a protocol which enables communicating parties to authenticate each other at the same time and to exchange session keys. For the resource-constrained WANET, an efficient and lightweight user authentication scheme is necessary. In this paper, we propose a user authentication scheme based on the self-certified public key system and elliptic curves cryptography for a WANET. Using the proposed scheme, an efficient two-way user authentication and secure session key agreement can be achieved. Security analysis shows that our proposed scheme is resilient to common known attacks. In addition, the performance analysis shows that our proposed scheme performs similar or better compared with some existing user authentication schemes. PMID:26184224

  7. A User Authentication Scheme Based on Elliptic Curves Cryptography for Wireless Ad Hoc Networks.

    PubMed

    Chen, Huifang; Ge, Linlin; Xie, Lei

    2015-07-14

    The feature of non-infrastructure support in a wireless ad hoc network (WANET) makes it suffer from various attacks. Moreover, user authentication is the first safety barrier in a network. A mutual trust is achieved by a protocol which enables communicating parties to authenticate each other at the same time and to exchange session keys. For the resource-constrained WANET, an efficient and lightweight user authentication scheme is necessary. In this paper, we propose a user authentication scheme based on the self-certified public key system and elliptic curves cryptography for a WANET. Using the proposed scheme, an efficient two-way user authentication and secure session key agreement can be achieved. Security analysis shows that our proposed scheme is resilient to common known attacks. In addition, the performance analysis shows that our proposed scheme performs similar or better compared with some existing user authentication schemes.

  8. Generating cancelable fingerprint templates.

    PubMed

    Ratha, Nalini K; Chikkerur, Sharat; Connell, Jonathan H; Bolle, Ruud M

    2007-04-01

    Biometrics-based authentication systems offer obvious usability advantages over traditional password and token-based authentication schemes. However, biometrics raises several privacy concerns. A biometric is permanently associated with a user and cannot be changed. Hence, if a biometric identifier is compromised, it is lost forever and possibly for every application where the biometric is used. Moreover, if the same biometric is used in multiple applications, a user can potentially be tracked from one application to the next by cross-matching biometric databases. In this paper, we demonstrate several methods to generate multiple cancelable identifiers from fingerprint images to overcome these problems. In essence, a user can be given as many biometric identifiers as needed by issuing a new transformation "key." The identifiers can be cancelled and replaced when compromised. We empirically compare the performance of several algorithms such as Cartesian, polar, and surface folding transformations of the minutiae positions. It is demonstrated through multiple experiments that we can achieve revocability and prevent cross-matching of biometric databases. It is also shown that the transforms are noninvertible by demonstrating that it is computationally as hard to recover the original biometric identifier from a transformed version as by randomly guessing. Based on these empirical results and a theoretical analysis we conclude that feature-level cancelable biometric construction is practicable in large biometric deployments.

  9. An Efficient Authenticated Key Transfer Scheme in Client-Server Networks

    NASA Astrophysics Data System (ADS)

    Shi, Runhua; Zhang, Shun

    2017-10-01

    In this paper, we presented a novel authenticated key transfer scheme in client-server networks, which can achieve two secure goals of remote user authentication and the session key establishment between the remote user and the server. Especially, the proposed scheme can subtly provide two fully different authentications: identity-base authentication and anonymous authentication, while the remote user only holds a private key. Furthermore, our scheme only needs to transmit 1-round messages from the remote user to the server, thus it is very efficient in communication complexity. In addition, the most time-consuming computation in our scheme is elliptic curve scalar point multiplication, so it is also feasible even for mobile devices.

  10. Fuzzy Commitment

    NASA Astrophysics Data System (ADS)

    Juels, Ari

    The purpose of this chapter is to introduce fuzzy commitment, one of the earliest and simplest constructions geared toward cryptography over noisy data. The chapter also explores applications of fuzzy commitment to two problems in data security: (1) secure management of biometrics, with a focus on iriscodes, and (2) use of knowledge-based authentication (i.e., personal questions) for password recovery.

  11. Verifying Secrets and Relative Secrecy

    DTIC Science & Technology

    2000-01-01

    Systems that authenticate a user based on a shared secret (such as a password or PIN) normally allow anyone to query whether the secret is a given...value. For example, an ATM machine allows one to ask whether a string is the secret PIN of a (lost or stolen) ATM card. Yet such queries are prohibited

  12. 21 CFR 1311.55 - Requirements for systems used to process digitally signed orders.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... identification and password combination or biometric authentication to access the private key. Activation data... source. (9) The system must archive the digitally signed orders and any other records required in part... linked records for orders signed with a CSOS digital certificate must meet the following requirements: (1...

  13. 21 CFR 1311.55 - Requirements for systems used to process digitally signed orders.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... system must use either a user identification and password combination or biometric authentication to... and any other records required in part 1305 of this chapter, including any linked data. (10) The...) A system used to receive, verify, and create linked records for orders signed with a CSOS digital...

  14. 21 CFR 1311.55 - Requirements for systems used to process digitally signed orders.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... identification and password combination or biometric authentication to access the private key. Activation data... source. (9) The system must archive the digitally signed orders and any other records required in part... linked records for orders signed with a CSOS digital certificate must meet the following requirements: (1...

  15. 21 CFR 1311.55 - Requirements for systems used to process digitally signed orders.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... identification and password combination or biometric authentication to access the private key. Activation data... source. (9) The system must archive the digitally signed orders and any other records required in part... linked records for orders signed with a CSOS digital certificate must meet the following requirements: (1...

  16. 21 CFR 1311.55 - Requirements for systems used to process digitally signed orders.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... identification and password combination or biometric authentication to access the private key. Activation data... source. (9) The system must archive the digitally signed orders and any other records required in part... linked records for orders signed with a CSOS digital certificate must meet the following requirements: (1...

  17. Authentication techniques for smart cards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, R.A.

    1994-02-01

    Smart card systems are most cost efficient when implemented as a distributed system, which is a system without central host interaction or a local database of card numbers for verifying transaction approval. A distributed system, as such, presents special card and user authentication problems. Fortunately, smart cards offer processing capabilities that provide solutions to authentication problems, provided the system is designed with proper data integrity measures. Smart card systems maintain data integrity through a security design that controls data sources and limits data changes. A good security design is usually a result of a system analysis that provides a thoroughmore » understanding of the application needs. Once designers understand the application, they may specify authentication techniques that mitigate the risk of system compromise or failure. Current authentication techniques include cryptography, passwords, challenge/response protocols, and biometrics. The security design includes these techniques to help prevent counterfeit cards, unauthorized use, or information compromise. This paper discusses card authentication and user identity techniques that enhance security for microprocessor card systems. It also describes the analysis process used for determining proper authentication techniques for a system.« less

  18. RSA-Based Password-Authenticated Key Exchange, Revisited

    NASA Astrophysics Data System (ADS)

    Shin, Seonghan; Kobara, Kazukuni; Imai, Hideki

    The RSA-based Password-Authenticated Key Exchange (PAKE) protocols have been proposed to realize both mutual authentication and generation of secure session keys where a client is sharing his/her password only with a server and the latter should generate its RSA public/private key pair (e, n), (d, n) every time due to the lack of PKI (Public-Key Infrastructures). One of the ways to avoid a special kind of off-line (so called e-residue) attacks in the RSA-based PAKE protocols is to deploy a challenge/response method by which a client verifies the relative primality of e and φ(n) interactively with a server. However, this kind of RSA-based PAKE protocols did not give any proof of the underlying challenge/response method and therefore could not specify the exact complexity of their protocols since there exists another security parameter, needed in the challenge/response method. In this paper, we first present an RSA-based PAKE (RSA-PAKE) protocol that can deploy two different challenge/response methods (denoted by Challenge/Response Method1 and Challenge/Response Method2). The main contributions of this work include: (1) Based on the number theory, we prove that the Challenge/Response Method1 and the Challenge/Response Method2 are secure against e-residue attacks for any odd prime e (2) With the security parameter for the on-line attacks, we show that the RSA-PAKE protocol is provably secure in the random oracle model where all of the off-line attacks are not more efficient than on-line dictionary attacks; and (3) By considering the Hamming weight of e and its complexity in the. RSA-PAKE protocol, we search for primes to be recommended for a practical use. We also compare the RSA-PAKE protocol with the previous ones mainly in terms of computation and communication complexities.

  19. Study on the security of the authentication scheme with key recycling in QKD

    NASA Astrophysics Data System (ADS)

    Li, Qiong; Zhao, Qiang; Le, Dan; Niu, Xiamu

    2016-09-01

    In quantum key distribution (QKD), the information theoretically secure authentication is necessary to guarantee the integrity and authenticity of the exchanged information over the classical channel. In order to reduce the key consumption, the authentication scheme with key recycling (KR), in which a secret but fixed hash function is used for multiple messages while each tag is encrypted with a one-time pad (OTP), is preferred in QKD. Based on the assumption that the OTP key is perfect, the security of the authentication scheme has be proved. However, the OTP key of authentication in a practical QKD system is not perfect. How the imperfect OTP affects the security of authentication scheme with KR is analyzed thoroughly in this paper. In a practical QKD, the information of the OTP key resulting from QKD is partially leaked to the adversary. Although the information leakage is usually so little to be neglected, it will lead to the increasing degraded security of the authentication scheme as the system runs continuously. Both our theoretical analysis and simulation results demonstrate that the security level of authentication scheme with KR, mainly indicated by its substitution probability, degrades exponentially in the number of rounds and gradually diminishes to zero.

  20. An efficient and secure dynamic ID-based authentication scheme for telecare medical information systems.

    PubMed

    Chen, Hung-Ming; Lo, Jung-Wen; Yeh, Chang-Kuo

    2012-12-01

    The rapidly increased availability of always-on broadband telecommunication environments and lower-cost vital signs monitoring devices bring the advantages of telemedicine directly into the patient's home. Hence, the control of access to remote medical servers' resources has become a crucial challenge. A secure authentication scheme between the medical server and remote users is therefore needed to safeguard data integrity, confidentiality and to ensure availability. Recently, many authentication schemes that use low-cost mobile devices have been proposed to meet these requirements. In contrast to previous schemes, Khan et al. proposed a dynamic ID-based remote user authentication scheme that reduces computational complexity and includes features such as a provision for the revocation of lost or stolen smart cards and a time expiry check for the authentication process. However, Khan et al.'s scheme has some security drawbacks. To remedy theses, this study proposes an enhanced authentication scheme that overcomes the weaknesses inherent in Khan et al.'s scheme and demonstrated this scheme is more secure and robust for use in a telecare medical information system.

  1. Employing Two Factor Authentication Mechanisms: A Case Study

    ERIC Educational Resources Information Center

    Lawrence, Cameron; Fulton, Eric; Evans, Gerald; Firth, David

    2014-01-01

    This case study examines the life of a digital native who has her online accounts hacked, passwords reset, and is locked out of important online resources including her university email account and Facebook. Part one of the case study examines how the hack was perpetrated and the fallout of losing control of one's digital identity. Part two of the…

  2. A New Privacy-Preserving Handover Authentication Scheme for Wireless Networks

    PubMed Central

    Wang, Changji; Yuan, Yuan; Wu, Jiayuan

    2017-01-01

    Handover authentication is a critical issue in wireless networks, which is being used to ensure mobile nodes wander over multiple access points securely and seamlessly. A variety of handover authentication schemes for wireless networks have been proposed in the literature. Unfortunately, existing handover authentication schemes are vulnerable to a few security attacks, or incur high communication and computation costs. Recently, He et al. proposed a handover authentication scheme PairHand and claimed it can resist various attacks without rigorous security proofs. In this paper, we show that PairHand does not meet forward secrecy and strong anonymity. More seriously, it is vulnerable to key compromise attack, where an adversary can recover the private key of any mobile node. Then, we propose a new efficient and provably secure handover authentication scheme for wireless networks based on elliptic curve cryptography. Compared with existing schemes, our proposed scheme can resist key compromise attack, and achieves forward secrecy and strong anonymity. Moreover, it is more efficient in terms of computation and communication. PMID:28632171

  3. A New Privacy-Preserving Handover Authentication Scheme for Wireless Networks.

    PubMed

    Wang, Changji; Yuan, Yuan; Wu, Jiayuan

    2017-06-20

    Handover authentication is a critical issue in wireless networks, which is being used to ensure mobile nodes wander over multiple access points securely and seamlessly. A variety of handover authentication schemes for wireless networks have been proposed in the literature. Unfortunately, existing handover authentication schemes are vulnerable to a few security attacks, or incur high communication and computation costs. Recently, He et al. proposed a handover authentication scheme PairHand and claimed it can resist various attacks without rigorous security proofs. In this paper, we show that PairHand does not meet forward secrecy and strong anonymity. More seriously, it is vulnerable to key compromise attack, where an adversary can recover the private key of any mobile node. Then, we propose a new efficient and provably secure handover authentication scheme for wireless networks based on elliptic curve cryptography. Compared with existing schemes, our proposed scheme can resist key compromise attack, and achieves forward secrecy and strong anonymity. Moreover, it is more efficient in terms of computation and communication.

  4. Security Considerations and Recommendations in Computer-Based Testing

    PubMed Central

    Al-Saleem, Saleh M.

    2014-01-01

    Many organizations and institutions around the globe are moving or planning to move their paper-and-pencil based testing to computer-based testing (CBT). However, this conversion will not be the best option for all kinds of exams and it will require significant resources. These resources may include the preparation of item banks, methods for test delivery, procedures for test administration, and last but not least test security. Security aspects may include but are not limited to the identification and authentication of examinee, the risks that are associated with cheating on the exam, and the procedures related to test delivery to the examinee. This paper will mainly investigate the security considerations associated with CBT and will provide some recommendations for the security of these kinds of tests. We will also propose a palm-based biometric authentication system incorporated with basic authentication system (username/password) in order to check the identity and authenticity of the examinee. PMID:25254250

  5. Security considerations and recommendations in computer-based testing.

    PubMed

    Al-Saleem, Saleh M; Ullah, Hanif

    2014-01-01

    Many organizations and institutions around the globe are moving or planning to move their paper-and-pencil based testing to computer-based testing (CBT). However, this conversion will not be the best option for all kinds of exams and it will require significant resources. These resources may include the preparation of item banks, methods for test delivery, procedures for test administration, and last but not least test security. Security aspects may include but are not limited to the identification and authentication of examinee, the risks that are associated with cheating on the exam, and the procedures related to test delivery to the examinee. This paper will mainly investigate the security considerations associated with CBT and will provide some recommendations for the security of these kinds of tests. We will also propose a palm-based biometric authentication system incorporated with basic authentication system (username/password) in order to check the identity and authenticity of the examinee.

  6. Study on a Biometric Authentication Model based on ECG using a Fuzzy Neural Network

    NASA Astrophysics Data System (ADS)

    Kim, Ho J.; Lim, Joon S.

    2018-03-01

    Traditional authentication methods use numbers or graphic passwords and thus involve the risk of loss or theft. Various studies are underway regarding biometric authentication because it uses the unique biometric data of a human being. Biometric authentication technology using ECG from biometric data involves signals that record electrical stimuli from the heart. It is difficult to manipulate and is advantageous in that it enables unrestrained measurements from sensors that are attached to the skin. This study is on biometric authentication methods using the neural network with weighted fuzzy membership functions (NEWFM). In the biometric authentication process, normalization and the ensemble average is applied during preprocessing, characteristics are extracted using Haar-wavelets, and a registration process called “training” is performed in the fuzzy neural network. In the experiment, biometric authentication was performed on 73 subjects in the Physionet Database. 10-40 ECG waveforms were tested for use in the registration process, and 15 ECG waveforms were deemed the appropriate number for registering ECG waveforms. 1 ECG waveforms were used during the authentication stage to conduct the biometric authentication test. Upon testing the proposed biometric authentication method based on 73 subjects from the Physionet Database, the TAR was 98.32% and FAR was 5.84%.

  7. An efficient chaotic maps-based authentication and key agreement scheme using smartcards for telecare medicine information systems.

    PubMed

    Lee, Tian-Fu

    2013-12-01

    A smartcard-based authentication and key agreement scheme for telecare medicine information systems enables patients, doctors, nurses and health visitors to use smartcards for secure login to medical information systems. Authorized users can then efficiently access remote services provided by the medicine information systems through public networks. Guo and Chang recently improved the efficiency of a smartcard authentication and key agreement scheme by using chaotic maps. Later, Hao et al. reported that the scheme developed by Guo and Chang had two weaknesses: inability to provide anonymity and inefficient double secrets. Therefore, Hao et al. proposed an authentication scheme for telecare medicine information systems that solved these weaknesses and improved performance. However, a limitation in both schemes is their violation of the contributory property of key agreements. This investigation discusses these weaknesses and proposes a new smartcard-based authentication and key agreement scheme that uses chaotic maps for telecare medicine information systems. Compared to conventional schemes, the proposed scheme provides fewer weaknesses, better security, and more efficiency.

  8. Resource optimized TTSH-URA for multimedia stream authentication in swallowable-capsule-based wireless body sensor networks.

    PubMed

    Wang, Wei; Wang, Chunqiu; Zhao, Min

    2014-03-01

    To ease the burdens on the hospitalization capacity, an emerging swallowable-capsule technology has evolved to serve as a remote gastrointestinal (GI) disease examination technique with the aid of the wireless body sensor network (WBSN). Secure multimedia transmission in such a swallowable-capsule-based WBSN faces critical challenges including energy efficiency and content quality guarantee. In this paper, we propose a joint resource allocation and stream authentication scheme to maintain the best possible video quality while ensuring security and energy efficiency in GI-WBSNs. The contribution of this research is twofold. First, we establish a unique signature-hash (S-H) diversity approach in the authentication domain to optimize video authentication robustness and the authentication bit rate overhead over a wireless channel. Based on the full exploration of S-H authentication diversity, we propose a new two-tier signature-hash (TTSH) stream authentication scheme to improve the video quality by reducing authentication dependence overhead while protecting its integrity. Second, we propose to combine this authentication scheme with a unique S-H oriented unequal resource allocation (URA) scheme to improve the energy-distortion-authentication performance of wireless video delivery in GI-WBSN. Our analysis and simulation results demonstrate that the proposed TTSH with URA scheme achieves considerable gain in both authenticated video quality and energy efficiency.

  9. Optical authentication based on moiré effect of nonlinear gratings in phase space

    NASA Astrophysics Data System (ADS)

    Liao, Meihua; He, Wenqi; Wu, Jiachen; Lu, Dajiang; Liu, Xiaoli; Peng, Xiang

    2015-12-01

    An optical authentication scheme based on the moiré effect of nonlinear gratings in phase space is proposed. According to the phase function relationship of the moiré effect in phase space, an arbitrary authentication image can be encoded into two nonlinear gratings which serve as the authentication lock (AL) and the authentication key (AK). The AL is stored in the authentication system while the AK is assigned to the authorized user. The authentication procedure can be performed using an optoelectronic approach, while the design process is accomplished by a digital approach. Furthermore, this optical authentication scheme can be extended for multiple users with different security levels. The proposed scheme can not only verify the legality of a user identity, but can also discriminate and control the security levels of legal users. Theoretical analysis and simulation experiments are provided to verify the feasibility and effectiveness of the proposed scheme.

  10. Cryptanalysis and Improvement of a Biometric-Based Multi-Server Authentication and Key Agreement Scheme.

    PubMed

    Wang, Chengqi; Zhang, Xiao; Zheng, Zhiming

    2016-01-01

    With the security requirements of networks, biometrics authenticated schemes which are applied in the multi-server environment come to be more crucial and widely deployed. In this paper, we propose a novel biometric-based multi-server authentication and key agreement scheme which is based on the cryptanalysis of Mishra et al.'s scheme. The informal and formal security analysis of our scheme are given, which demonstrate that our scheme satisfies the desirable security requirements. The presented scheme provides a variety of significant functionalities, in which some features are not considered in the most of existing authentication schemes, such as, user revocation or re-registration and biometric information protection. Compared with several related schemes, our scheme has more secure properties and lower computation cost. It is obviously more appropriate for practical applications in the remote distributed networks.

  11. An Enhanced Secure Identity-Based Certificateless Public Key Authentication Scheme for Vehicular Sensor Networks.

    PubMed

    Li, Congcong; Zhang, Xi; Wang, Haiping; Li, Dongfeng

    2018-01-11

    Vehicular sensor networks have been widely applied in intelligent traffic systems in recent years. Because of the specificity of vehicular sensor networks, they require an enhanced, secure and efficient authentication scheme. Existing authentication protocols are vulnerable to some problems, such as a high computational overhead with certificate distribution and revocation, strong reliance on tamper-proof devices, limited scalability when building many secure channels, and an inability to detect hardware tampering attacks. In this paper, an improved authentication scheme using certificateless public key cryptography is proposed to address these problems. A security analysis of our scheme shows that our protocol provides an enhanced secure anonymous authentication, which is resilient against major security threats. Furthermore, the proposed scheme reduces the incidence of node compromise and replication attacks. The scheme also provides a malicious-node detection and warning mechanism, which can quickly identify compromised static nodes and immediately alert the administrative department. With performance evaluations, the scheme can obtain better trade-offs between security and efficiency than the well-known available schemes.

  12. A Multifactor Secure Authentication System for Wireless Payment

    NASA Astrophysics Data System (ADS)

    Sanyal, Sugata; Tiwari, Ayu; Sanyal, Sudip

    Organizations are deploying wireless based online payment applications to expand their business globally, it increases the growing need of regulatory requirements for the protection of confidential data, and especially in internet based financial areas. Existing internet based authentication systems often use either the Web or the Mobile channel individually to confirm the claimed identity of the remote user. The vulnerability is that access is based on only single factor authentication which is not secure to protect user data, there is a need of multifactor authentication. This paper proposes a new protocol based on multifactor authentication system that is both secure and highly usable. It uses a novel approach based on Transaction Identification Code and SMS to enforce another security level with the traditional Login/password system. The system provides a highly secure environment that is simple to use and deploy with in a limited resources that does not require any change in infrastructure or underline protocol of wireless network. This Protocol for Wireless Payment is extended as a two way authentications system to satisfy the emerging market need of mutual authentication and also supports secure B2B communication which increases faith of the user and business organizations on wireless financial transaction using mobile devices.

  13. Access control for electronic patient records.

    PubMed

    Glagola, M J

    1998-01-01

    The transition from hardcopy records to electronic records is in the forefront for healthcare today. For healthcare facilities, a major issue is determining who can access patients' medical information and how access to this information can be controlled. There are three components to access control: identification, authentication and authorization. Checking proof of identity is a means of authenticating someone--through a driver's license, passport or their fingerprints. Similar processes are needed in a computer environment, through the use of passwords, one-time passwords or smartcards, encryption and kerberos, and call-back procedures. New in the area of access control are biometric devices, which are hardware/software combinations that digitize a physical characteristic and compare the sample with previously stored samples. Fingerprints, voiceprints and facial features are examples. Their cost is currently prohibitive, but in time, they may become more common. Digital certificates and certification authorities are other means used to authenticate identify. When a system challenges a user's identity at log on, the user provides a certification that tells the system to go to the issuing certification authority and find proof the user's claim is valid. Low-level certifications offer little value for sensitive data, but high-level certification is now being introduced. It requires more specific, detailed information on the applicant. Authorization, the final component of access control, establishes what a specific user can and cannot access. To have effective access control, transaction logging and system monitoring are needed to ensure the various techniques are being used and performing properly.

  14. Three-factor anonymous authentication and key agreement scheme for Telecare Medicine Information Systems.

    PubMed

    Arshad, Hamed; Nikooghadam, Morteza

    2014-12-01

    Nowadays, with comprehensive employment of the internet, healthcare delivery services is provided remotely by telecare medicine information systems (TMISs). A secure mechanism for authentication and key agreement is one of the most important security requirements for TMISs. Recently, Tan proposed a user anonymity preserving three-factor authentication scheme for TMIS. The present paper shows that Tan's scheme is vulnerable to replay attacks and Denial-of-Service attacks. In order to overcome these security flaws, a new and efficient three-factor anonymous authentication and key agreement scheme for TMIS is proposed. Security and performance analysis shows superiority of the proposed scheme in comparison with previously proposed schemes that are related to security of TMISs.

  15. Cryptanalysis and Improvement of a Biometric-Based Multi-Server Authentication and Key Agreement Scheme

    PubMed Central

    Wang, Chengqi; Zhang, Xiao; Zheng, Zhiming

    2016-01-01

    With the security requirements of networks, biometrics authenticated schemes which are applied in the multi-server environment come to be more crucial and widely deployed. In this paper, we propose a novel biometric-based multi-server authentication and key agreement scheme which is based on the cryptanalysis of Mishra et al.’s scheme. The informal and formal security analysis of our scheme are given, which demonstrate that our scheme satisfies the desirable security requirements. The presented scheme provides a variety of significant functionalities, in which some features are not considered in the most of existing authentication schemes, such as, user revocation or re-registration and biometric information protection. Compared with several related schemes, our scheme has more secure properties and lower computation cost. It is obviously more appropriate for practical applications in the remote distributed networks. PMID:26866606

  16. Authentication Binding between SSL/TLS and HTTP

    NASA Astrophysics Data System (ADS)

    Saito, Takamichi; Sekiguchi, Kiyomi; Hatsugai, Ryosuke

    While the Secure Socket Layer or Transport Layer Security (SSL/TLS) is assumed to provide secure communications over the Internet, many web applications utilize basic or digest authentication of Hyper Text Transport Protocol (HTTP) over SSL/TLS. Namely, in the scheme, there are two different authentication schemes in a session. Since they are separated by a layer, these are not convenient for a web application. Moreover, the scheme may also cause problems in establishing secure communication. Then we provide a scheme of authentication binding between SSL/TLS and HTTP without modifying SSL/TLS protocols and its implementation, and we show the effectiveness of our proposed scheme.

  17. Limitations and requirements of content-based multimedia authentication systems

    NASA Astrophysics Data System (ADS)

    Wu, Chai W.

    2001-08-01

    Recently, a number of authentication schemes have been proposed for multimedia data such as images and sound data. They include both label based systems and semifragile watermarks. The main requirement for such authentication systems is that minor modifications such as lossy compression which do not alter the content of the data preserve the authenticity of the data, whereas modifications which do modify the content render the data not authentic. These schemes can be classified into two main classes depending on the model of image authentication they are based on. One of the purposes of this paper is to look at some of the advantages and disadvantages of these image authentication schemes and their relationship with fundamental limitations of the underlying model of image authentication. In particular, we study feature-based algorithms which generate an authentication tag based on some inherent features in the image such as the location of edges. The main disadvantage of most proposed feature-based algorithms is that similar images generate similar features, and therefore it is possible for a forger to generate dissimilar images that have the same features. On the other hand, the class of hash-based algorithms utilizes a cryptographic hash function or a digital signature scheme to reduce the data and generate an authentication tag. It inherits the security of digital signatures to thwart forgery attacks. The main disadvantage of hash-based algorithms is that the image needs to be modified in order to be made authenticatable. The amount of modification is on the order of the noise the image can tolerate before it is rendered inauthentic. The other purpose of this paper is to propose a multimedia authentication scheme which combines some of the best features of both classes of algorithms. The proposed scheme utilizes cryptographic hash functions and digital signature schemes and the data does not need to be modified in order to be made authenticatable. Several applications including the authentication of images on CD-ROM and handwritten documents will be discussed.

  18. Graph State-Based Quantum Group Authentication Scheme

    NASA Astrophysics Data System (ADS)

    Liao, Longxia; Peng, Xiaoqi; Shi, Jinjing; Guo, Ying

    2017-02-01

    Motivated by the elegant structure of the graph state, we design an ingenious quantum group authentication scheme, which is implemented by operating appropriate operations on the graph state and can solve the problem of multi-user authentication. Three entities, the group authentication server (GAS) as a verifier, multiple users as provers and the trusted third party Trent are included. GAS and Trent assist the multiple users in completing the authentication process, i.e., GAS is responsible for registering all the users while Trent prepares graph states. All the users, who request for authentication, encode their authentication keys on to the graph state by performing Pauli operators. It demonstrates that a novel authentication scheme can be achieved with the flexible use of graph state, which can synchronously authenticate a large number of users, meanwhile the provable security can be guaranteed definitely.

  19. CUE: counterfeit-resistant usable eye movement-based authentication via oculomotor plant characteristics and complex eye movement patterns

    NASA Astrophysics Data System (ADS)

    Komogortsev, Oleg V.; Karpov, Alexey; Holland, Corey D.

    2012-06-01

    The widespread use of computers throughout modern society introduces the necessity for usable and counterfeit-resistant authentication methods to ensure secure access to personal resources such as bank accounts, e-mail, and social media. Current authentication methods require tedious memorization of lengthy pass phrases, are often prone to shouldersurfing, and may be easily replicated (either by counterfeiting parts of the human body or by guessing an authentication token based on readily available information). This paper describes preliminary work toward a counterfeit-resistant usable eye movement-based (CUE) authentication method. CUE does not require any passwords (improving the memorability aspect of the authentication system), and aims to provide high resistance to spoofing and shoulder-surfing by employing the combined biometric capabilities of two behavioral biometric traits: 1) oculomotor plant characteristics (OPC) which represent the internal, non-visible, anatomical structure of the eye; 2) complex eye movement patterns (CEM) which represent the strategies employed by the brain to guide visual attention. Both OPC and CEM are extracted from the eye movement signal provided by an eye tracking system. Preliminary results indicate that the fusion of OPC and CEM traits is capable of providing a 30% reduction in authentication error when compared to the authentication accuracy of individual traits.

  20. An Enhanced Secure Identity-Based Certificateless Public Key Authentication Scheme for Vehicular Sensor Networks

    PubMed Central

    Li, Congcong; Zhang, Xi; Wang, Haiping; Li, Dongfeng

    2018-01-01

    Vehicular sensor networks have been widely applied in intelligent traffic systems in recent years. Because of the specificity of vehicular sensor networks, they require an enhanced, secure and efficient authentication scheme. Existing authentication protocols are vulnerable to some problems, such as a high computational overhead with certificate distribution and revocation, strong reliance on tamper-proof devices, limited scalability when building many secure channels, and an inability to detect hardware tampering attacks. In this paper, an improved authentication scheme using certificateless public key cryptography is proposed to address these problems. A security analysis of our scheme shows that our protocol provides an enhanced secure anonymous authentication, which is resilient against major security threats. Furthermore, the proposed scheme reduces the incidence of node compromise and replication attacks. The scheme also provides a malicious-node detection and warning mechanism, which can quickly identify compromised static nodes and immediately alert the administrative department. With performance evaluations, the scheme can obtain better trade-offs between security and efficiency than the well-known available schemes. PMID:29324719

  1. Active Authentication: Beyond Passwords

    DTIC Science & Technology

    2011-11-18

    103m 26-Jul-07 208k 27-Dec-10 4.9m Source: www.privacyrights.org/data-breach Hackers broke into a Gannett Co database containing personal...Pattern • Knuckle Pattern • Lip Pattern • Nail bed Pattern • Nose Pattern • Oto-acoustic Emissions • Palmprint • Retina Pattern • Skin... Palmprint Knuckle Pattern Pulse Electrocardiogram Electroencephalogram Face Geometry Lip Pattern Blue may be suitable for continuous monitoring

  2. A Novel Physical Layer Assisted Authentication Scheme for Mobile Wireless Sensor Networks

    PubMed Central

    Wang, Qiuhua

    2017-01-01

    Physical-layer authentication can address physical layer vulnerabilities and security threats in wireless sensor networks, and has been considered as an effective complementary enhancement to existing upper-layer authentication mechanisms. In this paper, to advance the existing research and improve the authentication performance, we propose a novel physical layer assisted authentication scheme for mobile wireless sensor networks. In our proposed scheme, we explore the reciprocity and spatial uncorrelation of the wireless channel to verify the identities of involved transmitting users and decide whether all data frames are from the same sender. In our proposed scheme, a new method is developed for the legitimate users to compare their received signal strength (RSS) records, which avoids the information from being disclosed to the adversary. Our proposed scheme can detect the spoofing attack even in a high dynamic environment. We evaluate our scheme through experiments under indoor and outdoor environments. Experiment results show that our proposed scheme is more efficient and achieves a higher detection rate as well as keeping a lower false alarm rate. PMID:28165423

  3. A Novel Physical Layer Assisted Authentication Scheme for Mobile Wireless Sensor Networks.

    PubMed

    Wang, Qiuhua

    2017-02-04

    Physical-layer authentication can address physical layer vulnerabilities and security threats in wireless sensor networks, and has been considered as an effective complementary enhancement to existing upper-layer authentication mechanisms. In this paper, to advance the existing research and improve the authentication performance, we propose a novel physical layer assisted authentication scheme for mobile wireless sensor networks. In our proposed scheme, we explore the reciprocity and spatial uncorrelation of the wireless channel to verify the identities of involved transmitting users and decide whether all data frames are from the same sender. In our proposed scheme, a new method is developed for the legitimate users to compare their received signal strength (RSS) records, which avoids the information from being disclosed to the adversary. Our proposed scheme can detect the spoofing attack even in a high dynamic environment. We evaluate our scheme through experiments under indoor and outdoor environments. Experiment results show that our proposed scheme is more efficient and achieves a higher detection rate as well as keeping a lower false alarm rate.

  4. New Authentication Scheme for Wireless Body Area Networks Using the Bilinear Pairing.

    PubMed

    Wang, Chunzhi; Zhang, Yanmei

    2015-11-01

    Due to the development of information technologies and network technologies, healthcare systems have been employed in many countries. As an important part of healthcare systems, the wireless body area network (WBAN) could bring convenience to both patients and physicians because it could help physicians to monitor patients' physiological values remotely. It is essential to ensure secure communication in WBANs because patients' physiological values are very sensitive. Recently, Liu et al. proposed an efficient authentication scheme for WBANs. Unfortunately, Zhao pointed out that their scheme suffered from the stolen verifier-table attack. To improve security and efficiency, Zhao proposed an anonymous authentication scheme for WBANs. However, Zhao's scheme cannot provide real anonymity because the users' pseudo identities are constant value and the attack could tract the users. In this paper, we propose a new anonymous authentication scheme for WBANs. Security analysis shows that the proposed scheme could overcome weaknesses in previous scheme. We also use the BAN logic to demonstrate the security of the proposed scheme.

  5. An Efficient Remote Authentication Scheme for Wireless Body Area Network.

    PubMed

    Omala, Anyembe Andrew; Kibiwott, Kittur P; Li, Fagen

    2017-02-01

    Wireless body area network (WBAN) provide a mechanism of transmitting a persons physiological data to application providers e.g. hospital. Given the limited range of connectivity associated with WBAN, an intermediate portable device e.g. smartphone, placed within WBAN's connectivity, forwards the data to a remote server. This data, if not protected from an unauthorized access and modification may be lead to poor diagnosis. In order to ensure security and privacy between WBAN and a server at the application provider, several authentication schemes have been proposed. Recently, Wang and Zhang proposed an authentication scheme for WBAN using bilinear pairing. However, in their scheme, an application provider could easily impersonate a client. In order to overcome this weakness, we propose an efficient remote authentication scheme for WBAN. In terms of performance, our scheme can not only provide a malicious insider security, but also reduce running time of WBAN (client) by 51 % as compared to Wang and Zhang scheme.

  6. A secure biometrics-based authentication scheme for telecare medicine information systems.

    PubMed

    Yan, Xiaopeng; Li, Weiheng; Li, Ping; Wang, Jiantao; Hao, Xinhong; Gong, Peng

    2013-10-01

    The telecare medicine information system (TMIS) allows patients and doctors to access medical services or medical information at remote sites. Therefore, it could bring us very big convenient. To safeguard patients' privacy, authentication schemes for the TMIS attracted wide attention. Recently, Tan proposed an efficient biometrics-based authentication scheme for the TMIS and claimed their scheme could withstand various attacks. However, in this paper, we point out that Tan's scheme is vulnerable to the Denial-of-Service attack. To enhance security, we also propose an improved scheme based on Tan's work. Security and performance analysis shows our scheme not only could overcome weakness in Tan's scheme but also has better performance.

  7. A Secure ECC-based RFID Mutual Authentication Protocol to Enhance Patient Medication Safety.

    PubMed

    Jin, Chunhua; Xu, Chunxiang; Zhang, Xiaojun; Li, Fagen

    2016-01-01

    Patient medication safety is an important issue in patient medication systems. In order to prevent medication errors, integrating Radio Frequency Identification (RFID) technology into automated patient medication systems is required in hospitals. Based on RFID technology, such systems can provide medical evidence for patients' prescriptions and medicine doses, etc. Due to the mutual authentication between the medication server and the tag, RFID authentication scheme is the best choice for automated patient medication systems. In this paper, we present a RFID mutual authentication scheme based on elliptic curve cryptography (ECC) to enhance patient medication safety. Our scheme can achieve security requirements and overcome various attacks existing in other schemes. In addition, our scheme has better performance in terms of computational cost and communication overhead. Therefore, the proposed scheme is well suitable for patient medication systems.

  8. CELLPEDIA: a repository for human cell information for cell studies and differentiation analyses.

    PubMed

    Hatano, Akiko; Chiba, Hirokazu; Moesa, Harry Amri; Taniguchi, Takeaki; Nagaie, Satoshi; Yamanegi, Koji; Takai-Igarashi, Takako; Tanaka, Hiroshi; Fujibuchi, Wataru

    2011-01-01

    CELLPEDIA is a repository database for current knowledge about human cells. It contains various types of information, such as cell morphologies, gene expression and literature references. The major role of CELLPEDIA is to provide a digital dictionary of human cells for the biomedical field, including support for the characterization of artificially generated cells in regenerative medicine. CELLPEDIA features (i) its own cell classification scheme, in which whole human cells are classified by their physical locations in addition to conventional taxonomy; and (ii) cell differentiation pathways compiled from biomedical textbooks and journal papers. Currently, human differentiated cells and stem cells are classified into 2260 and 66 cell taxonomy keys, respectively, from which 934 parent-child relationships reported in cell differentiation or transdifferentiation pathways are retrievable. As far as we know, this is the first attempt to develop a digital cell bank to function as a public resource for the accumulation of current knowledge about human cells. The CELLPEDIA homepage is freely accessible except for the data submission pages that require authentication (please send a password request to cell-info@cbrc.jp). Database URL: http://cellpedia.cbrc.jp/

  9. A Privacy-Protecting Authentication Scheme for Roaming Services with Smart Cards

    NASA Astrophysics Data System (ADS)

    Son, Kyungho; Han, Dong-Guk; Won, Dongho

    In this work we propose a novel smart card based privacy-protecting authentication scheme for roaming services. Our proposal achieves so-called Class 2 privacy protection, i.e., no information identifying a roaming user and also linking the user's behaviors is not revealed in a visited network. It can be used to overcome the inherent structural flaws of smart card based anonymous authentication schemes issued recently. As shown in our analysis, our scheme is computationally efficient for a mobile user.

  10. Practical Computer Security through Cryptography

    NASA Technical Reports Server (NTRS)

    McNab, David; Twetev, David (Technical Monitor)

    1998-01-01

    The core protocols upon which the Internet was built are insecure. Weak authentication and the lack of low level encryption services introduce vulnerabilities that propagate upwards in the network stack. Using statistics based on CERT/CC Internet security incident reports, the relative likelihood of attacks via these vulnerabilities is analyzed. The primary conclusion is that the standard UNIX BSD-based authentication system is by far the most commonly exploited weakness. Encryption of Sensitive password data and the adoption of cryptographically-based authentication protocols can greatly reduce these vulnerabilities. Basic cryptographic terminology and techniques are presented, with attention focused on the ways in which technology such as encryption and digital signatures can be used to protect against the most commonly exploited vulnerabilities. A survey of contemporary security software demonstrates that tools based on cryptographic techniques, such as Kerberos, ssh, and PGP, are readily available and effectively close many of the most serious security holes. Nine practical recommendations for improving security are described.

  11. An Improved and Secure Biometric Authentication Scheme for Telecare Medicine Information Systems Based on Elliptic Curve Cryptography.

    PubMed

    Chaudhry, Shehzad Ashraf; Mahmood, Khalid; Naqvi, Husnain; Khan, Muhammad Khurram

    2015-11-01

    Telecare medicine information system (TMIS) offers the patients convenient and expedite healthcare services remotely anywhere. Patient security and privacy has emerged as key issues during remote access because of underlying open architecture. An authentication scheme can verify patient's as well as TMIS server's legitimacy during remote healthcare services. To achieve security and privacy a number of authentication schemes have been proposed. Very recently Lu et al. (J. Med. Syst. 39(3):1-8, 2015) proposed a biometric based three factor authentication scheme for TMIS to confiscate the vulnerabilities of Arshad et al.'s (J. Med. Syst. 38(12):136, 2014) scheme. Further, they emphasized the robustness of their scheme against several attacks. However, in this paper we establish that Lu et al.'s scheme is vulnerable to numerous attacks including (1) Patient anonymity violation attack, (2) Patient impersonation attack, and (3) TMIS server impersonation attack. Furthermore, their scheme does not provide patient untraceability. We then, propose an improvement of Lu et al.'s scheme. We have analyzed the security of improved scheme using popular automated tool ProVerif. The proposed scheme while retaining the plusses of Lu et al.'s scheme is also robust against known attacks.

  12. Improvement of a Privacy Authentication Scheme Based on Cloud for Medical Environment.

    PubMed

    Chiou, Shin-Yan; Ying, Zhaoqin; Liu, Junqiang

    2016-04-01

    Medical systems allow patients to receive care at different hospitals. However, this entails considerable inconvenience through the need to transport patients and their medical records between hospitals. The development of Telecare Medicine Information Systems (TMIS) makes it easier for patients to seek medical treatment and to store and access medical records. However, medical data stored in TMIS is not encrypted, leaving patients' private data vulnerable to external leaks. In 2014, scholars proposed a new cloud-based medical information model and authentication scheme which would not only allow patients to remotely access medical services but also protects patient privacy. However, this scheme still fails to provide patient anonymity and message authentication. Furthermore, this scheme only stores patient medical data, without allowing patients to directly access medical advice. Therefore, we propose a new authentication scheme, which provides anonymity, unlinkability, and message authentication, and allows patients to directly and remotely consult with doctors. In addition, our proposed scheme is more efficient in terms of computation cost. The proposed system was implemented in Android system to demonstrate its workability.

  13. Secure biometric image sensor and authentication scheme based on compressed sensing.

    PubMed

    Suzuki, Hiroyuki; Suzuki, Masamichi; Urabe, Takuya; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2013-11-20

    It is important to ensure the security of biometric authentication information, because its leakage causes serious risks, such as replay attacks using the stolen biometric data, and also because it is almost impossible to replace raw biometric information. In this paper, we propose a secure biometric authentication scheme that protects such information by employing an optical data ciphering technique based on compressed sensing. The proposed scheme is based on two-factor authentication, the biometric information being supplemented by secret information that is used as a random seed for a cipher key. In this scheme, a biometric image is optically encrypted at the time of image capture, and a pair of restored biometric images for enrollment and verification are verified in the authentication server. If any of the biometric information is exposed to risk, it can be reenrolled by changing the secret information. Through numerical experiments, we confirm that finger vein images can be restored from the compressed sensing measurement data. We also present results that verify the accuracy of the scheme.

  14. Efficient and Anonymous Authentication Scheme for Wireless Body Area Networks.

    PubMed

    Wu, Libing; Zhang, Yubo; Li, Li; Shen, Jian

    2016-06-01

    As a significant part of the Internet of Things (IoT), Wireless Body Area Network (WBAN) has attract much attention in this years. In WBANs, sensors placed in or around the human body collect the sensitive data of the body and transmit it through an open wireless channel in which the messages may be intercepted, modified, etc. Recently, Wang et al. presented a new anonymous authentication scheme for WBANs and claimed that their scheme can solve the security problems in the previous schemes. Unfortunately, we demonstrate that their scheme cannot withstand impersonation attack. Either an adversary or a malicious legal client could impersonate another legal client to the application provider. In this paper, we give the detailed weakness analysis of Wang et al.'s scheme at first. Then we present a novel anonymous authentication scheme for WBANs and prove that it's secure under a random oracle model. At last, we demonstrate that our presented anonymous authentication scheme for WBANs is more suitable for practical application than Wang et al.'s scheme due to better security and performance. Compared with Wang et al.'s scheme, the computation cost of our scheme in WBANs has reduced by about 31.58%.

  15. Improving Biometric-Based Authentication Schemes with Smart Card Revocation/Reissue for Wireless Sensor Networks.

    PubMed

    Moon, Jongho; Lee, Donghoon; Lee, Youngsook; Won, Dongho

    2017-04-25

    User authentication in wireless sensor networks is more difficult than in traditional networks owing to sensor network characteristics such as unreliable communication, limited resources, and unattended operation. For these reasons, various authentication schemes have been proposed to provide secure and efficient communication. In 2016, Park et al. proposed a secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. However, we found that their scheme was still insecure against impersonation attack, and had a problem in the smart card revocation/reissue phase. In this paper, we show how an adversary can impersonate a legitimate user or sensor node, illegal smart card revocation/reissue and prove that Park et al.'s scheme fails to provide revocation/reissue. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Finally, we provide security and performance analysis between previous schemes and the proposed scheme, and provide formal analysis based on the random oracle model. The results prove that the proposed scheme can solve the weaknesses of impersonation attack and other security flaws in the security analysis section. Furthermore, performance analysis shows that the computational cost is lower than the previous scheme.

  16. Improving Biometric-Based Authentication Schemes with Smart Card Revocation/Reissue for Wireless Sensor Networks

    PubMed Central

    Moon, Jongho; Lee, Donghoon; Lee, Youngsook; Won, Dongho

    2017-01-01

    User authentication in wireless sensor networks is more difficult than in traditional networks owing to sensor network characteristics such as unreliable communication, limited resources, and unattended operation. For these reasons, various authentication schemes have been proposed to provide secure and efficient communication. In 2016, Park et al. proposed a secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. However, we found that their scheme was still insecure against impersonation attack, and had a problem in the smart card revocation/reissue phase. In this paper, we show how an adversary can impersonate a legitimate user or sensor node, illegal smart card revocation/reissue and prove that Park et al.’s scheme fails to provide revocation/reissue. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Finally, we provide security and performance analysis between previous schemes and the proposed scheme, and provide formal analysis based on the random oracle model. The results prove that the proposed scheme can solve the weaknesses of impersonation attack and other security flaws in the security analysis section. Furthermore, performance analysis shows that the computational cost is lower than the previous scheme. PMID:28441331

  17. Efficient authentication scheme based on near-ring root extraction problem

    NASA Astrophysics Data System (ADS)

    Muthukumaran, V.; Ezhilmaran, D.

    2017-11-01

    An authentication protocolis the type of computer communication protocol or cryptography protocol specifically designed for transfer of authentication data between two entities. We have planned a two new entity authentication scheme on the basis of root extraction problem near-ring in this article. We suggest that this problem is suitably difficult to serve as a cryptographic assumption over the platform of near-ring N. The security issues also discussed.

  18. A bilinear pairing based anonymous authentication scheme in wireless body area networks for mHealth.

    PubMed

    Jiang, Qi; Lian, Xinxin; Yang, Chao; Ma, Jianfeng; Tian, Youliang; Yang, Yuanyuan

    2016-11-01

    Wireless body area networks (WBANs) have become one of the key components of mobile health (mHealth) which provides 24/7 health monitoring service and greatly improves the quality and efficiency of healthcare. However, users' concern about the security and privacy of their health information has become one of the major obstacles that impede the wide adoption of WBANs. Anonymous and unlinkable authentication is critical to protect the security and privacy of sensitive physiological information in transit from the client to the application provider. We first show that the anonymous authentication scheme of Wang and Zhang based on bilinear pairing is prone to client impersonation attack. Then, we propose an enhanced anonymous authentication scheme to remedy the flaw in Wang and Zhang's scheme. We give the security analysis to demonstrate that the enhanced scheme achieves the desired security features and withstands various known attacks.

  19. Enhanced Security and Pairing-free Handover Authentication Scheme for Mobile Wireless Networks

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Shu, Guangqiang; Chen, Peng; Zhang, Lijun

    2017-10-01

    With the widely deployment of mobile wireless networks, we aim to propose a secure and seamless handover authentication scheme that allows users to roam freely in wireless networks without worrying about security and privacy issues. Given the open characteristic of wireless networks, safety and efficiency should be considered seriously. Several previous protocols are designed based on a bilinear pairing mapping, which is time-consuming and inefficient work, as well as unsuitable for practical situations. To address these issues, we designed a new pairing-free handover authentication scheme for mobile wireless networks. This scheme is an effective improvement of the protocol by Xu et al., which is suffer from the mobile node impersonation attack. Security analysis and simulation experiment indicate that the proposed protocol has many excellent security properties when compared with other recent similar handover schemes, such as mutual authentication and resistance to known network threats, as well as requiring lower computation and communication cost.

  20. An improved biometrics-based authentication scheme for telecare medical information systems.

    PubMed

    Guo, Dianli; Wen, Qiaoyan; Li, Wenmin; Zhang, Hua; Jin, Zhengping

    2015-03-01

    Telecare medical information system (TMIS) offers healthcare delivery services and patients can acquire their desired medical services conveniently through public networks. The protection of patients' privacy and data confidentiality are significant. Very recently, Mishra et al. proposed a biometrics-based authentication scheme for telecare medical information system. Their scheme can protect user privacy and is believed to resist a range of network attacks. In this paper, we analyze Mishra et al.'s scheme and identify that their scheme is insecure to against known session key attack and impersonation attack. Thereby, we present a modified biometrics-based authentication scheme for TMIS to eliminate the aforementioned faults. Besides, we demonstrate the completeness of the proposed scheme through BAN-logic. Compared to the related schemes, our protocol can provide stronger security and it is more practical.

  1. Security analysis and improvements of two-factor mutual authentication with key agreement in wireless sensor networks.

    PubMed

    Kim, Jiye; Lee, Donghoon; Jeon, Woongryul; Lee, Youngsook; Won, Dongho

    2014-04-09

    User authentication and key management are two important security issues in WSNs (Wireless Sensor Networks). In WSNs, for some applications, the user needs to obtain real-time data directly from sensors and several user authentication schemes have been recently proposed for this case. We found that a two-factor mutual authentication scheme with key agreement in WSNs is vulnerable to gateway node bypassing attacks and user impersonation attacks using secret data stored in sensor nodes or an attacker's own smart card. In this paper, we propose an improved scheme to overcome these security weaknesses by storing secret data in unique ciphertext form in each node. In addition, our proposed scheme should provide not only security, but also efficiency since sensors in a WSN operate with resource constraints such as limited power, computation, and storage space. Therefore, we also analyze the performance of the proposed scheme by comparing its computation and communication costs with those of other schemes.

  2. Security Analysis and Improvements of Two-Factor Mutual Authentication with Key Agreement in Wireless Sensor Networks

    PubMed Central

    Kim, Jiye; Lee, Donghoon; Jeon, Woongryul; Lee, Youngsook; Won, Dongho

    2014-01-01

    User authentication and key management are two important security issues in WSNs (Wireless Sensor Networks). In WSNs, for some applications, the user needs to obtain real-time data directly from sensors and several user authentication schemes have been recently proposed for this case. We found that a two-factor mutual authentication scheme with key agreement in WSNs is vulnerable to gateway node bypassing attacks and user impersonation attacks using secret data stored in sensor nodes or an attacker's own smart card. In this paper, we propose an improved scheme to overcome these security weaknesses by storing secret data in unique ciphertext form in each node. In addition, our proposed scheme should provide not only security, but also efficiency since sensors in a WSN operate with resource constraints such as limited power, computation, and storage space. Therefore, we also analyze the performance of the proposed scheme by comparing its computation and communication costs with those of other schemes. PMID:24721764

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartoletti, Tony

    SPI/U3.2 consists of five tools used to assess and report the security posture of computers running the UNIX operating system. The tools are: Access Control Test: A rule-based system which identifies sequential dependencies in UNIX access controls. Binary Authentication Tool: Evaluates the release status of system binaries by comparing a crypto-checksum to provide table entries. Change Detection Tool: Maintains and applies a snapshot of critical system files and attributes for purposes of change detection. Configuration Query Language: Accepts CQL-based scripts (provided) to evaluate queries over the status of system files, configuration of services and many other elements of UNIX systemmore » security. Password Security Inspector: Tests for weak or aged passwords. The tools are packaged with a forms-based user interface providing on-line context-sensistive help, job scheduling, parameter management and output report management utilities. Tools may be run independent of the UI.« less

  4. SPI/U3.2. Security Profile Inspector for UNIX Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartoletti, A.

    1994-08-01

    SPI/U3.2 consists of five tools used to assess and report the security posture of computers running the UNIX operating system. The tools are: Access Control Test: A rule-based system which identifies sequential dependencies in UNIX access controls. Binary Authentication Tool: Evaluates the release status of system binaries by comparing a crypto-checksum to provide table entries. Change Detection Tool: Maintains and applies a snapshot of critical system files and attributes for purposes of change detection. Configuration Query Language: Accepts CQL-based scripts (provided) to evaluate queries over the status of system files, configuration of services and many other elements of UNIX systemmore » security. Password Security Inspector: Tests for weak or aged passwords. The tools are packaged with a forms-based user interface providing on-line context-sensistive help, job scheduling, parameter management and output report management utilities. Tools may be run independent of the UI.« less

  5. Security of fragile authentication watermarks with localization

    NASA Astrophysics Data System (ADS)

    Fridrich, Jessica

    2002-04-01

    In this paper, we study the security of fragile image authentication watermarks that can localize tampered areas. We start by comparing the goals, capabilities, and advantages of image authentication based on watermarking and cryptography. Then we point out some common security problems of current fragile authentication watermarks with localization and classify attacks on authentication watermarks into five categories. By investigating the attacks and vulnerabilities of current schemes, we propose a variation of the Wong scheme18 that is fast, simple, cryptographically secure, and resistant to all known attacks, including the Holliman-Memon attack9. In the new scheme, a special symmetry structure in the logo is used to authenticate the block content, while the logo itself carries information about the block origin (block index, the image index or time stamp, author ID, etc.). Because the authentication of the content and its origin are separated, it is possible to easily identify swapped blocks between images and accurately detect cropped areas, while being able to accurately localize tampered pixels.

  6. Privacy Protection for Telecare Medicine Information Systems Using a Chaotic Map-Based Three-Factor Authenticated Key Agreement Scheme.

    PubMed

    Zhang, Liping; Zhu, Shaohui; Tang, Shanyu

    2017-03-01

    Telecare medicine information systems (TMIS) provide flexible and convenient e-health care. However, the medical records transmitted in TMIS are exposed to unsecured public networks, so TMIS are more vulnerable to various types of security threats and attacks. To provide privacy protection for TMIS, a secure and efficient authenticated key agreement scheme is urgently needed to protect the sensitive medical data. Recently, Mishra et al. proposed a biometrics-based authenticated key agreement scheme for TMIS by using hash function and nonce, they claimed that their scheme could eliminate the security weaknesses of Yan et al.'s scheme and provide dynamic identity protection and user anonymity. In this paper, however, we demonstrate that Mishra et al.'s scheme suffers from replay attacks, man-in-the-middle attacks and fails to provide perfect forward secrecy. To overcome the weaknesses of Mishra et al.'s scheme, we then propose a three-factor authenticated key agreement scheme to enable the patient to enjoy the remote healthcare services via TMIS with privacy protection. The chaotic map-based cryptography is employed in the proposed scheme to achieve a delicate balance of security and performance. Security analysis demonstrates that the proposed scheme resists various attacks and provides several attractive security properties. Performance evaluation shows that the proposed scheme increases efficiency in comparison with other related schemes.

  7. Addressing the vulnerabilities of pass-thoughts

    NASA Astrophysics Data System (ADS)

    Fernandez, Gabriel C.; Danko, Amanda S.

    2016-05-01

    As biometrics become increasingly pervasive, consumer electronics are reaping the benefits of improved authentication methods. Leveraging the physical characteristics of a user reduces the burden of setting and remembering complex passwords, while enabling stronger security. Multi-factor systems lend further credence to this model, increasing security via multiple passive data points. In recent years, brainwaves have been shown to be another feasible source for biometric authentication. Physically unique to an individual in certain circumstances, the signals can also be changed by the user at will, making them more robust than static physical characteristics. No paradigm is impervious however, and even well-established medical technologies have deficiencies. In this work, a system for biometric authentication via brainwaves is constructed with electroencephalography (EEG). The efficacy of EEG biometrics via existing consumer electronics is evaluated, and vulnerabilities of such a system are enumerated. Impersonation attacks are performed to expose the extent to which the system is vulnerable. Finally, a multimodal system combining EEG with additional factors is recommended and outlined.

  8. LMIP/AAA: Local Authentication, Authorization and Accounting (AAA) Protocol for Mobile IP

    NASA Astrophysics Data System (ADS)

    Chenait, Manel

    Mobile IP represents a simple and scalable global mobility solution. However, it inhibits various vulnerabilities to malicious attacks and, therefore, requires the integration of appropriate security services. In this paper, we discuss two authentication schemes suggested for Mobile IP: standard authentication and Mobile IP/AAA authentication. In order to provide Mobile IP roaming services including identity verication, we propose an improvement to Mobile/AAA authentication scheme by applying a local politic key management in each domain, hence we reduce hando latency by avoiding the involvement of AAA infrastructure during mobile node roaming.

  9. Quantum secret sharing with identity authentication based on Bell states

    NASA Astrophysics Data System (ADS)

    Abulkasim, Hussein; Hamad, Safwat; Khalifa, Amal; El Bahnasy, Khalid

    Quantum secret sharing techniques allow two parties or more to securely share a key, while the same number of parties or less can efficiently deduce the secret key. In this paper, we propose an authenticated quantum secret sharing protocol, where a quantum dialogue protocol is adopted to authenticate the identity of the parties. The participants simultaneously authenticate the identity of each other based on parts of a prior shared key. Moreover, the whole prior shared key can be reused for deducing the secret data. Although the proposed scheme does not significantly improve the efficiency performance, it is more secure compared to some existing quantum secret sharing scheme due to the identity authentication process. In addition, the proposed scheme can stand against participant attack, man-in-the-middle attack, impersonation attack, Trojan-horse attack as well as information leaks.

  10. A Provably Secure RFID Authentication Protocol Based on Elliptic Curve for Healthcare Environments.

    PubMed

    Farash, Mohammad Sabzinejad; Nawaz, Omer; Mahmood, Khalid; Chaudhry, Shehzad Ashraf; Khan, Muhammad Khurram

    2016-07-01

    To enhance the quality of healthcare in the management of chronic disease, telecare medical information systems have increasingly been used. Very recently, Zhang and Qi (J. Med. Syst. 38(5):47, 32), and Zhao (J. Med. Syst. 38(5):46, 33) separately proposed two authentication schemes for telecare medical information systems using radio frequency identification (RFID) technology. They claimed that their protocols achieve all security requirements including forward secrecy. However, this paper demonstrates that both Zhang and Qi's scheme, and Zhao's scheme could not provide forward secrecy. To augment the security, we propose an efficient RFID authentication scheme using elliptic curves for healthcare environments. The proposed RFID scheme is secure under common random oracle model.

  11. Molecules for security measures: from keypad locks to advanced communication protocols.

    PubMed

    Andréasson, J; Pischel, U

    2018-04-03

    The idea of using molecules in the context of information security has sparked the interest of researchers from many scientific disciplines. This is clearly manifested in the diversity of the molecular platforms and the analytical techniques used for this purpose, some of which we highlight in this Tutorial Review. Moreover, those molecular systems can be used to emulate a broad spectrum of security measures. For a long time, molecular keypad locks enjoyed a clear preference and the review starts off with a description of how these devices developed. In the last few years, however, the field has evolved into something larger. Examples include more complex authentication protocols (multi-factor authentication and one-time passwords), the recognition of erroneous procedures in data transmission (parity devices), as well as steganographic and cryptographic protection.

  12. Cryptanalysis and improvement of a biometrics-based authentication and key agreement scheme for multi-server environments.

    PubMed

    Yang, Li; Zheng, Zhiming

    2018-01-01

    According to advancements in the wireless technologies, study of biometrics-based multi-server authenticated key agreement schemes has acquired a lot of momentum. Recently, Wang et al. presented a three-factor authentication protocol with key agreement and claimed that their scheme was resistant to several prominent attacks. Unfortunately, this paper indicates that their protocol is still vulnerable to the user impersonation attack, privileged insider attack and server spoofing attack. Furthermore, their protocol cannot provide the perfect forward secrecy. As a remedy of these aforementioned problems, we propose a biometrics-based authentication and key agreement scheme for multi-server environments. Compared with various related schemes, our protocol achieves the stronger security and provides more functionality properties. Besides, the proposed protocol shows the satisfactory performances in respect of storage requirement, communication overhead and computational cost. Thus, our protocol is suitable for expert systems and other multi-server architectures. Consequently, the proposed protocol is more appropriate in the distributed networks.

  13. Cryptanalysis and improvement of a biometrics-based authentication and key agreement scheme for multi-server environments

    PubMed Central

    Zheng, Zhiming

    2018-01-01

    According to advancements in the wireless technologies, study of biometrics-based multi-server authenticated key agreement schemes has acquired a lot of momentum. Recently, Wang et al. presented a three-factor authentication protocol with key agreement and claimed that their scheme was resistant to several prominent attacks. Unfortunately, this paper indicates that their protocol is still vulnerable to the user impersonation attack, privileged insider attack and server spoofing attack. Furthermore, their protocol cannot provide the perfect forward secrecy. As a remedy of these aforementioned problems, we propose a biometrics-based authentication and key agreement scheme for multi-server environments. Compared with various related schemes, our protocol achieves the stronger security and provides more functionality properties. Besides, the proposed protocol shows the satisfactory performances in respect of storage requirement, communication overhead and computational cost. Thus, our protocol is suitable for expert systems and other multi-server architectures. Consequently, the proposed protocol is more appropriate in the distributed networks. PMID:29534085

  14. Facelock: familiarity-based graphical authentication.

    PubMed

    Jenkins, Rob; McLachlan, Jane L; Renaud, Karen

    2014-01-01

    Authentication codes such as passwords and PIN numbers are widely used to control access to resources. One major drawback of these codes is that they are difficult to remember. Account holders are often faced with a choice between forgetting a code, which can be inconvenient, or writing it down, which compromises security. In two studies, we test a new knowledge-based authentication method that does not impose memory load on the user. Psychological research on face recognition has revealed an important distinction between familiar and unfamiliar face perception: When a face is familiar to the observer, it can be identified across a wide range of images. However, when the face is unfamiliar, generalisation across images is poor. This contrast can be used as the basis for a personalised 'facelock', in which authentication succeeds or fails based on image-invariant recognition of faces that are familiar to the account holder. In Study 1, account holders authenticated easily by detecting familiar targets among other faces (97.5% success rate), even after a one-year delay (86.1% success rate). Zero-acquaintance attackers were reduced to guessing (<1% success rate). Even personal attackers who knew the account holder well were rarely able to authenticate (6.6% success rate). In Study 2, we found that shoulder-surfing attacks by strangers could be defeated by presenting different photos of the same target faces in observed and attacked grids (1.9% success rate). Our findings suggest that the contrast between familiar and unfamiliar face recognition may be useful for developers of graphical authentication systems.

  15. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks.

    PubMed

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-07-09

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption.

  16. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks †

    PubMed Central

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-01-01

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption. PMID:27409616

  17. Security issues of Internet-based biometric authentication systems: risks of Man-in-the-Middle and BioPhishing on the example of BioWebAuth

    NASA Astrophysics Data System (ADS)

    Zeitz, Christian; Scheidat, Tobias; Dittmann, Jana; Vielhauer, Claus; González Agulla, Elisardo; Otero Muras, Enrique; García Mateo, Carmen; Alba Castro, José L.

    2008-02-01

    Beside the optimization of biometric error rates the overall security system performance in respect to intentional security attacks plays an important role for biometric enabled authentication schemes. As traditionally most user authentication schemes are knowledge and/or possession based, firstly in this paper we present a methodology for a security analysis of Internet-based biometric authentication systems by enhancing known methodologies such as the CERT attack-taxonomy with a more detailed view on the OSI-Model. Secondly as proof of concept, the guidelines extracted from this methodology are strictly applied to an open source Internet-based biometric authentication system (BioWebAuth). As case studies, two exemplary attacks, based on the found security leaks, are investigated and the attack performance is presented to show that during the biometric authentication schemes beside biometric error performance tuning also security issues need to be addressed. Finally, some design recommendations are given in order to ensure a minimum security level.

  18. An Enhanced Privacy-Preserving Authentication Scheme for Vehicle Sensor Networks.

    PubMed

    Zhou, Yousheng; Zhao, Xiaofeng; Jiang, Yi; Shang, Fengjun; Deng, Shaojiang; Wang, Xiaojun

    2017-12-08

    Vehicle sensor networks (VSNs) are ushering in a promising future by enabling more intelligent transportation systems and providing a more efficient driving experience. However, because of their inherent openness, VSNs are subject to a large number of potential security threats. Although various authentication schemes have been proposed for addressing security problems, they are not suitable for VSN applications because of their high computation and communication costs. Chuang and Lee have developed a trust-extended authentication mechanism (TEAM) for vehicle-to-vehicle communication using a transitive trust relationship, which they claim can resist various attacks. However, it fails to counter internal attacks because of the utilization of a shared secret key. In this paper, to eliminate the vulnerability of TEAM, an enhanced privacy-preserving authentication scheme for VSNs is constructed. The security of our proposed scheme is proven under the random oracle model based on the assumption of the computational Diffie-Hellman problem.

  19. An Enhanced Privacy-Preserving Authentication Scheme for Vehicle Sensor Networks

    PubMed Central

    Zhou, Yousheng; Zhao, Xiaofeng; Jiang, Yi; Shang, Fengjun; Deng, Shaojiang; Wang, Xiaojun

    2017-01-01

    Vehicle sensor networks (VSNs) are ushering in a promising future by enabling more intelligent transportation systems and providing a more efficient driving experience. However, because of their inherent openness, VSNs are subject to a large number of potential security threats. Although various authentication schemes have been proposed for addressing security problems, they are not suitable for VSN applications because of their high computation and communication costs. Chuang and Lee have developed a trust-extended authentication mechanism (TEAM) for vehicle-to-vehicle communication using a transitive trust relationship, which they claim can resist various attacks. However, it fails to counter internal attacks because of the utilization of a shared secret key. In this paper, to eliminate the vulnerability of TEAM, an enhanced privacy-preserving authentication scheme for VSNs is constructed. The security of our proposed scheme is proven under the random oracle model based on the assumption of the computational Diffie–Hellman problem. PMID:29292792

  20. Method and system for normalizing biometric variations to authenticate users from a public database and that ensures individual biometric data privacy

    DOEpatents

    Strait, Robert S.; Pearson, Peter K.; Sengupta, Sailes K.

    2000-01-01

    A password system comprises a set of codewords spaced apart from one another by a Hamming distance (HD) that exceeds twice the variability that can be projected for a series of biometric measurements for a particular individual and that is less than the HD that can be encountered between two individuals. To enroll an individual, a biometric measurement is taken and exclusive-ORed with a random codeword to produce a "reference value." To verify the individual later, a biometric measurement is taken and exclusive-ORed with the reference value to reproduce the original random codeword or its approximation. If the reproduced value is not a codeword, the nearest codeword to it is found, and the bits that were corrected to produce the codeword to it is found, and the bits that were corrected to produce the codeword are also toggled in the biometric measurement taken and the codeword generated during enrollment. The correction scheme can be implemented by any conventional error correction code such as Reed-Muller code R(m,n). In the implementation using a hand geometry device an R(2,5) code has been used in this invention. Such codeword and biometric measurement can then be used to see if the individual is an authorized user. Conventional Diffie-Hellman public key encryption schemes and hashing procedures can then be used to secure the communications lines carrying the biometric information and to secure the database of authorized users.

  1. Comment on ‘Authenticated quantum secret sharing with quantum dialogue based on Bell states’

    NASA Astrophysics Data System (ADS)

    Gao, Gan; Wang, Yue; Wang, Dong; Ye, Liu

    2018-02-01

    In the paper (2016 Phys. Scr. 91 085101), Abulkasim et al proposed a authenticated quantum secret sharing scheme. We study the security of the multiparty case in the proposed scheme and find that it is not secure.

  2. Facelock: familiarity-based graphical authentication

    PubMed Central

    McLachlan, Jane L.; Renaud, Karen

    2014-01-01

    Authentication codes such as passwords and PIN numbers are widely used to control access to resources. One major drawback of these codes is that they are difficult to remember. Account holders are often faced with a choice between forgetting a code, which can be inconvenient, or writing it down, which compromises security. In two studies, we test a new knowledge-based authentication method that does not impose memory load on the user. Psychological research on face recognition has revealed an important distinction between familiar and unfamiliar face perception: When a face is familiar to the observer, it can be identified across a wide range of images. However, when the face is unfamiliar, generalisation across images is poor. This contrast can be used as the basis for a personalised ‘facelock’, in which authentication succeeds or fails based on image-invariant recognition of faces that are familiar to the account holder. In Study 1, account holders authenticated easily by detecting familiar targets among other faces (97.5% success rate), even after a one-year delay (86.1% success rate). Zero-acquaintance attackers were reduced to guessing (<1% success rate). Even personal attackers who knew the account holder well were rarely able to authenticate (6.6% success rate). In Study 2, we found that shoulder-surfing attacks by strangers could be defeated by presenting different photos of the same target faces in observed and attacked grids (1.9% success rate). Our findings suggest that the contrast between familiar and unfamiliar face recognition may be useful for developers of graphical authentication systems. PMID:25024913

  3. A Selective Group Authentication Scheme for IoT-Based Medical Information System.

    PubMed

    Park, YoHan; Park, YoungHo

    2017-04-01

    The technology of IoT combined with medical systems is expected to support advanced medical services. However, unsolved security problems, such as misuse of medical devices, illegal access to the medical server and so on, make IoT-based medical systems not be applied widely. In addition, users have a high burden of computation to access Things for the explosive growth of IoT devices. Because medical information is critical and important, but users have a restricted computing power, IoT-based medical systems are required to provide secure and efficient authentication for users. In this paper, we propose a selective group authentication scheme using Shamir's threshold technique. The property of selectivity gives the right of choice to users to form a group which consists of things users select and access. And users can get an access authority for those Things at a time. Thus, our scheme provides an efficient user authentication for multiple Things and conditional access authority for safe IoT-based medical information system. To the best of our knowledge, our proposed scheme is the first in which selectivity is combined with group authentication in IoT environments.

  4. An Enhanced Three-Factor User Authentication Scheme Using Elliptic Curve Cryptosystem for Wireless Sensor Networks.

    PubMed

    Wang, Chenyu; Xu, Guoai; Sun, Jing

    2017-12-19

    As an essential part of Internet of Things (IoT), wireless sensor networks (WSNs) have touched every aspect of our lives, such as health monitoring, environmental monitoring and traffic monitoring. However, due to its openness, wireless sensor networks are vulnerable to various security threats. User authentication, as the first fundamental step to protect systems from various attacks, has attracted much attention. Numerous user authentication protocols armed with formal proof are springing up. Recently, two biometric-based schemes were proposed with confidence to be resistant to the known attacks including offline dictionary attack, impersonation attack and so on. However, after a scrutinization of these two schemes, we found them not secure enough as claimed, and then demonstrated that these schemes suffer from various attacks, such as offline dictionary attack, impersonation attack, no user anonymity, no forward secrecy, etc. Furthermore, we proposed an enhanced scheme to overcome the identified weaknesses, and proved its security via Burrows-Abadi-Needham (BAN) logic and the heuristic analysis. Finally, we compared our scheme with other related schemes, and the results showed the superiority of our scheme.

  5. An Enhanced Three-Factor User Authentication Scheme Using Elliptic Curve Cryptosystem for Wireless Sensor Networks

    PubMed Central

    Xu, Guoai; Sun, Jing

    2017-01-01

    As an essential part of Internet of Things (IoT), wireless sensor networks (WSNs) have touched every aspect of our lives, such as health monitoring, environmental monitoring and traffic monitoring. However, due to its openness, wireless sensor networks are vulnerable to various security threats. User authentication, as the first fundamental step to protect systems from various attacks, has attracted much attention. Numerous user authentication protocols armed with formal proof are springing up. Recently, two biometric-based schemes were proposed with confidence to be resistant to the known attacks including offline dictionary attack, impersonation attack and so on. However, after a scrutinization of these two schemes, we found them not secure enough as claimed, and then demonstrated that these schemes suffer from various attacks, such as offline dictionary attack, impersonation attack, no user anonymity, no forward secrecy, etc. Furthermore, we proposed an enhanced scheme to overcome the identified weaknesses, and proved its security via Burrows–Abadi–Needham (BAN) logic and the heuristic analysis. Finally, we compared our scheme with other related schemes, and the results showed the superiority of our scheme. PMID:29257066

  6. Security concept in 'MyAngelWeb' a website for the individual patient at risk of emergency.

    PubMed

    Pinciroli, F; Nahaissi, D; Boschini, M; Ferrari, R; Meloni, G; Camnasio, M; Spaggiari, P; Carnerone, G

    2000-11-01

    We describe the Security Plan for the 'MyAngelWeb' service. The different actors involved in the service are subject to different security procedures. The core of the security system is implemented at the host site by means of a DBMS and standard Information Technology tools. Hardware requirements for sustainable security are needed at the web-site construction sites. They are not needed at the emergency physician's site. At the emergency physician's site, a two-way authentication system (password and test phrase method) is implemented.

  7. Security concept in 'MyAngelWeb((R))' a website for the individual patient at risk of emergency.

    PubMed

    Pinciroli; Nahaissi; Boschini; Ferrari; Meloni; Camnasio; Spaggiari; Carnerone

    2000-11-01

    We describe the Security Plan for the 'MyAngelWeb' service. The different actors involved in the service are subject to different security procedures. The core of the security system is implemented at the host site by means of a DBMS and standard Information Technology tools. Hardware requirements for sustainable security are needed at the web-site construction sites. They are not needed at the emergency physician's site. At the emergency physician's site, a two-way authentication system (password and test phrase method) is implemented.

  8. BossPro: a biometrics-based obfuscation scheme for software protection

    NASA Astrophysics Data System (ADS)

    Kuseler, Torben; Lami, Ihsan A.; Al-Assam, Hisham

    2013-05-01

    This paper proposes to integrate biometric-based key generation into an obfuscated interpretation algorithm to protect authentication application software from illegitimate use or reverse-engineering. This is especially necessary for mCommerce because application programmes on mobile devices, such as Smartphones and Tablet-PCs are typically open for misuse by hackers. Therefore, the scheme proposed in this paper ensures that a correct interpretation / execution of the obfuscated program code of the authentication application requires a valid biometric generated key of the actual person to be authenticated, in real-time. Without this key, the real semantics of the program cannot be understood by an attacker even if he/she gains access to this application code. Furthermore, the security provided by this scheme can be a vital aspect in protecting any application running on mobile devices that are increasingly used to perform business/financial or other security related applications, but are easily lost or stolen. The scheme starts by creating a personalised copy of any application based on the biometric key generated during an enrolment process with the authenticator as well as a nuance created at the time of communication between the client and the authenticator. The obfuscated code is then shipped to the client's mobile devise and integrated with real-time biometric extracted data of the client to form the unlocking key during execution. The novelty of this scheme is achieved by the close binding of this application program to the biometric key of the client, thus making this application unusable for others. Trials and experimental results on biometric key generation, based on client's faces, and an implemented scheme prototype, based on the Android emulator, prove the concept and novelty of this proposed scheme.

  9. Access and accounting schemes of wireless broadband

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Huang, Benxiong; Wang, Yan; Yu, Xing

    2004-04-01

    In this paper, two wireless broadband access and accounting schemes were introduced. There are some differences in the client and the access router module between them. In one scheme, Secure Shell (SSH) protocol is used in the access system. The SSH server makes the authentication based on private key cryptography. The advantage of this scheme is the security of the user's information, and we have sophisticated access control. In the other scheme, Secure Sockets Layer (SSL) protocol is used the access system. It uses the technology of public privacy key. Nowadays, web browser generally combines HTTP and SSL protocol and we use the SSL protocol to implement the encryption of the data between the clients and the access route. The schemes are same in the radius sever part. Remote Authentication Dial in User Service (RADIUS), as a security protocol in the form of Client/Sever, is becoming an authentication/accounting protocol for standard access to the Internet. It will be explained in a flow chart. In our scheme, the access router serves as the client to the radius server.

  10. Continuous-variable quantum authentication of physical unclonable keys

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, Georgios M.; Diamanti, Eleni

    2017-04-01

    We propose a scheme for authentication of physical keys that are materialized by optical multiple-scattering media. The authentication relies on the optical response of the key when probed by randomly selected coherent states of light, and the use of standard wavefront-shaping techniques that direct the scattered photons coherently to a specific target mode at the output. The quadratures of the electromagnetic field of the scattered light at the target mode are analysed using a homodyne detection scheme, and the acceptance or rejection of the key is decided upon the outcomes of the measurements. The proposed scheme can be implemented with current technology and offers collision resistance and robustness against key cloning.

  11. A QR Code Based Zero-Watermarking Scheme for Authentication of Medical Images in Teleradiology Cloud

    PubMed Central

    Seenivasagam, V.; Velumani, R.

    2013-01-01

    Healthcare institutions adapt cloud based archiving of medical images and patient records to share them efficiently. Controlled access to these records and authentication of images must be enforced to mitigate fraudulent activities and medical errors. This paper presents a zero-watermarking scheme implemented in the composite Contourlet Transform (CT)—Singular Value Decomposition (SVD) domain for unambiguous authentication of medical images. Further, a framework is proposed for accessing patient records based on the watermarking scheme. The patient identification details and a link to patient data encoded into a Quick Response (QR) code serves as the watermark. In the proposed scheme, the medical image is not subjected to degradations due to watermarking. Patient authentication and authorized access to patient data are realized on combining a Secret Share with the Master Share constructed from invariant features of the medical image. The Hu's invariant image moments are exploited in creating the Master Share. The proposed system is evaluated with Checkmark software and is found to be robust to both geometric and non geometric attacks. PMID:23970943

  12. A QR code based zero-watermarking scheme for authentication of medical images in teleradiology cloud.

    PubMed

    Seenivasagam, V; Velumani, R

    2013-01-01

    Healthcare institutions adapt cloud based archiving of medical images and patient records to share them efficiently. Controlled access to these records and authentication of images must be enforced to mitigate fraudulent activities and medical errors. This paper presents a zero-watermarking scheme implemented in the composite Contourlet Transform (CT)-Singular Value Decomposition (SVD) domain for unambiguous authentication of medical images. Further, a framework is proposed for accessing patient records based on the watermarking scheme. The patient identification details and a link to patient data encoded into a Quick Response (QR) code serves as the watermark. In the proposed scheme, the medical image is not subjected to degradations due to watermarking. Patient authentication and authorized access to patient data are realized on combining a Secret Share with the Master Share constructed from invariant features of the medical image. The Hu's invariant image moments are exploited in creating the Master Share. The proposed system is evaluated with Checkmark software and is found to be robust to both geometric and non geometric attacks.

  13. Computer Security Products Technology Overview

    DTIC Science & Technology

    1988-10-01

    13 3. DATABASE MANAGEMENT SYSTEMS ................................... 15 Definition...this paper addresses fall into the areas of multi-user hosts, database management systems (DBMS), workstations, networks, guards and gateways, and...provide a portion of that protection, for example, a password scheme, a file protection mechanism, a secure database management system, or even a

  14. Kerberos authentication: The security answer for unsecured networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engert, D.E.

    1995-06-01

    Traditional authentication schemes do not properly address the problems encountered with today`s unsecured networks. Kerbmm developed by MIT, on the other hand is designed to operate in an open unsecured network, yet provide good authentication and security including encrypted session traffic. Basic Kerberos principles as well as experiences of the ESnet Authentication Pilot Project with Cross Realm. Authentication between four National Laboratories will also be described.

  15. Verifier-based three-party authentication schemes using extended chaotic maps for data exchange in telecare medicine information systems.

    PubMed

    Lee, Tian-Fu

    2014-12-01

    Telecare medicine information systems provide a communicating platform for accessing remote medical resources through public networks, and help health care workers and medical personnel to rapidly making correct clinical decisions and treatments. An authentication scheme for data exchange in telecare medicine information systems enables legal users in hospitals and medical institutes to establish a secure channel and exchange electronic medical records or electronic health records securely and efficiently. This investigation develops an efficient and secure verified-based three-party authentication scheme by using extended chaotic maps for data exchange in telecare medicine information systems. The proposed scheme does not require server's public keys and avoids time-consuming modular exponential computations and scalar multiplications on elliptic curve used in previous related approaches. Additionally, the proposed scheme is proven secure in the random oracle model, and realizes the lower bounds of messages and rounds in communications. Compared to related verified-based approaches, the proposed scheme not only possesses higher security, but also has lower computational cost and fewer transmissions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Dual domain watermarking for authentication and compression of cultural heritage images.

    PubMed

    Zhao, Yang; Campisi, Patrizio; Kundur, Deepa

    2004-03-01

    This paper proposes an approach for the combined image authentication and compression of color images by making use of a digital watermarking and data hiding framework. The digital watermark is comprised of two components: a soft-authenticator watermark for authentication and tamper assessment of the given image, and a chrominance watermark employed to improve the efficiency of compression. The multipurpose watermark is designed by exploiting the orthogonality of various domains used for authentication, color decomposition and watermark insertion. The approach is implemented as a DCT-DWT dual domain algorithm and is applied for the protection and compression of cultural heritage imagery. Analysis is provided to characterize the behavior of the scheme under ideal conditions. Simulations and comparisons of the proposed approach with state-of-the-art existing work demonstrate the potential of the overall scheme.

  17. What's in a Name?

    NASA Astrophysics Data System (ADS)

    Bonneau, Joseph; Just, Mike; Matthews, Greg

    We study the efficiency of statistical attacks on human authentication systems relying on personal knowledge questions. We adapt techniques from guessing theory to measure security against a trawling attacker attempting to compromise a large number of strangers' accounts. We then examine a diverse corpus of real-world statistical distributions for likely answer categories such as the names of people, pets, and places and find that personal knowledge questions are significantly less secure than graphical or textual passwords. We also demonstrate that statistics can be used to increase security by proactively shaping the answer distribution to lower the prevalence of common responses.

  18. Hacker tracking Security system for HMI

    NASA Astrophysics Data System (ADS)

    Chauhan, Rajeev Kumar

    2011-12-01

    Conventional Supervisory control and data Acquisition (SCADA) systems use PC, notebook, thin client, and PDA as a Client. Nowadays the Process Industries are following multi shift system that's why multi- client of different category have to work at a single human Machine Interface (HMI). They may hack the HMI Display and change setting of the other client. This paper introduces a Hacker tracking security (HTS) System for HMI. This is developed by using the conventional and Biometric authentication. HTS system is developed by using Numeric passwords, Smart card, biometric, blood flow and Finger temperature. This work is also able to identify the hackers.

  19. Privacy-Preserving Authentication Using a Double Pseudonym for Internet of Vehicles

    PubMed Central

    Xu, Wenyu; Zhang, Jing; Xu, Yan; Liu, Lu

    2018-01-01

    The Internet of Vehicles (IoV) plays an important role in smart transportation to reduce the drivers’s risk of having an accident and help them manage small emergencies. Therefore, security and privacy issues of the message in the tamper proof device (TPD) broadcasted to other vehicles and roadside units (RSUs) have become an important research subject in the field of smart transportation. Many authentication schemes are proposed to tackle the challenges above and most of them are heavy in computation and communication. In this paper, we propose a novel authentication scheme that utilizes the double pseudonym method to hide the real identity of vehicles and adopts the dynamic update technology to periodically update the information (such as member secret, authentication key, internal pseudo-identity) stored in the tamper-proof device to prevent the side-channel attack. Because of not using bilinear pairing, our scheme yields a better performance in terms of computation overhead and communication overhead, and is more suitable to be applied in the Internet of Vehicles. PMID:29735941

  20. Privacy-Preserving Authentication Using a Double Pseudonym for Internet of Vehicles.

    PubMed

    Cui, Jie; Xu, Wenyu; Zhong, Hong; Zhang, Jing; Xu, Yan; Liu, Lu

    2018-05-07

    The Internet of Vehicles (IoV) plays an important role in smart transportation to reduce the drivers’s risk of having an accident and help them manage small emergencies. Therefore, security and privacy issues of the message in the tamper proof device (TPD) broadcasted to other vehicles and roadside units (RSUs) have become an important research subject in the field of smart transportation. Many authentication schemes are proposed to tackle the challenges above and most of them are heavy in computation and communication. In this paper, we propose a novel authentication scheme that utilizes the double pseudonym method to hide the real identity of vehicles and adopts the dynamic update technology to periodically update the information (such as member secret, authentication key, internal pseudo-identity) stored in the tamper-proof device to prevent the side-channel attack. Because of not using bilinear pairing, our scheme yields a better performance in terms of computation overhead and communication overhead, and is more suitable to be applied in the Internet of Vehicles.

  1. Biometrics: Accessibility challenge or opportunity?

    PubMed

    Blanco-Gonzalo, Ramon; Lunerti, Chiara; Sanchez-Reillo, Raul; Guest, Richard Michael

    2018-01-01

    Biometric recognition is currently implemented in several authentication contexts, most recently in mobile devices where it is expected to complement or even replace traditional authentication modalities such as PIN (Personal Identification Number) or passwords. The assumed convenience characteristics of biometrics are transparency, reliability and ease-of-use, however, the question of whether biometric recognition is as intuitive and straightforward to use is open to debate. Can biometric systems make some tasks easier for people with accessibility concerns? To investigate this question, an accessibility evaluation of a mobile app was conducted where test subjects withdraw money from a fictitious ATM (Automated Teller Machine) scenario. The biometric authentication mechanisms used include face, voice, and fingerprint. Furthermore, we employed traditional modalities of PIN and pattern in order to check if biometric recognition is indeed a real improvement. The trial test subjects within this work were people with real-life accessibility concerns. A group of people without accessibility concerns also participated, providing a baseline performance. Experimental results are presented concerning performance, HCI (Human-Computer Interaction) and accessibility, grouped according to category of accessibility concern. Our results reveal links between individual modalities and user category establishing guidelines for future accessible biometric products.

  2. Biometrics: Accessibility challenge or opportunity?

    PubMed Central

    Lunerti, Chiara; Sanchez-Reillo, Raul; Guest, Richard Michael

    2018-01-01

    Biometric recognition is currently implemented in several authentication contexts, most recently in mobile devices where it is expected to complement or even replace traditional authentication modalities such as PIN (Personal Identification Number) or passwords. The assumed convenience characteristics of biometrics are transparency, reliability and ease-of-use, however, the question of whether biometric recognition is as intuitive and straightforward to use is open to debate. Can biometric systems make some tasks easier for people with accessibility concerns? To investigate this question, an accessibility evaluation of a mobile app was conducted where test subjects withdraw money from a fictitious ATM (Automated Teller Machine) scenario. The biometric authentication mechanisms used include face, voice, and fingerprint. Furthermore, we employed traditional modalities of PIN and pattern in order to check if biometric recognition is indeed a real improvement. The trial test subjects within this work were people with real-life accessibility concerns. A group of people without accessibility concerns also participated, providing a baseline performance. Experimental results are presented concerning performance, HCI (Human-Computer Interaction) and accessibility, grouped according to category of accessibility concern. Our results reveal links between individual modalities and user category establishing guidelines for future accessible biometric products. PMID:29565989

  3. Watermarking protocols for authentication and ownership protection based on timestamps and holograms

    NASA Astrophysics Data System (ADS)

    Dittmann, Jana; Steinebach, Martin; Croce Ferri, Lucilla

    2002-04-01

    Digital watermarking has become an accepted technology for enabling multimedia protection schemes. One problem here is the security of these schemes. Without a suitable framework, watermarks can be replaced and manipulated. We discuss different protocols providing security against rightful ownership attacks and other fraud attempts. We compare the characteristics of existing protocols for different media like direct embedding or seed based and required attributes of the watermarking technology like robustness or payload. We introduce two new media independent protocol schemes for rightful ownership authentication. With the first scheme we ensure security of digital watermarks used for ownership protection with a combination of two watermarks: first watermark of the copyright holder and a second watermark from a Trusted Third Party (TTP). It is based on hologram embedding and the watermark consists of e.g. a company logo. As an example we use digital images and specify the properties of the embedded additional security information. We identify components necessary for the security protocol like timestamp, PKI and cryptographic algorithms. The second scheme is used for authentication. It is designed for invertible watermarking applications which require high data integrity. We combine digital signature schemes and digital watermarking to provide a public verifiable integrity. The original data can only be reproduced with a secret key. Both approaches provide solutions for copyright and authentication watermarking and are introduced for image data but can be easily adopted for video and audio data as well.

  4. Authentication of Smartphone Users Based on Activity Recognition and Mobile Sensing.

    PubMed

    Ehatisham-Ul-Haq, Muhammad; Azam, Muhammad Awais; Loo, Jonathan; Shuang, Kai; Islam, Syed; Naeem, Usman; Amin, Yasar

    2017-09-06

    Smartphones are context-aware devices that provide a compelling platform for ubiquitous computing and assist users in accomplishing many of their routine tasks anytime and anywhere, such as sending and receiving emails. The nature of tasks conducted with these devices has evolved with the exponential increase in the sensing and computing capabilities of a smartphone. Due to the ease of use and convenience, many users tend to store their private data, such as personal identifiers and bank account details, on their smartphone. However, this sensitive data can be vulnerable if the device gets stolen or lost. A traditional approach for protecting this type of data on mobile devices is to authenticate users with mechanisms such as PINs, passwords, and fingerprint recognition. However, these techniques are vulnerable to user compliance and a plethora of attacks, such as smudge attacks. The work in this paper addresses these challenges by proposing a novel authentication framework, which is based on recognizing the behavioral traits of smartphone users using the embedded sensors of smartphone, such as Accelerometer, Gyroscope and Magnetometer. The proposed framework also provides a platform for carrying out multi-class smart user authentication, which provides different levels of access to a wide range of smartphone users. This work has been validated with a series of experiments, which demonstrate the effectiveness of the proposed framework.

  5. Authentication of Smartphone Users Based on Activity Recognition and Mobile Sensing

    PubMed Central

    Ehatisham-ul-Haq, Muhammad; Azam, Muhammad Awais; Loo, Jonathan; Shuang, Kai; Islam, Syed; Naeem, Usman; Amin, Yasar

    2017-01-01

    Smartphones are context-aware devices that provide a compelling platform for ubiquitous computing and assist users in accomplishing many of their routine tasks anytime and anywhere, such as sending and receiving emails. The nature of tasks conducted with these devices has evolved with the exponential increase in the sensing and computing capabilities of a smartphone. Due to the ease of use and convenience, many users tend to store their private data, such as personal identifiers and bank account details, on their smartphone. However, this sensitive data can be vulnerable if the device gets stolen or lost. A traditional approach for protecting this type of data on mobile devices is to authenticate users with mechanisms such as PINs, passwords, and fingerprint recognition. However, these techniques are vulnerable to user compliance and a plethora of attacks, such as smudge attacks. The work in this paper addresses these challenges by proposing a novel authentication framework, which is based on recognizing the behavioral traits of smartphone users using the embedded sensors of smartphone, such as Accelerometer, Gyroscope and Magnetometer. The proposed framework also provides a platform for carrying out multi-class smart user authentication, which provides different levels of access to a wide range of smartphone users. This work has been validated with a series of experiments, which demonstrate the effectiveness of the proposed framework. PMID:28878177

  6. A Fingerprint Encryption Scheme Based on Irreversible Function and Secure Authentication

    PubMed Central

    Yu, Jianping; Zhang, Peng; Wang, Shulan

    2015-01-01

    A fingerprint encryption scheme based on irreversible function has been designed in this paper. Since the fingerprint template includes almost the entire information of users' fingerprints, the personal authentication can be determined only by the fingerprint features. This paper proposes an irreversible transforming function (using the improved SHA1 algorithm) to transform the original minutiae which are extracted from the thinned fingerprint image. Then, Chinese remainder theorem is used to obtain the biokey from the integration of the transformed minutiae and the private key. The result shows that the scheme has better performance on security and efficiency comparing with other irreversible function schemes. PMID:25873989

  7. A fingerprint encryption scheme based on irreversible function and secure authentication.

    PubMed

    Yang, Yijun; Yu, Jianping; Zhang, Peng; Wang, Shulan

    2015-01-01

    A fingerprint encryption scheme based on irreversible function has been designed in this paper. Since the fingerprint template includes almost the entire information of users' fingerprints, the personal authentication can be determined only by the fingerprint features. This paper proposes an irreversible transforming function (using the improved SHA1 algorithm) to transform the original minutiae which are extracted from the thinned fingerprint image. Then, Chinese remainder theorem is used to obtain the biokey from the integration of the transformed minutiae and the private key. The result shows that the scheme has better performance on security and efficiency comparing with other irreversible function schemes.

  8. Design of Secure and Lightweight Authentication Protocol for Wearable Devices Environment.

    PubMed

    Das, Ashok Kumar; Wazid, Mohammad; Kumar, Neeraj; Khan, Muhammad Khurram; Choo, Kim-Kwang Raymond; Park, YoungHo

    2017-09-18

    Wearable devices are used in various applications to collect information including step information, sleeping cycles, workout statistics, and health related information. Due to the nature and richness of the data collected by such devices, it is important to ensure the security of the collected data. This paper presents a new lightweight authentication scheme suitable for wearable device deployment. The scheme allows a user to mutually authenticate his/her wearable device(s) and the mobile terminal (e.g., Android and iOS device) and establish a session key among these devices (worn and carried by the same user) for secure communication between the wearable device and the mobile terminal. The security of the proposed scheme is then demonstrated through the broadly-accepted Real-Or-Random model, as well as using the popular formal security verification tool, known as the Automated Validation of Internet Security Protocols and Applications (AVISPA). Finally, we present a comparative summary of the proposed scheme in terms of the overheads such as computation and communication costs, security and functionality features of the proposed scheme and related schemes, and also the evaluation findings from the NS2 simulation.

  9. Location-assured, multifactor authentication on smartphones via LTE communication

    NASA Astrophysics Data System (ADS)

    Kuseler, Torben; Lami, Ihsan A.; Al-Assam, Hisham

    2013-05-01

    With the added security provided by LTE, geographical location has become an important factor for authentication to enhance the security of remote client authentication during mCommerce applications using Smartphones. Tight combination of geographical location with classic authentication factors like PINs/Biometrics in a real-time, remote verification scheme over the LTE layer connection assures the authenticator about the client itself (via PIN/biometric) as well as the client's current location, thus defines the important aspects of "who", "when", and "where" of the authentication attempt without eaves dropping or man on the middle attacks. To securely integrate location as an authentication factor into the remote authentication scheme, client's location must be verified independently, i.e. the authenticator should not solely rely on the location determined on and reported by the client's Smartphone. The latest wireless data communication technology for mobile phones (4G LTE, Long-Term Evolution), recently being rolled out in various networks, can be employed to enhance this location-factor requirement of independent location verification. LTE's Control Plane LBS provisions, when integrated with user-based authentication and independent source of localisation factors ensures secure efficient, continuous location tracking of the Smartphone. This feature can be performed during normal operation of the LTE-based communication between client and network operator resulting in the authenticator being able to verify the client's claimed location more securely and accurately. Trials and experiments show that such algorithm implementation is viable for nowadays Smartphone-based banking via LTE communication.

  10. A novel biometric authentication approach using ECG and EMG signals.

    PubMed

    Belgacem, Noureddine; Fournier, Régis; Nait-Ali, Amine; Bereksi-Reguig, Fethi

    2015-05-01

    Security biometrics is a secure alternative to traditional methods of identity verification of individuals, such as authentication systems based on user name and password. Recently, it has been found that the electrocardiogram (ECG) signal formed by five successive waves (P, Q, R, S and T) is unique to each individual. In fact, better than any other biometrics' measures, it delivers proof of subject's being alive as extra information which other biometrics cannot deliver. The main purpose of this work is to present a low-cost method for online acquisition and processing of ECG signals for person authentication and to study the possibility of providing additional information and retrieve personal data from an electrocardiogram signal to yield a reliable decision. This study explores the effectiveness of a novel biometric system resulting from the fusion of information and knowledge provided by ECG and EMG (Electromyogram) physiological recordings. It is shown that biometrics based on these ECG/EMG signals offers a novel way to robustly authenticate subjects. Five ECG databases (MIT-BIH, ST-T, NSR, PTB and ECG-ID) and several ECG signals collected in-house from volunteers were exploited. A palm-based ECG biometric system was developed where the signals are collected from the palm of the subject through a minimally intrusive one-lead ECG set-up. A total of 3750 ECG beats were used in this work. Feature extraction was performed on ECG signals using Fourier descriptors (spectral coefficients). Optimum-Path Forest classifier was used to calculate the degree of similarity between individuals. The obtained results from the proposed approach look promising for individuals' authentication.

  11. An SSH key management system: easing the pain of managing key/user/account associations

    NASA Astrophysics Data System (ADS)

    Arkhipkin, D.; Betts, W.; Lauret, J.; Shiryaev, A.

    2008-07-01

    Cyber security requirements for secure access to computing facilities often call for access controls via gatekeepers and the use of two-factor authentication. Using SSH keys to satisfy the two factor authentication requirement has introduced a potentially challenging task of managing the keys and their associations with individual users and user accounts. Approaches for a facility with the simple model of one remote user corresponding to one local user would not work at facilities that require a many-to-many mapping between users and accounts on multiple systems. We will present an SSH key management system we developed, tested and deployed to address the many-to-many dilemma in the environment of the STAR experiment. We will explain its use in an online computing context and explain how it makes possible the management and tracing of group account access spread over many sub-system components (data acquisition, slow controls, trigger, detector instrumentation, etc.) without the use of shared passwords for remote logins.

  12. USign--a security enhanced electronic consent model.

    PubMed

    Li, Yanyan; Xie, Mengjun; Bian, Jiang

    2014-01-01

    Electronic consent becomes increasingly popular in the healthcare sector given the many benefits it provides. However, security concerns, e.g., how to verify the identity of a person who is remotely accessing the electronic consent system in a secure and user-friendly manner, also arise along with the popularity of electronic consent. Unfortunately, existing electronic consent systems do not pay sufficient attention to those issues. They mainly rely on conventional password based authentication to verify the identity of an electronic consent user, which is far from being sufficient given that identity theft threat is real and significant in reality. In this paper, we present a security enhanced electronic consent model called USign. USign enhances the identity protection and authentication for electronic consent systems by leveraging handwritten signatures everyone is familiar with and mobile computing technologies that are becoming ubiquitous. We developed a prototype of USign and conducted preliminary evaluation on accuracy and usability of signature verification. Our experimental results show the feasibility of the proposed model.

  13. Three-dimensional image authentication scheme using sparse phase information in double random phase encoded integral imaging.

    PubMed

    Yi, Faliu; Jeoung, Yousun; Moon, Inkyu

    2017-05-20

    In recent years, many studies have focused on authentication of two-dimensional (2D) images using double random phase encryption techniques. However, there has been little research on three-dimensional (3D) imaging systems, such as integral imaging, for 3D image authentication. We propose a 3D image authentication scheme based on a double random phase integral imaging method. All of the 2D elemental images captured through integral imaging are encrypted with a double random phase encoding algorithm and only partial phase information is reserved. All the amplitude and other miscellaneous phase information in the encrypted elemental images is discarded. Nevertheless, we demonstrate that 3D images from integral imaging can be authenticated at different depths using a nonlinear correlation method. The proposed 3D image authentication algorithm can provide enhanced information security because the decrypted 2D elemental images from the sparse phase cannot be easily observed by the naked eye. Additionally, using sparse phase images without any amplitude information can greatly reduce data storage costs and aid in image compression and data transmission.

  14. A Continuous Identity Authentication Scheme Based on Physiological and Behavioral Characteristics.

    PubMed

    Wu, Guannan; Wang, Jian; Zhang, Yongrong; Jiang, Shuai

    2018-01-10

    Wearable devices have flourished over the past ten years providing great advantages to people and, recently, they have also been used for identity authentication. Most of the authentication methods adopt a one-time authentication manner which cannot provide continuous certification. To address this issue, we present a two-step authentication method based on an own-built fingertip sensor device which can capture motion data (e.g., acceleration and angular velocity) and physiological data (e.g., a photoplethysmography (PPG) signal) simultaneously. When the device is worn on the user's fingertip, it will automatically recognize whether the wearer is a legitimate user or not. More specifically, multisensor data is collected and analyzed to extract representative and intensive features. Then, human activity recognition is applied as the first step to enhance the practicability of the authentication system. After correctly discriminating the motion state, a one-class machine learning algorithm is applied for identity authentication as the second step. When a user wears the device, the authentication process is carried on automatically at set intervals. Analyses were conducted using data from 40 individuals across various operational scenarios. Extensive experiments were executed to examine the effectiveness of the proposed approach, which achieved an average accuracy rate of 98.5% and an F1-score of 86.67%. Our results suggest that the proposed scheme provides a feasible and practical solution for authentication.

  15. A Continuous Identity Authentication Scheme Based on Physiological and Behavioral Characteristics

    PubMed Central

    Wu, Guannan; Wang, Jian; Zhang, Yongrong; Jiang, Shuai

    2018-01-01

    Wearable devices have flourished over the past ten years providing great advantages to people and, recently, they have also been used for identity authentication. Most of the authentication methods adopt a one-time authentication manner which cannot provide continuous certification. To address this issue, we present a two-step authentication method based on an own-built fingertip sensor device which can capture motion data (e.g., acceleration and angular velocity) and physiological data (e.g., a photoplethysmography (PPG) signal) simultaneously. When the device is worn on the user’s fingertip, it will automatically recognize whether the wearer is a legitimate user or not. More specifically, multisensor data is collected and analyzed to extract representative and intensive features. Then, human activity recognition is applied as the first step to enhance the practicability of the authentication system. After correctly discriminating the motion state, a one-class machine learning algorithm is applied for identity authentication as the second step. When a user wears the device, the authentication process is carried on automatically at set intervals. Analyses were conducted using data from 40 individuals across various operational scenarios. Extensive experiments were executed to examine the effectiveness of the proposed approach, which achieved an average accuracy rate of 98.5% and an F1-score of 86.67%. Our results suggest that the proposed scheme provides a feasible and practical solution for authentication. PMID:29320463

  16. Robust and Reusable Fuzzy Extractors

    NASA Astrophysics Data System (ADS)

    Boyen, Xavier

    The use of biometric features as key material in security protocols has often been suggested to relieve their owner from the need to remember long cryptographic secrets. The appeal of biometric data as cryptographic secrets stems from their high apparent entropy, their availability to their owner, and their relative immunity to loss. In particular, they constitute a very effective basis for user authentication, especially when combined with complementary credentials such as a short memorized password or a physical token. However, the use of biometrics in cryptography does not come without problems. Some difficulties are technical, such as the lack of uniformity and the imperfect reproducibility of biometrics, but some challenges are more fundamental.

  17. Complex Conjugated certificateless-based signcryption with differential integrated factor for secured message communication in mobile network

    PubMed Central

    Rajagopalan, S. P.

    2017-01-01

    Certificateless-based signcryption overcomes inherent shortcomings in traditional Public Key Infrastructure (PKI) and Key Escrow problem. It imparts efficient methods to design PKIs with public verifiability and cipher text authenticity with minimum dependency. As a classic primitive in public key cryptography, signcryption performs validity of cipher text without decryption by combining authentication, confidentiality, public verifiability and cipher text authenticity much more efficiently than the traditional approach. In this paper, we first define a security model for certificateless-based signcryption called, Complex Conjugate Differential Integrated Factor (CC-DIF) scheme by introducing complex conjugates through introduction of the security parameter and improving secured message distribution rate. However, both partial private key and secret value changes with respect to time. To overcome this weakness, a new certificateless-based signcryption scheme is proposed by setting the private key through Differential (Diff) Equation using an Integration Factor (DiffEIF), minimizing computational cost and communication overhead. The scheme is therefore said to be proven secure (i.e. improving the secured message distributing rate) against certificateless access control and signcryption-based scheme. In addition, compared with the three other existing schemes, the CC-DIF scheme has the least computational cost and communication overhead for secured message communication in mobile network. PMID:29040290

  18. Complex Conjugated certificateless-based signcryption with differential integrated factor for secured message communication in mobile network.

    PubMed

    Alagarsamy, Sumithra; Rajagopalan, S P

    2017-01-01

    Certificateless-based signcryption overcomes inherent shortcomings in traditional Public Key Infrastructure (PKI) and Key Escrow problem. It imparts efficient methods to design PKIs with public verifiability and cipher text authenticity with minimum dependency. As a classic primitive in public key cryptography, signcryption performs validity of cipher text without decryption by combining authentication, confidentiality, public verifiability and cipher text authenticity much more efficiently than the traditional approach. In this paper, we first define a security model for certificateless-based signcryption called, Complex Conjugate Differential Integrated Factor (CC-DIF) scheme by introducing complex conjugates through introduction of the security parameter and improving secured message distribution rate. However, both partial private key and secret value changes with respect to time. To overcome this weakness, a new certificateless-based signcryption scheme is proposed by setting the private key through Differential (Diff) Equation using an Integration Factor (DiffEIF), minimizing computational cost and communication overhead. The scheme is therefore said to be proven secure (i.e. improving the secured message distributing rate) against certificateless access control and signcryption-based scheme. In addition, compared with the three other existing schemes, the CC-DIF scheme has the least computational cost and communication overhead for secured message communication in mobile network.

  19. Authentication Based on Non-Interactive Zero-Knowledge Proofs for the Internet of Things.

    PubMed

    Martín-Fernández, Francisco; Caballero-Gil, Pino; Caballero-Gil, Cándido

    2016-01-07

    This paper describes the design and analysis of a new scheme for the authenticated exchange of confidential information in insecure environments within the Internet of Things, which allows a receiver of a message to authenticate the sender and compute a secret key shared with it. The proposal is based on the concept of a non-interactive zero-knowledge proof, so that in a single communication, relevant data may be inferred to verify the legitimacy of the sender. Besides, the new scheme uses the idea under the Diffie-Hellman protocol for the establishment of a shared secret key. The proposal has been fully developed for platforms built on the Android Open Source Project, so it can be used in any device or sensor with this operating system. This work provides a performance study of the implementation and a comparison between its promising results and others obtained with similar schemes.

  20. Authentication Based on Non-Interactive Zero-Knowledge Proofs for the Internet of Things

    PubMed Central

    Martín-Fernández, Francisco; Caballero-Gil, Pino; Caballero-Gil, Cándido

    2016-01-01

    This paper describes the design and analysis of a new scheme for the authenticated exchange of confidential information in insecure environments within the Internet of Things, which allows a receiver of a message to authenticate the sender and compute a secret key shared with it. The proposal is based on the concept of a non-interactive zero-knowledge proof, so that in a single communication, relevant data may be inferred to verify the legitimacy of the sender. Besides, the new scheme uses the idea under the Diffie–Hellman protocol for the establishment of a shared secret key. The proposal has been fully developed for platforms built on the Android Open Source Project, so it can be used in any device or sensor with this operating system. This work provides a performance study of the implementation and a comparison between its promising results and others obtained with similar schemes. PMID:26751454

  1. A RONI Based Visible Watermarking Approach for Medical Image Authentication.

    PubMed

    Thanki, Rohit; Borra, Surekha; Dwivedi, Vedvyas; Borisagar, Komal

    2017-08-09

    Nowadays medical data in terms of image files are often exchanged between different hospitals for use in telemedicine and diagnosis. Visible watermarking being extensively used for Intellectual Property identification of such medical images, leads to serious issues if failed to identify proper regions for watermark insertion. In this paper, the Region of Non-Interest (RONI) based visible watermarking for medical image authentication is proposed. In this technique, to RONI of the cover medical image is first identified using Human Visual System (HVS) model. Later, watermark logo is visibly inserted into RONI of the cover medical image to get watermarked medical image. Finally, the watermarked medical image is compared with the original medical image for measurement of imperceptibility and authenticity of proposed scheme. The experimental results showed that this proposed scheme reduces the computational complexity and improves the PSNR when compared to many existing schemes.

  2. Tag ID Subdivision Scheme for Efficient Authentication and Security-Enhancement of RFID System in USN

    NASA Astrophysics Data System (ADS)

    Lee, Kijeong; Park, Byungjoo; Park, Gil-Cheol

    Radio frequency identification (RFID) is a generic term that is used to describe a system that transmits the identity (in the form of a unique serial number) of an object or person wirelessly, using radio waves. However, there are security threats in the RFID system related to its technical components. For example, illegal RFID tag readers can read tag ID and recognize most RFID Readers, a security threat that needs in-depth attention. Previous studies show some ideas on how to minimize these security threats like studying the security protocols between tag, reader and Back-end DB. In this research, the team proposes an RFID Tag ID Subdivision Scheme to authenticate the permitted tag only in USN (Ubiquitous Sensor Network). Using the proposed scheme, the Back-end DB authenticates selected tags only to minimize security threats like eavesdropping and decreasing traffic in Back-end DB.

  3. A privacy authentication scheme based on cloud for medical environment.

    PubMed

    Chen, Chin-Ling; Yang, Tsai-Tung; Chiang, Mao-Lun; Shih, Tzay-Farn

    2014-11-01

    With the rapid development of the information technology, the health care technologies already became matured. Such as electronic medical records that can be easily stored. However, how to get medical resources more convenient is currently concerning issue. In spite of many literatures discussed about medical systems, these literatures should face many security challenges. The most important issue is patients' privacy. Therefore, we propose a privacy authentication scheme based on cloud environment. In our scheme, we use mobile device's characteristics, allowing peoples to use medical resources on the cloud environment to find medical advice conveniently. The digital signature is used to ensure the security of the medical information that is certified by the medical department in our proposed scheme.

  4. On securing wireless sensor network--novel authentication scheme against DOS attacks.

    PubMed

    Raja, K Nirmal; Beno, M Marsaline

    2014-10-01

    Wireless sensor networks are generally deployed for collecting data from various environments. Several applications specific sensor network cryptography algorithms have been proposed in research. However WSN's has many constrictions, including low computation capability, less memory, limited energy resources, vulnerability to physical capture, which enforce unique security challenges needs to make a lot of improvements. This paper presents a novel security mechanism and algorithm for wireless sensor network security and also an application of this algorithm. The proposed scheme is given to strong authentication against Denial of Service Attacks (DOS). The scheme is simulated using network simulator2 (NS2). Then this scheme is analyzed based on the network packet delivery ratio and found that throughput has improved.

  5. An Authentication Protocol for Future Sensor Networks.

    PubMed

    Bilal, Muhammad; Kang, Shin-Gak

    2017-04-28

    Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections. Moreover, to establish multiple data sessions, it is essential that a protocol participant have the capability of running multiple instances of the protocol run, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. Hence, ensuring a lightweight and efficient authentication protocol has become more crucial. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis (including formal analysis using the BAN-logic) and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols.

  6. An Authentication Protocol for Future Sensor Networks

    PubMed Central

    Bilal, Muhammad; Kang, Shin-Gak

    2017-01-01

    Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections. Moreover, to establish multiple data sessions, it is essential that a protocol participant have the capability of running multiple instances of the protocol run, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. Hence, ensuring a lightweight and efficient authentication protocol has become more crucial. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis (including formal analysis using the BAN-logic) and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols. PMID:28452937

  7. Mutual Authentication Scheme in Secure Internet of Things Technology for Comfortable Lifestyle.

    PubMed

    Park, Namje; Kang, Namhi

    2015-12-24

    The Internet of Things (IoT), which can be regarded as an enhanced version of machine-to-machine communication technology, was proposed to realize intelligent thing-to-thing communications by utilizing the Internet connectivity. In the IoT, "things" are generally heterogeneous and resource constrained. In addition, such things are connected to each other over low-power and lossy networks. In this paper, we propose an inter-device authentication and session-key distribution system for devices with only encryption modules. In the proposed system, unlike existing sensor-network environments where the key distribution center distributes the key, each sensor node is involved with the generation of session keys. In addition, in the proposed scheme, the performance is improved so that the authenticated device can calculate the session key in advance. The proposed mutual authentication and session-key distribution system can withstand replay attacks, man-in-the-middle attacks, and wiretapped secret-key attacks.

  8. Medical Image Authentication Using DPT Watermarking: A Preliminary Attempt

    NASA Astrophysics Data System (ADS)

    Wong, M. L. Dennis; Goh, Antionette W.-T.; Chua, Hong Siang

    Secure authentication of digital medical image content provides great value to the e-Health community and medical insurance industries. Fragile Watermarking has been proposed to provide the mechanism to authenticate digital medical image securely. Transform Domain based Watermarking are typically slower than spatial domain watermarking owing to the overhead in calculation of coefficients. In this paper, we propose a new Discrete Pascal Transform based watermarking technique. Preliminary experiment result shows authentication capability. Possible improvements on the proposed scheme are also presented before conclusions.

  9. A new method of enhancing telecommand security: the application of GCM in TC protocol

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Tang, Chaojing; Zhang, Quan

    2007-11-01

    In recent times, security has grown to a topic of major importance for the space missions. Many space agencies have been engaged in research on the selection of proper algorithms for ensuring Telecommand security according to the space communication environment, especially in regard to the privacy and authentication. Since space missions with high security levels need to ensure both privacy and authentication, Authenticated Encryption with Associated Data schemes (AEAD) be integrated into normal Telecommand protocols. This paper provides an overview of the Galois Counter Mode (GCM) of operation, which is one of the available two-pass AEAD schemes, and some preliminary considerations and analyses about its possible application to Telecommand frames specified by CCSDS.

  10. A secure and efficient authentication and key agreement scheme based on ECC for telecare medicine information systems.

    PubMed

    Xu, Xin; Zhu, Ping; Wen, Qiaoyan; Jin, Zhengping; Zhang, Hua; He, Lian

    2014-01-01

    In the field of the Telecare Medicine Information System, recent researches have focused on consummating more convenient and secure healthcare delivery services for patients. In order to protect the sensitive information, various attempts such as access control have been proposed to safeguard patients' privacy in this system. However, these schemes suffered from some certain security defects and had costly consumption, which were not suitable for the telecare medicine information system. In this paper, based on the elliptic curve cryptography, we propose a secure and efficient two-factor mutual authentication and key agreement scheme to reduce the computational cost. Such a scheme enables to provide the patient anonymity by employing the dynamic identity. Compared with other related protocols, the security analysis and performance evaluation show that our scheme overcomes some well-known attacks and has a better performance in the telecare medicine information system.

  11. Unlocking data: federated identity with LSDMA and dCache

    NASA Astrophysics Data System (ADS)

    Millar, AP; Behrmann, G.; Bernardt, C.; Fuhrmann, P.; Hardt, M.; Hayrapetyan, A.; Litvintsev, D.; Mkrtchyan, T.; Rossi, A.; Schwank, K.

    2015-12-01

    X.509, the dominant identity system from grid computing, has proved unpopular for many user communities. More popular alternatives generally assume the user is interacting via their web-browser. Such alternatives allow a user to authenticate with many services with the same credentials (user-name and password). They also allow users from different organisations form collaborations quickly and simply. Scientists generally require that their custom analysis software has direct access to the data. Such direct access is not currently supported by alternatives to X.509, as they require the use of a web-browser. Various approaches to solve this issue are being investigated as part of the Large Scale Data Management and Analysis (LSDMA) project, a German funded national R&D project. These involve dynamic credential translation (creating an X.509 credential) to allow backwards compatibility in addition to direct SAML- and OpenID Connect-based authentication. We present a summary of the current state of art and the current status of the federated identity work funded by the LSDMA project along with the future road map.

  12. A Lightweight Anonymous Authentication Protocol with Perfect Forward Secrecy for Wireless Sensor Networks.

    PubMed

    Xiong, Ling; Peng, Daiyuan; Peng, Tu; Liang, Hongbin; Liu, Zhicai

    2017-11-21

    Due to their frequent use in unattended and hostile deployment environments, the security in wireless sensor networks (WSNs) has attracted much interest in the past two decades. However, it remains a challenge to design a lightweight authentication protocol for WSNs because the designers are confronted with a series of desirable security requirements, e.g., user anonymity, perfect forward secrecy, resistance to de-synchronization attack. Recently, the authors presented two authentication schemes that attempt to provide user anonymity and to resist various known attacks. Unfortunately, in this work we shall show that user anonymity of the two schemes is achieved at the price of an impractical search operation-the gateway node may search for every possible value. Besides this defect, they are also prone to smart card loss attacks and have no provision for perfect forward secrecy. As our main contribution, a lightweight anonymous authentication scheme with perfect forward secrecy is designed, and what we believe the most interesting feature is that user anonymity, perfect forward secrecy, and resistance to de-synchronization attack can be achieved at the same time. As far as we know, it is extremely difficult to meet these security features simultaneously only using the lightweight operations, such as symmetric encryption/decryption and hash functions.

  13. A Lightweight Anonymous Authentication Protocol with Perfect Forward Secrecy for Wireless Sensor Networks

    PubMed Central

    Peng, Daiyuan; Peng, Tu; Liang, Hongbin; Liu, Zhicai

    2017-01-01

    Due to their frequent use in unattended and hostile deployment environments, the security in wireless sensor networks (WSNs) has attracted much interest in the past two decades. However, it remains a challenge to design a lightweight authentication protocol for WSNs because the designers are confronted with a series of desirable security requirements, e.g., user anonymity, perfect forward secrecy, resistance to de-synchronization attack. Recently, the authors presented two authentication schemes that attempt to provide user anonymity and to resist various known attacks. Unfortunately, in this work we shall show that user anonymity of the two schemes is achieved at the price of an impractical search operation—the gateway node may search for every possible value. Besides this defect, they are also prone to smart card loss attacks and have no provision for perfect forward secrecy. As our main contribution, a lightweight anonymous authentication scheme with perfect forward secrecy is designed, and what we believe the most interesting feature is that user anonymity, perfect forward secrecy, and resistance to de-synchronization attack can be achieved at the same time. As far as we know, it is extremely difficult to meet these security features simultaneously only using the lightweight operations, such as symmetric encryption/decryption and hash functions. PMID:29160861

  14. Mutual Authentication Scheme in Secure Internet of Things Technology for Comfortable Lifestyle

    PubMed Central

    Park, Namje; Kang, Namhi

    2015-01-01

    The Internet of Things (IoT), which can be regarded as an enhanced version of machine-to-machine communication technology, was proposed to realize intelligent thing-to-thing communications by utilizing the Internet connectivity. In the IoT, “things” are generally heterogeneous and resource constrained. In addition, such things are connected to each other over low-power and lossy networks. In this paper, we propose an inter-device authentication and session-key distribution system for devices with only encryption modules. In the proposed system, unlike existing sensor-network environments where the key distribution center distributes the key, each sensor node is involved with the generation of session keys. In addition, in the proposed scheme, the performance is improved so that the authenticated device can calculate the session key in advance. The proposed mutual authentication and session-key distribution system can withstand replay attacks, man-in-the-middle attacks, and wiretapped secret-key attacks. PMID:26712759

  15. Improving the Rainbow Attack by Reusing Colours

    NASA Astrophysics Data System (ADS)

    Ågren, Martin; Johansson, Thomas; Hell, Martin

    Hashing or encrypting a key or a password is a vital part in most network security protocols. The most practical generic attack on such schemes is a time memory trade-off attack. Such an attack inverts any one-way function using a trade-off between memory and execution time. Existing techniques include the Hellman attack and the rainbow attack, where the latter uses different reduction functions ("colours") within a table.

  16. User Account Passwords | High-Performance Computing | NREL

    Science.gov Websites

    Account Passwords User Account Passwords For NREL's high-performance computing (HPC) systems, learn about user account password requirements and how to set up, log in, and change passwords. Password Logging In the First Time After you request an HPC user account, you'll receive a temporary password. Set

  17. An Identity-Based Anti-Quantum Privacy-Preserving Blind Authentication in Wireless Sensor Networks.

    PubMed

    Zhu, Hongfei; Tan, Yu-An; Zhu, Liehuang; Wang, Xianmin; Zhang, Quanxin; Li, Yuanzhang

    2018-05-22

    With the development of wireless sensor networks, IoT devices are crucial for the Smart City; these devices change people's lives such as e-payment and e-voting systems. However, in these two systems, the state-of-art authentication protocols based on traditional number theory cannot defeat a quantum computer attack. In order to protect user privacy and guarantee trustworthy of big data, we propose a new identity-based blind signature scheme based on number theorem research unit lattice, this scheme mainly uses a rejection sampling theorem instead of constructing a trapdoor. Meanwhile, this scheme does not depend on complex public key infrastructure and can resist quantum computer attack. Then we design an e-payment protocol using the proposed scheme. Furthermore, we prove our scheme is secure in the random oracle, and satisfies confidentiality, integrity, and non-repudiation. Finally, we demonstrate that the proposed scheme outperforms the other traditional existing identity-based blind signature schemes in signing speed and verification speed, outperforms the other lattice-based blind signature in signing speed, verification speed, and signing secret key size.

  18. An Identity-Based Anti-Quantum Privacy-Preserving Blind Authentication in Wireless Sensor Networks

    PubMed Central

    Zhu, Hongfei; Tan, Yu-an; Zhu, Liehuang; Wang, Xianmin; Zhang, Quanxin; Li, Yuanzhang

    2018-01-01

    With the development of wireless sensor networks, IoT devices are crucial for the Smart City; these devices change people’s lives such as e-payment and e-voting systems. However, in these two systems, the state-of-art authentication protocols based on traditional number theory cannot defeat a quantum computer attack. In order to protect user privacy and guarantee trustworthy of big data, we propose a new identity-based blind signature scheme based on number theorem research unit lattice, this scheme mainly uses a rejection sampling theorem instead of constructing a trapdoor. Meanwhile, this scheme does not depend on complex public key infrastructure and can resist quantum computer attack. Then we design an e-payment protocol using the proposed scheme. Furthermore, we prove our scheme is secure in the random oracle, and satisfies confidentiality, integrity, and non-repudiation. Finally, we demonstrate that the proposed scheme outperforms the other traditional existing identity-based blind signature schemes in signing speed and verification speed, outperforms the other lattice-based blind signature in signing speed, verification speed, and signing secret key size. PMID:29789475

  19. An Energy Efficient Mutual Authentication and Key Agreement Scheme Preserving Anonymity for Wireless Sensor Networks.

    PubMed

    Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2016-06-08

    WSNs (Wireless sensor networks) are nowadays viewed as a vital portion of the IoTs (Internet of Things). Security is a significant issue in WSNs, especially in resource-constrained environments. AKA (Authentication and key agreement) enhances the security of WSNs against adversaries attempting to get sensitive sensor data. Various AKA schemes have been developed for verifying the legitimate users of a WSN. Firstly, we scrutinize Amin-Biswas's currently scheme and demonstrate the major security loopholes in their works. Next, we propose a lightweight AKA scheme, using symmetric key cryptography based on smart card, which is resilient against all well known security attacks. Furthermore, we prove the scheme accomplishes mutual handshake and session key agreement property securely between the participates involved under BAN (Burrows, Abadi and Needham) logic. Moreover, formal security analysis and simulations are also conducted using AVISPA(Automated Validation of Internet Security Protocols and Applications) to show that our scheme is secure against active and passive attacks. Additionally, performance analysis shows that our proposed scheme is secure and efficient to apply for resource-constrained WSNs.

  20. An Energy Efficient Mutual Authentication and Key Agreement Scheme Preserving Anonymity for Wireless Sensor Networks

    PubMed Central

    Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2016-01-01

    WSNs (Wireless sensor networks) are nowadays viewed as a vital portion of the IoTs (Internet of Things). Security is a significant issue in WSNs, especially in resource-constrained environments. AKA (Authentication and key agreement) enhances the security of WSNs against adversaries attempting to get sensitive sensor data. Various AKA schemes have been developed for verifying the legitimate users of a WSN. Firstly, we scrutinize Amin-Biswas’s currently scheme and demonstrate the major security loopholes in their works. Next, we propose a lightweight AKA scheme, using symmetric key cryptography based on smart card, which is resilient against all well known security attacks. Furthermore, we prove the scheme accomplishes mutual handshake and session key agreement property securely between the participates involved under BAN (Burrows, Abadi and Needham) logic. Moreover, formal security analysis and simulations are also conducted using AVISPA(Automated Validation of Internet Security Protocols and Applications) to show that our scheme is secure against active and passive attacks. Additionally, performance analysis shows that our proposed scheme is secure and efficient to apply for resource-constrained WSNs. PMID:27338382

  1. Real time biometric surveillance with gait recognition

    NASA Astrophysics Data System (ADS)

    Mohapatra, Subasish; Swain, Anisha; Das, Manaswini; Mohanty, Subhadarshini

    2018-04-01

    Bio metric surveillance has become indispensable for every system in the recent years. The contribution of bio metric authentication, identification, and screening purposes are widely used in various domains for preventing unauthorized access. A large amount of data needs to be updated, segregated and safeguarded from malicious software and misuse. Bio metrics is the intrinsic characteristics of each individual. Recently fingerprints, iris, passwords, unique keys, and cards are commonly used for authentication purposes. These methods have various issues related to security and confidentiality. These systems are not yet automated to provide the safety and security. The gait recognition system is the alternative for overcoming the drawbacks of the recent bio metric based authentication systems. Gait recognition is newer as it hasn't been implemented in the real-world scenario so far. This is an un-intrusive system that requires no knowledge or co-operation of the subject. Gait is a unique behavioral characteristic of every human being which is hard to imitate. The walking style of an individual teamed with the orientation of joints in the skeletal structure and inclinations between them imparts the unique characteristic. A person can alter one's own external appearance but not skeletal structure. These are real-time, automatic systems that can even process low-resolution images and video frames. In this paper, we have proposed a gait recognition system and compared the performance with conventional bio metric identification systems.

  2. SmartVeh: Secure and Efficient Message Access Control and Authentication for Vehicular Cloud Computing.

    PubMed

    Huang, Qinlong; Yang, Yixian; Shi, Yuxiang

    2018-02-24

    With the growing number of vehicles and popularity of various services in vehicular cloud computing (VCC), message exchanging among vehicles under traffic conditions and in emergency situations is one of the most pressing demands, and has attracted significant attention. However, it is an important challenge to authenticate the legitimate sources of broadcast messages and achieve fine-grained message access control. In this work, we propose SmartVeh, a secure and efficient message access control and authentication scheme in VCC. A hierarchical, attribute-based encryption technique is utilized to achieve fine-grained and flexible message sharing, which ensures that vehicles whose persistent or dynamic attributes satisfy the access policies can access the broadcast message with equipped on-board units (OBUs). Message authentication is enforced by integrating an attribute-based signature, which achieves message authentication and maintains the anonymity of the vehicles. In order to reduce the computations of the OBUs in the vehicles, we outsource the heavy computations of encryption, decryption and signing to a cloud server and road-side units. The theoretical analysis and simulation results reveal that our secure and efficient scheme is suitable for VCC.

  3. SmartVeh: Secure and Efficient Message Access Control and Authentication for Vehicular Cloud Computing

    PubMed Central

    Yang, Yixian; Shi, Yuxiang

    2018-01-01

    With the growing number of vehicles and popularity of various services in vehicular cloud computing (VCC), message exchanging among vehicles under traffic conditions and in emergency situations is one of the most pressing demands, and has attracted significant attention. However, it is an important challenge to authenticate the legitimate sources of broadcast messages and achieve fine-grained message access control. In this work, we propose SmartVeh, a secure and efficient message access control and authentication scheme in VCC. A hierarchical, attribute-based encryption technique is utilized to achieve fine-grained and flexible message sharing, which ensures that vehicles whose persistent or dynamic attributes satisfy the access policies can access the broadcast message with equipped on-board units (OBUs). Message authentication is enforced by integrating an attribute-based signature, which achieves message authentication and maintains the anonymity of the vehicles. In order to reduce the computations of the OBUs in the vehicles, we outsource the heavy computations of encryption, decryption and signing to a cloud server and road-side units. The theoretical analysis and simulation results reveal that our secure and efficient scheme is suitable for VCC. PMID:29495269

  4. Discriminative and robust zero-watermarking scheme based on completed local binary pattern for authentication and copyright identification of medical images

    NASA Astrophysics Data System (ADS)

    Liu, Xiyao; Lou, Jieting; Wang, Yifan; Du, Jingyu; Zou, Beiji; Chen, Yan

    2018-03-01

    Authentication and copyright identification are two critical security issues for medical images. Although zerowatermarking schemes can provide durable, reliable and distortion-free protection for medical images, the existing zerowatermarking schemes for medical images still face two problems. On one hand, they rarely considered the distinguishability for medical images, which is critical because different medical images are sometimes similar to each other. On the other hand, their robustness against geometric attacks, such as cropping, rotation and flipping, is insufficient. In this study, a novel discriminative and robust zero-watermarking (DRZW) is proposed to address these two problems. In DRZW, content-based features of medical images are first extracted based on completed local binary pattern (CLBP) operator to ensure the distinguishability and robustness, especially against geometric attacks. Then, master shares and ownership shares are generated from the content-based features and watermark according to (2,2) visual cryptography. Finally, the ownership shares are stored for authentication and copyright identification. For queried medical images, their content-based features are extracted and master shares are generated. Their watermarks for authentication and copyright identification are recovered by stacking the generated master shares and stored ownership shares. 200 different medical images of 5 types are collected as the testing data and our experimental results demonstrate that DRZW ensures both the accuracy and reliability of authentication and copyright identification. When fixing the false positive rate to 1.00%, the average value of false negative rates by using DRZW is only 1.75% under 20 common attacks with different parameters.

  5. Secure Data Aggregation in Wireless Sensor Network-Fujisaki Okamoto(FO) Authentication Scheme against Sybil Attack.

    PubMed

    Nirmal Raja, K; Maraline Beno, M

    2017-07-01

    In the wireless sensor network(WSN) security is a major issue. There are several network security schemes proposed in research. In the network, malicious nodes obstruct the performance of the network. The network can be vulnerable by Sybil attack. When a node illicitly assertions multiple identities or claims fake IDs, the WSN grieves from an attack named Sybil attack. This attack threatens wireless sensor network in data aggregation, synchronizing system, routing, fair resource allocation and misbehavior detection. Henceforth, the research is carried out to prevent the Sybil attack and increase the performance of the network. This paper presents the novel security mechanism and Fujisaki Okamoto algorithm and also application of the work. The Fujisaki-Okamoto (FO) algorithm is ID based cryptographic scheme and gives strong authentication against Sybil attack. By using Network simulator2 (NS2) the scheme is simulated. In this proposed scheme broadcasting key, time taken for different key sizes, energy consumption, Packet delivery ratio, Throughput were analyzed.

  6. An efficient and secure certificateless authentication protocol for healthcare system on wireless medical sensor networks.

    PubMed

    Guo, Rui; Wen, Qiaoyan; Jin, Zhengping; Zhang, Hua

    2013-01-01

    Sensor networks have opened up new opportunities in healthcare systems, which can transmit patient's condition to health professional's hand-held devices in time. The patient's physiological signals are very sensitive and the networks are extremely vulnerable to many attacks. It must be ensured that patient's privacy is not exposed to unauthorized entities. Therefore, the control of access to healthcare systems has become a crucial challenge. An efficient and secure authentication protocol will thus be needed in wireless medical sensor networks. In this paper, we propose a certificateless authentication scheme without bilinear pairing while providing patient anonymity. Compared with other related protocols, the proposed scheme needs less computation and communication cost and preserves stronger security. Our performance evaluations show that this protocol is more practical for healthcare system in wireless medical sensor networks.

  7. An Efficient and Secure Certificateless Authentication Protocol for Healthcare System on Wireless Medical Sensor Networks

    PubMed Central

    Guo, Rui; Wen, Qiaoyan; Jin, Zhengping; Zhang, Hua

    2013-01-01

    Sensor networks have opened up new opportunities in healthcare systems, which can transmit patient's condition to health professional's hand-held devices in time. The patient's physiological signals are very sensitive and the networks are extremely vulnerable to many attacks. It must be ensured that patient's privacy is not exposed to unauthorized entities. Therefore, the control of access to healthcare systems has become a crucial challenge. An efficient and secure authentication protocol will thus be needed in wireless medical sensor networks. In this paper, we propose a certificateless authentication scheme without bilinear pairing while providing patient anonymity. Compared with other related protocols, the proposed scheme needs less computation and communication cost and preserves stronger security. Our performance evaluations show that this protocol is more practical for healthcare system in wireless medical sensor networks. PMID:23710147

  8. A Survey of Object-Oriented Database Technology

    DTIC Science & Technology

    1990-05-01

    now mention briefly the various security and autho- rization schemes provided by GEMSTONE. 1. Login Authorization. There are two ways to login to...GemStone- through the OPAL programming environment or through the GemStone C interface. A user ID and password is required in both cases to login . 2. Name...lIlj A. Black. Object structure in the Emerald system. Proc. Ist Intl. Conf. on Objcct- Oriented Programming Systems, Languages and Applications, pp

  9. Guess Again (and Again and Again): Measuring Password Strength by Simulating Password-Cracking Algorithms

    DTIC Science & Technology

    2011-08-31

    2011 4 . TITLE AND SUBTITLE Guess Again (and Again and Again): Measuring Password Strength by Simulating Password-Cracking Algorithms 5a. CONTRACT...large numbers of hashed passwords (Booz Allen Hamilton, HBGary, Gawker, Sony Playstation , etc.), coupled with the availability of botnets that offer...when evaluating the strength of different password-composition policies. 4 . We investigate the effectiveness of entropy as a measure of password

  10. Localized lossless authentication watermark (LAW)

    NASA Astrophysics Data System (ADS)

    Celik, Mehmet U.; Sharma, Gaurav; Tekalp, A. Murat; Saber, Eli S.

    2003-06-01

    A novel framework is proposed for lossless authentication watermarking of images which allows authentication and recovery of original images without any distortions. This overcomes a significant limitation of traditional authentication watermarks that irreversibly alter image data in the process of watermarking and authenticate the watermarked image rather than the original. In particular, authenticity is verified before full reconstruction of the original image, whose integrity is inferred from the reversibility of the watermarking procedure. This reduces computational requirements in situations when either the verification step fails or the zero-distortion reconstruction is not required. A particular instantiation of the framework is implemented using a hierarchical authentication scheme and the lossless generalized-LSB data embedding mechanism. The resulting algorithm, called localized lossless authentication watermark (LAW), can localize tampered regions of the image; has a low embedding distortion, which can be removed entirely if necessary; and supports public/private key authentication and recovery options. The effectiveness of the framework and the instantiation is demonstrated through examples.

  11. Security and privacy in electronic health records: a systematic literature review.

    PubMed

    Fernández-Alemán, José Luis; Señor, Inmaculada Carrión; Lozoya, Pedro Ángel Oliver; Toval, Ambrosio

    2013-06-01

    To report the results of a systematic literature review concerning the security and privacy of electronic health record (EHR) systems. Original articles written in English found in MEDLINE, ACM Digital Library, Wiley InterScience, IEEE Digital Library, Science@Direct, MetaPress, ERIC, CINAHL and Trip Database. Only those articles dealing with the security and privacy of EHR systems. The extraction of 775 articles using a predefined search string, the outcome of which was reviewed by three authors and checked by a fourth. A total of 49 articles were selected, of which 26 used standards or regulations related to the privacy and security of EHR data. The most widely used regulations are the Health Insurance Portability and Accountability Act (HIPAA) and the European Data Protection Directive 95/46/EC. We found 23 articles that used symmetric key and/or asymmetric key schemes and 13 articles that employed the pseudo anonymity technique in EHR systems. A total of 11 articles propose the use of a digital signature scheme based on PKI (Public Key Infrastructure) and 13 articles propose a login/password (seven of them combined with a digital certificate or PIN) for authentication. The preferred access control model appears to be Role-Based Access Control (RBAC), since it is used in 27 studies. Ten of these studies discuss who should define the EHR systems' roles. Eleven studies discuss who should provide access to EHR data: patients or health entities. Sixteen of the articles reviewed indicate that it is necessary to override defined access policies in the case of an emergency. In 25 articles an audit-log of the system is produced. Only four studies mention that system users and/or health staff should be trained in security and privacy. Recent years have witnessed the design of standards and the promulgation of directives concerning security and privacy in EHR systems. However, more work should be done to adopt these regulations and to deploy secure EHR systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Unconditionally Secure Credit/Debit Card Chip Scheme and Physical Unclonable Function

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Entesari, Kamran; Granqvist, Claes-Göran; Kwan, Chiman

    The statistical-physics-based Kirchhoff-law-Johnson-noise (KLJN) key exchange offers a new and simple unclonable system for credit/debit card chip authentication and payment. The key exchange, the authentication and the communication are unconditionally secure so that neither mathematics- nor statistics-based attacks are able to crack the scheme. The ohmic connection and the short wiring lengths between the chips in the card and the terminal constitute an ideal setting for the KLJN protocol, and even its simplest versions offer unprecedented security and privacy for credit/debit card chips and applications of physical unclonable functions (PUFs).

  13. An Efficient and Adaptive Mutual Authentication Framework for Heterogeneous Wireless Sensor Network-Based Applications

    PubMed Central

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-01-01

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications. PMID:24521942

  14. An efficient and adaptive mutual authentication framework for heterogeneous wireless sensor network-based applications.

    PubMed

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-02-11

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications.

  15. A Scenario-Based Protocol Checker for Public-Key Authentication Scheme

    NASA Astrophysics Data System (ADS)

    Saito, Takamichi

    Security protocol provides communication security for the internet. One of the important features of it is authentication with key exchange. Its correctness is a requirement of the whole of the communication security. In this paper, we introduce three attack models realized as their attack scenarios, and provide an authentication-protocol checker for applying three attack-scenarios based on the models. We also utilize it to check two popular security protocols: Secure SHell (SSH) and Secure Socket Layer/Transport Layer Security (SSL/TLS).

  16. Patients’ Data Management System Protected by Identity-Based Authentication and Key Exchange

    PubMed Central

    Rivero-García, Alexandra; Santos-González, Iván; Hernández-Goya, Candelaria; Caballero-Gil, Pino; Yung, Moti

    2017-01-01

    A secure and distributed framework for the management of patients’ information in emergency and hospitalization services is proposed here in order to seek improvements in efficiency and security in this important area. In particular, confidentiality protection, mutual authentication, and automatic identification of patients are provided. The proposed system is based on two types of devices: Near Field Communication (NFC) wristbands assigned to patients, and mobile devices assigned to medical staff. Two other main elements of the system are an intermediate server to manage the involved data, and a second server with a private key generator to define the information required to protect communications. An identity-based authentication and key exchange scheme is essential to provide confidential communication and mutual authentication between the medical staff and the private key generator through an intermediate server. The identification of patients is carried out through a keyed-hash message authentication code. Thanks to the combination of the aforementioned tools, a secure alternative mobile health (mHealth) scheme for managing patients’ data is defined for emergency and hospitalization services. Different parts of the proposed system have been implemented, including mobile application, intermediate server, private key generator and communication channels. Apart from that, several simulations have been performed, and, compared with the current system, significant improvements in efficiency have been observed. PMID:28362328

  17. Patients' Data Management System Protected by Identity-Based Authentication and Key Exchange.

    PubMed

    Rivero-García, Alexandra; Santos-González, Iván; Hernández-Goya, Candelaria; Caballero-Gil, Pino; Yung, Moti

    2017-03-31

    A secure and distributed framework for the management of patients' information in emergency and hospitalization services is proposed here in order to seek improvements in efficiency and security in this important area. In particular, confidentiality protection, mutual authentication, and automatic identification of patients are provided. The proposed system is based on two types of devices: Near Field Communication (NFC) wristbands assigned to patients, and mobile devices assigned to medical staff. Two other main elements of the system are an intermediate server to manage the involved data, and a second server with a private key generator to define the information required to protect communications. An identity-based authentication and key exchange scheme is essential to provide confidential communication and mutual authentication between the medical staff and the private key generator through an intermediate server. The identification of patients is carried out through a keyed-hash message authentication code. Thanks to the combination of the aforementioned tools, a secure alternative mobile health (mHealth) scheme for managing patients' data is defined for emergency and hospitalization services. Different parts of the proposed system have been implemented, including mobile application, intermediate server, private key generator and communication channels. Apart from that, several simulations have been performed, and, compared with the current system, significant improvements in efficiency have been observed.

  18. Optical identity authentication technique based on compressive ghost imaging with QR code

    NASA Astrophysics Data System (ADS)

    Wenjie, Zhan; Leihong, Zhang; Xi, Zeng; Yi, Kang

    2018-04-01

    With the rapid development of computer technology, information security has attracted more and more attention. It is not only related to the information and property security of individuals and enterprises, but also to the security and social stability of a country. Identity authentication is the first line of defense in information security. In authentication systems, response time and security are the most important factors. An optical authentication technology based on compressive ghost imaging with QR codes is proposed in this paper. The scheme can be authenticated with a small number of samples. Therefore, the response time of the algorithm is short. At the same time, the algorithm can resist certain noise attacks, so it offers good security.

  19. Crypto-Watermarking of Transmitted Medical Images.

    PubMed

    Al-Haj, Ali; Mohammad, Ahmad; Amer, Alaa'

    2017-02-01

    Telemedicine is a booming healthcare practice that has facilitated the exchange of medical data and expertise between healthcare entities. However, the widespread use of telemedicine applications requires a secured scheme to guarantee confidentiality and verify authenticity and integrity of exchanged medical data. In this paper, we describe a region-based, crypto-watermarking algorithm capable of providing confidentiality, authenticity, and integrity for medical images of different modalities. The proposed algorithm provides authenticity by embedding robust watermarks in images' region of non-interest using SVD in the DWT domain. Integrity is provided in two levels: strict integrity implemented by a cryptographic hash watermark, and content-based integrity implemented by a symmetric encryption-based tamper localization scheme. Confidentiality is achieved as a byproduct of hiding patient's data in the image. Performance of the algorithm was evaluated with respect to imperceptibility, robustness, capacity, and tamper localization, using different medical images. The results showed the effectiveness of the algorithm in providing security for telemedicine applications.

  20. BFT replication resistant to MAC attacks

    NASA Astrophysics Data System (ADS)

    Zbierski, Maciej

    2016-09-01

    Over the last decade numerous Byzantine fault-tolerant (BFT) replication protocols have been proposed in the literature. However, the vast majority of these solutions reuse the same authentication scheme, which makes them susceptible to a so called MAC attack. Such vulnerability enables malicious clients to undetectably prevent the replicated service from processing incoming client requests, and consequently making it permanently unavailable. While some BFT protocols attempted to address this issue by using different authentication mechanisms, they at the same time significantly degraded the performance achieved in correct environments. This article presents a novel adaptive authentication mechanism which can be combined with practically any Byzantine fault-tolerant replication protocol. Unlike previous solutions, the proposed scheme dynamically switches between two operation modes to combine high performance in correct environments and liveness during MAC attacks. The experiment results presented in the article demonstrate that the proposed mechanism can sufficiently tolerate MAC attacks without introducing any observable overhead whenever no faults are present.

  1. Comparative Study on Various Authentication Protocols in Wireless Sensor Networks.

    PubMed

    Rajeswari, S Raja; Seenivasagam, V

    2016-01-01

    Wireless sensor networks (WSNs) consist of lightweight devices with low cost, low power, and short-ranged wireless communication. The sensors can communicate with each other to form a network. In WSNs, broadcast transmission is widely used along with the maximum usage of wireless networks and their applications. Hence, it has become crucial to authenticate broadcast messages. Key management is also an active research topic in WSNs. Several key management schemes have been introduced, and their benefits are not recognized in a specific WSN application. Security services are vital for ensuring the integrity, authenticity, and confidentiality of the critical information. Therefore, the authentication mechanisms are required to support these security services and to be resilient to distinct attacks. Various authentication protocols such as key management protocols, lightweight authentication protocols, and broadcast authentication protocols are compared and analyzed for all secure transmission applications. The major goal of this survey is to compare and find out the appropriate protocol for further research. Moreover, the comparisons between various authentication techniques are also illustrated.

  2. Comparative Study on Various Authentication Protocols in Wireless Sensor Networks

    PubMed Central

    Rajeswari, S. Raja; Seenivasagam, V.

    2016-01-01

    Wireless sensor networks (WSNs) consist of lightweight devices with low cost, low power, and short-ranged wireless communication. The sensors can communicate with each other to form a network. In WSNs, broadcast transmission is widely used along with the maximum usage of wireless networks and their applications. Hence, it has become crucial to authenticate broadcast messages. Key management is also an active research topic in WSNs. Several key management schemes have been introduced, and their benefits are not recognized in a specific WSN application. Security services are vital for ensuring the integrity, authenticity, and confidentiality of the critical information. Therefore, the authentication mechanisms are required to support these security services and to be resilient to distinct attacks. Various authentication protocols such as key management protocols, lightweight authentication protocols, and broadcast authentication protocols are compared and analyzed for all secure transmission applications. The major goal of this survey is to compare and find out the appropriate protocol for further research. Moreover, the comparisons between various authentication techniques are also illustrated. PMID:26881272

  3. Trust recovery model of Ad Hoc network based on identity authentication scheme

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Huan, Shuiyuan

    2017-05-01

    Mobile Ad Hoc network trust model is widely used to solve mobile Ad Hoc network security issues. Aiming at the problem of reducing the network availability caused by the processing of malicious nodes and selfish nodes in mobile Ad Hoc network routing based on trust model, an authentication mechanism based on identity authentication mobile Ad Hoc network is proposed, which uses identity authentication to identify malicious nodes, And trust the recovery of selfish nodes in order to achieve the purpose of reducing network congestion and improving network quality. The simulation results show that the implementation of the mechanism can effectively improve the network availability and security.

  4. Internet Address Space Management in Digital

    DTIC Science & Technology

    1992-09-01

    password: % passwd Changing password for wade Old password: New password: Retype new password: 3. Log out of the cluster center machine by typing...that on some machine, you can use the " passwd " command on the machine where the change is needed. 16

  5. Privacy-protected biometric templates: acoustic ear identification

    NASA Astrophysics Data System (ADS)

    Tuyls, Pim T.; Verbitskiy, Evgeny; Ignatenko, Tanya; Schobben, Daniel; Akkermans, Ton H.

    2004-08-01

    Unique Biometric Identifiers offer a very convenient way for human identification and authentication. In contrast to passwords they have hence the advantage that they can not be forgotten or lost. In order to set-up a biometric identification/authentication system, reference data have to be stored in a central database. As biometric identifiers are unique for a human being, the derived templates comprise unique, sensitive and therefore private information about a person. This is why many people are reluctant to accept a system based on biometric identification. Consequently, the stored templates have to be handled with care and protected against misuse [1, 2, 3, 4, 5, 6]. It is clear that techniques from cryptography can be used to achieve privacy. However, as biometric data are noisy, and cryptographic functions are by construction very sensitive to small changes in their input, and hence one can not apply those crypto techniques straightforwardly. In this paper we show the feasibility of the techniques developed in [5], [6] by applying them to experimental biometric data. As biometric identifier we have choosen the shape of the inner ear-canal, which is obtained by measuring the headphone-to-ear-canal Transfer Functions (HpTFs) which are known to be person dependent [7].

  6. The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock.

    PubMed

    Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong

    2009-01-01

    In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode.

  7. Privacy and Security within Biobanking: The Role of Information Technology.

    PubMed

    Heatherly, Raymond

    2016-03-01

    Along with technical issues, biobanking frequently raises important privacy and security issues that must be resolved as biobanks continue to grow in scale and scope. Consent mechanisms currently in use range from fine-grained to very broad, and in some cases participants are offered very few privacy protections. However, developments in information technology are bringing improvements. New programs and systems are being developed to allow researchers to conduct analyses without distributing the data itself offsite, either by allowing the investigator to communicate with a central computer, or by having each site participate in meta-analysis that results in a shared statistic or final significance result. The implementation of security protocols into the research biobanking setting requires three key elements: authentication, authorization, and auditing. Authentication is the process of making sure individuals are who they claim to be, frequently through the use of a password, a key fob, or a physical (i.e., retinal or fingerprint) scan. Authorization involves ensuring that every individual who attempts an action has permission to do that action. Finally, auditing allows for actions to be logged so that inappropriate or unethical actions can later be traced back to their source. © 2016 American Society of Law, Medicine & Ethics.

  8. Design of a MEMS-based retina scanning system for biometric authentication

    NASA Astrophysics Data System (ADS)

    Woittennek, Franziska; Knobbe, Jens; Pügner, Tino; Schelinski, Uwe; Grüger, Heinrich

    2014-05-01

    There is an increasing need for reliable authentication for a number of applications such as e commerce. Common authentication methods based on ownership (ID card) or knowledge factors (password, PIN) are often prone to manipulations and may therefore be not safe enough. Various inherence factor based methods like fingerprint, retinal pattern or voice identifications are considered more secure. Retina scanning in particular offers both low false rejection rate (FRR) and low false acceptance rate (FAR) with about one in a million. Images of the retina with its characteristic pattern of blood vessels can be made with either a fundus camera or laser scanning methods. The present work describes the optical design of a new compact retina laser scanner which is based on MEMS (Micro Electric Mechanical System) technology. The use of a dual axis micro scanning mirror for laser beam deflection enables a more compact and robust design compared to classical systems. The scanner exhibits a full field of view of 10° which corresponds to an area of 4 mm2 on the retinal surface surrounding the optical disc. The system works in the near infrared and is designed for use under ambient light conditions, which implies a pupil diameter of 1.5 mm. Furthermore it features a long eye relief of 30 mm so that it can be conveniently used by persons wearing glasses. The optical design requirements and the optical performance are discussed in terms of spot diagrams and ray fan plots.

  9. Design of a mutual authentication based on NTRUsign with a perturbation and inherent multipoint control protocol frames in an Ethernet-based passive optical network

    NASA Astrophysics Data System (ADS)

    Yin, Aihan; Ding, Yisheng

    2014-11-01

    Identity-related security issues inherently present in passive optical networks (PON) still exist in the current (1G) and next-generation (10G) Ethernet-based passive optical network (EPON) systems. We propose a mutual authentication scheme that integrates an NTRUsign digital signature algorithm with inherent multipoint control protocol (MPCP) frames over an EPON system between the optical line terminal (OLT) and optical network unit (ONU). Here, a primitive NTRUsign algorithm is significantly modified through the use of a new perturbation so that it can be effectively used for simultaneously completing signature and authentication functions on the OLT and the ONU sides. Also, in order to transmit their individual sensitive messages, which include public key, signature, and random value and so forth, to each other, we redefine three unique frames according to MPCP format frame. These generated messages can be added into the frames and delivered to each other, allowing the OLT and the ONU to go ahead with a mutual identity authentication process to verify their legal identities. Our simulation results show that this proposed scheme performs very well in resisting security attacks and has low influence on the registration efficiency to to-be-registered ONUs. A performance comparison with traditional authentication algorithms is also presented. To the best of our knowledge, no detailed design of mutual authentication in EPON can be found in the literature up to now.

  10. R2NA: Received Signal Strength (RSS) Ratio-Based Node Authentication for Body Area Network

    PubMed Central

    Wu, Yang; Wang, Kai; Sun, Yongmei; Ji, Yuefeng

    2013-01-01

    The body area network (BAN) is an emerging branch of wireless sensor networks for personalized applications. The services in BAN usually have a high requirement on security, especially for the medical diagnosis. One of the fundamental directions to ensure security in BAN is how to provide node authentication. Traditional research using cryptography relies on prior secrets shared among nodes, which leads to high resource cost. In addition, most existing non-cryptographic solutions exploit out-of-band (OOB) channels, but they need the help of additional hardware support or significant modifications to the system software. To avoid the above problems, this paper presents a proximity-based node authentication scheme, which only uses wireless modules equipped on sensors. With only one sensor and one control unit (CU) in BAN, we could detect a unique physical layer characteristic, namely, the difference between the received signal strength (RSS) measured on different devices in BAN. Through the above-mentioned particular difference, we can tell whether the sender is close enough to be legitimate. We validate our scheme through both theoretical analysis and experiments, which are conducted on the real Shimmer nodes. The results demonstrate that our proposed scheme has a good security performance.

  11. An authenticated image encryption scheme based on chaotic maps and memory cellular automata

    NASA Astrophysics Data System (ADS)

    Bakhshandeh, Atieh; Eslami, Ziba

    2013-06-01

    This paper introduces a new image encryption scheme based on chaotic maps, cellular automata and permutation-diffusion architecture. In the permutation phase, a piecewise linear chaotic map is utilized to confuse the plain-image and in the diffusion phase, we employ the Logistic map as well as a reversible memory cellular automata to obtain an efficient and secure cryptosystem. The proposed method admits advantages such as highly secure diffusion mechanism, computational efficiency and ease of implementation. A novel property of the proposed scheme is its authentication ability which can detect whether the image is tampered during the transmission or not. This is particularly important in applications where image data or part of it contains highly sensitive information. Results of various analyses manifest high security of this new method and its capability for practical image encryption.

  12. Identity-Based Authentication for Cloud Computing

    NASA Astrophysics Data System (ADS)

    Li, Hongwei; Dai, Yuanshun; Tian, Ling; Yang, Haomiao

    Cloud computing is a recently developed new technology for complex systems with massive-scale services sharing among numerous users. Therefore, authentication of both users and services is a significant issue for the trust and security of the cloud computing. SSL Authentication Protocol (SAP), once applied in cloud computing, will become so complicated that users will undergo a heavily loaded point both in computation and communication. This paper, based on the identity-based hierarchical model for cloud computing (IBHMCC) and its corresponding encryption and signature schemes, presented a new identity-based authentication protocol for cloud computing and services. Through simulation testing, it is shown that the authentication protocol is more lightweight and efficient than SAP, specially the more lightweight user side. Such merit of our model with great scalability is very suited to the massive-scale cloud.

  13. Alternative Fuels Data Center: Forgot Your Password?

    Science.gov Websites

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center: Forgot Your Password? to someone by E-mail Share Alternative Fuels Data Center: Forgot Your Password? on to share Alternative Fuels Data Center: Forgot Your Password? on AddThis.com... Forgot Your Password

  14. Reversible watermarking for authentication of DICOM images.

    PubMed

    Zain, J M; Baldwin, L P; Clarke, M

    2004-01-01

    We propose a watermarking scheme that can recover the original image from the watermarked one. The purpose is to verify the integrity and authenticity of DICOM images. We used 800x600x8 bits ultrasound (US) images in our experiment. SHA-256 of the whole image is embedded in the least significant bits of the RONI (Region of Non-Interest). If the image has not been altered, the watermark will be extracted and the original image will be recovered. SHA-256 of the recovered image will be compared with the extracted watermark for authentication.

  15. A proactive password checker

    NASA Technical Reports Server (NTRS)

    Bishop, Matt

    1990-01-01

    Password selection has long been a difficult issue; traditionally, passwords are either assigned by the computer or chosen by the user. When the computer does the assignment, the passwords are often hard to remember; when the user makes the selection, the passwords are often easy to guess. This paper describes a technique, and a mechanism, to allow users to select passwords which to them are easy to remember but to others would be very difficult to guess. The technique is site, user, and group compatible, and allows rapid changing of constraints imposed upon the password. Although experience with this technique is limited, it appears to have much promise.

  16. Verified by Visa and MasterCard SecureCode: Or, How Not to Design Authentication

    NASA Astrophysics Data System (ADS)

    Murdoch, Steven J.; Anderson, Ross

    Banks worldwide are starting to authenticate online card transactions using the '3-D Secure' protocol, which is branded as Verified by Visa and MasterCard SecureCode. This has been partly driven by the sharp increase in online fraud that followed the deployment of EMV smart cards for cardholder-present payments in Europe and elsewhere. 3-D Secure has so far escaped academic scrutiny; yet it might be a textbook example of how not to design an authentication protocol. It ignores good design principles and has significant vulnerabilities, some of which are already being exploited. Also, it provides a fascinating lesson in security economics. While other single sign-on schemes such as OpenID, InfoCard and Liberty came up with decent technology they got the economics wrong, and their schemes have not been adopted. 3-D Secure has lousy technology, but got the economics right (at least for banks and merchants); it now boasts hundreds of millions of accounts. We suggest a path towards more robust authentication that is technologically sound and where the economics would work for banks, merchants and customers - given a gentle regulatory nudge.

  17. On the security of a novel probabilistic signature based on bilinear square Diffie-Hellman problem and its extension.

    PubMed

    Zhao, Zhenguo; Shi, Wenbo

    2014-01-01

    Probabilistic signature scheme has been widely used in modern electronic commerce since it could provide integrity, authenticity, and nonrepudiation. Recently, Wu and Lin proposed a novel probabilistic signature (PS) scheme using the bilinear square Diffie-Hellman (BSDH) problem. They also extended it to a universal designated verifier signature (UDVS) scheme. In this paper, we analyze the security of Wu et al.'s PS scheme and UDVS scheme. Through concrete attacks, we demonstrate both of their schemes are not unforgeable. The security analysis shows that their schemes are not suitable for practical applications.

  18. MPI Enhancements in John the Ripper

    NASA Astrophysics Data System (ADS)

    Sykes, Edward R.; Lin, Michael; Skoczen, Wesley

    2010-11-01

    John the Ripper (JtR) is an open source software package commonly used by system administrators to enforce password policy. JtR is designed to attack (i.e., crack) passwords encrypted in a wide variety of commonly used formats. While parallel implementations of JtR exist, there are several limitations to them. This research reports on two distinct algorithms that enhance this password cracking tool using the Message Passing Interface. The first algorithm is a novel approach that uses numerous processors to crack one password by using an innovative approach to workload distribution. In this algorithm the candidate password is distributed to all participating processors and the word list is divided based on probability so that each processor has the same likelihood of cracking the password while eliminating overlapping operations. The second algorithm developed in this research involves dividing the passwords within a password file equally amongst available processors while ensuring load-balanced and fault-tolerant behavior. This paper describes John the Ripper, the design of these two algorithms and preliminary results. Given the same amount of time, the original JtR can crack 29 passwords, whereas our algorithms 1 and 2 can crack an additional 35 and 45 passwords respectively.

  19. A novel secret sharing with two users based on joint transform correlator and compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Tieyu; Chi, Yingying

    2018-05-01

    Recently, joint transform correlator (JTC) has been widely applied to image encryption and authentication. This paper presents a novel secret sharing scheme with two users based on JTC. Two users must be present during the decryption that the system has high security and reliability. In the scheme, two users use their fingerprints to encrypt plaintext, and they can decrypt only if both of them provide the fingerprints which are successfully authenticated. The linear relationship between the plaintext and ciphertext is broken using the compressive sensing, which can resist existing attacks on JTC. The results of the theoretical analysis and numerical simulation confirm the validity of the system.

  20. Multiple Object Based RFID System Using Security Level

    NASA Astrophysics Data System (ADS)

    Kim, Jiyeon; Jung, Jongjin; Ryu, Ukjae; Ko, Hoon; Joe, Susan; Lee, Yongjun; Kim, Boyeon; Chang, Yunseok; Lee, Kyoonha

    2007-12-01

    RFID systems are increasingly applied for operational convenience in wide range of industries and individual life. However, it is uneasy for a person to control many tags because common RFID systems have the restriction that a tag used to identify just a single object. In addition, RFID systems can make some serious problems in violation of privacy and security because of their radio frequency communication. In this paper, we propose a multiple object RFID tag which can keep multiple object identifiers for different applications in a same tag. The proposed tag allows simultaneous access for their pair applications. We also propose an authentication protocol for multiple object tag to prevent serious problems of security and privacy in RFID applications. Especially, we focus on efficiency of the authentication protocol by considering security levels of applications. In the proposed protocol, the applications go through different authentication procedures according to security level of the object identifier stored in the tag. We implemented the proposed RFID scheme and made experimental results about efficiency and stability for the scheme.

  1. A multispectral photon-counting double random phase encoding scheme for image authentication.

    PubMed

    Yi, Faliu; Moon, Inkyu; Lee, Yeon H

    2014-05-20

    In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI) and double random phase encoding (DRPE) schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color) in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.

  2. Comparasion of Password Generator between Coupled Linear Congruential Generator (CLCG) and Linear Congruential Generator (LCG)

    NASA Astrophysics Data System (ADS)

    Imamah; Djunaidy, A.; Rachmad, A.; Damayanti, F.

    2018-01-01

    Password is needed to access the computing services. Text password is a combination between characters, numbers and symbols. One of issues is users will often choose guessable passwords, e.g. date of birth, name of pet, or anniversary date. To address this issue, we proposed password generator using Coupled Congruential method (CLCG). CLCG is a method to solve the weakness of Linear Congruential generator (LCG). In this research, we want to prove that CLCG is really good to generate random password compared to LCG method. The result of this research proves that the highest password strength is obtained by CLCG with score 77.4%. Besides of those things, we had proved that term of LCG is also applicable to CLCG.

  3. Design and Analysis of an Enhanced Patient-Server Mutual Authentication Protocol for Telecare Medical Information System.

    PubMed

    Amin, Ruhul; Islam, S K Hafizul; Biswas, G P; Khan, Muhammad Khurram; Obaidat, Mohammad S

    2015-11-01

    In order to access remote medical server, generally the patients utilize smart card to login to the server. It has been observed that most of the user (patient) authentication protocols suffer from smart card stolen attack that means the attacker can mount several common attacks after extracting smart card information. Recently, Lu et al.'s proposes a session key agreement protocol between the patient and remote medical server and claims that the same protocol is secure against relevant security attacks. However, this paper presents several security attacks on Lu et al.'s protocol such as identity trace attack, new smart card issue attack, patient impersonation attack and medical server impersonation attack. In order to fix the mentioned security pitfalls including smart card stolen attack, this paper proposes an efficient remote mutual authentication protocol using smart card. We have then simulated the proposed protocol using widely-accepted AVISPA simulation tool whose results make certain that the same protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. Moreover, the rigorous security analysis proves that the proposed protocol provides strong security protection on the relevant security attacks including smart card stolen attack. We compare the proposed scheme with several related schemes in terms of computation cost and communication cost as well as security functionalities. It has been observed that the proposed scheme is comparatively better than related existing schemes.

  4. Deformation of angle profiles in forward kinematics for nullifying end-point offset while preserving movement properties.

    PubMed

    Zhang, Xudong

    2002-10-01

    This work describes a new approach that allows an angle-domain human movement model to generate, via forward kinematics, Cartesian-space human movement representation with otherwise inevitable end-point offset nullified but much of the kinematic authenticity retained. The approach incorporates a rectification procedure that determines the minimum postural angle change at the final frame to correct the end-point offset, and a deformation procedure that deforms the angle profile accordingly to preserve maximum original kinematic authenticity. Two alternative deformation schemes, named amplitude-proportional (AP) and time-proportional (TP) schemes, are proposed and formulated. As an illustration and empirical evaluation, the proposed approach, along with two deformation schemes, was applied to a set of target-directed right-hand reaching movements that had been previously measured and modeled. The evaluation showed that both deformation schemes nullified the final frame end-point offset and significantly reduced time-averaged position errors for the end-point as well as the most distal intermediate joint while causing essentially no change in the remaining joints. A comparison between the two schemes based on time-averaged joint and end-point position errors indicated that overall the TP scheme outperformed the AP scheme. In addition, no statistically significant difference in time-averaged angle error was identified between the raw prediction and either of the deformation schemes, nor between the two schemes themselves, suggesting minimal angle-domain distortion incurred by the deformation.

  5. [Application of password manager software in health care].

    PubMed

    Ködmön, József

    2016-12-01

    When using multiple IT systems, handling of passwords in a secure manner means a potential source of problem. The most frequent issues are choosing the appropriate length and complexity, and then remembering the strong passwords. Password manager software provides a good solution for this problem, while greatly increasing the security of sensitive medical data. This article introduces a password manager software and provides basic information of the application. It also discusses how to select a really secure password manager software and suggests a practical application to efficient, safe and comfortable use for health care. Orv. Hetil., 2016, 157(52), 2066-2073.

  6. How secure is your information system? An investigation into actual healthcare worker password practices.

    PubMed

    Cazier, Joseph A; Medlin, B Dawn

    2006-09-27

    For most healthcare information systems, passwords are the first line of defense in keeping patient and administrative records private and secure. However, this defense is only as strong as the passwords employees chose to use. A weak or easily guessed password is like an open door to the medical records room, allowing unauthorized access to sensitive information. In this paper, we present the results of a study of actual healthcare workers' password practices. In general, the vast majority of these passwords have significant security problems on several dimensions. Implications for healthcare professionals are discussed.

  7. How Secure Is Your Information System? An Investigation into Actual Healthcare Worker Password Practices

    PubMed Central

    Cazier, Joseph A; Medlin, B. Dawn

    2006-01-01

    For most healthcare information systems, passwords are the first line of defense in keeping patient and administrative records private and secure. However, this defense is only as strong as the passwords employees chose to use. A weak or easily guessed password is like an open door to the medical records room, allowing unauthorized access to sensitive information. In this paper, we present the results of a study of actual healthcare workers' password practices. In general, the vast majority of these passwords have significant security problems on several dimensions. Implications for healthcare professionals are discussed. PMID:18066366

  8. A pedagogical example of second-order arithmetic sequences applied to the construction of computer passwords by upper elementary grade students

    NASA Astrophysics Data System (ADS)

    Coggins, Porter E.

    2015-04-01

    The purpose of this paper is (1) to present how general education elementary school age students constructed computer passwords using digital root sums and second-order arithmetic sequences, (2) argue that computer password construction can be used as an engaging introduction to generate interest in elementary school students to study mathematics related to computer science, and (3) share additional mathematical ideas accessible to elementary school students that can be used to create computer passwords. This paper serves to fill a current gap in the literature regarding the integration of mathematical content accessible to upper elementary school students and aspects of computer science in general, and computer password construction in particular. In addition, the protocols presented here can serve as a hook to generate further interest in mathematics and computer science. Students learned to create a random-looking computer password by using biometric measurements of their shoe size, height, and age in months and to create a second-order arithmetic sequence, then converted the resulting numbers into characters that become their computer passwords. This password protocol can be used to introduce students to good computer password habits that can serve a foundation for a life-long awareness of data security. A refinement of the password protocol is also presented.

  9. A Mutual Authentication Framework for Wireless Medical Sensor Networks.

    PubMed

    Srinivas, Jangirala; Mishra, Dheerendra; Mukhopadhyay, Sourav

    2017-05-01

    Wireless medical sensor networks (WMSN) comprise of distributed sensors, which can sense human physiological signs and monitor the health condition of the patient. It is observed that providing privacy to the patient's data is an important issue and can be challenging. The information passing is done via the public channel in WMSN. Thus, the patient, sensitive information can be obtained by eavesdropping or by unauthorized use of handheld devices which the health professionals use in monitoring the patient. Therefore, there is an essential need of restricting the unauthorized access to the patient's medical information. Hence, the efficient authentication scheme for the healthcare applications is needed to preserve the privacy of the patients' vital signs. To ensure secure and authorized communication in WMSN, we design a symmetric key based authentication protocol for WMSN environment. The proposed protocol uses only computationally efficient operations to achieve lightweight attribute. We analyze the security of the proposed protocol. We use a formal security proof algorithm to show the scheme security against known attacks. We also use the Automated Validation of Internet Security Protocols and Applications (AVISPA) simulator to show protocol secure against man-in-the-middle attack and replay attack. Additionally, we adopt an informal analysis to discuss the key attributes of the proposed scheme. From the formal proof of security, we can see that an attacker has a negligible probability of breaking the protocol security. AVISPA simulator also demonstrates the proposed scheme security against active attacks, namely, man-in-the-middle attack and replay attack. Additionally, through the comparison of computational efficiency and security attributes with several recent results, proposed scheme seems to be battered.

  10. Safe and Secure Services Based on NGN

    NASA Astrophysics Data System (ADS)

    Fukazawa, Tomoo; Nisase, Takemi; Kawashima, Masahisa; Hariu, Takeo; Oshima, Yoshihito

    Next Generation Network (NGN), which has been undergoing standardization as it has developed, is expected to create new services that converge the fixed and mobile networks. This paper introduces the basic requirements for NGN in terms of security and explains the standardization activities, in particular, the requirements for the security function described in Y.2701 discussed in ITU-T SG-13. In addition to the basic NGN security function, requirements for NGN authentication are also described from three aspects: security, deployability, and service. As examples of authentication implementation, three profiles-namely, fixed, nomadic, and mobile-are defined in this paper. That is, the “fixed profile” is typically for fixed-line subscribers, the “nomadic profile” basically utilizes WiFi access points, and the “mobile profile” provides ideal NGN mobility for mobile subscribers. All three of these profiles satisfy the requirements from security aspects. The three profiles are compared from the viewpoint of requirements for deployability and service. After showing that none of the three profiles can fulfill all of the requirements, we propose that multiple profiles should be used by NGN providers. As service and application examples, two promising NGN applications are proposed. The first is a strong authentication mechanism that makes Web applications more safe and secure even against password theft. It is based on NGN ID federation function. The second provides an easy peer-to-peer broadband virtual private network service aimed at safe and secure communication for personal/SOHO (small office, home office) users, based on NGN SIP (session initiation protocol) session control.

  11. On the Security of a Novel Probabilistic Signature Based on Bilinear Square Diffie-Hellman Problem and Its Extension

    PubMed Central

    Zhao, Zhenguo; Shi, Wenbo

    2014-01-01

    Probabilistic signature scheme has been widely used in modern electronic commerce since it could provide integrity, authenticity, and nonrepudiation. Recently, Wu and Lin proposed a novel probabilistic signature (PS) scheme using the bilinear square Diffie-Hellman (BSDH) problem. They also extended it to a universal designated verifier signature (UDVS) scheme. In this paper, we analyze the security of Wu et al.'s PS scheme and UDVS scheme. Through concrete attacks, we demonstrate both of their schemes are not unforgeable. The security analysis shows that their schemes are not suitable for practical applications. PMID:25025083

  12. Application-level regression testing framework using Jenkins

    DOE PAGES

    Budiardja, Reuben; Bouvet, Timothy; Arnold, Galen

    2017-09-26

    Monitoring and testing for regression of large-scale systems such as the NCSA's Blue Waters supercomputer are challenging tasks. In this paper, we describe the solution we came up with to perform those tasks. The goal was to find an automated solution for running user-level regression tests to evaluate system usability and performance. Jenkins, an automation server software, was chosen for its versatility, large user base, and multitude of plugins including collecting data and plotting test results over time. We also describe our Jenkins deployment to launch and monitor jobs on remote HPC system, perform authentication with one-time password, and integratemore » with our LDAP server for its authorization. We show some use cases and describe our best practices for successfully using Jenkins as a user-level system-wide regression testing and monitoring framework for large supercomputer systems.« less

  13. Application-level regression testing framework using Jenkins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budiardja, Reuben; Bouvet, Timothy; Arnold, Galen

    Monitoring and testing for regression of large-scale systems such as the NCSA's Blue Waters supercomputer are challenging tasks. In this paper, we describe the solution we came up with to perform those tasks. The goal was to find an automated solution for running user-level regression tests to evaluate system usability and performance. Jenkins, an automation server software, was chosen for its versatility, large user base, and multitude of plugins including collecting data and plotting test results over time. We also describe our Jenkins deployment to launch and monitor jobs on remote HPC system, perform authentication with one-time password, and integratemore » with our LDAP server for its authorization. We show some use cases and describe our best practices for successfully using Jenkins as a user-level system-wide regression testing and monitoring framework for large supercomputer systems.« less

  14. Multi-agent integrated password management (MIPM) application secured with encryption

    NASA Astrophysics Data System (ADS)

    Awang, Norkhushaini; Zukri, Nurul Hidayah Ahmad; Rashid, Nor Aimuni Md; Zulkifli, Zuhri Arafah; Nazri, Nor Afifah Mohd

    2017-10-01

    Users use weak passwords and reuse them on different websites and applications. Password managers are a solution to store login information for websites and help users log in automatically. This project developed a system that acts as an agent managing passwords. Multi-Agent Integrated Password Management (MIPM) is an application using encryption that provides users with secure storage of their login account information such as their username, emails and passwords. This project was developed on an Android platform with an encryption agent using Java Agent Development Environment (JADE). The purpose of the embedded agents is to act as a third-party software to ease the encryption process, and in the future, the developed encryption agents can form part of the security system. This application can be used by the computer and mobile users. Currently, users log into many applications causing them to use unique passwords to prevent password leaking. The crypto agent handles the encryption process using an Advanced Encryption Standard (AES) 128-bit encryption algorithm. As a whole, MIPM is developed on the Android application to provide a secure platform to store passwords and has high potential to be commercialised for public use.

  15. An interference-based optical authentication scheme using two phase-only masks with different diffraction distances

    NASA Astrophysics Data System (ADS)

    Lu, Dajiang; He, Wenqi; Liao, Meihua; Peng, Xiang

    2017-02-01

    A new method to eliminate the security risk of the well-known interference-based optical cryptosystem is proposed. In this method, which is suitable for security authentication application, two phase-only masks are separately placed at different distances from the output plane, where a certification image (public image) can be obtained. To further increase the security and flexibility of this authentication system, we employ one more validation image (secret image), which can be observed at another output plane, for confirming the identity of the user. Only if the two correct masks are properly settled at their positions one could obtain two significant images. Besides, even if the legal users exchange their masks (keys), the authentication process will fail and the authentication results will not reveal any information. Numerical simulations are performed to demonstrate the validity and security of the proposed method.

  16. Keystroke dynamics in the pre-touchscreen era

    PubMed Central

    Ahmad, Nasir; Szymkowiak, Andrea; Campbell, Paul A.

    2013-01-01

    Biometric authentication seeks to measure an individual’s unique physiological attributes for the purpose of identity verification. Conventionally, this task has been realized via analyses of fingerprints or signature iris patterns. However, whilst such methods effectively offer a superior security protocol compared with password-based approaches for example, their substantial infrastructure costs, and intrusive nature, make them undesirable and indeed impractical for many scenarios. An alternative approach seeks to develop similarly robust screening protocols through analysis of typing patterns, formally known as keystroke dynamics. Here, keystroke analysis methodologies can utilize multiple variables, and a range of mathematical techniques, in order to extract individuals’ typing signatures. Such variables may include measurement of the period between key presses, and/or releases, or even key-strike pressures. Statistical methods, neural networks, and fuzzy logic have often formed the basis for quantitative analysis on the data gathered, typically from conventional computer keyboards. Extension to more recent technologies such as numerical keypads and touch-screen devices is in its infancy, but obviously important as such devices grow in popularity. Here, we review the state of knowledge pertaining to authentication via conventional keyboards with a view toward indicating how this platform of knowledge can be exploited and extended into the newly emergent type-based technological contexts. PMID:24391568

  17. The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock

    PubMed Central

    Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong

    2009-01-01

    In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode. PMID:22291566

  18. Keystroke dynamics in the pre-touchscreen era.

    PubMed

    Ahmad, Nasir; Szymkowiak, Andrea; Campbell, Paul A

    2013-12-19

    Biometric authentication seeks to measure an individual's unique physiological attributes for the purpose of identity verification. Conventionally, this task has been realized via analyses of fingerprints or signature iris patterns. However, whilst such methods effectively offer a superior security protocol compared with password-based approaches for example, their substantial infrastructure costs, and intrusive nature, make them undesirable and indeed impractical for many scenarios. An alternative approach seeks to develop similarly robust screening protocols through analysis of typing patterns, formally known as keystroke dynamics. Here, keystroke analysis methodologies can utilize multiple variables, and a range of mathematical techniques, in order to extract individuals' typing signatures. Such variables may include measurement of the period between key presses, and/or releases, or even key-strike pressures. Statistical methods, neural networks, and fuzzy logic have often formed the basis for quantitative analysis on the data gathered, typically from conventional computer keyboards. Extension to more recent technologies such as numerical keypads and touch-screen devices is in its infancy, but obviously important as such devices grow in popularity. Here, we review the state of knowledge pertaining to authentication via conventional keyboards with a view toward indicating how this platform of knowledge can be exploited and extended into the newly emergent type-based technological contexts.

  19. Distinguishing attack and second-preimage attack on encrypted message authentication codes (EMAC)

    NASA Astrophysics Data System (ADS)

    Ariwibowo, Sigit; Windarta, Susila

    2016-02-01

    In this paper we show that distinguisher on CBC-MAC can be applied to Encrypted Message Authentication Code (EMAC) scheme. EMAC scheme in general is vulnerable to distinguishing attack and second preimage attack. Distinguishing attack simulation on AES-EMAC using 225 message modifications, no collision have been found. According to second preimage attack simulation on AES-EMAC no collision found between EMAC value of S1 and S2, i.e. no second preimage found for messages that have been tested. Based on distinguishing attack simulation on truncated AES-EMAC we found collision in every message therefore we cannot distinguish truncated AES-EMAC with random function. Second-preimage attack is successfully performed on truncated AES-EMAC.

  20. Voice Biometrics as a Way to Self-service Password Reset

    NASA Astrophysics Data System (ADS)

    Hohgräfe, Bernd; Jacobi, Sebastian

    Password resets are time consuming. Especially when urgent jobs need to be done, it is cumbersome to inform the user helpdesk, to identify oneself and then to wait for response. It is easy to enter a wrong password multiple times, which leads to the blocking of the application. Voice biometrics is an easy and secure way for individuals to reset their own password. Read more about how you can ease the burden of your user helpdesk and how voice biometric password resets benefit your expense situation without harming your security.

  1. How strong are passwords used to protect personal health information in clinical trials?

    PubMed

    El Emam, Khaled; Moreau, Katherine; Jonker, Elizabeth

    2011-02-11

    Findings and statements about how securely personal health information is managed in clinical research are mixed. The objective of our study was to evaluate the security of practices used to transfer and share sensitive files in clinical trials. Two studies were performed. First, 15 password-protected files that were transmitted by email during regulated Canadian clinical trials were obtained. Commercial password recovery tools were used on these files to try to crack their passwords. Second, interviews with 20 study coordinators were conducted to understand file-sharing practices in clinical trials for files containing personal health information. We were able to crack the passwords for 93% of the files (14/15). Among these, 13 files contained thousands of records with sensitive health information on trial participants. The passwords tended to be relatively weak, using common names of locations, animals, car brands, and obvious numeric sequences. Patient information is commonly shared by email in the context of query resolution. Files containing personal health information are shared by email and, by posting them on shared drives with common passwords, to facilitate collaboration. If files containing sensitive patient information must be transferred by email, mechanisms to encrypt them and to ensure that password strength is high are necessary. More sophisticated collaboration tools are required to allow file sharing without password sharing. We provide recommendations to implement these practices.

  2. How Strong are Passwords Used to Protect Personal Health Information in Clinical Trials?

    PubMed Central

    Moreau, Katherine; Jonker, Elizabeth

    2011-01-01

    Background Findings and statements about how securely personal health information is managed in clinical research are mixed. Objective The objective of our study was to evaluate the security of practices used to transfer and share sensitive files in clinical trials. Methods Two studies were performed. First, 15 password-protected files that were transmitted by email during regulated Canadian clinical trials were obtained. Commercial password recovery tools were used on these files to try to crack their passwords. Second, interviews with 20 study coordinators were conducted to understand file-sharing practices in clinical trials for files containing personal health information. Results We were able to crack the passwords for 93% of the files (14/15). Among these, 13 files contained thousands of records with sensitive health information on trial participants. The passwords tended to be relatively weak, using common names of locations, animals, car brands, and obvious numeric sequences. Patient information is commonly shared by email in the context of query resolution. Files containing personal health information are shared by email and, by posting them on shared drives with common passwords, to facilitate collaboration. Conclusion If files containing sensitive patient information must be transferred by email, mechanisms to encrypt them and to ensure that password strength is high are necessary. More sophisticated collaboration tools are required to allow file sharing without password sharing. We provide recommendations to implement these practices. PMID:21317106

  3. One-Time Password Tokens | High-Performance Computing | NREL

    Science.gov Websites

    One-Time Password Tokens One-Time Password Tokens For connecting to NREL's high-performance computing (HPC) systems, learn how to set up a one-time password (OTP) token for remote and privileged a one-time pass code from the HPC Operations team. At the sign-in screen Enter your HPC Username in

  4. Simpler and Safer: One Password Opens Many Online Doors

    ERIC Educational Resources Information Center

    Carnevale, Dan

    2007-01-01

    Going online nowadays often requires more log-ins and passwords than most people can remember. Faculty and staff members will sometimes write their various passwords on yellow sticky notes and post them on their computer monitors--leaving confidential data wide open to any passer-by. What if there were just one password? A single log-on for e-mail…

  5. A Routing Path Construction Method for Key Dissemination Messages in Sensor Networks

    PubMed Central

    Moon, Soo Young; Cho, Tae Ho

    2014-01-01

    Authentication is an important security mechanism for detecting forged messages in a sensor network. Each cluster head (CH) in dynamic key distribution schemes forwards a key dissemination message that contains encrypted authentication keys within its cluster to next-hop nodes for the purpose of authentication. The forwarding path of the key dissemination message strongly affects the number of nodes to which the authentication keys in the message are actually distributed. We propose a routing method for the key dissemination messages to increase the number of nodes that obtain the authentication keys. In the proposed method, each node selects next-hop nodes to which the key dissemination message will be forwarded based on secret key indexes, the distance to the sink node, and the energy consumption of its neighbor nodes. The experimental results show that the proposed method can increase by 50–70% the number of nodes to which authentication keys in each cluster are distributed compared to geographic and energy-aware routing (GEAR). In addition, the proposed method can detect false reports earlier by using the distributed authentication keys, and it consumes less energy than GEAR when the false traffic ratio (FTR) is ≥10%. PMID:25136649

  6. Audited credential delegation: a usable security solution for the virtual physiological human toolkit.

    PubMed

    Haidar, Ali N; Zasada, Stefan J; Coveney, Peter V; Abdallah, Ali E; Beckles, Bruce; Jones, Mike A S

    2011-06-06

    We present applications of audited credential delegation (ACD), a usable security solution for authentication, authorization and auditing in distributed virtual physiological human (VPH) project environments that removes the use of digital certificates from end-users' experience. Current security solutions are based on public key infrastructure (PKI). While PKI offers strong security for VPH projects, it suffers from serious usability shortcomings in terms of end-user acquisition and management of credentials which deter scientists from exploiting distributed VPH environments. By contrast, ACD supports the use of local credentials. Currently, a local ACD username-password combination can be used to access grid-based resources while Shibboleth support is underway. Moreover, ACD provides seamless and secure access to shared patient data, tools and infrastructure, thus supporting the provision of personalized medicine for patients, scientists and clinicians participating in e-health projects from a local to the widest international scale.

  7. Audited credential delegation: a usable security solution for the virtual physiological human toolkit

    PubMed Central

    Haidar, Ali N.; Zasada, Stefan J.; Coveney, Peter V.; Abdallah, Ali E.; Beckles, Bruce; Jones, Mike A. S.

    2011-01-01

    We present applications of audited credential delegation (ACD), a usable security solution for authentication, authorization and auditing in distributed virtual physiological human (VPH) project environments that removes the use of digital certificates from end-users' experience. Current security solutions are based on public key infrastructure (PKI). While PKI offers strong security for VPH projects, it suffers from serious usability shortcomings in terms of end-user acquisition and management of credentials which deter scientists from exploiting distributed VPH environments. By contrast, ACD supports the use of local credentials. Currently, a local ACD username–password combination can be used to access grid-based resources while Shibboleth support is underway. Moreover, ACD provides seamless and secure access to shared patient data, tools and infrastructure, thus supporting the provision of personalized medicine for patients, scientists and clinicians participating in e-health projects from a local to the widest international scale. PMID:22670214

  8. One-Time Password Registration Key Code Request | High-Performance

    Science.gov Websites

    Computing | NREL One-Time Password Registration Key Code Request One-Time Password Registration Key Code Request Use this form to request a one-time password (OTP) registration key code for using . Alternate Email In case there is a second email where we might contact you Phone In case we need to contact

  9. Optical information authentication using compressed double-random-phase-encoded images and quick-response codes.

    PubMed

    Wang, Xiaogang; Chen, Wen; Chen, Xudong

    2015-03-09

    In this paper, we develop a new optical information authentication system based on compressed double-random-phase-encoded images and quick-response (QR) codes, where the parameters of optical lightwave are used as keys for optical decryption and the QR code is a key for verification. An input image attached with QR code is first optically encoded in a simplified double random phase encoding (DRPE) scheme without using interferometric setup. From the single encoded intensity pattern recorded by a CCD camera, a compressed double-random-phase-encoded image, i.e., the sparse phase distribution used for optical decryption, is generated by using an iterative phase retrieval technique with QR code. We compare this technique to the other two methods proposed in literature, i.e., Fresnel domain information authentication based on the classical DRPE with holographic technique and information authentication based on DRPE and phase retrieval algorithm. Simulation results show that QR codes are effective on improving the security and data sparsity of optical information encryption and authentication system.

  10. A Hybrid Authentication and Authorization Process for Control System Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manz, David O.; Edgar, Thomas W.; Fink, Glenn A.

    2010-08-25

    Convergence of control system and IT networks require that security, privacy, and trust be addressed. Trust management continues to plague traditional IT managers and is even more complex when extended into control system networks, with potentially millions of entities, a mission that requires 100% availability. Yet these very networks necessitate a trusted secure environment where controllers and managers can be assured that the systems are secure and functioning properly. We propose a hybrid authentication management protocol that addresses the unique issues inherent within control system networks, while leveraging the considerable research and momentum in existing IT authentication schemes. Our hybridmore » authentication protocol for control systems provides end device to end device authentication within a remote station and between remote stations and control centers. Additionally, the hybrid protocol is failsafe and will not interrupt communication or control of vital systems in a network partition or device failure. Finally, the hybrid protocol is resilient to transitory link loss and can operate in an island mode until connectivity is reestablished.« less

  11. Imaging of the Finger Vein and Blood Flow for Anti-Spoofing Authentication Using a Laser and a MEMS Scanner.

    PubMed

    Lee, Jaekwon; Moon, Seunghwan; Lim, Juhun; Gwak, Min-Joo; Kim, Jae Gwan; Chung, Euiheon; Lee, Jong-Hyun

    2017-04-22

    A new authentication method employing a laser and a scanner is proposed to improve image contrast of the finger vein and to extract blood flow pattern for liveness detection. A micromirror reflects a laser beam and performs a uniform raster scan. Transmissive vein images were obtained, and compared with those of an LED. Blood flow patterns were also obtained based on speckle images in perfusion and occlusion. Curvature ratios of the finger vein and blood flow intensities were found to be nearly constant, regardless of the vein size, which validated the high repeatability of this scheme for identity authentication with anti-spoofing.

  12. Imaging of the Finger Vein and Blood Flow for Anti-Spoofing Authentication Using a Laser and a MEMS Scanner

    PubMed Central

    Lee, Jaekwon; Moon, Seunghwan; Lim, Juhun; Gwak, Min-Joo; Kim, Jae Gwan; Chung, Euiheon; Lee, Jong-Hyun

    2017-01-01

    A new authentication method employing a laser and a scanner is proposed to improve image contrast of the finger vein and to extract blood flow pattern for liveness detection. A micromirror reflects a laser beam and performs a uniform raster scan. Transmissive vein images were obtained, and compared with those of an LED. Blood flow patterns were also obtained based on speckle images in perfusion and occlusion. Curvature ratios of the finger vein and blood flow intensities were found to be nearly constant, regardless of the vein size, which validated the high repeatability of this scheme for identity authentication with anti-spoofing. PMID:28441728

  13. When Sharing Is a Bad Idea: The Effects of Online Social Network Engagement and Sharing Passwords with Friends on Cyberbullying Involvement.

    PubMed

    Meter, Diana J; Bauman, Sheri

    2015-08-01

    Every day, children and adolescents communicate online via social networking sites (SNSs). They also report sharing passwords with peers and friends, a potentially risky behavior in regard to cyber safety. This longitudinal study tested the hypotheses that social network engagement in multiple settings would predict more cyberbullying involvement over time, and that youth who reported sharing passwords would also experience an increase in cyberbullying involvement. Data were collected at two time points one year apart from 1,272 third through eighth grade students. In line with the first study hypothesis, participating in more online SNSs was associated with increased cyberbullying involvement over time, as well as sharing passwords over time. Cyberbullying involvement at T1 predicted decreases in sharing passwords over time, suggesting that youth become aware of the dangers of sharing passwords as a result of their experience. Sharing passwords at T1 was unrelated to cyberbullying involvement at T2. Although it seems that youth may be learning from their previous mistakes, due to the widespread use of social media and normality of sharing passwords among young people, it is important to continue to educate youth about cyber safety and risky online behavior.

  14. Security analysis and improvements to the PsychoPass method.

    PubMed

    Brumen, Bostjan; Heričko, Marjan; Rozman, Ivan; Hölbl, Marko

    2013-08-13

    In a recent paper, Pietro Cipresso et al proposed the PsychoPass method, a simple way to create strong passwords that are easy to remember. However, the method has some security issues that need to be addressed. To perform a security analysis on the PsychoPass method and outline the limitations of and possible improvements to the method. We used the brute force analysis and dictionary attack analysis of the PsychoPass method to outline its weaknesses. The first issue with the Psychopass method is that it requires the password reproduction on the same keyboard layout as was used to generate the password. The second issue is a security weakness: although the produced password is 24 characters long, the password is still weak. We elaborate on the weakness and propose a solution that produces strong passwords. The proposed version first requires the use of the SHIFT and ALT-GR keys in combination with other keys, and second, the keys need to be 1-2 distances apart. The proposed improved PsychoPass method yields passwords that can be broken only in hundreds of years based on current computing powers. The proposed PsychoPass method requires 10 keys, as opposed to 20 keys in the original method, for comparable password strength.

  15. Security Analysis and Improvements to the PsychoPass Method

    PubMed Central

    2013-01-01

    Background In a recent paper, Pietro Cipresso et al proposed the PsychoPass method, a simple way to create strong passwords that are easy to remember. However, the method has some security issues that need to be addressed. Objective To perform a security analysis on the PsychoPass method and outline the limitations of and possible improvements to the method. Methods We used the brute force analysis and dictionary attack analysis of the PsychoPass method to outline its weaknesses. Results The first issue with the Psychopass method is that it requires the password reproduction on the same keyboard layout as was used to generate the password. The second issue is a security weakness: although the produced password is 24 characters long, the password is still weak. We elaborate on the weakness and propose a solution that produces strong passwords. The proposed version first requires the use of the SHIFT and ALT-GR keys in combination with other keys, and second, the keys need to be 1-2 distances apart. Conclusions The proposed improved PsychoPass method yields passwords that can be broken only in hundreds of years based on current computing powers. The proposed PsychoPass method requires 10 keys, as opposed to 20 keys in the original method, for comparable password strength. PMID:23942458

  16. Locking it down

    PubMed Central

    Grindrod, Kelly; Boersema, Jonathan; Waked, Khrystine; Smith, Vivian; Yang, Jilan; Gebotys, Catherine

    2016-01-01

    Objective: To explore the privacy and security of free medication applications (apps) available to Canadian consumers. Methods: The authors searched the Canadian iTunes store for iOS apps and the Canadian Google Play store for Android apps related to medication use and management. Using an Apple iPad Air 2 and a Google Nexus 7 tablet, 2 reviewers generated a list of apps that met the following inclusion criteria: free, available in English, intended for consumer use and related to medication management. Using a standard data collection form, 2 reviewers independently coded each app for the presence/absence of passwords, the storage of personal health information, a privacy statement, encryption, remote wipe and third-party sharing. A Cohen’s Kappa statistic was used to measure interrater agreement. Results: Of the 184 apps evaluated, 70.1% had no password protection or sign-in system. Personal information, including name, date of birth and gender, was requested by 41.8% (77/184) of apps. Contact information, such as address, phone number and email, was requested by 25% (46/184) of apps. Finally, personal health information, other than medication name, was requested by 89.1% (164/184) of apps. Only 34.2% (63/184) of apps had a privacy policy in place. Conclusion: Most free medication apps offer very limited authentication and privacy protocols. As a result, the onus currently falls on patients to input information in these apps selectively and to be aware of the potential privacy issues. Until more secure systems are built, health care practitioners cannot fully support patients wanting to use such apps. PMID:28286594

  17. Locking it down: The privacy and security of mobile medication apps.

    PubMed

    Grindrod, Kelly; Boersema, Jonathan; Waked, Khrystine; Smith, Vivian; Yang, Jilan; Gebotys, Catherine

    2017-01-01

    To explore the privacy and security of free medication applications (apps) available to Canadian consumers. The authors searched the Canadian iTunes store for iOS apps and the Canadian Google Play store for Android apps related to medication use and management. Using an Apple iPad Air 2 and a Google Nexus 7 tablet, 2 reviewers generated a list of apps that met the following inclusion criteria: free, available in English, intended for consumer use and related to medication management. Using a standard data collection form, 2 reviewers independently coded each app for the presence/absence of passwords, the storage of personal health information, a privacy statement, encryption, remote wipe and third-party sharing. A Cohen's Kappa statistic was used to measure interrater agreement. Of the 184 apps evaluated, 70.1% had no password protection or sign-in system. Personal information, including name, date of birth and gender, was requested by 41.8% (77/184) of apps. Contact information, such as address, phone number and email, was requested by 25% (46/184) of apps. Finally, personal health information, other than medication name, was requested by 89.1% (164/184) of apps. Only 34.2% (63/184) of apps had a privacy policy in place. Most free medication apps offer very limited authentication and privacy protocols. As a result, the onus currently falls on patients to input information in these apps selectively and to be aware of the potential privacy issues. Until more secure systems are built, health care practitioners cannot fully support patients wanting to use such apps.

  18. Development of an electronic radiation oncology patient information management system.

    PubMed

    Mandal, Abhijit; Asthana, Anupam Kumar; Aggarwal, Lalit Mohan

    2008-01-01

    The quality of patient care is critically influenced by the availability of accurate information and its efficient management. Radiation oncology consists of many information components, for example there may be information related to the patient (e.g., profile, disease site, stage, etc.), to people (radiation oncologists, radiological physicists, technologists, etc.), and to equipment (diagnostic, planning, treatment, etc.). These different data must be integrated. A comprehensive information management system is essential for efficient storage and retrieval of the enormous amounts of information. A radiation therapy patient information system (RTPIS) has been developed using open source software. PHP and JAVA script was used as the programming languages, MySQL as the database, and HTML and CSF as the design tool. This system utilizes typical web browsing technology using a WAMP5 server. Any user having a unique user ID and password can access this RTPIS. The user ID and password is issued separately to each individual according to the person's job responsibilities and accountability, so that users will be able to only access data that is related to their job responsibilities. With this system authentic users will be able to use a simple web browsing procedure to gain instant access. All types of users in the radiation oncology department should find it user-friendly. The maintenance of the system will not require large human resources or space. The file storage and retrieval process would be be satisfactory, unique, uniform, and easily accessible with adequate data protection. There will be very little possibility of unauthorized handling with this system. There will also be minimal risk of loss or accidental destruction of information.

  19. Entity Resolution Workflow Installation Process and User Guide

    DTIC Science & Technology

    2013-07-01

    Program Files\\PostgreSQL\\9.1\\data superuser ( postgres ), service account ( postgres ) password : "password" Port #: 5432 Add an environment variable...in this report. • Run the script found in <GG_HOME>\\ globalgraph-dist-1.4.6-final\\schema- ddl\\postgresSetup.bat. This script will set up Postgres ...Username: postgres DB Admin PWD: password GlobalGraph App User: gguser GlobalGraph App PWD: password • Restart the Postgres service using the Windows

  20. Authentication based on gestures with smartphone in hand

    NASA Astrophysics Data System (ADS)

    Varga, Juraj; Švanda, Dominik; Varchola, Marek; Zajac, Pavol

    2017-08-01

    We propose a new method of authentication for smartphones and similar devices based on gestures made by user with the device itself. The main advantage of our method is that it combines subtle biometric properties of the gesture (something you are) with a secret information that can be freely chosen by the user (something you know). Our prototype implementation shows that the scheme is feasible in practice. Further development, testing and fine tuning of parameters is required for deployment in the real world.

  1. Individual differences in cyber security behaviors: an examination of who is sharing passwords.

    PubMed

    Whitty, Monica; Doodson, James; Creese, Sadie; Hodges, Duncan

    2015-01-01

    In spite of the number of public advice campaigns, researchers have found that individuals still engage in risky password practices. There is a dearth of research available on individual differences in cyber security behaviors. This study focused on the risky practice of sharing passwords. As predicted, we found that individuals who scored high on a lack of perseverance were more likely to share passwords. Contrary to our hypotheses, we found younger [corrected] people and individuals who score high on self-monitoring were more likely to share passwords. We speculate on the reasons behind these findings, and examine how they might be considered in future cyber security educational campaigns.

  2. Individual Differences in Cyber Security Behaviors: An Examination of Who Is Sharing Passwords

    PubMed Central

    Doodson, James; Creese, Sadie; Hodges, Duncan

    2015-01-01

    Abstract In spite of the number of public advice campaigns, researchers have found that individuals still engage in risky password practices. There is a dearth of research available on individual differences in cyber security behaviors. This study focused on the risky practice of sharing passwords. As predicted, we found that individuals who scored high on a lack of perseverance were more likely to share passwords. Contrary to our hypotheses, we found older people and individuals who score high on self-monitoring were more likely to share passwords. We speculate on the reasons behind these findings, and examine how they might be considered in future cyber security educational campaigns. PMID:25517697

  3. Unisys Corporation OS 1100

    DTIC Science & Technology

    1989-09-27

    a run is always the @RUN statement, which can specify user-id, account number, and project-id. The @ PASSWD statement specifies password and security...Every-Page-Label Options PASSWD password for batch; F36 User-id validation chang for demand; comp, nent set for batch LEV change Clearance Level F33...clearance level @@PASS Change password F36 Current valid password must @@ PASSWD be specified @@SEND Display a print file F16 Sym to user-id or site-id that is

  4. A Secure and Efficient Threshold Group Signature Scheme

    NASA Astrophysics Data System (ADS)

    Zhang, Yansheng; Wang, Xueming; Qiu, Gege

    The paper presents a secure and efficient threshold group signature scheme aiming at two problems of current threshold group signature schemes: conspiracy attack and inefficiency. Scheme proposed in this paper takes strategy of separating designed clerk who is responsible for collecting and authenticating each individual signature from group, the designed clerk don't participate in distribution of group secret key and has his own public key and private key, designed clerk needs to sign part information of threshold group signature after collecting signatures. Thus verifier has to verify signature of the group after validating signature of the designed clerk. This scheme is proved to be secure against conspiracy attack at last and is more efficient by comparing with other schemes.

  5. ECG-cryptography and authentication in body area networks.

    PubMed

    Zhang, Zhaoyang; Wang, Honggang; Vasilakos, Athanasios V; Fang, Hua

    2012-11-01

    Wireless body area networks (BANs) have drawn much attention from research community and industry in recent years. Multimedia healthcare services provided by BANs can be available to anyone, anywhere, and anytime seamlessly. A critical issue in BANs is how to preserve the integrity and privacy of a person's medical data over wireless environments in a resource efficient manner. This paper presents a novel key agreement scheme that allows neighboring nodes in BANs to share a common key generated by electrocardiogram (ECG) signals. The improved Jules Sudan (IJS) algorithm is proposed to set up the key agreement for the message authentication. The proposed ECG-IJS key agreement can secure data communications over BANs in a plug-n-play manner without any key distribution overheads. Both the simulation and experimental results are presented, which demonstrate that the proposed ECG-IJS scheme can achieve better security performance in terms of serval performance metrics such as false acceptance rate (FAR) and false rejection rate (FRR) than other existing approaches. In addition, the power consumption analysis also shows that the proposed ECG-IJS scheme can achieve energy efficiency for BANs.

  6. Quantum tagging for tags containing secret classical data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Adrian

    Various authors have considered schemes for quantum tagging, that is, authenticating the classical location of a classical tagging device by sending and receiving quantum signals from suitably located distant sites, in an environment controlled by an adversary whose quantum information processing and transmitting power is potentially unbounded. All of the schemes proposed elsewhere in the literature assume that the adversary is able to inspect the interior of the tagging device. All of these schemes have been shown to be breakable if the adversary has unbounded predistributed entanglement. We consider here the case in which the tagging device contains a finitemore » key string shared with distant sites but kept secret from the adversary, and show this allows the location of the tagging device to be authenticated securely and indefinitely. Our protocol relies on quantum key distribution between the tagging device and at least one distant site, and demonstrates a new practical application of quantum key distribution. It also illustrates that the attainable security in position-based cryptography can depend crucially on apparently subtle details in the security scenario considered.« less

  7. Towards secure quantum key distribution protocol for wireless LANs: a hybrid approach

    NASA Astrophysics Data System (ADS)

    Naik, R. Lalu; Reddy, P. Chenna

    2015-12-01

    The primary goals of security such as authentication, confidentiality, integrity and non-repudiation in communication networks can be achieved with secure key distribution. Quantum mechanisms are highly secure means of distributing secret keys as they are unconditionally secure. Quantum key distribution protocols can effectively prevent various attacks in the quantum channel, while classical cryptography is efficient in authentication and verification of secret keys. By combining both quantum cryptography and classical cryptography, security of communications over networks can be leveraged. Hwang, Lee and Li exploited the merits of both cryptographic paradigms for provably secure communications to prevent replay, man-in-the-middle, and passive attacks. In this paper, we propose a new scheme with the combination of quantum cryptography and classical cryptography for 802.11i wireless LANs. Since quantum cryptography is premature in wireless networks, our work is a significant step forward toward securing communications in wireless networks. Our scheme is known as hybrid quantum key distribution protocol. Our analytical results revealed that the proposed scheme is provably secure for wireless networks.

  8. PCPA: A Practical Certificateless Conditional Privacy Preserving Authentication Scheme for Vehicular Ad Hoc Networks

    PubMed Central

    2018-01-01

    Vehicle ad hoc networks (VANETs) is a promising network scenario for greatly improving traffic efficiency and safety, in which smart vehicles can communicate with other vehicles or roadside units. For the availability of VANETs, it is very important to deal with the security and privacy problems for VANETs. In this paper, based on certificateless cryptography and elliptic curve cryptography, we present a certificateless signature with message recovery (CLS-MR), which we believe are of independent interest. Then, a practical certificateless conditional privacy preserving authentication (PCPA) scheme is proposed by incorporating the proposed CLS-MR scheme. Furthermore, the security analysis shows that PCPA satisfies all security and privacy requirements. The evaluation results indicate that PCPA achieves low computation and communication costs because there is no need to use the bilinear pairing and map-to-point hash operations. Moreover, extensive simulations show that PCPA is feasible and achieves prominent performances in terms of message delay and message loss ratio, and thus is more suitable for the deployment and adoption of VANETs. PMID:29762511

  9. Time and Space Efficient Algorithms for Two-Party Authenticated Data Structures

    NASA Astrophysics Data System (ADS)

    Papamanthou, Charalampos; Tamassia, Roberto

    Authentication is increasingly relevant to data management. Data is being outsourced to untrusted servers and clients want to securely update and query their data. For example, in database outsourcing, a client's database is stored and maintained by an untrusted server. Also, in simple storage systems, clients can store very large amounts of data but at the same time, they want to assure their integrity when they retrieve them. In this paper, we present a model and protocol for two-party authentication of data structures. Namely, a client outsources its data structure and verifies that the answers to the queries have not been tampered with. We provide efficient algorithms to securely outsource a skip list with logarithmic time overhead at the server and client and logarithmic communication cost, thus providing an efficient authentication primitive for outsourced data, both structured (e.g., relational databases) and semi-structured (e.g., XML documents). In our technique, the client stores only a constant amount of space, which is optimal. Our two-party authentication framework can be deployed on top of existing storage applications, thus providing an efficient authentication service. Finally, we present experimental results that demonstrate the practical efficiency and scalability of our scheme.

  10. Software For Computer-Security Audits

    NASA Technical Reports Server (NTRS)

    Arndt, Kate; Lonsford, Emily

    1994-01-01

    Information relevant to potential breaches of security gathered efficiently. Automated Auditing Tools for VAX/VMS program includes following automated software tools performing noted tasks: Privileged ID Identification, program identifies users and their privileges to circumvent existing computer security measures; Critical File Protection, critical files not properly protected identified; Inactive ID Identification, identifications of users no longer in use found; Password Lifetime Review, maximum lifetimes of passwords of all identifications determined; and Password Length Review, minimum allowed length of passwords of all identifications determined. Written in DEC VAX DCL language.

  11. PNNL: Climate Modelling

    Science.gov Websites

    Runs [ Open Access : Password Protected ] CESM Development CESM Runs [ Open Access : Password Protected ] WRF Development WRF Runs [ Open Access : Password Protected ] Climate Modeling Home Projects Links Literature Manuscripts Publications Polar Group Meeting (2012) ASGC Home ASGC Jobs Web Calendar Wiki Internal

  12. The Characteristics of User-Generated Passwords

    DTIC Science & Technology

    1990-03-01

    electronic keys), user interface tokens (pocket devices that can generate one-time passwords) and fixed password devices ( plastic cards that contain...APPENDIX B-7 DIFFREM DIFFICULTY REMfEIBERING by PASSCHAR PASSORD CARACTERISTICS PASSCHAR Pate I of 1 Count 1 Row Pet IALPHAVET NUMERIC ALPHANUM ASCII Cal Pet

  13. Decryption-decompression of AES protected ZIP files on GPUs

    NASA Astrophysics Data System (ADS)

    Duong, Tan Nhat; Pham, Phong Hong; Nguyen, Duc Huu; Nguyen, Thuy Thanh; Le, Hung Duc

    2011-10-01

    AES is a strong encryption system, so decryption-decompression of AES encrypted ZIP files requires very large computing power and techniques of reducing the password space. This makes implementations of techniques on common computing system not practical. In [1], we reduced the original very large password search space to a much smaller one which surely containing the correct password. Based on reduced set of passwords, in this paper, we parallel decryption, decompression and plain text recognition for encrypted ZIP files by using CUDA computing technology on graphics cards GeForce GTX295 of NVIDIA, to find out the correct password. The experimental results have shown that the speed of decrypting, decompressing, recognizing plain text and finding out the original password increases about from 45 to 180 times (depends on the number of GPUs) compared to sequential execution on the Intel Core 2 Quad Q8400 2.66 GHz. These results have demonstrated the potential applicability of GPUs in this cryptanalysis field.

  14. Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states

    NASA Astrophysics Data System (ADS)

    Farouk, Ahmed; Batle, J.; Elhoseny, M.; Naseri, Mosayeb; Lone, Muzaffar; Fedorov, Alex; Alkhambashi, Majid; Ahmed, Syed Hassan; Abdel-Aty, M.

    2018-04-01

    Quantum communication provides an enormous advantage over its classical counterpart: security of communications based on the very principles of quantum mechanics. Researchers have proposed several approaches for user identity authentication via entanglement. Unfortunately, these protocols fail because an attacker can capture some of the particles in a transmitted sequence and send what is left to the receiver through a quantum channel. Subsequently, the attacker can restore some of the confidential messages, giving rise to the possibility of information leakage. Here we present a new robust General N user authentication protocol based on N-particle Greenberger-Horne-Zeilinger (GHZ) states, which makes eavesdropping detection more effective and secure, as compared to some current authentication protocols. The security analysis of our protocol for various kinds of attacks verifies that it is unconditionally secure, and that an attacker will not obtain any information about the transmitted key. Moreover, as the number of transferred key bits N becomes larger, while the number of users for transmitting the information is increased, the probability of effectively obtaining the transmitted authentication keys is reduced to zero.

  15. dCache, Sync-and-Share for Big Data

    NASA Astrophysics Data System (ADS)

    Millar, AP; Fuhrmann, P.; Mkrtchyan, T.; Behrmann, G.; Bernardt, C.; Buchholz, Q.; Guelzow, V.; Litvintsev, D.; Schwank, K.; Rossi, A.; van der Reest, P.

    2015-12-01

    The availability of cheap, easy-to-use sync-and-share cloud services has split the scientific storage world into the traditional big data management systems and the very attractive sync-and-share services. With the former, the location of data is well understood while the latter is mostly operated in the Cloud, resulting in a rather complex legal situation. Beside legal issues, those two worlds have little overlap in user authentication and access protocols. While traditional storage technologies, popular in HEP, are based on X.509, cloud services and sync-and-share software technologies are generally based on username/password authentication or mechanisms like SAML or Open ID Connect. Similarly, data access models offered by both are somewhat different, with sync-and-share services often using proprietary protocols. As both approaches are very attractive, dCache.org developed a hybrid system, providing the best of both worlds. To avoid reinventing the wheel, dCache.org decided to embed another Open Source project: OwnCloud. This offers the required modern access capabilities but does not support the managed data functionality needed for large capacity data storage. With this hybrid system, scientists can share files and synchronize their data with laptops or mobile devices as easy as with any other cloud storage service. On top of this, the same data can be accessed via established mechanisms, like GridFTP to serve the Globus Transfer Service or the WLCG FTS3 tool, or the data can be made available to worker nodes or HPC applications via a mounted filesystem. As dCache provides a flexible authentication module, the same user can access its storage via different authentication mechanisms; e.g., X.509 and SAML. Additionally, users can specify the desired quality of service or trigger media transitions as necessary, thus tuning data access latency to the planned access profile. Such features are a natural consequence of using dCache. We will describe the design of the hybrid dCache/OwnCloud system, report on several months of operations experience running it at DESY, and elucidate the future road-map.

  16. Protection of Health Imagery by Region Based Lossless Reversible Watermarking Scheme

    PubMed Central

    Priya, R. Lakshmi; Sadasivam, V.

    2015-01-01

    Providing authentication and integrity in medical images is a problem and this work proposes a new blind fragile region based lossless reversible watermarking technique to improve trustworthiness of medical images. The proposed technique embeds the watermark using a reversible least significant bit embedding scheme. The scheme combines hashing, compression, and digital signature techniques to create a content dependent watermark making use of compressed region of interest (ROI) for recovery of ROI as reported in literature. The experiments were carried out to prove the performance of the scheme and its assessment reveals that ROI is extracted in an intact manner and PSNR values obtained lead to realization that the presented scheme offers greater protection for health imageries. PMID:26649328

  17. Prevalence of Sharing Access Credentials in Electronic Medical Records

    PubMed Central

    Korach, Tzfania; Shreberk-Hassidim, Rony; Thomaidou, Elena; Uzefovsky, Florina; Ayal, Shahar; Ariely, Dan

    2017-01-01

    Objectives Confidentiality of health information is an important aspect of the physician patient relationship. The use of digital medical records has made data much more accessible. To prevent data leakage, many countries have created regulations regarding medical data accessibility. These regulations require a unique user ID for each medical staff member, and this must be protected by a password, which should be kept undisclosed by all means. Methods We performed a four-question Google Forms-based survey of medical staff. In the survey, each participant was asked if he/she ever obtained the password of another medical staff member. Then, we asked how many times such an episode occurred and the reason for it. Results A total of 299 surveys were gathered. The responses showed that 220 (73.6%) participants reported that they had obtained the password of another medical staff member. Only 171 (57.2%) estimated how many time it happened, with an average estimation of 4.75 episodes. All the residents that took part in the study (45, 15%) had obtained the password of another medical staff member, while only 57.5% (38/66) of the nurses reported this. Conclusions The use of unique user IDs and passwords to defend the privacy of medical data is a common requirement in medical organizations. Unfortunately, the use of passwords is doomed because medical staff members share their passwords with one another. Strict regulations requiring each staff member to have it's a unique user ID might lead to password sharing and to a decrease in data safety. PMID:28875052

  18. Secure Biometric E-Voting Scheme

    NASA Astrophysics Data System (ADS)

    Ahmed, Taha Kh.; Aborizka, Mohamed

    The implementation of the e-voting becomes more substantial with the rapid increase of e-government development. The recent growth in communications and cryptographic techniques facilitate the implementation of e-voting. Many countries introduced e-voting systems; unfortunately most of these systems are not fully functional. In this paper we will present an e-voting scheme that covers most of the e-voting requirements, smart card and biometric recognition technology were implemented to guarantee voter's privacy and authentication.

  19. 27 CFR 73.12 - What security controls must I use for identification codes and passwords?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false What security controls... controls must I use for identification codes and passwords? If you use electronic signatures based upon use of identification codes in combination with passwords, you must employ controls to ensure their...

  20. DDN Trusted Guard Gateway. Trusted Guard Gateway (TGG) Technology Assessment. Phase 2

    DTIC Science & Technology

    1989-02-02

    strengthened via removal of the encrypted passwords from the password/group files, and imposition of limits on root, login, passwd , and super users. For...amongst these are the removal of the list of encoded passwords from the etc/ passwd file, and the removal of any special privileges from the root ID

  1. Implications of What Children Know about Computer Passwords

    ERIC Educational Resources Information Center

    Coggins, Porter E.

    2013-01-01

    The purpose of this article is to present several implications and recommendations regarding what elementary school children, aged 9-12 years, know about computer passwords and what they know about why computer passwords are important. Student knowledge can then be used to make relevant curriculum decisions based in conjunction with applicable…

  2. User Registration Systems for Distributed Systems

    NASA Astrophysics Data System (ADS)

    Murphy, K. J.; Cechini, M.; Pilone, D.; Mitchell, A.

    2010-12-01

    As NASA’s Earth Observing System Data and Information System (EOSDIS) systems have evolved over the years, most of the EOSDIS data are now available to users via anonymous on-line access. Although the changes have improved the dissemination efficiency of earth science data, the anonymous access has made it difficult to characterize users, capture metrics on the value of EOSDIS and provide customized services that benefit users. As the number of web-based applications continues to grow, data centers and application providers have implemented their own user registration systems and provided new tools and interfaces for their registered users. This has led to the creation of independent registration systems for accessing data and interacting with online tools and services. The user profile information maintained at each of these registration systems is not consistent and the registration enforcement varies by system as well. This problem is in no way unique to EOSDIS and represents a general challenge to the distributed computing community. In a study done in 2007(http://www2007.org/papers/paper620.pd), the average user has approximately 7 passwords for about 25 accounts and enters a password 8 times a day. These numbers have only increased in the last three years. To try and address this, a number of solutions have been offered including Single Sign-On solutions using a common backend like Microsoft Active Directory or an LDAP server, trust based identity providers like OpenID, and various forms of authorization delegation like OAuth or SAML/XACML. This talk discusses the differences between authentication and authorization, the state of the more popular user registration solutions available for distributed use, and some of the technical and policy drivers that need to be considered when incorporating a user registration system into your application.

  3. Filtering methods for broadcast authentication against PKC-based denial of service in WSN: a survey

    NASA Astrophysics Data System (ADS)

    Afianti, Farah; Wirawan, Iwan; Suryani, Titiek

    2017-11-01

    Broadcast authentication is used to determine legitimate packet from authorized user. The received packet can be forwarded or used for the further purpose. The use of digital signature is one of the compromising methods but it is followed by high complexity especially in the verification process. That phenomenon is used by the adversary to force the user to verify a lot of false packet data. Kind of Denial of Service (DoS) which attacks the main signature can be mitigated by using pre-authentication methods as the first layer to filter false packet data. The objective of the filter is not replacing the main signature but as an addition to actual verification in the sensor node. This paper contributes in comparing the cost of computation, storage, and communication among several filters. The result shows Pre- Authenticator and Dos Attack-Resistant scheme have the lower overhead than the others. Thus followed by needing powerful sender. Moreover, the key chain is promising methods because of efficiency and effectiveness.

  4. CENTERA: A Centralized Trust-Based Efficient Routing Protocol with Authentication for Wireless Sensor Networks †

    PubMed Central

    Tajeddine, Ayman; Kayssi, Ayman; Chehab, Ali; Elhajj, Imad; Itani, Wassim

    2015-01-01

    In this paper, we present CENTERA, a CENtralized Trust-based Efficient Routing protocol with an appropriate authentication scheme for wireless sensor networks (WSN). CENTERA utilizes the more powerful base station (BS) to gather minimal neighbor trust information from nodes and calculate the best routes after isolating different types of “bad” nodes. By periodically accumulating these simple local observations and approximating the nodes' battery lives, the BS draws a global view of the network, calculates three quality metrics—maliciousness, cooperation, and compatibility—and evaluates the Data Trust and Forwarding Trust values of each node. Based on these metrics, the BS isolates “bad”, “misbehaving” or malicious nodes for a certain period, and put some nodes on probation. CENTERA increases the node's bad/probation level with repeated “bad” behavior, and decreases it otherwise. Then it uses a very efficient method to distribute the routing information to “good” nodes. Based on its target environment, and if required, CENTERA uses an authentication scheme suitable for severely constrained nodes, ranging from the symmetric RC5 for safe environments under close administration, to pairing-based cryptography (PBC) for hostile environments with a strong attacker model. We simulate CENTERA using TOSSIM and verify its correctness and show some energy calculations. PMID:25648712

  5. CENTERA: a centralized trust-based efficient routing protocol with authentication for wireless sensor networks.

    PubMed

    Tajeddine, Ayman; Kayssi, Ayman; Chehab, Ali; Elhajj, Imad; Itani, Wassim

    2015-02-02

    In this paper, we present CENTERA, a CENtralized Trust-based Efficient Routing protocol with an appropriate authentication scheme for wireless sensor networks (WSN). CENTERA utilizes the more powerful base station (BS) to gather minimal neighbor trust information from nodes and calculate the best routes after isolating different types of "bad" nodes. By periodically accumulating these simple local observations and approximating the nodes' battery lives, the BS draws a global view of the network, calculates three quality metrics-maliciousness, cooperation, and compatibility-and evaluates the Data Trust and Forwarding Trust values of each node. Based on these metrics, the BS isolates "bad", "misbehaving" or malicious nodes for a certain period, and put some nodes on probation. CENTERA increases the node's bad/probation level with repeated "bad" behavior, and decreases it otherwise. Then it uses a very efficient method to distribute the routing information to "good" nodes. Based on its target environment, and if required, CENTERA uses an authentication scheme suitable for severely constrained nodes, ranging from the symmetric RC5 for safe environments under close administration, to pairing-based cryptography (PBC) for hostile environments with a strong attacker model. We simulate CENTERA using TOSSIM and verify its correctness and show some energy calculations.

  6. Multi-image encryption based on synchronization of chaotic lasers and iris authentication

    NASA Astrophysics Data System (ADS)

    Banerjee, Santo; Mukhopadhyay, Sumona; Rondoni, Lamberto

    2012-07-01

    A new technique of transmitting encrypted combinations of gray scaled and chromatic images using chaotic lasers derived from Maxwell-Bloch's equations has been proposed. This novel scheme utilizes the general method of solution of a set of linear equations to transmit similar sized heterogeneous images which are a combination of monochrome and chromatic images. The chaos encrypted gray scaled images are concatenated along the three color planes resulting in color images. These are then transmitted over a secure channel along with a cover image which is an iris scan. The entire cryptology is augmented with an iris-based authentication scheme. The secret messages are retrieved once the authentication is successful. The objective of our work is briefly outlined as (a) the biometric information is the iris which is encrypted before transmission, (b) the iris is used for personal identification and verifying for message integrity, (c) the information is transmitted securely which are colored images resulting from a combination of gray images, (d) each of the images transmitted are encrypted through chaos based cryptography, (e) these encrypted multiple images are then coupled with the iris through linear combination of images before being communicated over the network. The several layers of encryption together with the ergodicity and randomness of chaos render enough confusion and diffusion properties which guarantee a fool-proof approach in achieving secure communication as demonstrated by exhaustive statistical methods. The result is vital from the perspective of opening a fundamental new dimension in multiplexing and simultaneous transmission of several monochromatic and chromatic images along with biometry based authentication and cryptography.

  7. 76 FR 11680 - Service Contracts and Non-Vessel-Operating Service Arrangements; Transmission of Approved Log-In...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... Contracts and Non-Vessel-Operating Service Arrangements; Transmission of Approved Log-In ID and Passwords... advise applicants for log-in IDs and passwords. DATES: The Final Rule is effective March 3, 2011. FOR... the U.S. Mail to transmit approved log-on IDs and password to registrants in the Commission's...

  8. Password Complexity Recommendations: xezandpAxat8Um or P4$$w0rd!!!!

    DTIC Science & Technology

    2014-10-01

    have we seen the computer screen with fast- scrolling characters, with good answers being indicated one by one? This is not a MasterMind game ! Password...security/2013/ 05/how-crackers-make-minced- meat -out-of-your-passwords (Access Date: 2014-04-02). 18 DRDC-RDDC-2014-R27 DOCUMENT CONTROL DATA (Security

  9. PCCEServer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Marcia; Agarwal, Deb

    2003-03-17

    The PCCEServer application is a server that should be used in conjunction with the LBNLSecureMessaging user interface to enable secure synchronous and asynchronous messaging. It provides authentication and authorization services for members of a collaboration group via PKI/SSL and maintains an access control list. Members of collaboration groups using the LBNLSecureMessaging client must register identifying information. including usemame and password and an optional X.509 certificate, with the PCCEServer. This registration not only restricts access to instant messaging, but augments the LBNLSecureMessaging's IRC-based chat facility with persistence. Users register permanent unique user ids by which they are knowTl to other usersmore » in the system and create permanent venues intended for group conversations on a tong-term or continuous basis. In addition, the PCCEServer enhances instant messaging with presence and awareness information such as user availability, and it allows users to leave notes asynchronously for other users who are online or offline. Written in Java, it is a standalone application that can run on any platform that supports a Java Virtual Machine.« less

  10. Open source system OpenVPN in a function of Virtual Private Network

    NASA Astrophysics Data System (ADS)

    Skendzic, A.; Kovacic, B.

    2017-05-01

    Using of Virtual Private Networks (VPN) can establish high security level in network communication. VPN technology enables high security networking using distributed or public network infrastructure. VPN uses different security and managing rules inside networks. It can be set up using different communication channels like Internet or separate ISP communication infrastructure. VPN private network makes security communication channel over public network between two endpoints (computers). OpenVPN is an open source software product under GNU General Public License (GPL) that can be used to establish VPN communication between two computers inside business local network over public communication infrastructure. It uses special security protocols and 256-bit Encryption and it is capable of traversing network address translators (NATs) and firewalls. It allows computers to authenticate each other using a pre-shared secret key, certificates or username and password. This work gives review of VPN technology with a special accent on OpenVPN. This paper will also give comparison and financial benefits of using open source VPN software in business environment.

  11. Authenticated IGMP for Controlling Access to Multicast Distribution Tree

    NASA Astrophysics Data System (ADS)

    Park, Chang-Seop; Kang, Hyun-Sun

    A receiver access control scheme is proposed to protect the multicast distribution tree from DoS attack induced by unauthorized use of IGMP, by extending the security-related functionality of IGMP. Based on a specific network and business model adopted for commercial deployment of IP multicast applications, a key management scheme is also presented for bootstrapping the proposed access control as well as accounting and billing for CP (Content Provider), NSP (Network Service Provider), and group members.

  12. Minutiae Matching with Privacy Protection Based on the Combination of Garbled Circuit and Homomorphic Encryption

    PubMed Central

    Li, Mengxing; Zhao, Jian; Yang, Mei; Kang, Lijun; Wu, Lili

    2014-01-01

    Biometrics plays an important role in authentication applications since they are strongly linked to holders. With an increasing growth of e-commerce and e-government, one can expect that biometric-based authentication systems are possibly deployed over the open networks in the near future. However, due to its openness, the Internet poses a great challenge to the security and privacy of biometric authentication. Biometric data cannot be revoked, so it is of paramount importance that biometric data should be handled in a secure way. In this paper we present a scheme achieving privacy-preserving fingerprint authentication between two parties, in which fingerprint minutiae matching algorithm is completed in the encrypted domain. To improve the efficiency, we exploit homomorphic encryption as well as garbled circuits to design the protocol. Our goal is to provide protection for the security of template in storage and data privacy of two parties in transaction. The experimental results show that the proposed authentication protocol runs efficiently. Therefore, the protocol can run over open networks and help to alleviate the concerns on security and privacy of biometric applications over the open networks. PMID:24711729

  13. Minutiae matching with privacy protection based on the combination of garbled circuit and homomorphic encryption.

    PubMed

    Li, Mengxing; Feng, Quan; Zhao, Jian; Yang, Mei; Kang, Lijun; Wu, Lili

    2014-01-01

    Biometrics plays an important role in authentication applications since they are strongly linked to holders. With an increasing growth of e-commerce and e-government, one can expect that biometric-based authentication systems are possibly deployed over the open networks in the near future. However, due to its openness, the Internet poses a great challenge to the security and privacy of biometric authentication. Biometric data cannot be revoked, so it is of paramount importance that biometric data should be handled in a secure way. In this paper we present a scheme achieving privacy-preserving fingerprint authentication between two parties, in which fingerprint minutiae matching algorithm is completed in the encrypted domain. To improve the efficiency, we exploit homomorphic encryption as well as garbled circuits to design the protocol. Our goal is to provide protection for the security of template in storage and data privacy of two parties in transaction. The experimental results show that the proposed authentication protocol runs efficiently. Therefore, the protocol can run over open networks and help to alleviate the concerns on security and privacy of biometric applications over the open networks.

  14. Group Management Method of RFID Passwords for Privacy Protection

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuichi; Kuwana, Toshiyuki; Taniguchi, Yoji; Komoda, Norihisa

    When RFID tag is used in the whole item lifecycle including a consumer scene or a recycle scene, we have to protect consumer privacy in the state that RFID tag is stuck on an item. We use the low cost RFID tag that has the access control function using a password, and we propose a method which manages RFID tags by passwords identical to each group of RFID tags. This proposal improves safety of RFID system because the proposal method is able to reduce the traceability for a RFID tag, and hold down the influence for disclosure of RFID passwords in the both scenes.

  15. Advanced Terrain Representation for the Microticcit Workstation: System Maintenance Manual

    DTIC Science & Technology

    1986-02-01

    enter the */ /* password. */ /* Inputs: passwd - password to compare userfs entry to */ /* Outputs: TRUE - if password entered correctly...include "atrdefs.h" #include "ctype.h" extern char window[]; /* useable portion of screen */ 1 i getpw( passwd ) char passwd []; { int c...blank input window */ pcvgcp(&row,*col); curs_off(); nchars - ntries - 0; len « strlen( passwd ); pcvwca(len,• *,REVIDEO); /* process keys till user

  16. Distributed Password Cracking

    DTIC Science & Technology

    2009-12-01

    other services for early UNIX systems at Bell labs. In many UNIX based systems, the field added to ‘etc/ passwd ’ file to carry GCOS ID information was...charset, and external. struct options_main { /* Option flags */ opt_flags flags; /* Password files */ struct list_main * passwd ; /* Password file...object PASSWD . It is part of several other data structures. struct PASSWD { int id; char *login; char *passwd_hash; int UID

  17. Comment on "Cheating prevention in visual cryptography".

    PubMed

    Chen, Yu-Chi; Horng, Gwoboa; Tsai, Du-Shiau

    2012-07-01

    Visual cryptography (VC), proposed by Naor and Shamir, has numerous applications, including visual authentication and identification, steganography, and image encryption. In 2006, Horng showed that cheating is possible in VC, where some participants can deceive the remaining participants by forged transparencies. Since then, designing cheating-prevention visual secret-sharing (CPVSS) schemes has been studied by many researchers. In this paper, we cryptanalyze the Hu-Tzeng CPVSS scheme and show that it is not cheating immune. We also outline an improvement that helps to overcome the problem.

  18. The Combination of RSA And Block Chiper Algorithms To Maintain Message Authentication

    NASA Astrophysics Data System (ADS)

    Yanti Tarigan, Sepri; Sartika Ginting, Dewi; Lumban Gaol, Melva; Lorensi Sitompul, Kristin

    2017-12-01

    RSA algorithm is public key algorithm using prime number and even still used today. The strength of this algorithm lies in the exponential process, and the factorial number into 2 prime numbers which until now difficult to do factoring. The RSA scheme itself adopts the block cipher scheme, where prior to encryption, the existing plaintext is divide in several block of the same length, where the plaintext and ciphertext are integers between 1 to n, where n is typically 1024 bit, and the block length itself is smaller or equal to log(n)+1 with base 2. With the combination of RSA algorithm and block chiper it is expected that the authentication of plaintext is secure. The secured message will be encrypted with RSA algorithm first and will be encrypted again using block chiper. And conversely, the chipertext will be decrypted with the block chiper first and decrypted again with the RSA algorithm. This paper suggests a combination of RSA algorithms and block chiper to secure data.

  19. K-Anonymous Multi-party Secret Handshakes

    NASA Astrophysics Data System (ADS)

    Xu, Shouhuai; Yung, Moti

    Anonymity-protection techniques are crucial for various commercial and financial transactions, where participants are worried about their privacy. On the other hand, authentication methods are also crucial for such interactions. Secret handshake is a relatively recent mechanism that facilitates privacy-preserving mutual authentication between communicating peers. In recent years, researchers have proposed a set of secret handshake schemes based on different assumptions about the credentials used: from one-time credentials to the more general PKI-like credentials. In this paper, we concentrate on k-anonymous secret handshake schemes based on PKI-like infrastructures. More specifically, we deal with the k-anonymous m-party (m > 2) secret handshake problem, which is significantly more involved than its two-party counterpart due to the following: When an honest user hand-shakes with m - 1 parties, it must be assured that these parties are distinct; otherwise, under the mask of anonymity a dishonest participant may clone itself in a single handshake session (i.e., assuming multiple personalities).

  20. Encryption Characteristics of Two USB-based Personal Health Record Devices

    PubMed Central

    Wright, Adam; Sittig, Dean F.

    2007-01-01

    Personal health records (PHRs) hold great promise for empowering patients and increasing the accuracy and completeness of health information. We reviewed two small USB-based PHR devices that allow a patient to easily store and transport their personal health information. Both devices offer password protection and encryption features. Analysis of the devices shows that they store their data in a Microsoft Access database. Due to a flaw in the encryption of this database, recovering the user’s password can be accomplished with minimal effort. Our analysis also showed that, rather than encrypting health information with the password chosen by the user, the devices stored the user’s password as a string in the database and then encrypted that database with a common password set by the manufacturer. This is another serious vulnerability. This article describes the weaknesses we discovered, outlines three critical flaws with the security model used by the devices, and recommends four guidelines for improving the security of similar devices. PMID:17460132

  1. Secure Wake-Up Scheme for WBANs

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Wei; Ameen, Moshaddique Al; Kwak, Kyung-Sup

    Network life time and hence device life time is one of the fundamental metrics in wireless body area networks (WBAN). To prolong it, especially those of implanted sensors, each node must conserve its energy as much as possible. While a variety of wake-up/sleep mechanisms have been proposed, the wake-up radio potentially serves as a vehicle to introduce vulnerabilities and attacks to WBAN, eventually resulting in its malfunctions. In this paper, we propose a novel secure wake-up scheme, in which a wake-up authentication code (WAC) is employed to ensure that a BAN Node (BN) is woken up by the correct BAN Network Controller (BNC) rather than unintended users or malicious attackers. The scheme is thus particularly implemented by a two-radio architecture. We show that our scheme provides higher security while consuming less energy than the existing schemes.

  2. Authenticity preservation with histogram-based reversible data hiding and quadtree concepts.

    PubMed

    Huang, Hsiang-Cheh; Fang, Wai-Chi

    2011-01-01

    With the widespread use of identification systems, establishing authenticity with sensors has become an important research issue. Among the schemes for making authenticity verification based on information security possible, reversible data hiding has attracted much attention during the past few years. With its characteristics of reversibility, the scheme is required to fulfill the goals from two aspects. On the one hand, at the encoder, the secret information needs to be embedded into the original image by some algorithms, such that the output image will resemble the input one as much as possible. On the other hand, at the decoder, both the secret information and the original image must be correctly extracted and recovered, and they should be identical to their embedding counterparts. Under the requirement of reversibility, for evaluating the performance of the data hiding algorithm, the output image quality, named imperceptibility, and the number of bits for embedding, called capacity, are the two key factors to access the effectiveness of the algorithm. Besides, the size of side information for making decoding possible should also be evaluated. Here we consider using the characteristics of original images for developing our method with better performance. In this paper, we propose an algorithm that has the ability to provide more capacity than conventional algorithms, with similar output image quality after embedding, and comparable side information produced. Simulation results demonstrate the applicability and better performance of our algorithm.

  3. Dynamic sample size detection in learning command line sequence for continuous authentication.

    PubMed

    Traore, Issa; Woungang, Isaac; Nakkabi, Youssef; Obaidat, Mohammad S; Ahmed, Ahmed Awad E; Khalilian, Bijan

    2012-10-01

    Continuous authentication (CA) consists of authenticating the user repetitively throughout a session with the goal of detecting and protecting against session hijacking attacks. While the accuracy of the detector is central to the success of CA, the detection delay or length of an individual authentication period is important as well since it is a measure of the window of vulnerability of the system. However, high accuracy and small detection delay are conflicting requirements that need to be balanced for optimum detection. In this paper, we propose the use of sequential sampling technique to achieve optimum detection by trading off adequately between detection delay and accuracy in the CA process. We illustrate our approach through CA based on user command line sequence and naïve Bayes classification scheme. Experimental evaluation using the Greenberg data set yields encouraging results consisting of a false acceptance rate (FAR) of 11.78% and a false rejection rate (FRR) of 1.33%, with an average command sequence length (i.e., detection delay) of 37 commands. When using the Schonlau (SEA) data set, we obtain FAR = 4.28% and FRR = 12%.

  4. SEAODV: A Security Enhanced AODV Routing Protocol for Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Li, Celia; Wang, Zhuang; Yang, Cungang

    In this paper, we propose a Security Enhanced AODV routing protocol (SEAODV) for wireless mesh networks (WMN). SEAODV employs Blom's key pre-distribution scheme to compute the pairwise transient key (PTK) through the flooding of enhanced HELLO message and subsequently uses the established PTK to distribute the group transient key (GTK). PTK and GTK authenticate unicast and broadcast routing messages respectively. In WMN, a unique PTK is shared by each pair of nodes, while GTK is shared secretly between the node and all its one-hop neighbours. A message authentication code (MAC) is attached as the extension to the original AODV routing message to guarantee the message's authenticity and integrity in a hop-by-hop fashion. Security analysis and performance evaluation show that SEAODV is more effective in preventing identified routing attacks and outperforms ARAN and SAODV in terms of computation cost and route acquisition latency.

  5. A multimodal biometric authentication system based on 2D and 3D palmprint features

    NASA Astrophysics Data System (ADS)

    Aggithaya, Vivek K.; Zhang, David; Luo, Nan

    2008-03-01

    This paper presents a new personal authentication system that simultaneously exploits 2D and 3D palmprint features. Here, we aim to improve the accuracy and robustness of existing palmprint authentication systems using 3D palmprint features. The proposed system uses an active stereo technique, structured light, to capture 3D image or range data of the palm and a registered intensity image simultaneously. The surface curvature based method is employed to extract features from 3D palmprint and Gabor feature based competitive coding scheme is used for 2D representation. We individually analyze these representations and attempt to combine them with score level fusion technique. Our experiments on a database of 108 subjects achieve significant improvement in performance (Equal Error Rate) with the integration of 3D features as compared to the case when 2D palmprint features alone are employed.

  6. Clone-preventive technique that features magnetic microfibers and cryptography

    NASA Astrophysics Data System (ADS)

    Matsumoto, Hiroyuki; Suzuki, Keiichi; Matsumoto, Tsutomu

    1998-04-01

    We have used the term 'clone' to refer to those things which are produced by methods such as counterfeiting, alteration, duplication or simulation. To satisfy the requirements of secure and low-cost techniques for preventing card fraud, we have recently developed a clone preventive system called 'FibeCrypt (Fiber Cryptosystem)' which utilizes physical characteristics. Each card has a canonical domain (i.e. a distinctive part), similar to fingerprints as the biometric measurement, made up of magnetic micro-fibers scattered randomly inside. We have applied cryptosystems to the system. FibeCrypt examines and authenticates the unique pattern of the canonical domain using pre-stored reference data and a digital signature. In our paper, the schemes and the features of this system are described in detail. The results of our examinations show the accuracy of authentication of the system. We conclude that this authentication technique which utilizes physical characteristics can be very effective for clone prevention in various fields.

  7. Students' responses to authentic assessment designed to develop commitment to performing at their best

    NASA Astrophysics Data System (ADS)

    Guzzomi, Andrew L.; Male, Sally A.; Miller, Karol

    2017-05-01

    Engineering educators should motivate and support students in developing not only technical competence but also professional competence including commitment to excellence. We developed an authentic assessment to improve students' understanding of the importance of 'perfection' in engineering - whereby 50% good enough will not be acceptable in industry. Subsequently we aimed to motivate them to practise performing at their best when they practice engineering. Students in a third-year mechanical and mechatronic engineering unit completed a team design project designed with authentic assessment features to replicate industry expectations and a novel marking scheme to encourage the pursuit of excellence. We report mixed responses from students. Students' ratings of their levels of effort on this assessment indicate that many perceived a positive influence on their effort. However, students' comments included several that were consistent with students experiencing the assessment as alienating.

  8. Content fragile watermarking for H.264/AVC video authentication

    NASA Astrophysics Data System (ADS)

    Ait Sadi, K.; Guessoum, A.; Bouridane, A.; Khelifi, F.

    2017-04-01

    Discrete cosine transform is exploited in this work to generate the authentication data that are treated as a fragile watermark. This watermark is embedded in the motion vectors. The advances in multimedia technologies and digital processing tools have brought with them new challenges for the source and content authentication. To ensure the integrity of the H.264/AVC video stream, we introduce an approach based on a content fragile video watermarking method using an independent authentication of each group of pictures (GOPs) within the video. This technique uses robust visual features extracted from the video pertaining to the set of selected macroblocs (MBs) which hold the best partition mode in a tree-structured motion compensation process. An additional security degree is offered by the proposed method through using a more secured keyed function HMAC-SHA-256 and randomly choosing candidates from already selected MBs. In here, the watermark detection and verification processes are blind, whereas the tampered frames detection is not since it needs the original frames within the tampered GOPs. The proposed scheme achieves an accurate authentication technique with a high fragility and fidelity whilst maintaining the original bitrate and the perceptual quality. Furthermore, its ability to detect the tampered frames in case of spatial, temporal and colour manipulations is confirmed.

  9. A robust trust establishment scheme for wireless sensor networks.

    PubMed

    Ishmanov, Farruh; Kim, Sung Won; Nam, Seung Yeob

    2015-03-23

    Security techniques like cryptography and authentication can fail to protect a network once a node is compromised. Hence, trust establishment continuously monitors and evaluates node behavior to detect malicious and compromised nodes. However, just like other security schemes, trust establishment is also vulnerable to attack. Moreover, malicious nodes might misbehave intelligently to trick trust establishment schemes. Unfortunately, attack-resistance and robustness issues with trust establishment schemes have not received much attention from the research community. Considering the vulnerability of trust establishment to different attacks and the unique features of sensor nodes in wireless sensor networks, we propose a lightweight and robust trust establishment scheme. The proposed trust scheme is lightweight thanks to a simple trust estimation method. The comprehensiveness and flexibility of the proposed trust estimation scheme make it robust against different types of attack and misbehavior. Performance evaluation under different types of misbehavior and on-off attacks shows that the detection rate of the proposed trust mechanism is higher and more stable compared to other trust mechanisms.

  10. Research on Signature Verification Method Based on Discrete Fréchet Distance

    NASA Astrophysics Data System (ADS)

    Fang, J. L.; Wu, W.

    2018-05-01

    This paper proposes a multi-feature signature template based on discrete Fréchet distance, which breaks through the limitation of traditional signature authentication using a single signature feature. It solves the online handwritten signature authentication signature global feature template extraction calculation workload, signature feature selection unreasonable problem. In this experiment, the false recognition rate (FAR) and false rejection rate (FRR) of the statistical signature are calculated and the average equal error rate (AEER) is calculated. The feasibility of the combined template scheme is verified by comparing the average equal error rate of the combination template and the original template.

  11. Biometric template transformation: a security analysis

    NASA Astrophysics Data System (ADS)

    Nagar, Abhishek; Nandakumar, Karthik; Jain, Anil K.

    2010-01-01

    One of the critical steps in designing a secure biometric system is protecting the templates of the users that are stored either in a central database or on smart cards. If a biometric template is compromised, it leads to serious security and privacy threats because unlike passwords, it is not possible for a legitimate user to revoke his biometric identifiers and switch to another set of uncompromised identifiers. One methodology for biometric template protection is the template transformation approach, where the template, consisting of the features extracted from the biometric trait, is transformed using parameters derived from a user specific password or key. Only the transformed template is stored and matching is performed directly in the transformed domain. In this paper, we formally investigate the security strength of template transformation techniques and define six metrics that facilitate a holistic security evaluation. Furthermore, we analyze the security of two wellknown template transformation techniques, namely, Biohashing and cancelable fingerprint templates based on the proposed metrics. Our analysis indicates that both these schemes are vulnerable to intrusion and linkage attacks because it is relatively easy to obtain either a close approximation of the original template (Biohashing) or a pre-image of the transformed template (cancelable fingerprints). We argue that the security strength of template transformation techniques must consider also consider the computational complexity of obtaining a complete pre-image of the transformed template in addition to the complexity of recovering the original biometric template.

  12. Tensions of network security and collaborative work practice: understanding a single sign-on deployment in a regional hospital.

    PubMed

    Heckle, Rosa R; Lutters, Wayne G

    2011-08-01

    Healthcare providers and their IT staff, working in an effort to balance appropriate accessibility with stricter security mandates, are considering the use of a single network sign-on approach for authentication and password management. Single sign-on (SSO) promises to improve usability of authentication for multiple-system users, increase compliance, and help curb system maintenance costs. However, complexities are introduced when SSO is placed within a collaborative environment. These complexities include unanticipated workflow implications that introduce greater security vulnerability for the individual user. OBJECTIVES AND METHODOLOGY: In this work, we examine the challenges of implementing a single sign-on authentication technology in a hospital environment. The aim of the study was to document the factors that affected SSO adoption within the context of use. The ultimate goal is to better inform the design of usable authentication systems within collaborative healthcare work sites. The primary data collection techniques used are ethnographically informed - observation, contextual interviews, and document review. The study included a cross-section of individuals from various departments and varying rolls. These participants were a mix of both clinical and administrative staff, as well as the Information Technology group. The field work revealed fundamental mis-matches between the technology and routine work practices that will significantly impact its effective adoption. While single sign-on was effective in the administrative offices, SSO was not a good fit for collaborative areas. The collaborative needs of the clinical staff unearthed tensions in its implementation. An analysis of the findings revealed that the workflow, activities, and physical environment of the clinical areas create increased security vulnerabilities for the individual user. The clinical users were cognizant of these vulnerabilities and this created resistance to the implementation due to a concern for privacy. From a preliminary analysis of our on-going field study at a community hospital, there appears to be a number of mismatches between the SSO vision and the realities of routine work. While we cannot conclusively say if a SSO adoption will be effective in meeting its goals in a hospital environment, we do know that it will affect the work practice and that will make the management of the SSO system problematic. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Anonymous Transactions in Computer Networks

    NASA Astrophysics Data System (ADS)

    Dolev, Shlomi; Kopeetsky, Marina

    We present schemes for providing anonymous transactions while privacy and anonymity are preserved, providing user anonymous authentication in distributed networks such as the Internet. We first present a practical scheme for anonymous transactions while the transaction resolution is assisted by a Trusted Authority. This practical scheme is extended to a theoretical scheme where a Trusted Authority is not involved in the transaction resolution. Given an authority that generates for each player hard to produce evidence EVID (e. g., problem instance with or without a solution) to each player, the identity of a user U is defined by the ability to prove possession of said evidence. We use Zero-Knowledge proof techniques to repeatedly identify U by providing a proof that U has evidence EVID, without revealing EVID, therefore avoiding identity theft.

  14. Position-based quantum cryptography over untrusted networks

    NASA Astrophysics Data System (ADS)

    Nadeem, Muhammad

    2014-08-01

    In this article, we propose quantum position verification (QPV) schemes where all the channels are untrusted except the position of the prover and distant reference stations of verifiers. We review and analyze the existing QPV schemes containing some pre-shared data between the prover and verifiers. Most of these schemes are based on non-cryptographic assumptions, i.e. quantum/classical channels between the verifiers are secure. It seems impractical in an environment fully controlled by adversaries and would lead to security compromise in practical implementations. However, our proposed formula for QPV is more robust, secure and according to the standard assumptions of cryptography. Furthermore, once the position of the prover is verified, our schemes establish secret keys in parallel and can be used for authentication and secret communication between the prover and verifiers.

  15. Storage-based Intrusion Detection: Watching storage activity for suspicious behavior

    DTIC Science & Technology

    2002-10-01

    password management involves a pair of inter-related files (/etc/ passwd and /etc/shadow). The corresponding access pat- terns seen at the storage...example, consider a UNIX system password file (/etc/ passwd ), which con- sists of a set of well-defined records. Records are delimited by a line-break, and...etc/ passwd and verify that they conform to a set of basic integrity rules: 7-field records, non-empty password field, legal default shell, legal home

  16. Gout

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  17. Osteonecrosis

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  18. Vasculitis

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  19. Digital image envelope: method and evaluation

    NASA Astrophysics Data System (ADS)

    Huang, H. K.; Cao, Fei; Zhou, Michael Z.; Mogel, Greg T.; Liu, Brent J.; Zhou, Xiaoqiang

    2003-05-01

    Health data security, characterized in terms of data privacy, authenticity, and integrity, is a vital issue when digital images and other patient information are transmitted through public networks in telehealth applications such as teleradiology. Mandates for ensuring health data security have been extensively discussed (for example The Health Insurance Portability and Accountability Act, HIPAA) and health informatics guidelines (such as the DICOM standard) are beginning to focus on issues of data continue to be published by organizing bodies in healthcare; however, there has not been a systematic method developed to ensure data security in medical imaging Because data privacy and authenticity are often managed primarily with firewall and password protection, we have focused our research and development on data integrity. We have developed a systematic method of ensuring medical image data integrity across public networks using the concept of the digital envelope. When a medical image is generated regardless of the modality, three processes are performed: the image signature is obtained, the DICOM image header is encrypted, and a digital envelope is formed by combining the signature and the encrypted header. The envelope is encrypted and embedded in the original image. This assures the security of both the image and the patient ID. The embedded image is encrypted again and transmitted across the network. The reverse process is performed at the receiving site. The result is two digital signatures, one from the original image before transmission, and second from the image after transmission. If the signatures are identical, there has been no alteration of the image. This paper concentrates in the method and evaluation of the digital image envelope.

  20. Polymyalgia Rheumatica

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  1. Neck Pain

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  2. Psoriatic Arthritis

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  3. Juvenile Arthritis

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  4. Dermatomyositis (Juvenile)

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  5. Metabolic Myopathies

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  6. Spinal Stenosis

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  7. Supervised Multi-Authority Scheme with Blind Signature for IoT with Attribute Based Encryption

    NASA Astrophysics Data System (ADS)

    Nissenbaum, O. V.; Ponomarov, K. Y.; Zaharov, A. A.

    2018-04-01

    This article proposes a three-side cryptographic scheme for verifying device attributes with a Supervisor and a Certification Authority (CA) for attribute-based encryption. Two options are suggested: using a message authentication code and using a digital signature. The first version is suitable for networks with one CA, and the second one for networks with several CAs, including dynamic systems. Also, the addition of this scheme with a blind signature is proposed to preserve the confidentiality of the device attributes from the CA. The introduction gives a definition and a brief historical overview of attribute-based encryption (ABE), addresses the use of ABE in the Internet of Things.

  8. Find a Rheumatologist

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  9. Antinuclear Antibodies (ANA)

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  10. Sex and Arthritis

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  11. Joint Injection/Aspiration

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  12. Giant Cell Arteritis

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  13. Carpal Tunnel Syndrome

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  14. Tendinitis and Bursitis

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  15. A Password System Based on Sketches

    DTIC Science & Technology

    2016-07-12

    than traditional passwords. Biometrics include biological properties such as fingerprints, voices, faces, and even handwriting . Fingerprints have been...perturbation of the sketch495 results in a corresponding change in the model, which is exactly what we imply when we say that model is (locally...Conf. on Frontiers in Handwriting Recognition (2010) 339–344.690 [29] M. Martinez-Diaz, J. Fierrez, J. Galbally, The DooDB Graphical Password Database: Data Analysis and Benchmark Results, IEEE Access 1 (2013) 596–605. 32 33

  16. PKPass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, Ryan M.

    Password management solutions exist, but few are designed for enterprise systems administrators sharing oncall rotations. Due to the Multi-Factor Level of Assurance 4 effort, DOE is now distributing PIV cards with cryptographically signed certificate and private key pairs to administrators and other security-significant users. We utilize this public key infrastructure (PKI) to encrypt passwords for other recipients in a secure way. This is cross platform (works on OSX and Linux systems), and has already been adopted internally by the NCCS systems administration staff to replace their old password book system.

  17. HIV and Rheumatic Disease

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  18. What Is a Rheumatologist?

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  19. Genetics and Rheumatic Disease

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  20. Pregnancy and Rheumatic Disease

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

Top