Sample records for patch clamp method

  1. Open-access microfluidic patch-clamp array with raised lateral cell trapping sites.

    PubMed

    Lau, Adrian Y; Hung, Paul J; Wu, Angela R; Lee, Luke P

    2006-12-01

    A novel open-access microfluidic patch-clamp array chip with lateral cell trapping sites raised above the bottom plane of the chip was developed by combining both a microscale soft-lithography and a macroscale polymer fabrication method. This paper demonstrates the capability of using such an open-access fluidic system for patch-clamp measurements. The surface of the open-access patch-clamp sites prepared by the macroscale hole patterning method of soft-state elastic polydimethylsiloxane (PDMS) is examined; the seal resistances are characterized and correlated with the aperture dimensions. Whole cell patch-clamp measurements are carried out with CHO cells expressing Kv2.1 ion channels. Kv2.1 ion channel blocker (TEA) dosage response is characterized and the binding activity is examined. The results demonstrate that the system is capable of performing whole cell measurements and drug profiling in a more efficient manner than the traditional patch-clamp set-up.

  2. Whole-Cell Electrical Activity Under Direct Mechanical Stimulus by AFM Cantilever Using Planar Patch Clamp Chip Approach

    PubMed Central

    Upadhye, Kalpesh V.; Candiello, Joseph E.; Davidson, Lance A.; Lin, Hai

    2011-01-01

    Patch clamp is a powerful tool for studying the properties of ion-channels and cellular membrane. In recent years, planar patch clamp chips have been fabricated from various materials including glass, quartz, silicon, silicon nitride, polydimethyl-siloxane (PDMS), and silicon dioxide. Planar patch clamps have made automation of patch clamp recordings possible. However, most planar patch clamp chips have limitations when used in combination with other techniques. Furthermore, the fabrication methods used are often expensive and require specialized equipments. An improved design as well as fabrication and characterization of a silicon-based planar patch clamp chip are described in this report. Fabrication involves true batch fabrication processes that can be performed in most common microfabrication facilities using well established MEMS techniques. Our planar patch clamp chips can form giga-ohm seals with the cell plasma membrane with success rate comparable to existing patch clamp techniques. The chip permits whole-cell voltage clamp recordings on variety of cell types including Chinese Hamster Ovary (CHO) cells and pheochromocytoma (PC12) cells, for times longer than most available patch clamp chips. When combined with a custom microfluidics chamber, we demonstrate that it is possible to perfuse the extra-cellular as well as intra-cellular buffers. The chamber design allows integration of planar patch clamp with atomic force microscope (AFM). Using our planar patch clamp chip and microfluidics chamber, we have recorded whole-cell mechanosensitive (MS) currents produced by directly stimulating human keratinocyte (HaCaT) cells using an AFM cantilever. Our results reveal the spatial distribution of MS ion channels and temporal details of the responses from MS channels. The results show that planar patch clamp chips have great potential for multi-parametric high throughput studies of ion channel proteins. PMID:22174731

  3. High throughput ion-channel pharmacology: planar-array-based voltage clamp.

    PubMed

    Kiss, Laszlo; Bennett, Paul B; Uebele, Victor N; Koblan, Kenneth S; Kane, Stefanie A; Neagle, Brad; Schroeder, Kirk

    2003-02-01

    Technological advances often drive major breakthroughs in biology. Examples include PCR, automated DNA sequencing, confocal/single photon microscopy, AFM, and voltage/patch-clamp methods. The patch-clamp method, first described nearly 30 years ago, was a major technical achievement that permitted voltage-clamp analysis (membrane potential control) of ion channels in most cells and revealed a role for channels in unimagined areas. Because of the high information content, voltage clamp is the best way to study ion-channel function; however, throughput is too low for drug screening. Here we describe a novel breakthrough planar-array-based HT patch-clamp technology developed by Essen Instruments capable of voltage-clamping thousands of cells per day. This technology provides greater than two orders of magnitude increase in throughput compared with the traditional voltage-clamp techniques. We have applied this method to study the hERG K(+) channel and to determine the pharmacological profile of QT prolonging drugs.

  4. Catch and Patch: A Pipette-Based Approach for Automating Patch Clamp That Enables Cell Selection and Fast Compound Application.

    PubMed

    Danker, Timm; Braun, Franziska; Silbernagl, Nikole; Guenther, Elke

    2016-03-01

    Manual patch clamp, the gold standard of electrophysiology, represents a powerful and versatile toolbox to stimulate, modulate, and record ion channel activity from membrane fragments and whole cells. The electrophysiological readout can be combined with fluorescent or optogenetic methods and allows for ultrafast solution exchanges using specialized microfluidic tools. A hallmark of manual patch clamp is the intentional selection of individual cells for recording, often an essential prerequisite to generate meaningful data. So far, available automation solutions rely on random cell usage in the closed environment of a chip and thus sacrifice much of this versatility by design. To parallelize and automate the traditional patch clamp technique while perpetuating the full versatility of the method, we developed an approach to automation, which is based on active cell handling and targeted electrode placement rather than on random processes. This is achieved through an automated pipette positioning system, which guides the tips of recording pipettes with micrometer precision to a microfluidic cell handling device. Using a patch pipette array mounted on a conventional micromanipulator, our automated patch clamp process mimics the original manual patch clamp as closely as possible, yet achieving a configuration where recordings are obtained from many patch electrodes in parallel. In addition, our implementation is extensible by design to allow the easy integration of specialized equipment such as ultrafast compound application tools. The resulting system offers fully automated patch clamp on purposely selected cells and combines high-quality gigaseal recordings with solution switching in the millisecond timescale.

  5. Sperm Patch-Clamp

    PubMed Central

    Lishko, Polina; Clapham, David E.; Navarro, Betsy; Kirichok, Yuriy

    2014-01-01

    Sperm intracellular pH and calcium concentration ([Ca2+]i) are two central factors that control sperm activity within the female reproductive tract. As such, the ion channels of the sperm plasma membrane that alter intracellular sperm [Ca2+] and pH play important roles in sperm physiology and the process of fertilization. Indeed, sperm ion channels regulate sperm motility, control sperm chemotaxis toward the egg in some species, and may trigger the acrosome reaction. Until recently, our understanding of these important molecules was rudimentary due to the inability to patch-clamp spermatozoa and directly record the activity of these ion channels under voltage clamp. Recently, we overcame this technical barrier and developed a method for reproducible application of the patch-clamp technique to mouse and human spermatozoa. This chapter covers important aspects of application of the patch-clamp technique to spermatozoa, such as selection of the electrophysiological equipment, isolation of spermatozoa for patch-clamp experiments, formation of the gigaohm seal with spermatozoa, and transition into the whole-cell mode of recording. We also discuss potential pitfalls in application of the patch-clamp technique to flagellar ion channels. PMID:23522465

  6. Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells.

    PubMed

    Klemic, Kathryn G; Klemic, James F; Reed, Mark A; Sigworth, Fred J

    2002-06-01

    The patch clamp method measures membrane currents at very high resolution when a high-resistance 'gigaseal' is established between the glass microelectrode and the cell membrane (Pflugers Arch. 391 (1981) 85; Neuron 8 (1992) 605). Here we describe the first use of the silicone elastomer, poly(dimethylsiloxane) (PDMS), for patch clamp electrodes. PDMS is an attractive material for patch clamp recordings. It has low dielectric loss and can be micromolded (Annu. Rev. Mat. Sci. 28 (1998) 153) into a shape that mimics the tip of the glass micropipette. Also, the surface chemistry of PDMS may be altered to mimic the hydrophilic nature of glass (J. Appl. Polym. Sci. 14 (1970) 2499; Annu. Rev. Mat. Sci. 28 (1998) 153), thereby allowing a high-resistance seal to a cell membrane. We present a planar electrode geometry consisting of a PDMS partition with a small aperture sealed between electrode and bath chambers. We demonstrate that a planar PDMS patch electrode, after oxidation of the elastomeric surface, permits patch clamp recording on Xenopus oocytes. Our results indicate the potential for high-throughput patch clamp recording with a planar array of PDMS electrodes.

  7. HTS techniques for patch clamp-based ion channel screening - advances and economy.

    PubMed

    Farre, Cecilia; Fertig, Niels

    2012-06-01

    Ten years ago, the first publication appeared showing patch clamp recordings performed on a planar glass chip instead of using a conventional patch clamp pipette. "Going planar" proved to revolutionize ion channel drug screening as we know it, by allowing high quality measurements of ion channels and their effectors at a higher throughput and at the same time de-skilling the highly laborious technique. Over the years, platforms evolved in response to user requirements regarding experimental features, data handling plus storage, and suitable target diversity. This article gives a snapshot image of patch clamp-based ion channel screening with focus on platforms developed to meet requirements of high-throughput screening environments. The commercially available platforms are described, along with their benefits and drawbacks in ion channel drug screening. Automated patch clamp (APC) platforms allow faster investigation of a larger number of ion channel active compounds or cell clones than previously possible. Since patch clamp is the only method allowing direct, real-time measurements of ion channel activity, APC holds the promise of picking up high quality leads, where they otherwise would have been overseen using indirect methods. In addition, drug candidate safety profiling can be performed earlier in the drug discovery process, avoiding late-phase compound withdrawal due to safety liability issues, which is highly costly and inefficient.

  8. Ion channel drug discovery and research: the automated Nano-Patch-Clamp technology.

    PubMed

    Brueggemann, A; George, M; Klau, M; Beckler, M; Steindl, J; Behrends, J C; Fertig, N

    2004-01-01

    Unlike the genomics revolution, which was largely enabled by a single technological advance (high throughput sequencing), rapid advancement in proteomics will require a broader effort to increase the throughput of a number of key tools for functional analysis of different types of proteins. In the case of ion channels -a class of (membrane) proteins of great physiological importance and potential as drug targets- the lack of adequate assay technologies is felt particularly strongly. The available, indirect, high throughput screening methods for ion channels clearly generate insufficient information. The best technology to study ion channel function and screen for compound interaction is the patch clamp technique, but patch clamping suffers from low throughput, which is not acceptable for drug screening. A first step towards a solution is presented here. The nano patch clamp technology, which is based on a planar, microstructured glass chip, enables automatic whole cell patch clamp measurements. The Port-a-Patch is an automated electrophysiology workstation, which uses planar patch clamp chips. This approach enables high quality and high content ion channel and compound evaluation on a one-cell-at-a-time basis. The presented automation of the patch process and its scalability to an array format are the prerequisites for any higher throughput electrophysiology instruments.

  9. Integration of autopatching with automated pipette and cell detection in vitro

    PubMed Central

    Wu (吴秋雨), Qiuyu; Kolb, Ilya; Callahan, Brendan M.; Su, Zhaolun; Stoy, William; Kodandaramaiah, Suhasa B.; Neve, Rachael; Zeng, Hongkui; Boyden, Edward S.; Forest, Craig R.

    2016-01-01

    Patch clamp is the main technique for measuring electrical properties of individual cells. Since its discovery in 1976 by Neher and Sakmann, patch clamp has been instrumental in broadening our understanding of the fundamental properties of ion channels and synapses in neurons. The conventional patch-clamp method requires manual, precise positioning of a glass micropipette against the cell membrane of a visually identified target neuron. Subsequently, a tight “gigaseal” connection between the pipette and the cell membrane is established, and suction is applied to establish the whole cell patch configuration to perform electrophysiological recordings. This procedure is repeated manually for each individual cell, making it labor intensive and time consuming. In this article we describe the development of a new automatic patch-clamp system for brain slices, which integrates all steps of the patch-clamp process: image acquisition through a microscope, computer vision-based identification of a patch pipette and fluorescently labeled neurons, micromanipulator control, and automated patching. We validated our system in brain slices from wild-type and transgenic mice expressing channelrhodopsin 2 under the Thy1 promoter (line 18) or injected with a herpes simplex virus-expressing archaerhodopsin, ArchT. Our computer vision-based algorithm makes the fluorescent cell detection and targeting user independent. Compared with manual patching, our system is superior in both success rate and average trial duration. It provides more reliable trial-to-trial control of the patching process and improves reproducibility of experiments. PMID:27385800

  10. Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording

    PubMed Central

    Kolb, Ilya; Kodandaramaiah, Suhasa B.; Chubykin, Alexander A.; Yang, Aimei; Bear, Mark F.; Boyden, Edward S.; Forest, Craig R.

    2014-01-01

    Patch clamping is a gold-standard electrophysiology technique that has the temporal resolution and signal-to-noise ratio capable of reporting single ion channel currents, as well as electrical activity of excitable single cells. Despite its usefulness and decades of development, the amplifiers required for patch clamping are expensive and bulky. This has limited the scalability and throughput of patch clamping for single-ion channel and single-cell analyses. In this work, we have developed a custom patch-clamp amplifier microchip that can be fabricated using standard commercial silicon processes capable of performing both voltage- and current-clamp measurements. A key innovation is the use of nonlinear feedback elements in the voltage-clamp amplifier circuit to convert measured currents into logarithmically encoded voltages, thereby eliminating the need for large high-valued resistors, a factor that has limited previous attempts at integration. Benchtop characterization of the chip shows low levels of current noise [1.1 pA root mean square (rms) over 5 kHz] during voltage-clamp measurements and low levels of voltage noise (8.2 μV rms over 10 kHz) during current-clamp measurements. We demonstrate the ability of the chip to perform both current- and voltage-clamp measurement in vitro in HEK293FT cells and cultured neurons. We also demonstrate its ability to perform in vivo recordings as part of a robotic patch-clamping system. The performance of the patch-clamp amplifier microchip compares favorably with much larger commercial instrumentation, enabling benchtop commoditization, miniaturization, and scalable patch-clamp instrumentation. PMID:25429119

  11. A hydrophilic polymer based microfluidic system with planar patch clamp electrode array for electrophysiological measurement from cells.

    PubMed

    Xu, Baojian; Ye, WeiWei; Zhang, Yu; Shi, JingYu; Chan, ChunYu; Yao, XiaoQiang; Yang, Mo

    2014-03-15

    This paper presents a microfluidic planar patch clamp system based on a hydrophilic polymer poly(ethylene glycol) diacrylate (PEGDA) for whole cell current recording. The whole chip is fabricated by UV-assisted molding method for both microfluidic channel structure and planar electrode partition. This hydrophilic patch clamp chip has demonstrated a relatively high gigaseal success rate of 44% without surface modification compared with PDMS based patch clamp devices. This chip also shows a capability of rapid intracellular and extracellular solution exchange with high stability of gigaseals. The capillary flow kinetic experiments demonstrate that the flow rates of PEGDA microfluidic channels are around two orders of magnitude greater than those for PDMS-glass channels with the same channel dimensions. This hydrophilic polymer based patch clamp chips have significant advantages over current PDMS elastomer based systems such as no need for surface modification, much higher success rate of cell gigaseals and rapid solution exchange with stable cell gigaseals. Our results indicate the potential of these devices to serve as useful tools for pharmaceutical screening and biosensing tasks. © 2013 Elsevier B.V. All rights reserved.

  12. Establishment of the Dual Whole Cell Recording Patch Clamp Configuration for the Measurement of Gap Junction Conductance.

    PubMed

    Veenstra, Richard D

    2016-01-01

    The development of the patch clamp technique has enabled investigators to directly measure gap junction conductance between isolated pairs of small cells with resolution to the single channel level. The dual patch clamp recording technique requires specialized equipment and the acquired skill to reliably establish gigaohm seals and the whole cell recording configuration with high efficiency. This chapter describes the equipment needed and methods required to achieve accurate measurement of macroscopic and single gap junction channel conductances. Inherent limitations with the dual whole cell recording technique and methods to correct for series access resistance errors are defined as well as basic procedures to determine the essential electrical parameters necessary to evaluate the accuracy of gap junction conductance measurements using this approach.

  13. A Comparison of the Performance and Application Differences Between Manual and Automated Patch-Clamp Techniques

    PubMed Central

    Yajuan, Xiao; Xin, Liang; Zhiyuan, Li

    2012-01-01

    The patch clamp technique is commonly used in electrophysiological experiments and offers direct insight into ion channel properties through the characterization of ion channel activity. This technique can be used to elucidate the interaction between a drug and a specific ion channel at different conformational states to understand the ion channel modulators’ mechanisms. The patch clamp technique is regarded as a gold standard for ion channel research; however, it suffers from low throughput and high personnel costs. In the last decade, the development of several automated electrophysiology platforms has greatly increased the screen throughput of whole cell electrophysiological recordings. New advancements in the automated patch clamp systems have aimed to provide high data quality, high content, and high throughput. However, due to the limitations noted above, automated patch clamp systems are not capable of replacing manual patch clamp systems in ion channel research. While automated patch clamp systems are useful for screening large amounts of compounds in cell lines that stably express high levels of ion channels, the manual patch clamp technique is still necessary for studying ion channel properties in some research areas and for specific cell types, including primary cells that have mixed cell types and differentiated cells that derive from induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs). Therefore, further improvements in flexibility with regard to cell types and data quality will broaden the applications of the automated patch clamp systems in both academia and industry. PMID:23346269

  14. Cell-Detection Technique for Automated Patch Clamping

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2008-01-01

    A unique and customizable machinevision and image-data-processing technique has been developed for use in automated identification of cells that are optimal for patch clamping. [Patch clamping (in which patch electrodes are pressed against cell membranes) is an electrophysiological technique widely applied for the study of ion channels, and of membrane proteins that regulate the flow of ions across the membranes. Patch clamping is used in many biological research fields such as neurobiology, pharmacology, and molecular biology.] While there exist several hardware techniques for automated patch clamping of cells, very few of those techniques incorporate machine vision for locating cells that are ideal subjects for patch clamping. In contrast, the present technique is embodied in a machine-vision algorithm that, in practical application, enables the user to identify good and bad cells for patch clamping in an image captured by a charge-coupled-device (CCD) camera attached to a microscope, within a processing time of one second. Hence, the present technique can save time, thereby increasing efficiency and reducing cost. The present technique involves the utilization of cell-feature metrics to accurately make decisions on the degree to which individual cells are "good" or "bad" candidates for patch clamping. These metrics include position coordinates (x,y) in the image plane, major-axis length, minor-axis length, area, elongation, roundness, smoothness, angle of orientation, and degree of inclusion in the field of view. The present technique does not require any special hardware beyond commercially available, off-the-shelf patch-clamping hardware: A standard patchclamping microscope system with an attached CCD camera, a personal computer with an imagedata- processing board, and some experience in utilizing imagedata- processing software are all that are needed. A cell image is first captured by the microscope CCD camera and image-data-processing board, then the image data are analyzed by software that implements the present machine-vision technique. This analysis results in the identification of cells that are "good" candidates for patch clamping (see figure). Once a "good" cell is identified, a patch clamp can be effected by an automated patchclamping apparatus or by a human operator. This technique has been shown to enable reliable identification of "good" and "bad" candidate cells for patch clamping. The ultimate goal in further development of this technique is to combine artificial-intelligence processing with instrumentation and controls in order to produce a complete "turnkey" automated patch-clamping system capable of accurately and reliably patch clamping cells with a minimum intervention by a human operator. Moreover, this technique can be adapted to virtually any cellular-analysis procedure that includes repetitive operation of microscope hardware by a human.

  15. A laser microsurgical method of cell wall removal allows detection of large-conductance ion channels in the guard cell plasma membrane

    NASA Technical Reports Server (NTRS)

    Miedema, H.; Henriksen, G. H.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts of Vicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. "Laser-assisted" patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.

  16. Planar patch clamp for neuronal networks--considerations and future perspectives.

    PubMed

    Bosca, Alessandro; Martina, Marzia; Py, Christophe

    2014-01-01

    The patch-clamp technique is generally accepted as the gold standard for studying ion channel activity allowing investigators to either "clamp" membrane voltage and directly measure transmembrane currents through ion channels, or to passively monitor spontaneously occurring intracellular voltage oscillations. However, this resulting high information content comes at a price. The technique is labor-intensive and requires highly trained personnel and expensive equipment. This seriously limits its application as an interrogation tool for drug development. Patch-clamp chips have been developed in the last decade to overcome the tedious manipulations associated with the use of glass pipettes in conventional patch-clamp experiments. In this chapter, we describe some of the main materials and fabrication protocols that have been developed to date for the production of patch-clamp chips. We also present the concept of a patch-clamp chip array providing high resolution patch-clamp recordings from individual cells at multiple sites in a network of communicating neurons. On this chip, the neurons are aligned with the aperture-probes using chemical patterning. In the discussion we review the potential use of this technology for pharmaceutical assays, neuronal physiology and synaptic plasticity studies.

  17. A novel way to go whole-cell in patch-clamp experiments.

    PubMed

    Inayat, Samsoon; Zhao, Yan; Cantrell, Donal R; Dikin, Dmitryi; Pinto, Lawrence H; Troy, John B

    2010-11-01

    With a conventional patch-clamp electrode, an Ag/AgCl wire sits stationary inside the pipette. To move from the gigaseal cell-attached configuration to whole-cell recording, suction is applied inside the pipette. We have designed and developed a novel Pushpen patch-clamp electrode, in which a W wire insulated and wound with Ag/AgCl wire can move linearly inside the pipette. The W wire has a conical tip, which can protrude from the pipette tip like a push pen, a procedure we call the Pushpen Operation. We use the Pushpen operation to impale the cell membrane in cell-attached configuration to go whole-cell without disruption of the gigaseal. We successfully recorded whole-cell currents from chinese hamster ovarian cells expressing influenza A virus protein A/M2, after obtaining whole-cell configuration with the Pushpen operation. This novel method of achieving whole-cell configuration may have a higher success rate than is the case with the conventional patch clamp technique.

  18. A monolithic patch-clamping amplifier with capacitive feedback.

    PubMed

    Prakash, J; Paulos, J J; Jensen, D N

    1989-03-01

    Patch-clamping is an established method for directly measuring ionic transport through cellular membranes with sufficient resolution to observe open/close transitions of individual channel molecules. This paper describes an alternative technique for patch-clamping which uses a capacitor as the transimpedance element. This approach eliminates bandwidth and saturation limitations experienced with resistive patch-clamping amplifiers. A complete monolithic design featuring an on-chip operational amplifier, a capacitor array with gain-ranging from 30 pF down to 0.03 pF, and reset and gain ranging switches has been fabricated using 5 microns CMOS technology. It is shown that the voltage noise of the CMOS operational amplifier limits the overall noise performance, but that performance competitive with conventional instruments can be achieved over a 10 kHz bandwidth, at least for small input capacitances (less than or equal to 5 pF). Results are presented along with an analysis and comparison of noise performance using both resistive and capacitive elements.

  19. Novel 384-well population patch clamp electrophysiology assays for Ca2+-activated K+ channels.

    PubMed

    John, Victoria H; Dale, Tim J; Hollands, Emma C; Chen, Mao Xiang; Partington, Leanne; Downie, David L; Meadows, Helen J; Trezise, Derek J

    2007-02-01

    Planar array electrophysiology techniques were applied to assays for modulators of recombinant hIK and hSK3 Ca2+-activated K+ channels. In CHO-hIK-expressing cells, under asymmetric K+ gradients, small-molecule channel activators evoked time- and voltage-independent currents characteristic of those previously described by classical patch clamp electrophysiology methods. In single-hole (cell) experiments, the large cell-to-cell heterogeneity in channel expression rendered it difficult to generate activator concentration-response curves. However, in population patch clamp mode, in which signals are averaged from up to 64 cells, well-to-well variation was substantially reduced such that concentration-response curves could be easily constructed. The absolute EC50 values and rank order of potency for a range of activators, including 1-EBIO and DC-EBIO, corresponded well with conventional patch clamp data. Activator responses of hIK and hSK3 channels could be fully and specifically blocked by the selective inhibitors TRAM-34 and apamin, with IC50 values of 0.31 microM and 3 nM, respectively. To demonstrate assay precision and robustness, a test set of 704 compounds was screened in a 384-well format of the hIK assay. All plates had Z' values greater than 0.6, and the statistical cutoff for activity was 8%. Eleven hits (1.6%) were identified from this set, in addition to the randomly spiked wells with known activators. Overall, our findings demonstrate that population patch clamp is a powerful and enabling method for screening Ca2+-activated K+ channels and provides significant advantages over single-cell electrophysiology (IonWorks(HT)) and other previously published approaches. Moreover, this work demonstrates for the 1st time the utility of population patch clamp for ion channel activator assays and for non-voltage-gated ion channels.

  20. Force-controlled patch clamp of beating cardiac cells.

    PubMed

    Ossola, Dario; Amarouch, Mohamed-Yassine; Behr, Pascal; Vörös, János; Abriel, Hugues; Zambelli, Tomaso

    2015-03-11

    From its invention in the 1970s, the patch clamp technique is the gold standard in electrophysiology research and drug screening because it is the only tool enabling accurate investigation of voltage-gated ion channels, which are responsible for action potentials. Because of its key role in drug screening, innovation efforts are being made to reduce its complexity toward more automated systems. While some of these new approaches are being adopted in pharmaceutical companies, conventional patch-clamp remains unmatched in fundamental research due to its versatility. Here, we merged the patch clamp and atomic force microscope (AFM) techniques, thus equipping the patch-clamp with the sensitive AFM force control. This was possible using the FluidFM, a force-controlled nanopipette based on microchanneled AFM cantilevers. First, the compatibility of the system with patch-clamp electronics and its ability to record the activity of voltage-gated ion channels in whole-cell configuration was demonstrated with sodium (NaV1.5) channels. Second, we showed the feasibility of simultaneous recording of membrane current and force development during contraction of isolated cardiomyocytes. Force feedback allowed for a gentle and stable contact between AFM tip and cell membrane enabling serial patch clamping and injection without apparent cell damage.

  1. LabPatch, an acquisition and analysis program for patch-clamp electrophysiology.

    PubMed

    Robinson, T; Thomsen, L; Huizinga, J D

    2000-05-01

    An acquisition and analysis program, "LabPatch," has been developed for use in patch-clamp research. LabPatch controls any patch-clamp amplifier, acquires and records data, runs voltage protocols, plots and analyzes data, and connects to spreadsheet and database programs. Controls within LabPatch are grouped by function on one screen, much like an oscilloscope front panel. The software is mouse driven, so that the user need only point and click. Finally, the ability to copy data to other programs running in Windows 95/98, and the ability to keep track of experiments using a database, make LabPatch extremely versatile. The system requirements include Windows 95/98, at least a 100-MHz processor and 16 MB RAM, a data acquisition card, digital-to-analog converter, and a patch-clamp amplifier. LabPatch is available free of charge at http://www.fhs.mcmaster.ca/huizinga/.

  2. Industrializing electrophysiology: HT automated patch clamp on SyncroPatch® 96 using instant frozen cells.

    PubMed

    Polonchuk, Liudmila

    2014-01-01

    Patch-clamping is a powerful technique for investigating the ion channel function and regulation. However, its low throughput hampered profiling of large compound series in early drug development. Fortunately, automation has revolutionized the area of experimental electrophysiology over the past decade. Whereas the first automated patch-clamp instruments using the planar patch-clamp technology demonstrated rather a moderate throughput, few second-generation automated platforms recently launched by various companies have significantly increased ability to form a high number of high-resistance seals. Among them is SyncroPatch(®) 96 (Nanion Technologies GmbH, Munich, Germany), a fully automated giga-seal patch-clamp system with the highest throughput on the market. By recording from up to 96 cells simultaneously, the SyncroPatch(®) 96 allows to substantially increase throughput without compromising data quality. This chapter describes features of the innovative automated electrophysiology system and protocols used for a successful transfer of the established hERG assay to this high-throughput automated platform.

  3. Rediscovering sperm ion channels with the patch-clamp technique

    PubMed Central

    Kirichok, Yuriy; Lishko, Polina V.

    2011-01-01

    Upon ejaculation, mammalian spermatozoa have to undergo a sequence of physiological transformations within the female reproductive tract that will allow them to reach and fertilize the egg. These include initiation of motility, hyperactivation of motility and perhaps chemotaxis toward the egg, and culminate in the acrosome reaction that permits sperm to penetrate the protective vestments of the egg. These physiological responses are triggered through the activation of sperm ion channels that cause elevations of sperm intracellular pH and Ca2+ in response to certain cues within the female reproductive tract. Despite their key role in sperm physiology and their absolute requirement for the process of fertilization, sperm ion channels remain poorly understood due to the extreme difficulty in application of the patch-clamp technique to spermatozoa. This review covers the topic of sperm ion channels in the following order: first, we discuss how the intracellular Ca2+ and pH signaling mediated by sperm ion channels controls sperm behavior during the process of fertilization. Then, we briefly cover the history of the methodology to study sperm ion channels, which culminated in the recent development of a reproducible whole-cell patch-clamp technique for mouse and human cells. We further discuss the main approaches used to patch-clamp mature mouse and human spermatozoa. Finally, we focus on the newly discovered sperm ion channels CatSper, KSper (Slo3) and HSper (Hv1), identified by the sperm patch-clamp technique. We conclude that the patch-clamp technique has markedly improved and shifted our understanding of the sperm ion channels, in addition to revealing significant species-specific differences in these channels. This method is critical for identification of the molecular mechanisms that control sperm behavior within the female reproductive tract and make fertilization possible. PMID:21642646

  4. Patch-clamp amplifiers on a chip

    PubMed Central

    Weerakoon, Pujitha; Culurciello, Eugenio; Yang, Youshan; Santos-Sacchi, Joseph; Kindlmann, Peter J.; Sigworth, Fred J.

    2010-01-01

    We present the first, fully-integrated, two-channel implementation of a patch-clamp measurement system. With this “PatchChip” two simultaneous whole-cell recordings can be obtained with rms noise of 8 pA in a 10 kHz bandwidth. The capacitance and series-resistance of the electrode can be compensated up to 10 pF and 100 MΩ respectively under computer control. Recordings of hERG and Nav 1.7 currents demonstrate the system's capabilities, which are on par with large, commercial patch-clamp instrumentation. By reducing patch-clamp amplifiers to a millimeter size micro-chip, this work paves the way to the realization of massively-parallel, high-throughput patch-clamp systems for drug screening and ion-channel research. The PatchChip is implemented in a 0.5 μm silicon-on-sapphire process; its size is 3 × 3 mm2 and the power consumption is 5 mW per channel with a 3.3 V power supply. PMID:20637803

  5. The Touch and Zap method for in vivo whole-cell patch recording of intrinsic and visual responses of cortical neurons and glial cells.

    PubMed

    Schramm, Adrien E; Marinazzo, Daniele; Gener, Thomas; Graham, Lyle J

    2014-01-01

    Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe "Touch and Zap", an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the "Touch". By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or "Zap", as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi-automatically, this approach is more reproducible and less dependent on experimenter technique.

  6. The Touch and Zap Method for In Vivo Whole-Cell Patch Recording of Intrinsic and Visual Responses of Cortical Neurons and Glial Cells

    PubMed Central

    Schramm, Adrien E.; Marinazzo, Daniele; Gener, Thomas; Graham, Lyle J.

    2014-01-01

    Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe “Touch and Zap”, an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the “Touch”. By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or “Zap”, as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi-automatically, this approach is more reproducible and less dependent on experimenter technique. PMID:24875855

  7. Series resistance compensation for whole-cell patch-clamp studies using a membrane state estimator

    PubMed Central

    Sherman, AJ; Shrier, A; Cooper, E

    1999-01-01

    Whole-cell patch-clamp techniques are widely used to measure membrane currents from isolated cells. While suitable for a broad range of ionic currents, the series resistance (R(s)) of the recording pipette limits the bandwidth of the whole-cell configuration, making it difficult to measure rapid ionic currents. To increase bandwidth, it is necessary to compensate for R(s). Most methods of R(s) compensation become unstable at high bandwidth, making them hard to use. We describe a novel method of R(s) compensation that overcomes the stability limitations of standard designs. This method uses a state estimator, implemented with analog computation, to compute the membrane potential, V(m), which is then used in a feedback loop to implement a voltage clamp; we refer to this as state estimator R(s) compensation. To demonstrate the utility of this approach, we built an amplifier incorporating state estimator R(s) compensation. In benchtop tests, our amplifier showed significantly higher bandwidths and improved stability when compared with a commercially available amplifier. We demonstrated that state estimator R(s) compensation works well in practice by recording voltage-gated Na(+) currents under voltage-clamp conditions from dissociated neonatal rat sympathetic neurons. We conclude that state estimator R(s) compensation should make it easier to measure large rapid ionic currents with whole-cell patch-clamp techniques. PMID:10545359

  8. Microfabricated Patch Clamp Electrodes for Improved Ion Channel Protein Measurements

    NASA Astrophysics Data System (ADS)

    Klemic, James; Klemic, Kathryn; Reed, Mark; Sigworth, Frederick

    2002-03-01

    Ion channels are trans-membrane proteins that underlie many cell functions including hormone and neurotransmitter release, muscle contraction and cell signaling cascades. Ion channel proteins are commonly characterized via the patch clamp method in which an extruded glass tube containing ionic solution, manipulated by an expert technician, is brought into contact with a living cell to record ionic current through the cell membrane. Microfabricated planar patch electrodes, micromolded in the silicone elastomer poly-dimethylsiloxane (PDMS) from microlithographically patterned structures, have been developed that improve on this method. Microfabrication techniques allow arrays of patch electrodes to be fabricated, increasing the throughput of the measurement technique. Planar patch electrodes readily allow the automation of cell sealing, further increasing throughput. Microfabricated electrode arrays may be readily integrated with microfluidic structures to allow fast, in situ solution exchange. Miniaturization of the electrode geometry should increase both the signal to noise and the bandwidth of the measurement. Microfabricated patch electrode arrays have been fabricated and measurements have been taken.

  9. Localized Patch Clamping of Plasma Membrane of a Polarized Plant Cell 1

    PubMed Central

    Taylor, Alison R.; Brownlee, Colin

    1992-01-01

    We used an ultraviolet laser to rupture a small region of cell wall of a polarized Fucus spiralis rhizoid cell and gained localized access to the plasma membrane at the growing apex. Careful control of cell turgor enabled a small portion of plasma membrane-bound cytoplasm to be exposed. Gigaohm seals allowing single-channel recordings were obtained with a high success rate using this method with conventional patch clamp techniques. ImagesFigure 1 PMID:16669092

  10. Automated Patch-Clamp Methods for the hERG Cardiac Potassium Channel.

    PubMed

    Houtmann, Sylvie; Schombert, Brigitte; Sanson, Camille; Partiseti, Michel; Bohme, G Andrees

    2017-01-01

    The human Ether-a-go-go Related Gene (hERG) product has been identified as a central ion channel underlying both familial forms of elongated QT interval on the electrocardiogram and drug-induced elongation of the same QT segment. Indeed, reduced function of this potassium channel involved in the repolarization of the cardiac action potential can produce a type of life-threatening cardiac ventricular arrhythmias called Torsades de Pointes (TdP). Therefore, hERG inhibitory activity of newly synthetized molecules is a relevant structure-activity metric for compound prioritization and optimization in medicinal chemistry phases of drug discovery. Electrophysiology remains the gold standard for the functional assessment of ion channel pharmacology. The recent years have witnessed automatization and parallelization of the manual patch-clamp technique, allowing higher throughput screening on recombinant hERG channels. However, the multi-well plate format of automatized patch-clamp does not allow visual detection of potential micro-precipitation of poorly soluble compounds. In this chapter we describe bench procedures for the culture and preparation of hERG-expressing CHO cells for recording on an automated patch-clamp workstation. We also show that the sensitivity of the assay can be improved by adding a surfactant to the extracellular medium.

  11. Novel KCNQ2 channel activators discovered using fluorescence-based and automated patch-clamp-based high-throughput screening techniques

    PubMed Central

    Yue, Jin-feng; Qiao, Guan-hua; Liu, Ni; Nan, Fa-jun; Gao, Zhao-bing

    2016-01-01

    Aim: To establish an improved, high-throughput screening techniques for identifying novel KCNQ2 channel activators. Methods: KCNQ2 channels were stably expressed in CHO cells (KCNQ2 cells). Thallium flux assay was used for primary screening, and 384-well automated patch-clamp IonWorks Barracuda was used for hit validation. Two validated activators were characterized using a conventional patch-clamp recording technique. Results: From a collection of 80 000 compounds, the primary screening revealed a total of 565 compounds that potentiated the fluorescence signals in thallium flux assay by more than 150%. When the 565 hits were examined in IonWorks Barracuda, 38 compounds significantly enhanced the outward currents recorded in KCNQ2 cells, and were confirmed as KCNQ2 activators. In the conventional patch-clamp recordings, two validated activators ZG1732 and ZG2083 enhanced KCNQ2 currents with EC50 values of 1.04±0.18 μmol/L and 1.37±0.06 μmol/L, respectively. Conclusion: The combination of thallium flux assay and IonWorks Barracuda assay is an efficient high-throughput screening (HTS) route for discovering KCNQ2 activators. PMID:26725738

  12. An optogenetics- and imaging-assisted simultaneous multiple patch-clamp recording system for decoding complex neural circuits

    PubMed Central

    Wang, Guangfu; Wyskiel, Daniel R; Yang, Weiguo; Wang, Yiqing; Milbern, Lana C; Lalanne, Txomin; Jiang, Xiaolong; Shen, Ying; Sun, Qian-Quan; Zhu, J Julius

    2015-01-01

    Deciphering neuronal circuitry is central to understanding brain function and dysfunction, yet it remains a daunting task. To facilitate the dissection of neuronal circuits, a process requiring functional analysis of synaptic connections and morphological identification of interconnected neurons, we present here a method for stable simultaneous octuple patch-clamp recordings. This method allows physiological analysis of synaptic interconnections among 4–8 simultaneously recorded neurons and/or 10–30 sequentially recorded neurons, and it allows anatomical identification of >85% of recorded interneurons and >99% of recorded principal neurons. We describe how to apply the method to rodent tissue slices; however, it can be used on other model organisms. We also describe the latest refinements and optimizations of mechanics, electronics, optics and software programs that are central to the realization of a combined single- and two-photon microscopy–based, optogenetics- and imaging-assisted, stable, simultaneous quadruple–viguple patch-clamp recording system. Setting up the system, from the beginning of instrument assembly and software installation to full operation, can be completed in 3–4 d. PMID:25654757

  13. Characterization of GABAA receptor ligands with automated patch-clamp using human neurons derived from pluripotent stem cells

    PubMed Central

    Yuan, Nina Y.; Poe, Michael M.; Witzigmann, Christopher; Cook, James M.; Stafford, Douglas; Arnold, Leggy A.

    2016-01-01

    Introduction Automated patch clamp is a recent but widely used technology to assess pre-clinical drug safety. With the availability of human neurons derived from pluripotent stem cells, this technology can be extended to determine CNS effects of drug candidates, especially those acting on the GABAA receptor. Methods iCell Neurons (Cellular Dynamics International, A Fujifilm Company) were cultured for ten days and analyzed by patch clamp in the presence of agonist GABA or in combination with positive allosteric GABAA receptor modulators. Both efficacy and affinity were determined. In addition, mRNA of GABAA receptor subunits were quantified by qRT-PCR. Results We have shown that iCell Neurons are compatible with the IonFlux microfluidic system of the automated patch clamp instrument. Resistance ranging from 15-25 MΩ was achieved for each trap channel of patch clamped cells in a 96-well plate format. GABA induced a robust change of current with an EC50 of 0.43 μM. Positive GABAA receptor modulators diazepam, HZ166, and CW-04-020 exhibited EC50 values of 0.42 μM, 1.56 μM, and 0.23 μM, respectively. The α2/α3/α5 selective compound HZ166-induced the highest potentiation (efficacy) of 810% of the current induced by 100 nM GABA. Quantification of GABAA receptor mRNA in iCell Neurons revealed high levels of α5 and β3 subunits and low levels of α1, which is similar to the configuration in human neonatal brain. Discussion iCell Neurons represent a new cellular model to characterize GABAergic compounds using automated patch clamp. These cells have excellent representation of cellular GABAA receptor distribution that enable determination of total small molecule efficacy and affinity as measured by cell membrane current change. PMID:27544543

  14. Patch-clamp, ion-sensing, and glutamate-sensing techniques to study glutamate transport in isolated retinal glial cells.

    PubMed

    Billups, B; Szatkowski, M; Rossi, D; Attwell, D

    1998-01-01

    We have described how a combination of electrical, ion-sensing, and glutamate-sensing techniques has advanced our understanding of glutamate uptake into isolated salamander retinal glial cells. The next steps in understanding glutamate transport will inevitably depend strongly on molecular biological methods, as described elsewhere in this book, but will also require more detailed study of transporters in their normal environment, perhaps by using patch-clamping or imaging techniques to study cells in situ.

  15. Electrophysiological and Electrochemical Methods Development for the Detection of Biologically Active Chemical Agents

    DTIC Science & Technology

    1988-11-01

    Bilayer ........................................... 14 5. Current-Voltage Curve for Gramacidin in a Lecithin -Sphingomyelin Patch Bilayer... lecithin (Avanti). 9 2. MATERIALS 2.1 Patch Microprobe Instrumentation. The basis of the microprobe system is an AxoPatch Patch- Clamping Amplifier System...histogram of 1024 events cut above 2 pA. Events sampled are thought to be from the same single gramacidin channel in a lecithin : sphingomyelin (5:1) patch

  16. Preparation of Drosophila central neurons for in situ patch clamping.

    PubMed

    Ryglewski, Stefanie; Duch, Carsten

    2012-10-15

    Short generation times and facile genetic techniques make the fruit fly Drosophila melanogaster an excellent genetic model in fundamental neuroscience research. Ion channels are the basis of all behavior since they mediate neuronal excitability. The first voltage gated ion channel cloned was the Drosophila voltage gated potassium channel Shaker(1,2). Toward understanding the role of ion channels and membrane excitability for nervous system function it is useful to combine powerful genetic tools available in Drosophila with in situ patch clamp recordings. For many years such recordings have been hampered by the small size of the Drosophila CNS. Furthermore, a robust sheath made of glia and collagen constituted obstacles for patch pipette access to central neurons. Removal of this sheath is a necessary precondition for patch clamp recordings from any neuron in the adult Drosophila CNS. In recent years scientists have been able to conduct in situ patch clamp recordings from neurons in the adult brain(3,4) and ventral nerve cord of embryonic(5,6), larval(7,8,9,10), and adult Drosophila(11,12,13,14). A stable giga-seal is the main precondition for a good patch and depends on clean contact of the patch pipette with the cell membrane to avoid leak currents. Therefore, for whole cell in situ patch clamp recordings from adult Drosophila neurons must be cleaned thoroughly. In the first step, the ganglionic sheath has to be treated enzymatically and mechanically removed to make the target cells accessible. In the second step, the cell membrane has to be polished so that no layer of glia, collagen or other material may disturb giga-seal formation. This article describes how to prepare an identified central neuron in the Drosophila ventral nerve cord, the flight motoneuron 5 (MN5(15)), for somatic whole cell patch clamp recordings. Identification and visibility of the neuron is achieved by targeted expression of GFP in MN5. We do not aim to explain the patch clamp technique itself.

  17. Robotic Automation of In Vivo Two-Photon Targeted Whole-Cell Patch-Clamp Electrophysiology.

    PubMed

    Annecchino, Luca A; Morris, Alexander R; Copeland, Caroline S; Agabi, Oshiorenoya E; Chadderton, Paul; Schultz, Simon R

    2017-08-30

    Whole-cell patch-clamp electrophysiological recording is a powerful technique for studying cellular function. While in vivo patch-clamp recording has recently benefited from automation, it is normally performed "blind," meaning that throughput for sampling some genetically or morphologically defined cell types is unacceptably low. One solution to this problem is to use two-photon microscopy to target fluorescently labeled neurons. Combining this with robotic automation is difficult, however, as micropipette penetration induces tissue deformation, moving target cells from their initial location. Here we describe a platform for automated two-photon targeted patch-clamp recording, which solves this problem by making use of a closed loop visual servo algorithm. Our system keeps the target cell in focus while iteratively adjusting the pipette approach trajectory to compensate for tissue motion. We demonstrate platform validation with patch-clamp recordings from a variety of cells in the mouse neocortex and cerebellum. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Robotic multi-well planar patch-clamp for native and primary mammalian cells

    PubMed Central

    Milligan, Carol J; Li, Jing; Sukumar, Piruthivi; Majeed, Yasser; Dallas, Mark L; English, Anne; Emery, Paul; Porter, Karen E; Smith, Andrew M; McFadzean, Ian; Beccano-Kelly, Dayne; Bahnasi, Yahya; Cheong, Alex; Naylor, Jacqueline; Zeng, Fanning; Liu, Xing; Gamper, Nikita; Jiang, Lin-Hua; Pearson, Hugh A; Peers, Chris; Robertson, Brian; Beech, David J

    2009-01-01

    Multi-well robotic planar patch-clamp has become common in drug development and safety programmes because it enables efficient and systematic testing of compounds against ion channels during voltage-clamp. It has not, however, been adopted significantly in other important areas of ion channel research, where conventional patch-clamp remains the favoured method. Here we show the wider potential of the multi-well approach with the capability for efficient intracellular solution exchange, describing protocols and success rates for recording from a range of native and primary mammalian cells derived from blood vessels, arthritic joints, and the immune and central nervous systems. The protocol involves preparing a suspension of single cells to be dispensed robotically into 4-8 microfluidic chambers each containing a glass chip with a small aperture. Under automated control, giga-seals and whole-cell access are achieved followed by pre-programmed routines of voltage paradigms and fast extracellular or intracellular solution exchange. Recording from 48 chambers usually takes 1-6 hr depending on the experimental design and yields 16-33 cell recordings. PMID:19197268

  19. Giga-seal formation alters properties of sodium channels of human myoballs.

    PubMed

    Fahlke, C; Rüdel, R

    1992-03-01

    The influence of giga-seal formation on the properties of the Na+ channels within the covered membrane patch was investigated with a whole-cell pipette and a patch pipette applied to the same cell. Current kinetics, current/voltage relation and channel densities were determined in three combinations: (i) voltage-clamping and current recording with the whole-cell pipette, (ii) voltage-clamping with the whole-cell pipette and current recording with the patch pipette and, (iii) voltage-clamping and current recording with the patch pipette. The Hodgkin-Huxley (1952) parameters tau m and tau h were smaller for the patch currents than for the whole cell, and the h infinity curve was shifted in the negative direction. The channel density was of the order of 10 times smaller. All effects were independent of the extracellular Ca2+ concentration. The capacitive current generated in the patch by the whole-cell Na+ current and its effect on the transmembrane voltage of the patch were evaluated. The kinetic parameters of the Na+ channels in the patch did not depend on whether the voltage was clamped with the whole-cell pipette or the patch pipette. Thus, the results are not due to spurious voltage.

  20. Digital PCR to determine the number of transcripts from single neurons after patch-clamp recording.

    PubMed

    Faragó, Nóra; Kocsis, Ágnes K; Lovas, Sándor; Molnár, Gábor; Boldog, Eszter; Rózsa, Márton; Szemenyei, Viktor; Vámos, Enikő; Nagy, Lajos I; Tamás, Gábor; Puskás, László G

    2013-06-01

    Whole-cell patch-clamp recording enables detection of electrophysiological signals from single neurons as well as harvesting of perisomatic RNA through the patch pipette for subsequent gene expression analysis. Amplification and profiling of RNA with traditional quantitative real-time PCR (qRT-PCR) do not provide exact quantitation due to experimental variation caused by the limited amount of nucleic acid in a single cell. Here we describe a protocol for quantifying mRNA or miRNA expression in individual neurons after patch-clamp recording using high-density nanocapillary digital PCR (dPCR). Expression of a known cell-type dependent marker gene (gabrd), as well as oxidative-stress related induction of hspb1 and hmox1 expression, was quantified in individual neurogliaform and pyramidal cells, respectively. The miRNA mir-132, which plays a role in neurodevelopment, was found to be equally expressed in three different types of neurons. The accuracy and sensitivity of this method were further validated using synthetic spike-in templates and by detecting genes with very low levels of expression.

  1. Automated multi-slice extracellular and patch-clamp experiments using the WinLTP data acquisition system with automated perfusion control

    PubMed Central

    Anderson, William W.; Fitzjohn, Stephen M.; Collingridge, Graham L.

    2012-01-01

    WinLTP is a data acquisition program for studying long-term potentiation (LTP) and other aspects of synaptic function. Earlier versions of WinLTP (J. Neurosci. Methods, 162:346–356, 2007) provided automated electrical stimulation and data acquisition capable of running nearly an entire synaptic plasticity experiment, with the primary exception that perfusion solutions had to be changed manually. This automated stimulation and acquisition was done by using ‘Sweep’, ‘Loop’ and ‘Delay’ events to build scripts using the ‘Protocol Builder’. However, this did not allow automatic changing of many solutions while running multiple slice experiments, or solution changing when this had to be performed rapidly and with accurate timing during patch-clamp experiments. We report here the addition of automated perfusion control to WinLTP. First, perfusion change between sweeps is enabled by adding the ‘Perfuse’ event to Protocol Builder scripting and is used in slice experiments. Second, fast perfusion changes during as well as between sweeps is enabled by using the Perfuse event in the protocol scripts to control changes between sweeps, and also by changing digital or analog output during a sweep and is used for single cell single-line perfusion patch-clamp experiments. The addition of stepper control of tube placement allows dual- or triple-line perfusion patch-clamp experiments for up to 48 solutions. The ability to automate perfusion changes and fully integrate them with the already automated stimulation and data acquisition goes a long way toward complete automation of multi-slice extracellularly recorded and single cell patch-clamp experiments. PMID:22524994

  2. Can robots patch-clamp as well as humans? Characterization of a novel sodium channel mutation

    PubMed Central

    Estacion, M; Choi, J S; Eastman, E M; Lin, Z; Li, Y; Tyrrell, L; Yang, Y; Dib-Hajj, S D; Waxman, S G

    2010-01-01

    Ion channel missense mutations cause disorders of excitability by changing channel biophysical properties. As an increasing number of new naturally occurring mutations have been identified, and the number of other mutations produced by molecular approaches such as in situ mutagenesis has increased, the need for functional analysis by patch-clamp has become rate limiting. Here we compare a patch-clamp robot using planar-chip technology with human patch-clamp in a functional assessment of a previously undescribed Nav1.7 sodium channel mutation, S211P, which causes erythromelalgia. This robotic patch-clamp device can increase throughput (the number of cells analysed per day) by 3- to 10-fold. Both modes of analysis show that the mutation hyperpolarizes activation voltage dependence (−8 mV by manual profiling, −11 mV by robotic profiling), alters steady-state fast inactivation so that it requires an additional Boltzmann function for a second fraction of total current (∼20% manual, ∼40% robotic), and enhances slow inactivation (hyperpolarizing shift −15 mV by human, −13 mV robotic). Manual patch-clamping demonstrated slower deactivation and enhanced (∼2-fold) ramp response for the mutant channel while robotic recording did not, possibly due to increased temperature and reduced signal-to-noise ratio on the robotic platform. If robotic profiling is used to screen ion channel mutations, we recommend that each measurement or protocol be validated by initial comparison to manual recording. With this caveat, we suggest that, if results are interpreted cautiously, robotic patch-clamp can be used with supervision and subsequent confirmation from human physiologists to facilitate the initial profiling of a variety of electrophysiological parameters of ion channel mutations. PMID:20123784

  3. The Nano-Patch-Clamp Array: Microfabricated Glass Chips for High-Throughput Electrophysiology

    NASA Astrophysics Data System (ADS)

    Fertig, Niels

    2003-03-01

    Electrophysiology (i.e. patch clamping) remains the gold standard for pharmacological testing of putative ion channel active drugs (ICADs), but suffers from low throughput. A new ion channel screening technology based on microfabricated glass chip devices will be presented. The glass chips contain very fine apertures, which are used for whole-cell voltage clamp recordings as well as single channel recordings from mammalian cell lines. Chips containing multiple patch clamp wells will be used in a first bench-top device, which will allow perfusion and electrical readout of each well. This scalable technology will allow for automated, rapid and parallel screening on ion channel drug targets.

  4. Outside-out "sniffer-patch" clamp technique for in situ measures of neurotransmitter release.

    PubMed

    Muller-Chrétien, Emilie

    2014-01-01

    The mechanism underlying neurotransmitter release is a critical research domain for the understanding of neuronal network function; however, few techniques are available for the direct detection and measurement of neurotransmitter release. To date, the sniffer-patch clamp technique is mainly used to investigate these mechanisms from individual cultured cells. In this study, we propose to adapt the sniffer-patch clamp technique to in situ detection of neurosecretion. Using outside-out patches from donor cells as specific biosensors plunged in acute cerebral slices, this technique allows for proper detection and quantification of neurotransmitter release at the level of the neuronal network.

  5. Comparison of Cell Expression Formats for the Characterization of GABAA Channels Using a Microfluidic Patch Clamp System

    PubMed Central

    Chen, Qin; Yim, Peter D.; Yuan, Nina; Johnson, Juliette; Cook, James M.; Smith, Steve; Ionescu-Zanetti, Cristian; Wang, Zhi-Jian; Arnold, Leggy A.

    2012-01-01

    Abstract Ensemble recording and microfluidic perfusion are recently introduced techniques aimed at removing the laborious nature and low recording success rates of manual patch clamp. Here, we present assay characteristics for these features integrated into one automated electrophysiology platform as applied to the study of GABAA channels. A variety of cell types and methods of GABAA channel expression were successfully studied (defined as IGABA>500 pA), including stably transfected human embryonic kidney (HEK) cells expressing α1β3γ2 GABAA channels, frozen ready-to-assay (RTA) HEK cells expressing α1β3γ2 or α3β3γ2 GABAA channels, transiently transfected HEK293T cells expressing α1β3γ2 GABAA channels, and immortalized cultures of human airway smooth muscle cells endogenously expressing GABAA channels. Current measurements were successfully studied in multiple cell types with multiple modes of channel expression in response to several classic GABAA channel agonists, antagonists, and allosteric modulators. We obtained success rates above 95% for transiently or stably transfected HEK cells and frozen RTA HEK cells expressing GABAA channels. Tissue-derived immortalized cultures of airway smooth muscle cells exhibited a slightly lower recording success rate of 75% using automated patch, which was much higher than the 5% success rate using manual patch clamp technique by the same research group. Responses to agonists, antagonists, and allosteric modulators compared well to previously reported manual patch results. The data demonstrate that both the biophysics and pharmacologic characterization of GABAA channels in a wide variety of cell formats can be performed using this automated patch clamp system. PMID:22574655

  6. Micromachined patch-clamp apparatus

    DOEpatents

    Okandan, Murat

    2012-12-04

    A micromachined patch-clamp apparatus is disclosed for holding one or more cells and providing electrical, chemical, or mechanical stimulation to the cells during analysis with the patch-clamp technique for studying ion channels in cell membranes. The apparatus formed on a silicon substrate utilizes a lower chamber formed from silicon nitride using surface micromachining and an upper chamber formed from a molded polymer material. An opening in a common wall between the chambers is used to trap and hold a cell for analysis using the patch-clamp technique with sensing electrodes on each side of the cell. Some embodiments of the present invention utilize one or more electrostatic actuators formed on the substrate to provide mechanical stimulation to the cell being analyzed, or to provide information about mechanical movement of the cell in response to electrical or chemical stimulation.

  7. Lipid-glass adhesion in giga-sealed patch-clamped membranes.

    PubMed

    Opsahl, L R; Webb, W W

    1994-01-01

    Adhesion between patch-clamped lipid membranes and glass micropipettes is measured by high contrast video imaging of the mechanical response to the application of suction pressure across the patch. The free patch of membrane reversibly alters both its contact angle and radius of curvature on pressure changes. The assumption that an adhesive force between the membrane and the pipette can sustain normal tension up to a maximum Ta at the edge of the free patch accounts for the observed mechanical responses. When the normal component of the pressure-induced membrane tension exceeds Ta membrane at the contact point between the free patch and the lipid-glass interface is pulled away from the pipette wall, resulting in a decreased radius of curvature for the patch and an increased contact angle. Measurements of the membrane radius of curvature as a function of the suction pressure and pipette radius determine line adhesion tensions Ta which range from 0.5 to 4.0 dyn/cm. Similar behavior of patch-clamped cell membranes implies similar adhesion mechanics.

  8. Giga-ohm seals on intracellular membranes: a technique for studying intracellular ion channels in intact cells.

    PubMed

    Jonas, E A; Knox, R J; Kaczmarek, L K

    1997-07-01

    A method is outlined for obtaining giga-ohm seals on intracellular membranes in intact cells. The technique employs a variant of the patch-clamp technique: a concentric electrode arrangement protects an inner patch pipette during penetration of the plasma membrane, after which a seal can be formed on an internal organelle membrane. Using this technique, successful recordings can be obtained with the same frequency as with conventional patch clamping. To localize the position of the pipette within cells, lipophilic fluorescent dyes are included in the pipette solution. These dyes stain the membrane of internal organelles during seal formation and can then be visualized by video-enhanced or confocal imaging. The method can detect channels activated by inositol trisphosphate, as well as other types of intracellular membrane ion channel activity, and should facilitate studies of internal membranes in intact neurons and other cell types.

  9. Population patch clamp electrophysiology: a breakthrough technology for ion channel screening.

    PubMed

    Dale, Tim J; Townsend, Claire; Hollands, Emma C; Trezise, Derek J

    2007-10-01

    Population patch clamp (PPC) is a novel high throughput planar array electrophysiology technique that allows ionic currents to be recorded from populations of cells under voltage clamp. For the drug discovery pharmacologist, PPC promises greater speed and precision than existing methods for screening compounds at voltage-gated ion channel targets. Moreover, certain constitutively active or slow-ligand gated channels that have hitherto proved challenging to screen with planar array electrophysiology (e.g. SK/IK channels) are now more accessible. In this article we review early findings using PPC and provide a perspective on its likely impact on ion channel drug discovery. To support this, we include some new data on ion channel assay duplexing and on modulator assays, approaches that have thus far not been described.

  10. Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method.

    PubMed

    Ting, Jonathan T; Lee, Brian R; Chong, Peter; Soler-Llavina, Gilberto; Cobbs, Charles; Koch, Christof; Zeng, Hongkui; Lein, Ed

    2018-02-26

    This protocol is a practical guide to the N-methyl-D-glucamine (NMDG) protective recovery method of brain slice preparation. Numerous recent studies have validated the utility of this method for enhancing neuronal preservation and overall brain slice viability. The implementation of this technique by early adopters has facilitated detailed investigations into brain function using diverse experimental applications and spanning a wide range of animal ages, brain regions, and cell types. Steps are outlined for carrying out the protective recovery brain slice technique using an optimized NMDG artificial cerebrospinal fluid (aCSF) media formulation and enhanced procedure to reliably obtain healthy brain slices for patch clamp electrophysiology. With this updated approach, a substantial improvement is observed in the speed and reliability of gigaohm seal formation during targeted patch clamp recording experiments while maintaining excellent neuronal preservation, thereby facilitating challenging experimental applications. Representative results are provided from multi-neuron patch clamp recording experiments to assay synaptic connectivity in neocortical brain slices prepared from young adult transgenic mice and mature adult human neurosurgical specimens. Furthermore, the optimized NMDG protective recovery method of brain slicing is compatible with both juvenile and adult animals, thus resolving a limitation of the original methodology. In summary, a single media formulation and brain slicing procedure can be implemented across various species and ages to achieve excellent viability and tissue preservation.

  11. Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method

    PubMed Central

    Chong, Peter; Soler-Llavina, Gilberto; Cobbs, Charles; Koch, Christof; Zeng, Hongkui; Lein, Ed

    2018-01-01

    This protocol is a practical guide to the N-methyl-D-glucamine (NMDG) protective recovery method of brain slice preparation. Numerous recent studies have validated the utility of this method for enhancing neuronal preservation and overall brain slice viability. The implementation of this technique by early adopters has facilitated detailed investigations into brain function using diverse experimental applications and spanning a wide range of animal ages, brain regions, and cell types. Steps are outlined for carrying out the protective recovery brain slice technique using an optimized NMDG artificial cerebrospinal fluid (aCSF) media formulation and enhanced procedure to reliably obtain healthy brain slices for patch clamp electrophysiology. With this updated approach, a substantial improvement is observed in the speed and reliability of gigaohm seal formation during targeted patch clamp recording experiments while maintaining excellent neuronal preservation, thereby facilitating challenging experimental applications. Representative results are provided from multi-neuron patch clamp recording experiments to assay synaptic connectivity in neocortical brain slices prepared from young adult transgenic mice and mature adult human neurosurgical specimens. Furthermore, the optimized NMDG protective recovery method of brain slicing is compatible with both juvenile and adult animals, thus resolving a limitation of the original methodology. In summary, a single media formulation and brain slicing procedure can be implemented across various species and ages to achieve excellent viability and tissue preservation. PMID:29553547

  12. High-throughput electrophysiological assays for voltage gated ion channels using SyncroPatch 768PE.

    PubMed

    Li, Tianbo; Lu, Gang; Chiang, Eugene Y; Chernov-Rogan, Tania; Grogan, Jane L; Chen, Jun

    2017-01-01

    Ion channels regulate a variety of physiological processes and represent an important class of drug target. Among the many methods of studying ion channel function, patch clamp electrophysiology is considered the gold standard by providing the ultimate precision and flexibility. However, its utility in ion channel drug discovery is impeded by low throughput. Additionally, characterization of endogenous ion channels in primary cells remains technical challenging. In recent years, many automated patch clamp (APC) platforms have been developed to overcome these challenges, albeit with varying throughput, data quality and success rate. In this study, we utilized SyncroPatch 768PE, one of the latest generation APC platforms which conducts parallel recording from two-384 modules with giga-seal data quality, to push these 2 boundaries. By optimizing various cell patching parameters and a two-step voltage protocol, we developed a high throughput APC assay for the voltage-gated sodium channel Nav1.7. By testing a group of Nav1.7 reference compounds' IC50, this assay was proved to be highly consistent with manual patch clamp (R > 0.9). In a pilot screening of 10,000 compounds, the success rate, defined by > 500 MΩ seal resistance and >500 pA peak current, was 79%. The assay was robust with daily throughput ~ 6,000 data points and Z' factor 0.72. Using the same platform, we also successfully recorded endogenous voltage-gated potassium channel Kv1.3 in primary T cells. Together, our data suggest that SyncroPatch 768PE provides a powerful platform for ion channel research and drug discovery.

  13. QPatch: the past, present and future of automated patch clamp.

    PubMed

    Mathes, Chris

    2006-04-01

    The QPatch 16 significantly increases throughput for gigaseal patch clamp experiments, making direct measurements in ion channel drug discovery and safety testing feasible. Released to the market in the Autumn of 2004 by Sophion Bioscience, the QPatch originated from work done at NeuroSearch (Denmark) in the early days of automated patch clamp. Today, the QPatch provides many unique features. For example, only the QPatch includes an automated cell preparation station making several hours of unattended operation possible. The 16-channel electrode array, called the QPlate, includes glass-coated microfluidic channels for less compound absorption and, hence, more accurate IC(50) values. The microfluidic pathways also allow for very small amounts of compound used for each experiment ( approximately 5 microl per addition). Only the QPatch has four independent pipetting heads for more efficient liquid handling (especially for ligand-gated ion channel experiments). Patch clamp recordings with the QPatch match the high quality of conventional patch clamp and in some cases the results are even better. For example, only the QPatch includes 100% series resistance compensation for the elimination of false positives due to voltage errors. Finally, the modular QPatch 16 was designed with more channels in mind. The upgrade pathway to 48-channels (the QPatch HT) will be discussed.

  14. A miniaturized planar patch-clamp system for transportable use.

    PubMed

    Boussaoud, Adrien; Fonteille, Isabelle; Collier, Guilhem; Kermarrec, Frédérique; Vermont, Fabien; Tresallet, Eric; De Waard, Michel; Arnoult, Christophe; Picollet-D'hahan, Nathalie

    2012-02-15

    In the last decade, planar patch-clamp (PPC) has emerged as an innovative technology allowing parallel recordings of cellular electrophysiological activity on planar substrates. If PPC is widely adopted by the pharmaceutical sector, it remains poorly extended to other areas (i.e. environment and safety organizations) probably because of the large, expensive and non-easily transportable format of those commercial equipments. The present work describes for the first time a new compact and transportable planar patch-clamp system (named Toxint'patch or TIP, for Toxin detection with integrated patch-clamp) focusing on environmental matters and meant to be used in coastal laboratories, for direct on-site monitoring of the seawater and shellfish quality. The TIP system incorporates silicon chips tailored to monitor cellular ionic currents from cultured cells stably expressing a phycotoxin molecular target. The functionality of this novel briefcase-sized PPC system is described in terms of fluidic control, electronic performances with amplifying and filtering boards and of user interface for data acquisition and control implemented on a computer. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Laser-assisted patch clamping: a methodology

    NASA Technical Reports Server (NTRS)

    Henriksen, G. H.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    1997-01-01

    Laser microsurgery can be used to perform both cell biological manipulations, such as targeted cell ablation, and molecular genetic manipulations, such as genetic transformation and chromosome dissection. In this report, we describe a laser microsurgical method that can be used either to ablate single cells or to ablate a small area (1-3 microns diameter) of the extracellular matrix. In plants and microorganisms, the extracellular matrix consists of the cell wall. While conventional patch clamping of these cells, as well as of many animal cells, requires enzymatic digestion of the extracellular matrix, we illustrate that laser microsurgery of a portion of the wall enables patch clamp access to the plasma membrane of higher plant cells remaining situated in their tissue environment. What follows is a detailed description of the construction and use of an economical laser microsurgery system, including procedures for single cell and targeted cell wall ablation. This methodology will be of interest to scientists wishing to perform cellular or subcellular ablation with a high degree of accuracy, or wishing to study how the extracellular matrix affects ion channel function.

  16. Obtaining spheroplasts of armored dinoflagellates and first single-channel recordings of their ion channels using patch-clamping.

    PubMed

    Pozdnyakov, Ilya; Matantseva, Olga; Negulyaev, Yuri; Skarlato, Sergei

    2014-09-05

    Ion channels are tightly involved in various aspects of cell physiology, including cell signaling, proliferation, motility, endo- and exo-cytosis. They may be involved in toxin production and release by marine dinoflagellates, as well as harmful algal bloom proliferation. So far, the patch-clamp technique, which is the most powerful method to study the activity of ion channels, has not been applied to dinoflagellate cells, due to their complex cellulose-containing cell coverings. In this paper, we describe a new approach to overcome this problem, based on the preparation of spheroplasts from armored bloom-forming dinoflagellate Prorocentrum minimum. We treated the cells of P. minimum with a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), and found out that it could also induce ecdysis and arrest cell shape maintenance in these microalgae. Treatment with 100-250 µM DCB led to an acceptable 10% yield of P. minimum spheroplasts and was independent of the incubation time in the range of 1-5 days. We show that such spheroplasts are suitable for patch-clamping in the cell-attached mode and can form 1-10 GOhm patch contact with a glass micropipette, allowing recording of ion channel activity. The first single-channel recordings of dinoflagellate ion channels are presented.

  17. Obtaining Spheroplasts of Armored Dinoflagellates and First Single-Channel Recordings of Their Ion Channels Using Patch-Clamping

    PubMed Central

    Pozdnyakov, Ilya; Matantseva, Olga; Negulyaev, Yuri; Skarlato, Sergei

    2014-01-01

    Ion channels are tightly involved in various aspects of cell physiology, including cell signaling, proliferation, motility, endo- and exo-cytosis. They may be involved in toxin production and release by marine dinoflagellates, as well as harmful algal bloom proliferation. So far, the patch-clamp technique, which is the most powerful method to study the activity of ion channels, has not been applied to dinoflagellate cells, due to their complex cellulose-containing cell coverings. In this paper, we describe a new approach to overcome this problem, based on the preparation of spheroplasts from armored bloom-forming dinoflagellate Prorocentrum minimum. We treated the cells of P. minimum with a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), and found out that it could also induce ecdysis and arrest cell shape maintenance in these microalgae. Treatment with 100–250 µM DCB led to an acceptable 10% yield of P. minimum spheroplasts and was independent of the incubation time in the range of 1–5 days. We show that such spheroplasts are suitable for patch-clamping in the cell-attached mode and can form 1–10 GOhm patch contact with a glass micropipette, allowing recording of ion channel activity. The first single-channel recordings of dinoflagellate ion channels are presented. PMID:25199048

  18. Voltage clamp methods for the study of membrane currents and SR Ca2+ release in adult skeletal muscle fibres

    PubMed Central

    Hernández-Ochoa, Erick O.; Schneider, Martin F.

    2012-01-01

    Skeletal muscle excitation-contraction (E-C)1 coupling is a process composed of multiple sequential stages, by which an action potential triggers sarcoplasmic reticulum (SR)2 Ca2+ release and subsequent contractile activation. The various steps in the E-C coupling process in skeletal muscle can be studied using different techniques. The simultaneous recordings of sarcolemmal electrical signals and the accompanying elevation in myoplasmic Ca2+, due to depolarization-initiated SR Ca2+ release in skeletal muscle fibres, have been useful to obtain a better understanding of muscle function. In studying the origin and mechanism of voltage dependency of E-C coupling a variety of different techniques have been used to control the voltage in adult skeletal fibres. Pioneering work in muscles isolated from amphibians or crustaceans used microelectrodes or ‘high resistance gap’ techniques to manipulate the voltage in the muscle fibres. The development of the patch clamp technique and its variant, the whole-cell clamp configuration that facilitates the manipulation of the intracellular environment, allowed the use of the voltage clamp techniques in different cell types, including skeletal muscle fibres. The aim of this article is to present an historical perspective of the voltage clamp methods used to study skeletal muscle E-C coupling as well as to describe the current status of using the whole-cell patch clamp technique in studies in which the electrical and Ca2+ signalling properties of mouse skeletal muscle membranes are being investigated. PMID:22306655

  19. Dual patch voltage clamp study of low membrane resistance astrocytes in situ.

    PubMed

    Ma, Baofeng; Xu, Guangjin; Wang, Wei; Enyeart, John J; Zhou, Min

    2014-03-17

    Whole-cell patch clamp recording has been successfully used in identifying the voltage-dependent gating and conductance properties of ion channels in a variety of cells. However, this powerful technique is of limited value in studying low membrane resistance cells, such as astrocytes in situ, because of the inability to control or accurately measure the real amplitude of command voltages. To facilitate the study of ionic conductances of astrocytes, we have developed a dual patch recording method which permits membrane current and membrane potential to be simultaneously recorded from astrocytes in spite of their extraordinarily low membrane resistance. The utility of this technique is demonstrated by measuring the voltage-dependent activation of the inwardly rectifying K+ current abundantly expressed in astrocytes and multiple ionic events associated with astrocytic GABAA receptor activation. This protocol can be performed routinely in the study of astrocytes. This method will be valuable for identifying and characterizing the individual ion channels that orchestrate the electrical activity of low membrane resistance cells.

  20. Correlation of open cell-attached and excised patch clamp techniques.

    PubMed

    Filipovic, D; Hayslett, J P

    1995-11-01

    The excised patch clamp configuration provides a unique technique for some types of single channel analyses, but maintenance of stable, long-lasting preparations may be confounded by rundown and/or rapid loss of seal. Studies were performed on the amiloride-sensitive Na+ channel, located on the apical surface of A6 cells, to determine whether the nystatin-induced open cell-attached patch could serve as an alternative configuration. Compared to excised inside-out patches, stable preparations were achieved more readily with the open cell-attached patch (9% vs. 56% of attempts). In both preparations, the current voltage (I-V) relation was linear, current amplitudes were equal at opposite equivalent clamped voltages, and Erev was zero in symmetrical Na+ solutions, indicating similar Na+ activities on the cytosolic and external surfaces of the patch. Moreover, there was no evidence that nystatin altered channel activity in the patch because slope conductance (3-4pS) and Erev (75 mV), when the bath was perfused with a high K:low Na solution (ENa = 80 mV), were nearly equal in both patch configurations. Our results therefore indicate that the nystatin-induced open cell-attached patch can serve as an alternative approach to the excised inside-out patch when experiments require modulation of univalent ions in the cytosol.

  1. Planar patch clamp: advances in electrophysiology.

    PubMed

    Brüggemann, Andrea; Farre, Cecilia; Haarmann, Claudia; Haythornthwaite, Ali; Kreir, Mohamed; Stoelzle, Sonja; George, Michael; Fertig, Niels

    2008-01-01

    Ion channels have gained increased interest as therapeutic targets over recent years, since a growing number of human and animal diseases have been attributed to defects in ion channel function. Potassium channels are the largest and most diverse family of ion channels. Pharmaceutical agents such as Glibenclamide, an inhibitor of K(ATP) channel activity which promotes insulin release, have been successfully sold on the market for many years. So far, only a small group of the known ion channels have been addressed as potential drug targets. The functional testing of drugs on these ion channels has always been the bottleneck in the development of these types of pharmaceutical compounds.New generations of automated patch clamp screening platforms allow a higher throughput for drug testing and widen this bottleneck. Due to their planar chip design not only is a higher throughput achieved, but new applications have also become possible. One of the advantages of planar patch clamp is the possibility of perfusing the intracellular side of the membrane during a patch clamp experiment in the whole-cell configuration. Furthermore, the extracellular membrane remains accessible for compound application during the experiment.Internal perfusion can be used not only for patch clamp experiments with cell membranes, but also for those with artificial lipid bilayers. In this chapter we describe how internal perfusion can be applied to potassium channels expressed in Jurkat cells, and to Gramicidin channels reconstituted in a lipid bilayer.

  2. Dendrimer-assisted patch-clamp sizing of nuclear pores

    PubMed Central

    Bustamante, J.O.; Michelette, E.R.F.; Geibel, J.P.; Hanover, J.A.; McDonnell, T.J.; Dean, D.A.

    2015-01-01

    Macromolecular translocation (MMT) across the nuclear envelope (NE) occurs exclusively through the nuclear pore complex (NPC). Therefore, the diameter of the NPC aqueous/electrolytic channel (NPCC) is important for cellular structure and function. The NPCC diameter was previously determined to be ≅10 nm with electron microscopy (EM) using the translocation of colloidal gold particles. Here we present patch-clamp and fluorescence microscopy data from adult cardiomyocyte nuclei that demonstrate the use of patch-clamp for assessing NPCC diameter. Fluorescence microscopy with B-phycoerythrin (BPE, 240 kDa) conjugated to a nuclear localization signal (NLS) demonstrated that these nuclei were competent for NPC-mediated MMT (NPC-MMT). Furthermore, when exposed to an appropriate cell lysate, the nuclei expressed enhanced green fluorescence protein (EGFP) after 5–10 h of incubation with the plasmid for this protein (pEGFP, 3.1 MDa). Nucleus-attached patch-clamp showed that colloidal gold particles were not useful probes; they modified NPCC gating. As a result of this finding, we searched for an inert class of particles that could be used without irreversibly affecting NPCC gating and found that fluorescently labeled Star-burst dendrimers, a distinct class of polymers, were useful. Our patch-clamp and fluorescence microscopy data with calibrated dendrimers indicate that the cardiomyocyte NPCC diameter varies between 8 and 9 nm. These studies open a new direction in the investigation of live, continuous NPC dynamics under physiological conditions. PMID:10784359

  3. MATLAB-based automated patch-clamp system for awake behaving mice

    PubMed Central

    Siegel, Jennifer J.; Taylor, William; Chitwood, Raymond A.; Johnston, Daniel

    2015-01-01

    Automation has been an important part of biomedical research for decades, and the use of automated and robotic systems is now standard for such tasks as DNA sequencing, microfluidics, and high-throughput screening. Recently, Kodandaramaiah and colleagues (Nat Methods 9: 585–587, 2012) demonstrated, using anesthetized animals, the feasibility of automating blind patch-clamp recordings in vivo. Blind patch is a good target for automation because it is a complex yet highly stereotyped process that revolves around analysis of a single signal (electrode impedance) and movement along a single axis. Here, we introduce an automated system for blind patch-clamp recordings from awake, head-fixed mice running on a wheel. In its design, we were guided by 3 requirements: easy-to-use and easy-to-modify software; seamless integration of behavioral equipment; and efficient use of time. The resulting system employs equipment that is standard for patch recording rigs, moderately priced, or simple to make. It is written entirely in MATLAB, a programming environment that has an enormous user base in the neuroscience community and many available resources for analysis and instrument control. Using this system, we obtained 19 whole cell patch recordings from neurons in the prefrontal cortex of awake mice, aged 8–9 wk. Successful recordings had series resistances that averaged 52 ± 4 MΩ and required 5.7 ± 0.6 attempts to obtain. These numbers are comparable with those of experienced electrophysiologists working manually, and this system, written in a simple and familiar language, will be useful to many cellular electrophysiologists who wish to study awake behaving mice. PMID:26084901

  4. Diffusion-convection effects on drug distribution at the cell membrane level in a patch-clamp setup.

    PubMed

    Baran, Irina; Iftime, Adrian; Popescu, Anca

    2010-01-01

    We present a model-based method for estimating the effective concentration of the active drug applied by a pressure pulse to an individual cell in a patch-clamp setup, which could be of practical use in the analysis of ligand-induced whole-cell currents recorded in patch-clamp experiments. Our modelling results outline several important factors which may be involved in the high variability of the electric response of the cells, and indicate that with a pressure pulse duration of 1s and diameter of the perfusion tip of 600 μm, elevated amounts of drug can accumulate locally between the pipette tip and the cell. Hence, the effective agonist concentration at the cell membrane level can be consistently higher than the initial concentration inside the perfusion tubes. We performed finite-difference and finite-element simulations to investigate the diffusion/convection effects on the agonist distribution on the cell membrane. Our model can explain the delay between the commencement of acetylcholine application and the onset of the whole-cell current that we recorded on human rhabdomyosarcoma TE671 cells, and reproduce quantitatively the decrease of signal latency with the concentration of agonist in the pipette. Results also show that not only the geometry of the bath chamber and pipette tip, but also the transport parameters of the diffusive and convective phenomena in the bath solution are determinant for the amplitude and kinetics of the recorded currents and have to be accounted for when analyzing patch-clamp data. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Integrated multiple patch-clamp array chip via lateral cell trapping junctions

    NASA Astrophysics Data System (ADS)

    Seo, J.; Ionescu-Zanetti, C.; Diamond, J.; Lal, R.; Lee, L. P.

    2004-03-01

    We present an integrated multiple patch-clamp array chip by utilizing lateral cell trapping junctions. The intersectional design of a microfluidic network provides multiple cell addressing and manipulation sites for efficient electrophysiological measurements at a number of patch sites. The patch pores consist of openings in the sidewall of a main fluidic channel, and a membrane patch is drawn into a smaller horizontal channel. This device geometry not only minimizes capacitive coupling between the cell reservoir and the patch channel, but also allows simultaneous optical and electrical measurements of ion channel proteins. Evidence of the hydrodynamic placement of mammalian cells at the patch sites as well as measurements of patch sealing resistance is presented. Device fabrication is based on micromolding of polydimethylsiloxane, thus allowing inexpensive mass production of disposable high-throughput biochips.

  6. Expanding neurochemical investigations with multi-modal recording: simultaneous fast-scan cyclic voltammetry, iontophoresis, and patch clamp measurements.

    PubMed

    Kirkpatrick, D C; McKinney, C J; Manis, P B; Wightman, R M

    2016-08-02

    Multi-modal recording describes the simultaneous collection of information across distinct domains. Compared to isolated measurements, such studies can more easily determine relationships between varieties of phenomena. This is useful for neurochemical investigations which examine cellular activity in response to changes in the local chemical environment. In this study, we demonstrate a method to perform simultaneous patch clamp measurements with fast-scan cyclic voltammetry (FSCV) using optically isolated instrumentation. A model circuit simulating concurrent measurements was used to predict the electrical interference between instruments. No significant impact was anticipated between methods, and predictions were largely confirmed experimentally. One exception was due to capacitive coupling of the FSCV potential waveform into the patch clamp amplifier. However, capacitive transients measured in whole-cell current clamp recordings were well below the level of biological signals, which allowed the activity of cells to be easily determined. Next, the activity of medium spiny neurons (MSNs) was examined in the presence of an FSCV electrode to determine how the exogenous potential impacted nearby cells. The activities of both resting and active MSNs were unaffected by the FSCV waveform. Additionally, application of an iontophoretic current, used to locally deliver drugs and other neurochemicals, did not affect neighboring cells. Finally, MSN activity was monitored during iontophoretic delivery of glutamate, an excitatory neurotransmitter. Membrane depolarization and cell firing were observed concurrently with chemical changes around the cell resulting from delivery. In all, we show how combined electrophysiological and electrochemical measurements can relate information between domains and increase the power of neurochemical investigations.

  7. The slow inward calcium current is responsible for a part of the contraction of patch-clamped rat myoballs.

    PubMed

    Rivet, M; Cognard, C; Raymond, G

    1989-01-01

    The slow inward calcium current and the contractile response were simultaneously recorded in voltage clamped (whole cell patch clamp recording) rat myoballs in primary culture. The shape of the contraction(T)/potential(V) relationship and the application of the inorganic calcium channel blocker cadmium (1.5 mM), which suppresses a part of the contractile activity, demonstrate the existence of two components of contraction. One of them is related to the slow calcium current.

  8. Laser microsurgery of higher plant cell walls permits patch-clamp access

    NASA Technical Reports Server (NTRS)

    Henriksen, G. H.; Taylor, A. R.; Brownlee, C.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Plasma membranes of guard cells in epidermal peels of Vicia faba and Commelina communis can be made accessible to a patch-clamp pipet by removing a small portion (1-3 micrometers in diameter) of the guard cell wall using a microbeam of ultraviolet light generated by a nitrogen laser. Using this laser microsurgical technique, we have measured channel activity across plasma membranes of V. faba guard cells in both cell-attached and isolated patch configurations. Measurements made in the inside-out patch configuration revealed two distinct K(+)-selective channels. Major advantages of the laser microsurgical technique include the avoidance of enzymatic protoplast isolation, the ability to study cell types that have been difficult to isolate as protoplasts or for which enzymatic isolation protocols result in protoplasts not amenable to patch-clamp studies, the maintenance of positional information in single-channel measurements, reduced disruption of cell-wall-mediated signaling pathways, and the ability to investigate intercellular signaling through studies of cells remaining situated within tissue.

  9. Evaluation of Optogenetic Electrophysiology Tools in Human Stem Cell-Derived Cardiomyocytes.

    PubMed

    Björk, Susann; Ojala, Elina A; Nordström, Tommy; Ahola, Antti; Liljeström, Mikko; Hyttinen, Jari; Kankuri, Esko; Mervaala, Eero

    2017-01-01

    Current cardiac drug safety assessments focus on hERG channel block and QT prolongation for evaluating arrhythmic risks, whereas the optogenetic approach focuses on the action potential (AP) waveform generated by a monolayer of human cardiomyocytes beating synchronously, thus assessing the contribution of several ion channels on the overall drug effect. This novel tool provides arrhythmogenic sensitizing by light-induced pacing in combination with non-invasive, all-optical measurements of cardiomyocyte APs and will improve assessment of drug-induced electrophysiological aberrancies. With the help of patch clamp electrophysiology measurements, we aimed to investigate whether the optogenetic modifications alter human cardiomyocytes' electrophysiology and how well the optogenetic analyses perform against this gold standard. Patch clamp electrophysiology measurements of non-transduced stem cell-derived cardiomyocytes compared to cells expressing the commercially available optogenetic constructs Optopatch and CaViar revealed no significant changes in action potential duration (APD) parameters. Thus, inserting the optogenetic constructs into cardiomyocytes does not significantly affect the cardiomyocyte's electrophysiological properties. When comparing the two methods against each other (patch clamp vs. optogenetic imaging) we found no significant differences in APD parameters for the Optopatch transduced cells, whereas the CaViar transduced cells exhibited modest increases in APD-values measured with optogenetic imaging. Thus, to broaden the screen, we combined optogenetic measurements of membrane potential and calcium transients with contractile motion measured by video motion tracking. Furthermore, to assess how optogenetic measurements can predict changes in membrane potential, or early afterdepolarizations (EADs), cells were exposed to cumulating doses of E-4031, a hERG potassium channel blocker, and drug effects were measured at both spontaneous and paced beating rates (1, 2 Hz). Cumulating doses of E-4031 produced prolonged APDs, followed by EADs and drug-induced quiescence. These observations were corroborated by patch clamp and contractility measurements. Similar responses, although more modest were seen with the I Ks potassium channel blocker JNJ-303. In conclusion, optogenetic measurements of AP waveforms combined with optical pacing compare well with the patch clamp gold standard. Combined with video motion contractile measurements, optogenetic imaging provides an appealing alternative for electrophysiological screening of human cardiomyocyte responses in pharmacological efficacy and safety testings.

  10. Evaluation of Optogenetic Electrophysiology Tools in Human Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Björk, Susann; Ojala, Elina A.; Nordström, Tommy; Ahola, Antti; Liljeström, Mikko; Hyttinen, Jari; Kankuri, Esko; Mervaala, Eero

    2017-01-01

    Current cardiac drug safety assessments focus on hERG channel block and QT prolongation for evaluating arrhythmic risks, whereas the optogenetic approach focuses on the action potential (AP) waveform generated by a monolayer of human cardiomyocytes beating synchronously, thus assessing the contribution of several ion channels on the overall drug effect. This novel tool provides arrhythmogenic sensitizing by light-induced pacing in combination with non-invasive, all-optical measurements of cardiomyocyte APs and will improve assessment of drug-induced electrophysiological aberrancies. With the help of patch clamp electrophysiology measurements, we aimed to investigate whether the optogenetic modifications alter human cardiomyocytes' electrophysiology and how well the optogenetic analyses perform against this gold standard. Patch clamp electrophysiology measurements of non-transduced stem cell-derived cardiomyocytes compared to cells expressing the commercially available optogenetic constructs Optopatch and CaViar revealed no significant changes in action potential duration (APD) parameters. Thus, inserting the optogenetic constructs into cardiomyocytes does not significantly affect the cardiomyocyte's electrophysiological properties. When comparing the two methods against each other (patch clamp vs. optogenetic imaging) we found no significant differences in APD parameters for the Optopatch transduced cells, whereas the CaViar transduced cells exhibited modest increases in APD-values measured with optogenetic imaging. Thus, to broaden the screen, we combined optogenetic measurements of membrane potential and calcium transients with contractile motion measured by video motion tracking. Furthermore, to assess how optogenetic measurements can predict changes in membrane potential, or early afterdepolarizations (EADs), cells were exposed to cumulating doses of E-4031, a hERG potassium channel blocker, and drug effects were measured at both spontaneous and paced beating rates (1, 2 Hz). Cumulating doses of E-4031 produced prolonged APDs, followed by EADs and drug-induced quiescence. These observations were corroborated by patch clamp and contractility measurements. Similar responses, although more modest were seen with the IKs potassium channel blocker JNJ-303. In conclusion, optogenetic measurements of AP waveforms combined with optical pacing compare well with the patch clamp gold standard. Combined with video motion contractile measurements, optogenetic imaging provides an appealing alternative for electrophysiological screening of human cardiomyocyte responses in pharmacological efficacy and safety testings. PMID:29163220

  11. Validation of a patch clamp screening protocol that simultaneously measures compound activity in multiple states of the voltage-gated sodium channel Nav1.2.

    PubMed

    Liu, Yi; Beck, Edward J; Flores, Christopher M

    2011-12-01

    Hyperactivity of voltage-gated sodium channels underlies, at least in part, a range of pathological states, including pain and epilepsy. Selective blockers of these channels may offer effective treatment of such disorders. Currently employed methods to screen for sodium channel blockers, however, are inadequate to rationally identify mechanistically diverse blockers, limiting the potential range of indications that may be treated by such agents. Here, we describe an improved patch clamp screening assay that increases the mechanistic diversity of sodium channel blockers being identified. Using QPatch HT, a medium-throughput, automated patch clamp system, we tested three common sodium channel blockers (phenytoin, lidocaine, and tetrodotoxin) with distinct mechanistic profiles at Nav1.2. The single-voltage protocol employed in this assay simultaneously measured the compound activity in multiple states, including the slow inactivated state, of the channel. A long compound incubation period (10 s) was introduced during channel inactivation to increase the probability of identifying "slow binders." As such, phenytoin, which preferentially binds with slow kinetics to the fast inactivated state, exhibited significantly higher potency than that obtained from a brief exposure (100 ms) used in typical assays. This assay also successfully detected the use-dependent block of tetrodotoxin, a well-documented property of this molecule yet unobserved in typical patch clamp protocols. These results indicate that the assay described here can increase the likelihood of identification and mechanistic diversity of sodium channel blockers from a primary screen. It can also be used to efficiently guide the in vitro optimization of leads that retain the desired mechanistic properties. © MARY ANN LIEBERT, INC.

  12. Construction, Calibration, and Validation of a Simple Patch-Clamp Amplifier for Physiology Education

    ERIC Educational Resources Information Center

    Rouzrokh, Ali; Ebrahimi, Soltan Ahmed; Mahmoudian, Massoud

    2009-01-01

    A modular patch-clamp amplifier was constructed based on the Strickholm design, which was initially published in 1995. Various parts of the amplifier such as the power supply, input circuit, headstage, feedback circuit, output and nulling circuits were redesigned to use recent software advances and fabricated using the common lithographic printed…

  13. Enhanced Monitoring of Nanosecond Electric Pulse-Evoked Membrane Conductance Changes in Whole-Cell Patch Clamp Experiments.

    PubMed

    Yoon, Jihwan; Leblanc, Normand; Zaklit, Josette; Vernier, P Thomas; Chatterjee, Indira; Craviso, Gale L

    2016-10-01

    Patch clamp electrophysiology serves as a powerful method for studying changes in plasma membrane ion conductance induced by externally applied high-intensity nanosecond electric pulses (NEPs). This paper describes an enhanced monitoring technique that minimizes the length of time between pulse exposure and data recording in a patch-clamped excitable cell. Whole-cell membrane currents were continuously recorded up to 11 ms before and resumed 8 ms after delivery of a 5-ns, 6 MV/m pulse by a pair of tungsten rod electrodes to a patched adrenal chromaffin cell maintained at a holding potential of -70 mV. This timing was achieved by two sets of relay switches. One set was used to disconnect the patch pipette electrode from the pre-amplifier and connect it to a battery to maintain membrane potential at -70 mV, and also to disconnect the reference electrode from the amplifier. The other set was used to disconnect the electrodes from the pulse generator until the time of NEP/sham exposure. The sequence and timing of both sets of relays were computer-controlled. Using this procedure, we observed that a 5-ns pulse induced an instantaneous inward current that decayed exponentially over the course of several minutes, that a second pulse induced a similar response, and that the current was carried, at least in part, by Na + . This approach for characterizing ion conductance changes in an excitable cell in response to NEPs will yield information essential for assessing the potential use of NEP stimulation for therapeutic applications.

  14. Influence of Global and Local Membrane Curvature on Mechanosensitive Ion Channels: A Finite Element Approach

    PubMed Central

    Bavi, Omid; Cox, Charles D.; Vossoughi, Manouchehr; Naghdabadi, Reza; Jamali, Yousef; Martinac, Boris

    2016-01-01

    Mechanosensitive (MS) channels are ubiquitous molecular force sensors that respond to a number of different mechanical stimuli including tensile, compressive and shear stress. MS channels are also proposed to be molecular curvature sensors gating in response to bending in their local environment. One of the main mechanisms to functionally study these channels is the patch clamp technique. However, the patch of membrane surveyed using this methodology is far from physiological. Here we use continuum mechanics to probe the question of how curvature, in a standard patch clamp experiment, at different length scales (global and local) affects a model MS channel. Firstly, to increase the accuracy of the Laplace’s equation in tension estimation in a patch membrane and to be able to more precisely describe the transient phenomena happening during patch clamping, we propose a modified Laplace’s equation. Most importantly, we unambiguously show that the global curvature of a patch, which is visible under the microscope during patch clamp experiments, is of negligible energetic consequence for activation of an MS channel in a model membrane. However, the local curvature (RL < 50) and the direction of bending are able to cause considerable changes in the stress distribution through the thickness of the membrane. Not only does local bending, in the order of physiologically relevant curvatures, cause a substantial change in the pressure profile but it also significantly modifies the stress distribution in response to force application. Understanding these stress variations in regions of high local bending is essential for a complete understanding of the effects of curvature on MS channels. PMID:26861405

  15. Protein kinase C enhances the swelling-induced chloride current in human atrial myocytes.

    PubMed

    Li, Ye-Tao; Du, Xin-Ling

    2016-06-01

    Swelling-activated chloride currents (ICl.swell) are thought to play a role in several physiologic and pathophysiologic processes and thus represent a target for therapeutic approaches. However, the mechanism of ICl.swell regulation remains unclear. In this study, we used the whole-cell patch-clamp technique to examine the role of protein kinase C (PKC) in the regulation of ICl.swell in human atrial myocytes. Atrial myocytes were isolated from the right atrial appendages of patients undergoing coronary artery bypass and enzymatically dissociated. ICl.swell was evoked in hypotonic solution and recorded using the whole-cell patch-clamp technique. The PKC agonist phorbol dibutyrate (PDBu) enhanced ICl.swell in a concentration-dependent manner, which was reversed in isotonic solution and by a chloride current inhibitor, 9-anthracenecarboxylicacid. Furthermore, the PKC inhibitor bis-indolylmaleimide attenuated the effect and 4α-PDBu, an inactive PDBu analog, had no effect on ICl.swell. These results, obtained using the whole-cell patch-clamp technique, demonstrate the ability of PKC to activate ICl,swell in human atrial myocytes. This observation was consistent with a previous study using a single-channel patch-clamp technique, but differed from some findings in other species.

  16. Ion channel electrophysiology via integrated planar patch-clamp chip with on-demand drug exchange.

    PubMed

    Chen, Chang-Yu; Tu, Ting-Yuan; Jong, De-Shien; Wo, Andrew M

    2011-06-01

    Planar patch clamp has revolutionized characterization of ion channel behavior in drug discovery primarily via advancement in high throughput. Lab use of planar technology, however, addresses different requirements and suffers from inflexibility to enable wide range of interrogation via a single cell. This work presents integration of planar patch clamp with microfluidics, achieving multiple solution exchanges for tailor-specific measurement and allowing rapid replacement of the cell-contacting aperture. Studies via endogenously expressed ion channels in HEK 293T cells were commenced to characterize the device. Results reveal the microfluidic concentration generator produces distinct solution/drug combination/concentrations on-demand. Volume-regulated chloride channel and voltage-gated potassium channels in HEK 293T cells immersed in generated solutions under various osmolarities or drug concentrations show unique channel signature under specific condition. Excitation and blockage of ion channels in a single cell was demonstrated via serial solution exchange. Robustness of the reversible bonding and ease of glass substrate replacement were proven via repeated usage of the integrated device. The present approach reveals the capability and flexibility of integrated microfluidic planar patch-clamp system for ion channel assays. Copyright © 2011 Wiley Periodicals, Inc.

  17. Ionic requirements for membrane-glass adhesion and giga seal formation in patch-clamp recording.

    PubMed

    Priel, Avi; Gil, Ziv; Moy, Vincent T; Magleby, Karl L; Silberberg, Shai D

    2007-06-01

    Patch-clamp recording has revolutionized the study of ion channels, transporters, and the electrical activity of small cells. Vital to this method is formation of a tight seal between glass recording pipette and cell membrane. To better understand seal formation and improve practical application of this technique, we examine the effects of divalent ions, protons, ionic strength, and membrane proteins on adhesion of membrane to glass and on seal resistance using both patch-clamp recording and atomic force microscopy. We find that H(+), Ca(2+), and Mg(2+) increase adhesion force between glass and membrane (lipid and cellular), decrease the time required to form a tight seal, and increase seal resistance. In the absence of H(+) (10(-10) M) and divalent cations (<10(-8) M), adhesion forces are greatly reduced and tight seals are not formed. H(+) (10(-7) M) promotes seal formation in the absence of divalent cations. A positive correlation between adhesion force and seal formation indicates that high resistance seals are associated with increased adhesion between membrane and glass. A similar ionic dependence of the adhesion of lipid membranes and cell membranes to glass indicates that lipid membranes without proteins are sufficient for the action of ions on adhesion.

  18. Perforated Patch-clamp Recording of Mouse Olfactory Sensory Neurons in Intact Neuroepithelium: Functional Analysis of Neurons Expressing an Identified Odorant Receptor

    PubMed Central

    Jarriault, David; Grosmaitre, Xavier

    2015-01-01

    Analyzing the physiological responses of olfactory sensory neurons (OSN) when stimulated with specific ligands is critical to understand the basis of olfactory-driven behaviors and their modulation. These coding properties depend heavily on the initial interaction between odor molecules and the olfactory receptor (OR) expressed in the OSNs. The identity, specificity and ligand spectrum of the expressed OR are critical. The probability to find the ligand of the OR expressed in an OSN chosen randomly within the epithelium is very low. To address this challenge, this protocol uses genetically tagged mice expressing the fluorescent protein GFP under the control of the promoter of defined ORs. OSNs are located in a tight and organized epithelium lining the nasal cavity, with neighboring cells influencing their maturation and function. Here we describe a method to isolate an intact olfactory epithelium and record through patch-clamp recordings the properties of OSNs expressing defined odorant receptors. The protocol allows one to characterize OSN membrane properties while keeping the influence of the neighboring tissue. Analysis of patch-clamp results yields a precise quantification of ligand/OR interactions, transduction pathways and pharmacology, OSNs' coding properties and their modulation at the membrane level.  PMID:26275097

  19. Single-Molecule Patch-Clamp FRET Anisotropy Microscopy Studies of NMDA Receptor Ion Channel Activation and Deactivation under Agonist Ligand Binding in Living Cells.

    PubMed

    Sasmal, Dibyendu Kumar; Yadav, Rajeev; Lu, H Peter

    2016-07-20

    N-methyl-d-aspartate (NMDA) receptor ion channel is activated by the binding of two pairs of glycine and glutamate along with the application of action potential. Binding and unbinding of ligands changes its conformation that plays a critical role in the open-close activities of NMDA receptor. Conformation states and their dynamics due to ligand binding are extremely difficult to characterize either by conventional ensemble experiments or single-channel electrophysiology method. Here we report the development of a new correlated technical approach, single-molecule patch-clamp FRET anisotropy imaging and demonstrate by probing the dynamics of NMDA receptor ion channel and kinetics of glycine binding with its ligand binding domain. Experimentally determined kinetics of ligand binding with receptor is further verified by computational modeling. Single-channel patch-clamp and four-channel fluorescence measurement are recorded simultaneously to get correlation among electrical on and off states, optically determined conformational open and closed states by FRET, and binding-unbinding states of the glycine ligand by anisotropy measurement at the ligand binding domain of GluN1 subunit. This method has the ability to detect the intermediate states in addition to electrical on and off states. Based on our experimental results, we have proposed that NMDA receptor gating goes through at least one electrically intermediate off state, a desensitized state, when ligands remain bound at the ligand binding domain with the conformation similar to the fully open state.

  20. Finite element modelling to assess the effect of surface mounted piezoelectric patch size on vibration response of a hybrid beam

    NASA Astrophysics Data System (ADS)

    Rahman, N.; Alam, M. N.

    2018-02-01

    Vibration response analysis of a hybrid beam with surface mounted patch piezoelectric layer is presented in this work. A one dimensional finite element (1D-FE) model based on efficient layerwise (zigzag) theory is used for the analysis. The beam element has eight mechanical and a variable number of electrical degrees of freedom. The beams are also modelled in 2D-FE (ABAQUS) using a plane stress piezoelectric quadrilateral element for piezo layers and a plane stress quadrilateral element for the elastic layers of hybrid beams. Results are presented to assess the effect of size of piezoelectric patch layer on the free and forced vibration responses of thin and moderately thick beams under clamped-free and clamped-clamped configurations. The beams are subjected to unit step loading and harmonic loading to obtain the forced vibration responses. The vibration control using in phase actuation potential on piezoelectric patches is also studied. The 1D-FE results are compared with the 2D-FE results.

  1. Combination of High-density Microelectrode Array and Patch Clamp Recordings to Enable Studies of Multisynaptic Integration.

    PubMed

    Jäckel, David; Bakkum, Douglas J; Russell, Thomas L; Müller, Jan; Radivojevic, Milos; Frey, Urs; Franke, Felix; Hierlemann, Andreas

    2017-04-20

    We present a novel, all-electric approach to record and to precisely control the activity of tens of individual presynaptic neurons. The method allows for parallel mapping of the efficacy of multiple synapses and of the resulting dynamics of postsynaptic neurons in a cortical culture. For the measurements, we combine an extracellular high-density microelectrode array, featuring 11'000 electrodes for extracellular recording and stimulation, with intracellular patch-clamp recording. We are able to identify the contributions of individual presynaptic neurons - including inhibitory and excitatory synaptic inputs - to postsynaptic potentials, which enables us to study dendritic integration. Since the electrical stimuli can be controlled at microsecond resolution, our method enables to evoke action potentials at tens of presynaptic cells in precisely orchestrated sequences of high reliability and minimum jitter. We demonstrate the potential of this method by evoking short- and long-term synaptic plasticity through manipulation of multiple synaptic inputs to a specific neuron.

  2. QPatch: the missing link between HTS and ion channel drug discovery.

    PubMed

    Mathes, Chris; Friis, Søren; Finley, Michael; Liu, Yi

    2009-01-01

    The conventional patch clamp has long been considered the best approach for studying ion channel function and pharmacology. However, its low throughput has been a major hurdle to overcome for ion channel drug discovery. The recent emergence of higher throughput, automated patch clamp technology begins to break this bottleneck by providing medicinal chemists with high-quality, information-rich data in a more timely fashion. As such, these technologies have the potential to bridge a critical missing link between high-throughput primary screening and meaningful ion channel drug discovery programs. One of these technologies, the QPatch automated patch clamp system developed by Sophion Bioscience, records whole-cell ion channel currents from 16 or 48 individual cells in a parallel fashion. Here, we review the general applicability of the QPatch to studying a wide variety of ion channel types (voltage-/ligand-gated cationic/anionic channels) in various expression systems. The success rate of gigaseals, formation of the whole-cell configuration and usable cells ranged from 40-80%, depending on a number of factors including the cell line used, ion channel expressed, assay development or optimization time and expression level in these studies. We present detailed analyses of the QPatch features and results in case studies in which secondary screening assays were successfully developed for a voltage-gated calcium channel and a ligand-gated TRP channel. The increase in throughput compared to conventional patch clamp with the same cells was approximately 10-fold. We conclude that the QPatch, combining high data quality and speed with user friendliness and suitability for a wide array of ion channels, resides on the cutting edge of automated patch clamp technology and plays a pivotal role in expediting ion channel drug discovery.

  3. From Understanding Cellular Function to Novel Drug Discovery: The Role of Planar Patch-Clamp Array Chip Technology

    PubMed Central

    Py, Christophe; Martina, Marzia; Diaz-Quijada, Gerardo A.; Luk, Collin C.; Martinez, Dolores; Denhoff, Mike W.; Charrier, Anne; Comas, Tanya; Monette, Robert; Krantis, Anthony; Syed, Naweed I.; Mealing, Geoffrey A. R.

    2011-01-01

    All excitable cell functions rely upon ion channels that are embedded in their plasma membrane. Perturbations of ion channel structure or function result in pathologies ranging from cardiac dysfunction to neurodegenerative disorders. Consequently, to understand the functions of excitable cells and to remedy their pathophysiology, it is important to understand the ion channel functions under various experimental conditions – including exposure to novel drug targets. Glass pipette patch-clamp is the state of the art technique to monitor the intrinsic and synaptic properties of neurons. However, this technique is labor intensive and has low data throughput. Planar patch-clamp chips, integrated into automated systems, offer high throughputs but are limited to isolated cells from suspensions, thus limiting their use in modeling physiological function. These chips are therefore not most suitable for studies involving neuronal communication. Multielectrode arrays (MEAs), in contrast, have the ability to monitor network activity by measuring local field potentials from multiple extracellular sites, but specific ion channel activity is challenging to extract from these multiplexed signals. Here we describe a novel planar patch-clamp chip technology that enables the simultaneous high-resolution electrophysiological interrogation of individual neurons at multiple sites in synaptically connected neuronal networks, thereby combining the advantages of MEA and patch-clamp techniques. Each neuron can be probed through an aperture that connects to a dedicated subterranean microfluidic channel. Neurons growing in networks are aligned to the apertures by physisorbed or chemisorbed chemical cues. In this review, we describe the design and fabrication process of these chips, approaches to chemical patterning for cell placement, and present physiological data from cultured neuronal cells. PMID:22007170

  4. From understanding cellular function to novel drug discovery: the role of planar patch-clamp array chip technology.

    PubMed

    Py, Christophe; Martina, Marzia; Diaz-Quijada, Gerardo A; Luk, Collin C; Martinez, Dolores; Denhoff, Mike W; Charrier, Anne; Comas, Tanya; Monette, Robert; Krantis, Anthony; Syed, Naweed I; Mealing, Geoffrey A R

    2011-01-01

    All excitable cell functions rely upon ion channels that are embedded in their plasma membrane. Perturbations of ion channel structure or function result in pathologies ranging from cardiac dysfunction to neurodegenerative disorders. Consequently, to understand the functions of excitable cells and to remedy their pathophysiology, it is important to understand the ion channel functions under various experimental conditions - including exposure to novel drug targets. Glass pipette patch-clamp is the state of the art technique to monitor the intrinsic and synaptic properties of neurons. However, this technique is labor intensive and has low data throughput. Planar patch-clamp chips, integrated into automated systems, offer high throughputs but are limited to isolated cells from suspensions, thus limiting their use in modeling physiological function. These chips are therefore not most suitable for studies involving neuronal communication. Multielectrode arrays (MEAs), in contrast, have the ability to monitor network activity by measuring local field potentials from multiple extracellular sites, but specific ion channel activity is challenging to extract from these multiplexed signals. Here we describe a novel planar patch-clamp chip technology that enables the simultaneous high-resolution electrophysiological interrogation of individual neurons at multiple sites in synaptically connected neuronal networks, thereby combining the advantages of MEA and patch-clamp techniques. Each neuron can be probed through an aperture that connects to a dedicated subterranean microfluidic channel. Neurons growing in networks are aligned to the apertures by physisorbed or chemisorbed chemical cues. In this review, we describe the design and fabrication process of these chips, approaches to chemical patterning for cell placement, and present physiological data from cultured neuronal cells.

  5. A simple technique for transferring excised patches of membrane to different solutions for single channel measurements.

    PubMed

    Quartararo, N; Barry, P H

    1987-12-01

    A technical problem associated with the patch clamp technique has been the changing of solutions bathing the membrane patch. The simple technique described here solves this problem by means of a movable polythene sleeve placed on the shaft of the patch clamp pipette. The sleeve is initially placed so that the tip of the pipette is exposed. A gigaohm seal is formed using standard techniques. The patch is then excised and the sleeve is slipped down a few mm past the end of the tip of the pipette. When the pipette and sleeve is now removed from the solution, a small drop of solution covering the membrane patch is held in place at the end of the sleeve by surface tension. The pipette is then easily transferred to a different solution without passing the membrane patch through the air-water interface. The sleeve is then simply pulled back up the pipette shaft to expose the membrane patch to the new solution.

  6. Automated patch clamp on mESC-derived cardiomyocytes for cardiotoxicity prediction.

    PubMed

    Stoelzle, Sonja; Haythornthwaite, Alison; Kettenhofen, Ralf; Kolossov, Eugen; Bohlen, Heribert; George, Michael; Brüggemann, Andrea; Fertig, Niels

    2011-09-01

    Cardiovascular side effects are critical in drug development and have frequently led to late-stage project terminations or even drug withdrawal from the market. Physiologically relevant and predictive assays for cardiotoxicity are hence strongly demanded by the pharmaceutical industry. To identify a potential impact of test compounds on ventricular repolarization, typically a variety of ion channels in diverse heterologously expressing cells have to be investigated. Similar to primary cells, in vitro-generated stem cell-derived cardiomyocytes simultaneously express cardiac ion channels. Thus, they more accurately represent the native situation compared with cell lines overexpressing only a single type of ion channel. The aim of this study was to determine if stem cell-derived cardiomyocytes are suited for use in an automated patch clamp system. The authors show recordings of cardiac ion currents as well as action potential recordings in readily available stem cell-derived cardiomyocytes. Besides monitoring inhibitory effects of reference compounds on typical cardiac ion currents, the authors revealed for the first time drug-induced modulation of cardiac action potentials in an automated patch clamp system. The combination of an in vitro cardiac cell model with higher throughput patch clamp screening technology allows for a cost-effective cardiotoxicity prediction in a physiologically relevant cell system.

  7. Flow characterization and patch clamp dose responses using jet microfluidics in a tubeless microfluidic device.

    PubMed

    Resto, Pedro J; Bhat, Abhishek; Stava, Eric; Lor, Chong; Merriam, Elliot; Diaz-Rivera, Ruben E; Pearce, Robert; Blick, Robert; Williams, Justin C

    2017-11-01

    Surface tension passive pumping is a way to actuate flow without the need for pumps, tubing or valves by using the pressure inside small drop to move liquid via a microfluidic channel. These types of tubeless devices have typically been used in cell biology. Herein we present the use of tubeless devices as a fluid exchange platform for patch clamp electrophysiology. Inertia from high-speed droplets and jets is used to create flow and perform on-the-fly mixing of solutions. These are then flowed over GABA transfected HEK cells under patch in order to perform a dose response analysis. TIRF imaging and electrical recordings are used to study the fluid exchange properties of the microfluidic device, resulting in 0-90% fluid exchange times of hundreds of milliseconds. COMSOL is used to model flow and fluid exchange within the device. Patch-clamping experiments show the ability to use high-speed passive pumping and its derivatives for studying peak dose responses, but not for studying ion channel kinetics. Our system results in fluid exchange times slower than when using a standard 12-barrel application system and is not as stable as traditional methods, but it offers a new platform with added functionality. Surface tension passive pumping and tubeless devices can be used in a limited fashion for electrophysiology. Users may obtain peak dose responses but the system, in its current form, is not capable of fluid exchange fast enough to study the kinetics of most ion channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Patch-Clamp Recording from Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Improving Action Potential Characteristics through Dynamic Clamp

    PubMed Central

    Veerman, Christiaan C.; Zegers, Jan G.; Mengarelli, Isabella; Bezzina, Connie R.

    2017-01-01

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold great promise for studying inherited cardiac arrhythmias and developing drug therapies to treat such arrhythmias. Unfortunately, until now, action potential (AP) measurements in hiPSC-CMs have been hampered by the virtual absence of the inward rectifier potassium current (IK1) in hiPSC-CMs, resulting in spontaneous activity and altered function of various depolarising and repolarising membrane currents. We assessed whether AP measurements in “ventricular-like” and “atrial-like” hiPSC-CMs could be improved through a simple, highly reproducible dynamic clamp approach to provide these cells with a substantial IK1 (computed in real time according to the actual membrane potential and injected through the patch-clamp pipette). APs were measured at 1 Hz using perforated patch-clamp methodology, both in control cells and in cells treated with all-trans retinoic acid (RA) during the differentiation process to increase the number of cells with atrial-like APs. RA-treated hiPSC-CMs displayed shorter APs than control hiPSC-CMs and this phenotype became more prominent upon addition of synthetic IK1 through dynamic clamp. Furthermore, the variability of several AP parameters decreased upon IK1 injection. Computer simulations with models of ventricular-like and atrial-like hiPSC-CMs demonstrated the importance of selecting an appropriate synthetic IK1. In conclusion, the dynamic clamp-based approach of IK1 injection has broad applicability for detailed AP measurements in hiPSC-CMs. PMID:28867785

  9. A comparison of 15 Hz sine on-line and off-line magnetic stimulation affecting the voltage-gated sodium channel currents of prefrontal cortex pyramidal neurons

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Dong, Lei; Gao, Yang; Dou, Jun-Rong; Li, Ze-yan

    2016-10-01

    Combined with the use of patch-clamp techniques, repetitive transcranial magnetic stimulation (rTMS) has proven to be a noninvasive neuromodulation tool that can inhibit or facilitate excitability of neurons after extensive research. The studies generally focused on the method: the neurons are first stimulated in an external standard magnetic exposure device, and then moved to the patch-clamp to record electrophysiological characteristics (off-line magnetic exposure). Despite its universality, real-time observation of the effects of magnetic stimulation on the neurons is more effective (on-line magnetic stimulation). In this study, we selected a standard exposure device for magnetic fields acting on mouse prefrontal cortex pyramidal neurons, and described a new method that a patch-clamp setup was modified to allow on-line magnetic stimulation. By comparing the off-line exposure and on-line stimulation of the same magnetic field intensity and frequency affecting the voltage-gated sodium channel currents, we succeeded in proving the feasibility of the new on-line stimulation device. We also demonstrated that the sodium channel currents of prefrontal cortex pyramidal neurons increased significantly under the 15 Hz sine 1 mT, and 2 mT off-line magnetic field exposure and under the 1 mT and 2 mT on-line magnetic stimulation, and the rate of acceleration was most significant on 2 mT on-line magnetic stimulation. This study described the development of a new on-line magnetic stimulator and successfully demonstrated its practicability for scientific stimulation of neurons.

  10. One-channel Cell-attached Patch-clamp Recording

    PubMed Central

    Maki, Bruce A.; Cummings, Kirstie A.; Paganelli, Meaghan A.; Murthy, Swetha E.; Popescu, Gabriela K.

    2014-01-01

    Ion channel proteins are universal devices for fast communication across biological membranes. The temporal signature of the ionic flux they generate depends on properties intrinsic to each channel protein as well as the mechanism by which it is generated and controlled and represents an important area of current research. Information about the operational dynamics of ion channel proteins can be obtained by observing long stretches of current produced by a single molecule. Described here is a protocol for obtaining one-channel cell-attached patch-clamp current recordings for a ligand gated ion channel, the NMDA receptor, expressed heterologously in HEK293 cells or natively in cortical neurons. Also provided are instructions on how to adapt the method to other ion channels of interest by presenting the example of the mechano-sensitive channel PIEZO1. This method can provide data regarding the channel’s conductance properties and the temporal sequence of open-closed conformations that make up the channel’s activation mechanism, thus helping to understand their functions in health and disease. PMID:24961614

  11. Monitoring and quantifying the passive transport of molecules through patch-clamp suspended real and model cell membranes.

    PubMed

    Messina, Pierluca; Lemaître, Frédéric; Huet, François; Ngo, Kieu An; Vivier, Vincent; Labbé, Eric; Buriez, Olivier; Amatore, Christian

    2014-03-17

    Transport of active molecules across biological membranes is a central issue for the success of many pharmaceutical strategies. Herein, we combine the patch-clamp principle with amperometric detection for monitoring fluxes of redox-tagged molecular species across a suspended membrane patched from a macrophage. Solvent- and protein-free lipid bilayers (DPhPC, DOPC, DOPG) patched from single-wall GUV have been thoroughly investigated and the corresponding fluxes measurements quantified. The quality of the patches and their proper sealing were successfully characterized by electrochemical impedance spectroscopy. This procedure appears versatile and perfectly adequate to allow the investigation of transport and quantification of the transport properties through direct measurement of the coefficients of partition and diffusion of the compound in the membrane, thus offering insight on such important biological and pharmacological issues. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Prototype for Automatable, Dielectrophoretically-Accessed Intracellular Membrane–Potential Measurements by Metal Electrodes

    PubMed Central

    Sukhorukov, Vladimir L.; Zimmermann, Dirk

    2013-01-01

    Abstract Functional access to membrane proteins, for example, ion channels, of individual cells is an important prerequisite in drug discovery studies. The highly sophisticated patch-clamp method is widely used for electrogenic membrane proteins, but is demanding for the operator, and its automation remains challenging. The dielectrophoretically-accessed, intracellular membrane–potential measurement (DAIMM) method is a new technique showing high potential for automation of electrophysiological data recording in the whole-cell configuration. A cell suspension is brought between a mm-scaled planar electrode and a μm-scaled tip electrode, placed opposite to each other. Due to the asymmetric electrode configuration, the application of alternating electric fields (1–5 MHz) provokes a dielectrophoretic force acting on the target cell. As a consequence, the cell is accelerated and pierced by the tip electrode, hence functioning as the internal (working) electrode. We used the light-gated cation channel Channelrhodopsin-2 as a reporter protein expressed in HEK293 cells to characterize the DAIMM method in comparison with the patch-clamp technique. PMID:22994967

  13. Small Molecules for Early Endosome-Specific Patch Clamping.

    PubMed

    Chen, Cheng-Chang; Butz, Elisabeth S; Chao, Yu-Kai; Grishchuk, Yulia; Becker, Lars; Heller, Stefan; Slaugenhaupt, Susan A; Biel, Martin; Wahl-Schott, Christian; Grimm, Christian

    2017-07-20

    To resolve the subcellular distribution of endolysosomal ion channels, we have established a novel experimental approach to selectively patch clamp Rab5 positive early endosomes (EE) versus Rab7/LAMP1-positive late endosomes/lysosomes (LE/LY). To functionally characterize ion channels in endolysosomal membranes with the patch-clamp technique, it is important to develop techniques to selectively enlarge the respective organelles. We found here that two small molecules, wortmannin and latrunculin B, enlarge Rab5-positive EE when combined but not Rab7-, LAMP1-, or Rab11 (RE)-positive vesicles. The two compounds act rapidly, specifically, and are readily applicable in contrast to genetic approaches or previously used compounds such as vacuolin, which enlarges EE, RE, and LE/LY. We apply this approach here to measure currents mediated by TRPML channels, in particular TRPML3, which we found to be functionally active in both EE and LE/LY in overexpressing cells as well as in endogenously expressing CD11b+ lung-tissue macrophages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Flip the tip: an automated, high quality, cost-effective patch clamp screen.

    PubMed

    Lepple-Wienhues, Albrecht; Ferlinz, Klaus; Seeger, Achim; Schäfer, Arvid

    2003-01-01

    The race for creating an automated patch clamp has begun. Here, we present a novel technology to produce true gigaseals and whole cell preparations at a high rate. Suspended cells are flushed toward the tip of glass micropipettes. Seal, whole-cell break-in, and pipette/liquid handling are fully automated. Extremely stable seals and access resistance guarantee high recording quality. Data obtained from different cell types sealed inside pipettes show long-term stability, voltage clamp and seal quality, as well as block by compounds in the pM range. A flexible array of independent electrode positions minimizes consumables consumption at maximal throughput. Pulled micropipettes guarantee a proven gigaseal substrate with ultra clean and smooth surface at low cost.

  15. Automated navigation of a glass micropipette on a high-density microelectrode array.

    PubMed

    Jing Lin; Obien, Marie Engelene J; Hierlemann, Andreas; Frey, Urs

    2015-08-01

    High-density microelectrode arrays (HDMEAs) provide the capability to monitor the extracellular electric potential of multiple neurons at subcellular resolution over extended periods of time. In contrast, patch clamp allows for intracellular, sub-threshold recordings from a single patched neuron for very limited time on the order of an hour. Therefore, it will be beneficial to combine HDMEA and patch clamp for simultaneous intra- and extracellular recording of neuronal activity. Previously, it has been shown that the HDMEA can be used to localize and steer a glass micropipette towards a target location without using an optical microscope [1]. Here, we present an automated system, implemented in LabVIEW, which automatically locates and moves the glass micropipette towards a user-defined target. The presented system constitutes a first step towards developing an automated system to navigate a pipette to patch a neuron in vitro.

  16. A setup for combined multiphoton laser scanning microscopic and multi-electrode patch clamp experiments on brain slices

    NASA Astrophysics Data System (ADS)

    Helm, P. Johannes; Reppen, Trond; Heggelund, Paul

    2009-02-01

    Multi Photon Laser Scanning Microscopy (MPLSM) appears today as one of the most powerful experimental tools in cellular neurophysiology, notably in studies of the functional dynamics of signal processing in single neurons. Simultaneous recording of fluorescence signals at high spatial and temporal resolution and electric signals by means of multi electrode patch clamp techniques have provided new paths for the systematic investigation of neuronal mechanisms. In particular, this approach has opened for direct studies of dendritic signal processing in neurons. We report about a setup optimized for simultaneous electrophysiological multi electrode patch clamp and multi photon laser scanning fluorescence microscopic experiments on brain slices. The microscopic system is based on a modified commercially available confocal scanning laser microscope (CLSM). From a technical and operational point of view, two developments are important: Firstly, in order to reduce the workload for the experimentalist, who in general is forced to concentrate on controlling the electrophysiological parameters during the recordings, a system of shutters has been installed together with dedicated electronic modules protecting the photo detectors against destructive light levels caused by erroneous opening or closing of microscopic light paths by the experimentalist. Secondly, the standard detection unit has been improved by installing the photomultiplier tubes (PMT) in a Peltier cooled thermal box shielding the detector from both room temperature and distortions caused by external electromagnetic fields. The electrophysiological system is based on an industrial standard multi patch clamp unit ergonomically arranged around the microscope stage. The electrophysiological and scanning processes can be time coordinated by standard trigger electronics.

  17. Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening

    PubMed Central

    Möller, Clemens; Witchel, Harry

    2011-01-01

    The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and torsades de pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the “gold-standard” for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive) for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening. PMID:22131974

  18. Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion.

    PubMed

    Elhamdani, Abdeladim; Azizi, Fouad; Artalejo, Cristina R

    2006-03-15

    Transient fusion ("kiss-and-run") is accepted as a mode of transmitter release both in central neurons and neuroendocrine cells, but the prevalence of this mechanism compared with full fusion is still in doubt. Using a novel double patch-clamp method (whole cell/cell attached), permitting the recording of unitary capacitance events while stimulating under a variety of conditions including action potentials, we show that transient fusion is the predominant (>90%) mode of secretion in calf adrenal chromaffin cells. Raising intracellular Ca2+ concentration ([Ca]i) from 10 to 200 microM increases the incidence of full fusion events at the expense of transient fusion. Blocking rapid endocytosis that normally terminates transient fusion events also promotes full fusion events. Thus, [Ca]i controls the transition between transient and full fusion, each of which is coupled to different modes of endocytosis.

  19. Biological cell controllable patch-clamp microchip

    NASA Astrophysics Data System (ADS)

    Penmetsa, Siva; Nagrajan, Krithika; Gong, Zhongcheng; Mills, David; Que, Long

    2010-12-01

    A patch-clamp (PC) microchip with cell sorting and positioning functions is reported, which can avoid drawbacks of random cell selection or positioning for a PC microchip. The cell sorting and positioning are enabled by air bubble (AB) actuators. AB actuators are pneumatic actuators, in which air pressure is generated by microheaters within sealed microchambers. The sorting, positioning, and capturing of 3T3 cells by this type of microchip have been demonstrated. Using human breast cancer cells MDA-MB-231 as the model, experiments have been demonstrated by this microchip as a label-free technical platform for real-time monitoring of the cell viability.

  20. A patch clamp study on reconstituted calcium permeable channels of human sperm plasma membranes.

    PubMed

    Ma, X H; Shi, Y L

    1999-10-01

    Ionic flux is thought to be important in the initiating process of gamete interaction such as acrosome reaction. However, modern electrophysiological methods, intracellular recording and patch-clamping, are difficult to approach the ion channels in mammal sperm membrane of an intact sperm due to its small size. In this work, by reconstituting the channel protein into lipid bilayer, Ca2+ channels in human spermatozoa were investigated with voltage clamp technique. Membrane proteins isolated from human sperm of 12 healthy donors were incorporated into lipid bilayer via fusion. In a cis 50//trans 10 mmol/L CaCl2 solution system, two types of channel events with similar reversal potential near the value of a perfect Ca2+ electrode, and sensitive to nifedipine and verapamil, were observed. Their unit conductance was 40 and 25 pS respectively. Percentage of channel open time was not dependent to holding potential for the former. However, for the channels of 25 pS, the percentage increased when the holding potential was changed from -20 to 100 mV. Ca(2+)-permeable channels were also detected from the spermatozoon samples of two infertile donors. Abnormal open time of these channels indicates that there are some defects in the conformation of the channel protein of infertile sperm membrane.

  1. In vivo laser assisted end-to-end anastomosis with ICG-infused chitosan patches

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Matteini, Paolo; Esposito, Giuseppe; Scerrati, Alba; Albanese, Alessio; Puca, Alfredo; Maira, Giulio; Rossi, Giacomo; Pini, Roberto

    2011-07-01

    Laser assisted vascular repair is a new optimized technique based on the use of ICG-infused chitosan patch to close a vessel wound, with or even without few supporting single stitches. We present an in vivo experimental study on an innovative end-to-end laser assisted vascular anastomotic (LAVA) technique, performed with the application of ICGinfused chitosan patches. The photostability and the mechanical properties of ICG-infused chitosan films were preliminary measured. The in vivo study was performed in 10 New Zealand rabbits. After anesthesia, a 3-cm segment of the right common carotid artery was exposed, thus clamped proximally and distally. The artery was then interrupted by means of a full thickness cut. Three single microsutures were used to approximate the two vessel edges. The ICG-infused chitosan patch was rolled all over the anastomotic site and welded by the use of a diode laser emitting at 810 nm and equipped with a 300 μm diameter optical fiber. Welding was obtained by delivering single laser spots to induce local patch/tissue adhesion. The result was an immediate closure of the anastomosis, with no bleeding at clamps release. Thus animals underwent different follow-up periods, in order to evaluate the welded vessels over time. At follow-up examinations, all the anastomoses were patent and no bleeding signs were documented. Samples of welded vessels underwent histological examinations. Results showed that this technique offer several advantages over conventional suturing methods: simplification of the surgical procedure, shortening of the operative time, better re-endothelization and optimal vascular healing process.

  2. The assessment of electrophysiological activity in human-induced pluripotent stem cell-derived cardiomyocytes exposed to dimethyl sulfoxide and ethanol by manual patch clamp and multi-electrode array system.

    PubMed

    Hyun, Soo-Wang; Kim, Bo-Ram; Hyun, Sung-Ae; Seo, Joung-Wook

    2017-09-01

    Recently, electrophysiological activity has been effectively measured in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to predict drug-induced arrhythmia. Dimethyl sulfoxide (DMSO) and ethanol have been used as diluting agents in many experiments. However, the maximum DMSO and ethanol concentrations that can be effectively used in the measurement of electrophysiological parameters in hiPSC-CMs-based patch clamp and multi-electrode array (MEA) have not been fully elucidated. We investigated the effects of varying concentrations of DMSO and ethanol used as diluting agents on several electrophysiological parameters in hiPSC-CMs using patch clamp and MEA. Both DMSO and ethanol at concentrations>1% in external solution resulted in osmolality >400mOsmol/kg, but pH was not affected by either agent. Neither DMSO nor ethanol led to cell death at the concentrations examined. However, resting membrane potential, action potential amplitude, action potential duration at 90% and 40%, and corrected field potential duration were decreased significantly at 1% ethanol concentration. DMSO at 1% also significantly decreased the sodium spike amplitude. In addition, the waveform of action potential and field potential was recorded as irregular at 3% concentrations of both DMSO and ethanol. Concentrations of up to 0.3% of either agent did not affect osmolality, pH, cell death, or electrophysiological parameters in hiPSC-CMs. Our findings suggest that 0.3% is the maximum concentration at which DMSO or ethanol should be used for dilution purposes in hiPSC-CMs-based patch clamp and MEA. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Detergent Induction of HEK 293A Cell Membrane Permeability Measured under Quiescent and Superfusion Conditions Using Whole Cell Patch Clamp

    PubMed Central

    2015-01-01

    Detergents have several biological applications but present cytotoxicity concerns, since they can solubilize cell membranes. Using the IonFlux 16, an ensemble whole cell planar patch clamp, we observed that anionic sodium dodecyl sulfate (SDS), cationic cetyltrimethylammonium bromide (CTAB), and cationic, fluorescent octadecyl rhodamine B (ORB) increased the membrane permeability of cells substantially within a second of exposure, under superfusion conditions. Increased permeability was irreversible for 15 min. At subsolubilizing detergent concentrations, patched cells showed increased membrane currents that reached a steady state and were intact when imaged using fluorescence microscopy. SDS solubilized cells at concentrations of 2 mM (2× CMC), while CTAB did not solubilize cells even at concentrations of 10 mM (1000× CMC). The relative activity for plasma membrane current induction was 1:20:14 for SDS, CTAB, and ORB, respectively. Under quiescent conditions, the relative ratio of lipid to detergent in cell membranes at the onset of membrane permeability was 1:7:5 for SDS, CTAB, and ORB, respectively. The partition constants (K) for SDS, CTAB, and ORB were 23000, 55000, and 39000 M–1, respectively. Combining the whole cell patch clamp data and XTT viability data, SDS ≤ 0.2 mM and CTAB and ORB ≤ 1 mM induced cell membrane permeability without causing acute toxicity. PMID:24548291

  4. Mechanism of pain relief by low-power infrared irradiation: ATP is an IR-target molecule in nociceptive neurons.

    PubMed

    Yachnev, Igor L; Plakhova, Vera B; Podzorova, Svetlana A; Shelykh, Tatiana N; Rogachevsky, Ilya V; Krylov, Boris V

    2012-01-01

    Effects of infrared (IR) radiation generated by a low-power CO2-laser on the membrane of cultured dissociated nociceptive neurons of newborn rat spinal ganglia were investigated using the whole-cell patch-clamp method. Low-power IR radiation diminished the voltage sensitivity of activation gating machinery of slow sodium channels (Na(v)1.8). Ouabain known to block both transducer and pumping functions of Na+,K+-ATPase eliminated IR irradiation effects. The molecular mechanism of interaction of CO2-laser radiation with sensory membrane was proposed. The primary event of this interaction is the process of energy absorption by ATP molecules. The transfer of vibrational energy from Na+,K+- ATPase-bound and vibrationally excited ATP molecules to Na+,K+-ATPase activates this enzyme and converts it into a signal transducer. This effect leads to a decrease in the voltage sensitivity of Na(v)1.8 channels. The effect of IR-radiation was elucidated by the combined application of a very sensitive patch-clamp method and an optical facility with a controlled CO2-laser. As a result, the mechanism of interaction of non-thermal low-power IR radiation with the nociceptive neuron membrane is suggested.

  5. Automatic tracking of cells for video microscopy in patch clamp experiments

    PubMed Central

    2014-01-01

    Background Visualisation of neurons labeled with fluorescent proteins or compounds generally require exposure to intense light for a relatively long period of time, often leading to bleaching of the fluorescent probe and photodamage of the tissue. Here we created a technique to drastically shorten light exposure and improve the targeting of fluorescent labeled cells that is specially useful for patch-clamp recordings. We applied image tracking and mask overlay to reduce the time of fluorescence exposure and minimise mistakes when identifying neurons. Methods Neurons are first identified according to visual criteria (e.g. fluorescence protein expression, shape, viability etc.) and a transmission microscopy image Differential Interference Contrast (DIC) or Dodt contrast containing the cell used as a reference for the tracking algorithm. A fluorescence image can also be acquired later to be used as a mask (that can be overlaid on the target during live transmission video). As patch-clamp experiments require translating the microscope stage, we used pattern matching to track reference neurons in order to move the fluorescence mask to match the new position of the objective in relation to the sample. For the image processing we used the Open Source Computer Vision (OpenCV) library, including the Speeded-Up Robust Features (SURF) for tracking cells. The dataset of images (n = 720) was analyzed under normal conditions of acquisition and with influence of noise (defocusing and brightness). Results We validated the method in dissociated neuronal cultures and fresh brain slices expressing Enhanced Yellow Fluorescent Protein (eYFP) or Tandem Dimer Tomato (tdTomato) proteins, which considerably decreased the exposure to fluorescence excitation, thereby minimising photodamage. We also show that the neuron tracking can be used in differential interference contrast or Dodt contrast microscopy. Conclusion The techniques of digital image processing used in this work are an important addition to the set of microscopy tools used in modern electrophysiology, specially in experiments with neuron cultures and brain slices. PMID:24946774

  6. NUMERICAL SIMULATION OF NANOINDENTATION AND PATCH CLAMP EXPERIMENTS ON MECHANOSENSITIVE CHANNELS OF LARGE CONDUCTANCE IN ESCHERICHIA COLI

    PubMed Central

    Tang, Yuye; Chen, Xi; Yoo, Jejoong; Yethiraj, Arun; Cui, Qiang

    2010-01-01

    A hierarchical simulation framework that integrates information from all-atom simulations into a finite element model at the continuum level is established to study the mechanical response of a mechanosensitive channel of large conductance (MscL) in bacteria Escherichia Coli (E.coli) embedded in a vesicle formed by the dipalmitoylphosphatidycholine (DPPC) lipid bilayer. Sufficient structural details of the protein are built into the continuum model, with key parameters and material properties derived from molecular mechanics simulations. The multi-scale framework is used to analyze the gating of MscL when the lipid vesicle is subjective to nanoindentation and patch clamp experiments, and the detailed structural transitions of the protein are obtained explicitly as a function of external load; it is currently impossible to derive such information based solely on all-atom simulations. The gating pathways of E.coli-MscL qualitatively agree with results from previous patch clamp experiments. The gating mechanisms under complex indentation-induced deformation are also predicted. This versatile hierarchical multi-scale framework may be further extended to study the mechanical behaviors of cells and biomolecules, as well as to guide and stimulate biomechanics experiments. PMID:21874098

  7. Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: A patch clamp analysis in gene-targeted mice

    PubMed Central

    Grosmaitre, Xavier; Vassalli, Anne; Mombaerts, Peter; Shepherd, Gordon M.; Ma, Minghong

    2006-01-01

    A glomerulus in the mammalian olfactory bulb receives axonal inputs from olfactory sensory neurons (OSNs) that express the same odorant receptor (OR). Glomeruli are generally thought to represent functional units of olfactory coding, but there are no data on the electrophysiological properties of OSNs that express the same endogenous OR. Here, using patch clamp recordings in an intact epithelial preparation, we directly measured the transduction currents and receptor potentials from the dendritic knobs of mouse OSNs that express the odorant receptor MOR23 along with the green fluorescent protein. All of the 53 cells examined responded to lyral, a known ligand for MOR23. There were profound differences in response kinetics, particularly in the deactivation phase. The cells were very sensitive to lyral, with some cells responding to as little as 10 nM. The dynamic range was unexpectedly broad, with threshold and saturation in individual cells often covering three log units of lyral concentration. The potential causes and biological significance of this cellular heterogeneity are discussed. Patch clamp recording from OSNs that express a defined OR provides a powerful approach to investigate the sensory inputs to individual glomeruli. PMID:16446455

  8. Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice.

    PubMed

    Grosmaitre, Xavier; Vassalli, Anne; Mombaerts, Peter; Shepherd, Gordon M; Ma, Minghong

    2006-02-07

    A glomerulus in the mammalian olfactory bulb receives axonal inputs from olfactory sensory neurons (OSNs) that express the same odorant receptor (OR). Glomeruli are generally thought to represent functional units of olfactory coding, but there are no data on the electrophysiological properties of OSNs that express the same endogenous OR. Here, using patch clamp recordings in an intact epithelial preparation, we directly measured the transduction currents and receptor potentials from the dendritic knobs of mouse OSNs that express the odorant receptor MOR23 along with the green fluorescent protein. All of the 53 cells examined responded to lyral, a known ligand for MOR23. There were profound differences in response kinetics, particularly in the deactivation phase. The cells were very sensitive to lyral, with some cells responding to as little as 10 nM. The dynamic range was unexpectedly broad, with threshold and saturation in individual cells often covering three log units of lyral concentration. The potential causes and biological significance of this cellular heterogeneity are discussed. Patch clamp recording from OSNs that express a defined OR provides a powerful approach to investigate the sensory inputs to individual glomeruli.

  9. Neurophysiological modification of CA1 pyramidal neurons in a transgenic mouse expressing a truncated form of disrupted-in-schizophrenia 1

    PubMed Central

    Booth, Clair A; Brown, Jonathan T; Randall, Andrew D

    2014-01-01

    A t(1;11) balanced chromosomal translocation transects the Disc1 gene in a large Scottish family and produces genome-wide linkage to schizophrenia and recurrent major depressive disorder. This study describes our in vitro investigations into neurophysiological function in hippocampal area CA1 of a transgenic mouse (DISC1tr) that expresses a truncated version of DISC1 designed to reproduce aspects of the genetic situation in the Scottish t(1;11) pedigree. We employed both patch-clamp and extracellular recording methods in vitro to compare intrinsic properties and synaptic function and plasticity between DISC1tr animals and wild-type littermates. Patch-clamp analysis of CA1 pyramidal neurons (CA1-PNs) revealed no genotype dependence in multiple subthreshold parameters, including resting potential, input resistance, hyperpolarization-activated ‘sag’ and resonance properties. Suprathreshold stimuli revealed no alteration to action potential (AP) waveform, although the initial rate of AP production was higher in DISC1tr mice. No difference was observed in afterhyperpolarizing potentials following trains of 5–25 APs at 50 Hz. Patch-clamp analysis of synaptic responses in the Schaffer collateral commissural (SC) pathway indicated no genotype-dependence of paired pulse facilitation, excitatory postsynaptic potential summation or AMPA/NMDA ratio. Extracellular recordings also revealed an absence of changes to SC synaptic responses and indicated input–output and short-term plasticity were also unaltered in the temporoammonic (TA) input. However, in DISC1tr mice theta burst-induced long-term potentiation was enhanced in the SC pathway but completely lost in the TA pathway. These data demonstrate that expressing a truncated form of DISC1 affects intrinsic properties of CA1-PNs and produces pathway-specific effects on long-term synaptic plasticity. PMID:24712988

  10. New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy

    PubMed Central

    Marchant, D; Yu, K; Bigot, K; Roche, O; Germain, A; Bonneau, D; Drouin‐Garraud, V; Schorderet, D F; Munier, F; Schmidt, D; Neindre, P Le; Marsac, C; Menasche, M; Dufier, J L; Fischmeister, R; Hartzell, C; Abitbol, M

    2007-01-01

    Purpose The mutations responsible for Best vitelliform macular dystrophy (BVMD) are found in a gene called VMD2. The VMD2 gene encodes a transmembrane protein named bestrophin‐1 (hBest1) which is a Ca2+‐sensitive chloride channel. This study was performed to identify disease‐specific mutations in 27 patients with BVMD. Because this disease is characterised by an alteration in Cl− channel function, patch clamp analysis was used to test the hypothesis that one of the VMD2 mutated variants causes the disease. Methods Direct sequencing analysis of the 11 VMD2 exons was performed to detect new abnormal sequences. The mutant of hBest1 was expressed in HEK‐293 cells and the associated Cl− current was examined using whole‐cell patch clamp analysis. Results Six new VMD2 mutations were identified, located exclusively in exons four, six and eight. One of these mutations (Q293H) was particularly severe. Patch clamp analysis of human embryonic kidney cells expressing the Q293H mutant showed that this mutant channel is non‐functional. Furthermore, the Q293H mutant inhibited the function of wild‐type bestrophin‐1 channels in a dominant negative manner. Conclusions This study provides further support for the idea that mutations in VMD2 are a necessary factor for Best disease. However, because variable expressivity of VMD2 was observed in a family with the Q293H mutation, it is also clear that a disease‐linked mutation in VMD2 is not sufficient to produce BVMD. The finding that the Q293H mutant does not form functional channels in the membrane could be explained either by disruption of channel conductance or gating mechanisms or by improper trafficking of the protein to the plasma membrane. PMID:17287362

  11. Quantifying Electrical Interactions between Cardiomyocytes and Other Cells in Micropatterned Cell Pairs

    PubMed Central

    Nguyen, Hung; Badie, Nima; McSpadden, Luke; Pedrotty, Dawn; Bursac, Nenad

    2014-01-01

    Micropatterning is a powerful technique to control cell shape and position on a culture substrate. In this chapter, we describe the method to reproducibly create large numbers of micropatterned heterotypic cell pairs with defined size, shape, and length of cell–cell contact. These cell pairs can be utilized in patch clamp recordings to quantify electrical interactions between cardiomyocytes and non-cardiomyocytes. PMID:25070342

  12. Population patch-clamp electrophysiology analysis of recombinant GABAA alpha1beta3gamma2 channels expressed in HEK-293 cells.

    PubMed

    Hollands, Emma C; Dale, Tim J; Baxter, Andrew W; Meadows, Helen J; Powell, Andrew J; Clare, Jeff J; Trezise, Derek J

    2009-08-01

    Gamma-amino butyric acid (GABA)-activated Cl- channels are critical mediators of inhibitory postsynaptic potentials in the CNS. To date, rational design efforts to identify potent and selective GABA(A) subtype ligands have been hampered by the absence of suitable high-throughput screening approaches. The authors describe 384-well population patch-clamp (PPC) planar array electrophysiology methods for the study of GABA(A) receptor pharmacology. In HEK293 cells stably expressing human alpha1beta3gamma2 GABA(A) channels, GABA evoked outward currents at 0 mV of 1.05 +/- 0.08 nA, measured 8 s post GABA addition. The I(GABA) was linear and reversed close to the theoretical E(Cl) (-56 mV). Concentration-response curve analysis yielded a mean pEC(50) value of 5.4 and Hill slope of 1.5, and for a series of agonists, the rank order of potency was muscimol > GABA > isoguvacine. A range of known positive modulators, including diazepam and pentobarbital, produced concentration-dependent augmentation of the GABA EC( 20) response (1 microM). The competitive antagonists bicuculline and gabazine produced concentration-dependent, parallel, rightward displacement of GABA curves with pA(2) and slope values of 5.7 and 1.0 and 6.7 and 1.0, respectively. In contrast, picrotoxin (0.2-150 microM) depressed the maximal GABA response, implying a non-competitive antagonism. Overall, the pharmacology of human alpha1beta3gamma2 GABA(A) determined by PPC was highly similar to that obtained by conventional patch-clamp methods. In small-scale single-shot screens, Z' values of >0.5 were obtained in agonist, modulator, and antagonist formats with hit rates of 0% to 3%. The authors conclude that despite the inability of the method to resolve the peak agonist responses, PPC can rapidly and usefully quantify pharmacology for the alpha1beta3gamma2 GABA(A) isoform. These data suggest that PPC may be a valuable approach for a focused set and secondary screening of GABA(A) receptors and other slow ligand-gated ion channels.

  13. VOLTAGE CLAMP BEHAVIOR OF IRON-NITRIC ACID SYSTEM AS COMPARED WITH THAT OF NERVE MEMBRANE

    PubMed Central

    Tasaki, I.; Bak, A. F.

    1959-01-01

    The current-voltage relation for the surface layer of an iron wire immersed in nitric acid was investigated by the voltage clamp technique. Comparing the phase of nitric acid to the axoplasm and the metallic phase to the external fluid medium for the nerve fiber, a striking analogy was found between the voltage clamp behavior of the iron-nitric acid system and that of the nerve membrane. The current voltage curve was found to consist of three parts: (a) a straight line representing the behavior of the resting (passive) membrane, (b) a straight line representing the fully excited (active) state, and (c) an intermediate zone connecting (a) and (b). It was shown that in the intermediate zone, the surface of iron consisted of a fully active patch (or patches) surrounded by a remaining resting area. The phenomenon corresponding to "repetitive firing of responses under voltage clamp" in the nerve membrane was demonstrated in the intermediate zone. The behavior of the cobalt electrode system was also investigated by the same technique. An attempt was made to interpret the phenomenon of initiation and abolition of an active potential on the basis of the thermodynamics of irreversible processes. PMID:13654740

  14. Automated and manual patch clamp data of human induced pluripotent stem cell-derived dopaminergic neurons.

    PubMed

    Franz, Denise; Olsen, Hervør Lykke; Klink, Oliver; Gimsa, Jan

    2017-04-25

    Human induced pluripotent stem cells can be differentiated into dopaminergic neurons (Dopa.4U). Dopa.4U neurons expressed voltage-gated Na V and K V channels and showed neuron-like spontaneous electrical activity. In automated patch clamp measurements with suspended Dopa.4U neurons, delayed rectifier K + current (delayed K V ) and rapidly inactivating A-type K + current (fast K V ) were identified. Examination of the fast K V current with inhibitors yielded IC 50 values of 0.4 mM (4-aminopyridine) and 0.1 mM (tetraethylammonium). In manual patch clamp measurements with adherent Dopa.4U neurons, fast K V current could not be detected, while the delayed K V current showed an IC 50 of 2 mM for 4-aminopyridine. The Na V channels in adherent and suspended Dopa.4U neurons showed IC 50 values for tetrodotoxin of 27 and 2.9 nM, respectively. GABA-induced currents that could be observed in adherent Dopa.4U neurons could not be detected in suspended cells. Application of current pulses induced action potentials in approx. 70 % of the cells. Our results proved the feasibility of automated electrophysiological characterization of neuronal cells.

  15. Implementing Patch Clamp and Live Fluorescence Microscopy to Monitor Functional Properties of Freshly Isolated PKD Epithelium

    PubMed Central

    Pavlov, Tengis S.; Ilatovskaya, Daria V.; Palygin, Oleg; Levchenko, Vladislav; Pochynyuk, Oleh; Staruschenko, Alexander

    2015-01-01

    Cyst initiation and expansion during polycystic kidney disease is a complex process characterized by abnormalities in tubular cell proliferation, luminal fluid accumulation and extracellular matrix formation. Activity of ion channels and intracellular calcium signaling are key physiologic parameters which determine functions of tubular epithelium. We developed a method suitable for real-time observation of ion channels activity with patch-clamp technique and registration of intracellular Ca2+ level in epithelial monolayers freshly isolated from renal cysts. PCK rats, a genetic model of autosomal recessive polycystic kidney disease (ARPKD), were used here for ex vivo analysis of ion channels and calcium flux. Described here is a detailed step-by-step procedure designed to isolate cystic monolayers and non-dilated tubules from PCK or normal Sprague Dawley (SD) rats, and monitor single channel activity and intracellular Ca2+ dynamics. This method does not require enzymatic processing and allows analysis in a native setting of freshly isolated epithelial monolayer. Moreover, this technique is very sensitive to intracellular calcium changes and generates high resolution images for precise measurements. Finally, isolated cystic epithelium can be further used for staining with antibodies or dyes, preparation of primary cultures and purification for various biochemical assays. PMID:26381526

  16. High-speed pressure clamp.

    PubMed

    Besch, Stephen R; Suchyna, Thomas; Sachs, Frederick

    2002-10-01

    We built a high-speed, pneumatic pressure clamp to stimulate patch-clamped membranes mechanically. The key control element is a newly designed differential valve that uses a single, nickel-plated piezoelectric bending element to control both pressure and vacuum. To minimize response time, the valve body was designed with minimum dead volume. The result is improved response time and stability with a threefold decrease in actuation latency. Tight valve clearances minimize the steady-state air flow, permitting us to use small resonant-piston pumps to supply pressure and vacuum. To protect the valve from water contamination in the event of a broken pipette, an optical sensor detects water entering the valve and increases pressure rapidly to clear the system. The open-loop time constant for pressure is 2.5 ms for a 100-mmHg step, and the closed-loop settling time is 500-600 micros. Valve actuation latency is 120 micros. The system performance is illustrated for mechanically induced changes in patch capacitance.

  17. An operational amplifier B1404UD1A-1 in the patch-clamp current-to-voltage converter.

    PubMed

    Korzun, A M; Rozinov, S V; Abashin, G I

    1997-01-01

    The applicability of the home-made operational amplifier B1404UD1A-1 in a patch-clamp current-to-voltage converter was analyzed. Its parameters (background noise, input bias current, and gain-bandwidth product) were estimated. Schematic solutions and practical recommendations for the use of this amplifier in a current-to-voltage converter were given. Based on the background noise and frequency parameters of the converter, we found that this device can be used for measuring ion channel currents with a high sensitivity and within a broad frequency range (0.055 pA, to 1 kHz; 0.4 pA, to 10 kHz). An example of the converter application in experiments is given.

  18. Experimental Comparison of two Active Vibration Control Approaches: Velocity Feedback and Negative Capacitance Shunt Damping

    NASA Technical Reports Server (NTRS)

    Beck, Benjamin; Schiller, Noah

    2013-01-01

    This paper outlines a direct, experimental comparison between two established active vibration control techniques. Active vibration control methods, many of which rely upon piezoelectric patches as actuators and/or sensors, have been widely studied, showing many advantages over passive techniques. However, few direct comparisons between different active vibration control methods have been made to determine the performance benefit of one method over another. For the comparison here, the first control method, velocity feedback, is implemented using four accelerometers that act as sensors along with an analog control circuit which drives a piezoelectric actuator. The second method, negative capacitance shunt damping, consists of a basic analog circuit which utilizes a single piezoelectric patch as both a sensor and actuator. Both of these control methods are implemented individually using the same piezoelectric actuator attached to a clamped Plexiglas window. To assess the performance of each control method, the spatially averaged velocity of the window is compared to an uncontrolled response.

  19. Automatic tracking of cells for video microscopy in patch clamp experiments.

    PubMed

    Peixoto, Helton M; Munguba, Hermany; Cruz, Rossana M S; Guerreiro, Ana M G; Leao, Richardson N

    2014-06-20

    Visualisation of neurons labeled with fluorescent proteins or compounds generally require exposure to intense light for a relatively long period of time, often leading to bleaching of the fluorescent probe and photodamage of the tissue. Here we created a technique to drastically shorten light exposure and improve the targeting of fluorescent labeled cells that is specially useful for patch-clamp recordings. We applied image tracking and mask overlay to reduce the time of fluorescence exposure and minimise mistakes when identifying neurons. Neurons are first identified according to visual criteria (e.g. fluorescence protein expression, shape, viability etc.) and a transmission microscopy image Differential Interference Contrast (DIC) or Dodt contrast containing the cell used as a reference for the tracking algorithm. A fluorescence image can also be acquired later to be used as a mask (that can be overlaid on the target during live transmission video). As patch-clamp experiments require translating the microscope stage, we used pattern matching to track reference neurons in order to move the fluorescence mask to match the new position of the objective in relation to the sample. For the image processing we used the Open Source Computer Vision (OpenCV) library, including the Speeded-Up Robust Features (SURF) for tracking cells. The dataset of images (n = 720) was analyzed under normal conditions of acquisition and with influence of noise (defocusing and brightness). We validated the method in dissociated neuronal cultures and fresh brain slices expressing Enhanced Yellow Fluorescent Protein (eYFP) or Tandem Dimer Tomato (tdTomato) proteins, which considerably decreased the exposure to fluorescence excitation, thereby minimising photodamage. We also show that the neuron tracking can be used in differential interference contrast or Dodt contrast microscopy. The techniques of digital image processing used in this work are an important addition to the set of microscopy tools used in modern electrophysiology, specially in experiments with neuron cultures and brain slices.

  20. Distributions-per-level: a means of testing level detectors and models of patch-clamp data.

    PubMed

    Schröder, I; Huth, T; Suitchmezian, V; Jarosik, J; Schnell, S; Hansen, U P

    2004-01-01

    Level or jump detectors generate the reconstructed time series from a noisy record of patch-clamp current. The reconstructed time series is used to create dwell-time histograms for the kinetic analysis of the Markov model of the investigated ion channel. It is shown here that some additional lines in the software of such a detector can provide a powerful new means of patch-clamp analysis. For each current level that can be recognized by the detector, an array is declared. The new software assigns every data point of the original time series to the array that belongs to the actual state of the detector. From the data sets in these arrays distributions-per-level are generated. Simulated and experimental time series analyzed by Hinkley detectors are used to demonstrate the benefits of these distributions-per-level. First, they can serve as a test of the reliability of jump and level detectors. Second, they can reveal beta distributions as resulting from fast gating that would usually be hidden in the overall amplitude histogram. Probably the most valuable feature is that the malfunctions of the Hinkley detectors turn out to depend on the Markov model of the ion channel. Thus, the errors revealed by the distributions-per-level can be used to distinguish between different putative Markov models of the measured time series.

  1. Novel screening techniques for ion channel targeting drugs

    PubMed Central

    Obergrussberger, Alison; Stölzle-Feix, Sonja; Becker, Nadine; Brüggemann, Andrea; Fertig, Niels; Möller, Clemens

    2015-01-01

    Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophysical readout technologies by means of electrophysiology have been developed. Planar patch-clamp electrophysiology provides a direct functional label-free readout of ion channel function in medium to high throughput. Further electrophysiology features, including temperature control and higher-throughput instruments, are continually being developed. Electrophysiological screening in a 384-well format has recently become possible. Advances in chip and microfluidic design, as well as in cell preparation and handling, have allowed challenging cell types to be studied by automated patch clamp. Assays measuring action potentials in stem cell-derived cardiomyocytes, relevant for cardiac safety screening, and neuronal cells, as well as a large number of different ion channels, including fast ligand-gated ion channels, have successfully been established by automated patch clamp. Impedance and multi-electrode array measurements are particularly suitable for studying cardiomyocytes and neuronal cells within their physiological network, and to address more complex physiological questions. This article discusses recent advances in electrophysiological technologies available for screening ion channel function and regulation. PMID:26556400

  2. Novel screening techniques for ion channel targeting drugs.

    PubMed

    Obergrussberger, Alison; Stölzle-Feix, Sonja; Becker, Nadine; Brüggemann, Andrea; Fertig, Niels; Möller, Clemens

    2015-01-01

    Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophysical readout technologies by means of electrophysiology have been developed. Planar patch-clamp electrophysiology provides a direct functional label-free readout of ion channel function in medium to high throughput. Further electrophysiology features, including temperature control and higher-throughput instruments, are continually being developed. Electrophysiological screening in a 384-well format has recently become possible. Advances in chip and microfluidic design, as well as in cell preparation and handling, have allowed challenging cell types to be studied by automated patch clamp. Assays measuring action potentials in stem cell-derived cardiomyocytes, relevant for cardiac safety screening, and neuronal cells, as well as a large number of different ion channels, including fast ligand-gated ion channels, have successfully been established by automated patch clamp. Impedance and multi-electrode array measurements are particularly suitable for studying cardiomyocytes and neuronal cells within their physiological network, and to address more complex physiological questions. This article discusses recent advances in electrophysiological technologies available for screening ion channel function and regulation.

  3. Combinatorial materials research applied to the development of new surface coatings VII: An automated system for adhesion testing

    NASA Astrophysics Data System (ADS)

    Chisholm, Bret J.; Webster, Dean C.; Bennett, James C.; Berry, Missy; Christianson, David; Kim, Jongsoo; Mayo, Bret; Gubbins, Nathan

    2007-07-01

    An automated, high-throughput adhesion workflow that enables pseudobarnacle adhesion and coating/substrate adhesion to be measured on coating patches arranged in an array format on 4×8in.2 panels was developed. The adhesion workflow consists of the following process steps: (1) application of an adhesive to the coating array; (2) insertion of panels into a clamping device; (3) insertion of aluminum studs into the clamping device and onto coating surfaces, aligned with the adhesive; (4) curing of the adhesive; and (5) automated removal of the aluminum studs. Validation experiments comparing data generated using the automated, high-throughput workflow to data obtained using conventional, manual methods showed that the automated system allows for accurate ranking of relative coating adhesion performance.

  4. Cellular resolution circuit mapping with temporal-focused excitation of soma-targeted channelrhodopsin

    PubMed Central

    Baker, Christopher A; Elyada, Yishai M; Parra, Andres; Bolton, M McLean

    2016-01-01

    We describe refinements in optogenetic methods for circuit mapping that enable measurements of functional synaptic connectivity with single-neuron resolution. By expanding a two-photon beam in the imaging plane using the temporal focusing method and restricting channelrhodopsin to the soma and proximal dendrites, we are able to reliably evoke action potentials in individual neurons, verify spike generation with GCaMP6s, and determine the presence or absence of synaptic connections with patch-clamp electrophysiological recording. DOI: http://dx.doi.org/10.7554/eLife.14193.001 PMID:27525487

  5. A simple method for characterizing passive and active neuronal properties: application to striatal neurons.

    PubMed

    Lepora, Nathan F; Blomeley, Craig P; Hoyland, Darren; Bracci, Enrico; Overton, Paul G; Gurney, Kevin

    2011-11-01

    The study of active and passive neuronal dynamics usually relies on a sophisticated array of electrophysiological, staining and pharmacological techniques. We describe here a simple complementary method that recovers many findings of these more complex methods but relies only on a basic patch-clamp recording approach. Somatic short and long current pulses were applied in vitro to striatal medium spiny (MS) and fast spiking (FS) neurons from juvenile rats. The passive dynamics were quantified by fitting two-compartment models to the short current pulse data. Lumped conductances for the active dynamics were then found by compensating this fitted passive dynamics within the current-voltage relationship from the long current pulse data. These estimated passive and active properties were consistent with previous more complex estimations of the neuron properties, supporting the approach. Relationships within the MS and FS neuron types were also evident, including a graduation of MS neuron properties consistent with recent findings about D1 and D2 dopamine receptor expression. Application of the method to simulated neuron data supported the hypothesis that it gives reasonable estimates of membrane properties and gross morphology. Therefore detailed information about the biophysics can be gained from this simple approach, which is useful for both classification of neuron type and biophysical modelling. Furthermore, because these methods rely upon no manipulations to the cell other than patch clamping, they are ideally suited to in vivo electrophysiology. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  6. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.

    PubMed

    Abbott, Jeffrey; Ye, Tianyang; Ham, Donhee; Park, Hongkun

    2018-03-20

    Electrode technology for electrophysiology has a long history of innovation, with some decisive steps including the development of the voltage-clamp measurement technique by Hodgkin and Huxley in the 1940s and the invention of the patch clamp electrode by Neher and Sakmann in the 1970s. The high-precision intracellular recording enabled by the patch clamp electrode has since been a gold standard in studying the fundamental cellular processes underlying the electrical activities of neurons and other excitable cells. One logical next step would then be to parallelize these intracellular electrodes, since simultaneous intracellular recording from a large number of cells will benefit the study of complex neuronal networks and will increase the throughput of electrophysiological screening from basic neurobiology laboratories to the pharmaceutical industry. Patch clamp electrodes, however, are not built for parallelization; as for now, only ∼10 patch measurements in parallel are possible. It has long been envisioned that nanoscale electrodes may help meet this challenge. First, nanoscale electrodes were shown to enable intracellular access. Second, because their size scale is within the normal reach of the standard top-down fabrication, the nanoelectrodes can be scaled into a large array for parallelization. Third, such a nanoelectrode array can be monolithically integrated with complementary metal-oxide semiconductor (CMOS) electronics to facilitate the large array operation and the recording of the signals from a massive number of cells. These are some of the central ideas that have motivated the research activity into nanoelectrode electrophysiology, and these past years have seen fruitful developments. This Account aims to synthesize these findings so as to provide a useful reference. Summing up from the recent studies, we will first elucidate the morphology and associated electrical properties of the interface between a nanoelectrode and a cellular membrane, clarifying how the nanoelectrode attains intracellular access. This understanding will be translated into a circuit model for the nanobio interface, which we will then use to lay out the strategies for improving the interface. The intracellular interface of the nanoelectrode is currently inferior to that of the patch clamp electrode; reaching this benchmark will be an exciting challenge that involves optimization of electrode geometries, materials, chemical modifications, electroporation protocols, and recording/stimulation electronics, as we describe in the Account. Another important theme of this Account, beyond the optimization of the individual nanoelectrode-cell interface, is the scalability of the nanoscale electrodes. We will discuss this theme using a recent development from our groups as an example, where an array of ca. 1000 nanoelectrode pixels fabricated on a CMOS integrated circuit chip performs parallel intracellular recording from a few hundreds of cardiomyocytes, which marks a new milestone in electrophysiology.

  7. The Mechanosensitive Ca2+ Channel as a Central Regular of Prostate Tumor Cell Migration and Invasiveness

    DTIC Science & Technology

    2011-04-01

    activation still needs to be determined (Strotmann et al. 2000). 7.2.4 The Use of MS Enzyme Inhibitors A further strategy for implicating potential MS...invasiveness and metastatic potential . 1.1 Use patch-clamp/pressure clamp techniques, confocal immunofluorescence, Westerns and surface biotinylation...9. Maroto, R. Kurosky, A. Hamill, O.P. Expression and function of canonical transient recptor potential channels in human prostate tumor cells

  8. Structural basis of human PCNA sliding on DNA

    NASA Astrophysics Data System (ADS)

    de March, Matteo; Merino, Nekane; Barrera-Vilarmau, Susana; Crehuet, Ramon; Onesti, Silvia; Blanco, Francisco J.; de Biasio, Alfredo

    2017-01-01

    Sliding clamps encircle DNA and tether polymerases and other factors to the genomic template. However, the molecular mechanism of clamp sliding on DNA is unknown. Using crystallography, NMR and molecular dynamics simulations, here we show that the human clamp PCNA recognizes DNA through a double patch of basic residues within the ring channel, arranged in a right-hand spiral that matches the pitch of B-DNA. We propose that PCNA slides by tracking the DNA backbone via a `cogwheel' mechanism based on short-lived polar interactions, which keep the orientation of the clamp invariant relative to DNA. Mutation of residues at the PCNA-DNA interface has been shown to impair the initiation of DNA synthesis by polymerase δ (pol δ). Therefore, our findings suggest that a clamp correctly oriented on DNA is necessary for the assembly of a replication-competent PCNA-pol δ holoenzyme.

  9. Simultaneous recording of the action potential and its whole-cell associated ion current on NG108-15 cells cultured over a MWCNT electrode

    NASA Astrophysics Data System (ADS)

    Morales-Reyes, I.; Seseña-Rubfiaro, A.; Acosta-García, M. C.; Batina, N.; Godínez-Fernández, R.

    2016-08-01

    It is well known that, in excitable cells, the dynamics of the ion currents (I i) is extremely important to determine both the magnitude and time course of an action potential (A p). To observe these two processes simultaneously, we cultured NG108-15 cells over a multi-walled carbon nanotubes electrode (MWCNTe) surface and arranged a two independent Patch Clamp system configuration (Bi-Patch Clamp). The first system was used in the voltage or current clamp mode, using a glass micropipette as an electrode. The second system was modified to connect the MWCNTe to virtual ground. While the A p was recorded through the micropipette electrode, the MWCNTe was used to measure the underlying whole-cell current. This configuration allowed us to record both the membrane voltage (V m) and the current changes simultaneously. Images acquired by atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicate that cultured cells developed a complex network of neurites, which served to establish the necessary close contact and strong adhesion to the MWCNTe surface. These features were a key factor to obtain the recording of the whole-cell I i with a high signal to noise ratio (SNR). The experimental results were satisfactorily reproduced by a theoretical model developed to simulate the proposed system. Besides the contribution to a better understanding of the fundamental mechanisms involved in cell communication, the developed method could be useful in cell physiology studies, pharmacology and diseases diagnosis.

  10. Microelectrode array recordings of cardiac action potentials as a high throughput method to evaluate pesticide toxicity.

    PubMed

    Natarajan, A; Molnar, P; Sieverdes, K; Jamshidi, A; Hickman, J J

    2006-04-01

    The threat of environmental pollution, biological warfare agent dissemination and new diseases in recent decades has increased research into cell-based biosensors. The creation of this class of sensors could specifically aid the detection of toxic chemicals and their effects in the environment, such as pyrethroid pesticides. Pyrethroids are synthetic pesticides that have been used increasingly over the last decade to replace other pesticides like DDT. In this study we used a high-throughput method to detect pyrethroids by using multielectrode extracellular recordings from cardiac cells. The data from this cell-electrode hybrid system was compared to published results obtained with patch-clamp electrophysiology and also used as an alternative method to further understand pyrethroid effects. Our biosensor consisted of a confluent monolayer of cardiac myocytes cultured on microelectrode arrays (MEA) composed of 60 substrate-integrated electrodes. Spontaneous activity of these beating cells produced extracellular field potentials in the range of 100 microV to nearly 1200 microV with a beating frequency of 0.5-4 Hz. All of the tested pyrethroids; alpha-Cypermethrin, Tetramethrin and Tefluthrin, produced similar changes in the electrophysiological properties of the cardiac myocytes, namely reduced beating frequency and amplitude. The sensitivity of our toxin detection method was comparable to earlier patch-clamp studies, which indicates that, in specific applications, high-throughput extracellular methods can replace single-cell studies. Moreover, the similar effect of all three pyrethroids on the measured parameters suggests, that not only detection of the toxins but, their classification might also be possible with this method. Overall our results support the idea that whole cell biosensors might be viable alternatives when compared to current toxin detection methods.

  11. Properties of Single K+ and Cl− Channels in Asclepias tuberosa Protoplasts 1

    PubMed Central

    Schauf, Charles L.; Wilson, Kathryn J.

    1987-01-01

    Potassium and chloride channels were characterized in Asclepias tuberosa suspension cell derived protoplasts by patch voltage-clamp. Whole-cell currents and single channels in excised patches had linear instantaneous current-voltage relations, reversing at the Nernst potentials for K+ and Cl−, respectively. Whole cell K+ currents activated exponentially during step depolarizations, while voltage-dependent Cl− channels were activated by hyperpolarizations. Single K+ channel conductance was 40 ± 5 pS with a mean open time of 4.5 milliseconds at 100 millivolts. Potassium channels were blocked by Cs+ and tetraethylammonium, but were insensitive to 4-aminopyridine. Chloride channels had a single-channel conductance of 100 ± 17 picosiemens, mean open time of 8.8 milliseconds, and were blocked by Zn2+ and ethacrynic acid. Whole-cell Cl− currents were inhibited by abscisic acid, and were unaffected by indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology and development. Images Fig. 5 PMID:16665712

  12. High-Throughput Patch Clamp Screening in Human α6-Containing Nicotinic Acetylcholine Receptors

    PubMed Central

    Armstrong, Lucas C.; Kirsch, Glenn E.; Fedorov, Nikolai B.; Wu, Caiyun; Kuryshev, Yuri A.; Sewell, Abby L.; Liu, Zhiqi; Motter, Arianne L.; Leggett, Carmine S.; Orr, Michael S.

    2017-01-01

    Nicotine, the addictive component of tobacco products, is an agonist at nicotinic acetylcholine receptors (nAChRs) in the brain. The subtypes of nAChR are defined by their α- and β-subunit composition. The α6β2β3 nAChR subtype is expressed in terminals of dopaminergic neurons that project to the nucleus accumbens and striatum and modulate dopamine release in brain regions involved in nicotine addiction. Although subtype-dependent selectivity of nicotine is well documented, subtype-selective profiles of other tobacco product constituents are largely unknown and could be essential for understanding the addiction-related neurological effects of tobacco products. We describe the development and validation of a recombinant cell line expressing human α6/3β2β3V273S nAChR for screening and profiling assays in an automated patch clamp platform (IonWorks Barracuda). The cell line was pharmacologically characterized by subtype-selective and nonselective reference agonists, pore blockers, and competitive antagonists. Agonist and antagonist effects detected by the automated patch clamp approach were comparable to those obtained by conventional electrophysiological assays. A pilot screen of a library of Food and Drug Administration–approved drugs identified compounds, previously not known to modulate nAChRs, which selectively inhibited the α6/3β2β3V273S subtype. These assays provide new tools for screening and subtype-selective profiling of compounds that act at α6β2β3 nicotinic receptors. PMID:28298165

  13. Positioning of the sensor cell on the sensing area using cell trapping pattern in incubation type planar patch clamp biosensor.

    PubMed

    Wang, Zhi-Hong; Takada, Noriko; Uno, Hidetaka; Ishizuka, Toru; Yawo, Hiromu; Urisu, Tsuneo

    2012-08-01

    Positioning the sensor cell on the micropore of the sensor chip and keeping it there during incubation are problematic tasks for incubation type planar patch clamp biosensors. To solve these problems, we formed on the Si sensor chip's surface a cell trapping pattern consisting of a lattice pattern with a round area 5 μm deep and with the micropore at the center of the round area. The surface of the sensor chip was coated with extra cellular matrix collagen IV, and HEK293 cells on which a chimera molecule of channel-rhodopsin-wide-receiver (ChR-WR) was expressed, were then seeded. We examined the effects of this cell trapping pattern on the biosensor's operation. In the case of a flat sensor chip without a cell trapping pattern, it took several days before the sensor cell covered the micropore and formed an almost confluent state. As a result, multi-cell layers easily formed and made channel current measurements impossible. On the other hand, the sensor chip with cell trapping pattern easily trapped cells in the round area, and formed the colony consisted of the cell monolayer covering the micropore. A laser (473 nm wavelength) induced channel current was observed from the whole cell arrangement formed using the nystatin perforation technique. The observed channel current characteristics matched measurements made by using a pipette patch clamp. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Measurement of the membrane potential in small cells using patch clamp methods

    PubMed Central

    Wilson, James R; Clark, Robert B; Banderali, Umberto

    2011-01-01

    The resting membrane potential, Em, of mammalian cells is a fundamental physiological parameter. Even small changes in Em can modulate excitability, contractility and rates of cell migration. At present accurate, reproducible measurements of Em and determination of its ionic basis remain significant challenges when patch clamp methods are applied to small cells. In this study, a mathematical model has been developed which incorporates many of the main biophysical principles which govern recordings of the resting potential of “small cells”. Such a prototypical cell (approx. capacitance, 6 pF; input resistance 5 GΩ) is representative of neonatal cardiac myocytes, and other cells in the cardiovascular system (endothelium, fibroblasts) and small cells in other tissues, e.g., bone (osteoclasts) articular joints (chondrocytes) and the pancreas (β cells). Two common experimental conditions have been examined: (1) when the background K+ conductance is linear; and (2) when this K+ conductance is highly nonlinear and shows pronounced inward rectification. In the case of a linear K+ conductance, the presence of a “leakage” current through the seal resistance between the cell membrane and the patch pipette always depolarizes Em. Our calculations confirm that accurate characterization of Em is possible when the seal resistance is at least five times larger than the input resistance of the targeted cell. Measurement of Em under conditions in which the main background current includes a markedly nonlinear K+ conductance (due to inward rectification) yields complex and somewhat counter-intuitive findings. In fact, there are at least two possible stable values of resting membrane potential for a cell when the nonlinear, inwardly rectifying K+ conductance interacts with the seal current. This type of bistable behavior has been reported in a variety of small mammalian cells, including those from the heart, endothelium, smooth muscle and bone. Our theoretical treatment of these two common experimental situations provides useful mechanistic insights, and suggests practical methods by which these significant limitations, and their impact, can be minimized. PMID:21829090

  15. Involvement of mitochondrial Na+–Ca2+ exchange in intestinal pacemaking activity

    PubMed Central

    Kim, Byung Joo; Jun, Jae Yeoul; So, Insuk; Kim, Ki Whan

    2006-01-01

    AIM: Interstitial cells of Cajal (ICCs) are the pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. We have aimed to investigate the involvement of mitochondrial Na+-Ca2+ exchange in intestinal pacemaking activity in cultured interstitial cells of Cajal. METHODS: Enzymatic digestions were used to dissociate ICCs from the small intestine of a mouse. The whole-cell patch-clamp configuration was used to record membrane currents (voltage clamp) and potentials (current clamp) from cultured ICCs. RESULTS: Clonazepam and CGP37157 inhibited the pacemaking activity of ICCs in a dose-dependent manner. Clonazepam from 20 to 60 µmol/L and CGP37157 from 10 to 30 µmol/L effectively inhibited Ca2+ efflux from mitochondria in pacemaking activity of ICCs. The IC50s of clonazepam and CGP37157 were 37.1 and 18.2 µmol/L, respectively. The addition of 20 µmol/L NiCl2 to the internal solution caused a “wax and wane” phenomenon of pacemaking activity of ICCs. CONCLUSION: These results suggest that mitochondrial Na+-Ca2+ exchange has an important role in intestinal pacemaking activity. PMID:16521198

  16. Introduction to Solid Supported Membrane Based Electrophysiology

    PubMed Central

    Bazzone, Andre; Costa, Wagner Steuer; Braner, Markus; Călinescu, Octavian; Hatahet, Lina; Fendler, Klaus

    2013-01-01

    The electrophysiological method we present is based on a solid supported membrane (SSM) composed of an octadecanethiol layer chemisorbed on a gold coated sensor chip and a phosphatidylcholine monolayer on top. This assembly is mounted into a cuvette system containing the reference electrode, a chlorinated silver wire. After adsorption of membrane fragments or proteoliposomes containing the membrane protein of interest, a fast solution exchange is used to induce the transport activity of the membrane protein. In the single solution exchange protocol two solutions, one non-activating and one activating solution, are needed. The flow is controlled by pressurized air and a valve and tubing system within a faraday cage. The kinetics of the electrogenic transport activity is obtained via capacitive coupling between the SSM and the proteoliposomes or membrane fragments. The method, therefore, yields only transient currents. The peak current represents the stationary transport activity. The time dependent transporter currents can be reconstructed by circuit analysis. This method is especially suited for prokaryotic transporters or eukaryotic transporters from intracellular membranes, which cannot be investigated by patch clamp or voltage clamp methods. PMID:23711952

  17. Introduction to solid supported membrane based electrophysiology.

    PubMed

    Bazzone, Andre; Costa, Wagner Steuer; Braner, Markus; Călinescu, Octavian; Hatahet, Lina; Fendler, Klaus

    2013-05-11

    The electrophysiological method we present is based on a solid supported membrane (SSM) composed of an octadecanethiol layer chemisorbed on a gold coated sensor chip and a phosphatidylcholine monolayer on top. This assembly is mounted into a cuvette system containing the reference electrode, a chlorinated silver wire. After adsorption of membrane fragments or proteoliposomes containing the membrane protein of interest, a fast solution exchange is used to induce the transport activity of the membrane protein. In the single solution exchange protocol two solutions, one non-activating and one activating solution, are needed. The flow is controlled by pressurized air and a valve and tubing system within a faraday cage. The kinetics of the electrogenic transport activity is obtained via capacitive coupling between the SSM and the proteoliposomes or membrane fragments. The method, therefore, yields only transient currents. The peak current represents the stationary transport activity. The time dependent transporter currents can be reconstructed by circuit analysis. This method is especially suited for prokaryotic transporters or eukaryotic transporters from intracellular membranes, which cannot be investigated by patch clamp or voltage clamp methods.

  18. Finite element simulation of the gating mechanism of mechanosensitive ion channels

    NASA Astrophysics Data System (ADS)

    Bavi, Navid; Qin, Qinghua; Martinac, Boris

    2013-08-01

    In order to eliminate limitations of existing experimental or computational methods (such as patch-clamp technique or molecular dynamic analysis) a finite element (FE) model for multi length-scale and time-scale investigation on the gating mechanism of mechanosensitive (MS) ion channels has been established. Gating force value (from typical patch clamping values) needed to activate Prokaryotic MS ion channels was applied as tensional force to the FE model of the lipid bilayer. Making use of the FE results, we have discussed the effects of the geometrical and the material properties of the Escherichia coli MscL mechanosensitive ion channel opening in relation to the membrane's Young's modulus (which will vary depending on the cell type or cholesterol density in an artificial membrane surrounding the MscL ion channel). The FE model has shown that when the cell membrane stiffens the required channel activation force increases considerably. This is in agreement with experimental results taken from the literature. In addition, the present study quantifies the relationship between the membrane stress distribution around a `hole' for modeling purposes and the stress concentration in the place transmembrane proteins attached to the hole by applying an appropriate mesh refinement as well as well defining contact condition in these areas.

  19. Transition metal ion FRET to measure short-range distances at the intracellular surface of the plasma membrane

    PubMed Central

    Senning, Eric N.; Aman, Teresa K.

    2016-01-01

    Biological membranes are complex assemblies of lipids and proteins that serve as platforms for cell signaling. We have developed a novel method for measuring the structure and dynamics of the membrane based on fluorescence resonance energy transfer (FRET). The method marries four technologies: (1) unroofing cells to isolate and access the cytoplasmic leaflet of the plasma membrane; (2) patch-clamp fluorometry (PCF) to measure currents and fluorescence simultaneously from a membrane patch; (3) a synthetic lipid with a metal-chelating head group to decorate the membrane with metal-binding sites; and (4) transition metal ion FRET (tmFRET) to measure short distances between a fluorescent probe and a transition metal ion on the membrane. We applied this method to measure the density and affinity of native and introduced metal-binding sites in the membrane. These experiments pave the way for measuring structural rearrangements of membrane proteins relative to the membrane. PMID:26755772

  20. Coexistence of CLCN1 and SCN4A mutations in one family suffering from myotonia.

    PubMed

    Maggi, Lorenzo; Ravaglia, Sabrina; Farinato, Alessandro; Brugnoni, Raffaella; Altamura, Concetta; Imbrici, Paola; Camerino, Diana Conte; Padovani, Alessandro; Mantegazza, Renato; Bernasconi, Pia; Desaphy, Jean-François; Filosto, Massimiliano

    2017-12-01

    Non-dystrophic myotonias are characterized by clinical overlap making it challenging to establish genotype-phenotype correlations. We report clinical and electrophysiological findings in a girl and her father concomitantly harbouring single heterozygous mutations in SCN4A and CLCN1 genes. Functional characterization of N1297S hNav1.4 mutant was performed by patch clamp. The patients displayed a mild phenotype, mostly resembling a sodium channel myotonia. The CLCN1 c.501C>G (p.F167L) mutation has been already described in recessive pedigrees, whereas the SCN4A c.3890A>G (p.N1297S) variation is novel. Patch clamp experiments showed impairment of fast and slow inactivation of the mutated Nav1.4 sodium channel. The present findings suggest that analysis of both SCN4A and CLCN1 genes should be considered in myotonic patients with atypical clinical and neurophysiological features.

  1. Multi-neuron intracellular recording in vivo via interacting autopatching robots

    PubMed Central

    Holst, Gregory L; Singer, Annabelle C; Han, Xue; Brown, Emery N

    2018-01-01

    The activities of groups of neurons in a circuit or brain region are important for neuronal computations that contribute to behaviors and disease states. Traditional extracellular recordings have been powerful and scalable, but much less is known about the intracellular processes that lead to spiking activity. We present a robotic system, the multipatcher, capable of automatically obtaining blind whole-cell patch clamp recordings from multiple neurons simultaneously. The multipatcher significantly extends automated patch clamping, or 'autopatching’, to guide four interacting electrodes in a coordinated fashion, avoiding mechanical coupling in the brain. We demonstrate its performance in the cortex of anesthetized and awake mice. A multipatcher with four electrodes took an average of 10 min to obtain dual or triple recordings in 29% of trials in anesthetized mice, and in 18% of the trials in awake mice, thus illustrating practical yield and throughput to obtain multiple, simultaneous whole-cell recordings in vivo. PMID:29297466

  2. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity

    NASA Astrophysics Data System (ADS)

    Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido

    2016-11-01

    The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.

  3. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity.

    PubMed

    Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido

    2016-11-08

    The increasing number of recording electrodes enhances the capability of capturing the network's cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.

  4. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity

    PubMed Central

    Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido

    2016-01-01

    The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity. PMID:27824075

  5. Toward a New Gold Standard for Early Safety: Automated Temperature-Controlled hERG Test on the PatchLiner®

    PubMed Central

    Polonchuk, Liudmila

    2012-01-01

    The Patchliner® temperature-controlled automated patch clamp system was evaluated for testing drug effects on potassium currents through human ether-à-go-go related gene (hERG) channels expressed in Chinese hamster ovary cells at 35–37°C. IC50 values for a set of reference drugs were compared with those obtained using the conventional voltage clamp technique. The results showed good correlation between the data obtained using automated and conventional electrophysiology. Based on these results, the Patchliner® represents an innovative automated electrophysiology platform for conducting the hERG assay that substantially increases throughput and has the advantage of operating at physiological temperature. It allows fast, accurate, and direct assessment of channel function to identify potential proarrhythmic side effects and sets a new standard in ion channel research for drug safety testing. PMID:22303293

  6. Characterization of Ryanodine Receptor Type 1 Single Channel Activity Using “On-Nucleus” Patch Clamp

    PubMed Central

    Wagner, Larry E.; Groom, Linda A.; Dirksen, Robert T.; Yule, David I.

    2014-01-01

    In this study, we provide the first description of the biophysical and pharmacological properties of ryanodine receptor type 1 (RyR1) expressed in a native membrane using the on-nucleus configuration of the patch clamp technique. A stable cell line expressing rabbit RyR1 was established (HEK-RyR1) using the FLP-in 293 cell system. In contrast to untransfected cells, RyR1 expression was readily demonstrated by immunoblotting and immunocytochemistry in HEK-RyR1 cells. In addition, the RyR1 agonists 4-CMC and caffeine activated Ca2+ release that was inhibited by high concentrations of ryanodine. On nucleus patch clamp was performed in nuclei prepared from HEK-RyR1 cells. Raising the [Ca2+] in the patch pipette resulted in the appearance of a large conductance cation channel with well resolved kinetics and the absence of prominent subconductance states. Current versus voltage relationships were ohmic and revealed a chord conductance of ~750 pS or 450 pS in symmetrical 250 mM KCl or CsCl, respectively. The channel activity was markedly enhanced by caffeine and exposure to ryanodine resulted in the appearance of a subconductance state with a conductance ~40 % of the full channel opening with a Po near unity. In total, these properties are entirely consistent with RyR1 channel activity. Exposure of RyR1 channels to cyclic ADP ribose (cADPr), nicotinic acid adenine dinucleotide phosphate (NAADP) or dantrolene did not alter the single channel activity stimulated by Ca2+, and thus, it is unlikely these molecules directly modulate RyR1 channel activity. In summary, we describe an experimental platform to monitor the single channel properties of RyR channels. We envision that this system will be influential in characterizing disease-associated RyR mutations and the molecular determinants of RyR channel modulation. PMID:24972488

  7. Facilitated giga-seal formation with a just originated glass surface.

    PubMed

    Böhle, T; Benndorf, K

    1994-07-01

    A simple technique of tip preparation in patch pipettes is described, which facilitates giga-seal formation. The pipettes were fabricated from thick-walled borosilicate glass tubing (external diameter 2.0 mm, internal diameter 0.5 mm) and the tips could be repeatedly broken in the bath. The pipette resistance correspondingly fell in steps of 3-20 M omega from about 80 M omega to about 2 M omega (double concentrated Tyrode). Scanning electron microscopy showed that the tip obtained after breaking was fairly plain. These broken tips were especially appropriate for patch-clamping. In cardiac myocytes in 11 out of 26 patches with Na+ channel activity, giga-seals developed spontaneously, i.e. without suction. In these patches the amplitude of the mean current with depolarizing pulses to -40 mV was significantly higher in comparison with patches formed under negative pressure. It is concluded that spontaneously sealed patches are most likely of planar configuration and the Na+ channel activity exceeds that in suction-induced patches.

  8. Vibration suppression with approximate finite dimensional compensators for distributed systems: Computational methods and experimental results

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, Ralph C.; Wang, Yun

    1994-01-01

    Based on a distributed parameter model for vibrations, an approximate finite dimensional dynamic compensator is designed to suppress vibrations (multiple modes with a broad band of frequencies) of a circular plate with Kelvin-Voigt damping and clamped boundary conditions. The control is realized via piezoceramic patches bonded to the plate and is calculated from information available from several pointwise observed state variables. Examples from computational studies as well as use in laboratory experiments are presented to demonstrate the effectiveness of this design.

  9. Dynamics of T-Junction Solution Switching Aimed at Patch Clamp Experiments

    PubMed Central

    Auzmendi, Jerónimo A.; Smoler, Mariano; Moffatt, Luciano

    2015-01-01

    Solutions exchange systems are responsible for the timing of drug application on patch clamp experiments. There are two basic strategies for generating a solution exchange. When slow exchanges are bearable, it is easier to perform the exchange inside the tubing system upstream of the exit port. On the other hand, fast, reproducible, exchanges are usually performed downstream of the exit port. As both strategies are combinable, increasing the performance of upstream exchanges is desirable. We designed a simple method for manufacturing T-junctions (300 μm I.D.) and we measured the time profile of exchange of two saline solutions using a patch pipette with an open tip. Three factors were found to determine the timing of the solution switching: pressure, travelled distance and off-center distance. A linear relationship between the time delay and the travelled distance was found for each tested pressure, showing its dependence to the fluid velocity, which increased with pressure. The exchange time was found to increase quadratically with the delay, although a sizeable variability remains unexplained by this relationship. The delay and exchange times increased as the recording pipette moved away from the center of the stream. Those increases became dramatic as the pipette was moved close to the stream borders. Mass transport along the travelled distance between the slow fluid at the border and the fast fluid at the center seems to contribute to the time course of the solution exchange. This effect would be present in all tubing based devices. Present results might be of fundamental importance for the adequate design of serial compound exchangers which would be instrumental in the discovery of drugs that modulate the action of the physiological agonists of ion channels with the purpose of fine tuning their physiology. PMID:26177538

  10. Murine epithelial cells: isolation and culture.

    PubMed

    Davidson, Donald J; Gray, Michael A; Kilanowski, Fiona M; Tarran, Robert; Randell, Scott H; Sheppard, David N; Argent, Barry E; Dorin, Julia R

    2004-08-01

    We describe an air-liquid interface primary culture method for murine tracheal epithelial cells on semi-permeable membranes, forming polarized epithelia with a high transepithelial resistance, differentiation to ciliated and secretory cells, and physiologically appropriate expression of key genes and ion channels. We also describe the isolation of primary murine nasal epithelial cells for patch-clamp analysis, generating polarised cells with physiologically appropriate distribution and ion channel expression. These methods enable more physiologically relevant analysis of murine airway epithelial cells in vitro and ex vivo, better utilisation of transgenic mouse models of human pulmonary diseases, and have been approved by the European Working Group on CFTR expression.

  11. Renal sodium transport in renin-deficient Dahl salt-sensitive rats

    PubMed Central

    Pavlov, Tengis S; Levchenko, Vladislav; Ilatovskaya, Daria V; Moreno, Carol; Staruschenko, Alexander

    2016-01-01

    Objective: The Dahl salt-sensitive rat is a well-established model of salt-sensitive hypertension. The goal of this study was to assess the expression and activity of renal sodium channels and transporters in the renin-deficient salt-sensitive rat. Methods: Renin knockout (Ren−/−) rats created on the salt-sensitive rat background were used to investigate the role of renin in the regulation of ion transport in salt-sensitive hypertension. Western blotting and patch-clamp analyses were utilized to assess the expression level and activity of Na+ transporters. Results: It has been described previously that Ren−/− rats exhibit severe kidney underdevelopment, polyuria, and lower body weight and blood pressure compared to their wild-type littermates. Here we found that renin deficiency led to decreased expression of sodium-hydrogen antiporter (NHE3), the Na+/H+ exchanger involved in Na+ absorption in the proximal tubules, but did not affect the expression of Na-K-Cl cotransporter (NKCC2), the main transporter in the loop of Henle. In the distal nephron, the expression of sodium chloride cotransporter (NCC) was lower in Ren−/− rats. Single-channel patch clamp analysis detected decreased ENaC activity in Ren−/− rats which was mediated via changes in the channel open probability. Conclusion: These data illustrate that renin deficiency leads to significant dysregulation of ion transporters. PMID:27443990

  12. Xenon inhibits excitatory but not inhibitory transmission in rat spinal cord dorsal horn neurons

    PubMed Central

    2010-01-01

    Background The molecular targets for the promising gaseous anaesthetic xenon are still under investigation. Most studies identify N-methyl-D-aspartate (NMDA) receptors as the primary molecular target for xenon, but the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA) receptors is less clear. In this study we evaluated the effect of xenon on excitatory and inhibitory synaptic transmission in the superficial dorsal horn of the spinal cord using in vitro patch-clamp recordings from rat spinal cord slices. We further evaluated the effects of xenon on innocuous and noxious stimuli using in vivo patch-clamp method. Results In vitro, xenon decreased the amplitude and area under the curve of currents induced by exogenous NMDA and AMPA and inhibited dorsal root stimulation-evoked excitatory postsynaptic currents. Xenon decreased the amplitude, but not the frequency, of miniature excitatory postsynaptic currents. There was no discernible effect on miniature or evoked inhibitory postsynaptic currents or on the current induced by inhibitory neurotransmitters. In vivo, xenon inhibited responses to tactile and painful stimuli even in the presence of NMDA receptor antagonist. Conclusions Xenon inhibits glutamatergic excitatory transmission in the superficial dorsal horn via a postsynaptic mechanism. There is no substantial effect on inhibitory synaptic transmission at the concentration we used. The blunting of excitation in the dorsal horn lamina II neurons could underlie the analgesic effect of xenon. PMID:20444263

  13. How Technique Is Changing Science.

    ERIC Educational Resources Information Center

    Hall, Stephen

    1992-01-01

    The author describes specific examples of the use of technology in science such as fiberoptic spectroscopy to observe galaxies and conduct three-dimensional maps of the universe. Adduces the following examples of technology influencing scientific investigations: gene cloning, gene sequencing, radioimmunoassays, patch-clamping of neurons, scanning…

  14. The Promise of Microelectrode Array Approaches for Toxicity Testing: Examples with Neuroactive Chemicals

    EPA Science Inventory

    While high-throughput patch clamping formats provide rapid characterization of chemical effects on ion channel function and kinetics, the limitations of such systems often include the need for channel by channel characterization, requirements for transfected, rather than primary ...

  15. Dynamic Clamp in Cardiac and Neuronal Systems Using RTXI

    PubMed Central

    Ortega, Francis A.; Butera, Robert J.; Christini, David J.; White, John A.; Dorval, Alan D.

    2016-01-01

    The injection of computer-simulated conductances through the dynamic clamp technique has allowed researchers to probe the intercellular and intracellular dynamics of cardiac and neuronal systems with great precision. By coupling computational models to biological systems, dynamic clamp has become a proven tool in electrophysiology with many applications, such as generating hybrid networks in neurons or simulating channelopathies in cardiomyocytes. While its applications are broad, the approach is straightforward: synthesizing traditional patch clamp, computational modeling, and closed-loop feedback control to simulate a cellular conductance. Here, we present two example applications: artificial blocking of the inward rectifier potassium current in a cardiomyocyte and coupling of a biological neuron to a virtual neuron through a virtual synapse. The design and implementation of the necessary software to administer these dynamic clamp experiments can be difficult. In this chapter, we provide an overview of designing and implementing a dynamic clamp experiment using the Real-Time eXperiment Interface (RTXI), an open- source software system tailored for real-time biological experiments. We present two ways to achieve this using RTXI’s modular format, through the creation of a custom user-made module and through existing modules found in RTXI’s online library. PMID:25023319

  16. Simultaneous recording of electrical activity and the underlying ionic currents in NG108-15 cells cultured on gold substrate.

    PubMed

    Acosta-García, Ma Cristina; Morales-Reyes, Israel; Jiménez-Anguiano, Anabel; Batina, Nikola; Castellanos, N P; Godínez-Fernández, R

    2018-02-01

    This paper shows the simultaneous recording of electrical activity and the underlying ionic currents by using a gold substrate to culture NG108-15 cells. Cells grown on two different substrates (plastic Petri dishes and gold substrates) were characterized quantitatively through scanning electron microscopy (SEM) as well as qualitatively by optical and atomic force microscopy (AFM). No significant differences were observed between the surface area of cells cultured on gold substrates and Petri dishes, as indicated by measurements performed on SEM images. We also evaluated the electrophysiological compatibility of the cells through standard patch-clamp experiments by analyzing features such as the resting potential, membrane resistance, ionic currents, etc. Cells grown on both substrates showed no significant differences in their dependency on voltage, as well as in the magnitude of the Na+ and K+ current density; however, cells cultured on the gold substrate showed a lower membrane capacitance when compared to those grown on Petri dishes. By using two separate patch-clamp amplifiers, we were able to record the membrane current with the conventional patch-clamp technique and through the gold substrate simultaneously. Furthermore, the proposed technique allowed us to obtain simultaneous recordings of the electrical activity (such as action potentials firing) and the underlying membrane ionic currents. The excellent conductivity of gold makes it possible to overcome important difficulties found in conventional electrophysiological experiments such as those presented by the resistance of the electrolytic bath solution. We conclude that the technique here presented constitutes a solution to the problem of the simultaneous recording of electrical activity and the underlying ionic currents, which for decades, had been solved only partially.

  17. Melatonin mediates vasodilation through both direct and indirect activation of BKCa channels.

    PubMed

    Zhao, T; Zhang, H; Jin, C; Qiu, F; Wu, Y; Shi, L

    2017-10-01

    Melatonin, synthesized primarily by the pineal gland, is a neuroendocrine hormone with high membrane permeability. The vascular effects of melatonin, including vasoconstriction and vasodilation, have been demonstrated in numerous studies. However, the mechanisms underlying these effects are not fully understood. Large-conductance Ca 2+ -activated K + (BK Ca ) channels are expressed broadly on smooth muscle cells and play an important role in vascular tone regulation. This study explored the mechanisms of myocyte BK Ca channels and endothelial factors underlying the action of melatonin on the mesenteric arteries (MAs). Vascular contractility and patch-clamp studies were performed on myocytes of MAs from Wistar rats. Melatonin induced significant vasodilation on MAs. In the presence of N ω -nitro-l-arginine methyl ester (l-NAME), a potent endothelial oxide synthase (eNOS) inhibitor, melatonin elicited concentration-dependent relaxation, with lowered pIC 50 The effect of melatonin was significantly attenuated in the presence of BK Ca channel blocker iberiotoxin or MT1/MT2 receptor antagonist luzindole in both (+) l-NAME and (-) l-NAME groups. In the (+) l-NAME group, iberiotoxin caused a parallel rightward shift of the melatonin concentration-relaxation curve, with pIC 50 lower than that of luzindole. Both inside-out and cell-attached patch-clamp recordings showed that melatonin significantly increased the open probability, mean open time and voltage sensitivity of BK Ca channels. In a cell-attached patch-clamp configuration, the melatonin-induced enhancement of BK Ca channel activity was significantly suppressed by luzindole. These findings indicate that in addition to the activation of eNOS, melatonin-induced vasorelaxation of MAs is partially attributable to its direct (passing through the cell membrane) and indirect (via MT1/MT2 receptors) activation of the BK Ca channels on mesenteric arterial myocytes. © 2017 Society for Endocrinology.

  18. Signal presequences increase mitochondrial permeability and open the multiple conductance channel.

    PubMed

    Kushnareva, Y E; Campo, M L; Kinnally, K W; Sokolove, P M

    1999-06-01

    We have reported that the signal presequence of cytochrome oxidase subunit IV from Neurospora crassa increases the permeability of isolated rat liver mitochondria [P. M. Sokolove and K. W. Kinnally (1996) Arch. Biochem. Biophys. 336, 69] and regulates the behavior of the mutiple conductance channel (MCC) of yeast inner mitochondrial membrane [T. A. Lohret and K. W. Kinnally (1995) J. Biol. Chem. 270, 15950]. Here we examine in greater detail the action of a number of mitochondrial presequences from various sources and of several control peptides on the permeability of isolated rat liver mitochondria and on MCC activity monitored via patch-clamp techniques in both mammalian mitoplasts and a reconstituted yeast system. The data indicate that the ability to alter mitochondrial permeability is a property of most, but not all, signal peptides. Furthermore, it is clear that, although signal peptides are characterized by positive charge and the ability to form amphiphilic alpha helices, these two characteristics are not sufficient to guarantee mitochondrial effects. Finally, the results reveal a strong correlation between peptide effects on the permeability of isolated mitochondria and on MCC activity: peptides that induced swelling of mouse and rat mitochondria also activated the quiescent MCC of mouse mitoplasts and induced flickering of active MCC reconstituted from yeast mitochondrial membranes. Moreover, relative peptide efficacies were very similar for mitochondrial swelling and both types of patch-clamp experiments. We propose that patch-clamp recordings of MCC activity and the high-amplitude swelling induced by signal peptides reflect the opening of a single channel. Based on the selective responsiveness of that channel to signal peptides and the dependence of its opening in isolated mitochondria on membrane potential, we further suggest that the channel is involved in the mitochondrial protein import process. Copyright 1999 Academic Press.

  19. Flying-patch patch-clamp study of G22E-MscL mutant under high hydrostatic pressure.

    PubMed

    Petrov, Evgeny; Rohde, Paul R; Martinac, Boris

    2011-04-06

    High hydrostatic pressure (HHP) present in natural environments impacts on cell membrane biophysical properties and protein quaternary structure. We have investigated the effect of high hydrostatic pressure on G22E-MscL, a spontaneously opening mutant of Escherichia coli MscL, the bacterial mechanosensitive channel of large conductance. Patch-clamp technique combined with a flying-patch device and hydraulic setup allowed the study of the effects of HHP up to 90 MPa (as near the bottom of the Marianas Trench) on the MscL mutant channel reconstituted into liposome membranes, in addition to recording in situ from the mutant channels expressed in E. coli giant spheroplasts. In general, against thermodynamic predictions, hydrostatic pressure in the range of 0.1-90 MPa increased channel open probability by favoring the open state of the channel. Furthermore, hydrostatic pressure affected the channel kinetics, as manifested by the propensity of the channel to gate at subconducting levels with an increase in pressure. We propose that the presence of water molecules around the hydrophobic gate of the G22E MscL channel induce hydration of the hydrophobic lock under HHP causing frequent channel openings and preventing the channel closure in the absence of membrane tension. Furthermore, our study indicates that HHP can be used as a valuable experimental approach toward better understanding of the gating mechanism in complex channels such as MscL. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. MATLAB implementation of a dynamic clamp with bandwidth >125 KHz capable of generating INa at 37°C

    PubMed Central

    Clausen, Chris; Valiunas, Virginijus; Brink, Peter R.; Cohen, Ira S.

    2012-01-01

    We describe the construction of a dynamic clamp with bandwidth >125 KHz that utilizes a high performance, yet low cost, standard home/office PC interfaced with a high-speed (16 bit) data acquisition module. High bandwidth is achieved by exploiting recently available software advances (code-generation technology, optimized real-time kernel). Dynamic-clamp programs are constructed using Simulink, a visual programming language. Blocks for computation of membrane currents are written in the high-level matlab language; no programming in C is required. The instrument can be used in single- or dual-cell configurations, with the capability to modify programs while experiments are in progress. We describe an algorithm for computing the fast transient Na+ current (INa) in real time, and test its accuracy and stability using rate constants appropriate for 37°C. We then construct a program capable of supplying three currents to a cell preparation: INa, the hyperpolarizing-activated inward pacemaker current (If), and an inward-rectifier K+ current (IK1). The program corrects for the IR drop due to electrode current flow, and also records all voltages and currents. We tested this program on dual patch-clamped HEK293 cells where the dynamic clamp controls a current-clamp amplifier and a voltage-clamp amplifier controls membrane potential, and current-clamped HEK293 cells where the dynamic clamp produces spontaneous pacing behavior exhibiting Na+ spikes in otherwise passive cells. PMID:23224681

  1. Phenytoin preferentially inhibits L-type calcium currents in whole-cell patch-clamped cardiac and skeletal muscle cells.

    PubMed

    Rivet, M; Bois, P; Cognard, C; Raymond, G

    1990-10-01

    The effect of the anticonvulsant diphenylhydantoin (phenytoin) was tested on the inward calcium currents of whole-cell patch-clamped cells from rat and human muscles and from frog atrium. A concentration of 10 microM phenytoin was required to obtain a threshold inhibitory effect and, even with high concentrations (100 microM), the inhibition was not complete. In skeletal muscle (rat and human cells in culture), phenytoin (30 microM) exerted a more potent effect on the high-threshold calcium current (ICa,L inhibition: 53 +/- 6% mean +/- SDn-1) rather than on the low-threshold one (ICa,T inhibition: 16 +/- 10%). Similar results were obtained on dissociated frog atrial cells. These data are to be contrasted with those previously reported on neuronal cells, where specific inhibition of ICa,T was reported. Thus, the action of phenytoin appears to be different in muscle and nerve so that phenytoin does not appear to be a specific inhibitor of ICa,T.

  2. Photoelectrical Stimulation of Neuronal Cells by an Organic Semiconductor-Electrolyte Interface.

    PubMed

    Abdullaeva, Oliya S; Schulz, Matthias; Balzer, Frank; Parisi, Jürgen; Lützen, Arne; Dedek, Karin; Schiek, Manuela

    2016-08-23

    As a step toward the realization of neuroprosthetics for vision restoration, we follow an electrophysiological patch-clamp approach to study the fundamental photoelectrical stimulation mechanism of neuronal model cells by an organic semiconductor-electrolyte interface. Our photoactive layer consisting of an anilino-squaraine donor blended with a fullerene acceptor is supporting the growth of the neuronal model cell line (N2A cells) without an adhesion layer on it and is not impairing cell viability. The transient photocurrent signal upon illumination from the semiconductor-electrolyte layer is able to trigger a passive response of the neuronal cells under physiological conditions via a capacitive coupling mechanism. We study the dynamics of the capacitive transmembrane currents by patch-clamp recordings and compare them to the dynamics of the photocurrent signal and its spectral responsivity. Furthermore, we characterize the morphology of the semiconductor-electrolyte interface by atomic force microscopy and study the stability of the interface in dark and under illuminated conditions.

  3. Induction of pancreatic duct cells of neonatal rats into insulin-producing cells with fetal bovine serum: A natural protocol and its use for patch clamp experiments

    PubMed Central

    Leng, San-Hua; Lu, Fu-Er

    2005-01-01

    AIM: To induce the pancreatic duct cells into endocrine cells with a new natural protocol for electrophysiological study. METHODS: The pancreatic duct cells of neonatal rats were isolated, cultured and induced into endocrine cells with 15% fetal bovine serum for a period of 20 d. During this period, insulin secretion, MTT value, and morphological change of neonatal and adult pancreatic islet cells were comparatively investigated. Pancreatic β-cells were identified by morphological and electrophysiological characteristics, while ATP sensitive potassium channels (KATP), voltage-dependent potassium channels (KV), and voltage-dependent calcium channels (KCA) in β-cells were identified by patch clamp technique. RESULTS: After incubation with fetal bovine serum, the neonatal duct cells budded out, changed from duct-like cells into islet clusters. In the first 4 d, MTT value and insulin secretion increased slowly (MTT value from 0.024±0.003 to 0.028±0.003, insulin secretion from 2.6±0.6 to 3.1±0.8 mIU/L). Then MTT value and insulin secretion increased quickly from d 5 to d 10 (MTT value from 0.028±0.003 to 0.052±0.008, insulin secretion from 3.1±0.8 to 18.3±2.6 mIU/L), then reached high plateau (MTT value >0.052±0.008, insulin secretion >18.3±2.6 mIU/L). In contrast, for the isolated adult pancreatic islet cells, both insulin release and MTT value were stable in the first 4 d (MTT value from 0.029±0.01 to 0.031±0.011, insulin secretion from 13.9±3.1 to 14.3±3.3 mIU/L), but afterwards they reduced gradually (MTT value <0.031±0.011, insulin secretion <8.2±1.5 mIU/L), and the pancreatic islet cells became dispersed, broken or atrophied correspondingly. The differentiated neonatal cells were identified as pancreatic islet cells by dithizone staining method, and pancreatic β-cells were further identified by both morphological features and electrophysiological characteristics, i.e. the existence of recording currents from KATP, KV, and KCA. CONCLUSION: Islet cells differentiated from neonatal pancreatic duct cells with the new natural protocol are more advantageous in performing patch clamp study over the isolated adult pancreatic islet cells. PMID:16437601

  4. Novel nootropic dipeptide Noopept increases inhibitory synaptic transmission in CA1 pyramidal cells.

    PubMed

    Kondratenko, Rodion V; Derevyagin, Vladimir I; Skrebitsky, Vladimir G

    2010-05-31

    Effects of newly synthesized nootropic and anxiolytic dipeptide Noopept on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) significantly increased the frequency of spike-dependant spontaneous IPSCs whereas spike-independent mIPSCs remained unchanged. It was suggested that Noopept mediates its effect due to the activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. [Peptidergic modulation of the hippocampus synaptic activity].

    PubMed

    Skrebitskiĭ, V G; Kondratenko, R V; Povarov, I S; Dereviagin, V I

    2011-11-01

    Effects of two newly synthesized nootropic and anxiolytic dipeptides: Noopept and Selank on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) or Selank (2 microM) significantly increased the frequency of spike-dependent spontaneous m1PSCs, whereas spike-independent mlPSCs remained unchanged. It was suggested that both peptides mediated their effect sue to activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion, at least for Noonent.

  6. The Electrophysiological Biosensor for Batch-Measurement of Cell Signals

    NASA Astrophysics Data System (ADS)

    Suzuki, Kengo; Tanabe, Masato; Ezaki, Takahiro; Konishi, Satoshi; Oka, Hiroaki; Ozaki, Nobuhiko

    This paper presents the development of electrophysiological biosensor. The developed sensor allows a batch-measurement by detecting all signals from a large number of cells together. The developed sensor employs the same measurement principle as the patch-clamp technique. A single cell is sucked and clamped in a micro hole with detecting electrode. Detecting electrodes in arrayed micro holes are connected together for the batch-measurement of signals a large number of cell signals. Furthermore, an array of sensors for batch-measurement is designed to improve measurement-throughput to satisfy requirements for the drug screening application.

  7. Nervous System of Periplaneta americana Cockroach as a Model in Toxinological Studies: A Short Historical and Actual View

    PubMed Central

    Stankiewicz, Maria; Dąbrowski, Marcin; de Lima, Maria Elena

    2012-01-01

    Nervous system of Periplaneta americana cockroach is used in a wide range of pharmacological studies, including electrophysiological techniques. This paper presents its role as a preparation in the development of toxinological studies in the following electrophysiological methods: double-oil-gap technique on isolated giant axon, patch-clamp on DUM (dorsal unpaired median) neurons, microelectrode technique in situ conditions on axon in connective and DUM neurons in ganglion, and single-fiber oil-gap technique on last abdominal ganglion synapse. At the end the application of cockroach synaptosomal preparation is mentioned. PMID:22666245

  8. Ion channel pharmacology under flow: automation via well-plate microfluidics.

    PubMed

    Spencer, C Ian; Li, Nianzhen; Chen, Qin; Johnson, Juliette; Nevill, Tanner; Kammonen, Juha; Ionescu-Zanetti, Cristian

    2012-08-01

    Automated patch clamping addresses the need for high-throughput screening of chemical entities that alter ion channel function. As a result, there is considerable utility in the pharmaceutical screening arena for novel platforms that can produce relevant data both rapidly and consistently. Here we present results that were obtained with an innovative microfluidic automated patch clamp system utilizing a well-plate that eliminates the necessity of internal robotic liquid handling. Continuous recording from cell ensembles, rapid solution switching, and a bench-top footprint enable a number of assay formats previously inaccessible to automated systems. An electro-pneumatic interface was employed to drive the laminar flow of solutions in a microfluidic network that delivered cells in suspension to ensemble recording sites. Whole-cell voltage clamp was applied to linear arrays of 20 cells in parallel utilizing a 64-channel voltage clamp amplifier. A number of unique assays requiring sequential compound applications separated by a second or less, such as rapid determination of the agonist EC(50) for a ligand-gated ion channel or the kinetics of desensitization recovery, are enabled by the system. In addition, the system was validated via electrophysiological characterizations of both voltage-gated and ligand-gated ion channel targets: hK(V)2.1 and human Ether-à-go-go-related gene potassium channels, hNa(V)1.7 and 1.8 sodium channels, and (α1) hGABA(A) and (α1) human nicotinic acetylcholine receptor receptors. Our results show that the voltage dependence, kinetics, and interactions of these channels with pharmacological agents were matched to reference data. The results from these IonFlux™ experiments demonstrate that the system provides high-throughput automated electrophysiology with enhanced reliability and consistency, in a user-friendly format.

  9. Interpretation of field potentials measured on a multi electrode array in pharmacological toxicity screening on primary and human pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Tertoolen, L G J; Braam, S R; van Meer, B J; Passier, R; Mummery, C L

    2018-03-18

    Multi electrode arrays (MEAs) are increasingly used to detect external field potentials in electrically active cells. Recently, in combination with cardiomyocytes derived from human (induced) pluripotent stem cells they have started to become a preferred tool to examine newly developed drugs for potential cardiac toxicity in pre-clinical safety pharmacology. The most important risk parameter is proarrhythmic activity in cardiomyocytes which can cause sudden cardiac death. Whilst MEAs can provide medium- to high- throughput noninvasive assay platform, the translation of a field potential to cardiac action potential (normally measured by low-throughput patch clamp) is complex so that accurate assessment of drug risk to the heart is in practice still challenging. To address this, we used computational simulation to study the theoretical relationship between aspects of the field potential and the underlying cardiac action potential. We then validated the model in both primary mouse- and human pluripotent (embryonic) stem cell-derived cardiomyocytes showing that field potentials measured in MEAs could be converted to action potentials that were essentially identical to those determined directly by electrophysiological patch clamp. The method significantly increased the amount of information that could be extracted from MEA measurements and thus combined the advantages of medium/high throughput with more informative readouts. We believe that this will benefit the analysis of drug toxicity screening of cardiomyocytes using in time and accuracy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Investigation of miscellaneous hERG inhibition in large diverse compound collection using automated patch-clamp assay

    PubMed Central

    Yu, Hai-bo; Zou, Bei-yan; Wang, Xiao-liang; Li, Min

    2016-01-01

    Aim: hERG potassium channels display miscellaneous interactions with diverse chemical scaffolds. In this study we assessed the hERG inhibition in a large compound library of diverse chemical entities and provided data for better understanding of the mechanisms underlying promiscuity of hERG inhibition. Methods: Approximately 300 000 compounds contained in Molecular Library Small Molecular Repository (MLSMR) library were tested. Compound profiling was conducted on hERG-CHO cells using the automated patch-clamp platform–IonWorks Quattro™. Results: The compound library was tested at 1 and 10 μmol/L. IC50 values were predicted using a modified 4-parameter logistic model. Inhibitor hits were binned into three groups based on their potency: high (IC50<1 μmol/L), intermediate (1 μmol/L< IC50<10 μmol/L), and low (IC50>10 μmol/L) with hit rates of 1.64%, 9.17% and 16.63%, respectively. Six physiochemical properties of each compound were acquired and calculated using ACD software to evaluate the correlation between hERG inhibition and the properties: hERG inhibition was positively correlative to the physiochemical properties ALogP, molecular weight and RTB, and negatively correlative to TPSA. Conclusion: Based on a large diverse compound collection, this study provides experimental evidence to understand the promiscuity of hERG inhibition. This study further demonstrates that hERG liability compounds tend to be more hydrophobic, high-molecular, flexible and polarizable. PMID:26725739

  11. A novel crystallization method for visualizing the membrane localization of potassium channels.

    PubMed Central

    Lopatin, A N; Makhina, E N; Nichols, C G

    1998-01-01

    The high permeability of K+ channels to monovalent thallium (Tl+) ions and the low solubility of thallium bromide salt were used to develop a simple yet very sensitive approach to the study of membrane localization of potassium channels. K+ channels (Kir1.1, Kir2.1, Kir2.3, Kv2.1), were expressed in Xenopus oocytes and loaded with Br ions by microinjection. Oocytes were then exposed to extracellular thallium. Under conditions favoring influx of Tl+ ions (negative membrane potential under voltage clamp, or high concentration of extracellular Tl+), crystals of TlBr, visible under low-power microscopy, formed under the membrane in places of high density of K+ channels. Crystals were not formed in uninjected oocytes, but were formed in oocytes expressing as little as 5 microS K+ conductance. The number of observed crystals was much lower than the estimated number of functional channels. Based on the pattern of crystal formation, K+ channels appear to be expressed mostly around the point of cRNA injection when injected either into the animal or vegetal hemisphere. In addition to this pseudopolarized distribution of K+ channels due to localized microinjection of cRNA, a naturally polarized (animal/vegetal side) distribution of K+ channels was also frequently observed when K+ channel cRNA was injected at the equator. A second novel "agarose-hemiclamp" technique was developed to permit direct measurements of K+ currents from different hemispheres of oocytes under two-microelectrode voltage clamp. This technique, together with direct patch-clamping of patches of membrane in regions of high crystal density, confirmed that the localization of TlBr crystals corresponded to the localization of functional K+ channels and suggested a clustered organization of functional channels. With appropriate permeant ion/counterion pairs, this approach may be applicable to the visualization of the membrane distribution of any functional ion channel. PMID:9591643

  12. A novel crystallization method for visualizing the membrane localization of potassium channels.

    PubMed

    Lopatin, A N; Makhina, E N; Nichols, C G

    1998-05-01

    The high permeability of K+ channels to monovalent thallium (Tl+) ions and the low solubility of thallium bromide salt were used to develop a simple yet very sensitive approach to the study of membrane localization of potassium channels. K+ channels (Kir1.1, Kir2.1, Kir2.3, Kv2.1), were expressed in Xenopus oocytes and loaded with Br ions by microinjection. Oocytes were then exposed to extracellular thallium. Under conditions favoring influx of Tl+ ions (negative membrane potential under voltage clamp, or high concentration of extracellular Tl+), crystals of TlBr, visible under low-power microscopy, formed under the membrane in places of high density of K+ channels. Crystals were not formed in uninjected oocytes, but were formed in oocytes expressing as little as 5 microS K+ conductance. The number of observed crystals was much lower than the estimated number of functional channels. Based on the pattern of crystal formation, K+ channels appear to be expressed mostly around the point of cRNA injection when injected either into the animal or vegetal hemisphere. In addition to this pseudopolarized distribution of K+ channels due to localized microinjection of cRNA, a naturally polarized (animal/vegetal side) distribution of K+ channels was also frequently observed when K+ channel cRNA was injected at the equator. A second novel "agarose-hemiclamp" technique was developed to permit direct measurements of K+ currents from different hemispheres of oocytes under two-microelectrode voltage clamp. This technique, together with direct patch-clamping of patches of membrane in regions of high crystal density, confirmed that the localization of TlBr crystals corresponded to the localization of functional K+ channels and suggested a clustered organization of functional channels. With appropriate permeant ion/counterion pairs, this approach may be applicable to the visualization of the membrane distribution of any functional ion channel.

  13. Redox artifacts in electrophysiological recordings

    PubMed Central

    Berman, Jonathan M.

    2013-01-01

    Electrophysiological techniques make use of Ag/AgCl electrodes that are in direct contact with cells or bath. In the bath, electrodes are exposed to numerous experimental conditions and chemical reagents that can modify electrode voltage. We examined voltage offsets created in Ag/AgCl electrodes by exposure to redox reagents used in electrophysiological studies. Voltage offsets were measured in reference to an electrode separated from the solution by an agar bridge. The reducing reagents Tris-2-carboxyethly-phosphine, dithiothreitol (DTT), and glutathione, as well as the oxidizing agent H2O2 used at experimentally relevant concentrations reacted with Ag in the electrodes to produce voltage offsets. Chloride ions and strong acids and bases produced offsets at millimolar concentrations. Electrolytic depletion of the AgCl layer, to replicate voltage clamp and sustained use, resulted in increased sensitivity to flow and DTT. Offsets were sensitive to electrode silver purity and to the amount and method of chloride deposition. For example, exposure to 10 μM DTT produced a voltage offset between 10 and 284 mV depending on the chloride deposition method. Currents generated by these offsets are significant and dependent on membrane conductance and by extension the expression of ion channels and may therefore appear to be biological in origin. These data demonstrate a new source of artifacts in electrophysiological recordings that can affect measurements obtained from a variety of experimental techniques from patch clamp to two-electrode voltage clamp. PMID:23344161

  14. Functional Evaluation of Biological Neurotoxins in Networked Cultures of Stem Cell-derived Central Nervous System Neurons

    DTIC Science & Technology

    2015-02-05

    botulism or tetanus , whole-cell patch clamp electrophysiology was used to quantify spontaneous miniature excitory post-synaptic currents (mEPSCs) in...ESNs exposed to tetanus neurotoxin (TeNT) or botulinum neurotoxin (BoNT) serotypes / A-/G. In all cases, ESNs exhibited near-complete loss of synaptic

  15. ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research.

    PubMed

    Campagnola, Luke; Kratz, Megan B; Manis, Paul B

    2014-01-01

    The complexity of modern neurophysiology experiments requires specialized software to coordinate multiple acquisition devices and analyze the collected data. We have developed ACQ4, an open-source software platform for performing data acquisition and analysis in experimental neurophysiology. This software integrates the tasks of acquiring, managing, and analyzing experimental data. ACQ4 has been used primarily for standard patch-clamp electrophysiology, laser scanning photostimulation, multiphoton microscopy, intrinsic imaging, and calcium imaging. The system is highly modular, which facilitates the addition of new devices and functionality. The modules included with ACQ4 provide for rapid construction of acquisition protocols, live video display, and customizable analysis tools. Position-aware data collection allows automated construction of image mosaics and registration of images with 3-dimensional anatomical atlases. ACQ4 uses free and open-source tools including Python, NumPy/SciPy for numerical computation, PyQt for the user interface, and PyQtGraph for scientific graphics. Supported hardware includes cameras, patch clamp amplifiers, scanning mirrors, lasers, shutters, Pockels cells, motorized stages, and more. ACQ4 is available for download at http://www.acq4.org.

  16. Evaluation of diel patterns of relative changes in cell turgor of tomato plants using leaf patch clamp pressure probes.

    PubMed

    Lee, Kang M; Driever, Steven M; Heuvelink, Ep; Rüger, Simon; Zimmermann, Ulrich; de Gelder, Arie; Marcelis, Leo F M

    2012-12-01

    Relative changes in cell turgor of leaves of well-watered tomato plants were evaluated using the leaf patch clamp pressure probe (LPCP) under dynamic greenhouse climate conditions. LPCP changes, a measure for relative changes in cell turgor, were monitored at three different heights of transpiring and non-transpiring leaves of tomato plants on sunny and cloudy days simultaneously with whole plant water uptake. Clear diel patterns were observed for relative changes of cell turgor of both transpiring and non-transpiring leaves, which were stronger on sunny days than on cloudy days. A clear effect of canopy height was also observed. Non-transpiring leaves showed relative changes in cell turgor that closely followed plant water uptake throughout the day. However, in the afternoon the relative changes of cell turgor of the transpiring leaves displayed a delayed response in comparison to plant water uptake. Subsequent recovery of cell turgor loss of transpiring leaves during the following night appeared insufficient, as the pre-dawn turgescent state similar to the previous night was not attained. Copyright © Physiologia Plantarum 2012.

  17. Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation

    PubMed Central

    Pashut, Tamar; Magidov, Dafna; Ben-Porat, Hana; Wolfus, Shuki; Friedman, Alex; Perel, Eli; Lavidor, Michal; Bar-Gad, Izhar; Yeshurun, Yosef; Korngreen, Alon

    2014-01-01

    Although transcranial magnetic stimulation (TMS) is a popular tool for both basic research and clinical applications, its actions on nerve cells are only partially understood. We have previously predicted, using compartmental modeling, that magnetic stimulation of central nervous system neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. The simulations also predict that neurons with low current threshold are more susceptible to magnetic stimulation. Here we tested these theoretical predictions by combining in vitro patch-clamp recordings from rat brain slices with magnetic stimulation and compartmental modeling. In agreement with the modeling, our recordings demonstrate the dependence of magnetic stimulation-triggered action potentials on the type and state of the neuron and its orientation within the magnetic field. Our results suggest that the observed effects of TMS are deeply rooted in the biophysical properties of single neurons in the central nervous system and provide a framework both for interpreting existing TMS data and developing new simulation-based tools and therapies. PMID:24917788

  18. Multimodal vibration damping of a plate by piezoelectric coupling to its analogous electrical network

    NASA Astrophysics Data System (ADS)

    Lossouarn, B.; Deü, J.-F.; Aucejo, M.; Cunefare, K. A.

    2016-11-01

    Multimodal damping can be achieved by coupling a mechanical structure to an electrical network exhibiting similar modal properties. Focusing on a plate, a new topology for such an electrical analogue is found from a finite difference approximation of the Kirchhoff-Love theory and the use of the direct electromechanical analogy. Discrete models based on element dynamic stiffness matrices are proposed to simulate square plate unit cells coupled to their electrical analogues through two-dimensional piezoelectric transducers. A setup made of a clamped plate covered with an array of piezoelectric patches is built in order to validate the control strategy and the numerical models. The analogous electrical network is implemented with passive components as inductors, transformers and the inherent capacitance of the piezoelectric patches. The effect of the piezoelectric coupling on the dynamics of the clamped plate is significant as it creates the equivalent of a multimodal tuned mass damping. An adequate tuning of the network then yields a broadband vibration reduction. In the end, the use of an analogous electrical network appears as an efficient solution for the multimodal control of a plate.

  19. Meclofenamic acid blocks the gap junction communication between the retinal pigment epithelial cells.

    PubMed

    Ning, N; Wen, Y; Li, Y; Li, J

    2013-11-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to manage the pain and inflammation. NSAIDs can cause serious side effects, including vision problems. However, the underlying mechanisms are still unclear. Therefore, we aimed to investigate the effect of meclofenamic acid (MFA) on retinal pigment epithelium (RPE). In our study, we applied image analysis and whole-cell patch clamp recording to directly measure the effect of MFA on the gap junctional coupling between RPE cells. Analysis of Lucifer yellow (LY) transfer revealed that the gap junction communication existed between RPE cells. Functional experiments using the whole-cell configuration of the patch clamp technique showed that a gap junction conductance also existed between this kind of cells. Importantly, MFA largely inhibited the gap junction conductance and induced the uncoupling of RPE cells. Other NSAIDs, like aspirin and flufenamic acid (FFA), had the same effect. The gap junction functionally existed in RPE cells, which can be blocked by MFA. These findings may explain, at least partially, the vision problems with certain clinically used NSAIDs.

  20. Diadenosine tetraphosphate-induced inhibition of ATP-sensitive K+ channels in patches excised from ventricular myocytes.

    PubMed Central

    Jovanovic, A.; Terzic, A.

    1996-01-01

    Diadenosine 5',5''-P1,P4-tetraphosphate (Ap4A) has been termed 'alarmone' due to its role in intracellular signaling during metabolic stress. It is not known whether Ap4A could modulate ATP-sensitive K+ (KATP) channels, a family of channels regulated by the metabolic status of a cell. We applied the single-channel patch-clamp technique to measure the effect of Ap4A on KATP channels. When applied to the intracellular side of patches, excised from guinea-pig ventricular myocytes, Ap4A inhibited KATP channel activity, in a reversible and concentration-dependent (half-maximal concentration approximately 17 microM) manner. We conclude that Ap4A, a naturally occurring diadenosine polyphosphate, is actually an inhibitor of the myocardial KATP channel. PMID:8789372

  1. Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies.

    PubMed

    Yao, Jing; Liu, Beiying; Qin, Feng

    2009-05-06

    Several thermal TRP ion channels have recently been identified. These channels are directly gated by temperature, but the mechanisms have remained elusive. Studies of their temperature gating have been impeded by lack of methods for rapid alteration of temperature in live cells. As a result, only measurements of steady-state properties have been possible. To solve the problem, we have developed an optical approach that uses recently available infrared diode lasers as heat sources. By restricting laser irradiation around a single cell, our approach can produce constant temperature jumps over 50 degrees C in submilliseconds. Experiments with several heat-gated ion channels (TRPV1-3) show its applicability for rapid temperature perturbation in both single cells and membrane patches. Compared with other laser heating approaches such as those by Raman-shifting of the Nd:YAG fundamentals, our approach has the advantage of being cost effective and applicable to live cells while providing an adequate resolution for time-resolved detection of channel activation.

  2. Piezoresistive cantilever force-clamp system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L.

    2011-04-15

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to amore » sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.« less

  3. KV7 Channel Pharmacological Activation by the Novel Activator ML213: Role for Heteromeric KV7.4/KV7.5 Channels in Guinea Pig Detrusor Smooth Muscle Function.

    PubMed

    Provence, Aaron; Angoli, Damiano; Petkov, Georgi V

    2018-01-01

    Voltage-gated K V 7 channels (K V 7.1 to K V 7.5) are important regulators of the cell membrane potential in detrusor smooth muscle (DSM) of the urinary bladder. This study sought to further the current knowledge of K V 7 channel function at the molecular, cellular, and tissue levels in combination with pharmacological tools. We used isometric DSM tension recordings, ratiometric fluorescence Ca 2+ imaging, amphotericin-B perforated patch-clamp electrophysiology, and in situ proximity ligation assay (PLA) in combination with the novel compound N -(2,4,6-trimethylphenyl)-bicyclo[2.2.1]heptane-2-carboxamide (ML213), an activator of K V 7.2, K V 7.4, and K V 7.5 channels, to examine their physiologic roles in guinea pig DSM function. ML213 caused a concentration-dependent (0.1-30 µ M) inhibition of spontaneous phasic contractions in DSM isolated strips; effects blocked by the K V 7 channel inhibitor XE991 (10 µ M). ML213 (0.1-30 µ M) also reduced pharmacologically induced and nerve-evoked contractions in DSM strips. Consistently, ML213 (10 µ M) decreased global intracellular Ca 2+ concentrations in Fura-2-loaded DSM isolated strips. Perforated patch-clamp electrophysiology revealed that ML213 (10 µ M) caused an increase in the amplitude of whole-cell K V 7 currents. Further, in current-clamp mode of the perforated patch clamp, ML213 hyperpolarized DSM cell membrane potential in a manner reversible by washout or XE991 (10 µ M), consistent with ML213 activation of K V 7 channel currents. Preapplication of XE991 (10 µ M) not only depolarized the DSM cells, but also blocked ML213-induced hyperpolarization, confirming ML213 selectivity for K V 7 channel subtypes. In situ PLA revealed colocalization and expression of heteromeric K V 7.4/K V 7.5 channels in DSM isolated cells. These combined results suggest that ML213-sensitive K V 7.4- and K V 7.5-containing channels are essential regulators of DSM excitability and contractility. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Phorbol ester impairs electrical excitation of rat pancreatic beta-cells through PKC-independent activation of KATP channels.

    PubMed

    Suga, S; Wu, J; Ogawa, Y; Takeo, T; Kanno, T; Wakui, M

    2001-01-01

    Phorbol 12-myristate 13-acetate (PMA) is often used as an activating phorbol ester of protein kinase C (PKC) to investigate the roles of the kinase in cellular functions. Accumulating lines of evidence indicate that in addition to activating PKC, PMA also produces some regulatory effects in a PKC-independent manner. In this study, we investigated the non-PKC effects of PMA on electrical excitability of rat pancreatic beta-cells by using patch-clamp techniques. In current-clamp recording, PMA (80 nM) reversibly inhibited 15 mM glucose-induced action potential spikes superimposed on a slow membrane depolarization and this inhibition can not be prevented by pre-treatment of the cell with a specific PKC inhibitor, bisindolylmaleimide (BIM, 1 microM). In the presence of a subthreshold concentration (5.5 mM) of glucose, PMA hyperpolarized beta-cells in a concentration-dependent manner (0.8-240 nM), even in the presence of BIM. Based on cell-attached single channel recordings, PMA increased ATP-sensitive K+ channel (KATP) activity. Based on inside-out patch-clamp recordings, PMA had little effect on KATP activity if no ATP was in the bath, while PMA restored KATP activity that was suppressed by 10 microM ATP in the bath. In voltage-clamp recording, PMA enhanced tolbutamide-sensitive membrane currents elicited by repetitive ramp pulses from -90 to -50 mV in a concentration-dependent manner, and this potentiation could not be prevented by pre-treatment of cell with BIM. 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, mimicked the effect of PMA on both current-clamp and voltage-clamp recording configurations. With either 5.5 or 16.6 mM glucose in the extracellular solution, PMA (80 nM) increased insulin secretion from rat islets. However, in islets pretreated with BIM (1 microM), PMA did not increase, but rather reduced insulin secretion. In rat pancreatic beta-cells, PMA modulates insulin secretion through a mixed mechanism: increases insulin secretion by activation of PKC, and meanwhile decrease insulin secretion by impairing beta-cell excitability in a PKC-independent manner. The enhancement of KATP activity by reducing sensitivity of KATP to ATP seems to underlie the PMA-induced impairment of beta-cells electrical excitation in response to glucose stimulation.

  5. PA-6 inhibits inward rectifier currents carried by V93I and D172N gain-of-function KIR2.1 channels, but increases channel protein expression.

    PubMed

    Ji, Yuan; Veldhuis, Marlieke G; Zandvoort, Jantien; Romunde, Fee L; Houtman, Marien J C; Duran, Karen; van Haaften, Gijs; Zangerl-Plessl, Eva-Maria; Takanari, Hiroki; Stary-Weinzinger, Anna; van der Heyden, Marcel A G

    2017-07-15

    The inward rectifier potassium current I K1 contributes to a stable resting membrane potential and phase 3 repolarization of the cardiac action potential. KCNJ2 gain-of-function mutations V93I and D172N associate with increased I K1 , short QT syndrome type 3 and congenital atrial fibrillation. Pentamidine-Analogue 6 (PA-6) is an efficient (IC 50  = 14 nM with inside-out patch clamp methodology) and specific I K1 inhibitor that interacts with the cytoplasmic pore region of the K IR 2.1 ion channel, encoded by KCNJ2. At 10 μM, PA-6 increases wild-type (WT) K IR 2.1 expression in HEK293T cells upon chronic treatment. We hypothesized that PA-6 will interact with and inhibit V93I and D172N K IR 2.1 channels, whereas impact on channel expression at the plasma membrane requires higher concentrations. Molecular modelling was performed with the human K IR 2.1 closed state homology model using FlexX. WT and mutant K IR 2.1 channels were expressed in HEK293 cells. Patch-clamp single cell electrophysiology measurements were performed in the whole cell and inside-out mode of the patch clamp method. K IR 2.1 expression level and localization were determined by western blot analysis and immunofluorescence microscopy, respectively. PA-6 docking in the V93I/D172N double mutant homology model of K IR 2.1 demonstrated that mutations and drug-binding site are >30 Å apart. PA-6 inhibited WT and V93I outward currents with similar potency (IC 50  = 35.5 and 43.6 nM at +50 mV for WT and V93I), whereas D172N currents were less sensitive (IC 50  = 128.9 nM at +50 mV) using inside-out patch-clamp electrophysiology. In whole cell mode, 1 μM of PA-6 inhibited outward I K1 at -50 mV by 28 ± 36%, 18 ± 20% and 10 ± 6%, for WT, V93I and D172N channels respectively. Western blot analysis demonstrated that PA-6 (5 μM, 24 h) increased K IR 2.1 expression levels of WT (6.3 ± 1.5 fold), and V93I (3.9 ± 0.9) and D172N (4.8 ± 2.0) mutants. Immunofluorescent microscopy demonstrated dose-dependent intracellular K IR 2.1 accumulation following chronic PA-6 application (24 h, 1 and 5 μM). 1) KCNJ2 gain-of-function mutations V93I and D172N in the K IR 2.1 ion channel do not impair PA-6 mediated inhibition of I K1 , 2) PA-6 elevates K IR 2.1 protein expression and induces intracellular K IR 2.1 accumulation, 3) PA-6 is a strong candidate for further preclinical evaluation in treatment of congenital SQT3 and AF.

  6. Evaluation of Changes in Morphology and Function of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (HiPSC-CMs) Cultured on an Aligned-Nanofiber Cardiac Patch

    PubMed Central

    Khan, Mahmood; Xu, Yanyi; Hua, Serena; Johnson, Jed; Belevych, Andriy; Janssen, Paul M. L.; Gyorke, Sandor; Guan, Jianjun; Angelos, Mark G.

    2015-01-01

    Introduction Dilated cardiomyopathy is a major cause of progressive heart failure. Utilization of stem cell therapy offers a potential means of regenerating viable cardiac tissue. However, a major obstacle to stem cell therapy is the delivery and survival of implanted stem cells in the ischemic heart. To address this issue, we have developed a biomimetic aligned nanofibrous cardiac patch and characterized the alignment and function of human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) cultured on this cardiac patch. This hiPSC-CMs seeded patch was compared with hiPSC-CMs cultured on standard flat cell culture plates. Methods hiPSC-CMs were cultured on; 1) a highly aligned polylactide-co-glycolide (PLGA) nanofiber scaffold (~50 microns thick) and 2) on a standard flat culture plate. Scanning electron microscopy (SEM) was used to determine alignment of PLGA nanofibers and orientation of the cells on the respective surfaces. Analysis of gap junctions (Connexin-43) was performed by confocal imaging in both the groups. Calcium cycling and patch-clamp technique were performed to measure calcium transients and electrical coupling properties of cardiomyocytes. Results SEM demonstrated >90% alignment of the nanofibers in the patch which is similar to the extracellular matrix of decellularized rat myocardium. Confocal imaging of the cardiomyocytes demonstrated symmetrical alignment in the same direction on the aligned nanofiber patch in sharp contrast to the random appearance of cardiomyocytes cultured on a tissue culture plate. The hiPSC-CMs cultured on aligned nanofiber cardiac patches showed more efficient calcium cycling compared with cells cultured on standard flat surface culture plates. Quantification of mRNA with qRT-PCR confirmed that these cardiomyocytes expressed α-actinin, troponin-T and connexin-43 in-vitro. Conclusions Overall, our results demonstrated changes in morphology and function of human induced pluripotent derived cardiomyocytes cultured in an anisotropic environment created by an aligned nanofiber patch. In this environment, these cells better approximate normal cardiac tissue compared with cells cultured on flat surface and can serve as the basis for bioengineering of an implantable cardiac patch. PMID:25993466

  7. A proposed route to independent measurements of tight junction conductance at discrete cell junctions

    PubMed Central

    Zhou, Lushan; Zeng, Yuhan; Baker, Lane A; Hou, Jianghui

    2015-01-01

    Direct recording of tight junction permeability is of pivotal importance to many biologic fields. Previous approaches bear an intrinsic disadvantage due to the difficulty of separating tight junction conductance from nearby membrane conductance. Here, we propose the design of Double whole-cell Voltage Clamp - Ion Conductance Microscopy (DVC-ICM) based on previously demonstrated potentiometric scanning of local conductive pathways. As proposed, DVC-ICM utilizes two coordinated whole-cell patch-clamps to neutralize the apical membrane current during potentiometric scanning, which in models described here will profoundly enhance the specificity of tight junction recording. Several potential pitfalls are considered, evaluated and addressed with alternative countermeasures. PMID:26716077

  8. Activation by intracellular GDP, metabolic inhibition and pinacidil of a glibenclamide-sensitive K-channel in smooth muscle cells of rat mesenteric artery.

    PubMed Central

    Zhang, H; Bolton, T B

    1995-01-01

    1. Single-channel recordings were made from cell-attached and isolated patches, and whole-cell currents were recorded under voltage clamp from single smooth muscle cells obtained by enzymic digestion of a small branch of the rat mesenteric artery. 2. In single voltage-clamped cells 1 mM uridine diphosphate (UDP) or guanidine diphosphate (GDP) added to the pipette solution, or pinacidil (100 microM) a K-channel opener (KCO) applied in the bathing solution, evoked an outward current of up to 100pA which was blocked by glibenclamide (10 microM). In single cells from which recordings were made by the 'perforated patch' (nystatin pipette) technique, metabolic inhibition by 1 mM NaCN and 10 mM 2-deoxy-glucose also evoked a similar glibenclamide-sensitive current. 3. Single K-channel activity was observed in cell-attached patches only infrequently unless the metabolism of the cell was inhibited, whereupon channel activity blocked by glibenclamide was seen; pinacidil applied to the cell evoked similar glibenclamide-sensitive channel activity. If the patch was pulled off the cell to form an isolated inside-out patch, similar glibenclamide-sensitive single-channel currents were observed in the presence of UDP and/or pinacidil to those seen in cell-attached mode; channel conductance was 20 pS (60:130 K-gradient) and openings showed no voltage-dependence and noisy inward currents, typical of the nucleoside diphosphate (NDP) activated K-channel (KNDP) seen previously in rabbit portal vein. 4. Formation of an isolated inside-out patch into an ATP-free solution did not increase the probability of channel opening which declined with time even when some single-channel activity had occurred in the cell-attached mode before detachment. However, application of 1 mM UDP or GDP, but not ATP, to inside-out patches evoked single-channel activity. Application of ATP-free solution to isolated patches, previously exposed to ATP and in which channel activity had been seen, did not evoke channel activity. 5. It is concluded that small conductance K-channels (KNDP) open in smooth muscle cells from this small artery in response to UDP or GDP acting from the inside, or pinacidil acting from the outside; the same channels open during inhibition of metabolism presumably mainly due to the rise in nucleoside diphosphates, but a fall in the ATP concentration on the inside of the channel did not by itself evoke channel activity.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7735693

  9. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires

    NASA Astrophysics Data System (ADS)

    Parameswaran, Ramya; Carvalho-de-Souza, João L.; Jiang, Yuanwen; Burke, Michael J.; Zimmerman, John F.; Koehler, Kelliann; Phillips, Andrew W.; Yi, Jaeseok; Adams, Erin J.; Bezanilla, Francisco; Tian, Bozhi

    2018-02-01

    Optical methods for modulating cellular behaviour are promising for both fundamental and clinical applications. However, most available methods are either mechanically invasive, require genetic manipulation of target cells or cannot provide subcellular specificity. Here, we address all these issues by showing optical neuromodulation with free-standing coaxial p-type/intrinsic/n-type silicon nanowires. We reveal the presence of atomic gold on the nanowire surfaces, likely due to gold diffusion during the material growth. To evaluate how surface gold impacts the photoelectrochemical properties of single nanowires, we used modified quartz pipettes from a patch clamp and recorded sustained cathodic photocurrents from single nanowires. We show that these currents can elicit action potentials in primary rat dorsal root ganglion neurons through a primarily atomic gold-enhanced photoelectrochemical process.

  10. Effects of lacosamide and carbamazepine on human motor cortex excitability: a double-blind, placebo-controlled transcranial magnetic stimulation study.

    PubMed

    Lang, Nicolas; Rothkegel, Holger; Peckolt, Hannes; Deuschl, Günther

    2013-11-01

    Lacosamide (LCM) and carbamazepine (CBZ) are antiepileptic drugs both acting on neuronal voltage-gated sodium channels. Patch-clamp studies demonstrated significant differences in how LCM and CBZ affect neuronal membrane excitability. Despite valuable information patch-clamp studies provide, they also comprise some constraints. For example, little is known about effects of LCM on intracortical synaptic excitability. In contrast, transcranial magnetic stimulation (TMS) can describe drug-induced changes at the system level of the human cerebral cortex. The present study was designed to explore dose-depended effects of LCM and effects of CBZ on motor cortex excitability with TMS in a randomized, double-blind, placebo-controlled crossover trial in healthy human subjects. Subjects received 600 mg CBZ, 200 mg LCM, 400 mg LCM or placebo preceding TMS measurements. Compared to placebo, TMS motor thresholds were significantly increased after carbamazepine and lacosamide, with a trend for a dose dependent effect of lacosamide. Both, carbamazepine and lacosamide did not affect TMS parameters of intracortical synaptic excitability. TMS measurements suggest that lacosamide and carbamazepine predominantly act on neuronal membrane excitability. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  11. Patch clamp reveals powerful blockade of the mitochondrial permeability transition pore by the D2-receptor agonist pramipexole.

    PubMed

    Sayeed, Iqbal; Parvez, Suhel; Winkler-Stuck, Kirstin; Seitz, Gordon; Trieu, Isabelle; Wallesch, Claus-Werner; Schönfeld, Peter; Siemen, Detlef

    2006-03-01

    The dopamine-D2-agonist pramipexole (PPX) was tested for blocking mitochondrial permeability transition (PT) in order to give a possible explanation for its neuroprotective effect seen in PPX-treated Parkinson's disease patients. Patch-clamp techniques for studying single-channel currents in the inner mitochondrial membrane and large-amplitude swelling of energized mitochondria were used to study PPX action on the permeability transition pore (PTP), a key player in the mitochondrial route of the apoptotic cascade. Identity of the PTP was proven by measuring the concentration-response relation for cyclosporin A-blockade (IC50=26 nM). PPX inhibits the PTP reversibly with an IC50 of 500 nM, which is close to the values determined earlier as plasma concentrations after PPX medication in patients. Interaction of PPX with the PTP is further supported by demonstrating that it abolished Ca2+-triggered swelling in functionally intact mitochondria. Blockade of the PTP by PPX was attenuated by increasing concentrations of inorganic phosphate and by acidification. We suggest that PPX could exert part of its neuroprotective effect by inhibition of the PTP and thus, probably, blocking of the mitochondrial pathway of the apoptosis cascade.

  12. Azadirachtin blocks the calcium channel and modulates the cholinergic miniature synaptic current in the central nervous system of Drosophila.

    PubMed

    Qiao, Jingda; Zou, Xiaolu; Lai, Duo; Yan, Ying; Wang, Qi; Li, Weicong; Deng, Shengwen; Xu, Hanhong; Gu, Huaiyu

    2014-07-01

    Azadirachtin is a botanical pesticide, which possesses conspicuous biological actions such as insecticidal, anthelmintic, antifeedancy, antimalarial effects as well as insect growth regulation. Deterrent for chemoreceptor functions appears to be the main mechanism involved in the potent biological actions of Azadirachtin, although the cytotoxicity and subtle changes to skeletal muscle physiology may also contribute to its insecticide responses. In order to discover the effects of Azadirachtin on the central nervous system (CNS), patch-clamp recording was applied to Drosophila melanogaster, which has been widely used in neurological research. Here, we describe the electrophysiological properties of a local neuron located in the suboesophageal ganglion region of D. melanogaster using the whole brain. The patch-clamp recordings suggested that Azadirachtin modulates the properties of cholinergic miniature excitatory postsynaptic current (mEPSC) and calcium currents, which play important roles in neural activity of the CNS. The frequency of mEPSC and the peak amplitude of the calcium currents significantly decreased after application of Azadirachtin. Our study indicates that Azadirachtin can interfere with the insect's CNS via inhibition of excitatory cholinergic transmission and partly blocking the calcium channel. © 2013 Society of Chemical Industry.

  13. ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research

    PubMed Central

    Campagnola, Luke; Kratz, Megan B.; Manis, Paul B.

    2014-01-01

    The complexity of modern neurophysiology experiments requires specialized software to coordinate multiple acquisition devices and analyze the collected data. We have developed ACQ4, an open-source software platform for performing data acquisition and analysis in experimental neurophysiology. This software integrates the tasks of acquiring, managing, and analyzing experimental data. ACQ4 has been used primarily for standard patch-clamp electrophysiology, laser scanning photostimulation, multiphoton microscopy, intrinsic imaging, and calcium imaging. The system is highly modular, which facilitates the addition of new devices and functionality. The modules included with ACQ4 provide for rapid construction of acquisition protocols, live video display, and customizable analysis tools. Position-aware data collection allows automated construction of image mosaics and registration of images with 3-dimensional anatomical atlases. ACQ4 uses free and open-source tools including Python, NumPy/SciPy for numerical computation, PyQt for the user interface, and PyQtGraph for scientific graphics. Supported hardware includes cameras, patch clamp amplifiers, scanning mirrors, lasers, shutters, Pockels cells, motorized stages, and more. ACQ4 is available for download at http://www.acq4.org. PMID:24523692

  14. Nanopore Logic Operation with DNA to RNA Transcription in a Droplet System.

    PubMed

    Ohara, Masayuki; Takinoue, Masahiro; Kawano, Ryuji

    2017-07-21

    This paper describes an AND logic operation with amplification and transcription from DNA to RNA, using T7 RNA polymerase. All four operations, (0 0) to (1 1), with an enzyme reaction can be performed simultaneously, using four-droplet devices that are directly connected to a patch-clamp amplifier. The output RNA molecule is detected using a biological nanopore with single-molecule translocation. Channel current recordings can be obtained using the enzyme solution. The integration of DNA logic gates into electrochemical devices is necessary to obtain output information in a human-recognizable form. Our method will be useful for rapid and confined DNA computing applications, including the development of programmable diagnostic devices.

  15. Method for Dissecting the Auditory Epithelium (Basilar Papilla) in Developing Chick Embryos.

    PubMed

    Levic, Snezana; Yamoah, Ebenezer N

    2016-01-01

    Chickens are an invaluable model for exploring auditory physiology. Similar to humans, the chicken inner ear is morphologically and functionally close to maturity at the time of hatching. In contrast, chicks can regenerate hearing, an ability lost in all mammals, including humans. The extensive morphological, physiological, behavioral, and pharmacological data available, regarding normal development in the chicken auditory system, has driven the progress of the field. The basilar papilla is an attractive model system to study the developmental mechanisms of hearing. Here, we describe the dissection technique for isolating the basilar papilla in developing chick inner ear. We also provide detailed examples of physiological (patch clamping) experiments using this preparation.

  16. A clamp fixture with interdigital capacitive sensor for in situ evaluation of wire insulation

    NASA Astrophysics Data System (ADS)

    Sheldon, Robert T.; Bowler, Nicola

    2014-02-01

    An interdigital capacitive sensor has been designed and optimized for testing aircraft wires by applying a quasinumerical model developed and reported previously. The sensor consists of two patches of interdigitated electrodes, connected by a long signal bus strip, that are intended to conform to two sides of an insulated wire. The electrodes are deposited using photolithography upon a 25.4-μm-thick Kapton® polyimide film. The two electrode patches are attached to the two jaws of a plastic spring-loaded clamp, with each jaw having a milled groove designed such that the electrodes conform to the curved surface of the insulated wire. An SMA connector and cable connect between the electrodes on the clamp and an LCR meter. Segments of pristine M5086/2 aircraft wire, each 10 cm long, were immersed in fluids commonly found in aircraft environments, to cause accelerated chemical degradation. The effects of Jet A fuel, deicing fluid, hydraulic fluid, aircraft cleaner, isopropyl alcohol and distilled water were studied. The frequency-dependent capacitance and dissipation factor of one pristine wire segment and of those degraded in the six fluid environments were measured within the frequency range 100 Hz to 1 MHz. Significant changes in capacitance and dissipation factor were observed for all degraded wires, compared with results for the pristine sample, suggesting the feasibility of detecting insulation degradation in the field. The results were also consistent with those of a similar experiment performed on sheets of Nylon 6, the material that comprises the outermost layer of M5086/2 wire.

  17. Piezoresistive cantilever force-clamp system

    PubMed Central

    Park, Sung-Jin; Petzold, Bryan C.; Goodman, Miriam B.; Pruitt, Beth L.

    2011-01-01

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or “clamps” the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of μN force and nm up to tens of μm displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode. PMID:21529009

  18. The blockade of excitation/contraction coupling by nifedipine in patch-clamped rat skeletal muscle cells in culture.

    PubMed

    Cognard, C; Rivet, M; Raymond, G

    1990-04-01

    The effects of the dihydropyridine derivative, nifedipine, well known as a blocker of calcium channels, were tested on cultured rat myoballs. Membrane currents and contractions were simultaneously recorded by means of the patch-clamp technique and a photoelectric transducing method. High concentrations of nifedipine (5 microM) inhibited the contractile responses and inward calcium current (ICa) elicited by long depolarizations. In the absence of ICa (1.5 mM cadmium in the bath), nifedipine inhibited both the ICa-independent contractile component and the outward current, supposed to depend on the intracellular calcium released during contraction. At low concentrations (0.5 microM) the blocking effects of nifedipine could be strongly enhanced by shifting the membrane potential towards less negative values (-60 mV) for 50 s prior to the test pulse. A blocking effect of nifedipine, at a usually ineffective concentration (0.1 microM), could also be observed when long-lasting (3 min) prepulses to 0 mV were applied from a reference membrane potential of -60 mV. This effect could be relieved by long-lasting cell hyperpolarizations (-90 mV). The blocking effects of nifedipine unrelated to ICa could be interpreted as an action on a molecule (voltage sensor) in the T-tubule membrane involved in the excitation/contraction coupling process and as a preferential binding of the dihydropyridine derivative on the inactivated form of this molecule, favored by the weak negative potentials or long-lasting depolarizations. The results provide data in favor of the existence of strong similarities between the calcium channels and voltage sensors since their operation was inhibited in a voltage-dependent manner by nifedipine.

  19. Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin

    PubMed Central

    Wiese, Cornelia; Nikolova, Teodora; Zahanich, Ihor; Sulzbacher, Sabine; Fuchs, Joerg; Yamanaka, Satoshi; Graf, Eva; Ravens, Ursula; Boheler, Kenneth R.; Wobus, Anna M.

    2015-01-01

    Background Embryonic stem (ES) cells differentiate into cardiac phenotypes representing early pacemaker-, atrial-, ventricular-, and sinus node-like cells, however, ES-derived specification into sinus nodal cells is not yet known. By using the naphthylamine derivative of urea, suramin, we were able to follow the process of cardiac specialization into sinus node-like cells. Methods Differentiating mouse ES cells were treated with suramin (500 μM) from day 5 to 7 of embryoid body formation, and cells were analysed for their differentiation potential via morphological analysis, flow cytometry, RT-PCR, immunohistochemistry and patch clamp analysis. Results Application of suramin resulted in an increased number of cardiac cells, but inhibition of neuronal, skeletal muscle and definitive endoderm differentiation. Immediately after suramin treatment, a decreased mesendoderm differentiation was found. Brachyury, FGF10, Wnt8 and Wnt3a transcript levels were significantly down-regulated, followed by a decrease in mesoderm- and cardiac progenitor-specific markers BMP2, GATA4/5, Wnt11, Isl1, Nkx2.5 and Tbx5 immediately after removal of the substance. With continued differentiation, a significant up-regulation of Brachyury, FGF10 and GATA5 transcript levels was observed, whereas Nkx2.5, Isl1, Tbx5, BMP2 and Wnt11 levels were normalized to control levels. At advanced differentiation stages, sinus node-specific HCN4, Tbx2 and Tbx3 transcript levels were significantly up-regulated. Immunofluorescence and patch-clamp analysis confirmed the increased number of sinus node-like cells, and electrophysiological analysis revealed a lower number of atrial- and ventricular-like cardiomyocytes following suramin treatment. Conclusion We conclude that the interference of suramin with the cardiac differentiation process modified mesoderm- and cardiac-specific gene expression resulting in enhanced formation of sinus node-like cells. PMID:19775764

  20. Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina

    PubMed Central

    Jin, Nan Ge; Chuang, Alice Z; Masson, Philippe J; Ribelayga, Christophe P

    2015-01-01

    Key points Rod photoreceptors play a key role in vision in dim light; in the mammalian retina, although rods are anatomically connected or coupled by gap junctions, a type of electrical synapse, the functional importance and regulation of rod coupling has remained elusive. We have developed a new technique in the mouse: perforated patch-clamp recording of rod inner segments in isolated intact retinae maintained by superfusion. We find that rod electrical coupling is controlled by a circadian clock and dopamine, and is weak during the day and stronger at night. The results also indicate that the signal-to-noise ratio for a dim light response is increased at night because of coupling. Our observations will provide a framework for understanding the daily variations in human vision as well as the basis of specific retinal malfunctions. Abstract Rod single-photon responses are critical for vision in dim light. Electrical coupling via gap junction channels shapes the light response properties of vertebrate photoreceptors, but the regulation of rod coupling and its impact on the single-photon response have remained unclear. To directly address these questions, we developed a perforated patch-clamp recording technique and recorded from single rod inner segments in isolated intact neural mouse retinae, maintained by superfusion. Experiments were conducted at different times of the day or under constant environmental conditions, at different times across the circadian cycle. We show that rod electrical coupling is regulated by a circadian clock and dopamine, so that coupling is weak during the day and strong at night. Altogether, patch-clamp recordings of single-photon responses in mouse rods, tracer coupling, receptive field measurements and pharmacological manipulations of gap junction and dopamine receptor activity provide compelling evidence that rod coupling is modulated in a circadian manner. These data are consistent with computer modelling. At night, single-photon responses are smaller due to coupling, but the signal-to-noise ratio for a dim (multiphoton) light response is increased at night because of signal averaging between coupled rods. PMID:25616058

  1. Patch-clamp analysis of voltage-activated and chemically activated currents in the vomeronasal organ of Sternotherus odoratus (stinkpot/musk turtle)

    PubMed Central

    Fadool, D. A.; Wachowiak, M.; Brann, J. H.

    2011-01-01

    Summary The electrophysiological basis of chemical communication in the specialized olfactory division of the vomeronasal (VN) organ is poorly understood. In total, 198 patch-clamp recordings were made from 42 animals (Sternotherus odoratus, the stinkpot/musk turtle) to study the electrically and chemically activated properties of VN neurons. The introduction of tetramethylrhodamine-conjugated dextran into the VN orifice permitted good visualization of the vomeronasal neural epithelium prior to dissociating it into single neurons. Basic electrical properties of the neurons were measured (resting potential, −54.5±2.7 mV, N=11; input resistance, 6.7±1.4GΩ, N=25; capacitance, 4.2±0.3 pF, N=22; means ± S.E.M.). The voltage-gated K+ current inactivation rate was significantly slower in VN neurons from males than in those from females, and K+ currents in males were less sensitive (greater Ki) to tetraethylammonium. Vomeronasal neurons were held at a holding potential of −60 mV and tested for their response to five natural chemicals, female urine, male urine, female musk, male musk and catfish extract. Of the 90 VN neurons tested, 33 (34 %) responded to at least one of the five compounds. The peak amplitude of chemically evoked currents ranged from 4 to 180 pA, with two-thirds of responses less than 25 pA. Urine-evoked currents were of either polarity, whereas musk and catfish extract always elicited only inward currents. Urine applied to neurons harvested from female animals evoked currents that were 2–3 times larger than those elicited from male neurons. Musk-evoked inward currents were three times the magnitude of urine-or catfish-extract-evoked inward currents. The calculated breadth of responsiveness for neurons presented with this array of five chemicals indicated that the mean response spectrum of the VN neurons is narrow (H metric 0.11). This patch-clamp study indicates that VN neurons exhibit sexual dimorphism in function and specificity in response to complex natural chemicals. PMID:11815645

  2. Patch-clamp analysis of voltage-activated and chemically activated currents in the vomeronasal organ of Sternotherus odoratus (stinkpot/musk turtle).

    PubMed

    Fadool, D A; Wachowiak, M; Brann, J H

    2001-12-01

    The electrophysiological basis of chemical communication in the specialized olfactory division of the vomeronasal (VN) organ is poorly understood. In total, 198 patch-clamp recordings were made from 42 animals (Sternotherus odoratus, the stinkpot/musk turtle) to study the electrically and chemically activated properties of VN neurons. The introduction of tetramethylrhodamine-conjugated dextran into the VN orifice permitted good visualization of the vomeronasal neural epithelium prior to dissociating it into single neurons. Basic electrical properties of the neurons were measured (resting potential, -54.5 +/- 2.7 mV, N=11; input resistance, 6.7 +/- 1.4 G Omega, N=25; capacitance, 4.2 +/- 0.3 pF, N=22; means +/- S.E.M.). The voltage-gated K(+) current inactivation rate was significantly slower in VN neurons from males than in those from females, and K(+) currents in males were less sensitive (greater K(i)) to tetraethylammonium. Vomeronasal neurons were held at a holding potential of -60 mV and tested for their response to five natural chemicals, female urine, male urine, female musk, male musk and catfish extract. Of the 90 VN neurons tested, 33 (34 %) responded to at least one of the five compounds. The peak amplitude of chemically evoked currents ranged from 4 to 180 pA, with two-thirds of responses less than 25 pA. Urine-evoked currents were of either polarity, whereas musk and catfish extract always elicited only inward currents. Urine applied to neurons harvested from female animals evoked currents that were 2-3 times larger than those elicited from male neurons. Musk-evoked inward currents were three times the magnitude of urine- or catfish-extract-evoked inward currents. The calculated breadth of responsiveness for neurons presented with this array of five chemicals indicated that the mean response spectrum of the VN neurons is narrow (H metric 0.11). This patch-clamp study indicates that VN neurons exhibit sexual dimorphism in function and specificity in response to complex natural chemicals.iol

  3. In vivo experimental study on laser welded ICG-loaded chitosan patches for vessel repair

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Matteini, Paolo; Esposito, Giuseppe; Albanese, Alessio; Puca, Alfredo; Maira, Giulio; Rossi, Giacomo; Pini, Roberto

    2011-03-01

    Laser welding of microvessels provides several advantages over conventional suturing techniques: surgical times reduction, vascular healing process improvement, tissue damage reduction. We present the first application of biopolymeric patches in an in vivo laser assisted procedure for vessel repair. The study was performed in 20 New Zealand rabbits. After anesthesia, a 3-cm segment of the right common carotid artery was exposed and clamped proximally and distally. A linear lesion 3 mm in length was carried out. We used a diode laser emitting at 810 nm and equipped with a 300 μm diameter optical fiber. To close the cut, ICG-loaded chitosan films were prepared: chitosan is characterized by biodegradability, biocompatibility, antimicrobial, haemostatic and wound healing-promoting activity. ICG is an organic chromophore commonly used in the laser welding procedures to mediate the photothermal conversion at the basis of the welding effect. The membranes were used to wrap the whole length of the cut, and then they were welded in the correct position by delivering single laser spots to induce local patch/tissue adhesion. The result is an immediate closure of the wound, with no bleeding at clamps release. The animals were observed during follow-up and sacrificed after 2, 7, 30 and 90 days. All the repaired vessels were patent, no bleeding signs were documented. The carotid samples underwent histological examinations. The advantages of the proposed technique are: simplification of the surgical procedure and shortening of the operative time; good strength of the vessel repair; decreased foreign-body reaction, reduced inflammatory response and improved vascular healing process.

  4. Selective block of late Na+ current by local anaesthetics in rat large sensory neurones

    PubMed Central

    Baker, Mark D

    2000-01-01

    The actions of lignocaine and benzocaine on transient and late Na+ current generated by large diameter (⩾50 μm) adult rat dorsal root ganglion neurones, were studied using patch-clamp techniques.Both drugs blocked whole-cell late Na+ current in a concentration-dependent manner. At 200 ms following the onset of a clamp step from −110 to −40 mV, the apparent K for block of late Na+ current by lignocaine was 57.8±15 μM (mean±s.e.mean, n=4). The value for benzocaine was 24.9±3.3 μM, (mean±s.e.mean, n=3).The effect of lignocaine on transient current, in randomly selected neurones, appeared variable (n=8, half-block from ∼50 to 400 μM). Half-block by benzocaine was not attained, but both whole-cell (n=11) and patch data suggested a high apparent K,>250 μM. Transient current always remained after late current was blocked.The voltage-dependence of residual late current steady-state inactivation was not shifted by 20 μM benzocaine (n=3), whereas 200 μM benzocaine shifted the voltage-dependence of transient current steady-state inactivation by −18.7±5.9 mV (mean±s.e.mean, n=4).In current-clamp, benzocaine (250 μM) could block subthreshold, voltage-dependent inward current, increasing the threshold for eliciting action potentials, without preventing their generation (n=2).Block of late Na+ current by systemic local anaesthetic may play a part in preventing ectopic impulse generation in sensory neurones. PMID:10780966

  5. Inventing a co-axial atomic resolution patch clamp to study a single resonating protein complex and ultra-low power communication deep inside a living neuron cell.

    PubMed

    Ghosh, Subrata; Sahu, Satyajit; Agrawal, Lokesh; Shiga, Takashi; Bandyopadhyay, Anirban

    2016-12-01

    To read the signals of single molecules in vitro on a surface, or inside a living cell or organ, we introduce a coaxial atom tip (coat) and a coaxial atomic patch clamp (COAPAP). The metal-insulator-metal cavity of these probes extends to the atomic scale (0.1[Formula: see text]nm), it eliminates the cellular or environmental noise with a S/N ratio 10 5 . Five ac signals are simultaneously applied during a measurement by COAT and COAPAP to shield a true signal under environmental noise in five unique ways. The electromagnetic drive in the triaxial atomic tips is specifically designed to sense anharmonic vibrational and transmission signals for any system between 0.1[Formula: see text]nm and 50[Formula: see text]nm where the smallest nanopatch clamp cannot reach. COAT and COAPAP reliably pick up the atomic scale vibrations under the extreme noise of a living cell. Each protein's distinct electromagnetic, mechanical, electrical and ionic vibrational signature studied in vitro in a protected environment is found to match with the ones studied inside a live neuron. Thus, we could confirm that by using our probe blindly we could hold on to a single molecule or its complex in the invisible domain of a living cell. Our decade long investigations on perfecting the tools to measure bio-resonance of all forms and simultaneously in all frequency domains are summarized. It shows that the ratio of emission to absorption resonance frequencies of a biomaterial is around [Formula: see text], only a few in the entire em spectrum are active that regulates all other resonances, like mechanical, ionic, etc.

  6. Novel regulatory mechanism in human urinary bladder: central role of transient receptor potential melastatin 4 channels in detrusor smooth muscle function

    PubMed Central

    Hristov, Kiril L.; Smith, Amy C.; Parajuli, Shankar P.; Malysz, John; Rovner, Eric S.

    2016-01-01

    Transient receptor potential melastatin 4 (TRPM4) channels are Ca2+-activated nonselective cation channels that have been recently identified as regulators of detrusor smooth muscle (DSM) function in rodents. However, their expression and function in human DSM remain unexplored. We provide insights into the functional role of TRPM4 channels in human DSM under physiological conditions. We used a multidisciplinary experimental approach, including RT-PCR, Western blotting, immunohistochemistry and immunocytochemistry, patch-clamp electrophysiology, and functional studies of DSM contractility. DSM samples were obtained from patients without preoperative overactive bladder symptoms. RT-PCR detected mRNA transcripts for TRPM4 channels in human DSM whole tissue and freshly isolated single cells. Western blotting and immunohistochemistry with confocal microscopy revealed TRPM4 protein expression in human DSM. Immunocytochemistry further detected TRPM4 protein expression in DSM single cells. Patch-clamp experiments showed that 9-phenanthrol, a selective TRPM4 channel inhibitor, significantly decreased the transient inward cation currents and voltage step-induced whole cell currents in freshly isolated human DSM cells. In current-clamp mode, 9-phenanthrol hyperpolarized the human DSM cell membrane potential. Furthermore, 9-phenanthrol attenuated the spontaneous phasic, carbachol-induced and nerve-evoked contractions in human DSM isolated strips. Significant species-related differences in TRPM4 channel activity between human, rat, and guinea pig DSM were revealed, suggesting a more prominent physiological role for the TRPM4 channel in the regulation of DSM function in humans than in rodents. In conclusion, TRPM4 channels regulate human DSM excitability and contractility and are critical determinants of human urinary bladder function. Thus, TRPM4 channels could represent promising novel targets for the pharmacological or genetic control of overactive bladder. PMID:26791488

  7. Direct block of native and cloned (Kir2.1) inward rectifier K+ channels by chloroethylclonidine

    PubMed Central

    Barrett-Jolley, R; Dart, C; Standen, N B

    1999-01-01

    We have investigated the inhibition of inwardly rectifying potassium channels by the α-adrenergic agonist/antagonist chloroethylclonidine (CEC). We used two preparations; two-electrode voltage-clamp of rat isolated flexor digitorum brevis muscle and whole-cell patch-clamp of cell lines transfected with Kir2.1 (IRK1).In skeletal muscle and at a membrane potential of −50 mV, chloroethylclonidine (CEC), an agonist at α2-adrenergic receptors and an antagonist at α1x-receptors, was found to inhibit the inward rectifier current with a Ki of 30 μM.The inhibition of skeletal muscle inward rectifier current by CEC was not mimicked by clonidine, adrenaline or noradrenaline and was not sensitive to high concentrations of α1-(prazosin) or α2-(rauwolscine) antagonists.The degree of current inhibition by CEC was found to vary with the membrane potential (approximately 70% block at −50 mV c.f. ∼10% block at −190 mV). The kinetics of this voltage dependence were further investigated using recombinant inward rectifier K+ channels (Kir2.1) expressed in the MEL cell line. Using a two pulse protocol, we calculated the time constant for block to be ∼8 s at 0 mV, and the rate of unblock was described by the relationship τ=exp((Vm+149)/22) s.This block was effective when CEC was applied to either the inside or the outside of patch clamped cells, but ineffective when a polyamine binding site (aspartate 172) was mutated to asparagine.The data suggest that the clonidine-like imidazoline compound, CEC, inhibits inward rectifier K+ channels independently of α-receptors by directly blocking the channel pore, possibly at an intracellular polyamine binding site. PMID:10516659

  8. Effect of Amphotericin B antibiotic on the properties of model lipid membrane

    NASA Astrophysics Data System (ADS)

    Kiryakova, S.; Dencheva-Zarkova, M.; Genova, J.

    2014-12-01

    Model membranes formed from natural and synthetic lipids are an interesting object for scientific investigations due to their similarity to biological cell membrane and their simple structure with controlled composition and properties. Amphotericin B is an important polyene antifungal antibiotic, used for treatment of systemic fungal infections. It is known from the literature that the studied antibiotic has a substantial effect on the transmembrane ionic channel structures. When applied to the lipid membranes it has the tendency to create pores and in this way to affect the structure and the properties of the membrane lipid bilayer. In this work the thermally induced shape fluctuations of giant quasi-spherical liposomes have been used to study the influence of polyene antibiotic amphotericin B on the elastic properties of model lipid membranes. It have been shown experimentally that the presence of 3 mol % of AmB in the lipid membrane reduces the bending elasticity of the lipid membrane for both studied cases: pure SOPC membrane and mixed SOPC-Cholesterol membrane. Interaction of the amphotericin B with bilayer lipid membranes containing channels have been studied in this work. Model membranes were self-assembled using the patch-clamp and tip-dip patch clamp technique. We have found that amphotericin B is an ionophore and reduces the resistance of the lipid bilayer.

  9. Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry.

    PubMed

    Zhu, Hongying; Zou, Guichang; Wang, Ning; Zhuang, Meihui; Xiong, Wei; Huang, Guangming

    2017-03-07

    The use of single-cell assays has emerged as a cutting-edge technique during the past decade. Although single-cell mass spectrometry (MS) has recently achieved remarkable results, deep biological insights have not yet been obtained, probably because of various technical issues, including the unavoidable use of matrices, the inability to maintain cell viability, low throughput because of sample pretreatment, and the lack of recordings of cell physiological activities from the same cell. In this study, we describe a patch clamp/MS-based platform that enables the sensitive, rapid, and in situ chemical profiling of single living neurons. This approach integrates modified patch clamp technique and modified MS measurements to directly collect and detect nanoliter-scale samples from the cytoplasm of single neurons in mice brain slices. Abundant possible cytoplasmic constituents were detected in a single neuron at a relatively fast rate, and over 50 metabolites were identified in this study. The advantages of direct, rapid, and in situ sampling and analysis enabled us to measure the biological activities of the cytoplasmic constituents in a single neuron, including comparing neuron types by cytoplasmic chemical constituents; observing changes in constituent concentrations as the physiological conditions, such as age, vary; and identifying the metabolic pathways of small molecules.

  10. Synergistic Effect of Light and Fusicoccin on Stomatal Opening 1

    PubMed Central

    Assmann, Sarah M.; Schwartz, Amnon

    1992-01-01

    Upon incubation of epidermal peels of Commelina communis in 1 millimolar KCl, a synergistic effect of light and low fusicoccin (FC) concentrations on stomatal opening is observed. In 1 millimolar KCl, stomata remain closed even in the light. However, addition of 0.1 micromolar FC results in opening up to 12 micrometers. The same FC concentration stimulates less than 5 micrometers of opening in darkness. The synergistic effect (a) decreases with increasing FC or KCl concentrations; (b) is dark-reversible; (c) like stomatal opening in high KCl concentrations (120 millimolar) is partially inhibited by the K+ channel blocker, tetraethyl-ammonium+ (20 millimolar). In whole-cell patch-clamp experiments with guard cell protoplasts of Vicia faba, FC (1 or 10 micromolar) stimulates an increase in outward current that is essentially voltage independent between - 100 and +60 millivolts, and occurs even when the membrane potential is held at a voltage (−60 millivolts) at which K+ channels are inactivated. These results are indicative of FC activation of a H+ pump. FC effects on the magnitude of inward and outward K+ currents are not observed. Epidermal peel and patch clamp data are both consistent with the hypothesis that the plasma membrane H+ ATPase of guard cells is a primary locus for the FC effect on stomatal apertures. PMID:16668799

  11. Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry

    PubMed Central

    Zhu, Hongying; Zou, Guichang; Wang, Ning; Zhuang, Meihui; Xiong, Wei; Huang, Guangming

    2017-01-01

    The use of single-cell assays has emerged as a cutting-edge technique during the past decade. Although single-cell mass spectrometry (MS) has recently achieved remarkable results, deep biological insights have not yet been obtained, probably because of various technical issues, including the unavoidable use of matrices, the inability to maintain cell viability, low throughput because of sample pretreatment, and the lack of recordings of cell physiological activities from the same cell. In this study, we describe a patch clamp/MS-based platform that enables the sensitive, rapid, and in situ chemical profiling of single living neurons. This approach integrates modified patch clamp technique and modified MS measurements to directly collect and detect nanoliter-scale samples from the cytoplasm of single neurons in mice brain slices. Abundant possible cytoplasmic constituents were detected in a single neuron at a relatively fast rate, and over 50 metabolites were identified in this study. The advantages of direct, rapid, and in situ sampling and analysis enabled us to measure the biological activities of the cytoplasmic constituents in a single neuron, including comparing neuron types by cytoplasmic chemical constituents; observing changes in constituent concentrations as the physiological conditions, such as age, vary; and identifying the metabolic pathways of small molecules. PMID:28223513

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullah, Ghanim; Demuro, Angelo; Parker, Ian

    Amyloid beta (Aβ) oligomers associated with Alzheimer’s disease (AD) form Ca 2+-permeable plasma membrane pores, leading to a disruption of the otherwise well-controlled intracellular calcium (Ca 2+) homeostasis. The resultant up-regulation of intracellular Ca 2+ concentration has detrimental implications for memory formation and cell survival. The gating kinetics and Ca 2+ permeability of Aβ pores are not well understood. We have used computational modeling in conjunction with the ability of optical patch-clamping for massively parallel imaging of Ca 2+ flux through thousands of pores in the cell membrane of Xenopus oocytes to elucidate the kinetic properties of Aβ pores. Themore » fluorescence time-series data from individual pores were idealized and used to develop data-driven Markov chain models for the kinetics of the Aβ pore at different stages of its evolution. Our study provides the first demonstration of developing Markov chain models for ion channel gating that are driven by optical-patch clamp data with the advantage of experiments being performed under close to physiological conditions. As a result, we demonstrate the up-regulation of gating of various Ca 2+ release channels due to Aβ pores and show that the extent and spatial range of such up-regulation increases as Aβ pores with low open probability and Ca 2+ permeability transition into those with high open probability and Ca 2+ permeability.« less

  13. Actin cytoskeleton and exocytosis in rat melanotrophs.

    PubMed

    Chowdhury, Helana H; Popoff, Michel R; Zorec, Robert

    2000-01-01

    We monitored secretory activity of single rat melanotrophs by the patch-clamp membrane capacitance measurements (C m ). Secretory activity was stimulated by cytosol dialysis with a patch-pipette solution containing 1μM [Ca 2+ ] i . Actin cytoskeleton was disaggregated by pretreating cells with Clostridium spiroforme toxin, which specifically ADP-ribosylates cellular actin. The extent of cytoskeleton disaggregation was monitored by phalloidin immunostaining. The maximal rate of secretion increases two folds in toxin-treated cells in comparison to controls, whereas the extent of calcium-induced secretory response was similar to that obtained in the non-treated cells. The results show that the subcortical actin network attenuates the rate of secretory activity, which we interpret to reflect a barrier function of cytoskeleton for exocytosis.

  14. Actin cytoskeleton and exocytosis in rat melanotrophs.

    PubMed

    Chowdhury, H H; Popoff, M R; Zorec, R

    2000-01-01

    We monitored secretory activity of single rat melanotrophs by the patch-clamp membrane capacitance measurements (Cm). Secretory activity was stimulated by cytosol dialysis with a patch-pipette solution containing 1 microM [Ca2+]i. Actin cytoskeleton was disaggregated by pretreating cells with Clostridium spiroforme toxin, which specifically ADP-ribosylates cellular actin. The extent of cytoskeleton disaggregation was monitored by phalloidin immunostaining. The maximal rate of secretion increases two folds in toxin-treated cells in comparison to controls, whereas the extent of calcium-induced secretory response was similar to that obtained in the non-treated cells. The results show that the subcortical actin network attenuates the rate of secretory activity, which we interpret to reflect a barrier function of cytoskeleton for exocytosis.

  15. Vps39 Interacts with Tom40 to Establish One of Two Functionally Distinct Vacuole-Mitochondria Contact Sites.

    PubMed

    González Montoro, Ayelén; Auffarth, Kathrin; Hönscher, Carina; Bohnert, Maria; Becker, Thomas; Warscheid, Bettina; Reggiori, Fulvio; van der Laan, Martin; Fröhlich, Florian; Ungermann, Christian

    2018-06-04

    The extensive subcellular network of membrane contact sites plays central roles in organelle biogenesis and communication, yet the precise contributions of the involved machineries remain largely enigmatic. The yeast vacuole forms a membrane contact site with mitochondria, called vacuolar and mitochondrial patch (vCLAMP). Formation of vCLAMPs involves the vacuolar Rab GTPase Ypt7 and the Ypt7-interacting Vps39 subunit of the HOPS tethering complex. Here, we uncover the general preprotein translocase of the outer membrane (TOM) subunit Tom40 as the direct binding partner of Vps39 on mitochondria. We identify Vps39 mutants defective in TOM binding, but functional for HOPS. Cells that cannot form vCLAMPs show reduced growth under stress conditions and impaired survival upon starvation. Unexpectedly, our mutant analysis revealed the existence of two functionally independent vacuole-mitochondria MCSs: one formed by the Ypt7-Vps39-Tom40 tether and a second one by Vps13-Mcp1, which is redundant with ER-mitochondrial contacts formed by ERMES. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Insulin activates single amiloride-blockable Na channels in a distal nephron cell line (A6).

    PubMed

    Marunaka, Y; Hagiwara, N; Tohda, H

    1992-09-01

    Using the patch-clamp technique, we studied the effect of insulin on an amiloride-blockable Na channel in the apical membrane of a distal nephron cell line (A6) cultured on permeable collagen films for 10-14 days. NPo (N, number of channels per patch membrane; Po, average value of open probability of individual channels in the patch) under baseline conditions was 0.88 +/- 0.12 (SE)(n = 17). After making cell-attached patches on the apical membrane which contained Na channels, insulin (1 mU/ml) was applied to the serosal bath. While maintaining the cell-attached patch, NPo significantly increased to 1.48 +/- 0.19 (n = 17; P less than 0.001) after 5-10 min of insulin application. The open probability of Na channels was 0.39 +/- 0.01 (n = 38) under baseline condition, and increased to 0.66 +/- 0.03 (n = 38, P less than 0.001) after addition of insulin. The baseline single-channel conductance was 4pS, and neither the single-channel conductance nor the current-voltage relationship was significantly changed by insulin. These results indicate that insulin increases Na absorption in the distal nephron by increasing the open probability of the amiloride-blockable Na channel.

  17. Computing rates of Markov models of voltage-gated ion channels by inverting partial differential equations governing the probability density functions of the conducting and non-conducting states.

    PubMed

    Tveito, Aslak; Lines, Glenn T; Edwards, Andrew G; McCulloch, Andrew

    2016-07-01

    Markov models are ubiquitously used to represent the function of single ion channels. However, solving the inverse problem to construct a Markov model of single channel dynamics from bilayer or patch-clamp recordings remains challenging, particularly for channels involving complex gating processes. Methods for solving the inverse problem are generally based on data from voltage clamp measurements. Here, we describe an alternative approach to this problem based on measurements of voltage traces. The voltage traces define probability density functions of the functional states of an ion channel. These probability density functions can also be computed by solving a deterministic system of partial differential equations. The inversion is based on tuning the rates of the Markov models used in the deterministic system of partial differential equations such that the solution mimics the properties of the probability density function gathered from (pseudo) experimental data as well as possible. The optimization is done by defining a cost function to measure the difference between the deterministic solution and the solution based on experimental data. By evoking the properties of this function, it is possible to infer whether the rates of the Markov model are identifiable by our method. We present applications to Markov model well-known from the literature. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Testosterone decreases urinary bladder smooth muscle excitability via novel signaling mechanism involving direct activation of the BK channels

    PubMed Central

    Hristov, Kiril L.; Parajuli, Shankar P.; Provence, Aaron

    2016-01-01

    In addition to improving sexual function, testosterone has been reported to have beneficial effects in ameliorating lower urinary tract symptoms by increasing bladder capacity and compliance, while decreasing bladder pressure. However, the cellular mechanisms by which testosterone regulates detrusor smooth muscle (DSM) excitability have not been elucidated. Here, we used amphotericin-B perforated whole cell patch-clamp and single channel recordings on inside-out excised membrane patches to investigate the regulatory role of testosterone in guinea pig DSM excitability. Testosterone (100 nM) significantly increased the depolarization-induced whole cell outward currents in DSM cells. The selective pharmacological inhibition of the large-conductance voltage- and Ca2+-activated K+ (BK) channels with paxilline (1 μM) completely abolished this stimulatory effect of testosterone, suggesting a mechanism involving BK channels. At a holding potential of −20 mV, DSM cells exhibited transient BK currents (TBKCs). Testosterone (100 nM) significantly increased TBKC activity in DSM cells. In current-clamp mode, testosterone (100 nM) significantly hyperpolarized the DSM cell resting membrane potential and increased spontaneous transient hyperpolarizations. Testosterone (100 nM) rapidly increased the single BK channel open probability in inside-out excised membrane patches from DSM cells, clearly suggesting a direct BK channel activation via a nongenomic mechanism. Live-cell Ca2+ imaging showed that testosterone (100 nM) caused a decrease in global intracellular Ca2+ concentration, consistent with testosterone-induced membrane hyperpolarization. In conclusion, the data provide compelling mechanistic evidence that under physiological conditions, testosterone at nanomolar concentrations directly activates BK channels in DSM cells, independent from genomic testosterone receptors, and thus regulates DSM excitability. PMID:27605581

  19. Insect Optic Glomeruli-Exploration of a Universal Circuit for Sensorimotor Processing

    DTIC Science & Technology

    2011-01-25

    09 to 2-28-10. We have successfully achieved the first recordings from any laboratory of the small palisade output neurons from the lobula of...glomeruli. Using infrared illumination and optics, the cell bodies of such clones are directly observed. A patch clamp recording electrode, filled...neuron and electrolyte of the electrode has been established, the cell is recorded during the presentation of a sequence of visual stimuli: stripes

  20. High-Content Electrophysiological Analysis of Human Pluripotent Stem Cell-Derived Cardiomyocytes (hPSC-CMs).

    PubMed

    Kong, Chi-Wing; Geng, Lin; Li, Ronald A

    2018-01-01

    Considerable interest has been raised to develop human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) as a model for drug discovery and cardiotoxicity screening. High-content electrophysiological analysis of currents generated by transmembrane cell surface ion channels has been pursued to complement such emerging applications. Here we describe practical procedures and considerations for accomplishing successful assays of hPSC-CMs using an automated planar patch-clamp system.

  1. Superstatistics analysis of the ion current distribution function: Met3PbCl influence study.

    PubMed

    Miśkiewicz, Janusz; Trela, Zenon; Przestalski, Stanisław; Karcz, Waldemar

    2010-09-01

    A novel analysis of ion current time series is proposed. It is shown that higher (second, third and fourth) statistical moments of the ion current probability distribution function (PDF) can yield new information about ion channel properties. The method is illustrated on a two-state model where the PDF of the compound states are given by normal distributions. The proposed method was applied to the analysis of the SV cation channels of vacuolar membrane of Beta vulgaris and the influence of trimethyllead chloride (Met(3)PbCl) on the ion current probability distribution. Ion currents were measured by patch-clamp technique. It was shown that Met(3)PbCl influences the variance of the open-state ion current but does not alter the PDF of the closed-state ion current. Incorporation of higher statistical moments into the standard investigation of ion channel properties is proposed.

  2. Bidirectional control of spike timing by GABA(A) receptor-mediated inhibition during theta oscillation in CA1 pyramidal neurons.

    PubMed

    Kwag, Jeehyun; Paulsen, Ole

    2009-08-26

    Precisely controlled spike times relative to theta-frequency network oscillations play an important role in hippocampal memory processing. Here we study how inhibitory synaptic input during theta oscillation contributes to the control of spike timing. Using whole-cell patch-clamp recordings from CA1 pyramidal cells in vitro with dynamic clamp to simulate theta-frequency oscillation (5 Hz), we show that gamma-aminobutyric acid-A (GABA(A)) receptor-mediated inhibitory postsynaptic potentials (IPSPs) can not only delay but also advance the postsynaptic spike depending on the timing of the inhibition relative to the oscillation. Spike time advancement with IPSP was abolished by the h-channel blocker ZD7288 (10 microM), suggesting that IPSPs can interact with intrinsic membrane conductances to yield bidirectional control of spike timing.

  3. Inhibition of the calcium channel by intracellular protons in single ventricular myocytes of the guinea-pig.

    PubMed Central

    Kaibara, M; Kameyama, M

    1988-01-01

    1. The inhibitory effects of intracellular protons (Hi+) on the L-type Ca2+ channel activity were investigated in single ventricular myocytes of guinea-pigs by using the patch-clamp method in the open-cell-attached patch configuration, where 'run down' of the channel was partially prevented. 2. Hi+ reduced the unitary Ba2+ current of the Ca2+ channel by 10-20% without changing the maximum slope conductance. 3. Hi+ did not alter the number of channels in patches containing one or two channels. 4. Hi+ markedly reduced the mean current normalized by the unitary current, which gave the open-state probability multiplied by the number of channels in the patch. The dose-response curve between Hi+ and the open-state probability indicated half-maximum inhibition at pHi 6.6 and an apparent Hill coefficient of 1. 5. Hi+ shifted both the steady-state activation and inactivation curves in a negative direction by 10-15 mV, and the effects were reversible. 6. Hi+ did not affect the fast open-closed kinetics represented by the C-C-O scheme, apart from increasing the slow time constant of the closed time. 7. Hi+ increased the percentage of blank sweeps and reduced that of non-blank sweeps resulting in a decreased probability of channel opening. 8. Photo-oxidation with Rose Bengal abolished the reducing effect of Hi+ on the open-state probability (Po) in two out of ten experiments, suggesting the possible involvement of histidine residues in the Hi+ effect. 9. The above results indicate that Hi+ inhibits the Ba2+ current mainly by affecting the slow gating mechanism of the channel. PMID:2855346

  4. Electrophysiological Recordings from Lobula Plate Tangential Cells in Drosophila.

    PubMed

    Mauss, Alex S; Borst, Alexander

    2016-01-01

    Drosophila has emerged as an important model organism for the study of the neural basis of behavior. Its main asset is the experimental accessibility of identified neurons by genetic manipulation and physiological recordings. Drosophila therefore offers the opportunity to reach an integrative understanding of the development and neural underpinnings of behavior at all processing stages, from sensing to motor control, in a single species. Here, we will provide an account of the procedures involved in recording the electrical potential of individual neurons in the visual system of adult Drosophila using the whole-cell patch-clamp method. To this end, animals are fixed to a holder and mounted below a recording chamber. The head capsule is cut open and the glial sheath covering the brain is ruptured by a combination of shearing and enzymatic digest. Neuronal somata are thus exposed and targeted by low-resistance patch electrodes. After formation of a high resistance seal, electrical access to the cell is gained by small current pulses and suction. Stable recordings of large neurons are feasible for >1 h and can be combined with controlled visual stimulation as well as genetic and pharmacological manipulation of upstream circuit elements to infer circuit function in great detail.

  5. The Mechanosensitive Ca2+ Channel as a Central Regulator of Prostate Tumor Cell Migration and Invasiveness

    DTIC Science & Technology

    2010-01-01

    Use time-lapse videomicroscopy and patch-clamp techniques to characterize the motility of eGFP-transfected PC-3 cells in which MScCa/TRPC1 has been...except for GsmTx-4 (Peptides International, Louisville, KY) and fluorescent agents (Invitrogen/Molecular Probes, Carlsbad, CA). Videomicroscopy ...and Ca2+-imaging. Cell migration was monitored at 37oC by time-lapse videomicroscopy using Nomarski optics with an Epifluorescent microscope (Nikon

  6. Diminished A-type potassium current and altered firing properties in presympathetic PVN neurones in renovascular hypertensive rats

    PubMed Central

    Sonner, Patrick M; Filosa, Jessica A; Stern, Javier E

    2008-01-01

    Accumulating evidence supports a contribution of the hypothalamic paraventricular nucleus (PVN) to sympathoexcitation and elevated blood pressure in renovascular hypertension. However, the underlying mechanisms resulting in altered neuronal function in hypertensive rats remain largely unknown. Here, we aimed to address whether the transient outward potassium current (IA) in identified rostral ventrolateral medulla (RVLM)-projecting PVN neurones is altered in hypertensive rats, and whether such changes affected single and repetitive action potential properties and associated changes in intracellular Ca2+ levels. Patch-clamp recordings obtained from PVN-RVLM neurons showed a reduction in IA current magnitude and single channel conductance, and an enhanced steady-state current inactivation in hypertensive rats. Morphometric reconstructions of intracellularly labelled PVN-RVLM neurons showed a diminished dendritic surface area in hypertensive rats. Consistent with a diminished IA availability, action potentials in PVN-RVLM neurons in hypertensive rats were broader, decayed more slowly, and were less sensitive to the K+ channel blocker 4-aminopyridine. Simultaneous patch clamp recordings and confocal Ca2+ imaging demonstrated enhanced action potential-evoked intracellular Ca2+ transients in hypertensive rats. Finally, spike broadening during repetitive firing discharge was enhanced in PVN-RVLM neurons from hypertensive rats. Altogether, our results indicate that diminished IA availability constitutes a contributing mechanism underlying aberrant central neuronal function in renovascular hypertension. PMID:18238809

  7. Novel roles of ascorbate in plants: induction of cytosolic Ca2+ signals and efflux from cells via anion channels.

    PubMed

    Makavitskaya, M; Svistunenko, D; Navaselsky, I; Hryvusevich, P; Mackievic, V; Rabadanova, C; Tyutereva, E; Samokhina, V; Straltsova, D; Sokolik, A; Voitsekhovskaja, O; Demidchik, V

    2018-02-17

    Ascorbate is not often considered as a signalling molecule in plants. This study demonstrates that, in Arabidopsis roots, exogenous L-ascorbic acid triggers a transient increase of the cytosolic free calcium activity ([Ca2+]cyt.) that is central to plant signalling. Exogenous copper and iron stimulates the ascorbate-induced [Ca2+]cyt. elevation while cation channel blockers, free radical scavengers, low extracellular [Ca2+], transition metal chelators and removal of the cell wall inhibit this reaction. These data show that apoplastic redox-active transition metals are involved in the ascorbate-induced [Ca2+]cyt. elevation. Exogenous ascorbate also induces a moderate increase in programmed cell death symptoms in intact roots, but it does not activate Ca2+ influx currents in patch-clamped root protoplasts. Intriguingly, the replacement of gluconate with ascorbate in the patch-clamp pipette reveales a large ascorbate efflux current, which shows sensitivity to the anion channel blocker, anthracene-9-carboxylic acid (A9C), indicative of the ascorbate release via anion channels. EPR spectroscopy measurements demonstrates that salinity (NaCl) triggers the accumulation of root apoplastic ascorbyl radicals in A9C-dependent manner, confirming that L-ascorbate leaks through anion channels under depolarisation. This mechanism may underlie ascorbate release, signalling phenomena, apoplastic redox reactions, iron acquisition and control the ionic and electrical equilibrium (together K+ efflux via GORK channels).

  8. Negative Inotropic Effects of High Mobility Box Group 1 Protein in Isolated Contracting Cardiac Myocytes

    PubMed Central

    Tzeng, Huei-Ping; Fan, Jinping; Vallejo, Jesus G.; Dong, Jian Wen; Chen, Xiongwen; Houser, Steven R.; Mann, Douglas L.

    2013-01-01

    HMGB1 released from necrotic cells or macrophages functions as a late inflammatory mediator, and has been shown to induce cardiovascular collapse during sepsis. Thus far, however, the effect(s) of HMGB1 in the heart are not known. We determined the effects of HMGB1 on isolated feline cardiac myocytes by measuring sarcomere shortening in contracting cardiac myocytes, intracellular Ca2+ transients using fluo-3, and L-type calcium currents using whole cell perforate configuration of the patch clamp technique. Treatment of isolated myocytes with HMGB1 (100 ng/ml) resulted in a 70% decrease in sarcomere shortening and a 50% decrease in the height of the peak Ca++ transient within 5 min (p <0.01). The immediate negative inotropic effects HMGB1 on cell contractility and calcium homeostasis were partially reversible upon washout of HMGB1. A significant inhibition of the inward L-type calcium currents also was documented by the patch clamp technique. HMGB1 induced the PKCε translocation and a PKC inhibitor significantly attenuated the negative inotropic effects of HMGB1. These studies show for the first time that HMGB1 impairs sarcomere shortening by decreasing calcium availability in cardiac myocytes through modulating membrane calcium influx, and suggest that HMGB1 maybe act as a novel myocardial depressant factor during cardiac injury. PMID:18223193

  9. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    PubMed

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Cellular mechanisms of desynchronizing effects of hypothermia in an in vitro epilepsy model.

    PubMed

    Motamedi, Gholam K; Gonzalez-Sulser, Alfredo; Dzakpasu, Rhonda; Vicini, Stefano

    2012-01-01

    Hypothermia can terminate epileptiform discharges in vitro and in vivo epilepsy models. Hypothermia is becoming a standard treatment for brain injury in infants with perinatal hypoxic ischemic encephalopathy, and it is gaining ground as a potential treatment in patients with drug resistant epilepsy. However, the exact mechanism of action of cooling the brain tissue is unclear. We have studied the 4-aminopyridine model of epilepsy in mice using single- and dual-patch clamp and perforated multi-electrode array recordings from the hippocampus and cortex. Cooling consistently terminated 4-aminopyridine induced epileptiform-like discharges in hippocampal neurons and increased input resistance that was not mimicked by transient receptor potential channel antagonists. Dual-patch clamp recordings showed significant synchrony between distant CA1 and CA3 pyramidal neurons, but less so between the pyramidal neurons and interneurons. In CA1 and CA3 neurons, hypothermia blocked rhythmic action potential discharges and disrupted their synchrony; however, in interneurons, hypothermia blocked rhythmic discharges without abolishing action potentials. In parallel, multi-electrode array recordings showed that synchronized discharges were disrupted by hypothermia, whereas multi-unit activity was unaffected. The differential effect of cooling on transmitting or secreting γ-aminobutyric acid interneurons might disrupt normal network synchrony, aborting the epileptiform discharges. Moreover, the persistence of action potential firing in interneurons would have additional antiepileptic effects through tonic γ-aminobutyric acid release.

  11. Analyzing and modeling the kinetics of amyloid beta pores associated with Alzheimer’s disease pathology

    DOE PAGES

    Ullah, Ghanim; Demuro, Angelo; Parker, Ian; ...

    2015-09-08

    Amyloid beta (Aβ) oligomers associated with Alzheimer’s disease (AD) form Ca 2+-permeable plasma membrane pores, leading to a disruption of the otherwise well-controlled intracellular calcium (Ca 2+) homeostasis. The resultant up-regulation of intracellular Ca 2+ concentration has detrimental implications for memory formation and cell survival. The gating kinetics and Ca 2+ permeability of Aβ pores are not well understood. We have used computational modeling in conjunction with the ability of optical patch-clamping for massively parallel imaging of Ca 2+ flux through thousands of pores in the cell membrane of Xenopus oocytes to elucidate the kinetic properties of Aβ pores. Themore » fluorescence time-series data from individual pores were idealized and used to develop data-driven Markov chain models for the kinetics of the Aβ pore at different stages of its evolution. Our study provides the first demonstration of developing Markov chain models for ion channel gating that are driven by optical-patch clamp data with the advantage of experiments being performed under close to physiological conditions. As a result, we demonstrate the up-regulation of gating of various Ca 2+ release channels due to Aβ pores and show that the extent and spatial range of such up-regulation increases as Aβ pores with low open probability and Ca 2+ permeability transition into those with high open probability and Ca 2+ permeability.« less

  12. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes.

    PubMed

    Chen, Jiumei; Hessler, Jessica A; Putchakayala, Krishna; Panama, Brian K; Khan, Damian P; Hong, Seungpyo; Mullen, Douglas G; Dimaggio, Stassi C; Som, Abhigyan; Tew, Gregory N; Lopatin, Anatoli N; Baker, James R; Holl, Mark M Banaszak; Orr, Bradford G

    2009-08-13

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper, we show that noncytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A (human embryonic kidney) and KB (human epidermoid carcinoma) cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm(2) in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer, are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1-100 ms, while membrane resealing may occur over tens of seconds. Patch-clamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for an amphiphilic phenylene ethynylene antimicrobial oligomer (AMO-3), a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making approximately 3 nm holes in living cell membranes.

  13. Can optical recordings of membrane potential be used to screen for drug-induced action potential prolongation in single cardiac myocytes?

    PubMed

    Hardy, M E L; Lawrence, C L; Standen, N B; Rodrigo, G C

    2006-01-01

    Potential-sensitive dyes have primarily been used to optically record action potentials (APs) in whole heart tissue. Using these dyes to record drug-induced changes in AP morphology of isolated cardiac myocytes could provide an opportunity to develop medium throughout assays for the pharmaceutical industry. Ideally, this requires that the dye has a consistent and rapid response to membrane potential, is insensitive to movement, and does not itself affect AP morphology. We recorded the AP from isolated adult guinea-pig ventricular myocytes optically using di-8-ANEPPS in a single-excitation dual-emission ratiometric system, either separately in electrically field stimulated myocytes, or simultaneously with an electrical AP recorded with a patch electrode in the whole-cell bridge mode. The ratio of di-8-ANEPPS fluorescence signal was calibrated against membrane potential using a switch-clamp to voltage clamp the myocyte. Our data show that the ratio of the optical signals emitted at 560/620 nm is linearly related to voltage over the voltage range of an AP, producing a change in ratio of 7.5% per 100 mV, is unaffected by cell movement and is identical to the AP recorded simultaneously with a patch electrode. However, the APD90 recorded optically in myocytes loaded with di-8-ANEPPS was significantly longer than in unloaded myocytes recorded with a patch electrode (355.6+/-13.5 vs. 296.2+/-16.2 ms; p<0.01). Despite this effect, the apparent IC50 for cisapride, which prolongs the AP by blocking IKr, was not significantly different whether determined optically or with a patch electrode (91+/-46 vs. 81+/-20 nM). These data show that the optical AP recorded ratiometrically using di-8-ANEPPS from a single ventricular myocyte accurately follows the action potential morphology. This technique can be used to estimate the AP prolonging effects of a compound, although di-8-ANEPPS itself prolongs APD90. Optical dyes require less technical skills and are less invasive than conventional electrophysiological techniques and, when coupled to ventricular myocytes, decreases animal usage and facilitates higher throughput assays.

  14. Electrical coupling of single cardiac rat myocytes to field-effect and bipolar transistors.

    PubMed

    Kind, Thomas; Issing, Matthias; Arnold, Rüdiger; Müller, Bernt

    2002-12-01

    A novel bipolar transistor for extracellular recording the electrical activity of biological cells is presented, and the electrical behavior compared with the field-effect transistor (FET). Electrical coupling is examined between single cells separated from the heart of adults rats (cardiac myocytes) and both types of transistors. To initiate a local extracellular voltage, the cells are periodically stimulated by a patch pipette in voltage clamp and current clamp mode. The local extracellular voltage is measured by the planar integrated electronic sensors: the bipolar and the FET. The small signal transistor currents correspond to the local extracellular voltage. The two types of sensor transistors used here were developed and manufactured in the laboratory of our institute. The manufacturing process and the interfaces between myocytes and transistors are described. The recordings are interpreted by way of simulation based on the point-contact model and the single cardiac myocyte model.

  15. Tetrodotoxin-sensitive, voltage-dependent sodium currents in hair cells from the alligator cochlea.

    PubMed

    Evans, M G; Fuchs, P A

    1987-10-01

    We have used whole-cell patch clamp techniques to record from tall hair cells isolated from the apical half of the alligator cochlea. Some of these cells gave action potentials in response to depolarizing current injections. When the same cells were voltage clamped, large transient inward currents followed by smaller outward currents were seen in response to depolarizing steps. We studied the transient inward current after the outward current had been blocked by external tetraethylammonium (20 mM) or by replacing internal potassium with cesium. It was found to be a sodium current because it was abolished by either replacing external sodium with choline or by external application of tetrodotoxin (100 nM). The sodium current showed voltage-dependent activation and inactivation. Most of the spiking hair cells came from the apex of the cochlea, where they would be subject to low-frequency mechanical stimulation in vivo.

  16. Stellate and pyramidal neurons in goldfish telencephalon respond differently to anoxia and GABA receptor inhibition.

    PubMed

    Hossein-Javaheri, Nariman; Wilkie, Michael P; Lado, Wudu E; Buck, Leslie T

    2017-02-15

    With oxygen deprivation, the mammalian brain undergoes hyper-activity and neuronal death while this does not occur in the anoxia-tolerant goldfish ( Carassius auratus ). Anoxic survival of the goldfish may rely on neuromodulatory mechanisms to suppress neuronal hyper-excitability. As γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, we decided to investigate its potential role in suppressing the electrical activity of goldfish telencephalic neurons. Utilizing whole-cell patch-clamp recording, we recorded the electrical activities of both excitatory (pyramidal) and inhibitory (stellate) neurons. With anoxia, membrane potential ( V m ) depolarized in both cell types from -72.2 mV to -57.7 mV and from -64.5 mV to -46.8 mV in pyramidal and stellate neurons, respectively. While pyramidal cells remained mostly quiescent, action potential frequency (AP f ) of the stellate neurons increased 68-fold. Furthermore, the GABA A receptor reversal potential ( E - GABA ) was determined using the gramicidin perforated-patch-clamp method and found to be depolarizing in pyramidal (-53.8 mV) and stellate neurons (-42.1 mV). Although GABA was depolarizing, pyramidal neurons remained quiescent as E GABA was below the action potential threshold (-36 mV pyramidal and -38 mV stellate neurons). Inhibition of GABA A receptors with gabazine reversed the anoxia-mediated response. While GABA B receptor inhibition alone did not affect the anoxic response, co-antagonism of GABA A and GABA B receptors (gabazine and CGP-55848) led to the generation of seizure-like activities in both neuron types. We conclude that with anoxia, V m depolarizes towards E GABA which increases AP f in stellate neurons and decreases AP f in pyramidal neurons, and that GABA plays an important role in the anoxia tolerance of goldfish brain. © 2017. Published by The Company of Biologists Ltd.

  17. Functional reconstitution of the voltage-regulated sodium channel purified from electroplax of Electrophorus electricus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, R.L.

    1985-01-01

    The voltage-regulated NA channel is responsible for the depolarization of the excitable cell membrane during the normal action potential. This research has focused on the functional properties of the Na channel, purified from detergent extracts of electroplax membranes of the electric eel, and reconstituted into vesicles of defined phospholipid. These properties were assessed by measuring neurotoxin-modulated ion flux into the reconstituted membrane vesicles and by recording the single-channel currents of the purified channel by the patch-clamp method. The binding of tritiated tetrodotoxin (TTX) was employed as a marker for the purification of the channel. Two high-resolution fractionation steps, based onmore » molecular charge and protein size, were used to obtain a preparation that is 80% homogeneous for a large peptide of 270,000 daltons. Radiotracer /sup 22/Na/sup +/ influx into the vesicles was stimulated by veratridine and by batrachotoxin (BTX) at concentrations of 100 ..mu..M and 5 ..mu..M, respectively. The stimulation by BTX was greater than that by veratridine, and can be as much as 16-fold over control influx levels. The stimulated influx is blocked by TTX with a K/sub i/ of 35 nM, and by local anesthetics in the normal pharmacological range. Large multilamellar vesicles prepared with a freeze-thaw step are suitable for single-channel recording techniques. When excised patches of the reconstituted membranes were voltage-clamped in the absence of activating neurotoxins, voltage-dependent single-channel currents were recorded. These displayed properties similar to those from native membranes of nerve and muscle. These results indicate that the protein purified on the basis of TTX binding is a functional Na channel possessing these functional domains: the ion-selective channel, the voltage sensors controlling activation and inactivation, and the sites of action of TTX, alkaloid neurotoxins, and local anesthetics.« less

  18. Microglial Morphology and Dynamic Behavior Is Regulated by Ionotropic Glutamatergic and GABAergic Neurotransmission

    PubMed Central

    Fontainhas, Aurora M.; Wang, Minhua; Liang, Katharine J.; Chen, Shan; Mettu, Pradeep; Damani, Mausam; Fariss, Robert N.; Li, Wei; Wong, Wai T.

    2011-01-01

    Purpose Microglia represent the primary resident immune cells in the CNS, and have been implicated in the pathology of neurodegenerative diseases. Under basal or “resting” conditions, microglia possess ramified morphologies and exhibit dynamic surveying movements in their processes. Despite the prominence of this phenomenon, the function and regulation of microglial morphology and dynamic behavior are incompletely understood. We investigate here whether and how neurotransmission regulates “resting” microglial morphology and behavior. Methods We employed an ex vivo mouse retinal explant system in which endogenous neurotransmission and dynamic microglial behavior are present. We utilized live-cell time-lapse confocal imaging to study the morphology and behavior of GFP-labeled retinal microglia in response to neurotransmitter agonists and antagonists. Patch clamp electrophysiology and immunohistochemical localization of glutamate receptors were also used to investigate direct-versus-indirect effects of neurotransmission by microglia. Results Retinal microglial morphology and dynamic behavior were not cell-autonomously regulated but are instead modulated by endogenous neurotransmission. Morphological parameters and process motility were differentially regulated by different modes of neurotransmission and were increased by ionotropic glutamatergic neurotransmission and decreased by ionotropic GABAergic neurotransmission. These neurotransmitter influences on retinal microglia were however unlikely to be directly mediated; local applications of neurotransmitters were unable to elicit electrical responses on microglia patch-clamp recordings and ionotropic glutamatergic receptors were not located on microglial cell bodies or processes by immunofluorescent labeling. Instead, these influences were mediated indirectly via extracellular ATP, released in response to glutamatergic neurotransmission through probenecid-sensitive pannexin hemichannels. Conclusions Our results demonstrate that neurotransmission plays an endogenous role in regulating the morphology and behavior of “resting” microglia in the retina. These findings illustrate a mode of constitutive signaling between the neural and immune compartments of the CNS through which immune cells may be regulated in concert with levels of neural activity. PMID:21283568

  19. Modulation of inward rectifier potassium channel by toosendanin, a presynaptic blocker.

    PubMed

    Wang, Z F; Shi, Y L

    2001-07-01

    The effect of toosendanin, a presynaptic blocker, on the inward rectifier potassium channel (K(Kir)) of hippocampal CA1 pyramidal neurons of rats was studied by the single-channel patch-clamp technique. The results showed that toosendanin had an inhibitory effect on K(Kir) in an excised inside-out patch of the neuron under a symmetrical 150 mM K(+) condition. By decreasing the slower open time constant and increasing the slower close time constant, toosendanin (1x10(-6)-1x10(-4) g/ml) significantly reduced the open probability of the channel in a concentration-dependent manner. Meanwhile, a dose-dependent reduction in unitary conductance of the channel was also detected after toosendanin application. These data offer an explanation for toosendanin-induced facilitation of neurotransmitter release and antibotulismic effect of the drug.

  20. Experimental and computational laser tissue welding using a protein patch.

    PubMed

    Small, W; Heredia, N J; Maitland, D J; Eder, D C; Celliers, P M; Da Silva, L B; London, R A; Matthews, D L

    1998-01-01

    An in vitro study of laser tissue welding mediated with a dye-enhanced protein patch was conducted. Fresh sections of porcine aorta were used for the experiments. Arteriotomies were treated using an indocyanine green dye-enhanced collagen patch activated by an 805-nm continuous-wave fiber-delivered diode laser. Temperature histories of the surface of the weld site were obtained using a hollow glass optical fiber-based two-color infrared thermometer. The experimental effort was complemented by simulations with the LATIS (LAser-TISsue) computer code, which uses coupled Monte Carlo, thermal transport, and mass transport models. Comparison of simulated and experimental thermal data indicated that evaporative cooling clamped the surface temperature of the weld site below 100 °C. For fluences of approximately 200 J/cm2, peak surface temperatures averaged 74°C and acute burst strengths consistently exceeded 0.14×106 dyn/cm (hoop tension). The combination of experimental and simulation results showed that the inclusion of water transport and evaporative losses in the computer code has a significant impact on the thermal distributions and hydration levels throughout the tissue volume. The solid-matrix protein patch provided a means of controllable energy delivery and yielded consistently strong welds. © 1998 Society of Photo-Optical Instrumentation Engineers.

  1. Effects of tacrolimus on action potential configuration and transmembrane ion currents in canine ventricular cells.

    PubMed

    Szabó, László; Szentandrássy, Norbert; Kistamás, Kornél; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Horváth, Balázs; Magyar, János; Bányász, Tamás; Pál, Balázs; Nánási, Péter P

    2013-03-01

    Tacrolimus is a commonly used immunosuppressive agent which causes cardiovascular complications, e.g., hypertension and hypertrophic cardiomyopathy. In spite of it, there is little information on the cellular cardiac effects of the immunosuppressive agent tacrolimus in larger mammals. In the present study, therefore, the concentration-dependent effects of tacrolimus on action potential morphology and the underlying ion currents were studied in canine ventricular cardiomyocytes. Standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques were applied in myocytes enzymatically dispersed from canine ventricular myocardium. Tacrolimus (3-30 μM) caused a concentration-dependent reduction of maximum velocity of depolarization and repolarization, action potential amplitude, phase-1 repolarization, action potential duration, and plateau potential, while no significant change in the resting membrane potential was observed. Conventional voltage clamp experiments revealed that tacrolimus concentrations ≥3 μM blocked a variety of ion currents, including I(Ca), I(to), I(K1), I(Kr), and I(Ks). Similar results were obtained under action potential voltage clamp conditions. These effects of tacrolimus developed rapidly and were fully reversible upon washout. The blockade of inward currents with the concomitant shortening of action potential duration in canine myocytes is the opposite of those observed previously with tacrolimus in small rodents. It is concluded that although tacrolimus blocks several ion channels at higher concentrations, there is no risk of direct interaction with cardiac ion channels when applying tacrolimus in therapeutic concentrations.

  2. On the cellular site of two-pore channel TPC1 action in the Poaceae.

    PubMed

    Dadacz-Narloch, Beata; Kimura, Sachie; Kurusu, Takamitsu; Farmer, Edward E; Becker, Dirk; Kuchitsu, Kazuyuki; Hedrich, Rainer

    2013-11-01

    The slow vacuolar (SV) channel has been characterized in different dicots by patch-clamp recordings. This channel represents the major cation conductance of the largest organelle in most plant cells. Studies with the tpc1-2 mutant of the model dicot plant Arabidopsis thaliana identified the SV channel as the product of the TPC1 gene. By contrast, research on rice and wheat TPC1 suggested that the monocot gene encodes a plasma membrane calcium-permeable channel. To explore the site of action of grass TPC1 channels, we expressed OsTPC1 from rice (Oryza sativa) and TaTPC1 from wheat (Triticum aestivum) in the background of the Arabidopsis tpc1-2 mutant. Cross-species tpc1 complementation and patch-clamping of vacuoles using Arabidopsis and rice tpc1 null mutants documented that both monocot TPC1 genes were capable of rescuing the SV channel deficit. Vacuoles from wild-type rice but not the tpc1 loss-of-function mutant harbor SV channels exhibiting the hallmark properties of dicot TPC1/SV channels. When expressed in human embryonic kidney (HEK293) cells OsTPC1 was targeted to Lysotracker-Red-positive organelles. The finding that the rice TPC1, just like those from the model plant Arabidopsis and even animal cells, is localized and active in lyso-vacuolar membranes associates this cation channel species with endomembrane function. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. Characterization of Two-Pore Channel 2 by Nuclear Membrane Electrophysiology

    PubMed Central

    Lee, Claire Shuk-Kwan; Tong, Benjamin Chun-Kit; Cheng, Cecily Wing-Hei; Hung, Harry Chun-Hin; Cheung, King-Ho

    2016-01-01

    Lysosomal calcium (Ca2+) release mediated by NAADP triggers signalling cascades that regulate many cellular processes. The identification of two-pore channel 2 (TPC2) as the NAADP receptor advances our understanding of lysosomal Ca2+ signalling, yet the lysosome is not amenable to traditional patch-clamp electrophysiology. Previous attempts to record TPC2 single-channel activity put TPC2 outside its native environment, which not reflect TPC2’s true physiological properties. To test the feasibility of using nuclear membrane electrophysiology for TPC2 channel characterization, we constructed a stable human TPC2-expressing DT40TKO cell line that lacks endogenous InsP3R and RyR (DT40TKO-hTPC2). Immunostaining revealed hTPC2 expression on the ER and nuclear envelope. Intracellular dialysis of NAADP into Fura-2-loaded DT40TKO-hTPC2 cells elicited cytosolic Ca2+ transients, suggesting that hTPC2 was functionally active. Using nuclear membrane electrophysiology, we detected a ~220 pS single-channel current activated by NAADP with K+ as the permeant ion. The detected single-channel recordings displayed a linear current-voltage relationship, were sensitive to Ned-19 inhibition, were biphasically regulated by NAADP concentration, and regulated by PKA phosphorylation. In summary, we developed a cell model for the characterization of the TPC2 channel and the nuclear membrane patch-clamp technique provided an alternative approach to rigorously investigate the electrophysiological properties of TPC2 with minimal manipulation. PMID:26838264

  4. Signaling of Pigment-Dispersing Factor (PDF) in the Madeira Cockroach Rhyparobia maderae

    PubMed Central

    Funk, Nico W.; Giese, Maria; Baz, El-Sayed; Stengl, Monika

    2014-01-01

    The insect neuropeptide pigment-dispersing factor (PDF) is a functional ortholog of vasoactive intestinal polypeptide, the coupling factor of the mammalian circadian pacemaker. Despite of PDF's importance for synchronized circadian locomotor activity rhythms its signaling is not well understood. We studied PDF signaling in primary cell cultures of the accessory medulla, the circadian pacemaker of the Madeira cockroach. In Ca2+ imaging studies four types of PDF-responses were distinguished. In regularly bursting type 1 pacemakers PDF application resulted in dose-dependent long-lasting increases in Ca2+ baseline concentration and frequency of oscillating Ca2+ transients. Adenylyl cyclase antagonists prevented PDF-responses in type 1 cells, indicating that PDF signaled via elevation of intracellular cAMP levels. In contrast, in type 2 pacemakers PDF transiently raised intracellular Ca2+ levels even after blocking adenylyl cyclase activity. In patch clamp experiments the previously characterized types 1–4 could not be identified. Instead, PDF-responses were categorized according to ion channels affected. Application of PDF inhibited outward potassium or inward sodium currents, sometimes in the same neuron. In a comparison of Ca2+ imaging and patch clamp experiments we hypothesized that in type 1 cells PDF-dependent rises in cAMP concentrations block primarily outward K+ currents. Possibly, this PDF-dependent depolarization underlies PDF-dependent phase advances of pacemakers. Finally, we propose that PDF-dependent concomitant modulation of K+ and Na+ channels in coupled pacemakers causes ultradian membrane potential oscillations as prerequisite to efficient synchronization via resonance. PMID:25269074

  5. Ryanodine receptors decant internal Ca2+ store in human and bovine airway smooth muscle.

    PubMed

    Tazzeo, T; Zhang, Y; Keshavjee, S; Janssen, L J

    2008-08-01

    Several putative roles for ryanodine receptors (RyR) were investigated in human and bovine airway smooth muscle. Changes in intracellular Ca2+ concentration ([Ca2+]i) and membrane current were investigated in single cells by confocal fluorimetry and patch-clamp electrophysiology, respectively, whereas mechanical activity was monitored in intact strips with force transducers. RyR released Ca2+ from the sarcoplasmic reticulum in a ryanodine- and chloroethyl phenol (CEP)-sensitive fashion. Neither ryanodine nor CEP inhibited responses to KCl, cholinergic agonists or serotonin, indicating no direct role for RyR in contraction; in fact, there was some augmentation of these responses. In tissues pre-contracted with carbachol, the concentration-response relationships for isoproterenol and salmeterol were unaffected by ryanodine; relaxations due to a nitric oxide donor were also largely unaffected. Finally, it was examined whether RyR were involved in regulating [Ca2+]i within the subplasmalemmal space using patch-clamp electrophysiology as well as Ca2+ fluorimetry: isoproterenol increased [Ca2+]i- and Ca2+-dependent K+ current activity in a ryanodine-sensitive fashion. In conclusion, ryanodine receptors in airway smooth muscle are not important in directly mediating contraction or relaxation. The current authors speculate instead that these allow the sarcoplasmic reticulum to release Ca2+ towards the plasmalemma (to unload an overly full Ca2+ store and/or increase the Ca2+-buffering capacity of the sarcoplasmic reticulum) without affecting bronchomotor tone.

  6. Contribution of Rho-kinase to membrane excitability of murine colonic smooth muscle.

    PubMed

    Bayguinov, O; Dwyer, L; Kim, H; Marklew, A; Sanders, K M; Koh, S D

    2011-06-01

    The Rho-kinase pathway regulates agonist-induced contractions in several smooth muscles, including the intestine, urinary bladder and uterus, via dynamic changes in the Ca(2+) sensitivity of the contractile apparatus. However, there is evidence that Rho-kinase also modulates other cellular effectors such as ion channels. We examined the regulation of colonic smooth muscle excitability by Rho-kinase using conventional microelectrode recording, isometric force measurements and patch-clamp techniques. The Rho-kinase inhibitors, Y-27632 and H-1152, decreased nerve-evoked on- and off-contractions elicited at a range of frequencies and durations. The Rho-kinase inhibitors decreased the spontaneous contractions and the responses to carbachol and substance P independently of neuronal inputs, suggesting Y-27632 acts directly on smooth muscle. The Rho-kinase inhibitors significantly reduced the depolarization in response to carbachol, an effect that cannot be due to regulation of Ca(2+) sensitization. Patch-clamp experiments showed that Rho-kinase inhibitors reduce GTPγS-activated non-selective cation currents. The Rho-kinase inhibitors decreased contractions evoked by nerve stimulation, carbachol and substance P. These effects were not solely due to inhibition of the Ca(2+) sensitization pathway, as the Rho-kinase inhibitors also inhibited the non-selective cation conductances activated by excitatory transmitters. Thus, Rho-kinase may regulate smooth muscle excitability mechanisms by regulating non-selective cation channels as well as changing the Ca(2+) sensitivity of the contractile apparatus. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  7. Searching for new leads to treat epilepsy. Target-based virtual screening for the discovery of anticonvulsant agents.

    PubMed

    Palestro, Pablo; Enrique, Nicolas; Goicoechea, Sofia; Villalba, María Luisa; Sabatier, Laureano Leonel; Martin, Pedro; Milesi, Veronica; Bruno-Blanch, Luis E; Gavernet, Luciana

    2018-06-05

    The purpose of this investigation is to contribute to the development of new anticonvulsant drugs to treat patients with refractory epilepsy. We applied a virtual screening protocol that involved the search into molecular databases of new compounds and known drugs to find small molecules that interact with the open conformation of the Nav1.2 pore. As the 3D structure of human Nav1.2 is not available, we first assembled 3D models of the target, in closed and open conformations. After the virtual screening, the resulting candidates were submitted to a second virtual filter, to find compounds with better chances of being effective for the treatment of P-glycoprotein (P-gp) mediated resistant epilepsy. Again, we built a model of the 3D structure of human P-gp and we validated the docking methodology selected to propose the best candidates, which were experimentally tested on Nav1.2 channels by patch clamp techniques and in vivo by MES-test. Patch clamp studies allowed us to corroborate that our candidates, drugs used for the treatment of other pathologies like Ciprofloxacin, Losartan and Valsartan, exhibit inhibitory effects on Nav1.2 channel activity. Additionally, a compound synthesized in our lab, N,N´-diphenethylsulfamide, interacts with the target and also triggers significant Na1.2 channel inhibitory action. Finally, in-vivo studies confirmed the anticonvulsant action of Valsartan, Ciprofloxacin and N.N´-diphenethylsulfamide.

  8. TPC2 polymorphisms associated with a hair pigmentation phenotype in humans result in gain of channel function by independent mechanisms.

    PubMed

    Chao, Yu-Kai; Schludi, Verena; Chen, Cheng-Chang; Butz, Elisabeth; Nguyen, O N Phuong; Müller, Martin; Krüger, Jens; Kammerbauer, Claudia; Ben-Johny, Manu; Vollmar, Angelika M; Berking, Carola; Biel, Martin; Wahl-Schott, Christian A; Grimm, Christian

    2017-10-10

    Two-pore channels (TPCs) are endolysosomal cation channels. Two members exist in humans, TPC1 and TPC2. Functional roles associated with the ubiquitously expressed TPCs include VEGF-induced neoangiogenesis, LDL-cholesterol trafficking and degradation, physical endurance under fasting conditions, autophagy regulation, the acrosome reaction in sperm, cancer cell migration, and intracellular trafficking of pathogens such as Ebola virus or bacterial toxins (e.g., cholera toxin). In a genome-wide association study for variants associated with human pigmentation characteristics two coding variants of TPC2, rs35264875 (encoding M484L) and rs3829241 (encoding G734E), have been found to be associated with a shift from brown to blond hair color. In two recent follow-up studies a role for TPC2 in pigmentation has been further confirmed. However, these human polymorphic variants have not been functionally characterized until now. The development of endolysosomal patch-clamp techniques has made it possible to investigate directly ion channel activities and characteristics in isolated endolysosomal organelles. We applied this technique here to scrutinize channel characteristics of the polymorphic TPC2 variants in direct comparison with WT. We found that both polymorphisms lead to a gain of channel function by independent mechanisms. We next conducted a clinical study with more than 100 blond- and brown/black-haired individuals. We performed a genotype/phenotype analysis and subsequently isolated fibroblasts from WT and polymorphic variant carriers for endolysosomal patch-clamp experimentation to confirm key in vitro findings.

  9. Cocaine acute "binge" administration results in altered thalamocortical interactions in mice.

    PubMed

    Urbano, Francisco J; Bisagno, Verónica; Wikinski, Silvia I; Uchitel, Osvaldo D; Llinás, Rodolfo R

    2009-10-15

    Abnormalities in both thalamic and cortical areas have been reported in human cocaine addicts with noninvasive functional magnetic resonance imaging. Given the substantial involvement of the thalamocortical system in sensory processing and perception, we defined electrophysiology-based protocols to attempt a characterization of cocaine effects on thalamocortical circuits. Thalamocortical function was studied in vivo and in vitro in mice after cocaine "binge" administration. In vivo awake electroencephalography (EEG) was implemented in mice injected with saline, 1 hour or 24 hours after the last cocaine "binge" injection. In vitro current- and voltage-clamp whole-cell patch-clamp recordings were performed from slices including thalamic relay ventrobasal (VB) neurons. In vivo EEG recordings after cocaine "binge" administration showed a significant increment, compared with saline, in low frequencies while observing no changes in high-frequency gamma activity. In vitro patch recordings from VB neurons after cocaine "binge" administration showed low threshold spikes activation at more negative membrane potentials and increments in both I(h) and low voltage activated T-type calcium currents. Also, a 10-mV negative shift on threshold activation level of T-type current and a remarkable increment in both frequency and amplitudes of gamma-aminobutyric acid-A-mediated minis were observed. Our data indicate that thalamocortical dysfunctions observed in cocaine abusers might be due to two distinct but additive events: 1) increased low frequency oscillatory thalamocortical activity, and 2) overinhibition of VB neurons that can abnormally "lock" the whole thalamocortical system at low frequencies.

  10. Leaf patch clamp pressure probe measurements on olive leaves in a nearly turgorless state.

    PubMed

    Ehrenberger, W; Rüger, S; Rodríguez-Domínguez, C M; Díaz-Espejo, A; Fernández, J E; Moreno, J; Zimmermann, D; Sukhorukov, V L; Zimmermann, U

    2012-07-01

    The non-invasive leaf patch clamp pressure (LPCP) probe measures the attenuated pressure of a leaf patch, P(p) , in response to an externally applied magnetic force. P(p) is inversely coupled with leaf turgor pressure, P(c) , i.e. at high P(c) values the P(p) values are small and at low P(c) values the P(p) values are high. This relationship between P(c) and P(p) could also be verified for 2-m tall olive trees under laboratory conditions using the cell turgor pressure probe. When the laboratory plants were subjected to severe water stress (P(c) dropped below ca. 50 kPa), P(p) curves show reverse diurnal changes, i.e. during the light regime (high transpiration) a minimum P(p) value, and during darkness a peak P(p) value is recorded. This reversal of the P(p) curves was completely reversible. Upon watering, the original diurnal P(p) changes were re-established within 2-3 days. Olive trees in the field showed a similar turnover of the shape of the P(p) curves upon drought, despite pronounced fluctuations in microclimate. The reversal of the P(p) curves is most likely due to accumulation of air in the leaves. This assumption was supported with cross-sections through leaves subjected to prolonged drought. In contrast to well-watered leaves, microscopic inspection of leaves exhibiting inverse diurnal P(p) curves revealed large air-filled areas in parenchyma tissue. Significantly larger amounts of air could also be extracted from water-stressed leaves than from well-watered leaves using the cell turgor pressure probe. Furthermore, theoretical analysis of the experimental P(p) curves shows that the propagation of pressure through the nearly turgorless leaf must be exclusively dictated by air. Equations are derived that provide valuable information about the water status of olive leaves close to zero P(c) . © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Complex role of STIM1 in the activation of store-independent Orai1/3 channels

    PubMed Central

    Zhang, Wei; González-Cobos, José C.; Jardin, Isaac; Romanin, Christoph; Matrougui, Khalid

    2014-01-01

    Orai proteins contribute to Ca2+ entry into cells through both store-dependent, Ca2+ release–activated Ca2+ (CRAC) channels (Orai1) and store-independent, arachidonic acid (AA)-regulated Ca2+ (ARC) and leukotriene C4 (LTC4)-regulated Ca2+ (LRC) channels (Orai1/3 heteromultimers). Although activated by fundamentally different mechanisms, CRAC channels, like ARC and LRC channels, require stromal interacting molecule 1 (STIM1). The role of endoplasmic reticulum–resident STIM1 (ER-STIM1) in CRAC channel activation is widely accepted. Although ER-STIM1 is necessary and sufficient for LRC channel activation in vascular smooth muscle cells (VSMCs), the minor pool of STIM1 located at the plasma membrane (PM-STIM1) is necessary for ARC channel activation in HEK293 cells. To determine whether ARC and LRC conductances are mediated by the same or different populations of STIM1, Orai1, and Orai3 proteins, we used whole-cell and perforated patch-clamp recording to compare AA- and LTC4-activated currents in VSMCs and HEK293 cells. We found that both cell types show indistinguishable nonadditive LTC4- and AA-activated currents that require both Orai1 and Orai3, suggesting that both conductances are mediated by the same channel. Experiments using a nonmetabolizable form of AA or an inhibitor of 5-lipooxygenase suggested that ARC and LRC currents in both cell types could be activated by either LTC4 or AA, with LTC4 being more potent. Although PM-STIM1 was required for current activation by LTC4 and AA under whole-cell patch-clamp recordings in both cell types, ER-STIM1 was sufficient with perforated patch recordings. These results demonstrate that ARC and LRC currents are mediated by the same cellular populations of STIM1, Orai1, and Orai3, and suggest a complex role for both ER-STIM1 and PM-STIM1 in regulating these store-independent Orai1/3 channels. PMID:24567509

  12. Effect of an N-terminus deletion on voltage-dependent gating of the ClC-2 chloride channel

    PubMed Central

    Varela, Diego; Niemeyer, María Isabel; Cid, L Pablo; Sepúlveda, Francisco V

    2002-01-01

    ClC-2, a chloride channel widely expressed in mammalian tissues, is activated by hyperpolarisation and extracellular acidification. Deletion of amino acids 16–61 in rat ClC-2 abolishes voltage and pH dependence in two-electrode voltage-clamp experiments in amphibian oocytes. These results have been interpreted in terms of a ball-and-chain type of mechanism in which the N-terminus would behave as a ball that is removed from an inactivating site upon hyperpolarisation. We now report whole-cell patch-clamp measurements in mammalian cells showing hyperpolarization-activation of rClC-2Δ16–61 differing only in presenting faster opening and closing kinetics than rClC-2. The lack of time and voltage dependence observed previously was reproduced, however, in nystatin-perforated patch experiments. The behaviour of wild-type rClC-2 did not differ between conventional and nystatin-perforated patches. Similar results were obtained with ClC-2 from guinea-pig. One possible explanation of the results is that some diffusible component is able to lock the channel in an open state but does so only to the mutated channel. Alternative explanations involving the osmotic state of the cell and cytoskeleton structure are also considered. Low extracellular pH activates the wild-type channel but not rClC-2Δ16–61 when expressed in oocytes, a result that had been interpreted to suggest that protons affect the ball-and-chain mechanism. In our experiments no difference was seen in the effect of extracellular pH upon rClC-2 and rClC-2Δ16–61 in either recording configuration, suggesting that protons act independently from possible effects of the N-terminus on gating. Our observations of voltage-dependent gating of the N-terminal deleted ClC-2 are an argument against a ball-and-chain mechanism for this channel. PMID:12381811

  13. Local Membrane Deformations Activate Ca2+-Dependent K+ and Anionic Currents in Intact Human Red Blood Cells

    PubMed Central

    Dyrda, Agnieszka; Cytlak, Urszula; Ciuraszkiewicz, Anna; Lipinska, Agnieszka; Cueff, Anne; Bouyer, Guillaume; Egée, Stéphane; Bennekou, Poul; Lew, Virgilio L.; Thomas, Serge L. Y.

    2010-01-01

    Background The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents activated by a local and controlled membrane deformation in single red blood cells under on-cell patch clamp to define the nature of the stretch-activated currents. Methodology/Principal Findings The cell-attached configuration of the patch-clamp technique was used to allow recordings of single channel activity in intact red blood cells. Gigaohm seal formation was obtained with and without membrane deformation. Deformation was induced by the application of a negative pressure pulse of 10 mmHg for less than 5 s. Currents were only detected when the membrane was seen domed under negative pressure within the patch-pipette. K+ and Cl− currents were strictly dependent on the presence of Ca2+. The Ca2+-dependent currents were transient, with typical decay half-times of about 5–10 min, suggesting the spontaneous inactivation of a stretch-activated Ca2+ permeability (PCa). These results indicate that local membrane deformations can transiently activate a Ca2+ permeability pathway leading to increased [Ca2+]i, secondary activation of Ca2+-sensitive K+ channels (Gardos channel, IK1, KCa3.1), and hyperpolarization-induced anion currents. Conclusions/Significance The stretch-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca2+-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca2+ content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia. PMID:20195477

  14. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.

    PubMed

    Dyrda, Agnieszka; Cytlak, Urszula; Ciuraszkiewicz, Anna; Lipinska, Agnieszka; Cueff, Anne; Bouyer, Guillaume; Egée, Stéphane; Bennekou, Poul; Lew, Virgilio L; Thomas, Serge L Y

    2010-02-26

    The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents activated by a local and controlled membrane deformation in single red blood cells under on-cell patch clamp to define the nature of the stretch-activated currents. The cell-attached configuration of the patch-clamp technique was used to allow recordings of single channel activity in intact red blood cells. Gigaohm seal formation was obtained with and without membrane deformation. Deformation was induced by the application of a negative pressure pulse of 10 mmHg for less than 5 s. Currents were only detected when the membrane was seen domed under negative pressure within the patch-pipette. K(+) and Cl(-) currents were strictly dependent on the presence of Ca(2+). The Ca(2+)-dependent currents were transient, with typical decay half-times of about 5-10 min, suggesting the spontaneous inactivation of a stretch-activated Ca(2+) permeability (PCa). These results indicate that local membrane deformations can transiently activate a Ca(2+) permeability pathway leading to increased [Ca(2+)](i), secondary activation of Ca(2+)-sensitive K(+) channels (Gardos channel, IK1, KCa3.1), and hyperpolarization-induced anion currents. The stretch-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca(2+)-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca(2+) content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia.

  15. Evaluation of Changes in Morphology and Function of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (HiPSC-CMs) Cultured on an Aligned-Nanofiber Cardiac Patch.

    PubMed

    Khan, Mahmood; Xu, Yanyi; Hua, Serena; Johnson, Jed; Belevych, Andriy; Janssen, Paul M L; Gyorke, Sandor; Guan, Jianjun; Angelos, Mark G

    2015-01-01

    Dilated cardiomyopathy is a major cause of progressive heart failure. Utilization of stem cell therapy offers a potential means of regenerating viable cardiac tissue. However, a major obstacle to stem cell therapy is the delivery and survival of implanted stem cells in the ischemic heart. To address this issue, we have developed a biomimetic aligned nanofibrous cardiac patch and characterized the alignment and function of human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) cultured on this cardiac patch. This hiPSC-CMs seeded patch was compared with hiPSC-CMs cultured on standard flat cell culture plates. hiPSC-CMs were cultured on; 1) a highly aligned polylactide-co-glycolide (PLGA) nanofiber scaffold (~50 microns thick) and 2) on a standard flat culture plate. Scanning electron microscopy (SEM) was used to determine alignment of PLGA nanofibers and orientation of the cells on the respective surfaces. Analysis of gap junctions (Connexin-43) was performed by confocal imaging in both the groups. Calcium cycling and patch-clamp technique were performed to measure calcium transients and electrical coupling properties of cardiomyocytes. SEM demonstrated >90% alignment of the nanofibers in the patch which is similar to the extracellular matrix of decellularized rat myocardium. Confocal imaging of the cardiomyocytes demonstrated symmetrical alignment in the same direction on the aligned nanofiber patch in sharp contrast to the random appearance of cardiomyocytes cultured on a tissue culture plate. The hiPSC-CMs cultured on aligned nanofiber cardiac patches showed more efficient calcium cycling compared with cells cultured on standard flat surface culture plates. Quantification of mRNA with qRT-PCR confirmed that these cardiomyocytes expressed α-actinin, troponin-T and connexin-43 in-vitro. Overall, our results demonstrated changes in morphology and function of human induced pluripotent derived cardiomyocytes cultured in an anisotropic environment created by an aligned nanofiber patch. In this environment, these cells better approximate normal cardiac tissue compared with cells cultured on flat surface and can serve as the basis for bioengineering of an implantable cardiac patch.

  16. Suppressive Effects of Resveratrol Treatment on The Intrinsic Evoked Excitability of CA1 Pyramidal Neurons

    PubMed Central

    Meftahi, Gholamhossein; Ghotbedin, Zohreh; Eslamizade, Mohammad Javad; Hosseinmardi, Narges; Janahmadi, Mahyar

    2015-01-01

    Objective Resveratrol, a phytoalexin, has a wide range of desirable biological actions. Despite a growing body of evidence indicating that resveratrol induces changes in neu- ronal function, little effort, if any, has been made to investigate the cellular effect of res- veratrol treatment on intrinsic neuronal properties. Materials and Methods This experimental study was performed to examine the acute effects of resveratrol (100 µM) on the intrinsic evoked responses of rat Cornu Ammonis (CA1) pyramidal neurons in brain slices, using whole cell patch clamp re- cording under current clamp conditions. Results Findings showed that resveratrol treatment caused dramatic changes in evoked responses of pyramidal neurons. Its treatment induced a significant (P<0.05) increase in the after hyperpolarization amplitude of the first evoked action potential. Resveratrol-treated cells displayed a significantly broader action potential (AP) when compared with either control or vehicle-treated groups. In addition, the mean instantaneous firing frequency between the first two action potentials was significantly lower in resveratrol-treated neurons. It also caused a significant reduction in the time to maximum decay of AP. The rheobase current and the utilization time were both significantly greater following resveratrol treatment. Neurons exhibited a significantly depolarized voltage threshold when exposed to resveratrol. Conclusion Results provide direct electrophysiological evidence for the inhibitory effects of resveratrol on pyramidal neurons, at least in part, by reducing the evoked neural activity. PMID:26464825

  17. Growth and Electrophysiological Properties of Rat Embryonic Cardiomyocytes on Hydroxyl- and Carboxyl-Modified Surfaces

    PubMed Central

    NATARAJAN, ANUPAMA; CHUN, CHANGJU; HICKMAN, JAMES J.; MOLNAR, PETER

    2010-01-01

    Biodegradable scaffolds such as poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) or poly(glycolic acid) (PGA) are commonly used materials in tissue engineering. The chemical composition of these scaffolds changes during degradation which provides a changing environment for the seeded cells. In this study we have developed a simple and relatively high-throughput method in order to test the physiological effects of this varying chemical environment on rat embryonic cardiac myocytes. In order to model the different degradation stages of the scaffold, glass coverslips were functionalized with 11-mercaptoundecanoic acid (MUA) and 11-mercapto-1-undecanol (MUL) as carboxyl- and hydroxyl-group presenting surfaces and also with trimethoxysilylpropyldiethylenetriamine (DETA) and (3-aminopropyl)triethoxysilane (APTES) as controls. Embryonic cardiac myocytes formed beating islands on all tested surfaces but the number of attached cells and beating patches was significantly lower on MUL compared to any of the other functionalized surfaces. Moreover, whole cell patch clamp experiments showed that the average length of action potentials generated by the beating cardiac myocytes were significantly longer on MUL compared to the other surfaces. Our results, using our simple test system, are in agreement with earlier observations that utilized the complex 3D biodegradable scaffold. Thus, surface functionalization with self-assembled monolayers combined with histological/physiological testing could be a relatively high throughput method for biocompatibility studies and for the optimization of the material/tissue interface in tissue engineering. PMID:18854125

  18. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells

    NASA Astrophysics Data System (ADS)

    Rich, Devra P.; Anderson, Matthew P.; Gregory, Richard J.; Cheng, Seng H.; Paul, Sucharita; Jefferson, Douglas M.; McCann, John D.; Klinger, Katherine W.; Smith, Alan E.; Welsh, Michael J.

    1990-09-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) was expressed in cultured cystic fibrosis airway epithelial cells and Cl- channel activation assessed in single cells using a fluorescence microscopic assay and the patch-clamp technique. Expression of CFTR, but not of a mutant form of CFTR (ΔF508), corrected the Cl- channel defect. Correction of the phenotypic defect demonstrates a causal relationship between mutations in the CFTR gene and defective Cl- transport which is the hallmark of the disease.

  19. Whole-cell patch clamp recording of voltage-sensitive Ca²+ channel currents: heterologous expression systems and dissociated brain neurons.

    PubMed

    Hainsworth, Atticus H; Randall, Andrew D; Stefani, Alessandro

    2005-01-01

    Voltage-sensitive Ca(2+) channels (VSCC) play a central role in an extensive array of physiological processes. Their importance in cellular function arises from their ability both to sense membrane voltage and to conduct Ca(2+) ions, two facets that couple membrane excitability to a key intracellular second messenger. Through this relationship, activation of VSCCs is tightly coupled to the gamut of cellular functions dependent on intracellular Ca(2+), including muscle contraction, energy metabolism, gene expression, and exocytotic/endocytotic cycling.

  20. Stable Expression of the Motor Protein Prestin in Chinese Hamster Ovary Cells

    NASA Astrophysics Data System (ADS)

    Iida, Koji; Konno, Kazuaki; Oshima, Takeshi; Tsumoto, Kouhei; Ikeda, Katsuhisa; Kumagai, Izumi; Kobayashi, Toshimitsu; Wada, Hiroshi

    Mammalian hearing sensitivity relies on a mechanical amplification mechanism involving the outer hair cells (OHCs), which rapidly alter their longitudinal length in response to changes in their membrane potential. The molecular basis of this mechanism is thought to be a motor protein embedded in the lateral membrane of the OHCs. Recently, this motor protein was identified and termed prestin. Since then, prestin has been researched intensively to elucidate the behavior of the OHCs. However, little progress in the study of prestin at the molecular level has been made because no method of obtaining an adequate amount of prestin has been established. In this study, therefore, an attempt was made to construct a stable expression system of prestin using Chinese hamster ovary (CHO) cells. The expression of prestin in the transfected CHO cells and the activity of prestin on CHO cells were confirmed by immunofluorescence and whole-cell patch-clamp measurements, respectively.

  1. Sensory Transduction and Electrical Signaling in Guard Cells

    PubMed Central

    Serrano, Elba E.; Zeiger, Eduardo

    1989-01-01

    Guard cells are a valuable model system for the study of photoreception, ion transport, and osmoregulation in plant cells. Changes in stomatal apertures occur when sensing mechanisms within the guard cells transduce environmental stimull into the ion fluxes and biosynthesis of organic solutes that regulate turgor. The electrical events mediating sensory transduction in guard cells can be characterized with a variety of electrophysiological recording techniques. Recent experiments applying the patch clamp method to guard cell protoplasts have demonstrated activation of electrogenic pumps by blue and red light as well as the presence of potassium channels in guard cell plasmalemma. Light activation of electrogenic proton pumping and the ensuing gating of voltage-dependent ion channels appear to be components of sensory transduction of the stomatal response to light. Mechanisms underlying stomatal control by environmental signals can be understood by studying electrical events associated with ion transport. PMID:16667138

  2. Combining reflectometry and fluorescence microscopy: an assay for the investigation of leakage processes across lipid membranes.

    PubMed

    Stephan, Milena; Mey, Ingo; Steinem, Claudia; Janshoff, Andreas

    2014-02-04

    The passage of solutes across a lipid membrane plays a central role in many cellular processes. However, the investigation of transport processes remains a serious challenge in pharmaceutical research, particularly the transport of uncharged cargo. While translocation reactions of ions across cell membranes is commonly measured with the patch-clamp, an equally powerful screening method for the transport of uncharged compounds is still lacking. A combined setup for reflectometric interference spectroscopy (RIfS) and fluorescence microscopy measurements is presented that allows one to investigate the passive exchange of uncharged compounds across a free-standing membrane. Pore-spanning lipid membranes were prepared by spreading giant 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles on porous anodic aluminum oxide (AAO) membranes, creating sealed attoliter-sized compartments. The time-resolved leakage of different dye molecules (pyranine and crystal violet) as well as avidin through melittin induced membrane pores and defects was investigated.

  3. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes.

    PubMed

    Gómez-González, J F; Destexhe, A; Bal, T

    2014-10-01

    Electrophysiological recordings of single neurons in brain tissues are very common in neuroscience. Glass microelectrodes filled with an electrolyte are used to impale the cell membrane in order to record the membrane potential or to inject current. Their high resistance induces a high voltage drop when passing current and it is essential to correct the voltage measurements. In particular, for voltage clamping, the traditional alternatives are two-electrode voltage-clamp technique or discontinuous single electrode voltage-clamp (dSEVC). Nevertheless, it is generally difficult to impale two electrodes in a same neuron and the switching frequency is limited to low frequencies in the case of dSEVC. We present a novel fully computer-implemented alternative to perform continuous voltage-clamp recordings with a single sharp-electrode. To reach such voltage-clamp recordings, we combine an active electrode compensation algorithm (AEC) with a digital controller (AECVC). We applied two types of control-systems: a linear controller (proportional plus integrative controller) and a model-based controller (optimal control). We compared the performance of the two methods to dSEVC using a dynamic model cell and experiments in brain slices. The AECVC method provides an entirely digital method to perform continuous recording and smooth switching between voltage-clamp, current clamp or dynamic-clamp configurations without introducing artifacts.

  4. The Electrophysiological MEMS Device with Micro Channel Array for Cellular Network Analysis

    NASA Astrophysics Data System (ADS)

    Tonomura, Wataru; Kurashima, Toshiaki; Takayama, Yuzo; Moriguchi, Hiroyuki; Jimbo, Yasuhiko; Konishi, Satoshi

    This paper describes a new type of MCA (Micro Channel Array) for simultaneous multipoint measurement of cellular network. Presented MCA employing the measurement principles of the patch-clamp technique is designed for advanced neural network analysis which has been studied by co-authors using 64ch MEA (Micro Electrode Arrays) system. First of all, sucking and clamping of cells through channels of developed MCA is expected to improve electrophysiological signal detections. Electrophysiological sensing electrodes integrated around individual channels of MCA by using MEMS (Micro Electro Mechanical System) technologies are electrically isolated for simultaneous multipoint measurement. In this study, we tested the developed MCA using the non-cultured rat's cerebral cortical slice and the hippocampal neurons. We could measure the spontaneous action potential of the slice simultaneously at multiple points and culture the neurons on developed MCA. Herein, we describe the experimental results together with the design and fabrication of the electrophysiological MEMS device with MCA for cellular network analysis.

  5. Clamping characteristics study on different types of clamping unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zhiwei; Liu, Haichao; Xie, Pengcheng

    2015-05-22

    Plastic products are becoming more and more widely used in aerospace, IT, digital electronics and many other fields. With the development of technology, the requirement of product precision is getting higher and higher. However, type and working performance of clamping unit play a decisive role in product precision. Clamping characteristics of different types of clamping unit are discussed in this article, which use finite element numerical analysis method through the software ABAQUS to study the clamping uniformity, and detect the clamping force repeatability precision. The result shows that compared with toggled three-platen clamping unit, clamping characteristics of internal circulation two-platenmore » clamping unit are better, for instance, its mold cavity deformation and force that bars and mold parting surface suffered are more uniform, and its clamping uniformity and repeatability precision is also better.« less

  6. Regulation of Drosophila transient receptor potential-like (TrpL) channels by phospholipase C-dependent mechanisms.

    PubMed

    Estacion, M; Sinkins, W G; Schilling, W P

    2001-01-01

    Patch clamp and fura-2 fluorescence were employed to characterize receptor-mediated activation of recombinant Drosophila TrpL channels expressed in Sf9 insect cells. TrpL was activated by receptor stimulation and by exogenous application of diacylglycerol (DAG) or poly-unsaturated fatty acids (PUFAs). Activation of TrpL was blocked more than 70% by U73122, suggesting that the effect of these agents was dependent upon phospholipase C (PLC). In fura-2 assays, extracellular application of bacterial phosphatidylinositol (PI)-PLC or phosphatidylcholine (PC)-PLC caused a transient increase in TrpL channel activity, the magnitude of which was significantly less than that observed following receptor stimulation. TrpL channels were also activated in excised inside-out patches by cytoplasmic application of mammalian PLC-b2, bacterial PI-PLC and PC-PLC, but not by phospholipase D (PLD). The phospholipases had little or no effect when examined in either whole-cell or cell-attached configurations.TrpL activity was inhibited by addition of phosphatidylinositol-4,5-bisphosphate (PIP2) to excised inside-out membrane patches exhibiting spontaneous channel activity or to patches pre-activated by treatment with PLC. The effect was reversible, specific for PIP2, and was not observed with phosphatidylethanolamine (PE), PI, PC or phosphatidylserine (PS). However, antibodies against PIP2 consistently failed to activate TrpL in inside-out patches. It is concluded that both the hydrolysis of PIP2 and the generation of DAG are required to rapidly activate TrpL following receptor stimulation, or that some other PLC-dependent mechanism plays a crucial role in the activation process.

  7. Properties of the Nucleo-Olivary Pathway: An In Vivo Whole-Cell Patch Clamp Study

    PubMed Central

    Bazzigaluppi, Paolo; Ruigrok, Tom; Saisan, Payam; De Zeeuw, Chris I.; de Jeu, Marcel

    2012-01-01

    The inferior olivary nucleus (IO) forms the gateway to the cerebellar cortex and receives feedback information from the cerebellar nuclei (CN), thereby occupying a central position in the olivo-cerebellar loop. Here, we investigated the feedback input from the CN to the IO in vivo in mice using the whole-cell patch-clamp technique. This approach allows us to study how the CN-feedback input is integrated with the activity of olivary neurons, while the olivo-cerebellar system and its connections are intact. Our results show how IO neurons respond to CN stimulation sequentially with: i) a short depolarization (EPSP), ii) a hyperpolarization (IPSP) and iii) a rebound depolarization. The latter two phenomena can also be evoked without the EPSPs. The IPSP is sensitive to a GABAA receptor blocker. The IPSP suppresses suprathreshold and subthreshold activity and is generated mainly by activation of the GABAA receptors. The rebound depolarization re-initiates and temporarily phase locks the subthreshold oscillations. Lack of electrotonical coupling does not affect the IPSP of individual olivary neurons, nor the sensitivity of its GABAA receptors to blockers. The GABAergic feedback input from the CN does not only temporarily block the transmission of signals through the IO, it also isolates neurons from the network by shunting the junction current and re-initiates the temporal pattern after a fixed time point. These data suggest that the IO not only functions as a cerebellar controlled gating device, but also operates as a pattern generator for controlling motor timing and/or learning. PMID:23029495

  8. Signaling of pigment-dispersing factor (PDF) in the Madeira cockroach Rhyparobia maderae.

    PubMed

    Wei, Hongying; Yasar, Hanzey; Funk, Nico W; Giese, Maria; Baz, El-Sayed; Stengl, Monika

    2014-01-01

    The insect neuropeptide pigment-dispersing factor (PDF) is a functional ortholog of vasoactive intestinal polypeptide, the coupling factor of the mammalian circadian pacemaker. Despite of PDF's importance for synchronized circadian locomotor activity rhythms its signaling is not well understood. We studied PDF signaling in primary cell cultures of the accessory medulla, the circadian pacemaker of the Madeira cockroach. In Ca²⁺ imaging studies four types of PDF-responses were distinguished. In regularly bursting type 1 pacemakers PDF application resulted in dose-dependent long-lasting increases in Ca²⁺ baseline concentration and frequency of oscillating Ca²⁺ transients. Adenylyl cyclase antagonists prevented PDF-responses in type 1 cells, indicating that PDF signaled via elevation of intracellular cAMP levels. In contrast, in type 2 pacemakers PDF transiently raised intracellular Ca²⁺ levels even after blocking adenylyl cyclase activity. In patch clamp experiments the previously characterized types 1-4 could not be identified. Instead, PDF-responses were categorized according to ion channels affected. Application of PDF inhibited outward potassium or inward sodium currents, sometimes in the same neuron. In a comparison of Ca²⁺ imaging and patch clamp experiments we hypothesized that in type 1 cells PDF-dependent rises in cAMP concentrations block primarily outward K⁺ currents. Possibly, this PDF-dependent depolarization underlies PDF-dependent phase advances of pacemakers. Finally, we propose that PDF-dependent concomitant modulation of K⁺ and Na⁺ channels in coupled pacemakers causes ultradian membrane potential oscillations as prerequisite to efficient synchronization via resonance.

  9. Distribution and Function of HCN Channels in the Apical Dendritic Tuft of Neocortical Pyramidal Neurons

    PubMed Central

    Harnett, Mark T.; Magee, Jeffrey C.

    2015-01-01

    The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. PMID:25609619

  10. Visual patch clamp recording of neurons in thick portions of the adult spinal cord.

    PubMed

    Munch, Anders Sonne; Smith, Morten; Moldovan, Mihai; Perrier, Jean-François

    2010-07-15

    The study of visually identified neurons in slice preparations from the central nervous system offers considerable advantages over in vivo preparations including high mechanical stability in the absence of anaesthesia and full control of the extracellular medium. However, because of their relative thinness, slices are not appropriate for investigating how individual neurons integrate synaptic inputs generated by large numbers of neurons. Here we took advantage of the exceptional resistance of the turtle to anoxia to make slices of increasing thicknesses (from 300 to 3000 microm) from the lumbar enlargement of the spinal cord. With a conventional upright microscope in which the light condenser was carefully adjusted, we could visualize neurons present at the surface of the slice and record them with the whole-cell patch clamp technique. We show that neurons present in the middle of the preparation remain alive and capable of generating action potentials. By stimulating the lateral funiculus we can evoke intense synaptic activity associated with large increases in conductance of the recorded neurons. The conductance increases substantially more in neurons recorded in thick slices suggesting that the size of the network recruited with the stimulation increases with the thickness of the slices. We also find that that the number of spontaneous excitatory postsynaptic currents (EPSCs) is higher in thick slices compared with thin slices while the number of spontaneous inhibitory postsynaptic currents (IPSCs) remains constant. These preliminary data suggest that inhibitory and excitatory synaptic connections are balanced locally while excitation dominates long-range connections in the spinal cord. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Fluid shear stress enhances the cell volume decrease of osteoblast cells by increasing the expression of the ClC-3 chloride channel

    PubMed Central

    LIU, LI; CAI, SIYI; QIU, GUIXING; LIN, JIN

    2016-01-01

    ClC-3 is a volume-sensitive chloride channel that is responsible for cell volume adjustment and regulatory cell volume decrease (RVD). In order to evaluate the effects of fluid shear stress (FSS) stimulation on the osteoblast ClC-3 chloride channel, MC3T3-E1 cells were stimulated by FSS in the experimental group. Fluorescence quantitative polymerase chain reaction was used to detect changes in ClC-3 mRNA expression, the chloride ion fluorescent probe N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) was used to detect the chloride channel activity, and whole-cell patch clamping was used to monitor the changes in the volume-sensitive chloride current activated by a hypotonic environment following mechanical stimulation. The results show that the expression of the osteoblast chloride channel ClC-3 was significantly higher in the FSS group compared with the control group. MQAE fluorescence intensity was significantly reduced in the FSS group compared to the control group, suggesting that mechanical stimulation increased chloride channel activity and increased the efflux of intracellular chloride ions. Image analysis of osteoblast volume changes showed that osteoblast RVD was enhanced by mechanical stimulation. Whole-cell patch clamping showed that the osteoblast volume-sensitive chloride current was larger in the stimulated group compared to the control group, suggesting that elevated ClC-3 chloride channel expression results in an increased volume-sensitive chloride current. In conclusion, FSS stimulation enhances the RVD of osteoblast cell by increasing the expression of the ClC-3 and enhancing the chloride channel activity. PMID:27073622

  12. Redox regulation of epithelial sodium channels examined in alveolar type 1 and 2 cells patch-clamped in lung slice tissue.

    PubMed

    Helms, My N; Jain, Lucky; Self, Julie L; Eaton, Douglas C

    2008-08-15

    The alveolar surface of the lung is lined by alveolar type 1 (AT1) and type 2 (AT2) cells. Using single channel patch clamp analysis in lung slice preparations, we are able to uniquely study AT1 and AT2 cells separately from intact lung. We report for the first time the Na+ transport properties of type 2 cells accessed in live lung tissue (as we have done in type 1 cells). Type 2 cells in lung tissue slices express both highly selective cation and nonselective cation channels with average conductances of 8.8 +/- 3.2 and 22.5 +/- 6.3 picosiemens, respectively. Anion channels with 10-picosiemen conductance are also present in the apical membrane of type 2 cells. Our lung slice studies importantly verify the use of cultured cell model systems commonly used in lung epithelial sodium channel (ENaC) studies. Furthermore, we identify novel functional differences between the cells that make up the alveolar epithelium. One important difference is that exposure to the nitric oxide (NO) donor, PAPA-NONOate (1.5 microm), significantly decreases average ENaC NPo in type 2 cells (from 1.38 +/- 0.26 to 0.82 +/- 0.16; p < 0.05 and n = 18) but failed to alter ENaC activity in alveolar type 1 cells. Elevating endogenous superoxide (O2.) levels with Ethiolat, a superoxide dismutase inhibitor, prevented NO inhibition of ENaC activity in type 2 cells, supporting the novel hypothesis that O2. and NO signaling plays an important role in maintaining lung fluid balance.

  13. The antipsychotic drug loxapine is an opener of the sodium-activated potassium channel slack (Slo2.2).

    PubMed

    Biton, B; Sethuramanujam, S; Picchione, Kelly E; Bhattacharjee, A; Khessibi, N; Chesney, F; Lanneau, C; Curet, O; Avenet, P

    2012-03-01

    Sodium-activated potassium (K(Na)) channels have been suggested to set the resting potential, to modulate slow after-hyperpolarizations, and to control bursting behavior or spike frequency adaptation (Trends Neurosci 28:422-428, 2005). One of the genes that encodes K(Na) channels is called Slack (Kcnt1, Slo2.2). Studies found that Slack channels were highly expressed in nociceptive dorsal root ganglion neurons and modulated their firing frequency (J Neurosci 30:14165-14172, 2010). Therefore, Slack channel openers are of significant interest as putative analgesic drugs. We screened the library of pharmacologically active compounds with recombinant human Slack channels expressed in Chinese hamster ovary cells, by using rubidium efflux measurements with atomic absorption spectrometry. Riluzole at 500 μM was used as a reference agonist. The antipsychotic drug loxapine and the anthelmintic drug niclosamide were both found to activate Slack channels, which was confirmed by using manual patch-clamp analyses (EC(50) = 4.4 μM and EC(50) = 2.9 μM, respectively). Psychotropic drugs structurally related to loxapine were also evaluated in patch-clamp experiments, but none was found to be as active as loxapine. Loxapine properties were confirmed at the single-channel level with recombinant rat Slack channels. In dorsal root ganglion neurons, loxapine was found to behave as an opener of native K(Na) channels and to increase the rheobase of action potential. This study identifies new K(Na) channel pharmacological tools, which will be useful for further Slack channel investigations.

  14. Aldosterone down-regulates the slowly activated delayed rectifier potassium current in adult guinea pig cardiomyocytes.

    PubMed

    Lv, Yankun; Bai, Song; Zhang, Hua; Zhang, Hongxue; Meng, Jing; Li, Li; Xu, Yanfang

    2015-12-01

    There is emerging evidence that the mineralocorticoid hormone aldosterone is associated with arrhythmias in cardiovascular disease. However, the effect of aldosterone on the slowly activated delayed rectifier potassium current (IK s ) remains poorly understood. The present study was designed to investigate the modulation of IK s by aldosterone. Adult guinea pigs were treated with aldosterone for 28 days via osmotic pumps. Standard glass microelectrode recordings and whole-cell patch-clamp techniques were used to record action potentials in papillary muscles and IK s in ventricular cardiomyocytes. The aldosterone-treated animals exhibited a prolongation of the QT interval and action potential duration with a higher incidence of early afterdepolarizations. Patch-clamp recordings showed a significant down-regulation of IK s density in the ventricular myocytes of these treated animals. These aldosterone-induced electrophysiological changes were fully prevented by a combined treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist. In addition, in in vitro cultured ventricular cardiomyocytes, treatment with aldosterone (sustained exposure for 24 h) decreased the IK s density in a concentration-dependent manner. Furthermore, a significant corresponding reduction in the mRNA/protein expression of IKs channel pore and auxiliary subunits, KCNQ1 and KCNE1 was detected in ventricular tissue from the aldosterone-treated animals. Aldosterone down-regulates IK s by inhibiting the expression of KCNQ1 and KCNE1, thus delaying the ventricular repolarization. These results provide new insights into the mechanism underlying K(+) channel remodelling in heart disease and may explain the highly beneficial effects of MR antagonists in HF. © 2015 The British Pharmacological Society.

  15. Fundamental properties of local anesthetics: half-maximal blocking concentrations for tonic block of Na+ and K+ channels in peripheral nerve.

    PubMed

    Bräu, M E; Vogel, W; Hempelmann, G

    1998-10-01

    Local anesthetics suppress excitability by interfering with ion channel function. Ensheathment of peripheral nerve fibers, however, impedes diffusion of drugs to the ion channels and may influence the evaluation of local anesthetic potencies. Investigating ion channels in excised membrane patches avoids these diffusion barriers. We investigated the effect of local anesthetics with voltage-dependent Na+ and K+ channels in enzymatically dissociated sciatic nerve fibers of Xenopus laevis using the patch clamp method. The outside-out configuration was chosen to apply drugs to the external face of the membrane. Local anesthetics reversibly blocked the transient Na+ inward current, as well as the steady-state K+ outward current. Half-maximal tonic inhibiting concentrations (IC50), as obtained from concentration-effect curves for Na+ current block were: tetracaine 0.7 microM, etidocaine 18 microM, bupivacaine 27 microM, procaine 60 microM, mepivacaine 149 microM, and lidocaine 204 microM. The values for voltage-dependent K+ current block were: bupivacaine 92 microM, etidocaine 176 microM, tetracaine 946 microM, lidocaine 1118 microM, mepivacaine 2305 microM, and procaine 6302 microM. Correlation of potencies with octanol:buffer partition coefficients (logP0) revealed that ester-bound local anesthetics were more potent in blocking Na+ channels than amide drugs. Within these groups, lipophilicity governed local anesthetic potency. We conclude that local anesthetic action on peripheral nerve ion channels is mediated via lipophilic drug-channel interactions. Half-maximal blocking concentrations of commonly used local anesthetics for Na+ and K+ channel block were determined on small membrane patches of peripheral nerve fibers. Because drugs can directly diffuse to the ion channel in this model, these data result from direct interactions of the drugs with ion channels.

  16. Inward current activated by carbachol in rat intestinal smooth muscle cells.

    PubMed Central

    Ito, S; Ohta, T; Nakazato, Y

    1993-01-01

    1. Carbachol (0.1 mM or 10 microM)-evoked inward currents were studied with standard and perforated whole-cell patch clamp techniques in smooth muscle cells isolated from rat small intestine. The intracellular free Ca2+ concentration was monitored simultaneously with the fura-2 method. 2. With a K(+)-containing pipette solution, carbachol produced an inward current at -60 mV and a large outward current at -20 mV. 3. When NaCl was substituted for KCl in the external and pipette solutions, carbachol elicited inward currents at holding potentials more inside-negative than 0 mV. The reversal potential of the carbachol-induced current altered when external chloride (-0.9 mV) was replaced by iodide (-21.2 mV), thiocyanate (-27.0 mV) and glutamate (18.2 mV). The carbachol-induced current at -60 mV was slightly decreased by the replacement of external NaCl with Tris-Cl. 4. The carbachol-induced inward current at -60 mV was accompanied by an increase in the intracellular concentration of free Ca2+. Both responses to carbachol were observed 2 min after exposure of the cells to a Ca(2+)-free solution containing 2 mM EGTA. 5. Intracellular application of heparin inhibited the inward current and Ca2+ transient responses to carbachol but not those to caffeine (10 mM). An inward current and Ca2+ transient were elicited after the patch membrane was ruptured at -60 mV, using a patch pipette containing inositol 1,4,5-trisphosphate (InsP3). 6. It is concluded that the carbachol-induced inward current is due to increases in membrane Cl- and Na+ conductances. Ca2+ released from InsP3-sensitive stores may play a role in increasing both conductances. PMID:7508506

  17. Experimental Modal Analysis of Rectangular and Circular Beams

    ERIC Educational Resources Information Center

    Emory, Benjamin H.; Zhu, Wei Dong

    2006-01-01

    Analytical and experimental methods are used to determine the natural frequencies and mode shapes of Aluminum 6061-T651 beams with rectangular and circular cross-sections. A unique test stand is developed to provide the rectangular beam with different boundary conditions including clamped-free, clamped-clamped, clamped-pinned, and pinned-pinned.…

  18. The luminal K+ channel of the thick ascending limb of Henle's loop.

    PubMed

    Bleich, M; Schlatter, E; Greger, R

    1990-01-01

    In vitro perfused rat thick ascending limbs of Henle's loop (TAL) were used (n = 260) to analyse the conductance properties of the luminal membrane applying the patch-clamp technique. Medullary (mTAL) and cortical (cTAL) tubule segments were dissected and perfused in vitro. The free end of the tubule was held and immobilized at one edge by a holding pipette kept under continuous suction. A micropositioner was used to insert a patch pipette into the lumen, and a gigaohm seal with the luminal membrane was achieved in 455 instances out of considerably more trials. In approximately 20% of all gigaohm seals recordings of single ionic channels were obtained. We have identified only one single type of K+ channel in these cell-attached and cell-excised recordings. In the cell-attached configuration with KCl or NaCl in the pipette, the channel had a conductance of 60 +/- 6 pS (n = 24) and 31 +/- 7 pS (n = 4) respectively. In cell-free patches with KCl either in the patch pipette or in the bath and with a Ringer-type solution (NaCl) on the opposite side the conductance was 72 +/- 4 pS (n = 37) at a clamp voltage of 0 mV. The permeability was 0.33 +/- 0.02 . 10(-12) cm3/s. The selectivity sequence of this channel was: K+ = Rb+ = NH4+ = Cs+ greater than Li+ much greater than Na+ = 0; the conductance sequence was K+ much greater than Li+ much greater than Rb+ = Cs+ = NH4+ = Na+ = 0. In excised patches Rb+, Cs+ and NH4+ when present in the bath at 145 mmol/l all inhibited K+ currents out of the pipette. The channel kinetics were described by one open (9.5 +/- 1.5 ms, n = 18) and by two closed (1.4 +/- 0.1 and 14 +/- 2 ms) time constants. The open probability of this channel was increased by depolarization. The channel open probability was reduced voltage dependently by Ba2+ (half maximal inhibition at 0 mV: 0.07 mmol/l) from the cytosolic side. Verapamil, diltiazem, quinine and quinidine inhibited at approximately 1 mumol/l -0.1 mmol/l from either side. Similarly, the amino cations lidocaine, tetraethylammonium and choline inhibited at 10-100 mmol/l. The channel was downregulated in its open probability by cytosolic Ca2+ activities greater than 10(-7) mol/l and by adenosine triphosphate greater than or equal to 10(-4) mol/l. The open probability was downregulated by decreasing cytosolic pH (2-fold by a decrease in pH by less than or equal to 0.2 units).(ABSTRACT TRUNCATED AT 400 WORDS)

  19. Investigating ion channel conformational changes using voltage clamp fluorometry.

    PubMed

    Talwar, Sahil; Lynch, Joseph W

    2015-11-01

    Ion channels are membrane proteins whose functions are governed by conformational changes. The widespread distribution of ion channels, coupled with their involvement in most physiological and pathological processes and their importance as therapeutic targets, renders the elucidation of these conformational mechanisms highly compelling from a drug discovery perspective. Thanks to recent advances in structural biology techniques, we now have high-resolution static molecular structures for members of the major ion channel families. However, major questions remain to be resolved about the conformational states that ion channels adopt during activation, drug modulation and desensitization. Patch-clamp electrophysiology has long been used to define ion channel conformational states based on functional criteria. It achieves this by monitoring conformational changes at the channel gate and cannot detect conformational changes occurring in regions distant from the gate. Voltage clamp fluorometry involves labelling cysteines introduced into domains of interest with environmentally sensitive fluorophores and inferring structural rearrangements from voltage or ligand-induced fluorescence changes. Ion channel currents are monitored simultaneously to verify the conformational status. By defining real time conformational changes in domains distant from the gate, this technique provides unexpected new insights into ion channel structure and function. This review aims to summarise the methodology and highlight recent innovative applications of this powerful technique. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A New Individually Addressable Micro-LED Array for Photogenetic Neural Stimulation.

    PubMed

    McGovern, B; Berlinguer Palmini, R; Grossman, N; Drakakis, E; Poher, V; Neil, M A A; Degenaar, P

    2010-12-01

    Here, we demonstrate the use of a micro light emitting diode (LED) array as a powerful tool for complex spatiotemporal control of photosensitized neurons. The array can generate arbitrary, 2-D, excitation patterns with millisecond and micrometer resolution. In particular, we describe an active matrix control address system to allow simultaneous control of 256 individual micro LEDs. We present the system optically integrated into a microscope environment and patch clamp electrophysiology. The results show that the emitters have sufficient radiance at the required wavelength to stimulate neurons expressing channelrhodopsin-2 (ChR2).

  1. Measurement of Single Channel Currents from Cardiac Gap Junctions

    NASA Astrophysics Data System (ADS)

    Veenstra, Richard D.; Dehaan, Robert L.

    1986-08-01

    Cardiac gap junctions consist of arrays of integral membrane proteins joined across the intercellular cleft at points of cell-to-cell contact. These junctional proteins are thought to form pores through which ions can diffuse from cytosol to cytosol. By monitoring whole-cell currents in pairs of embryonic heart cells with two independent patch-clamp circuits, the properties of single gap junction channels have been investigated. These channels had a conductance of about 165 picosiemens and underwent spontaneous openings and closings that were independent of voltage. Channel activity and macroscopic junctional conductance were both decreased by the uncoupling agent 1-octanol.

  2. Analysis of whole-cell currents by patch clamp of guinea-pig myenteric neurones in intact ganglia

    PubMed Central

    Rugiero, François; Gola, Maurice; Kunze, Wolf A A; Reynaud, Jean-Claude; Furness, John B; Clerc, Nadine

    2002-01-01

    Whole-cell patch-clamp recordings taken from guinea-pig duodenal myenteric neurones within intact ganglia were used to determine the properties of S and AH neurones. Major currents that determine the states of AH neurones were identified and quantified. S neurones had resting potentials of −47 ± 6 mV and input resistances (Rin) of 713 ± 49 MΩ at voltages ranging from −90 to −40 mV. At more negative levels, activation of a time-independent, caesium-sensitive, inward-rectifier current (IKir) decreased Rin to 103 ± 10 MΩ. AH neurones had resting potentials of −57 ± 4 mV and Rin was 502 ± 27 MΩ. Rin fell to 194 ± 16 MΩ upon hyperpolarization. This decrease was attributable mainly to the activation of a cationic h current, Ih, and to IKir. Resting potential and Rin exhibited a low sensitivity to changes in [K+]o in both AH and S neurones. This indicates that both cells have a low background K+ permeability. The cationic current, Ih, contributed about 20 % to the resting conductance of AH neurones. It had a half-activation voltage of −72 ± 2 mV, and a voltage sensitivity of 8.2 ± 0.7 mV per e-fold change. Ih has relatively fast, voltage-dependent kinetics, with on and off time constants in the range of 50–350 ms. AH neurones had a previously undescribed, low threshold, slowly inactivating, sodium-dependent current that was poorly sensitive to TTX. In AH neurones, the post-action-potential slow hyperpolarizing current, IAHP, displayed large variation from cell to cell. IAHP appeared to be highly Ca2+ sensitive, since its activation with either membrane depolarization or caffeine (1 mm) was not prevented by perfusing the cell with 10 mm BAPTA. We determined the identity of the Ca2+ channels linked to IAHP. Action potentials of AH neurones that were elongated by TEA (10 mm) were similarly shortened and IAHP was suppressed with each of the three Ω-conotoxins GVIA, MVIIA and MVIIC (0.3–0.5 μm), but not with Ω-agatoxin IVA (0.2 μm). There was no additivity between the effects of the three conotoxins, which indicates the presence of N- but not of P/Q-type Ca2+ channels. A residual Ca2+ current, resistant to all toxins, but blocked by 0.5 mm Cd2+, could not generate IAHP. This patch-clamp study, performed on intact ganglia, demonstrates that the AH neurones of the guinea-pig duodenum are under the control of four major currents, IAHP, Ih, an N-type Ca2+ current and a slowly inactivating Na+ current. PMID:11790812

  3. Effects of pioglitazone on cardiac ion currents and action potential morphology in canine ventricular myocytes.

    PubMed

    Kistamás, Kornél; Szentandrássy, Norbert; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Bárándi, László; Horváth, Balázs; Szebeni, Andrea; Magyar, János; Bányász, Tamás; Kecskeméti, Valéria; Nánási, Péter P

    2013-06-15

    Despite its widespread therapeutical use there is little information on the cellular cardiac effects of the antidiabetic drug pioglitazone in larger mammals. In the present study, therefore, the concentration-dependent effects of pioglitazone on ion currents and action potential configuration were studied in isolated canine ventricular myocytes using standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques. Pioglitazone decreased the maximum velocity of depolarization and the amplitude of phase-1 repolarization at concentrations ≥3 μM. Action potentials were shortened by pioglitazone at concentrations ≥10 μM, which effect was accompanied with significant reduction of beat-to-beat variability of action potential duration. Several transmembrane ion currents, including the transient outward K(+) current (Ito), the L-type Ca(2+) current (ICa), the rapid and slow components of the delayed rectifier K(+) current (IKr and IKs, respectively), and the inward rectifier K(+) current (IK1) were inhibited by pioglitazone under conventional voltage clamp conditions. Ito was blocked significantly at concentrations ≥3 μM, ICa, IKr, IKs at concentrations ≥10 μM, while IK1 at concentrations ≥30 μM. Suppression of Ito, ICa, IKr, and IK1 has been confirmed also under action potential voltage clamp conditions. ATP-sensitive K(+) current, when activated by lemakalim, was effectively blocked by pioglitazone. Accordingly, action potentials were prolonged by 10 μM pioglitazone when the drug was applied in the presence of lemakalim. All these effects developed rapidly and were readily reversible upon washout. In conclusion, pioglitazone seems to be a harmless agent at usual therapeutic concentrations. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Diadenosine tetraphosphate-gating of cardiac K(ATP) channels requires intact actin cytoskeleton.

    PubMed

    Jovanović, S; Jovanović, A

    2001-09-01

    Diadenosine polyphosphates (ApnA) have been recently discovered in the heart, and their levels found to be regulated by ischemia. These signaling molecules are believed to regulate cellular processes that alarm a cell to metabolic stress. In particular, changes in cardiac diadenosine polyphosphates (ApnA) levels may contribute to the regulation of ATP-sensitive K+ (K(ATP)) channel activity, an ion channel that couples the cellular metabolic state with membrane excitability. A feature of myocardial ischemia is the disruption of the actin cytoskeleton which critically regulates the behavior of K(ATP) channels. Whether the integrity of actin microfilaments regulates the interaction of ApnA with K(ATP) channels is not known. The inside-out configuration of the patch-clamp technique was applied to cardiomyocytes isolated from guinea-pig heart. Following patch excision, the prototype dinucleotide, diadenosine tetraphosphate (Ap4A), inhibited K(ATP) channel opening. Treatment of the internal side of membrane patches with either cytochalasin B or DNase I, disrupters of the actin cytoskeleton, prevented Ap4A-induced inhibition of K(ATP) channel opening. Application of purified actin to DNase-treated membrane patches restored the ability of Ap4A to close K(ATP) channels. This study shows that inhibition of cardiac K(ATP) channel by Ap4A, a putative alarmone, requires intact subsarcolemmal actin network. Such interaction between K(ATP) channels, the cardiomyocyte cytoskeleton and intracellular Ap4A could affect different channel-dependent functions.

  5. Aniracetam reduces glutamate receptor desensitization and slows the decay of fast excitatory synaptic currents in the hippocampus.

    PubMed Central

    Isaacson, J S; Nicoll, R A

    1991-01-01

    Aniracetam is a nootropic drug that has been shown to selectively enhance quisqualate receptor-mediated responses in Xenopus oocytes injected with brain mRNA and in hippocampal pyramidal cells [Ito, I., Tanabe, S., Kohda, A. & Sugiyama, H. (1990) J. Physiol. (London) 424, 533-544]. We have used patch clamp recording techniques in hippocampal slices to elucidate the mechanism for this selective action. We find that aniracetam enhances glutamate-evoked currents in whole-cell recordings and, in outside-out patches, strongly reduces glutamate receptor desensitization. In addition, aniracetam selectively prolongs the time course and increases the peak amplitude of fast synaptic currents. These findings indicate that aniracetam slows the kinetics of fast synaptic transmission and are consistent with the proposal [Trussell, L. O. & Fischbach, G. D. (1989) Neuron 3, 209-218; Tang, C.-M., Dichter, M. & Morad, M. (1989) Science 243, 1474-1477] that receptor desensitization governs the strength of fast excitatory synaptic transmission in the brain. PMID:1660156

  6. Aniracetam reduces glutamate receptor desensitization and slows the decay of fast excitatory synaptic currents in the hippocampus.

    PubMed

    Isaacson, J S; Nicoll, R A

    1991-12-01

    Aniracetam is a nootropic drug that has been shown to selectively enhance quisqualate receptor-mediated responses in Xenopus oocytes injected with brain mRNA and in hippocampal pyramidal cells [Ito, I., Tanabe, S., Kohda, A. & Sugiyama, H. (1990) J. Physiol. (London) 424, 533-544]. We have used patch clamp recording techniques in hippocampal slices to elucidate the mechanism for this selective action. We find that aniracetam enhances glutamate-evoked currents in whole-cell recordings and, in outside-out patches, strongly reduces glutamate receptor desensitization. In addition, aniracetam selectively prolongs the time course and increases the peak amplitude of fast synaptic currents. These findings indicate that aniracetam slows the kinetics of fast synaptic transmission and are consistent with the proposal [Trussell, L. O. & Fischbach, G. D. (1989) Neuron 3, 209-218; Tang, C.-M., Dichter, M. & Morad, M. (1989) Science 243, 1474-1477] that receptor desensitization governs the strength of fast excitatory synaptic transmission in the brain.

  7. Delamination detection in smart composite beams using Lamb waves

    NASA Astrophysics Data System (ADS)

    Ip, Kim-Ho; Mai, Yiu-Wing

    2004-06-01

    This paper presents a feasibility study on using Lamb waves to detect and locate through-width delamination in fiber-reinforced plastic beams. An active diagnostic system is proposed for clamped-free specimens. It consists of a piezoelectric patch and an accelerometer both mounted near the support. Such a system can locate damage in an absolute sense, that is, a priori knowledge on the response from pristine specimens is not required. The fundamental anti-symmetric Lamb wave mode is chosen as the diagnostic wave. It is generated by applying a voltage in the form of sinusoidal bursts to the piezoelectric patch. The proposed system was applied to locate delaminations in some fabricated Kevlar/epoxy beam specimens. With an appropriate actuating frequency, distortions of waveforms due to boundary reflections can be reduced. Based on their arrival times and the known propagating speed of Lamb waves, the delaminations can be located. The errors associated with the predicted damage positions range from 4.5% to 8.5%.

  8. Protease-Activated Receptor 2 Activation Inhibits N-Type Ca2+ Currents in Rat Peripheral Sympathetic Neurons

    PubMed Central

    Kim, Young-Hwan; Ahn, Duck-Sun; Kim, Myeong Ok; Joeng, Ji-Hyun; Chung, Seungsoo

    2014-01-01

    The protease-activated receptor (PAR)-2 is highly expressed in endothelial cells and vascular smooth muscle cells. It plays a crucial role in regulating blood pressure via the modulation of peripheral vascular tone. Although several mechanisms have been suggested to explain PAR-2-induced hypotension, the precise mechanism remains to be elucidated. To investigate this possibility, we investigated the effects of PAR-2 activation on N-type Ca2+ currents (ICa-N) in isolated neurons of the celiac ganglion (CG), which is involved in the sympathetic regulation of mesenteric artery vascular tone. PAR-2 agonists irreversibly diminished voltage-gated Ca2+ currents (ICa), measured using the patch-clamp method, in rat CG neurons, whereas thrombin had little effect on ICa. This PAR-2-induced inhibition was almost completely prevented by ω-CgTx, a potent N-type Ca2+ channel blocker, suggesting the involvement of N-type Ca2+ channels in PAR-2-induced inhibition. In addition, PAR-2 agonists inhibited ICa–N in a voltage-independent manner in rat CG neurons. Moreover, PAR-2 agonists reduced action potential (AP) firing frequency as measured using the current-clamp method in rat CG neurons. This inhibition of AP firing induced by PAR-2 agonists was almost completely prevented by ω-CgTx, indicating that PAR-2 activation may regulate the membrane excitability of peripheral sympathetic neurons through modulation of N-type Ca2+ channels. In conclusion, the present findings demonstrate that the activation of PAR-2 suppresses peripheral sympathetic outflow by modulating N-type Ca2+ channel activity, which appears to be involved in PAR-2-induced hypotension, in peripheral sympathetic nerve terminals. PMID:25410909

  9. Linear ultrasonic motor for absolute gravimeter.

    PubMed

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-05-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Periodic shunted arrays for the control of noise radiation in an enclosure

    NASA Astrophysics Data System (ADS)

    Casadei, Filippo; Dozio, Lorenzo; Ruzzene, Massimo; Cunefare, Kenneth A.

    2010-08-01

    This work presents numerical and experimental investigations of the application of a periodic array of resistive-inductive (RL) shunted piezoelectric patches for the attenuation of broadband noise radiated by a flexible plate in an enclosed cavity. A 4×4 lay-out of piezoelectric patches is bonded to the surface of a rectangular plate fully clamped to the top face of a rectangular cavity. Each piezo-patch is shunted through a single RL circuit, and all shunting circuits are tuned at the same frequency. The response of the resulting periodic structure is characterized by frequency bandgaps where vibrations and associated noise are strongly attenuated. The location and extent of induced bandgaps are predicted by the application of Bloch theorem on a unit cell of the periodic assembly, and they are controlled by proper selection of the shunting circuit impedance. A coupled piezo-structural-acoustic finite element model is developed to evaluate the noise reduction performance. Strong attenuation of multiple panel-controlled modes is observed over broad frequency bands. The proposed concept is tested on an aluminum plate mounted in a wooden box and driven by a shaker. Experimental results are presented in terms of pressure responses recorded using a grid of microphones placed inside the acoustic box.

  11. Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Kizer, N.; Barry, E. L.; Friedman, P. A.; Hruska, K. A.

    1996-01-01

    By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS.

  12. Slow oscillation of membrane currents mediated by glutamatergic inputs of rat somatosensory cortical neurons: in vivo patch-clamp analysis.

    PubMed

    Doi, Atsushi; Mizuno, Masaharu; Katafuchi, Toshihiko; Furue, Hidemasa; Koga, Kohei; Yoshimura, Megumu

    2007-11-01

    Using in vivo patch-clamp technique, the slow oscillation of membrane currents was characterized by its synaptic nature, correlation with electroencephalogram (EEG) and responses to different anesthetic agents, in primary somatosensory cortex (SI) neurons in urethane-anesthetized rats. In more than 90% of the SI neurons, the slow oscillation of the inward currents (0.1-2.5 Hz) with the duration of several hundreds of a millisecond was observed at the holding membrane potential of -70 mV. The reversal potential of the inward currents was approximately 0 mV and was suppressed by application of an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor antagonist. In most cases (> 90%) the inward current was synchronized with positive wave of the surface EEG recorded from ipsilateral and even contralateral cortical regions. The frequency as well as duration of the slow oscillation decreased by a volatile anesthetic agent, isoflurane (1.5-5.0%), and excitatory postsynaptic currents (EPSCs) were almost abolished at the highest concentration. Intraperitoneal injection of pentobarbital (25 mg/kg) also decreased the frequency of the slow oscillation without affecting short EPSCs. When gamma-aminobutyric acid A (GABA(A)) receptors were activated by local microinjection of muscimol (3 x 10(-3) m, 1-10 microL) into the thalamus, the frequency of the slow oscillation markedly decreased, but was not abolished completely. These findings suggest that the slow oscillation of the inward currents is generated by the summation of glutamatergic EPSCs, and affected by isoflurane and pentobarbital differently. In addition, GABAergic system in the thalamus can affect the frequency, but is not essentially implicated in the genesis of the slow oscillation.

  13. Methylene blue inhibits function of the 5-HT transporter

    PubMed Central

    Oz, Murat; Isaev, Dmytro; Lorke, Dietrich E; Hasan, Muhammed; Petroianu, Georg; Shippenberg, Toni S

    2012-01-01

    BACKGROUND AND PURPOSE Methylene blue (MB) is commonly employed as a treatment for methaemoglobinaemia, malaria and vasoplegic shock. An increasing number of studies indicate that MB can cause 5-HT toxicity when administered with a 5-HT reuptake inhibitor. MB is a potent inhibitor of monoamine oxidases, but other targets that may contribute to MB toxicity have not been identified. Given the role of the 5-HT transporter (SERT) in the regulation of extracellular 5-HT concentrations, the present study aimed to characterize the effect of MB on SERT. EXPERIMENTAL APPROACH Live cell imaging, in conjunction with the fluorescent SERT substrate 4-(4-(dimethylamino)-styryl)-N-methylpyridinium (ASP+), [3H]5-HT uptake and whole-cell patch-clamp techniques were employed to examine the effects of MB on SERT function. KEY RESULTS In EM4 cells expressing GFP-tagged human SERT (hSERT), MB concentration-dependently inhibited ASP+ accumulation (IC50: 1.4 ± 0.3 µM). A similar effect was observed in N2A cells. Uptake of [3H]5-HT was decreased by MB pretreatment. Furthermore, patch-clamp studies in hSERT expressing cells indicated that MB significantly inhibited 5-HT-evoked ion currents. Pretreatment with 8-Br-cGMP did not alter the inhibitory effect of MB on hSERT activity, and intracellular Ca2+ levels remained unchanged during MB application. Further experiments revealed that ASP+ binding to cell surface hSERT was reduced after MB treatment. In whole-cell radioligand experiments, exposure to MB (10 µM; 10 min) did not alter surface binding of the SERT ligand [125I]RTI-55. CONCLUSIONS AND IMPLICATIONS MB modulated SERT function and suggested that SERT may be an additional target upon which MB acts to produce 5-HT toxicity. PMID:21542830

  14. Plasma Membrane Permeabilization by 60- and 600-ns Electric Pulses Is Determined by the Absorbed Dose

    PubMed Central

    Ibey, Bennett L.; Xiao, Shu; Schoenbach, Karl H.; Murphy, Michael R.; Pakhomov, Andrei G.

    2008-01-01

    We explored how the effect of plasma membrane permeabilization by nanosecond-duration electric pulses (nsEP) depends on the physical characteristics of exposure. The resting membrane resistance (Rm) and membrane potential (MP) were measured in cultured GH3 and CHO cells by conventional whole-cell patch-clamp technique. Intact cells were exposed to a single nsEP (60 or 600 ns duration, 0-22 kV/cm), followed by patch-clamp measurements after a 2-3 min delay. Consistent with earlier findings, nsEP caused long-lasting Rm decrease, accompanied by the loss of MP. The threshold for these effects was about 6 kV/cm for 60 ns pulses, and about 1 kV/cm for 600 ns pulses. Further analysis established that it was neither pulse duration nor the E-field amplitude per se, but the absorbed dose that determined the magnitude of the biological effect. In other words, exposure to nsEP at either pulse duration caused equal effects if the absorbed doses were equal. The threshold absorbed dose to produce plasma membrane effects in either GH3 or CHO cells at either pulse duration was found to be at or below 10 mJ/g. Despite being determined by the dose, the nsEP effect clearly is not thermal, as the maximum heating at the threshold dose is less than 0.01 °C. The use of the absorbed dose as a universal exposure metric may help to compare and quantify nsEP sensitivity of different cell types and of cells in different physiological conditions. The absorbed dose may also prove to be a more useful metric than the incident E-field in determining safety limits for high peak, lowaverage power EMF emissions. PMID:18839412

  15. Regulation of the epithelial Na+ channel by membrane tension.

    PubMed

    Awayda, M S; Subramanyam, M

    1998-08-01

    The sensitivity of alphabetagamma rat epithelial Na+ channel (rENaC) to osmotically or mechanically induced changes of membrane tension was investigated in the Xenopus oocyte expression system, using both dual electrode voltage clamp and cell-attached patch clamp methodologies. ENaC whole-cell currents were insensitive to mechanical cell swelling caused by direct injection of 90 or 180 nl of 100-mM KCl. Similarly, ENaC whole-cell currents were insensitive to osmotic cell swelling caused by a 33% decrease of bathing solution osmolarity. The lack of an effect of cell swelling on ENaC was independent of the status of the actin cytoskeleton, as ENaC remained insensitive to osmotic and mechanical cell swelling in oocytes pretreated with cytochalasin B for 2-5 h. This apparent insensitivity of ENaC to increased cell volume and changes of membrane tension was also observed at the single channel level in membrane patches subjected to negative or positive pressures of 5 or 10 in. of water. However, and contrary to the lack of an effect of cell swelling, ENaC currents were inhibited by cell shrinking. A 45-min incubation in a 260-mosmol solution (a 25% increase of solution osmolarity) caused a decrease of ENaC currents (at -100 mV) from -3.42 +/- 0.34 to -2.02 +/- 0.23 microA (n = 6). This decrease of current with cell shrinking was completely blocked by pretreatment of oocytes with cytochalasin B, indicating that these changes of current are not likely related to a direct effect of cell shrinking. We conclude that alpha beta gamma rENaC is not directly mechanosensitive when expressed in a system that can produce a channel with identical properties to those found in native epithelia.

  16. Human spermatozoa possess a calcium-dependent chloride channel that may participate in the acrosomal reaction

    PubMed Central

    Orta, Gerardo; Ferreira, Gonzalo; José, Omar; Treviño, Claudia L; Beltrán, Carmen; Darszon, Alberto

    2012-01-01

    Motility, maturation and the acrosome reaction (AR) are fundamental functions of mammalian spermatozoa. While travelling through the female reproductive tract, spermatozoa must mature through a process named capacitation, so that they can reach the egg and undergo the AR, an exocytotic event necessary to fertilize the egg. Though Cl− is important for sperm capacitation and for the AR, not much is known about the molecular identity of the Cl− transporters involved in these processes. We implemented a modified perforated patch-clamp strategy to obtain whole cell recordings sealing on the head of mature human spermatozoa. Our whole cell recordings revealed the presence of a Ca2+-dependent Cl− current. The biophysical characteristics of this current and its sensitivity to niflumic acid (NFA) and 4,4′-diisothiocyano-2,2′-stilbene disulphonic acid (DIDIS) are consistent with those displayed by the Ca2+-dependent Cl− channel from the anoctamin family (TMEM16). Whole cell patch clamp recordings in the cytoplasmic droplet of human spermatozoa corroborated the presence of these currents, which were sensitive to NFA and to a small molecule TMEM16A inhibitor (TMEM16Ainh, an aminophenylthiazole). Importantly, the human sperm AR induced by a recombinant human glycoprotein from the zona pellucida, rhZP3, displayed a similar sensitivity to NFA, DIDS and TMEM16Ainh as the sperm Ca2+-dependent Cl− currents. Our findings indicate the presence of Ca2+-dependent Cl− currents in human spermatozoa, that TMEM16A may contribute to these currents and also that sperm Ca2+-dependent Cl− currents may participate in the rhZP3-induced AR. PMID:22473777

  17. Role of gap junctions in the contractile response to agonists in the mesenteric artery of spontaneously hypertensive rats.

    PubMed

    Ma, Ke-Tao; Li, Xin-Zhi; Li, Li; Jiang, Xue-Wei; Chen, Xin-Yan; Liu, Wei-Dong; Zhao, Lei; Zhang, Zhong-Shuang; Si, Jun-Qiang

    2014-02-01

    To investigate the effects of hypertension on the changes in gap junctions between vascular smooth muscle cells (VSMCs) in the mesenteric artery (MA) of spontaneously hypertensive rats (SHRs). Whole-cell patch clamp, pressure myography, real-time quantitative reverse transcription PCR (qRT-PCR), western blot analysis and transmission electron microscopy were used to examine the differences in expression and function of the gap junction between MA VSMCs of SHR and control normotensive Wistar-Kyoto (WKY) rats. (1) Whole-cell patch clamp measurements showed that the membrane capacitance and conductance of in-situ MA VSMCs of SHR were significantly greater than those of WKY rats (P<0.05), suggesting enhanced gap junction coupling between MA VSMCs of SHR. (2) The administration of phenylephrine (PE) and KCl (an endothelium-independent vasoconstrictor) initiated more pronounced vasoconstriction in SHR versus WKY rats (P<0.05). Furthermore, 2-APB (a gap junction inhibitor) attenuated PE- and KCl-induced vasoconstriction, and the inhibitory effects of 2-APB were significantly greater in SHR (P<0.05). (3) The expression of connexin 45 (Cx45) mRNA and protein in the MA was greater in SHR versus WKY rats (P<0.05). The level of phosphorylated Cx43 was significantly higher in SHR versus WKY rats (P<0.05), although the expression of total Cx43 mRNA and protein in the MA was equivalent between SHR and WKY rats. Electron microscopy revealed that the gap junctions were significantly larger in SHR versus WKY rats. Increases in the expression of Cx45 and phosphorylation of Cx43 may contribute to the enhancement of communication across gap junctions between MA VSMCs of SHR, which may increase the contractile response to agonists.

  18. Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal neurons.

    PubMed

    Harnett, Mark T; Magee, Jeffrey C; Williams, Stephen R

    2015-01-21

    The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. Copyright © 2015 the authors 0270-6474/15/351024-14$15.00/0.

  19. Ion channels in plants.

    PubMed

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  20. Effect of cholesterol depletion on the pore dilation of TRPV1.

    PubMed

    Jansson, Erik T; Trkulja, Carolina L; Ahemaiti, Aikeremu; Millingen, Maria; Jeffries, Gavin Dm; Jardemark, Kent; Orwar, Owe

    2013-01-02

    The TRPV1 ion channel is expressed in nociceptors, where pharmacological modulation of its function may offer a means of alleviating pain and neurogenic inflammation processes in the human body. The aim of this study was to investigate the effects of cholesterol depletion of the cell on ion-permeability of the TRPV1 ion channel. The ion-permeability properties of TRPV1 were assessed using whole-cell patch-clamp and YO-PRO uptake rate studies on a Chinese hamster ovary (CHO) cell line expressing this ion channel. Prolonged capsaicin-induced activation of TRPV1 with N-methyl-D-glucamine (NMDG) as the sole extracellular cation, generated a biphasic current which included an initial outward current followed by an inward current. Similarly, prolonged proton-activation (pH 5.5) of TRPV1 under hypocalcemic conditions also generated a biphasic current including a fast initial current peak followed by a larger second one. Patch-clamp recordings of reversal potentials of TRPV1 revealed an increase of the ion-permeability for NMDG during prolonged activation of this ion channel under hypocalcemic conditions. Our findings show that cholesterol depletion inhibited both the second current, and the increase in ion-permeability of the TRPV1 channel, resulting from sustained agonist-activation with capsaicin and protons (pH 5.5). These results were confirmed with YO-PRO uptake rate studies using laser scanning confocal microscopy, where cholesterol depletion was found to decrease TRPV1 mediated uptake rates of YO-PRO. Hence, these results propose a novel mechanism by which cellular cholesterol depletion modulates the function of TRPV1, which may constitute a novel approach for treatment of neurogenic pain.

  1. Polyamines Interact with Hydroxyl Radicals in Activating Ca2+ and K+ Transport across the Root Epidermal Plasma Membranes1[W

    PubMed Central

    Zepeda-Jazo, Isaac; Velarde-Buendía, Ana María; Enríquez-Figueroa, René; Bose, Jayakumar; Shabala, Sergey; Muñiz-Murguía, Jesús; Pottosin, Igor I.

    2011-01-01

    Reactive oxygen species (ROS) are integral components of the plant adaptive responses to environment. Importantly, ROS affect the intracellular Ca2+ dynamics by activating a range of nonselective Ca2+-permeable channels in plasma membrane (PM). Using patch-clamp and noninvasive microelectrode ion flux measuring techniques, we have characterized ionic currents and net K+ and Ca2+ fluxes induced by hydroxyl radicals (OH•) in pea (Pisum sativum) roots. OH•, but not hydrogen peroxide, activated a rapid Ca2+ efflux and a more slowly developing net Ca2+ influx concurrent with a net K+ efflux. In isolated protoplasts, OH• evoked a nonselective current, with a time course and a steady-state magnitude similar to those for a K+ efflux in intact roots. This current displayed a low ionic selectivity and was permeable to Ca2+. Active OH•-induced Ca2+ efflux in roots was suppressed by the PM Ca2+ pump inhibitors eosine yellow and erythrosine B. The cation channel blockers gadolinium, nifedipine, and verapamil and the anionic channel blockers 5-nitro-2(3-phenylpropylamino)-benzoate and niflumate inhibited OH•-induced ionic currents in root protoplasts and K+ efflux and Ca2+ influx in roots. Contrary to expectations, polyamines (PAs) did not inhibit the OH•-induced cation fluxes. The net OH•-induced Ca2+ efflux was largely prolonged in the presence of spermine, and all PAs tested (spermine, spermidine, and putrescine) accelerated and augmented the OH•-induced net K+ efflux from roots. The latter effect was also observed in patch-clamp experiments on root protoplasts. We conclude that PAs interact with ROS to alter intracellular Ca2+ homeostasis by modulating both Ca2+ influx and efflux transport systems at the root cell PM. PMID:21980172

  2. Hypoxia sensitivity of a voltage-gated potassium current in porcine intrapulmonary vein smooth muscle cells.

    PubMed

    Dospinescu, Ciprian; Widmer, Hélène; Rowe, Iain; Wainwright, Cherry; Cruickshank, Stuart F

    2012-09-01

    Hypoxia contracts the pulmonary vein, but the underlying cellular effectors remain unclear. Utilizing contractile studies and whole cell patch-clamp electrophysiology, we report for the first time a hypoxia-sensitive K(+) current in porcine pulmonary vein smooth muscle cells (PVSMC). Hypoxia induced a transient contractile response that was 56 ± 7% of the control response (80 mM KCl). This contraction required extracellular Ca(2+) and was sensitive to Ca(2+) channel blockade. Blockade of K(+) channels by tetraethylammonium chloride (TEA) or 4-aminopyridine (4-AP) reversibly inhibited the hypoxia-mediated contraction. Single-isolated PVSMC (typically 159.1 ± 2.3 μm long) had mean resting membrane potentials (RMP) of -36 ± 4 mV with a mean membrane capacitance of 108 ± 3.5 pF. Whole cell patch-clamp recordings identified a rapidly activating, partially inactivating K(+) current (I(KH)) that was hypoxia, TEA, and 4-AP sensitive. I(KH) was insensitive to Penitrem A or glyburide in PVSMC and had a time to peak of 14.4 ± 3.3 ms and recovered in 67 ms following inactivation at +80 mV. Peak window current was -32 mV, suggesting that I(KH) may contribute to PVSMC RMP. The molecular identity of the potassium channel is not clear. However, RT-PCR, using porcine pulmonary artery and vein samples, identified Kv(1.5), Kv(2.1), and BK, with all three being more abundant in the PV. Both artery and vein expressed STREX, a highly conserved and hypoxia-sensitive BK channel variant. Taken together, our data support the hypothesis that hypoxic inhibition of I(KH) would contribute to hypoxic-induced contraction in PVSMC.

  3. An electrophysiological study on the effects of Pa-1G (a phospholipase A(2)) from the venom of king brown snake, Pseudechis australis, on neuromuscular function.

    PubMed

    Fatehi, M; Rowan, E G; Harvey, A L

    2002-01-01

    The effects of Pa-1G, a phospholipase A(2) (PLA(2)) from the venom of the Australian king brown snake (Pseudechis australis) were determined on the release of acetylcholine, muscle resting membrane potential and motor nerve terminal action potential at mouse neuromuscular junction. Intracellular recording from endplate regions of mouse triangularis sterni nerve-muscle preparations revealed that Pa-1G (800 nM) significantly reduced the amplitude of endplate potentials within 10 min exposure. The quantal content of endplate potentials was decreased to 58+/-6% of control after 30 min exposure to 800 nM Pa-1G. The toxin also caused a partial depolarisation of mouse muscle fibres within 60 min exposure. Extracellular recording of action potentials at motor nerve terminals showed that Pa-1G reduced the waveforms associated with both sodium and potassium conductances. To investigate whether this was a direct or indirect effect of the toxin on these ionic currents, whole cell patch clamp experiments were performed using human neuroblastoma (SK-N-SH) cells and B82 mouse fibroblasts stably transfected with rKv1.2. Patch clamp recording experiments confirmed that potassium currents sensitive to alpha-dendrotoxin recorded from B82 cells and sodium currents in SK-N-SH cells were not affected by the toxin. Since neither facilitation of acetylcholine release at mouse neuromuscular junction nor depression of potassium currents in B82 cells has been observed, the apparent blockade of potassium currents at mouse motor nerve endings induced by the toxin is unlikely to be due to a selective block of potassium channels.

  4. A unique alkaline pH-regulated and fatty acid-activated tandem pore domain potassium channel (K2P) from a marine sponge

    PubMed Central

    Wells, Gregory D.; Tang, Qiong-Yao; Heler, Robert; Tompkins-MacDonald, Gabrielle J.; Pritchard, Erica N.; Leys, Sally P.; Logothetis, Diomedes E.; Boland, Linda M.

    2012-01-01

    SUMMARY A cDNA encoding a potassium channel of the two-pore domain family (K2P, KCNK) of leak channels was cloned from the marine sponge Amphimedon queenslandica. Phylogenetic analysis indicated that AquK2P cannot be placed into any of the established functional groups of mammalian K2P channels. We used the Xenopus oocyte expression system, a two-electrode voltage clamp and inside-out patch clamp electrophysiology to determine the physiological properties of AquK2P. In whole cells, non-inactivating, voltage-independent, outwardly rectifying K+ currents were generated by external application of micromolar concentrations of arachidonic acid (AA; EC50 ∼30 μmol l–1), when applied in an alkaline solution (≥pH 8.0). Prior activation of channels facilitated the pH-regulated, AA-dependent activation of AquK2P but external pH changes alone did not activate the channels. Unlike certain mammalian fatty-acid-activated K2P channels, the sponge K2P channel was not activated by temperature and was insensitive to osmotically induced membrane distortion. In inside-out patch recordings, alkalinization of the internal pH (pKa 8.18) activated the AquK2P channels independently of AA and also facilitated activation by internally applied AA. The gating of the sponge K2P channel suggests that voltage-independent outward rectification and sensitivity to pH and AA are ancient and fundamental properties of animal K2P channels. In addition, the membrane potential of some poriferan cells may be dynamically regulated by pH and AA. PMID:22723483

  5. A unique alkaline pH-regulated and fatty acid-activated tandem pore domain potassium channel (K₂P) from a marine sponge.

    PubMed

    Wells, Gregory D; Tang, Qiong-Yao; Heler, Robert; Tompkins-MacDonald, Gabrielle J; Pritchard, Erica N; Leys, Sally P; Logothetis, Diomedes E; Boland, Linda M

    2012-07-15

    A cDNA encoding a potassium channel of the two-pore domain family (K(2P), KCNK) of leak channels was cloned from the marine sponge Amphimedon queenslandica. Phylogenetic analysis indicated that AquK(2P) cannot be placed into any of the established functional groups of mammalian K(2P) channels. We used the Xenopus oocyte expression system, a two-electrode voltage clamp and inside-out patch clamp electrophysiology to determine the physiological properties of AquK(2P). In whole cells, non-inactivating, voltage-independent, outwardly rectifying K(+) currents were generated by external application of micromolar concentrations of arachidonic acid (AA; EC(50) ∼30 μmol l(-1)), when applied in an alkaline solution (≥pH 8.0). Prior activation of channels facilitated the pH-regulated, AA-dependent activation of AquK(2P) but external pH changes alone did not activate the channels. Unlike certain mammalian fatty-acid-activated K(2P) channels, the sponge K(2P) channel was not activated by temperature and was insensitive to osmotically induced membrane distortion. In inside-out patch recordings, alkalinization of the internal pH (pK(a) 8.18) activated the AquK(2P) channels independently of AA and also facilitated activation by internally applied AA. The gating of the sponge K(2P) channel suggests that voltage-independent outward rectification and sensitivity to pH and AA are ancient and fundamental properties of animal K(2P) channels. In addition, the membrane potential of some poriferan cells may be dynamically regulated by pH and AA.

  6. Estradiol regulates responsiveness of the dorsal premammillary nucleus of the hypothalamus and affects fear- and anxiety-like behaviors in female rats.

    PubMed

    Litvin, Yoav; Cataldo, Giuseppe; Pfaff, Donald W; Kow, Lee-Ming

    2014-07-01

    Research suggests a causal link between estrogens and mood. Here, we began by examining the effects of estradiol (E2 ) on rat innate and conditioned defensive behaviors in response to cat odor. Second, we utilized whole-cell patch clamp electrophysiological techniques to assess noradrenergic effects on neurons within the dorsal premammillary nucleus of the hypothalamus (PMd), a nucleus implicated in fear reactivity, and their regulation by E2 . Our results show that E2 increased general arousal and modified innate defensive reactivity to cat odor. When ovariectomized females treated with E2 as opposed to oil were exposed to cat odor, they showed elevations in risk assessment and reductions in freezing, indicating a shift from passive to active coping. In addition, animals previously exposed to cat odor showed clear cue + context conditioning 24 h later. However, although E2 persisted in its effects on general arousal in the conditioning task, its effects on fear disappeared. In the patch clamp experiments noradrenergic compounds that typically induce fear clearly excited PMd neurons, producing depolarizations and action potentials. E2 treatment shifted some excitatory effects of noradrenergic agonists to inhibitory, possibly by differentially affecting α- and β-adrenoreceptors. In summary, our results implicate E2 in general arousal and fear reactivity, and suggest these may be governed by changes in noradrenergic responsivity in the PMd. These effects of E2 may have ethological relevance, serving to promote mate seeking even in contexts of ambiguous threat and shed light on the involvement of estrogen in mood and its associated disorders. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. In vitro electrocardiographic and cardiac ion channel effects of (-)-epigallocatechin-3-gallate, the main catechin of green tea.

    PubMed

    Kang, Jiesheng; Cheng, Hsien; Ji, Junzhi; Incardona, Josephine; Rampe, David

    2010-08-01

    Epigallocatechin-3-gallate (EGCG) is the major catechin found in green tea. EGCG is also available for consumption in the form of concentrated over-the-counter nutritional supplements. This compound is currently undergoing clinical trials for the treatment of a number of diseases including multiple sclerosis, and a variety of cancers. To date, few data exist regarding the effects of EGCG on the electrophysiology of the heart. Therefore, we examined the effects of EGCG on the electrocardiogram recorded from Langendorff-perfused guinea pig hearts and on cardiac ion channels using patch-clamp electrophysiology. EGCG had no significant effects on the electrocardiogram at concentrations of 3 and 10 microM. At 30 microM, EGCG prolonged PR and QRS intervals, slightly shortened the QT interval, and altered the shape of the ST-T-wave segment. The ST segment merged with the upstroke of the T wave, and we noted a prolongation in the time from the peak of the T wave until the end. Patch-clamp studies identified the KvLQT1/minK K(+) channel as a target for EGCG (IC(50) = 30.1 microM). In addition, EGCG inhibited the cloned human cardiac Na(+) channel Na(v)1.5 in a voltage-dependent fashion. The L-type Ca(2+) channel was inhibited by 20.8% at 30 microM, whereas the human ether-a-go-go-related gene and Kv4.3 cardiac K(+) channels were less sensitive to inhibition by EGCG. ECGC has a number of electrophysiological effects in the heart, and these effects may have clinical significance when multigram doses of this compound are used in human clinical trials or through self-ingestion of large amounts of over-the-counter products enriched in EGCG.

  8. Glycine- and GABA-mimetic Actions of Shilajit on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice

    PubMed Central

    Yin, Hua; Yang, Eun Ju; Park, Soo Joung

    2011-01-01

    Shilajit, a medicine herb commonly used in Ayurveda, has been reported to contain at least 85 minerals in ionic form that act on a variety of chemical, biological, and physical stressors. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Shilajit has been reported to be an injury and muscular pain reliever but there have been few functional studies of the effect of Shilajit on the SG neurons of the Vc. Therefore, whole cell and gramicidin-perfotrated patch clamp studies were performed to examine the action mechanism of Shilajit on the SG neurons of Vc from mouse brainstem slices. In the whole cell patch clamp mode, Shilajit induced short-lived and repeatable inward currents under the condition of a high chloride pipette solution on all the SG neurons tested. The Shilajit-induced inward currents were concentration dependent and maintained in the presence of tetrodotoxin (TTX), a voltage gated Na+ channel blocker, CNQX, a non-NMDA glutamate receptor antagonist, and AP5, an NMDA receptor antagonist. The Shilajit-induced responses were partially suppressed by picrotoxin, a GABAA receptor antagonist, and totally blocked in the presence of strychnine, a glycine receptor antagonist, however not affected by mecamylamine hydrochloride (MCH), a nicotinic acetylcholine receptor antagonist. Under the potassium gluconate pipette solution at holding potential 0 mV, Shilajit induced repeatable outward current. These results show that Shilajit has inhibitory effects on the SG neurons of Vc through chloride ion channels by activation of the glycine receptor and GABAA receptor, indicating that Shilajit contains sedating ingredients for the central nervous system. These results also suggest that Shilajit may be a potential target for modulating orofacial pain processing. PMID:22128261

  9. Glycine- and GABA-mimetic Actions of Shilajit on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice.

    PubMed

    Yin, Hua; Yang, Eun Ju; Park, Soo Joung; Han, Seong Kyu

    2011-10-01

    Shilajit, a medicine herb commonly used in Ayurveda, has been reported to contain at least 85 minerals in ionic form that act on a variety of chemical, biological, and physical stressors. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Shilajit has been reported to be an injury and muscular pain reliever but there have been few functional studies of the effect of Shilajit on the SG neurons of the Vc. Therefore, whole cell and gramicidin-perfotrated patch clamp studies were performed to examine the action mechanism of Shilajit on the SG neurons of Vc from mouse brainstem slices. In the whole cell patch clamp mode, Shilajit induced short-lived and repeatable inward currents under the condition of a high chloride pipette solution on all the SG neurons tested. The Shilajit-induced inward currents were concentration dependent and maintained in the presence of tetrodotoxin (TTX), a voltage gated Na(+) channel blocker, CNQX, a non-NMDA glutamate receptor antagonist, and AP5, an NMDA receptor antagonist. The Shilajit-induced responses were partially suppressed by picrotoxin, a GABA(A) receptor antagonist, and totally blocked in the presence of strychnine, a glycine receptor antagonist, however not affected by mecamylamine hydrochloride (MCH), a nicotinic acetylcholine receptor antagonist. Under the potassium gluconate pipette solution at holding potential 0 mV, Shilajit induced repeatable outward current. These results show that Shilajit has inhibitory effects on the SG neurons of Vc through chloride ion channels by activation of the glycine receptor and GABA(A) receptor, indicating that Shilajit contains sedating ingredients for the central nervous system. These results also suggest that Shilajit may be a potential target for modulating orofacial pain processing.

  10. Evidence for the functional involvement of members of the TRP channel family in the uptake of Na(+) and NH4 (+) by the ruminal epithelium.

    PubMed

    Rosendahl, Julia; Braun, Hannah S; Schrapers, Katharina T; Martens, Holger; Stumpff, Friederike

    2016-08-01

    Large quantities of protein are degraded in the fermentative parts of the gut to ammonia, which is absorbed, detoxified to urea, and excreted, leading to formation of nitrogenous compounds such as N2O that are associated with global warming. In ruminants, channel-mediated uptake of NH4 (+) from the rumen predominates. The molecular identity of these channels remains to be clarified. Ruminal cells and epithelia from cows and sheep were investigated using patch clamp, Ussing chamber, microelectrode techniques, and qPCR. In patch clamp experiments, bovine ruminal epithelial cells expressed a conductance for NH4 (+) that could be blocked in a voltage-dependent manner by divalent cations. In the native epithelium, NH4 (+) depolarized the apical potential, acidified the cytosol and induced a rise in short-circuit current (I sc) that persisted after the removal of Na(+), was blocked by verapamil, enhanced by the removal of divalent cations, and was sensitive to certain transient receptor potential (TRP) channel modulators. Menthol or thymol stimulated the I sc in Na(+) or NH4 (+) containing solutions in a dose-dependent manner and modulated transepithelial Ca(2+) fluxes. On the level of messenger RNA (mRNA), ovine and bovine ruminal epithelium expressed TRPA1, TRPV3, TRPV4, TRPM6, and TRPM7, with any expression of TRPV6 marginal. No bands were detected for TRPV1, TRPV5, or TRPM8. Functional and molecular biological data suggest that the transport of NH4 (+), Na(+), and Ca(2+) across the rumen involves TRP channels, with TRPV3 and TRPA1 emerging as prime candidate genes. TRP channels may also contribute to the transport of NH4 (+) across other epithelia.

  11. Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels

    PubMed Central

    Xia, Menghang; Shahane, Sampada; Huang, Ruili; Titus, Steven A.; Shum, Enoch; Zhao, Yong; Southall, Noel; Zheng, Wei; Witt, Kristine L.; Tice, Raymond R.; Austin, Christopher P.

    2011-01-01

    The human ether-a-go-go-related gene (hERG) channel, a member of a family of voltage-gated potassium (K+) channels, plays a critical role in the repolarization of the cardiac action potential. The reduction of hERG channel activity as a result of adverse drug effects or genetic mutations may cause QT interval prolongation and potentially lead to acquired long QT syndrome. Thus, screening for hERG channel activity is important in drug development. Cardiotoxicity associated with the inhibition of hERG channels by environmental chemicals is also a public health concern. To assess the inhibitory effects of environmental chemicals on hERG channel function, we screened the National Toxicology Program (NTP) collection of 1408 compounds by measuring thallium influx into cells through hERG channels. Seventeen compounds with hERG channel inhibition were identified with IC50 potencies ranging from 0.26 to 22 μM. Twelve of these compounds were confirmed as hERG channel blockers in an automated whole cell patch clamp experiment. In addition, we investigated the structure-activity relationship of seven compounds belonging to the quaternary ammonium compound (QAC) series on hERG channel inhibition. Among four active QAC compounds, tetra-n-octylammonium bromide was the most potent with an IC50 value of 260 nM in the thallium influx assay and 80 nM in the patch clamp assay. The potency of this class of hERG channel inhibitors appears to depend on the number and length of their aliphatic side-chains surrounding the charged nitrogen. Profiling environmental compound libraries for hERG channel inhibition provides information useful in prioritizing these compounds for cardiotoxicity assessment in vivo. PMID:21362439

  12. Effects of Tramadol on Substantia Gelatinosa Neurons in the Rat Spinal Cord: An In Vivo Patch-Clamp Analysis

    PubMed Central

    Yamasaki, Hiroyuki; Funai, Yusuke; Funao, Tomoharu; Mori, Takashi; Nishikawa, Kiyonobu

    2015-01-01

    Tramadol is thought to modulate synaptic transmissions in the spinal dorsal horn mainly by activating µ-opioid receptors and by inhibiting the reuptake of monoamines in the CNS. However, the precise mode of modulation remains unclear. We used an in vivo patch clamp technique in urethane-anesthetized rats to determine the antinociceptive mechanism of tramadol. In vivo whole-cell recordings of spontaneous inhibitory postsynaptic currents (sIPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs) were made from substantia gelatinosa (SG) neurons (lamina II) at holding potentials of 0 mV and -70 mV, respectively. The effects of intravenous administration (0.5, 5, 15 mg/kg) of tramadol were evaluated. The effects of superfusion of tramadol on the surface of the spinal cord and of a tramadol metabolite (M1) were further analyzed. Intravenous administration of tramadol at doses >5 mg/kg decreased the sEPSCs and increased the sIPSCs in SG neurons. These effects were not observed following naloxone pretreatment. Tramadol superfusion at a clinically relevant concentration (10 µM) had no effect, but when administered at a very high concentration (100 µM), tramadol decreased sEPSCs, produced outward currents, and enhanced sIPSCs. The effects of M1 (1, 5 mg/kg intravenously) on sEPSCs and sIPSCs were similar to those of tramadol at a corresponding dose (5, 15 mg/kg). The present study demonstrated that systemically administered tramadol indirectly inhibited glutamatergic transmission, and enhanced GABAergic and glycinergic transmissions in SG neurons. These effects were mediated primarily by the activation of μ-opioid receptors. M1 may play a key role in the antinociceptive mechanisms of tramadol. PMID:25933213

  13. High-Throughput Screening of Na(V)1.7 Modulators Using a Giga-Seal Automated Patch Clamp Instrument.

    PubMed

    Chambers, Chris; Witton, Ian; Adams, Cathryn; Marrington, Luke; Kammonen, Juha

    2016-03-01

    Voltage-gated sodium (Na(V)) channels have an essential role in the initiation and propagation of action potentials in excitable cells, such as neurons. Of these channels, Na(V)1.7 has been indicated as a key channel for pain sensation. While extensive efforts have gone into discovering novel Na(V)1.7 modulating compounds for the treatment of pain, none has reached the market yet. In the last two years, new compound screening technologies have been introduced, which may speed up the discovery of such compounds. The Sophion Qube(®) is a next-generation 384-well giga-seal automated patch clamp (APC) screening instrument, capable of testing thousands of compounds per day. By combining high-throughput screening and follow-up compound testing on the same APC platform, it should be possible to accelerate the hit-to-lead stage of ion channel drug discovery and help identify the most interesting compounds faster. Following a period of instrument beta-testing, a Na(V)1.7 high-throughput screen was run with two Pfizer plate-based compound subsets. In total, data were generated for 158,000 compounds at a median success rate of 83%, which can be considered high in APC screening. In parallel, IC50 assay validation and protocol optimization was completed with a set of reference compounds to understand how the IC50 potencies generated on the Qube correlate with data generated on the more established Sophion QPatch(®) APC platform. In summary, the results presented here demonstrate that the Qube provides a comparable but much faster approach to study Na(V)1.7 in a robust and reliable APC assay for compound screening.

  14. The Effects of Nicotinic and Muscarinic Receptor Activation on Patch-Clamped Cells in the Optic Tectum of Rana Pipiens

    PubMed Central

    Yu, C.-J.; Debski, E. A.

    2008-01-01

    Both nicotinic and muscarinic cholinergic receptors are present in the optic tectum. To begin to understand how the activation of these receptors affects visual activity patterns, we have determined the types of physiological responses induced by their activation. Using tectal brain slices from the leopard frog, we found that application of nicotine (100 μM) evoked long-lasting responses in 60% of patch-clamped tectal cells. Thirty percent of these responses consisted of an increase in spontaneous postsynaptic currents (sPSCs) and had both a glutamatergic and GABAergic component as determined by the use of 6-cyano-7-nitroquinoxaline-2,3-dione (50 μM) and bicuculline (25 μM), respectively. Remaining response types consisted of an inward membrane current (16%) and an increase in sPSCs combined with an inward membrane current (14%). All responses could be elicited in the presence of tetrodotoxin (0.5 μM). Muscarinic receptor-mediated responses, induced by carbachol (100 μM) application after nicotinic receptor desensitization, produced responses in 70% of tectal cells. In contrast to responses elicited by nicotine, carbachol-induced responses could be evoked multiple times without significant decrement. Responses consisted of either an outward current (57%), a decrease in sPSCs (5%) or an increase in sPSCs, with (almost 6%) or without (almost 3%) an outward current. The response elicited by carbachol was not predicted by the response of the cell to nicotine. Our results suggest that nicotinic receptors are found predominantly at presynaptic locations in the optic tectum while muscarinic receptors are most often present at postsynaptic sites. We conclude that both of these receptor types could substantially modulate visual activity by changing either the input to tectal neurons or the level of their response to that input. PMID:12676145

  15. The effects of nicotinic and muscarinic receptor activation on patch-clamped cells in the optic tectum of Rana pipiens.

    PubMed

    Yu, C-J; Debski, E A

    2003-01-01

    Both nicotinic and muscarinic cholinergic receptors are present in the optic tectum. To begin to understand how the activation of these receptors affects visual activity patterns, we have determined the types of physiological responses induced by their activation. Using tectal brain slices from the leopard frog, we found that application of nicotine (100 microM) evoked long-lasting responses in 60% of patch-clamped tectal cells. Thirty percent of these responses consisted of an increase in spontaneous postsynaptic currents (sPSCs) and had both a glutamatergic and GABAergic component as determined by the use of 6-cyano-7-nitroquinoxaline-2,3-dione (50 microM) and bicuculline (25 microM), respectively. Remaining response types consisted of an inward membrane current (16%) and an increase in sPSCs combined with an inward membrane current (14%). All responses could be elicited in the presence of tetrodotoxin (0.5 microM). Muscarinic receptor-mediated responses, induced by carbachol (100 microM) application after nicotinic receptor desensitization, produced responses in 70% of tectal cells. In contrast to responses elicited by nicotine, carbachol-induced responses could be evoked multiple times without significant decrement. Responses consisted of either an outward current (57%), a decrease in sPSCs (5%) or an increase in sPSCs, with (almost 6%) or without (almost 3%) an outward current. The response elicited by carbachol was not predicted by the response of the cell to nicotine. Our results suggest that nicotinic receptors are found predominantly at presynaptic locations in the optic tectum while muscarinic receptors are most often present at postsynaptic sites. We conclude that both of these receptor types could substantially modulate visual activity by changing either the input to tectal neurons or the level of their response to that input.

  16. Electrophysiological and mechanical effects of caffeic acid phenethyl ester, a novel cardioprotective agent with antiarrhythmic activity, in guinea-pig heart.

    PubMed

    Chang, Gwo-Jyh; Chang, Chi-Jen; Chen, Wei-Jan; Yeh, Yung-Hsin; Lee, Hsiao-Yu

    2013-02-28

    Caffeic acid phenethyl ester (CAPE) is an active component of propolis that exhibits cardioprotective and antiarrhythmic effects. The detailed mechanisms underlying these effects, however, are not entirely understood. The aim of this study was to elucidate the electromechanical effects of CAPE in guinea-pig cardiac preparations. Intracardiac electrograms, left ventricular (LV) pressure, and the anti-arrhythmic efficacy were determined using isolated hearts. Action potentials of papillary muscles were assessed with microelectrodes, Ca(2+) transients were measured by fluorescence, and ion fluxes were measured by patch-clamp techniques. In a perfused heart model, CAPE prolonged the atrio-ventricular conduction interval, the Wenckebach cycle length, and the refractory periods of the AV node and His-Purkinje system, while shortening the QT interval. CAPE reduced the occurrence of reperfusion-induced ventricular fibrillation and decreased LV pressure in isolated hearts. In papillary muscles, CAPE shortened the action potential duration and reduced both the maximum upstroke velocity and contractile force. In fura-2-loaded single ventricular myocytes, CAPE decreased cell shortening and the Ca(2+) transient amplitude. Patch-clamp experiments revealed that CAPE produced a use-dependent decrease in L-type Ca(2+) current (ICa,L) (IC50=1.1 μM) and Na(+) current (INa) (IC50=0.43 μM), caused a negative-shift of the voltage-dependent inactivation and a delay of recovery from inactivation. CAPE decreased the delayed outward K(+) current (IK) slightly, without affecting the inward rectifier K(+) current (IK1). These results suggest that the preferential inhibition of Ca(2+) inward and Na(+) inward currents by CAPE may induce major electromechanical alterations in guinea-pig cardiac preparations, which may underlie its antiarrhythmic action. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Separate Cl^- Conductances Activated by cAMP and Ca2+ in Cl^--Secreting Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Cliff, William H.; Frizzell, Raymond A.

    1990-07-01

    We studied the cAMP- and Ca2+-activated secretory Cl^- conductances in the Cl^--secreting colonic epithelial cell line T84 using the whole-cell patch-clamp technique. Cl^- and K^+ currents were measured under voltage clamp. Forskolin or cAMP increased Cl^- current 2-15 times with no change in K^+ current. The current-voltage relation for cAMP-activated Cl^- current was linear from -100 to +100 mV and showed no time-dependent changes in current during voltage pulses. Ca2+ ionophores or increased pipette Ca2+ increased both Cl^- and K^+ currents 2-30 times. The Ca2+-activated Cl^- current was outwardly rectified, activated during depolarizing voltage pulses, and inactivated during hyperpolarizing voltage pulses. Addition of ionophore after forskolin further increased Cl^- conductance 1.5-5 times, and the current took on the time-dependent characteristics of that stimulated by Ca2+. Thus, cAMP and Ca2+ activate Cl^- conductances with different properties, implying that these second messengers activate different Cl^- channels or that they induce different conductive and kinetic states in the same Cl^- channel.

  18. SU-8 microcantilever with an aperture, fluidic channel, and sensing mechanisms for biological and other applications.

    PubMed

    Gaitas, Angelo; Hower, Robert W

    2014-09-15

    We describe a method for fabricating an aperture on a fluidic cantilever device using SU-8 as a structural material. The device can ultimately be used for patch clamping, microinjections, fluidic delivery, fluidic deposition, and micromaterial removal. In the first generation of this device, the initial aperture diameter is 10 μ m and is fabricated on a silicon-on-insulator (SOI) wafer that is structurally used to define the aperture. The aperture can be reduced in size through mask design. This self-aligned process allows for patterning on the sharp tip projecting out of the fluidic plane on the cantilever and is batch fabricated, reducing the cost and time for manufacture. The initial mask, SOI device layer thickness, and the width of the base of the tip define the size of the aperture. The SU-8 micromachined cantilever includes an electrode and a force sensing mechanism. The cantilever can be easily integrated with an atomic force microscope or an optical microscope.

  19. Application of bifurcation analysis for determining the mechanism of coding of nociceptive signals

    NASA Astrophysics Data System (ADS)

    Dik, O. E.; Shelykh, T. N.; Plakhova, V. B.; Nozdrachev, A. D.; Podzorova, S. A.; Krylov, B. V.

    2015-10-01

    The patch clamp method is used for studying the characteristics of slow sodium channels responsible for coding of nociceptive signals. Quantitative estimates of rate constants of transitions of "normal" and pharmacologically modified activation gating mechanisms of these channels are obtained. A mathematical model of the type of Hogdkin-Huxley nociceptive neuron membrane is constructed. Cometic acid, which is a drug substance of a new nonopioid analgesic, is used as a pharmacological agent. The application of bifurcation analysis makes it possible to outline the boundaries of the region in which a periodic impulse activity is generated. This boundary separates the set of values of the model parameter for which periodic pulsation is observed from the values for which such pulsations are absent or damped. The results show that the finest effect of modulation of physical characteristic of a part of a protein molecule and its effective charge suppresses the excitability of the nociceptive neuron membrane and, hence, leads to rapid reduction of pain.

  20. Reconstruction and Simulation of Neocortical Microcircuitry.

    PubMed

    Markram, Henry; Muller, Eilif; Ramaswamy, Srikanth; Reimann, Michael W; Abdellah, Marwan; Sanchez, Carlos Aguado; Ailamaki, Anastasia; Alonso-Nanclares, Lidia; Antille, Nicolas; Arsever, Selim; Kahou, Guy Antoine Atenekeng; Berger, Thomas K; Bilgili, Ahmet; Buncic, Nenad; Chalimourda, Athanassia; Chindemi, Giuseppe; Courcol, Jean-Denis; Delalondre, Fabien; Delattre, Vincent; Druckmann, Shaul; Dumusc, Raphael; Dynes, James; Eilemann, Stefan; Gal, Eyal; Gevaert, Michael Emiel; Ghobril, Jean-Pierre; Gidon, Albert; Graham, Joe W; Gupta, Anirudh; Haenel, Valentin; Hay, Etay; Heinis, Thomas; Hernando, Juan B; Hines, Michael; Kanari, Lida; Keller, Daniel; Kenyon, John; Khazen, Georges; Kim, Yihwa; King, James G; Kisvarday, Zoltan; Kumbhar, Pramod; Lasserre, Sébastien; Le Bé, Jean-Vincent; Magalhães, Bruno R C; Merchán-Pérez, Angel; Meystre, Julie; Morrice, Benjamin Roy; Muller, Jeffrey; Muñoz-Céspedes, Alberto; Muralidhar, Shruti; Muthurasa, Keerthan; Nachbaur, Daniel; Newton, Taylor H; Nolte, Max; Ovcharenko, Aleksandr; Palacios, Juan; Pastor, Luis; Perin, Rodrigo; Ranjan, Rajnish; Riachi, Imad; Rodríguez, José-Rodrigo; Riquelme, Juan Luis; Rössert, Christian; Sfyrakis, Konstantinos; Shi, Ying; Shillcock, Julian C; Silberberg, Gilad; Silva, Ricardo; Tauheed, Farhan; Telefont, Martin; Toledo-Rodriguez, Maria; Tränkler, Thomas; Van Geit, Werner; Díaz, Jafet Villafranca; Walker, Richard; Wang, Yun; Zaninetta, Stefano M; DeFelipe, Javier; Hill, Sean L; Segev, Idan; Schürmann, Felix

    2015-10-08

    We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01 mm(3) containing ~31,000 neurons, and patch-clamp studies identify 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. When digitally reconstructed neurons are positioned in the volume and synapse formation is restricted to biological bouton densities and numbers of synapses per connection, their overlapping arbors form ~8 million connections with ~37 million synapses. Simulations reproduce an array of in vitro and in vivo experiments without parameter tuning. Additionally, we find a spectrum of network states with a sharp transition from synchronous to asynchronous activity, modulated by physiological mechanisms. The spectrum of network states, dynamically reconfigured around this transition, supports diverse information processing strategies. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Glycosides from edible sea cucumbers stimulate macrophages via purinergic receptors

    PubMed Central

    Aminin, Dmitry; Pislyagin, Evgeny; Astashev, Maxim; Es’kov, Andrey; Kozhemyako, Valery; Avilov, Sergei; Zelepuga, Elena; Yurchenko, Ekaterina; Kaluzhskiy, Leonid; Kozlovskaya, Emma; Ivanov, Alexis; Stonik, Valentin

    2016-01-01

    Since ancient times, edible sea cucumbers have been considered a jewel of the seabed and used in Asian folk medicine for stimulation of resistance against different diseases. However, the power of this sea food has not been established on a molecular level. A particular group of triterpene glycosides was found to be characteristic metabolites of the animals, responsible for this biological action. Using one of them, cucumarioside A2-2 (CA2-2) from the edible Cucumaria japonica species as an example as well as inhibitory analysis, patch-clamp on single macrophages, small interfering RNA technique, immunoblotting, SPR analysis, computer modeling and other methods, we demonstrate low doses of CA2-2 specifically to interact with P2X receptors (predominantly P2X4) on membranes of mature macrophages, enhancing the reversible ATP-dependent Ca2+ intake and recovering Ca2+ transport at inactivation of these receptors. As result, interaction of glycosides of this type with P2X receptors leads to activation of cellular immunity. PMID:28004778

  2. Chaotic electrical activity of living β-cells in the mouse pancreatic islet

    NASA Astrophysics Data System (ADS)

    Kanno, Takahiro; Miyano, Takaya; Tokuda, Isao; Galvanovskis, Juris; Wakui, Makoto

    2007-02-01

    To test for chaotic dynamics of the insulin producing β-cell and explore its biological role, we observed the action potentials with the perforated patch clamp technique, for isolated cells as well as for intact cells of the mouse pancreatic islet. The time series obtained were analyzed using nonlinear diagnostic algorithms associated with the surrogate method. The isolated cells exhibited short-term predictability and visible determinism, in the steady state response to 10 mM glucose, while the intact cells did not. In the latter case, determinism became visible after the application of a gap junction inhibitor. This tendency was enhanced by the stimulation with tolbutamide. Our observations suggest that, thanks to the integration of individual chaotic dynamics via gap junction coupling, the β-cells will lose memory of fluctuations occurring at any instant in their electrical activity more rapidly with time. This is likely to contribute to the functional stability of the islet against uncertain perturbations.

  3. Nelumbo nucifera leaves extracts inhibit mouse airway smooth muscle contraction.

    PubMed

    Yang, Xiao; Xue, Lu; Zhao, Qingyang; Cai, Congli; Liu, Qing-Hua; Shen, Jinhua

    2017-03-20

    Alkaloids extracted from lotus leaves (AELL) can relax vascular smooth muscle. However, whether AELL has a similar relaxant role on airway smooth muscle (ASM) remains unknown. This study aimed to explore the relaxant property of AELL on ASM and the underlying mechanism. Alkaloids were extracted from dried lotus leaves using the high temperature rotary evaporation extraction method. The effects of AELL on mouse ASM tension were studied using force measuring and patch-clamp techniques. It was found that AELL inhibited the high K + or acetylcholine chloride (ACh)-induced precontraction of mouse tracheal rings by 64.8 ± 2.9%, or 48.8 ± 4.7%, respectively. The inhibition was statistically significant and performed in a dose-dependent manner. Furthermore, AELL-induced smooth muscle relaxation was partially mediated by blocking voltage-dependent Ca 2+ channels (VDCC) and non-selective cation channels (NSCC). AELL, which plays a relaxant role in ASM, might be a new complementary treatment to treat abnormal contractions of the trachea and asthma.

  4. Use of the Satinsky clamp for hilar clamping during robotic partial nephrectomy: indications, technique, and multi-center outcomes.

    PubMed

    Abdullah, Newaj; Rahbar, Haider; Barod, Ravi; Dalela, Deepansh; Larson, Jeff; Johnson, Michael; Mass, Alon; Zargar, Homayoun; Kaouk, Jihad; Allaf, Mohamad; Bhayani, Sam; Stifelman, Michael; Rogers, Craig

    2017-03-01

    A Satinsky clamp may be a backup option for hilar clamping during robotic partial nephrectomy (RPN) if there are challenges with application of bulldog clamps, but there are potential safety concerns. We evaluate outcomes of RPN using Satinsky vs. bulldog clamps, and provide tips for safe use of the Satinsky as a backup option. Using a multi-center database, we identified 1073 patients who underwent RPN between 2006 and 2013, and had information available about method of hilar clamping (bulldog clamp vs. Satinsky clamp). Patient baseline characteristics, tumor features, and perioperative outcomes were compared between the Satinsky and bulldog clamp groups. A Satinsky clamp was used for hilar clamping in 94 (8.8 %) RPN cases, and bulldog clamps were used in 979 (91.2 %) cases. The use of a Satinsky clamp was associated with greater operative time (198 vs. 175 min, p < 0.001), estimated blood loss (EBL, 200 vs. 100 ml, p < 0.001), warm ischemia time (WIT, 20 vs. 19 min, p = 0.036), transfusion rate (12.8 vs. 4.8 %, p = 0.001), and hospital stay (3 vs. 2 days, p < 0.001). Tumor characteristics and number of renal vessels were similar between groups. There were six intraoperative complications in the Satinsky clamp group, but none were directly related to the Satinsky clamp. On multivariable analysis, the use of the Satinsky clamp was not associated with increase in intraoperative or Clavien ≥3 postoperative complications, positive surgical margin rate or percentage change in estimated glomerular filtration rate. A Satinsky clamp can be a backup option for hilar clamping during challenging RPN cases, but requires careful technique, and was rarely necessary.

  5. Non-invasive method and apparatus for measuring pressure within a pliable vessel

    NASA Technical Reports Server (NTRS)

    Shimizu, M. (Inventor)

    1983-01-01

    A non-invasive method and apparatus is disclosed for measuring pressure within a pliable vessel such as a blood vessel. The blood vessel is clamped by means of a clamping structure having a first portion housing a pressure sensor and a second portion extending over the remote side of the blood vessel for pressing the blood vessel into engagement with the pressure sensing device. The pressure sensing device includes a flat deflectable diaphragm portion arranged to engage a portion of the blood vessel flattened against the diaphragm by means of the clamp structure. In one embodiment, the clamp structure includes first and second semicylindrical members held together by retaining rings. In a second embodiment the clamp structure is of one piece construction having a solid semicylindrical portion and a hollow semicylindrical portion with a longitudinal slot in the follow semicylindrical portion through which a slip the blood vessel. In a third embodiment, an elastic strap is employed for clamping the blood vessel against the pressure sensing device.

  6. Vibration mode analysis of the proton exchange membrane fuel cell stack

    NASA Astrophysics Data System (ADS)

    Liu, B.; Liu, L. F.; Wei, M. Y.; Wu, C. W.

    2016-11-01

    Proton exchange membrane fuel cell (PEMFC) stacks usually undergo vibration during packing, transportation, and serving time, in particular for those used in the automobiles or portable equipment. To study the stack vibration response, based on finite element method (FEM), a mode analysis is carried out in the present paper. Using this method, we can distinguish the local vibration from the stack global modes, predict the vibration responses, such as deformed shape and direction, and discuss the effects of the clamping configuration and the clamping force magnitude on vibration modes. It is found that when the total clamping force remains the same, increasing the bolt number can strengthen the stack resistance to vibration in the clamping direction, but cannot obviously strengthen stack resistance to vibration in the translations perpendicular to clamping direction and the three axis rotations. Increasing the total clamping force can increase both of the stack global mode and the bolt local mode frequencies, but will decrease the gasket local mode frequency.

  7. Characterization of bulbospongiosus muscle reflexes activated by urethral distension in male rats.

    PubMed

    Tanahashi, Masayuki; Karicheti, Venkateswarlu; Thor, Karl B; Marson, Lesley

    2012-10-01

    The urethrogenital reflex (UGR) is used as a surrogate model of the autonomic and somatic nerve and muscle activity that accompanies ejaculation. The UGR is evoked by distension of the urethra and activation of penile afferents. The current study compares two methods of elevating urethral intraluminal pressure in spinalized, anesthetized male Sprague-Dawley rats (n = 60). The first method, penile extension UGR, involves extracting the penis from the foreskin, so that urethral pressure rises due to a natural anatomical flexure in the penis. The second method, penile clamping UGR, involves penile extension UGR with the addition of clamping of the glans penis. Groups of animals were prepared that either received no additional treatment, surgical shams, or received bilateral nerve cuts (4 nerve cut groups): either the pudendal sensory nerve branch (SbPN), the pelvic nerves, the hypogastric nerves, or all three nerves. Penile clamping UGR was characterized by multiple bursts, monitored by electromyography (EMG) of the bulbospongiosus muscle (BSM) accompanied by elevations in urethral pressure. The penile clamping UGR activity declined across multiple trials and eventually resulted in only a single BSM burst, indicating desensitization. In contrast, the penile extension UGR, without penile clamping, evoked only a single BSM EMG burst that showed no desensitization. Thus, the UGR is composed of two BSM patterns: an initial single burst, termed urethrobulbospongiosus (UBS) reflex and a subsequent multiple bursting pattern (termed ejaculation-like response, ELR) that was only induced with penile clamping urethral occlusion. Transection of the SbPN eliminated the ELR in the penile clamping model, but the single UBS reflex remained in both the clamping and extension models. Pelvic nerve (PelN) transection increased the threshold for inducing BSM activation with both methods of occlusion but actually unmasked an ELR in the penile extension method. Hypogastric nerve (HgN) cuts did not significantly alter any parameter. Transection of all three nerves eliminated BSM activation completely. In conclusion, penile clamping occlusion recruits penile and urethral primary afferent fibers that are necessary for an ELR. Urethral distension without significant penile afferent activation recruits urethral primary afferent fibers carried in either the pelvic or pudendal nerve that are necessary for the single-burst UBS reflex.

  8. The optimal protocol to reduce blood loss and blood transfusion after unilateral total knee replacement: Low-dose IA-TXA plus 30-min drain clamping versus drainage clamping for the first 3 h without IA-TXA.

    PubMed

    Park, Joo Hyun; Choi, Sung Wook; Shin, Eun Ho; Park, Myung Hoon; Kim, Myung Ku

    2017-01-01

    Although intraarticular tranexamic acid (IA-TXA) administration or drainage clamping are popular methods used to reduce blood loss after total knee replacement (TKR), the protocol remains controversial. We aimed (1) to establish new protocols through investigating whether two methods, that is, low-dose (500 mg) IA-TXA plus 30-min drain clamping and drainage clamping for the first 3 h without IA-TXA, can reduce blood loss and blood transfusion after unilateral TKR and (2) to make recommendations related to clinical application. This study, conducted from September 2014 to June 2016 related to enrolled 95 patients with primary osteoarthritis who were to have a unilateral cemented TKR, was nonrandomized and retrospective. In group A, the drain was released following tourniquet deflation. In group B, 500-mg TXA was injected into the knee joint via a drain tube after fascia closure and the drain was clamped for the first 30 min to prevent leakage. In group C, the drain was clamped for the first 3-h postoperation. Demographic characteristics and clinical data were collected, including the levels of hematocrit (Hct), the total blood loss (TBL), drained blood volume (BV), the amount of blood transfused, and any complications that developed. We found a significantly lower postoperative TBL, drained BV, decreasing Hct level, and less transfused BV in the IA-TXA injection group (group B) and the 3-h drainage clamping group (group C) compared to the conventional negative drainage group (group A; p < 0.001). There was no significant difference between groups B and C ( p = 0.99). The drainage clamping method can be safer than IA-TXA administration in patients with risk factor of venous thromboembolic complication. Furthermore, the IA-TXA administration can be more optimal than drainage clamping in patients with high bleeding tendency or lateral retinacular release during TKR, who would be concerned about postoperative wound complication.

  9. Integration of Optical Manipulation and Electrophysiological Tools to Modulate and Record Activity in Neural Networks

    NASA Astrophysics Data System (ADS)

    Difato, F.; Schibalsky, L.; Benfenati, F.; Blau, A.

    2011-07-01

    We present an optical system that combines IR (1064 nm) holographic optical tweezers with a sub-nanosecond-pulsed UV (355 nm) laser microdissector for the optical manipulation of single neurons and entire networks both on transparent and non-transparent substrates in vitro. The phase-modulated laser beam can illuminate the sample concurrently or independently from above or below assuring compatibility with different types of microelectrode array and patch-clamp electrophysiology. By combining electrophysiological and optical tools, neural activity in response to localized stimuli or injury can be studied and quantified at sub-cellular, cellular, and network level.

  10. Biomimetic surface patterning for long-term transmembrane access

    PubMed Central

    VanDersarl, Jules J.; Renaud, Philippe

    2016-01-01

    Here we present a planar patch clamp chip based on biomimetic cell membrane fusion. This architecture uses nanometer length-scale surface patterning to replicate the structure and function of membrane proteins, creating a gigaohm seal between the cell and a planar electrode array. The seal is generated passively during cell spreading, without the application of a vacuum to the cell surface. This interface can enable cell-attached and whole-cell recordings that are stable to 72 hours, and generates no visible damage to the cell. The electrodes can be very small (<5 μm) and closely packed, offering a high density platform for cellular measurement. PMID:27577519

  11. Biomimetic surface patterning for long-term transmembrane access.

    PubMed

    VanDersarl, Jules J; Renaud, Philippe

    2016-08-31

    Here we present a planar patch clamp chip based on biomimetic cell membrane fusion. This architecture uses nanometer length-scale surface patterning to replicate the structure and function of membrane proteins, creating a gigaohm seal between the cell and a planar electrode array. The seal is generated passively during cell spreading, without the application of a vacuum to the cell surface. This interface can enable cell-attached and whole-cell recordings that are stable to 72 hours, and generates no visible damage to the cell. The electrodes can be very small (<5 μm) and closely packed, offering a high density platform for cellular measurement.

  12. Voltage-driven reversible insertion into and leaving from a lipid bilayer: tuning transmembrane transport of artificial channels.

    PubMed

    Si, Wen; Li, Zhan-Ting; Hou, Jun-Li

    2014-04-25

    Three new artificial transmembrane channel molecules have been designed and synthesized by attaching positively charged Arg-incorporated tripeptide chains to pillar[5]arene. Fluorescent and patch-clamp experiments revealed that voltage can drive the molecules to insert into and leave from a lipid bilayer and thus switch on and off the transport of K(+) ions. One of the molecules was found to display antimicrobial activity toward Bacillus subtilis with half maximal inhibitory concentration (IC50 ) of 10 μM which is comparable to that of natural channel-forming peptide alamethicin. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chloride permeability of rat brain membrane vesicles correlates with thiamine triphosphate content.

    PubMed

    Bettendorff, L; Hennuy, B; De Clerck, A; Wins, P

    1994-07-25

    Incubation of rat brain homogenates with thiamine or thiamine diphosphate (TDP) leads to a synthesis of thiamine triphosphate (TTP). In membrane vesicles subsequently prepared from the homogenates, increased TTP content correlates with increased 36Cl- uptake. A hyperbolic relationship was obtained with a K0.5 of 0.27 nmol TTP/mg protein. In crude mitochondrial fractions from the brains of animals previously treated with thiamine or sulbutiamine, a positive correlation between 36Cl- uptake and TTP content was found. These results, together with other results previously obtained with the patch-clamp technique, suggest that TTP is an activator of chloride channels having a large unit conductance.

  14. Screening Fluorescent Voltage Indicators with Spontaneously Spiking HEK Cells

    PubMed Central

    Venkatachalam, Veena; Kralj, Joel M.; Dib-Hajj, Sulayman D.; Waxman, Stephen G.; Cohen, Adam E.

    2013-01-01

    Development of improved fluorescent voltage indicators is a key challenge in neuroscience, but progress has been hampered by the low throughput of patch-clamp characterization. We introduce a line of non-fluorescent HEK cells that stably express NaV 1.3 and KIR 2.1 and generate spontaneous electrical action potentials. These cells enable rapid, electrode-free screening of speed and sensitivity of voltage sensitive dyes or fluorescent proteins on a standard fluorescence microscope. We screened a small library of mutants of archaerhodopsin 3 (Arch) in spiking HEK cells and identified two mutants with greater voltage-sensitivity than found in previously published Arch voltage indicators. PMID:24391999

  15. Direct demonstration of persistent Na+ channel activity in dendritic processes of mammalian cortical neurones

    PubMed Central

    Magistretti, Jacopo; Ragsdale, David S; Alonso, Angel

    1999-01-01

    Single Na+ channel activity was recorded in patch-clamp, cell-attached experiments performed on dendritic processes of acutely isolated principal neurones from rat entorhinal-cortex layer II. The distances of the recording sites from the soma ranged from ≈20 to ≈100 μm.Step depolarisations from holding potentials of −120 to −100 mV to test potentials of −60 to +10 mV elicited Na+ channel openings in all of the recorded patches (n= 16).In 10 patches, besides transient Na+ channel openings clustered within the first few milliseconds of the depolarising pulses, prolonged and/or late Na+ channel openings were also regularly observed. This ‘persistent’ Na+ channel activity produced net inward, persistent currents in ensemble-average traces, and remained stable over the entire duration of the experiments (≈9 to 30 min).Two of these patches contained <= 3 channels. In these cases, persistent Na+ channel openings could be attributed to the activity of one single channel.The voltage dependence of persistent-current amplitude in ensemble-average traces closely resembled that of whole-cell, persistent Na+ current expressed by the same neurones, and displayed the same characteristic low threshold of activation.Dendritic, persistent Na+ channel openings had relatively high single-channel conductance (≈20 pS), similar to what is observed for somatic, persistent Na+ channels.We conclude that a stable, persistent Na+ channel activity is expressed by proximal dendrites of entorhinal-cortex layer II principal neurones, and can contribute a significant low-threshold, persistent Na+ current to the dendritic processing of excitatory synaptic inputs. PMID:10601494

  16. Sampling system and method

    DOEpatents

    Decker, David L; Lyles, Brad F; Purcell, Richard G; Hershey, Ronald Lee

    2014-05-20

    An apparatus and method for supporting a tubing bundle during installation or removal. The apparatus includes a clamp for securing the tubing bundle to an external wireline. The method includes deploying the tubing bundle and wireline together, The tubing bundle is periodically secured to the wireline using a clamp.

  17. Sampling system and method

    DOEpatents

    Decker, David L.; Lyles, Brad F.; Purcell, Richard G.; Hershey, Ronald Lee

    2017-03-07

    In one embodiment, the present disclosure provides an apparatus and method for supporting a tubing bundle during installation or removal. The apparatus includes a clamp for securing the tubing bundle to an external wireline. In various examples, the clamp is external to the tubing bundle or integral with the tubing bundle. According to one method, a tubing bundle and wireline are deployed together and the tubing bundle periodically secured to the wireline using a clamp. In another embodiment, the present disclosure provides an apparatus and method for coupling conduit segments together. A first pump obtains a sample and transmits it through a first conduit to a reservoir accessible by a second pump. The second pump further conducts the sample from the reservoir through a second conduit. In a specific example, one or more clamps are used to connect the first and/or second conduits to an external wireline.

  18. Nerve membrane ion channels as the target site of environmental toxicants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narahashi, T.

    1987-04-01

    There are many environmentally important chemicals which exhibit potent effects on the nervous system. Since nerve excitation takes place in a fraction of a second, electrophysiological methods provide the authors with the most straightforward approach to the study of the mechanisms of action of environmental toxicants on the nervous system. Aquatic animals such as crayfish, lobster, squid, and marine snails represent extremely useful materials for such electrophysiological studies, because much of the authors knowledge of nerve excitation is derived from those animals. Nerve excitation takes place as a result of opening and closing of ion channels of the membrane. Thesemore » functions are independent of metabolic energy, and can be measured most effectively by voltage clamp techniques as applied to the giant axons of the crayfish and the squid. Patch clamp techniques developed during the past 10 years have added a new dimension to the electrophysiological investigation. These techniques allow them to measure the activity of individual ion channels, thereby making it possible to analyze the interaction of toxic molecules directly with single ion channels. Examples are given summarizing electrophysiological studies of environmental neurotoxicants. The abdominal nerve cords and neuromuscular preparations isolated from the crayfish are convenient materials for bioassay of certain environmental toxicants such as pyrethroids, chlorinated hydrocarbons, and other insecticides. Only a small fraction of the flux through the sodium channel, less than 1%, must be modified by pyrethroids for the animal to develop symptoms of poisoning. Such a toxicological application from channel to animal is important is understanding the potent toxic effect.« less

  19. [Focus on placental transfusion for preterm neonates: Delayed cord clamping and/or milking?

    PubMed

    Sorin, G; Tosello, B

    2016-11-01

    Anemia of prematurity remains a common complication despite recent advances in perinatal and neonatal medicine. The delayed cord clamping (at least 30seconds as recommended) has several benefits: increased hemoglobin and hematocrit levels at birth, improved initial hemodynamic, decreased incidence of transfusions and intraventricular hemorrhages. When the birth transition is difficult, wait 30seconds before clamping can be impossible. So as not to interfere with the neonatal resuscitation, the "milking" has been proposed as an alternative method to the delayed cord clamping. This is a safe and easy method, which can be done either by an obstetrician or pediatrician with comparable results for the child on his hemodynamic, hematological and neurological status. It still lacks technical information on this method and neurodevelopmental outcomes of these preterm infants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers.

    PubMed

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  1. Properties of the cromakalim-induced potassium conductance in smooth muscle cells isolated from the rabbit portal vein.

    PubMed Central

    Beech, D. J.; Bolton, T. B.

    1989-01-01

    1. Single smooth muscle cells were isolated freshly from the rabbit portal vein and membrane currents were recorded by the whole-cell or excised patch configurations of the patch-clamp technique at room temperature. 2. Cromakalim (Ckm, 10 microM) induced a potassium current (ICkm) that showed no pronounced voltage-dependence and had low current noise. 3. This current, ICkm, was inhibited by (in order of potency): phencyclidine greater than quinidine greater than 4-aminopyridine greater than tetraethylammonium ions (TEA). These drugs inhibited the delayed rectifier current, IdK, which is activated by depolarization of the cell, with the same order of potency. 4. Large conductance calcium-activated potassium channels (LKCa) in isolated membrane patches were blocked by (in order of potency) quinidine greater than TEA approximately phencyclidine. 4-Aminopyridine was ineffective. A similar order of potency was found for block of spontaneous transient outward currents thought to represent bursts of openings of LKCa channels. 5. The low current noise of ICkm at positive potentials, and its susceptibility to inhibitors indicated that it was not carried by LKCa channels, and that it may be carried by channels which underlie IdK. It was observed that when ICkm was activated, IdK was reduced. However, in two experiments, ICkm was much more susceptible to glibenclamide than IdK; possible reasons for this are discussed. PMID:2590772

  2. Different methods of hilar clamping during partial nephrectomy: Impact on renal function.

    PubMed

    Lee, Jeong Woo; Kim, Hwanik; Choo, Minsoo; Park, Yong Hyun; Ku, Ja Hyeon; Kim, Hyeon Hoe; Kwak, Cheol

    2014-03-01

    To evaluate the impact of different hilar clamping methods on changes in renal function after partial nephrectomy. We analyzed the clinical data of 369 patients who underwent partial nephrectomy for a single renal tumor of size ≤4.0 cm and a normal contralateral kidney. Patients were separated into three groups depending on hilar clamping method: non-clamping, cold ischemia and warm ischemia. Estimated glomerular filtration rate was examined at preoperative, nadir and 1 year postoperatively. Percent change in estimated glomerular filtration rate was used as the parameter to assess the renal functional outcome. Percent change in nadir estimated glomerular filtration rate in the non-clamping group was significantly less compared with the cold ischemia and warm ischemia groups (P < 0.001). However, no significant differences among the groups were noted in percent change of estimated glomerular filtration rate at 1 year (P = 0.348). The cold ischemia group had a similar serial change of postoperative renal function compared with the warm ischemia group. Percent change in 1-year estimated glomerular filtration rate increased with increasing ischemia time in the cold ischemia (P for trend = 0.073) and warm ischemia groups (P for trend = 0.010). On multivariate analysis, hilar clamping (both warm ischemia and cold ischemia) were significantly associated with percent change in nadir estimated glomerular filtration rate, but not in 1-year estimated glomerular filtration rate. Non-clamping partial nephrectomy results in a lower percent change in nadir estimated glomerular filtration rate, whereas it carries an estimated glomerular filtration rate change at 1 year that is similar to partial nephrectomy with cold ischemia and warm ischemia. Cold ischemia and warm ischemia provide a similar effect on renal function. Therefore, when hilar clamping is required, minimization of ischemia time is necessary. © 2013 The Japanese Urological Association.

  3. Biomechanical evaluation of a new fixation device for the thoracic spine.

    PubMed

    Hongo, Michio; Ilharreborde, Brice; Gay, Ralph E; Zhao, Chunfeng; Zhao, Kristin D; Berglund, Lawrence J; Zobitz, Mark; An, Kai-Nan

    2009-08-01

    The technology used in surgery for spinal deformity has progressed rapidly in recent years. Commonly used fixation techniques may include monofilament wires, sublaminar wires and cables, and pedicle screws. Unfortunately, neurological complications can occur with all of these, compromising the patients' health and quality of life. Recently, an alternative fixation technique using a metal clamp and polyester belt was developed to replace hooks and sublaminar wiring in scoliosis surgery. The goal of this study was to compare the pull-out strength of this new construct with sublaminar wiring, laminar hooks and pedicle screws. Forty thoracic vertebrae from five fresh frozen human thoracic spines (T5-12) were divided into five groups (8 per group), such that BMD values, pedicle diameter, and vertebral levels were equally distributed. They were then potted in polymethylmethacrylate and anchored with metal screws and polyethylene bands. One of five fixation methods was applied to the right side of the vertebra in each group: Pedicle screw, sublaminar belt with clamp, figure-8 belt with clamp, sublaminar wire, or laminar hook. Pull-out strength was then assessed using a custom jig in a servohydraulic tester. The mean failure load of the pedicle screw group was significantly larger than that of the figure-8 clamp (P = 0.001), sublaminar belt (0.0172), and sublaminar wire groups (P = 0.04) with no significant difference in pull-out strength between the latter three constructs. The most common mode of failure was the fracture of the pedicle. BMD was significantly correlated with failure load only in the figure-8 clamp and pedicle screw constructs. Only the pedicle screw had a statistically significant higher failure load than the sublaminar clamp. The sublaminar method of applying the belt and clamp device was superior to the figure-8 method. The sublaminar belt and clamp construct compared favorably to the traditional methods of sublaminar wires and laminar hooks, and should be considered as an alternative fixation device in the thoracic spine.

  4. Biomechanical evaluation of a new fixation device for the thoracic spine

    PubMed Central

    Hongo, Michio; Ilharreborde, Brice; Zhao, Chunfeng; Zhao, Kristin D.; Berglund, Lawrence J.; Zobitz, Mark; An, Kai-Nan

    2009-01-01

    The technology used in surgery for spinal deformity has progressed rapidly in recent years. Commonly used fixation techniques may include monofilament wires, sublaminar wires and cables, and pedicle screws. Unfortunately, neurological complications can occur with all of these, compromising the patients’ health and quality of life. Recently, an alternative fixation technique using a metal clamp and polyester belt was developed to replace hooks and sublaminar wiring in scoliosis surgery. The goal of this study was to compare the pull-out strength of this new construct with sublaminar wiring, laminar hooks and pedicle screws. Forty thoracic vertebrae from five fresh frozen human thoracic spines (T5–12) were divided into five groups (8 per group), such that BMD values, pedicle diameter, and vertebral levels were equally distributed. They were then potted in polymethylmethacrylate and anchored with metal screws and polyethylene bands. One of five fixation methods was applied to the right side of the vertebra in each group: Pedicle screw, sublaminar belt with clamp, figure-8 belt with clamp, sublaminar wire, or laminar hook. Pull-out strength was then assessed using a custom jig in a servohydraulic tester. The mean failure load of the pedicle screw group was significantly larger than that of the figure-8 clamp (P = 0.001), sublaminar belt (0.0172), and sublaminar wire groups (P = 0.04) with no significant difference in pull-out strength between the latter three constructs. The most common mode of failure was the fracture of the pedicle. BMD was significantly correlated with failure load only in the figure-8 clamp and pedicle screw constructs. Only the pedicle screw had a statistically significant higher failure load than the sublaminar clamp. The sublaminar method of applying the belt and clamp device was superior to the figure-8 method. The sublaminar belt and clamp construct compared favorably to the traditional methods of sublaminar wires and laminar hooks, and should be considered as an alternative fixation device in the thoracic spine. PMID:19404687

  5. A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates.

    PubMed

    Mahajan, Aman; Shiferaw, Yohannes; Sato, Daisuke; Baher, Ali; Olcese, Riccardo; Xie, Lai-Hua; Yang, Ming-Jim; Chen, Peng-Sheng; Restrepo, Juan G; Karma, Alain; Garfinkel, Alan; Qu, Zhilin; Weiss, James N

    2008-01-15

    Mathematical modeling of the cardiac action potential has proven to be a powerful tool for illuminating various aspects of cardiac function, including cardiac arrhythmias. However, no currently available detailed action potential model accurately reproduces the dynamics of the cardiac action potential and intracellular calcium (Ca(i)) cycling at rapid heart rates relevant to ventricular tachycardia and fibrillation. The aim of this study was to develop such a model. Using an existing rabbit ventricular action potential model, we modified the L-type calcium (Ca) current (I(Ca,L)) and Ca(i) cycling formulations based on new experimental patch-clamp data obtained in isolated rabbit ventricular myocytes, using the perforated patch configuration at 35-37 degrees C. Incorporating a minimal seven-state Markovian model of I(Ca,L) that reproduced Ca- and voltage-dependent kinetics in combination with our previously published dynamic Ca(i) cycling model, the new model replicates experimentally observed action potential duration and Ca(i) transient alternans at rapid heart rates, and accurately reproduces experimental action potential duration restitution curves obtained by either dynamic or S1S2 pacing.

  6. CFTR mediates noradrenaline-induced ATP efflux from DRG neurons.

    PubMed

    Kanno, Takeshi; Nishizaki, Tomoyuki

    2011-09-24

    In our earlier study, noradrenaline (NA) stimulated ATP release from dorsal root ganglion (DRG) neurons as mediated via β(3) adrenoceptors linked to G(s) protein involving protein kinase A (PKA) activation, to cause allodynia. The present study was conducted to understand how ATP is released from DRG neurons. In an outside-out patch-clamp configuration from acutely dissociated rat DRG neurons, single-channel currents, sensitive to the P2X receptor inhibitor PPADS, were evoked by approaching the patch-electrode tip close to a neuron, indicating that ATP is released from DRG neurons, to activate P2X receptor. NA increased the frequency of the single-channel events, but such NA effect was not found for DRG neurons transfected with the siRNA to silence the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In the immunocytochemical study using acutely dissociated rat DRG cells, CFTR was expressed in neurons alone, but not satellite cells, fibroblasts, or Schwann cells. It is concluded from these results that CFTR mediates NA-induced ATP efflux from DRG neurons as an ATP channel.

  7. The pure anti-oestrogen ICI 182,780 (Faslodex™) activates large conductance Ca2+-activated K+ channels in smooth muscle

    PubMed Central

    Dick, Gregory M

    2002-01-01

    Oestrogen and tamoxifen activate large conductance Ca2+-activated K+ (BKCa) channels in smooth muscle through a non-genomic mechanism that depends on the regulatory β1 subunit and an extracellular binding site. It is unknown whether a ‘pure' anti-oestrogen such as ICI 182,780 (Faslodex™), that has no known oestrogenic properties, would have any effect on BKCa channels. Using single channel patch clamp techniques on canine colonic myocytes, the hypothesis that ICI 182,780 would activate BKCa channels was tested. ICI 182,780 increased the open probability of BKCa channels in inside-out patches with an EC50 of 1 μM. These data suggest that molecules with the ability to bind nuclear oestrogen receptors, regardless of oestrogenic or anti-oestrogenic nature, activate BKCa channels through this nongenomic, membrane-delimited mechanism. The identity and characteristics of this putative binding site remain unclear; however, it has pharmacological similarity to oestrogen receptors α and β, as ICI 182,780 interacts with it. PMID:12145095

  8. A system for applying rapid warming or cooling stimuli to cells during patch clamp recording or ion imaging.

    PubMed

    Reid, G; Amuzescu, B; Zech, E; Flonta, M L

    2001-10-15

    We describe a system for superfusing small groups of cells at a precisely controlled and rapidly adjustable local temperature. Before being applied to the cell or cells under study, solutions are heated or cooled in a chamber of small volume ( approximately 150 microl) and large surface area, sandwiched between four small Peltier elements. The current through the Peltier elements is controlled by a microprocessor using a PID (proportional-integral-derivative) feedback algorithm. The chamber can be heated to at least 60 degrees C and cooled to 0 degrees C, changing its temperature at a maximum rate of about 7 degrees C per second; temperature ramps can be followed under feedback control at up to 4 degrees C per second. Temperature commands can be applied from the digital-to-analogue converter of any laboratory interface or generated digitally by the microprocessor. The peak-to-peak noise contributed by the system does not exceed that contributed by a patch pipette, holder and headstage, making it suitable for single channel as well as whole cell recordings.

  9. Rapid multislice T1 mapping of mouse myocardium: Application to quantification of manganese uptake in α-Dystrobrevin knockout mice.

    PubMed

    Jiang, Kai; Li, Wen; Li, Wei; Jiao, Sen; Castel, Laurie; Van Wagoner, David R; Yu, Xin

    2015-11-01

    The aim of this study was to develop a rapid, multislice cardiac T1 mapping method in mice and to apply the method to quantify manganese (Mn(2+)) uptake in a mouse model with altered Ca(2+) channel activity. An electrocardiography-triggered multislice saturation-recovery Look-Locker method was developed and validated both in vitro and in vivo. A two-dose study was performed to investigate the kinetics of T1 shortening, Mn(2+) relaxivity in myocardium, and the impact of Mn(2+) on cardiac function. The sensitivity of Mn(2+)-enhanced MRI in detecting subtle changes in altered Ca(2+) channel activity was evaluated in a mouse model with α-dystrobrevin knockout. Validation studies showed strong agreement between the current method and an established method. High Mn(2+) dose led to significantly accelerated T1 shortening. Heart rate decreased during Mn(2+) infusion, while ejection ratio increased slightly at the end of imaging protocol. No statistical difference in cardiac function was detected between the two dose groups. Mice with α-dystrobrevin knockout showed enhanced Mn(2+) uptake in vivo. In vitro patch-clamp study showed increased Ca(2+) channel activity. The saturation recovery method provides rapid T1 mapping in mouse hearts, which allowed sensitive detection of subtle changes in Mn(2+) uptake in α-dystrobrevin knockout mice. © 2014 Wiley Periodicals, Inc.

  10. Accurate measurement of junctional conductance between electrically coupled cells with dual whole-cell voltage-clamp under conditions of high series resistance.

    PubMed

    Hartveit, Espen; Veruki, Margaret Lin

    2010-03-15

    Accurate measurement of the junctional conductance (G(j)) between electrically coupled cells can provide important information about the functional properties of coupling. With the development of tight-seal, whole-cell recording, it became possible to use dual, single-electrode voltage-clamp recording from pairs of small cells to measure G(j). Experiments that require reduced perturbation of the intracellular environment can be performed with high-resistance pipettes or the perforated-patch technique, but an accompanying increase in series resistance (R(s)) compromises voltage-clamp control and reduces the accuracy of G(j) measurements. Here, we present a detailed analysis of methodologies available for accurate determination of steady-state G(j) and related parameters under conditions of high R(s), using continuous or discontinuous single-electrode voltage-clamp (CSEVC or DSEVC) amplifiers to quantify the parameters of different equivalent electrical circuit model cells. Both types of amplifiers can provide accurate measurements of G(j), with errors less than 5% for a wide range of R(s) and G(j) values. However, CSEVC amplifiers need to be combined with R(s)-compensation or mathematical correction for the effects of nonzero R(s) and finite membrane resistance (R(m)). R(s)-compensation is difficult for higher values of R(s) and leads to instability that can damage the recorded cells. Mathematical correction for R(s) and R(m) yields highly accurate results, but depends on accurate estimates of R(s) throughout an experiment. DSEVC amplifiers display very accurate measurements over a larger range of R(s) values than CSEVC amplifiers and have the advantage that knowledge of R(s) is unnecessary, suggesting that they are preferable for long-duration experiments and/or recordings with high R(s). Copyright (c) 2009 Elsevier B.V. All rights reserved.

  11. Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin.

    PubMed

    Wen, Lei; Wang, Hongxia; Tanimoto, Saki; Egawa, Ryo; Matsuzaka, Yoshiya; Mushiake, Hajime; Ishizuka, Toru; Yawo, Hiromu

    2010-09-23

    Optogenetic manipulation of a neuronal network enables one to reveal how high-order functions emerge in the central nervous system. One of the Chlamydomonas rhodopsins, channelrhodopsin-1 (ChR1), has several advantages over channelrhodopsin-2 (ChR2) in terms of the photocurrent kinetics. Improved temporal resolution would be expected by the optogenetics using the ChR1 variants with enhanced photocurrents. The photocurrent retardation of ChR1 was overcome by exchanging the sixth helix domain with its counterpart in ChR2 producing Channelrhodopsin-green receiver (ChRGR) with further reform of the molecule. When the ChRGR photocurrent was measured from the expressing HEK293 cells under whole-cell patch clamp, it was preferentially activated by green light and has fast kinetics with minimal desensitization. With its kinetic advantages the use of ChRGR would enable one to inject a current into a neuron by the time course as predicted by the intensity of the shedding light (opto-current clamp). The ChRGR was also expressed in the motor cortical neurons of a mouse using Sindbis pseudovirion vectors. When an oscillatory LED light signal was applied sweeping through frequencies, it robustly evoked action potentials synchronized to the oscillatory light at 5-10 Hz in layer 5 pyramidal cells in the cortical slice. The ChRGR-expressing neurons were also driven in vivo with monitoring local field potentials (LFPs) and the time-frequency energy distribution of the light-evoked response was investigated using wavelet analysis. The oscillatory light enhanced both the in-phase and out-phase responses of LFP at the preferential frequencies of 5-10 Hz. The spread of activity was evidenced by the fact that there were many c-Fos-immunoreactive neurons that were negative for ChRGR in a region of the motor cortex. The opto-current-clamp study suggests that the depolarization of a small number of neurons wakes up the motor cortical network over some critical point to the activated state.

  12. Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels.

    PubMed

    Shyng, S L; Cukras, C A; Harwood, J; Nichols, C G

    2000-11-01

    Phosphatidylinositol 4,5-bisphosphate (PIP(2)) activates K(ATP) and other inward rectifier (Kir) channels. To determine residues important for PIP(2) regulation, we have systematically mutated each positive charge in the COOH terminus of Kir6.2 to alanine. The effects of these mutations on channel function were examined using (86)Rb efflux assays on intact cells and inside-out patch-clamp methods. Both methods identify essentially the same basic residues in two narrow regions (176-222 and 301-314) in the COOH terminus that are important for the maintenance of channel function and interaction with PIP(2). Only one residue (R201A) simultaneously affected ATP and PIP(2) sensitivity, which is consistent with the notion that these ligands, while functionally competitive, are unlikely to bind to identical sites. Strikingly, none of 13 basic residues in the terminal portion (residues 315-390) of the COOH terminus affected channel function when neutralized. The data help to define the structural requirements for PIP(2) sensitivity of K(ATP) channels. Moreover, the regions and residues defined in this study parallel those uncovered in recent studies of PIP(2) sensitivity in other inward rectifier channels, indicating a common structural basis for PIP(2) regulation.

  13. Role of the pH in state-dependent blockade of hERG currents

    NASA Astrophysics Data System (ADS)

    Wang, Yibo; Guo, Jiqing; Perissinotti, Laura L.; Lees-Miller, James; Teng, Guoqi; Durdagi, Serdar; Duff, Henry J.; Noskov, Sergei Yu.

    2016-10-01

    Mutations that reduce inactivation of the voltage-gated Kv11.1 potassium channel (hERG) reduce binding for a number of blockers. State specific block of the inactivated state of hERG block may increase risks of drug-induced Torsade de pointes. In this study, molecular simulations of dofetilide binding to the previously developed and experimentally validated models of the hERG channel in open and open-inactivated states were combined with voltage-clamp experiments to unravel the mechanism(s) of state-dependent blockade. The computations of the free energy profiles associated with the drug block to its binding pocket in the intra-cavitary site display startling differences in the open and open-inactivated states of the channel. It was also found that drug ionization may play a crucial role in preferential targeting to the open-inactivated state of the pore domain. pH-dependent hERG blockade by dofetilie was studied with patch-clamp recordings. The results show that low pH increases the extent and speed of drug-induced block. Both experimental and computational findings indicate that binding to the open-inactivated state is of key importance to our understanding of the dofetilide’s mode of action.

  14. Dendritic calcium channels and their activation by synaptic signals in auditory coincidence detector neurons.

    PubMed

    Blackmer, Trillium; Kuo, Sidney P; Bender, Kevin J; Apostolides, Pierre F; Trussell, Laurence O

    2009-08-01

    The avian nucleus laminaris (NL) encodes the azimuthal location of low-frequency sound sources by detecting the coincidence of binaural signals. Accurate coincidence detection requires precise developmental regulation of the lengths of the fine, bitufted dendrites that characterize neurons in NL. Such regulation has been suggested to be driven by local, synaptically mediated, dendritic signals such as Ca(2+). We examined Ca(2+) signaling through patch clamp and ion imaging experiments in slices containing nucleus laminaris from embryonic chicks. Voltage-clamp recordings of neurons located in the NL showed the presence of large Ca(2+) currents of two types, a low voltage-activated, fast inactivating Ni(2+) sensitive channel resembling mammalian T-type channels, and a high voltage-activated, slowly inactivating Cd(2+) sensitive channel. Two-photon Ca(2+) imaging showed that both channel types were concentrated on dendrites, even at their distal tips. Single action potentials triggered synaptically or by somatic current injection immediately elevated Ca(2+) throughout the entire cell. Ca(2+) signals triggered by subthreshold synaptic activity were highly localized. Thus when electrical activity is suprathreshold, Ca(2+) channels ensure that Ca(2+) rises in all dendrites, even those that are synaptically inactive.

  15. Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition

    PubMed Central

    Duguid, Ian; Branco, Tiago; Chadderton, Paul; Arlt, Charlotte; Powell, Kate; Häusser, Michael

    2015-01-01

    Classical feed-forward inhibition involves an excitation–inhibition sequence that enhances the temporal precision of neuronal responses by narrowing the window for synaptic integration. In the input layer of the cerebellum, feed-forward inhibition is thought to preserve the temporal fidelity of granule cell spikes during mossy fiber stimulation. Although this classical feed-forward inhibitory circuit has been demonstrated in vitro, the extent to which inhibition shapes granule cell sensory responses in vivo remains unresolved. Here we combined whole-cell patch-clamp recordings in vivo and dynamic clamp recordings in vitro to directly assess the impact of Golgi cell inhibition on sensory information transmission in the granule cell layer of the cerebellum. We show that the majority of granule cells in Crus II of the cerebrocerebellum receive sensory-evoked phasic and spillover inhibition prior to mossy fiber excitation. This preceding inhibition reduces granule cell excitability and sensory-evoked spike precision, but enhances sensory response reproducibility across the granule cell population. Our findings suggest that neighboring granule cells and Golgi cells can receive segregated and functionally distinct mossy fiber inputs, enabling Golgi cells to regulate the size and reproducibility of sensory responses. PMID:26432880

  16. A methodology for achieving high-speed rates for artificial conductance injection in electrically excitable biological cells.

    PubMed

    Butera, R J; Wilson, C G; Delnegro, C A; Smith, J C

    2001-12-01

    We present a novel approach to implementing the dynamic-clamp protocol (Sharp et al., 1993), commonly used in neurophysiology and cardiac electrophysiology experiments. Our approach is based on real-time extensions to the Linux operating system. Conventional PC-based approaches have typically utilized single-cycle computational rates of 10 kHz or slower. In thispaper, we demonstrate reliable cycle-to-cycle rates as fast as 50 kHz. Our system, which we call model reference current injection (MRCI); pronounced merci is also capable of episodic logging of internal state variables and interactive manipulation of model parameters. The limiting factor in achieving high speeds was not processor speed or model complexity, but cycle jitter inherent in the CPU/motherboard performance. We demonstrate these high speeds and flexibility with two examples: 1) adding action-potential ionic currents to a mammalian neuron under whole-cell patch-clamp and 2) altering a cell's intrinsic dynamics via MRCI while simultaneously coupling it via artificial synapses to an internal computational model cell. These higher rates greatly extend the applicability of this technique to the study of fast electrophysiological currents such fast a currents and fast excitatory/inhibitory synapses.

  17. Rectal transection using a curved cutter stapler with an endo-Satinsky clamp during a laparoscopic low anterior resection.

    PubMed

    Hotta, Tsukasa; Takifuji, Katsunari; Yokoyama, Shozo; Matsuda, Kenji; Yamaue, Hiroki

    2012-10-01

    A new rectal transaction method was developed using a combination of the curved cutter stapler and endo-Satinsky clamp because of the difficulty in performing rectal transection in the narrow pelvic cavity. The endo-Satinsky clamp is inserted without a flexible trocar cannula by connecting the handle extra-abdominally with a shaft of the endo-Satinsky clamp through the left higher quadrant port via a retrograde course from a midline incision above the pubis symphysis. The endo-Satinsky clamp is used to clamp the rectal wall horizontally at the distal end of the tumor. The wrist of an elastic surgical glove fixed with the shaft of the curved cutter stapler is covered with a midline incision, and consequently, the stapler is inserted into the pelvic cavity. The curved head of the stapler is rotated to the left at the anal side of the endo-Satinsky clamp to insert the rectum between the jaws of the stapler. The stapler is closed and fired, and a rectal transection is thus performed with one firing using a single cartridge. This method was performed in 12 patients with rectal cancer. The median value and range of the tumor distance from the anal verge were 7.0 and 4.5-11.0 cm, respectively. The median duration of the operation was 252 min, and the median blood loss was 15 mL. Only one stapling cartridge was used for rectal transection in all cases, and no major complications were observed. We herein demonstrated a new transection method for rectal cancer.

  18. Cardiomyocyte dysfunction during the chronic phase of Chagas disease.

    PubMed

    Roman-Campos, Danilo; Sales-Júnior, Policarpo; Duarte, Hugo Leonardo; Gomes, Eneas Ricardo; Guatimosim, Silvia; Ropert, Catherine; Gazzinelli, Ricardo Tostes; Cruz, Jader Santos

    2013-04-01

    Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of heart failure. We investigated modifications in the cellular electrophysiological and calcium-handling characteristics of an infected mouse heart during the chronic phase of the disease. The patch-clamp technique was used to record action potentials (APs) and L-type Ca2+ and transient outward K+ currents. [Ca2+]i changes were determined using confocal microscopy. Infected ventricular cells showed prolonged APs, reduced transient outward K+ and L-type Ca2+ currents and reduced Ca2+ release from the sarcoplasmic reticulum. Thus, the chronic phase of Chagas disease is characterised by cardiomyocyte dysfunction, which could lead to heart failure.

  19. Cardiomyocyte dysfunction during the chronic phase of Chagas disease

    PubMed Central

    Roman-Campos, Danilo; Sales-Júnior, Policarpo; Duarte, Hugo Leonardo; Gomes, Eneas Ricardo; Guatimosim, Silvia; Ropert, Catherine; Gazzinelli, Ricardo Tostes; Cruz, Jader Santos

    2013-01-01

    Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of heart failure. We investigated modifications in the cellular electrophysiological and calcium-handling characteristics of an infected mouse heart during the chronic phase of the disease. The patch-clamp technique was used to record action potentials (APs) and L-type Ca2+ and transient outward K+ currents. [Ca2+]i changes were determined using confocal microscopy. Infected ventricular cells showed prolonged APs, reduced transient outward K+ and L-type Ca2+ currents and reduced Ca2+ release from the sarcoplasmic reticulum. Thus, the chronic phase of Chagas disease is characterised by cardiomyocyte dysfunction, which could lead to heart failure. PMID:23579807

  20. Interaction of elaiophylin with model bilayer membrane

    NASA Astrophysics Data System (ADS)

    Genova, J.; Dencheva-Zarkova, M.

    2017-01-01

    Elaiophylin is a new macrodiolide antibiotic, which is produced by the Streptomyces strains [1]. It displays biological activities against Gram-positive bacteria and fungi. The mode of action of this antibiotic has been attributed to an alteration of the membrane permeability. When this antibiotic is inserted into the bilayer membranes destabilization of the membrane and formation of ion-penetrable channels is observed. The macrodiolide antibiotic forms stable cation selective ion channels in synthetic lipid bilayer membranes. The aim of this work was to study the interactions of Elaiophylin with model bilayer membranes and to get information on the mechanical properties of lipid bilayers in presence of this antibiotic. Patch-clamp technique [2] were used in the study

  1. Faster voltage-dependent activation of Na+ channels in growth cones versus somata of neuroblastoma N1E-115 cells.

    PubMed Central

    Zhang, J; Loew, L M; Davidson, R M

    1996-01-01

    Kinetics of voltage-gated ionic channels fundamentally reflect the response of the channels to local electric fields. In this report cell-attached patch-clamp studies reveal that the voltage-dependent activation rate of sodium channels residing in the growth cone membrane differs from that of soma sodium channels in differentiating N1E-115 neuroblastoma cells. Because other electrophysiological properties of these channels do not differ, this finding may be a reflection of the difference in intramembrane electric field in these two regions of the cell. This represents a new mechanism for channels to attain a range of activities both within and between cells. PMID:8913589

  2. Faster voltage-dependent activation of Na+ channels in growth cones versus somata of neuroblastoma N1E-115 cells.

    PubMed

    Zhang, J; Loew, L M; Davidson, R M

    1996-11-01

    Kinetics of voltage-gated ionic channels fundamentally reflect the response of the channels to local electric fields. In this report cell-attached patch-clamp studies reveal that the voltage-dependent activation rate of sodium channels residing in the growth cone membrane differs from that of soma sodium channels in differentiating N1E-115 neuroblastoma cells. Because other electrophysiological properties of these channels do not differ, this finding may be a reflection of the difference in intramembrane electric field in these two regions of the cell. This represents a new mechanism for channels to attain a range of activities both within and between cells.

  3. Saturn Apollo Program

    NASA Image and Video Library

    1972-12-01

    This photograph taken during the Apollo 17 mission (the last mission of the Apollo Program), depicts stiff plasticized maps being taped together and fastened by clamps to patch a broken fender of the Lunar Roving Vehicle (LRV). Powered by battery, the lightweight electric car greatly increased the range of mobility and productivity on the scientific traverses for astronauts. It weighed 462 pounds (77 pounds on the Moon) and could carry two suited astronauts, their gear and cameras, and several hundred pounds of bagged samples. The LRV's mobility was quite high. It could climb and descend slopes of about 25 degrees. The LRV was designed and developed by the Marshall Space Flight Center and built by the Boeing Company.

  4. Membrane stress increases cation permeability in red cells.

    PubMed

    Johnson, R M

    1994-11-01

    The human red cell is known to increase its cation permeability when deformed by mechanical forces. Light-scattering measurements were used to quantitate the cell deformation, as ellipticity under shear. Permeability to sodium and potassium was not proportional to the cell deformation. An ellipticity of 0.75 was required to increase the permeability of the membrane to cations, and flux thereafter increased rapidly as the limits of cell extension were reached. Induction of membrane curvature by chemical agents also did not increase cation permeability. These results indicate that membrane deformation per se does not increase permeability, and that membrane tension is the effector for increased cation permeability. This may be relevant to some cation permeabilities observed by patch clamping.

  5. Real-time Experiment Interface for Biological Control Applications

    PubMed Central

    Lin, Risa J.; Bettencourt, Jonathan; White, John A.; Christini, David J.; Butera, Robert J.

    2013-01-01

    The Real-time Experiment Interface (RTXI) is a fast and versatile real-time biological experimentation system based on Real-Time Linux. RTXI is open source and free, can be used with an extensive range of experimentation hardware, and can be run on Linux or Windows computers (when using the Live CD). RTXI is currently used extensively for two experiment types: dynamic patch clamp and closed-loop stimulation pattern control in neural and cardiac single cell electrophysiology. RTXI includes standard plug-ins for implementing commonly used electrophysiology protocols with synchronized stimulation, event detection, and online analysis. These and other user-contributed plug-ins can be found on the website (http://www.rtxi.org). PMID:21096883

  6. Sensitization of TRPA1 by Protein Kinase A

    PubMed Central

    Meents, Jannis E.; Fischer, Michael J. M.; McNaughton, Peter A.

    2017-01-01

    The TRPA1 ion channel is expressed in nociceptive (pain-sensitive) somatosensory neurons and is activated by a wide variety of chemical irritants, such as acrolein in smoke or isothiocyanates in mustard. Here, we investigate the enhancement of TRPA1 function caused by inflammatory mediators, which is thought to be important in lung conditions such as asthma and COPD. Protein kinase A is an important kinase acting downstream of inflammatory mediators to cause sensitization of TRPA1. By using site-directed mutagenesis, patch-clamp electrophysiology and calcium imaging we identify four amino acid residues, S86, S317, S428, and S972, as the principal targets of PKA-mediated phosphorylation and sensitization of TRPA1. PMID:28076424

  7. [Protective effect of Uncaria rhynchophylla total alkaloids pretreatment on hippocampal neurons after acute hypoxia].

    PubMed

    Liu, Wei; Zhang, Zhao-qin; Zhao, Xiao-min; Gao, Yun-sheng

    2006-05-01

    To investigate the effect of Uncaria rhynchophylla total alkaloids (RTA) pretreatment on the voltage-gated sodium currents of the rat hippocampal neurons after acute hypoxia. Primary cultured hippocampal neurons were divided into RTA pre-treated and non-pretreated groups. Patch clamp whole-cell recording was used to compare the voltage-gated sodium current amplitude and threshold with those before hypoxia. After acute hypoxia, sodium current amplitude was significantly decreased and its threshold was upside. RTA pretreatment could inhibit the reduction of sodium current amplitude. RTA pretreatment alleviates the acute hypoxia-induced change of sodium currents, which may be one of the mechanisms for protective effect of RTA on cells.

  8. Effects of cevimeline on excitability of parasympathetic preganglionic neurons in the superior salivatory nucleus of rats.

    PubMed

    Mitoh, Yoshihiro; Ueda, Hirotaka; Ichikawa, Hiroyuki; Fujita, Masako; Kobashi, Motoi; Matsuo, Ryuji

    2017-09-01

    The superior salivatory nucleus (SSN) contains parasympathetic preganglionic neurons innervating the submandibular and sublingual salivary glands. Cevimeline, a muscarinic acetylcholine receptor (mAChR) agonist, is a sialogogue that possibly stimulates SSN neurons in addition to the salivary glands themselves because it can cross the blood-brain barrier (BBB). In the present study, we examined immunoreactivities for mAChR subtypes in SSN neurons retrogradely labeled with a fluorescent tracer in neonatal rats. Additionally, we examined the effects of cevimeline in labeled SSN neurons of brainstem slices using a whole-cell patch-clamp technique. Mainly M1 and M3 receptors were detected by immunohistochemical staining, with low-level detection of M4 and M5 receptors and absence of M2 receptors. Most (110 of 129) SSN neurons exhibited excitatory responses to application of cevimeline. In responding neurons, voltage-clamp recordings showed that 84% (101/120) of the neurons exhibited inward currents. In the neurons displaying inward currents, the effects of the mAChR antagonists were examined. A mixture of M1 and M3 receptor antagonists most effectively reduced the peak amplitude of inward currents, suggesting that the excitatory effects of cevimeline on SSN neurons were mainly mediated by M1 and M3 receptors. Current-clamp recordings showed that application of cevimeline induced membrane depolarization (9/9 neurons). These results suggest that most SSN neurons are excited by cevimeline via M1 and M3 muscarinic receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The muscarinic inhibition of the potassium M-current modulates the action-potential discharge in the vestibular primary-afferent neurons of the rat.

    PubMed

    Pérez, C; Limón, A; Vega, R; Soto, E

    2009-02-18

    There is consensus that muscarinic and nicotinic receptors expressed in vestibular hair cells and afferent neurons are involved in the efferent modulation of the electrical activity of the afferent neurons. However the underlying mechanisms of postsynaptic control in neurons are not well understood. In our work we show that the activation of muscarinic receptors in the vestibular neurons modulates the potassium M-current modifying the activity of afferent neurons. Whole-cell patch-clamp recordings were made on vestibular-afferent neurons isolated from Wistar rats (postnatal days 7-10) and held in primary culture (18-24 h). The M-current was studied during its deactivation after depolarizing voltage-clamp pulses. In 68% of the cells studied, those of larger capacitance, the M-current antagonists linopirdine and XE-991 reduced the amplitude of the M-current by 54%+/-7% and 50%+/-3%. The muscarinic-receptor agonist oxotremorine-M also significantly reduced the M-current by 58%+/-12% in the cells. The action of oxotremorine-M was blocked by atropine, thus indicating its cholinergic nature. The erg-channel blocker E-4031 did not significantly modify the M-current amplitude. In current-clamp experiments, linopirdine, XE-991, and oxotremorine-M modified the discharge response to current pulses from single spike to multiple spiking, reducing the adaptation of the electrical discharge. Our results indicate that large soma-size cultured vestibular-afferent neurons (most probably calyx-bearing neurons) express the M-current and that the modulation of this current by activation of muscarinic-receptor reduces its spike-frequency adaptation.

  10. Large-conductance voltage- and Ca2+-activated K+ channel regulation by protein kinase C in guinea pig urinary bladder smooth muscle

    PubMed Central

    Hristov, Kiril L.; Smith, Amy C.; Parajuli, Shankar P.; Malysz, John

    2013-01-01

    Large-conductance voltage- and Ca2+-activated K+ (BK) channels are critical regulators of detrusor smooth muscle (DSM) excitability and contractility. PKC modulates the contraction of DSM and BK channel activity in non-DSM cells; however, the cellular mechanism regulating the PKC-BK channel interaction in DSM remains unknown. We provide a novel mechanistic insight into BK channel regulation by PKC in DSM. We used patch-clamp electrophysiology, live-cell Ca2+ imaging, and functional studies of DSM contractility to elucidate BK channel regulation by PKC at cellular and tissue levels. Voltage-clamp experiments showed that pharmacological activation of PKC with PMA inhibited the spontaneous transient BK currents in native freshly isolated guinea pig DSM cells. Current-clamp recordings revealed that PMA significantly depolarized DSM membrane potential and inhibited the spontaneous transient hyperpolarizations in DSM cells. The PMA inhibitory effects on DSM membrane potential were completely abolished by the selective BK channel inhibitor paxilline. Activation of PKC with PMA did not affect the amplitude of the voltage-step-induced whole cell steady-state BK current or the single BK channel open probability (recorded in cell-attached mode) upon inhibition of all major Ca2+ sources for BK channel activation with thapsigargin, ryanodine, and nifedipine. PKC activation with PMA elevated intracellular Ca2+ levels in DSM cells and increased spontaneous phasic and nerve-evoked contractions of DSM isolated strips. Our results support the concept that PKC activation leads to a reduction of BK channel activity in DSM via a Ca2+-dependent mechanism, thus increasing DSM contractility. PMID:24352333

  11. Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells.

    PubMed

    Reifenberger, Matthew S; Yu, Ling; Bao, Hui-Fang; Duke, Billie Jeanne; Liu, Bing-Chen; Ma, He-Ping; Alli, Ahmed A; Eaton, Douglas C; Alli, Abdel A

    2014-07-01

    Numerous reports have linked cytoskeleton-associated proteins with the regulation of epithelial Na(+) channel (ENaC) activity. The purpose of the present study was to determine the effect of actin cytoskeleton disruption by cytochalasin E on ENaC activity in Xenopus 2F3 cells. Here, we show that cytochalasin E treatment for 60 min can disrupt the integrity of the actin cytoskeleton in cultured Xenopus 2F3 cells. We show using single channel patch-clamp experiments and measurements of short-circuit current that ENaC activity, but not its density, is altered by cytochalasin E-induced disruption of the cytoskeleton. In nontreated cells, 8 of 33 patches (24%) had no measurable ENaC activity, whereas in cytochalasin E-treated cells, 17 of 32 patches (53%) had no activity. Analysis of those patches that did contain ENaC activity showed channel open probability significantly decreased from 0.081 ± 0.01 in nontreated cells to 0.043 ± 0.01 in cells treated with cytochalasin E. Transepithelial current from mpkCCD cells treated with cytochalasin E, cytochalasin D, or latrunculin B for 60 min was decreased compared with vehicle-treated cells. The subcellular expression of fodrin changed significantly, and several protein elements of the cytoskeleton decreased at least twofold after 60 min of cytochalasin E treatment. Cytochalasin E treatment disrupted the association between ENaC and myristoylated alanine-rich C-kinase substrate. The results presented here suggest disruption of the actin cytoskeleton by different compounds can attenuate ENaC activity through a mechanism involving changes in the subcellular expression of fodrin, several elements of the cytoskeleton, and destabilization of the ENaC-myristoylated alanine-rich C-kinase substrate complex. Copyright © 2014 the American Physiological Society.

  12. Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells

    PubMed Central

    Reifenberger, Matthew S.; Yu, Ling; Bao, Hui-Fang; Duke, Billie Jeanne; Liu, Bing-Chen; Ma, He-Ping; Eaton, Douglas C.; Alli, Abdel A.

    2014-01-01

    Numerous reports have linked cytoskeleton-associated proteins with the regulation of epithelial Na+ channel (ENaC) activity. The purpose of the present study was to determine the effect of actin cytoskeleton disruption by cytochalasin E on ENaC activity in Xenopus 2F3 cells. Here, we show that cytochalasin E treatment for 60 min can disrupt the integrity of the actin cytoskeleton in cultured Xenopus 2F3 cells. We show using single channel patch-clamp experiments and measurements of short-circuit current that ENaC activity, but not its density, is altered by cytochalasin E-induced disruption of the cytoskeleton. In nontreated cells, 8 of 33 patches (24%) had no measurable ENaC activity, whereas in cytochalasin E-treated cells, 17 of 32 patches (53%) had no activity. Analysis of those patches that did contain ENaC activity showed channel open probability significantly decreased from 0.081 ± 0.01 in nontreated cells to 0.043 ± 0.01 in cells treated with cytochalasin E. Transepithelial current from mpkCCD cells treated with cytochalasin E, cytochalasin D, or latrunculin B for 60 min was decreased compared with vehicle-treated cells. The subcellular expression of fodrin changed significantly, and several protein elements of the cytoskeleton decreased at least twofold after 60 min of cytochalasin E treatment. Cytochalasin E treatment disrupted the association between ENaC and myristoylated alanine-rich C-kinase substrate. The results presented here suggest disruption of the actin cytoskeleton by different compounds can attenuate ENaC activity through a mechanism involving changes in the subcellular expression of fodrin, several elements of the cytoskeleton, and destabilization of the ENaC-myristoylated alanine-rich C-kinase substrate complex. PMID:24829507

  13. Gigaseal Mechanics: Creep of the Gigaseal under the Action of Pressure, Adhesion, and Voltage

    PubMed Central

    2015-01-01

    Patch clamping depends on a tight seal between the cell membrane and the glass of the pipet. Why does the seal have such high electric resistance? Why does the patch adhere so strongly to the glass? Even under the action of strong hydrostatic, adhesion, and electrical forces, it creeps at a very low velocity. To explore possible explanations, we examined two physical models for the structure of the seal zone and the adhesion forces and two respective mechanisms of patch creep and electric conductivity. There is saline between the membrane and glass in the seal, and the flow of this solution under hydrostatic pressure or electroosmosis should drag a patch. There is a second possibility: the lipid core of the membrane is liquid and should be able to flow, with the inner monolayer slipping over the outer one. Both mechanisms predict the creep velocity as a function of the properties of the seal and the membrane, the pipet geometry, and the driving force. These model predictions are compared with experimental data for azolectin liposomes with added cholesterol or proteins. It turns out that to obtain experimentally observed creep velocities, a simple viscous flow in the seal zone requires ∼10 Pa·s viscosity; it is unclear what structure might provide that because that viscosity alone severely constrains the electric resistance of the gigaseal. Possibly, it is the fluid bilayer that allows the motion. The two models provide an estimate of the adhesion energy of the membrane to the glass and membrane’s electric characteristics through the comparison between the velocities of pressure-, adhesion-, and voltage-driven creep. PMID:25295693

  14. Distinct effect of actin cytoskeleton disassembly on exo- and endocytic events in a membrane patch of rat melanotrophs.

    PubMed

    Chowdhury, Helena H; Kreft, Marko; Zorec, Robert

    2002-12-15

    We used the cell-attached mode of patch-clamp technique to measure discrete attofarad steps in membrane capacitance (C(m)), reporting area changes in the plasma membrane due to unitary exocytic and endocytic events. To investigate the role of the actin cytoskeleton in elementary exocytic and endocytic events, neuroendocrine rat melanotrophs were treated with Clostridium spiroforme toxin (CST), which specifically depolymerises F-actin. The average amplitude of exocytic events was not significantly different in control and in CST-treated cells. However, the amplitude of endocytic events was significantly smaller in CST-treated cells as compared to controls. The frequency of exocytic events increased by 2-fold in CST-treated cells relative to controls. In control cells the average frequency of exocytic events (upsilon;(exo)) was lower than the frequency of endocytic events (upsilon;(endo)) with a ratio upsilon;(exo)/upsilon;(endo) < 1. In the toxin treated cells, the predominant process was exocytosis with a ratio (upsilon;(exo)/upsilon;(endo) > 1). To study the coupling between the two processes, the slopes of regression lines relating upsilon;(exo) and upsilon;(endo) in a given patch of membrane were studied. The slopes of regression lines were similar, whereas the line intercepts with the y-axis were significantly different. The increased frequency of unitary exocytic events in CST-treated cells is consistent with the view, that the actin cytoskeleton acts as a barrier for exocytosis. While the disassembly of the actin cytoskeleton diminishes the size of unitary endocytic events, suggesting an important role of the actin cytoskeleton in determining the size of endocytic vesicles, the coupling between exocytosis and endocytosis in a given patch of membrane was independent of the state of the actin cytoskeleton.

  15. Distinct effect of actin cytoskeleton disassembly on exo- and endocytic events in a membrane patch of rat melanotrophs

    PubMed Central

    Chowdhury, Helena H; Kreft, Marko; Zorec, Robert

    2002-01-01

    We used the cell-attached mode of patch-clamp technique to measure discrete attofarad steps in membrane capacitance (Cm), reporting area changes in the plasma membrane due to unitary exocytic and endocytic events. To investigate the role of the actin cytoskeleton in elementary exocytic and endocytic events, neuroendocrine rat melanotrophs were treated with Clostridium spiroforme toxin (CST), which specifically depolymerises F-actin. The average amplitude of exocytic events was not significantly different in control and in CST-treated cells. However, the amplitude of endocytic events was significantly smaller in CST-treated cells as compared to controls. The frequency of exocytic events increased by 2-fold in CST-treated cells relative to controls. In control cells the average frequency of exocytic events (νexo) was lower than the frequency of endocytic events (νendo) with a ratio νexo/νendo < 1. In the toxin treated cells, the predominant process was exocytosis with a ratio (νexo/νendo > 1). To study the coupling between the two processes, the slopes of regression lines relating νexo and νendo in a given patch of membrane were studied. The slopes of regression lines were similar, whereas the line intercepts with the y-axis were significantly different. The increased frequency of unitary exocytic events in CST-treated cells is consistent with the view, that the actin cytoskeleton acts as a barrier for exocytosis. While the disassembly of the actin cytoskeleton diminishes the size of unitary endocytic events, suggesting an important role of the actin cytoskeleton in determining the size of endocytic vesicles, the coupling between exocytosis and endocytosis in a given patch of membrane was independent of the state of the actin cytoskeleton. PMID:12482893

  16. The bovine TRPV3 as a pathway for the uptake of Na+, Ca2+, and NH4+

    PubMed Central

    Liebe, Franziska; Liebe, Hendrik

    2018-01-01

    Absorption of ammonia from the gastrointestinal tract results in problems that range from hepatic encephalopathy in humans to poor nitrogen efficiency of cattle with consequences for the global climate. Previous studies on epithelia and cells from the native ruminal epithelium suggest functional involvement of the bovine homologue of TRPV3 (bTRPV3) in ruminal NH4+ transport. Since the conductance of TRP channels to NH4+ has never been studied, bTRPV3 was overexpressed in HEK-293 cells and investigated using the patch-clamp technique and intracellular calcium imaging. Control cells contained the empty construct. Divalent cations blocked the conductance for monovalent cations in both cell types, with effects higher in cells expressing bTRPV3. In bTRPV3 cells, but not in controls, menthol, thymol, carvacrol, or 2-APB stimulated whole cell currents mediated by Na+, Cs+, NH4+, and K+, with a rise in intracellular Ca2+ observed in response to menthol. While only 25% of control patches showed single-channel events (with a conductance of 40.8 ± 11.9 pS for NH4+ and 25.0 ± 5.8 pS for Na+), 90% of bTRPV3 patches showed much larger conductances of 127.8 ± 4.2 pS for Na+, 240.1 ± 3.6 pS for NH4+, 34.0 ± 1.7 pS for Ca2+, and ~ 36 pS for NMDG+. Open probability, but not conductance, rose with time after patch excision. In conjunction with previous research, we suggest that bTRPV3 channels may play a role in the transport of Na+, K+, Ca2+ and NH4+ across the rumen with possible repercussions for understanding the function of TRPV3 in other epithelia. PMID:29494673

  17. The bovine TRPV3 as a pathway for the uptake of Na+, Ca2+, and NH4.

    PubMed

    Schrapers, Katharina T; Sponder, Gerhard; Liebe, Franziska; Liebe, Hendrik; Stumpff, Friederike

    2018-01-01

    Absorption of ammonia from the gastrointestinal tract results in problems that range from hepatic encephalopathy in humans to poor nitrogen efficiency of cattle with consequences for the global climate. Previous studies on epithelia and cells from the native ruminal epithelium suggest functional involvement of the bovine homologue of TRPV3 (bTRPV3) in ruminal NH4+ transport. Since the conductance of TRP channels to NH4+ has never been studied, bTRPV3 was overexpressed in HEK-293 cells and investigated using the patch-clamp technique and intracellular calcium imaging. Control cells contained the empty construct. Divalent cations blocked the conductance for monovalent cations in both cell types, with effects higher in cells expressing bTRPV3. In bTRPV3 cells, but not in controls, menthol, thymol, carvacrol, or 2-APB stimulated whole cell currents mediated by Na+, Cs+, NH4+, and K+, with a rise in intracellular Ca2+ observed in response to menthol. While only 25% of control patches showed single-channel events (with a conductance of 40.8 ± 11.9 pS for NH4+ and 25.0 ± 5.8 pS for Na+), 90% of bTRPV3 patches showed much larger conductances of 127.8 ± 4.2 pS for Na+, 240.1 ± 3.6 pS for NH4+, 34.0 ± 1.7 pS for Ca2+, and ~ 36 pS for NMDG+. Open probability, but not conductance, rose with time after patch excision. In conjunction with previous research, we suggest that bTRPV3 channels may play a role in the transport of Na+, K+, Ca2+ and NH4+ across the rumen with possible repercussions for understanding the function of TRPV3 in other epithelia.

  18. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Basedmore » on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.« less

  19. Functional video-based analysis of 3D cardiac structures generated from human embryonic stem cells.

    PubMed

    Nitsch, Scarlett; Braun, Florian; Ritter, Sylvia; Scholz, Michael; Schroeder, Insa S

    2018-05-01

    Human embryonic stem cells (hESCs) differentiated into cardiomyocytes (CM) often develop into complex 3D structures that are composed of various cardiac cell types. Conventional methods to study the electrophysiology of cardiac cells are patch clamp and microelectrode array (MEAs) analyses. However, these methods are not suitable to investigate the contractile features of 3D cardiac clusters that detach from the surface of the culture dishes during differentiation. To overcome this problem, we developed a video-based motion detection software relying on the optical flow by Farnebäck that we call cBRA (cardiac beat rate analyzer). The beating characteristics of the differentiated cardiac clusters were calculated based on the local displacement between two subsequent images. Two differentiation protocols, which profoundly differ in the morphology of cardiac clusters generated and in the expression of cardiac markers, were used and the resulting CM were characterized. Despite these differences, beat rates and beating variabilities could be reliably determined using cBRA. Likewise, stimulation of β-adrenoreceptors by isoproterenol could easily be identified in the hESC-derived CM. Since even subtle changes in the beating features are detectable, this method is suitable for high throughput cardiotoxicity screenings. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Influence of clamp-up force on the strength of bolted composite joints

    NASA Astrophysics Data System (ADS)

    Horn, Walter J.; Schmitt, Ron R.

    1994-03-01

    Composite materials offer the potential for a reduction in the number of individual parts and joints in a structure because large one-piece components can replace multipart assemblies. Nevertheless, there are many situations where composite parts must be joined and often mechanical fasteners provide the only practical method of joining those parts. The long-term strength of mechanically fastened joints of composite members can be directly affected by the clamp-up force of the fastener and thus perhaps by the relaxation of this force due to the viscoelastic character of the composite materials of the joint. Methods for predicting the effect of bolt clamp-up force relaxation on the strength of mechanically fastened joints of thermoplastic composite materials were investigated during the present study. A test program, using two thermoplastic composite materials, was conducted to determine the influence of clamp-up force on joint strength, to measure the relaxation of the joint clamp-up force with time, and to measure the change of joint strength as a function of time.

  1. Solutions for transients in arbitrarily branching cables: III. Voltage clamp problems.

    PubMed

    Major, G

    1993-07-01

    Branched cable voltage recording and voltage clamp analytical solutions derived in two previous papers are used to explore practical issues concerning voltage clamp. Single exponentials can be fitted reasonably well to the decay phase of clamped synaptic currents, although they contain many underlying components. The effective time constant depends on the fit interval. The smoothing effects on synaptic clamp currents of dendritic cables and series resistance are explored with a single cylinder + soma model, for inputs with different time courses. "Soma" and "cable" charging currents cannot be separated easily when the soma is much smaller than the dendrites. Subtractive soma capacitance compensation and series resistance compensation are discussed. In a hippocampal CA1 pyramidal neurone model, voltage control at most dendritic sites is extremely poor. Parameter dependencies are illustrated. The effects of series resistance compound those of dendritic cables and depend on the "effective capacitance" of the cell. Plausible combinations of parameters can cause order-of-magnitude distortions to clamp current waveform measures of simulated Schaeffer collateral inputs. These voltage clamp problems are unlikely to be solved by the use of switch clamp methods.

  2. Comprehensive field evaluation of asphalt patching methods and development of simple decision trees and a best practices manual.

    DOT National Transportation Integrated Search

    2017-06-01

    The long-term performance of pothole patches largely depends on the selection of the patching method. A number of pothole patching methods are in practice in Minnesota and other nearby states. However, pavement maintenance crews often encounter probl...

  3. Birth control - slow release methods

    MedlinePlus

    Contraception - slow-release hormonal methods; Progestin implants; Progestin injections; Skin patch; Vaginal ring ... might want to consider a different birth control method. SKIN PATCH The skin patch is placed on ...

  4. Stimulation of the BKCa channel in cultured smooth muscle cells of human trachea by magnolol

    PubMed Central

    Wu, S; Chen, C; Li, H; Lo, Y; Chen, S; Chiang, H

    2002-01-01

    Background: Magnolol, a compound isolated from the cortex of Magnolia officinalis, has been found to possess anti-allergic and anti-asthmatic activity. Methods: The effect of magnolol on ionic currents was studied in cultured smooth muscle cells of human trachea with the aid of the patch clamp technique. Results: In whole cell current recordings magnolol reversibly increased the amplitude of K+ outward currents. The increase in outward current caused by magnolol was sensitive to inhibition by iberiotoxin (200 nM) or paxilline (1 µM) but not by glibenclamide (10 µM). In inside out patches, magnolol added to the bath did not modify single channel conductance but effectively enhanced the activity of large conductance Ca2+ activated K+ (BKCa) channels. Magnolol increased the probability of these channel openings in a concentration dependent manner with an EC50 value of 1.5 µM. The magnolol stimulated increase in the probability of channels opening was independent of internal Ca2+. The application of magnolol also shifted the activation curve of BKCa channels to less positive membrane potentials. The change in the kinetic behaviour of BKCa channels caused by magnolol in these cells is the result of an increase in dissociation and gating constants. Conclusions: These results provide evidence that, in addition to the presence of antioxidative activity, magnolol is potent in stimulating BKCa channel activity in tracheal smooth muscle cells. The direct stimulation of these BKCa channels by magnolol may contribute to the underlying mechanism by which it acts as an anti-asthmatic compound. PMID:11809993

  5. Noninvasive diode laser activation of transient receptor potential proteins and nociceptors

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Cooper, Brian Y.; Nemenov, Michael I.

    2007-02-01

    We investigated diode laser (980 nm) evoked activation of transient receptor potential proteins (TRPV1 and TRPV2). C and A-delta (Aδ) nociceptor families are primarily responsible for pain mediation in the peripheral nervous system. TRPV1 proteins have been associated with heat evoked pain in C fibers while Aδ fibers have been associated with TRPV2. Diode laser stimulation allows a margin of safety between non-invasive activation and damage 19, 22, 34. Laser pulses (20-50 ms, 0.1-10 W, 980 nm) were used to stimulate: A) in vitro: excised patches from HEK293 cells expressing TRPV1; B) in vitro: rat DRG nociceptors expressing either TRPV1 or TRPV2; and C) in vivo: C-fibers of the rat saphenous nerve (SN) trunk. Cell currents were recorded using standard patch clamp methods. The SN was also stimulated electrically with bipolar electrodes. Stimulation (20-50 ms) of HEK and DRG cells expressing TRPV1 was highly reproducible. Activation and peak currents were achieved at estimated peak temperatures of 55°C and 70°C. Threshold activation was also observed in DRG neurons expressing TRPV2. The conduction velocity for laser-activated saphenous nerve afferents was in the C fiber range (0.5-1 m/s). Electrically stimulated nerve contained stimulation artifacts and complex neural components with conduction velocities ranging from 0.3-30 m/s. Diode laser activation of TRPV1 protein is a reproducible and effective means to probe TRP activity in both in vivo and in vitro preparations

  6. Adenosine triphosphate regulates the activity of guinea pig Cav1.2 channel by direct binding to the channel in a dose-dependent manner.

    PubMed

    Feng, Rui; Xu, Jianjun; Minobe, Etsuko; Kameyama, Asako; Yang, Lei; Yu, Lifeng; Hao, Liying; Kameyama, Masaki

    2014-05-01

    The present study is to investigate the mechanism by which ATP regulates Cav1.2 channel activity. Ventricular tissue was obtained from adult guinea pig hearts using collagenase. Ca(2+) channel activity was monitored using the patch-clamp technique. Proteins were purified using wheat germ agglutinin-Sepharose, and the concentration was determined using the Coomassie brilliant blue technique. ATP binding to the Cav1.2 channel was examined using the photoaffinity method. EDA-ATP-biotin maintains Ca(2+) channel activity in inside-out membrane patches. ATP directly bound to the Cav1.2 channel in a dose-dependent manner, and at least two molecules of ATP bound to one molecule of the Cav1.2 channel. Low levels of calmodulin (CaM) increased ATP binding to the Cav1.2 channel, but higher levels of CaM decreased ATP binding to the Cav1.2 channel. In addition, Ca(2+) was another regulator for ATP binding to the Cav1.2 channel. Furthermore, ATP bound to GST-fusion peptides of NH2-terminal region (amino acids 6-140) and proximal COOH-terminal region (amino acids 1,509-1,789) of the main subunit (α1C) of the Cav1.2 channel. Our data suggest that ATP might regulate Cav1.2 channel activity by directly binding to the Cav1.2 channel in a dose-dependent manner. In addition, the ATP-binding effect to the Cav1.2 channel was both CaM- and Ca(2+) dependent.

  7. Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force.

    PubMed

    Carpaneto, Armando; Geiger, Dietmar; Bamberg, Ernst; Sauer, Norbert; Fromm, Jörg; Hedrich, Rainer

    2005-06-03

    The phloem network is as essential for plants as the vascular system is for humans. This network, assembled by nucleus- and vacuole-free interconnected living cells, represents a long distance transport pathway for nutrients and information. According to the Münch hypothesis, osmolytes such as sucrose generate the hydrostatic pressure that drives nutrient and water flow between the source and the sink phloem (Münch, E. (1930) Die Stoffbewegungen in der Pflanze, Gustav Fischer, Jena, Germany). Although proton-coupled sucrose carriers have been localized to the sieve tube and the companion cell plasma membrane of both source and sink tissues, knowledge of the molecular representatives and the mechanism of the sucrose phloem efflux is still scant. We expressed ZmSUT1, a maize sucrose/proton symporter, in Xenopus oocytes and studied the transport characteristics of the carrier by electrophysiological methods. Using the patch clamp techniques in the giant inside-out patch mode, we altered the chemical and electrochemical gradient across the sucrose carrier and analyzed the currents generated by the proton flux. Thereby we could show that ZmSUT1 is capable of mediating both the sucrose uptake into the phloem in mature leaves (source) as well as the desorption of sugar from the phloem vessels into heterotrophic tissues (sink). As predicted from a perfect molecular machine, the ZmSUT1-mediated sucrose-coupled proton current was reversible and depended on the direction of the sucrose and pH gradient as well as the membrane potential across the transporter.

  8. PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion.

    PubMed

    Li, Li; Zhao, Lei; Wang, Yang; Ma, Ke-tao; Shi, Wen-yan; Wang, Ying-zi; Si, Jun-qiang

    2015-02-01

    The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.

  9. The inhibition of the potassium channel TASK-1 in rat cardiac muscle by endothelin-1 is mediated by phospholipase C.

    PubMed

    Schiekel, Julia; Lindner, Moritz; Hetzel, Andrea; Wemhöner, Konstantin; Renigunta, Vijay; Schlichthörl, Günter; Decher, Niels; Oliver, Dominik; Daut, Jürgen

    2013-01-01

    The two-pore-domain potassium channel TASK-1 is robustly inhibited by the activation of receptors coupled to the Gα(q) subgroup of G-proteins, but the signal transduction pathway is still unclear. We have studied the mechanisms by which endothelin receptors inhibit the current carried by TASK-1 channels (I(TASK)) in cardiomyocytes. Patch-clamp measurements were carried out in isolated rat cardiomyocytes. I(TASK) was identified by extracellular acidification to pH 6.0 and by the application of the TASK-1 blockers A293 and A1899. Endothelin-1 completely inhibited I(TASK) with an EC(50) of <10 nM; this effect was mainly mediated by endothelin-A receptors. Application of 20 nM endothelin-1 caused a significant increase in action potential duration under control conditions; this was significantly reduced after pre-incubation of the cardiomyocytes with 200 nM A1899. The inhibition of I(TASK) by endothelin-1 was not affected by inhibitors of protein kinase C or rho kinase, but was strongly reduced by U73122, an inhibitor of phospholipase C (PLC). The ability of endothelin-1 to activate PLC-mediated signalling pathways was examined in mammalian cells transfected with TASK-1 and the endothelin-A receptor using patch-clamp measurements and total internal reflection microscopy. U73122 prevented the inhibition of I(TASK) by endothelin-1 and blocked PLC-mediated signalling, as verified with a fluorescent probe for phosphatidylinositol-(4,5)-bisphosphate hydrolysis. Our results show that I(TASK) in rat cardiomyocytes is controlled by endothelin-1 and suggest that the inhibition of TASK-1 via endothelin receptors is mediated by the activation of PLC. The prolongation of the action potential observed with 20 nM endothelin-1 was mainly due to the inhibition of I(TASK).

  10. Electrophysiological responses of dissociated type I cells of the rabbit carotid body to cyanide.

    PubMed Central

    Biscoe, T J; Duchen, M R

    1989-01-01

    1. The carotid body is the major peripheral sensor of arterial PO2 in the mammal and is excited by cyanide (CN-). Type I cells, the presumed sites for transduction, were freshly dissociated from the carotid body of the adult rabbit and studied with the whole-cell patch clamp technique. 2. Type I cells were hyperpolarized by CN-, the action potential was shortened, and there was an increased after-hyperpolarization. 3. Under voltage clamp control, CN- increased a voltage-dependent outward current, which showed pronounced outward rectification. Tail currents increased by CN- reversed close to the predicted EK, the reversal potential of the CN--induced current depended on extracellular [K+], and the current was blocked by intracellular TEA+ and Cs+. 4. The i-V relation of the CN--induced conductance strongly mirrored that of voltage-gated Ca2+ entry, and the response was abolished by removal of extracellular Ca2+. We conclude that the increased gK is Ca2+ -dependent (gK(Ca]. 5. The Ca2+ current was attenuated by CN-, and showed an increased rate of inactivation. Thus, the increased gK(Ca) must result from an alteration in Ca2+ homeostasis independent of the Ca2+ current, and not an increased Ca2+ entry through voltage-activated channels. 6. Carbachol also hyperpolarized cells and increased a K+ conductance. 7. At depolarized holding potentials a steady-state outward current was increased by CN-. The current reversed close to EK, and was associated with increased current fluctuations. Noise analysis showed that a channel conductance of 3 pS carries the current. 8. The response to CN- was not impaired by the inclusion of 5 mM-MgATP in the patch pipette. 9. If signals to the CNS are initiated by the calcium-dependent release of transmitters from type I cells, transduction would appear to be the direct consequence of the energy dependence of Ca2+ homeostasis. PMID:2557439

  11. Gut-derived factors promote neurogenesis of CNS-neural stem cells and nudge their differentiation to an enteric-like neuronal phenotype.

    PubMed

    Kulkarni, Subhash; Zou, Bende; Hanson, Jesse; Micci, Maria-Adelaide; Tiwari, Gunjan; Becker, Laren; Kaiser, Martin; Xie, Xinmin Simon; Pasricha, Pankaj Jay

    2011-10-01

    Recent studies have explored the potential of central nervous system-derived neural stem cells (CNS-NSC) to repopulate the enteric nervous system. However, the exact phenotypic fate of gut-transplanted CNS-NSC has not been characterized. The aim of this study was to investigate the effect of the gut microenvironment on phenotypic fate of CNS-NSC in vitro. With the use of Transwell culture, differentiation of mouse embryonic CNS-NSC was studied when cocultured without direct contact with mouse intestinal longitudinal muscle-myenteric plexus preparations (LM-MP) compared with control noncocultured cells, in a differentiating medium. Differentiated cells were analyzed by immunocytochemistry and quantitative RT-PCR to assess the expression of specific markers and by whole cell patch-clamp studies for functional characterization of their phenotype. We found that LM-MP cocultured cells had a significant increase in the numbers of cells that were immune reactive against the panneuronal marker β-tubulin, neurotransmitters neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), and neuropeptide vasoactive intestinal peptide (VIP) and showed an increase in expression of these genes, compared with control cells. Whole cell patch-clamp analysis showed that coculture with LM-MP decreases cell excitability and reduces voltage-gated Na(+) currents but significantly enhances A-current and late afterhyperpolarization (AHP) and increases the expression of the four AHP-generating Ca(2+)-dependent K(+) channel genes (KCNN), compared with control cells. In a separate experiment, differentiation of LM-MP cocultured CNS-NSC produced a significant increase in the numbers of cells that were immune reactive against the neurotransmitters nNOS, ChAT, and the neuropeptide VIP compared with CNS-NSC differentiated similarly in the presence of neonatal brain tissue. Our results show that the gut microenvironment induces CNS-NSC to produce neurons that share some of the characteristics of classical enteric neurons, further supporting the therapeutic use of these cells for gastrointestinal disorders.

  12. Rock Tea extract (Jasonia glutinosa) relaxes rat aortic smooth muscle by inhibition of L-type Ca(2+) channels.

    PubMed

    Valero, Marta Sofía; Oliván-Viguera, Aida; Garrido, Irene; Langa, Elisa; Berzosa, César; López, Víctor; Gómez-Rincón, Carlota; Murillo, María Divina; Köhler, Ralf

    2015-12-01

    In traditional herbal medicine, Rock Tea (Jasonia glutinosa) is known for its prophylactic and therapeutic value in various disorders including arterial hypertension. However, the mechanism by which Rock Tea exerts blood pressure-lowering actions has not been elucidated yet. Our aim was to demonstrate vasorelaxing effects of Rock Tea extract and to reveal its possible action mechanism. Isometric myography was conducted on high-K+-precontracted rings from rat thoracic aorta and tested extracts at concentrations of 0.5-5 mg/ml. Whole-cell patch-clamp experiments were performed in rat aortic vascular smooth muscle cells (line A7r5) to determine blocking effects on L-type Ca(2+) channels. Rock Tea extract relaxed the aorta contracted by high [K+] concentration dependently with an EC50 of ≈2.4 mg/ml and produced ≈75 % relaxation at the highest concentration tested. The L-type Ca(2+) channel blocker, verapamil (10(-6) M), had similar effects. Rock Tea extract had no effect in nominally Ca(2+)-free high-K(+) buffer but significantly inhibited contractions to re-addition of Ca(2+). Rock Tea extract inhibited the contractions induced by the L-type Ca(2+) channel activator Bay K 8644 (10(-5) M) and by phenylephrine (10(-6) M). Rock Tea extract and Y-27632 (10(-6) M), Rho-kinase inhibitor, had similar effects and the respective effects were not additive. Patch-clamp experiments demonstrated that Rock Tea extract (2.5 mg/ml) virtually abolished L-type Ca(2+) currents in A7r5. We conclude that Rock Tea extract produced vasorelaxation of rat aorta and that this relaxant effect is mediated by inhibition of L-type Ca(2+) channels. Rock Tea extracts may be of phytomedicinal value for prevention and adjuvant treatment of hypertension and other cardiovascular diseases.

  13. The effects of gentamicin and penicillin/streptomycin on the electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes in manual patch clamp and multi-electrode array system.

    PubMed

    Hyun, Soo-Wang; Kim, Bo-Ram; Lin, Dan; Hyun, Sung-Ae; Yoon, Seong Shoon; Seo, Joung-Wook

    Cell culture media usually contains antibiotics including gentamicin or penicillin/streptomycin (PS) to protect cells from bacterial contamination. However, little is known about the effects of antibiotics on action potential and field potential parameters in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The present study examined the effects of gentamicin (10, 25, and 50μg/ml) and PS (50, 100, and 200U/μg/ml) on electrophysiological activity in spontaneously beating hiPSC-CMs using manual patch clamp and multi-electrode array. We also measured mRNA expression of cardiac ion channels in hiPSC-CMs grown in media with or without gentamicin (25μg/ml) using reverse transcription-polymerase chain reaction. We recorded action potential and field potential of hiPSC-CMs grown in the presence or absence of gentamicin or PS. We also observed action potential parameters in hiPSC-CMs after short-term treatment with these antibiotics. Changes in action potential and field potential parameters were observed in hiPSC-CMs grown in media containing gentamicin or PS. Treatment with PS also affected action potential parameters in hiPSC-CMs. In addition, the mRNA expression of cardiac sodium and potassium ion channels was significantly attenuated in hiPSC-CMs grown in the presence of gentamicin (25μg/ml). The present findings suggested that gentamicin should not be used in the culture media of hiPSC-CMs used for the measurement of electrophysiological parameters. Our findings also suggest that 100U/100μg/ml of PS are the maximum appropriate concentrations of these antibiotics for recording action potential waveform, because they did not influence action potential parameters in these cells. Copyright © 2017. Published by Elsevier Inc.

  14. Nanoscale patterning controls inorganic-membrane interface structure

    NASA Astrophysics Data System (ADS)

    Almquist, Benjamin D.; Verma, Piyush; Cai, Wei; Melosh, Nicholas A.

    2011-02-01

    The ability to non-destructively integrate inorganic structures into or through biological membranes is essential to realizing full bio-inorganic integration, including arrayed on-chip patch-clamps, drug delivery, and biosensors. Here we explore the role of nanoscale patterning on the strength of biomembrane-inorganic interfaces. AFM measurements show that inorganic probes functionalized with hydrophobic bands with thicknesses complimentary to the hydrophobic lipid bilayer core exhibit strong attachment in the bilayer. As hydrophobic band thickness increases to 2-3 times the bilayer core the interfacial strength decreases, comparable to homogeneously hydrophobic probes. Analytical calculations and molecular dynamics simulations predict a transition between a `fused' interface and a `T-junction' that matches the experimental results, showing lipid disorder and defect formation for thicker bands. These results show that matching biological length scales leads to more intimate bio-inorganic junctions, enabling rational design of non-destructive membrane interfaces.The ability to non-destructively integrate inorganic structures into or through biological membranes is essential to realizing full bio-inorganic integration, including arrayed on-chip patch-clamps, drug delivery, and biosensors. Here we explore the role of nanoscale patterning on the strength of biomembrane-inorganic interfaces. AFM measurements show that inorganic probes functionalized with hydrophobic bands with thicknesses complimentary to the hydrophobic lipid bilayer core exhibit strong attachment in the bilayer. As hydrophobic band thickness increases to 2-3 times the bilayer core the interfacial strength decreases, comparable to homogeneously hydrophobic probes. Analytical calculations and molecular dynamics simulations predict a transition between a `fused' interface and a `T-junction' that matches the experimental results, showing lipid disorder and defect formation for thicker bands. These results show that matching biological length scales leads to more intimate bio-inorganic junctions, enabling rational design of non-destructive membrane interfaces. Electronic supplementary information (ESI) available: Breakthrough rate as a function of force plots for 5 nm, 10 nm and ∞-probes.. See DOI: 10.1039/c0nr00486c

  15. Using the genome aggregation database, computational pathogenicity prediction tools, and patch clamp heterologous expression studies to demote previously published long QT syndrome type 1 mutations from pathogenic to benign.

    PubMed

    Clemens, Daniel J; Lentino, Anne R; Kapplinger, Jamie D; Ye, Dan; Zhou, Wei; Tester, David J; Ackerman, Michael J

    2018-04-01

    Mutations in the KCNQ1-encoded Kv7.1 potassium channel cause long QT syndrome (LQTS) type 1 (LQT1). It has been suggested that ∼10%-20% of rare LQTS case-derived variants in the literature may have been published erroneously as LQT1-causative mutations and may be "false positives." The purpose of this study was to determine which previously published KCNQ1 case variants are likely false positives. A list of all published, case-derived KCNQ1 missense variants (MVs) was compiled. The occurrence of each MV within the Genome Aggregation Database (gnomAD) was assessed. Eight in silico tools were used to predict each variant's pathogenicity. Case-derived variants that were either (1) too frequently found in gnomAD or (2) absent in gnomAD but predicted to be pathogenic by ≤2 tools were considered potential false positives. Three of these variants were characterized functionally using whole-cell patch clamp technique. Overall, there were 244 KCNQ1 case-derived MVs. Of these, 29 (12%) were seen in ≥10 individuals in gnomAD and are demotable. However, 157 of 244 MVs (64%) were absent in gnomAD. Of these, 7 (4%) were predicted to be pathogenic by ≤2 tools, 3 of which we characterized functionally. There was no significant difference in current density between heterozygous KCNQ1-F127L, -P477L, or -L619M variant-containing channels compared to KCNQ1-WT. This study offers preliminary evidence for the demotion of 32 (13%) previously published LQT1 MVs. Of these, 29 were demoted because of their frequent sighting in gnomAD. Additionally, in silico analysis and in vitro functional studies have facilitated the demotion of 3 ultra-rare MVs (F127L, P477L, L619M). Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  16. Glutathionylation-Dependence of Na+-K+-Pump Currents Can Mimic Reduced Subsarcolemmal Na+ Diffusion

    PubMed Central

    Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J.; Rasmussen, Helge H.

    2016-01-01

    The existence of a subsarcolemmal space with restricted diffusion for Na+ in cardiac myocytes has been inferred from a transient peak electrogenic Na+-K+ pump current beyond steady state on reexposure of myocytes to K+ after a period of exposure to K+-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na+ that accumulated in the diffusion-restricted space during pump inhibition in K+-free extracellular solution. However, there are no known physical barriers that account for such restricted Na+ diffusion, and we examined if changes of activity of the Na+-K+ pump itself cause the transient peak current. Reexposure to K+ reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na+ concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K+-free pipette solution could not be reconciled with restricted subsarcolemmal Na+ diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na+- and K+ concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na+-K+ pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na+-K+ pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K+-induced peak Na+-K+ pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K+-induced peak Na+-K+ pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na+. PMID:26958887

  17. Renal proximal tubule function is preserved in Cftrtm2camΔF508 cystic fibrosis mice

    PubMed Central

    Kibble, J D; Balloch, K J D; Neal, A M; Hill, C; White, S; Robson, L; Green, R; Taylor, C J

    2001-01-01

    Changes in proximal tubule function have been reported in cystic fibrosis patients. The aim of this study was to investigate proximal tubule function in the Cftrtm2camΔF508 cystic fibrosis (CF) mouse model. A range of techniques were used including renal clearance studies, in situ microperfusion, RT-PCR and whole-cell patch clamping. Renal Na+ clearance was similar in wild-type (1.4 ± 0.3 μl min−1, number of animals, N= 12) and CF mice (1.6 ± 0.4 μl min−1, N= 7) under control conditions. Acute extracellular volume expansion resulted in significant natriuresis in wild-type (7.0 ± 0.8 μl min−1, N= 8) and CF mice (9.3 ± 1.4 μl min−1, N= 9); no difference between genotypes was observed. In situ microperfusion revealed that fluid absorptive rate (Jv) was similar under control conditions between wild-type (2.2 ± 0.4 nl mm−1 min−1, n= 10) and CF mice (1.9 ± 0.3 nl mm−1 min−1, n= 11). Addition of a forskolin-dibutyryl cAMP (db-cAMP) cocktail to the perfusate caused no significant change in Jv in either wild-type (2.6 ± 0.7 nl mm−1 min−1, n= 10) or Cftrtm2camΔF508 mice (2.0 ± 0.5 nl mm−1 min−1, n= 10). CFTR expression was confirmed in samples of outer cortex using RT-PCR. However, no evidence for functional CFTR was obtained when outer cortical cells were stimulated with protein kinase A or forskolin-db-cAMP using whole-cell patch clamping. In conclusion, no functional deficit in proximal tubule function was found in Cftrtm2camΔF508 mice. This may be a consequence of a lack of whole-cell cAMP-dependent Cl− conductance in mouse proximal tubule cells. PMID:11306663

  18. Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion.

    PubMed

    Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J; Rasmussen, Helge H

    2016-03-08

    The existence of a subsarcolemmal space with restricted diffusion for Na(+) in cardiac myocytes has been inferred from a transient peak electrogenic Na(+)-K(+) pump current beyond steady state on reexposure of myocytes to K(+) after a period of exposure to K(+)-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na(+) that accumulated in the diffusion-restricted space during pump inhibition in K(+)-free extracellular solution. However, there are no known physical barriers that account for such restricted Na(+) diffusion, and we examined if changes of activity of the Na(+)-K(+) pump itself cause the transient peak current. Reexposure to K(+) reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na(+) concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K(+)-free pipette solution could not be reconciled with restricted subsarcolemmal Na(+) diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na(+)- and K(+) concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na(+)-K(+) pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K(+)-induced peak Na(+)-K(+) pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K(+)-induced peak Na(+)-K(+) pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na(+). Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Clostridium perfringens epsilon toxin targets granule cells in the mouse cerebellum and stimulates glutamate release.

    PubMed

    Lonchamp, Etienne; Dupont, Jean-Luc; Wioland, Laetitia; Courjaret, Raphaël; Mbebi-Liegeois, Corinne; Jover, Emmanuel; Doussau, Frédéric; Popoff, Michel R; Bossu, Jean-Louis; de Barry, Jean; Poulain, Bernard

    2010-09-30

    Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET induced intracellular Ca(2+) rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in neuronal tissue is due to a direct effect of ET on neurons.

  20. Clostridium perfringens Epsilon Toxin Targets Granule Cells in the Mouse Cerebellum and Stimulates Glutamate Release

    PubMed Central

    Lonchamp, Etienne; Dupont, Jean-Luc; Wioland, Laetitia; Courjaret, Raphaël; Mbebi-Liegeois, Corinne; Jover, Emmanuel; Doussau, Frédéric; Popoff, Michel R.; Bossu, Jean-Louis; de Barry, Jean; Poulain, Bernard

    2010-01-01

    Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET induced intracellular Ca2+ rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in neuronal tissue is due to a direct effect of ET on neurons. PMID:20941361

  1. Involvement of Potassium and Cation Channels in Hippocampal Abnormalities of Embryonic Ts65Dn and Tc1 Trisomic Mice

    PubMed Central

    Stern, Shani; Segal, Menahem; Moses, Elisha

    2015-01-01

    Down syndrome (DS) mouse models exhibit cognitive deficits, and are used for studying the neuronal basis of DS pathology. To understand the differences in the physiology of DS model neurons, we used dissociated neuronal cultures from the hippocampi of Ts65Dn and Tc1 DS mice. Imaging of [Ca2+]i and whole cell patch clamp recordings were used to analyze network activity and single neuron properties, respectively. We found a decrease of ~ 30% in both fast (A-type) and slow (delayed rectifier) outward potassium currents. Depolarization of Ts65Dn and Tc1 cells produced fewer spikes than diploid cells. Their network bursts were smaller and slower than diploids, displaying a 40% reduction in Δf / f0 of the calcium signals, and a 30% reduction in propagation velocity. Additionally, Ts65Dn and Tc1 neurons exhibited changes in the action potential shape compared to diploid neurons, with an increase in the amplitude of the action potential, a lower threshold for spiking, and a sharp decrease of about 65% in the after-hyperpolarization amplitude. Numerical simulations reproduced the DS measured phenotype by variations in the conductance of the delayed rectifier and A-type, but necessitated also changes in inward rectifying and M-type potassium channels and in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. We therefore conducted whole cell patch clamp measurements of M-type potassium currents, which showed a ~ 90% decrease in Ts65Dn neurons, while HCN measurements displayed an increase of ~ 65% in Ts65Dn cells. Quantitative real-time PCR analysis indicates overexpression of 40% of KCNJ15, an inward rectifying potassium channel, contributing to the increased inhibition. We thus find that changes in several types of potassium channels dominate the observed DS model phenotype. PMID:26501103

  2. Do β3-adrenergic receptors play a role in guinea pig detrusor smooth muscle excitability and contractility?

    PubMed Central

    Afeli, Serge A. Y.; Hristov, Kiril L.

    2012-01-01

    In many species, β3-adrenergic receptors (β3-ARs) have been reported to play a primary role in pharmacologically induced detrusor smooth muscle (DSM) relaxation. However, their role in guinea pig DSM remains controversial. The aim of this study was to investigate whether β3-ARs are expressed in guinea pig DSM and to evaluate how BRL37344 and L-755,507, two selective β3-AR agonists, modulate guinea pig DSM excitability and contractility. We used a combined experimental approach including RT-PCR, patch-clamp electrophysiology, and isometric DSM tension recordings. β3-AR mRNA message was detected in freshly isolated guinea pig DSM single cells. BRL37344 but not L-755,507 caused a slight decrease in DSM spontaneous phasic contraction amplitude and frequency in a concentration-dependent manner. In the presence of atropine (1 μM), only the spontaneous phasic contractions frequency was inhibited by BRL37344 at higher concentrations. Both BRL37344 and L-755,507 significantly decreased DSM carbachol-induced phasic and tonic contractions in a concentration-dependent manner. However, only BRL37344 inhibitory effect was partially antagonized by SR59230A (10 μM), a β3-AR antagonist. In the presence of atropine, BRL37344 and L-755,507 had no inhibitory effect on electrical field stimulation-induced contractions. Patch-clamp experiments showed that BRL37344 (100 μM) did not affect the DSM cell resting membrane potential and K+ conductance. Although β3-ARs are expressed at the mRNA level, they play a minor to no role in guinea pig DSM spontaneous contractility without affecting cell excitability. However, BRL37344 and L-755,507 have pronounced inhibitory effects on guinea pig DSM carbachol-induced contractions. The study outlines important DSM β3-ARs species differences. PMID:21993887

  3. Baicalin maintains late-stage functional cardiomyocytes in embryoid bodies derived from murine embryonic stem cells.

    PubMed

    Tang, Meilin; Yin, Mengmeng; Tang, Ming; Liang, Huamin; Yu, Chong; Hu, Xinwu; Luo, Hongyan; Baudis, Birte; Haustein, Moritz; Khalil, Markus; Sarić, Tomo; Hescheler, Jürgen; Xi, Jiaoya

    2013-01-01

    Low efficiency of cardiomyocyte (CM) differentiation from embryonic stem (ES) cells limits their therapeutic use. The objective of this study was to investigate the effect of baicalin, a natural flavonoid compound, on the in vitro cardiac differentiation of murine ES cells. The induction of ES cells into cardiac-like cells was performed by embryoid body (EB)-based differentiation method. The electrophysiological properties of the ES cell-derived CMs (ES-CMs) were measured by patch-clamp. The biomarkers of ES-CMs were determined by quantitative RT-PCR and immunofluorescence. Continuous baicalin treatment decreased the size of EBs, and increased the proportion of α-actinin-positive CMs and transcript level of cardiac specific markers in beating EBs by inducing cell death of non-CMs. Baicalin increased the percentage of working ES-CMs which had typical responses to β-adrenergic and muscarinic stimulations. Baicalin maintains the late-stage functional CMs in EBs derived from murine ES cells. This study describes a new insight into the various biological effects of baicalin on cardiac differentiation of pluripotent stem cells. Copyright © 2013 S. Karger AG, Basel.

  4. Mechano-sensitization of mammalian neuronal networks through expression of the bacterial large-conductance mechanosensitive ion channel

    PubMed Central

    Contestabile, Andrea; Moroni, Monica; Hallinan, Grace I.; Palazzolo, Gemma; Chad, John; Deinhardt, Katrin; Carugo, Dario

    2018-01-01

    ABSTRACT Development of remote stimulation techniques for neuronal tissues represents a challenging goal. Among the potential methods, mechanical stimuli are the most promising vectors to convey information non-invasively into intact brain tissue. In this context, selective mechano-sensitization of neuronal circuits would pave the way to develop a new cell-type-specific stimulation approach. We report here, for the first time, the development and characterization of mechano-sensitized neuronal networks through the heterologous expression of an engineered bacterial large-conductance mechanosensitive ion channel (MscL). The neuronal functional expression of the MscL was validated through patch-clamp recordings upon application of calibrated suction pressures. Moreover, we verified the effective development of in-vitro neuronal networks expressing the engineered MscL in terms of cell survival, number of synaptic puncta and spontaneous network activity. The pure mechanosensitivity of the engineered MscL, with its wide genetic modification library, may represent a versatile tool to further develop a mechano-genetic approach. This article has an associated First Person interview with the first author of the paper. PMID:29361543

  5. Planar MEMS bio-chip for recording ion-channel currents in biological cells

    NASA Astrophysics Data System (ADS)

    Pandey, Santosh; Ferdous, Zannatul; White, Marvin H.

    2003-10-01

    We describe a planar MEMS silicon structure to record ion-channel currents in biological cells. The conventional method of performing an electrophysiological experiment, 'patch-clamping,' employs a glass micropipette. Despite careful treatments of the micropipette tip, such as fire polishing and surface coating, the latter is a source of thermal noise because of its inherent, tapered, conical structure, which gives rise to a large pipette resistance. This pipette resistance, when coupled with the self-capacitance of the biological cell, limits the available bandwidth and processing of fast transient, ion channel current pulses. In this work, we reduce considerably the pipette resistance with a planar micropipette on a silicon chip to permit the resolution of sub-millisecond, ion-channel pulses. We discuss the design topology of the device, describe the fabrication sequence, and highlight important critical issues. The design of an integrated on-chip CMOS instrumentation amplifier is described, which has a low-noise front-end, input-offset cancellation, correlated double sampling (CDS), and an ultra-high gain in the order of 1012V/A.

  6. Effects of nano red elemental selenium on sodium currents in rat dorsal root ganglion neurons.

    PubMed

    Yuan, Huijun; Lin, Jiarui; Lan, Tonghan

    2006-01-01

    Nano red elemental selenium (Nano-Se), was demonstrated to be useful in medical and scientific researches. Here, we investigated the effects of Nano-Se on sodium currents on rat dorsal root ganglion neurons (DRG), using the whole-cell patch clamp method. Nano-Se reversibly decrease the I(Na)(TTX-S) in a concentration-dependent, time-dependent and open-channel block manners without affecting I(Na)(TTX-R). It shifted the steady-state activation and inactivation curves for I(Na) to more negative potentials. In the research of recovery from inactivation, the recovery time constant is longer in the present of Nano-Se. Nano-Se had a weaker inhibitory effect on I(Na), compared with marked decrease caused by selenite which indicated that Nano-Se is less neurotoxic than selenite in short-term/large dose treatments and had similar bio availability to sodium selenite. The results of interaction between the effects of Nano-Se and selenite on sodium currents indicated a negative allosteric interaction between the selenite binding site and the Nano-Se binding site or that they have the same competitive binding site.

  7. Scalable Electrophysiological Investigation of iPS Cell-Derived Cardiomyocytes Obtained by a Lentiviral Purification Strategy.

    PubMed

    Friedrichs, Stephanie; Malan, Daniela; Voss, Yvonne; Sasse, Philipp

    2015-01-08

    Disease-specific induced pluripotent stem (iPS) cells can be generated from patients and differentiated into functional cardiomyocytes for characterization of the disease and for drug screening. In order to obtain pure cardiomyocytes for automated electrophysiological investigation, we here report a novel non-clonal purification strategy by using lentiviral gene transfer of a puromycin resistance gene under the control of a cardiac-specific promoter. We have applied this method to our previous reported wild-type and long QT syndrome 3 (LQTS 3)-specific mouse iPS cells and obtained a pure cardiomyocyte population. These cells were investigated by action potential analysis with manual and automatic planar patch clamp technologies, as well as by recording extracellular field potentials using a microelectrode array system. Action potentials and field potentials showed the characteristic prolongation at low heart rates in LQTS 3-specific, but not in wild-type iPS cell-derived cardiomyocytes. Hence, LQTS 3-specific cardiomyocytes can be purified from iPS cells with a lentiviral strategy, maintain the hallmarks of the LQTS 3 disease and can be used for automated electrophysiological characterization and drug screening.

  8. Defective Fast Inactivation Recovery of Nav1.4 in Congenital Myasthenic Syndrome

    PubMed Central

    Arnold, W. David; Feldman, Daniel H.; Ramirez, Sandra; He, Liuyuan; Kassar, Darine; Quick, Adam; Klassen, Tara L.; Lara, Marian; Nguyen, Joanna; Kissel, John T.; Lossin, Christoph; Maselli, Ricardo A.

    2015-01-01

    Objective To describe the unique phenotype and genetic findings in a 57-year-old female with a rare form of congenital myasthenic syndrome (CMS) associated with longstanding muscle fatigability, and to investigate the underlying pathophysiology. Methods We used whole-cell voltage clamping to compare the biophysical parameters of wild-type and Arg1457His-mutant Nav1.4. Results Clinical and neurophysiological evaluation revealed features consistent with CMS. Sequencing of candidate genes indicated no abnormalities. However, analysis of SCN4A, the gene encoding the skeletal muscle sodium channel Nav1.4, revealed a homozygous mutation predicting an arginine-to-histidine substitution at position 1457 (Arg1457His), which maps to the channel’s voltage sensor, specifically D4/S4. Whole-cell patch clamp studies revealed that the mutant required longer hyperpolarization to recover from fast inactivation, which produced a profound use-dependent current attenuation not seen in the wild type. The mutant channel also had a marked hyperpolarizing shift in its voltage dependence of inactivation as well as slowed inactivation kinetics. Interpretation We conclude that Arg1457His compromises muscle fiber excitability. The mutant fast-inactivates with significantly less depolarization, and it recovers only after extended hyperpolarization. The resulting enhancement in its use dependence reduces channel availability, which explains the patient’s muscle fatigability. Arg1457His offers molecular insight into a rare form of CMS precipitated by sodium channel inactivation defects. Given this channel’s involvement in other muscle disorders such as paramyotonia congenita and hyperkalemic periodic paralysis, our study exemplifies how variations within the same gene can give rise to multiple distinct dysfunctions and phenotypes, revealing residues important in basic channel function. PMID:25707578

  9. Analytical and experimental studies of natural vibrations modes of ring-stiffened truncated-cone shells with variable theoretical ring fixity

    NASA Technical Reports Server (NTRS)

    Naumann, E. C.; Catherines, D. S.; Walton, W. C., Jr.

    1971-01-01

    Experimental and analytical investigations of the vibratory behavior of ring-stiffened truncated-cone shells are described. Vibration tests were conducted on 60 deg conical shells having up to four ring stiffeners and for free-free and clamped-free edge constraints and 9 deg conical shells, for two thicknesses, each with two angle rings and for free-free, free-clamped, and clamped-clamped edge constraints. The analytical method is based on linear thin shell theory, employing the Rayleigh-Ritz method. Discrete rings are represented as composed of one or more segments, each of which is a short truncated-cone shell of uniform thickness. Equations of constraint are used to join a ring and shell along a circumferential line connection. Excellent agreement was obtained for comparisons of experimental and calculated frequencies.

  10. A Simplified, Langendorff-Free Method for Concomitant Isolation of Viable Cardiac Myocytes and Nonmyocytes From the Adult Mouse Heart

    PubMed Central

    Ackers-Johnson, Matthew; Li, Peter Yiqing; Holmes, Andrew P.; O’Brien, Sian-Marie; Pavlovic, Davor; Foo, Roger S.

    2018-01-01

    Rationale Cardiovascular disease represents a global pandemic. The advent of and recent advances in mouse genomics, epigenomics, and transgenics offer ever-greater potential for powerful avenues of research. However, progress is often constrained by unique complexities associated with the isolation of viable myocytes from the adult mouse heart. Current protocols rely on retrograde aortic perfusion using specialized Langendorff apparatus, which poses considerable logistical and technical barriers to researchers and demands extensive training investment. Objective To identify and optimize a convenient, alternative approach, allowing the robust isolation and culture of adult mouse cardiac myocytes using only common surgical and laboratory equipment. Methods and Results Cardiac myocytes were isolated with yields comparable to those in published Langendorff-based methods, using direct needle perfusion of the LV ex vivo and without requirement for heparin injection. Isolated myocytes can be cultured antibiotic free, with retained organized contractile and mitochondrial morphology, transcriptional signatures, calcium handling, responses to hypoxia, neurohormonal stimulation, and electric pacing, and are amenable to patch clamp and adenoviral gene transfer techniques. Furthermore, the methodology permits concurrent isolation, separation, and coculture of myocyte and nonmyocyte cardiac populations. Conclusions We present a novel, simplified method, demonstrating concomitant isolation of viable cardiac myocytes and nonmyocytes from the same adult mouse heart. We anticipate that this new approach will expand and accelerate innovative research in the field of cardiac biology. PMID:27502479

  11. An In Vivo Study of Low-Dose Intra-Articular Tranexamic Acid Application with Prolonged Clamping Drain Method in Total Knee Replacement: Clinical Efficacy and Safety

    PubMed Central

    Sa-ngasoongsong, Paphon; Chanplakorn, Pongsthorn; Wongsak, Siwadol; Uthadorn, Krisorn; Panpikoon, Tanapong; Jittorntam, Paisan; Aryurachai, Katcharin; Angchaisukisiri, Pantap; Kawinwonggowit, Viroj

    2015-01-01

    Background. Recently, combined intra-articular tranexamic acid (IA-TXA) injection with clamping drain method showed efficacy for blood loss and transfusion reduction in total knee replacement (TKR). However, until now, none of previous studies revealed the effect of this technique on pharmacokinetics, coagulation, and fibrinolysis. Materials and Methods. An experimental study was conducted, during 2011-2012, in 30 patients undergoing unilateral TKR. Patients received IA-TXA application and then were allocated into six groups regarding clamping drain duration (2-, 4-, 6-, 8-, 10-, and 12-hours). Blood and drainage fluid were collected to measure tranexamic acid (TXA) level and related coagulation and fibrinolytic markers. Postoperative complication was followed for one year. Results. There was no significant difference of serum TXA level at 2 hour and 24 hour among groups (p < 0.05). Serum TXA level at time of clamp release was significantly different among groups with the highest level at 2 hour (p < 0.0001). There was no significant difference of TXA level in drainage fluid, postoperative blood loss, blood transfusion, and postoperative complications (p < 0.05).  Conclusions. Low-dose IA-TXA application in TKR with prolonged clamping drain method is a safe and effective blood conservative technique with only minimal systemic absorption and without significant increase in systemic absorption over time. PMID:26583092

  12. Methods of Making and Using Shape Memory Polymer Composite Patches

    NASA Technical Reports Server (NTRS)

    Hood, Patrick J.

    2011-01-01

    A method of repairing a composite component having a damaged area including: laying a composite patch over the damaged area: activating the shape memory polymer resin to easily and quickly mold said patch to said damaged area; deactivating said shape memory polymer so that said composite patch retains the molded shape; and bonding said composite patch to said damaged part.

  13. Increased transient Na+ conductance and action potential output in layer 2/3 prefrontal cortex neurons of the fmr1-/y mouse.

    PubMed

    Routh, Brandy N; Rathour, Rahul K; Baumgardner, Michael E; Kalmbach, Brian E; Johnston, Daniel; Brager, Darrin H

    2017-07-01

    Layer 2/3 neurons of the prefrontal cortex display higher gain of somatic excitability, responding with a higher number of action potentials for a given stimulus, in fmr1 -/y mice. In fmr1 -/y L2/3 neurons, action potentials are taller, faster and narrower. Outside-out patch clamp recordings revealed that the maximum Na + conductance density is higher in fmr1 -/y L2/3 neurons. Measurements of three biophysically distinct K + currents revealed a depolarizing shift in the activation of a rapidly inactivating (A-type) K + conductance. Realistic neuronal simulations of the biophysical observations recapitulated the elevated action potential and repetitive firing phenotype. Fragile X syndrome is the most common form of inherited mental impairment and autism. The prefrontal cortex is responsible for higher order cognitive processing, and prefrontal dysfunction is believed to underlie many of the cognitive and behavioural phenotypes associated with fragile X syndrome. We recently demonstrated that somatic and dendritic excitability of layer (L) 5 pyramidal neurons in the prefrontal cortex of the fmr1 -/y mouse is significantly altered due to changes in several voltage-gated ion channels. In addition to L5 pyramidal neurons, L2/3 pyramidal neurons play an important role in prefrontal circuitry, integrating inputs from both lower brain regions and the contralateral cortex. Using whole-cell current clamp recording, we found that L2/3 pyramidal neurons in prefrontal cortex of fmr1 -/y mouse fired more action potentials for a given stimulus compared with wild-type neurons. In addition, action potentials in fmr1 -/y neurons were significantly larger, faster and narrower. Voltage clamp of outside-out patches from L2/3 neurons revealed that the transient Na + current was significantly larger in fmr1 -/y neurons. Furthermore, the activation curve of somatic A-type K + current was depolarized. Realistic conductance-based simulations revealed that these biophysical changes in Na + and K + channel function could reliably reproduce the observed increase in action potential firing and altered action potential waveform. These results, in conjunction with our prior findings on L5 neurons, suggest that principal neurons in the circuitry of the medial prefrontal cortex are altered in distinct ways in the fmr1 -/y mouse and may contribute to dysfunctional prefrontal cortex processing in fragile X syndrome. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  14. Arterial waves in humans during peripheral vascular surgery.

    PubMed

    Khir, A W; Henein, M Y; Koh, T; Das, S K; Parker, K H; Gibson, D G

    2001-12-01

    The purpose of this study was to investigate the effect of aortic clamping on arterial waves during peripheral vascular surgery. We measured pressure and velocity simultaneously in the ascending aorta, in ten patients (70+/-5 years) with aortic-iliac disease intra-operatively. Pressure was measured using a catheter tip manometer, and velocity was measured using Doppler ultrasound. Data were collected before aortic clamping, during aortic clamping and after unclamping. Hydraulic work in the aortic root was calculated from the measured data, the reflected waves were determined by wave-intensity analysis and wave speed was determined by the PU-loop (pressure-velocity-loop) method; a new technique based on the 'water-hammer' equation. The wave speed is approx. 32% (P<0.05) higher during clamping than before clamping. Although the peak intensity of the reflected wave does not alter with clamping, it arrives 30 ms (P<0.05) earlier and its duration is 25% (P<0.05) longer than before clamping. During clamping, left ventricule (LV) hydraulic systolic work and the energy carried by the reflected wave increased by 27% (P<0.05) and 20% (P<0.05) respectively, compared with before clamping. The higher wave speed during clamping explains the earlier arrival of the reflected waves suggesting an increase in the afterload, since the LV has to overcome earlier reflected compression waves. The longer duration of the reflected wave during clamping is associated with an increase in the total energy carried by the wave, which causes an increase in hydraulic work. Increased hydraulic work during clamping may increase LV oxygen consumption, provoke myocardial ischaemia and hence contribute to the intra-operative impairment of LV function known in patients with peripheral vascular disease.

  15. PL-PatchSurfer: a novel molecular local surface-based method for exploring protein-ligand interactions.

    PubMed

    Hu, Bingjie; Zhu, Xiaolei; Monroe, Lyman; Bures, Mark G; Kihara, Daisuke

    2014-08-27

    Structure-based computational methods have been widely used in exploring protein-ligand interactions, including predicting the binding ligands of a given protein based on their structural complementarity. Compared to other protein and ligand representations, the advantages of a surface representation include reduced sensitivity to subtle changes in the pocket and ligand conformation and fast search speed. Here we developed a novel method named PL-PatchSurfer (Protein-Ligand PatchSurfer). PL-PatchSurfer represents the protein binding pocket and the ligand molecular surface as a combination of segmented surface patches. Each patch is characterized by its geometrical shape and the electrostatic potential, which are represented using the 3D Zernike descriptor (3DZD). We first tested PL-PatchSurfer on binding ligand prediction and found it outperformed the pocket-similarity based ligand prediction program. We then optimized the search algorithm of PL-PatchSurfer using the PDBbind dataset. Finally, we explored the utility of applying PL-PatchSurfer to a larger and more diverse dataset and showed that PL-PatchSurfer was able to provide a high early enrichment for most of the targets. To the best of our knowledge, PL-PatchSurfer is the first surface patch-based method that treats ligand complementarity at protein binding sites. We believe that using a surface patch approach to better understand protein-ligand interactions has the potential to significantly enhance the design of new ligands for a wide array of drug-targets.

  16. PL-PatchSurfer: A Novel Molecular Local Surface-Based Method for Exploring Protein-Ligand Interactions

    PubMed Central

    Hu, Bingjie; Zhu, Xiaolei; Monroe, Lyman; Bures, Mark G.; Kihara, Daisuke

    2014-01-01

    Structure-based computational methods have been widely used in exploring protein-ligand interactions, including predicting the binding ligands of a given protein based on their structural complementarity. Compared to other protein and ligand representations, the advantages of a surface representation include reduced sensitivity to subtle changes in the pocket and ligand conformation and fast search speed. Here we developed a novel method named PL-PatchSurfer (Protein-Ligand PatchSurfer). PL-PatchSurfer represents the protein binding pocket and the ligand molecular surface as a combination of segmented surface patches. Each patch is characterized by its geometrical shape and the electrostatic potential, which are represented using the 3D Zernike descriptor (3DZD). We first tested PL-PatchSurfer on binding ligand prediction and found it outperformed the pocket-similarity based ligand prediction program. We then optimized the search algorithm of PL-PatchSurfer using the PDBbind dataset. Finally, we explored the utility of applying PL-PatchSurfer to a larger and more diverse dataset and showed that PL-PatchSurfer was able to provide a high early enrichment for most of the targets. To the best of our knowledge, PL-PatchSurfer is the first surface patch-based method that treats ligand complementarity at protein binding sites. We believe that using a surface patch approach to better understand protein-ligand interactions has the potential to significantly enhance the design of new ligands for a wide array of drug-targets. PMID:25167137

  17. Verification of the windings axial clamping forces for high voltage power transformers by using passively mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Şchiopu, IonuÅ£ Romeo; ǎgulinescu, Andrei, Dr; Iordǎnescu, Raluca; Marinescu, Andrei

    2015-02-01

    The current paper describes an optoelectronic method for direct monitoring of the axial clamping forces both in static and in dynamic duty. As advantages of this method we can state that it can be applied both to new and refurbished transformers without performing constructive changes or affecting in any way the transformer safety in operation. For monitoring the axial clamping forces for high-voltage (HV) power transformers, we use an optical fiber that we integrate into the laser cavity of a passively mode-locked fiber laser (PMFL). To each axial clamp corresponds a solitonic optical spectrum that is changed at the periodical passing of the fundamental soliton pulse through the sensitive fiber inside the transformer. Moreover, as a specific characteristic, the laser stability is unique for each set of axial clamping forces. Other important advantages of using an optical fiber as compared to the classical approach in which electronic sensors are used consist in the good reliability and insulator properties of the optical fiber, avoiding any risk of fire or damage of the transformer.

  18. Development of a Post-Installed Deepwater Monitoring System

    NASA Technical Reports Server (NTRS)

    Seaman, C.; Brower, D. V.; Tang, H.; Le, S.

    2015-01-01

    A monitoring system that can be deployed on already existing deep water risers and flowlines has been developed. This paper describes the design concepts and testing that was performed in developing the monitoring system. A major challenge of a post-installed instrumentation system is to ensure adequate coupling is achieved between the instruments and the riser or flowline. This work investigates the sensor coupling for pipelines that are suspended in both the water column (from topside platform to the seabed) and for those that are located directly on the seabed. These different environments have resulted in two sensor attachment methods: (1) subsea adhesive sensor clamp design and (2) a friction surface sensor attachment method. This paper presents the adhesive attachment method. The monitoring elements consist of fiber optic sensors that are encased in a polyurethane clamp. With a subsea adhesive, the clamp can be installed by divers in shallow depths or by use of an ROV for deeper applications. The NASA Johnson Space Center was initially involved in the selection and testing of subsea adhesives. It was determined that up to 75 percent of the bonding strength could be achieved with the adhesive from optimal dry bonding versus bonding in submerged sea water environments. The next phase of the study involved the design, fabrication, and testing of several prototype clamps that contained the fiber optic sensors. A mold was produced by NASA using 3-D printing methods that allowed the fabrication of subscale test articles that would accommodate 4-inch and 8-inch diameter pipes. The clamps were installed with adhesive in a "wet" environment on the pipe test articles and tested in the NASA Structures Test Laboratory. The tension/compression and bending tests showed that the prototype sensor clamps achieved good coupling, and could provide high quality strain measurement for active monitoring.

  19. An In Vivo Study of Low-Dose Intra-Articular Tranexamic Acid Application with Prolonged Clamping Drain Method in Total Knee Replacement: Clinical Efficacy and Safety.

    PubMed

    Sa-ngasoongsong, Paphon; Chanplakorn, Pongsthorn; Wongsak, Siwadol; Uthadorn, Krisorn; Panpikoon, Tanapong; Jittorntam, Paisan; Aryurachai, Katcharin; Angchaisukisiri, Pantap; Kawinwonggowit, Viroj

    2015-01-01

    Recently, combined intra-articular tranexamic acid (IA-TXA) injection with clamping drain method showed efficacy for blood loss and transfusion reduction in total knee replacement (TKR). However, until now, none of previous studies revealed the effect of this technique on pharmacokinetics, coagulation, and fibrinolysis. An experimental study was conducted, during 2011-2012, in 30 patients undergoing unilateral TKR. Patients received IA-TXA application and then were allocated into six groups regarding clamping drain duration (2-, 4-, 6-, 8-, 10-, and 12-hours). Blood and drainage fluid were collected to measure tranexamic acid (TXA) level and related coagulation and fibrinolytic markers. Postoperative complication was followed for one year. There was no significant difference of serum TXA level at 2 hour and 24 hour among groups (p < 0.05). Serum TXA level at time of clamp release was significantly different among groups with the highest level at 2 hour (p < 0.0001). There was no significant difference of TXA level in drainage fluid, postoperative blood loss, blood transfusion, and postoperative complications (p < 0.05). Low-dose IA-TXA application in TKR with prolonged clamping drain method is a safe and effective blood conservative technique with only minimal systemic absorption and without significant increase in systemic absorption over time.

  20. Impact of Renal Hilar Control on Outcomes of Robotic Partial Nephrectomy: Systematic Review and Cumulative Meta-analysis.

    PubMed

    Cacciamani, Giovanni E; Medina, Luis G; Gill, Tania S; Mendelsohn, Alec; Husain, Fatima; Bhardwaj, Lokesh; Artibani, Walter; Sotelo, Renè; Gill, Inderbir S

    2018-02-05

    During robotic partial nephrectomy (RPN), various techniques of hilar control have been described, including on-clamp, early unclamping, selective/super-selective clamping, and completely-unclamped RPN. To evaluate the impact of various hilar control techniques on perioperative, functional, and oncological outcomes of RPN for tumors. We conducted a systematic literature review and meta-analysis of all comparative studies on various hilar control techniques during RPN using PubMed, Scopus, and Web of Science according to the Preferred Reporting Items for Systematic Review and Meta-analysis statement, and Methods and Guide for Effectiveness and Comparative Effectiveness Review of the Agency for Healthcare Research and Quality. Cumulative meta-analysis of comparative studies was conducted using Review Manager 5.3. Of 987 RPN publications in the literature, 19 qualified for this analysis. Comparison of off-clamp versus on-clamp RPN (n=9), selective clamping versus on-clamp RPN (n=3), super selective clamping versus on-clamp RPN (n=5), and early unclamped versus on-clamp (n=3) were reported. Patients undergoing RPN using off-clamp, selective/super selective, or early unclamp techniques had higher estimated blood loss compared with on-clamp RPN (weight mean difference [WMD]: 47.83, p=0.000, WMD: 41.06, p=0.02, and WMD: 37.50, p=0.47); however, this did not seem clinically relevant, since transfusion rates were similar (odds ratio [OR]: 0.98, p=0.95, OR: 0.72, p=0.7, and OR: 1.36, p=0.33, respectively). All groups appeared similar with regards to hospital stay, transfusions, overall and major complications, and positive cancer margin rates. Short- and long-term renal functional outcomes appeared superior in the off-clamp and super selective clamp groups compared with the on-clamp RPN cohort. Off-clamp, selective/super selective clamp, and early unclamp hilar control techniques are safe and feasible approaches for RPN surgery, with similar perioperative and oncological outcomes compared with on-clamp RPN. Minimizing global renal ischemia may provide superior renal function preservation. However, higher quality data are necessary for definitive conclusions in this regard. The objective of partial nephrectomy is to treat the cancer while maximizing renal function preservation. Clamping the main vessels is done primarily to reduce the blood loss during partial nephrectomy; however, vascular clamping can compromise kidney function. In order to avoid clamping, various techniques have been described. Our analysis showed that techniques that avoid main renal artery clamping during RPN are associated with better renal function preservation, yet deliver non-inferior perioperative and oncological outcomes as compared with robotic partial nephrectomy procedures that clamp the main vessels. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  1. Cholinergic modulation of dopaminergic neurons in the mouse olfactory bulb.

    PubMed

    Pignatelli, Angela; Belluzzi, Ottorino

    2008-04-01

    Considerable evidence exists for an extrinsic cholinergic influence in the maturation and function of the main olfactory bulb. In this study, we addressed the muscarinic modulation of dopaminergic neurons in this structure. We used different patch-clamp techniques to characterize the diverse roles of muscarinic agonists on identified dopaminergic neurons in a transgenic animal model expressing a reporter protein (green fluorescent protein) under the tyrosine hydroxylase promoter. Bath application of acetylcholine (1 mM) in slices and in enzymatically dissociated cells reduced the spontaneous firing of dopaminergic neurons recorded in cell-attached mode. In whole-cell configuration no effect of the agonist was observed, unless using the perforated patch technique, thus suggesting the involvement of a diffusible second messenger. The effect was mediated by metabotropic receptors as it was blocked by atropine and mimicked by the m2 agonist oxotremorine (10 muM). The reduction of periglomerular cell firing by muscarinic activation results from a membrane-potential hyperpolarization caused by activation of a potassium conductance. This modulation of dopaminergic interneurons may be important in the processing of sensory information and may be relevant to understand the mechanisms underlying the olfactory dysfunctions occurring in neurodegenerative diseases affecting the dopaminergic and/or cholinergic systems.

  2. Robustness of a multimodal piezoelectric damping involving the electrical analogue of a plate

    NASA Astrophysics Data System (ADS)

    Lossouarn, Boris; Cunefare, Kenneth A.; Aucejo, Mathieu; Deü, Jean-François

    2016-04-01

    Multimodal passive damping of a mechanical structure can be implemented by a coupling to a secondary structure exhibiting similar modal properties. When considering a piezoelectric coupling, the secondary structure is an electrical network. A suitable topology for such a network can be obtained by a finite difference formulation of the mechanical equations, followed by a direct electromechanical analogy. This procedure is applied to the Kirchhoff-Love theory in order to find the electrical analogue of a clamped plate. The passive electrical network is implemented with inductors, transformers and the inherent capacitance of the piezoelectric patches. The electrical resonances are tuned to approach those of several mechanical modes simultaneously. This yields a broadband reduction of the plate vibrations through the array of interconnected piezoelectric patches. The robustness of the control strategy is evaluated by introducing perturbations in the mechanical or electrical designs. A non-optimal tuning is considered by way of a uniform variation of the network inductance. Then, the effect of local or boundary modifications of the electromechanical system is observed experimentally. In the end, the use of an analogous electrical network appears as an efficient and robust solution for the multimodal control of a plate.

  3. Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches

    NASA Astrophysics Data System (ADS)

    Chróścielewski, Jacek; Schmidt, Rüdiger; Eremeyev, Victor A.

    2018-05-01

    This paper addresses modeling and finite element analysis of the transient large-amplitude vibration response of thin rod-type structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite rotations of the normal. The finite element model can be applied to static, stability, and transient analysis of smart structures consisting of a master structure and integrated piezoelectric actuator layers or patches attached to the upper and lower surfaces. Two problems are studied extensively: (i) FE analyses of a clamped semicircular ring shell that has been used as a benchmark problem for linear vibration control in several recent papers are critically reviewed and extended to account for the effects of structural nonlinearity and (ii) a smart circular arch subjected to a hydrostatic pressure load is investigated statically and dynamically in order to study the shift of bifurcation and limit points, eigenfrequencies, and eigenvectors, as well as vibration control for loading conditions which may lead to dynamic loss of stability.

  4. A calcium-permeable cGMP-activated cation conductance in hippocampal neurons

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Rosenboom, H.; Barnstable, C. J.; Shepherd, G. M.; Zufall, F.

    1995-01-01

    Whole-cell patch clamp recordings detected a previously unidentified cGMP-activated membrane conductance in cultured rat hippocampal neurons. This conductance is nonselectively permeable for cations and is completely but reversibly blocked by external Cd2+. The Ca2+ permeability of the hippocampal cGMP-activated conductance was examined in detail, indicating that the underlying ion channels display a high relative permeability for Ca2+. The results indicate that hippocampal neurons contain a cGMP-activated membrane conductance that has some properties similar to the cyclic nucleotide-gated channels previously shown in sensory receptor cells and retinal neurons. In hippocampal neurons this conductance similarly could mediate membrane depolarization and Ca2+ fluxes in response to intracellular cGMP elevation.

  5. A fast solution switching system with temperature control for single cell measurements

    PubMed Central

    Koh, Duk-Su; Chen, Liangyi; Ufret-Vincenty, Carmen A.; Jung, Seung-Ryoung

    2011-01-01

    This article describes a perfusion system for biophysical single cell experiments at the physiological temperature. Our system regulates temperature of test solutions using a small heat exchanger that includes several capillaries. Water circulating inside the heat exchanger warms or cools test solutions flowing inside the capillaries. Temperature-controlled solutions are delivered directly to a single cell(s) through a multibarreled manifold that switches solutions bathing a cell in less than 1 s. This solution exchange is optimal for patch clamp, single-cell microamperometry, and microfluorometry experiments. Using this system, we demonstrate that exocytosis from pancreatic β cells and activation of TRPV1 channels are temperature sensitive. We also discuss how to measure local temperature near a single cell under investigation. PMID:21536068

  6. Analysis of single ion channel data incorporating time-interval omission and sampling

    PubMed Central

    The, Yu-Kai; Timmer, Jens

    2005-01-01

    Hidden Markov models are widely used to describe single channel currents from patch-clamp experiments. The inevitable anti-aliasing filter limits the time resolution of the measurements and therefore the standard hidden Markov model is not adequate anymore. The notion of time-interval omission has been introduced where brief events are not detected. The developed, exact solutions to this problem do not take into account that the measured intervals are limited by the sampling time. In this case the dead-time that specifies the minimal detectable interval length is not defined unambiguously. We show that a wrong choice of the dead-time leads to considerably biased estimates and present the appropriate equations to describe sampled data. PMID:16849220

  7. Compact Microscope Imaging System With Intelligent Controls Improved

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2004-01-01

    The Compact Microscope Imaging System (CMIS) with intelligent controls is a diagnostic microscope analysis tool with intelligent controls for use in space, industrial, medical, and security applications. This compact miniature microscope, which can perform tasks usually reserved for conventional microscopes, has unique advantages in the fields of microscopy, biomedical research, inline process inspection, and space science. Its unique approach integrates a machine vision technique with an instrumentation and control technique that provides intelligence via the use of adaptive neural networks. The CMIS system was developed at the NASA Glenn Research Center specifically for interface detection used for colloid hard spheres experiments; biological cell detection for patch clamping, cell movement, and tracking; and detection of anode and cathode defects for laboratory samples using microscope technology.

  8. Cellular defibrillation: interaction of micro-scale electric fields with voltage-gated ion channels.

    PubMed

    Kargol, Armin; Malkinski, Leszek; Eskandari, Rahmatollah; Carter, Maya; Livingston, Daniel

    2015-09-01

    We study the effect of micro-scale electric fields on voltage-gated ion channels in mammalian cell membranes. Such micro- and nano-scale electric fields mimic the effects of multiferroic nanoparticles that were recently proposed [1] as a novel way of controlling the function of voltage-sensing biomolecules such as ion channels. This article describes experimental procedures and initial results that reveal the effect of the electric field, in close proximity of cells, on the ion transport through voltage-gated ion channels. We present two configurations of the whole-cell patch-clamping apparatus that were used to detect the effect of external stimulation on ionic currents and discuss preliminary results that indicate modulation of the ionic currents consistent with the applied stimulus.

  9. Modulation of ATP-induced inward currents by docosahexaenoic acid and other fatty acids in rat nodose ganglion neurons.

    PubMed

    Eto, Kei; Arimura, Yukiko; Mizuguchi, Hiroko; Nishikawa, Masazumi; Noda, Mami; Ishibashi, Hitoshi

    2006-11-01

    The effects of docosahexaenoic acid (DHA) and other fatty acids on P2X-receptor-mediated inward currents in rat nodose ganglion neurons were studied using the nystatin perforated patch-clamp technique. DHA accelerated the desensitization rate of the ATP-induced current. DHA showed use-dependent inhibition of the peak ATP-induced current. Other polyunsaturated fatty acids, such as arachidonic acid and eicosapentaenoic acid, displayed a similar use-dependent inhibition. The inhibitory effects of saturated fatty acids including palmitic acid and arachidic acid were weaker than those of polyunsaturated fatty acids. The results suggest that fatty acids may modulate the P2X receptor-mediated response when the channel is in the open-state.

  10. Protective effect of methanol extract of Uncaria rhynchophylla against excitotoxicity induced by N-methyl-D-aspartate in rat hippocampus.

    PubMed

    Lee, Jongseok; Son, Dongwook; Lee, Pyeongjae; Kim, Dae-Keun; Shin, Min-Chul; Jang, Mi-Hyeon; Kim, Chang-Ju; Kim, Yong-Sik; Kim, Sun-Yeou; Kim, Hocheol

    2003-05-01

    Uncaria rhynchophylla is a medicinal herb used for convulsive disorders in Oriental medicine. In this study, the effect of the methanol extract of Uncaria rhynchophylla against N-methyl-D-aspartate (NMDA)-induced excitotoxicity was investigated. Pretreatment with the extract of Uncaria rhynchopylla reduced the degree of neuronal damage induced by NMDA exposure in cultured hippocampal slices. In the patch clamp study, Uncaria rhynchophylla significantly inhibited NMDA receptor-activated ion current in acutely dissociated hippocampal CA1 neurons. These results indicate that Uncaria rhynchophylla offers protection against NMDA-induced neuronal injury and inhibitory action on NMDA receptor-mediated ion current may be a mechanism behind the neuroprotective effect of Uncaria rhynchophylla.

  11. Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birinyi-Strachan, Liesl C.; Gunning, Simon J.; Lewis, Richard J.

    2005-04-15

    The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na{sub v}) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na{sub v} channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons,more » P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na{sub v} currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP, and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na{sub v} channel gating, observed clinically in response to ciguatera poisoning.« less

  12. Effects of pine needle extract on pacemaker currents in interstitial cells of Cajal from the murine small intestine.

    PubMed

    Cheong, Hyeonsook; Paudyal, Dilli Parasad; Jun, Jae Yeoul; Yeum, Cheol Ho; Yoon, Pyung Jin; Park, Chan Guk; Kim, Man Yoo; So, Insuk; Kim, Ki Whan; Choi, Seok

    2005-10-31

    Extracts of pine needles (Pinus densiflora Sieb. et Zucc.) have diverse physiological and pharmacological actions. In this study we show that pine needle extract alters pacemaker currents in interstitial cells of Cajal (ICC) by modulating ATP-sensitive K+ channels and that this effect is mediated by prostaglandins. In whole cell patches at 30 degrees , ICC generated spontaneous pacemaker potentials in the current clamp mode (I = 0), and inward currents (pacemaker currents) in the voltage clamp mode at a holding potential of -70 mV. Pine needle extract hyperpolarized the membrane potential, and in voltage clamp mode decreased both the frequency and amplitude of the pacemaker currents, and increased the resting currents in the outward direction. It also inhibited the pacemaker currents in a dose-dependent manner. Because the effects of pine needle extract on pacemaker currents were the same as those of pinacidil (an ATP-sensitive K+ channel opener) we tested the effect of glibenclamide (an ATP-sensitive K+ channels blocker) on ICC exposed to pine needle extract. The effects of pine needle extract on pacemaker currents were blocked by glibenclamide. To see whether production of prostaglandins (PGs) is involved in the inhibitory effect of pine needle extract on pacemaker currents, we tested the effects of naproxen, a non-selective cyclooxygenase (COX-1 and COX-2) inhibitor, and AH6809, a prostaglandin EP1 and EP2 receptor antagonist. Naproxen and AH6809 blocked the inhibitory effects of pine needle extract on ICC. These results indicate that pine needle extract inhibits the pacemaker currents of ICC by activating ATP-sensitive K+ channels via the production of PGs.

  13. Preferential inhibition of Ih in rat trigeminal ganglion neurons by an organic blocker.

    PubMed

    Janigro, D; Martenson, M E; Baumann, T K

    1997-11-15

    The potency and specificity of a novel organic Ih current blocker DK-AH 268 (DK, Boehringer) was studied in cultured rat trigeminal ganglion neurons using whole-cell patch-clamp recording techniques. In neurons current-clamped at the resting potential, the application of 10 microM DK caused a slight hyperpolarization of the membrane potential and a small increase in the threshold for action potential discharge without any major change in the shape of the action potential. In voltage-clamped neurons, DK caused a reduction of a hyperpolarization-activated current. Current subtraction protocols revealed that the time-dependent, hyperpolarization-activated currents blocked by 10 microM DK or external Cs+ (3 mM) had virtually identical activation properties, suggesting that DK and Cs+ caused blockade of the same current, namely Ih. The block of Ih by DK was dose-dependent. At the intermediate and higher concentrations of DK (10 and 100 microM) a decrease in specificity was observed so that time-independent, inwardly rectifying and noninactivating, voltage-gated outward potassium currents were also reduced by DK but to a much lesser extent than the time-dependent, hyperpolarization-activated currents. Blockade of the time-dependent, hyperpolarization-activated currents by DK appeared to be use-dependent since it required hyperpolarization for the effect to take place. Relief of DK block was also aided by membrane hyperpolarization. Since both the time-dependent current blocked by DK and the Cs+-sensitive time-dependent current behaved as Ih, we conclude that 10 microM DK can preferentially reduce Ih without a major effect on other potassium currents. Thus, DK may be a useful agent in the investigation of the function of Ih in neurons.

  14. Patch-based models and algorithms for image processing: a review of the basic principles and methods, and their application in computed tomography.

    PubMed

    Karimi, Davood; Ward, Rabab K

    2016-10-01

    Image models are central to all image processing tasks. The great advancements in digital image processing would not have been made possible without powerful models which, themselves, have evolved over time. In the past decade, "patch-based" models have emerged as one of the most effective models for natural images. Patch-based methods have outperformed other competing methods in many image processing tasks. These developments have come at a time when greater availability of powerful computational resources and growing concerns over the health risks of the ionizing radiation encourage research on image processing algorithms for computed tomography (CT). The goal of this paper is to explain the principles of patch-based methods and to review some of their recent applications in CT. We first review the central concepts in patch-based image processing and explain some of the state-of-the-art algorithms, with a focus on aspects that are more relevant to CT. Then, we review some of the recent application of patch-based methods in CT. Patch-based methods have already transformed the field of image processing, leading to state-of-the-art results in many applications. More recently, several studies have proposed patch-based algorithms for various image processing tasks in CT, from denoising and restoration to iterative reconstruction. Although these studies have reported good results, the true potential of patch-based methods for CT has not been yet appreciated. Patch-based methods can play a central role in image reconstruction and processing for CT. They have the potential to lead to substantial improvements in the current state of the art.

  15. Adolescents' experiences using the contraceptive patch versus pills.

    PubMed

    Sucato, Gina S; Land, Stephanie R; Murray, Pamela J; Cecchini, Reena; Gold, Melanie A

    2011-08-01

    To compare use of the weekly transdermal contraceptive patch (patch) with daily combined hormonal contraceptive pills (pills) in adolescents. Prospective longitudinal study of adolescents' self-selected (non-randomized) use of the patch or pills. Urban, university hospital-affiliated, adolescent outpatient clinic. 13-22-year-old female adolescents seeking hormonal contraception, 40 who chose the patch and 40 who chose pills. Data were collected via self-report on paper questionnaires at three-cycle intervals for a total of up to nine cycles. Method continuation, perfect use, method satisfaction, quality of life, and side effects, including menstrual changes and perceived mood changes. After nine cycles, 38% of patch users and 60% of pill users were still using the method they had chosen at enrollment. There were no significant differences between the groups in self-reported perfect use. No differences were found in quality of life or side effects. Both patch and pill users noted menses became lighter and more predictable and reported decreased depression prior to their menses; only the pill group reported improvement in premenstrual anger. Method satisfaction was similar in both groups except patch users were more likely to report that their contraceptive method improved normal daily activities. Despite apparent advantages of the patch over the pill, adolescents using both methods continue to face challenges achieving perfect and sustained contraceptive use. 2011 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  16. Explicit frequency equations of free vibration of a nonlocal Timoshenko beam with surface effects

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Sheng; Zhang, Yao; Lie, Seng-Tjhen

    2018-02-01

    Considerations of nonlocal elasticity and surface effects in micro- and nanoscale beams are both important for the accurate prediction of natural frequency. In this study, the governing equation of a nonlocal Timoshenko beam with surface effects is established by taking into account three types of boundary conditions: hinged-hinged, clamped-clamped and clamped-hinged ends. For a hinged-hinged beam, an exact and explicit natural frequency equation is obtained. However, for clamped-clamped and clamped-hinged beams, the solutions of corresponding frequency equations must be determined numerically due to their transcendental nature. Hence, the Fredholm integral equation approach coupled with a curve fitting method is employed to derive the approximate fundamental frequency equations, which can predict the frequency values with high accuracy. In short, explicit frequency equations of the Timoshenko beam for three types of boundary conditions are proposed to exhibit directly the dependence of the natural frequency on the nonlocal elasticity, surface elasticity, residual surface stress, shear deformation and rotatory inertia, avoiding the complicated numerical computation.

  17. Properties of voltage-activated Na+ and K+ currents in mouse hippocampal glial cells in situ and after acute isolation from tissue slices.

    PubMed

    Steinhäuser, C; Kressin, K; Kuprijanova, E; Weber, M; Seifert, G

    1994-10-01

    In the present study, we were interested in a quantitative analysis of voltage-activated channels in a subpopulation of hippocampal glial cells, termed "complex" cells. The patch-clamp technique in the whole-cell mode was applied to identified cells in situ and to glial cells acutely isolated from tissue slices. The outward current was composed of two components: a sustained and a transient current. The transient K+ channel had electrophysiological and pharmacological properties resembling those of the channel through which the A-currents pass. In addition, this glial A-type current possessed a significant Ca2+ dependence. The current parameters determined in situ or in isolated cells corresponded well. Due to space clamp problems in situ, properties of voltage-dependent Na+ currents were only analysed in suspended glial cells. The tetrodotoxin (TTX) sensitivity and the stationary and kinetic characteristics of this current were similar to corresponding properties of hippocampal neurons. These quantitative data demonstrate that at an early postnatal stage of central nervous system maturation, glial cells in situ express a complex pattern of voltage-gated ion channels. The results are compared to findings in other preparations and the possible consequences of transmitter-mediated channel modulation in glial cells are discussed.

  18. Bio-mimicking of Proline-Rich Motif Applied to Carbon Nanotube Reveals Unexpected Subtleties Underlying Nanoparticle Functionalization

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanzhao; Jimenez-Cruz, Camilo A.; Wang, Jian; Zhou, Bo; Yang, Zaixing; Zhou, Ruhong

    2014-11-01

    Here, we report computational studies of the SH3 protein domain interacting with various single-walled carbon nanotubes (SWCNT) either bare or functionalized by mimicking the proline-rich motif (PRM) ligand (PPPVPPRR) and compare it to the SH3-PRM complex binding. With prolines or a single arginine attached, the SWCNT gained slightly on specificity when compared with the bare control, whereas with multi-arginine systems the specificity dropped dramatically to our surprise. Although the electrostatic interaction provided by arginines is crucial in the recognition between PRM and SH3 domain, our results suggest that attaching multiple arginines to the SWCNT has a detrimental effect on the binding affinity. Detailed analysis of the MD trajectories found two main factors that modulate the specificity of the binding: the existence of competing acidic patches at the surface of SH3 that leads to ``trapping and clamping'' by the arginines, and the rigidity of the SWCNT introducing entropic penalties in the proper binding. Further investigation revealed that the same ``clamping'' phenomenon exits in the PRM-SH3 system, which has not been reported in previous literature. The competing effects between nanoparticle and its functionalization components revealed by our model system should be of value to current and future nanomedicine designs.

  19. Electrical Oscillations in Two-Dimensional Microtubular Structures

    PubMed Central

    Cantero, María del Rocío; Perez, Paula L.; Smoler, Mariano; Villa Etchegoyen, Cecilia; Cantiello, Horacio F.

    2016-01-01

    Microtubules (MTs) are unique components of the cytoskeleton formed by hollow cylindrical structures of αβ tubulin dimeric units. The structural wall of the MT is interspersed by nanopores formed by the lateral arrangement of its subunits. MTs are also highly charged polar polyelectrolytes, capable of amplifying electrical signals. The actual nature of these electrodynamic capabilities remains largely unknown. Herein we applied the patch clamp technique to two-dimensional MT sheets, to characterize their electrical properties. Voltage-clamped MT sheets generated cation-selective oscillatory electrical currents whose magnitude depended on both the holding potential, and ionic strength and composition. The oscillations progressed through various modes including single and double periodic regimes and more complex behaviours, being prominent a fundamental frequency at 29 Hz. In physiological K+ (140 mM), oscillations represented in average a 640% change in conductance that was also affected by the prevalent anion. Current injection induced voltage oscillations, thus showing excitability akin with action potentials. The electrical oscillations were entirely blocked by taxol, with pseudo Michaelis-Menten kinetics and a KD of ~1.29 μM. The findings suggest a functional role of the nanopores in the MT wall on the genesis of electrical oscillations that offer new insights into the nonlinear behaviour of the cytoskeleton. PMID:27256791

  20. Activation of Strychnine-Sensitive Glycine Receptors by Shilajit on Preoptic Hypothalamic Neurons of Juvenile Mice.

    PubMed

    Bhattarai, Janardhan Prasad; Cho, Dong Hyu; Han, Seong Kyu

    2016-02-29

    Shilajit, a mineral pitch, has been used in Ayurveda and Siddha system of medicine to treat many human ailments, and is reported to contain at least 85 minerals in ionic form. This study examined the possible mechanism of Shilajit action on preoptic hypothalamic neurons using juvenile mice. The hypothalamic neurons are the key regulator of many hormonal systems. In voltage clamp mode at a holding potential of -60 mV, and under a high chloride pipette solution, Shilajit induced dose-dependent inward current. Shilajit-induced inward currents were reproducible and persisted in the presence of 0.5 μM tetrodotoxin (TTX) suggesting a postsynaptic action of Shilajit on hypothalamic neurons. The currents induced by Shilajit were almost completely blocked by 2 μM strychnine (Stry), a glycine receptor antagonist. In addition, Shilajit-induced inward currents were partially blocked by bicuculline. Under a gramicidin-perforated patch clamp mode, Shilajit induced membrane depolarization on juvenile neurons. These results show that Shilajit affects hypothalamic neuronal activities by activating the Stry-sensitive glycine receptor with α₂/α₂β subunit. Taken together, these results suggest that Shilajit contains some ingredients with possible glycine mimetic activities and might influence hypothalamic neurophysiology through activation of Stry-sensitive glycine receptor-mediated responses on hypothalamic neurons postsynaptically.

  1. Broadband Circularly Polarized Patch Antenna and Method

    DTIC Science & Technology

    2016-09-16

    300152 1 of 14 BROADBAND CIRCULARLY POLARIZED PATCH ANTENNA AND METHOD STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may...present invention provides a method and apparatus for a broadband circularly polarized patch antenna . (2) Description of the Prior Art [0004] A...patch antenna , also referred to as a microstrip antenna , is a type of radio antenna with a low profile that can be mounted on a flat surface. The

  2. Optical coherence tomography retinal image reconstruction via nonlocal weighted sparse representation

    NASA Astrophysics Data System (ADS)

    Abbasi, Ashkan; Monadjemi, Amirhassan; Fang, Leyuan; Rabbani, Hossein

    2018-03-01

    We present a nonlocal weighted sparse representation (NWSR) method for reconstruction of retinal optical coherence tomography (OCT) images. To reconstruct a high signal-to-noise ratio and high-resolution OCT images, utilization of efficient denoising and interpolation algorithms are necessary, especially when the original data were subsampled during acquisition. However, the OCT images suffer from the presence of a high level of noise, which makes the estimation of sparse representations a difficult task. Thus, the proposed NWSR method merges sparse representations of multiple similar noisy and denoised patches to better estimate a sparse representation for each patch. First, the sparse representation of each patch is independently computed over an overcomplete dictionary, and then a nonlocal weighted sparse coefficient is computed by averaging representations of similar patches. Since the sparsity can reveal relevant information from noisy patches, combining noisy and denoised patches' representations is beneficial to obtain a more robust estimate of the unknown sparse representation. The denoised patches are obtained by applying an off-the-shelf image denoising method and our method provides an efficient way to exploit information from noisy and denoised patches' representations. The experimental results on denoising and interpolation of spectral domain OCT images demonstrated the effectiveness of the proposed NWSR method over existing state-of-the-art methods.

  3. Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation.

    PubMed

    D'Aiuto, Leonardo; Zhi, Yun; Kumar Das, Dhanjit; Wilcox, Madeleine R; Johnson, Jon W; McClain, Lora; MacDonald, Matthew L; Di Maio, Roberto; Schurdak, Mark E; Piazza, Paolo; Viggiano, Luigi; Sweet, Robert; Kinchington, Paul R; Bhattacharjee, Ayantika G; Yolken, Robert; Nimgaonka, Vishwajit L; Nimgaonkar, Vishwajit L

    2014-01-01

    Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.

  4. Comparison of fluorescence probes for intracellular sodium imaging in prostate cancer cell lines.

    PubMed

    Iamshanova, Oksana; Mariot, Pascal; Lehen'kyi, V'yacheslav; Prevarskaya, Natalia

    2016-10-01

    Sodium (Na + ) ions are known to regulate many signaling pathways involved in both physiological and pathological conditions. In particular, alterations in intracellular concentrations of Na + and corresponding changes in membrane potential are known to be major actors of cancer progression to metastatic phenotype. Though the functionality of Na + channels and the corresponding Na + currents can be investigated using the patch-clamp technique, the latter is rather invasive and a technically difficult method to study intracellular Na + transients compared to Na + fluorescence imaging. Despite the fact that Na + signaling is considered an important controller of cancer progression, only few data using Na + imaging approaches are available so far, suggesting the persisting challenge within the scientific community. In this study, we describe in detail the approach for application of Na + imaging technique to measure intracellular Na + variations in human prostate cancer cells. Accordingly, we used three Na + -specific fluorescent dyes-Na + -binding benzofuran isophthalate (SBFI), CoroNa™ Green (Corona) and Asante NaTRIUM Green-2 (ANG-2). These dyes have been assessed for optimal loading conditions, dissociation constant and working range after different calibration methods, and intracellular Na + sensitivity, in order to determine which probe can be considered as the most reliable to visualize Na + fluctuations in vitro.

  5. Measuring true Young's modulus of a cantilevered nanowire: effect of clamping on resonance frequency.

    PubMed

    Qin, Qingquan; Xu, Feng; Cao, Yongqing; Ro, Paul I; Zhu, Yong

    2012-08-20

    The effect of clamping on resonance frequency and thus measured Young's modulus of nanowires (NWs) is systematically investigated via a combined experimental and simulation approach. ZnO NWs are used in this work as an example. The resonance tests are performed in situ inside a scanning electron microscope and the NWs are cantilevered on a tungsten probe by electron-beam-induced deposition (EBID) of hydrocarbon. EBID is repeated several times to deposit more hydrocarbons at the same location. The resonance frequency increases with the increasing clamp size until approaching that under the "fixed" boundary condition. The critical clamp size is identified as a function of NW diameter and NW Young's modulus. This work: 1) exemplifies the importance of considering the effect of clamping in measurements of Young's modulus using the resonance method, and 2) demonstrates that the true Young's modulus can be measured if the critical clamp size is reached. Design guidelines on the critical clamp size are provided. Such design guidelines can be extended to other one-dimensional nanostructures such as carbon nanotubes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Using Deep Slow Slip in New Zealand to Constrain Slip Partitioning

    NASA Astrophysics Data System (ADS)

    Bartlow, N. M.; Wallace, L. M.

    2016-12-01

    Underneath New Zealand's North Island, the Pacific plate subducts obliquely beneath the Australian plate. Just to the south, subduction ceases and the plate boundary transitions to the mainly strike-slip, steeply dipping Alpine fault that runs along the South Island. In the region of the southern North Island, the relative plate motion has significant components of both convergence and along strike motion, and slip is partitioned between the main Hikurangi subduction interface and a series of shallower strike-slip faults running thurough the North Island (Wallace and Beavan, GRL, 2010). This region also hosts deep ( 50 km), long duration ( 1 year) slow slip events (SSEs). From early 2013 to early 2016, continuous GPS stations maintained by GeoNet in this region recorded two such deep SSEs on the Hikurangi megathrust. The first SSE occurred on the Kapiti patch, just southwest of the North Island coast. SSEs previous occurred here in 2003 and 2008 (Wallace and Beavan, JGR, 2010). The 2014 Kapiti SSE is unique because it was rapidly decelerated following increased normal stress (clamping) caused by a nearby M 6.3 earthquake (Wallace et al., GRL, 2014). However, GPS data indicates that slip did not stop entirely, and soon after the Manawatu slow slip patch just to the northeast ruptured in another SSE. This patch previously had large SSEs in 2004/2005 and 2010/2011. Given the previous repeat interval of 5.5 years, the 2014/2015 Manawatu SSE is early; however, the record is very short. Here we show Network Inversion Filter derived models of slow slip for the various phases of the Kapiti and Manawatu SSEs, which indicate a possible continuous migration of slip from the Kapiti SSE patch to the Manawatu SSE patch, and we quantify the shear stress increase on the Manawatu patch after the Kapiti SSE. Additionally, we explore allowing the Network Inversion Filter to vary the direction of slip on the plate interface to better fit the data. We estimate how much of the strike-slip and dip-slip components of the relative plate motion are being accommodated by the main thrust interface, and infer how much slip is being accommodated by the strike-slip faults and forearc rotation. We compare our results to those from prior block models of inter-SSE data (Wallace et al., G3, 2009) and explore the implications for seismic hazard assessment in this region.

  7. Generation and customization of biosynthetic excitable tissues for electrophysiological studies and cell-based therapies.

    PubMed

    Nguyen, Hung X; Kirkton, Robert D; Bursac, Nenad

    2018-05-01

    We describe a two-stage protocol to generate electrically excitable and actively conducting cell networks with stable and customizable electrophysiological phenotypes. Using this method, we have engineered monoclonally derived excitable tissues as a robust and reproducible platform to investigate how specific ion channels and mutations affect action potential (AP) shape and conduction. In the first stage of the protocol, we combine computational modeling, site-directed mutagenesis, and electrophysiological techniques to derive optimal sets of mammalian and/or prokaryotic ion channels that produce specific AP shape and conduction characteristics. In the second stage of the protocol, selected ion channels are stably expressed in unexcitable human cells by means of viral or nonviral delivery, followed by flow cytometry or antibiotic selection to purify the desired phenotype. This protocol can be used with traditional heterologous expression systems or primary excitable cells, and application of this method to primary fibroblasts may enable an alternative approach to cardiac cell therapy. Compared with existing methods, this protocol generates a well-defined, relatively homogeneous electrophysiological phenotype of excitable cells that facilitates experimental and computational studies of AP conduction and can decrease arrhythmogenic risk upon cell transplantation. Although basic cell culture and molecular biology techniques are sufficient to generate excitable tissues using the described protocol, experience with patch-clamp techniques is required to characterize and optimize derived cell populations.

  8. FuncPatch: a web server for the fast Bayesian inference of conserved functional patches in protein 3D structures.

    PubMed

    Huang, Yi-Fei; Golding, G Brian

    2015-02-15

    A number of statistical phylogenetic methods have been developed to infer conserved functional sites or regions in proteins. Many methods, e.g. Rate4Site, apply the standard phylogenetic models to infer site-specific substitution rates and totally ignore the spatial correlation of substitution rates in protein tertiary structures, which may reduce their power to identify conserved functional patches in protein tertiary structures when the sequences used in the analysis are highly similar. The 3D sliding window method has been proposed to infer conserved functional patches in protein tertiary structures, but the window size, which reflects the strength of the spatial correlation, must be predefined and is not inferred from data. We recently developed GP4Rate to solve these problems under the Bayesian framework. Unfortunately, GP4Rate is computationally slow. Here, we present an intuitive web server, FuncPatch, to perform a fast approximate Bayesian inference of conserved functional patches in protein tertiary structures. Both simulations and four case studies based on empirical data suggest that FuncPatch is a good approximation to GP4Rate. However, FuncPatch is orders of magnitudes faster than GP4Rate. In addition, simulations suggest that FuncPatch is potentially a useful tool complementary to Rate4Site, but the 3D sliding window method is less powerful than FuncPatch and Rate4Site. The functional patches predicted by FuncPatch in the four case studies are supported by experimental evidence, which corroborates the usefulness of FuncPatch. The software FuncPatch is freely available at the web site, http://info.mcmaster.ca/yifei/FuncPatch golding@mcmaster.ca Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Altered inhibition in Tuberous Sclerosis and Type IIb cortical dysplasia

    PubMed Central

    Talos, Delia M.; Sun, Hongyu; Kosaras, Bela; Joseph, Annelise; Folkerth, Rebecca D.; Poduri, Annapurna; Madsen, Joseph R.; Black, Peter M.; Jensen, Frances E.

    2012-01-01

    Objective The most common neurological symptom of tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) is early-life refractory epilepsy. As previous studies have shown enhanced excitatory glutamatergic neurotransmission in TSC and FCD brains, we hypothesized that neurons associated with these lesions may also express altered GABAA receptor (GABAAR)-mediated inhibition. Methods Expression of the GABAAR subunitsα1 and α4, the Na+-K+-2Cl− (NKCC1), and the K+−Cl− (KCC2) transporters in human TSC and FCD Type II specimens were analyzed by Western blot and double label immunocytochemistry. GABAAR responses in dysplastic neurons from a single case of TSC were measured by perforated-patch recording and compared to normal-appearing cortical neurons from a non-TSC epilepsy case. Results TSC and FCD Type IIb lesions demonstrated decreased expression of the GABAAR α1, increased NKCC1 and decreased KCC2 levels. In contrast, FCD Type IIa lesions showed decreased α4, and increased expression of both NKCC1 and KCC2 transporters. Patch clamp recordings from dysplastic neurons in acute slices from TSC tubers demonstrated excitatory GABAAR responses that were significantly attenuated by the NKCC1 inhibitor bumetanide, in contrast to hyperpolarizing GABAAR-mediated currents in normal neurons from non-TSC cortical slices. Interpretation Expression and function of GABAARs in TSC and FCD IIb suggests the relative benzodiazepine insensitivity and more excitatory action of GABA compared to FCD IIa. These factors may contribute to resistance of seizure activity to anticonvulsants that increase GABAergic function, and may justify add-on trials of the NKCC1 inhibitor bumetanide for the treatment of TSC and FCD Type IIb related epilepsy. PMID:22447678

  10. Mechanosensitive cation channels in human leukaemia cells: calcium permeation and blocking effect

    PubMed Central

    Staruschenko, Alexandr V; Vedernikova, Elena A

    2002-01-01

    Cell-attached and inside-out patch-clamp methods were employed to identify and characterize mechanosensitive (MS) ionic channels in the plasma membrane of human myeloid leukaemia K562 cells. A reversible activation of gadolinium-blockable mechanogated currents in response to negative pressure application was found in 58 % of stable patches (n = 317). I-V relationships measured with a sodium-containing pipette solution showed slight inward rectification. Data analysis revealed the presence of two different populations of channels that were distinguishable by their conductance properties (17.2 ± 0.3 pS and 24.5 ± 0.5 pS), but were indistinguishable with regard to their selective and pharmacological properties. Ion-substitution experiments indicated that MS channels in leukaemia cells were permeable to cations but not to anions and do not discriminate between Na+ and K+. The channels were fully impermeable to large organic cations such as Tris+ and N-methyl-d-glucamine ions (NMDG+). Ca2+ permeation and blockade of MS channels were examined using pipettes containing different concentrations of Ca2+. In the presence of 2 mm CaCl2, when other cations were impermeant, both outward and inward single-channel currents were observed; the I-V relationship showed a unitary conductance of 7.7 ± 1.0 pS. The relative permeability value, PCa/PK, was equal to 0.75, as estimated at physiological Ca2+ concentrations. Partial or full inhibition of inward Ca2+ currents through MS channels was observed at higher concentrations of external Ca2+ (10 or 20 mm). No MS channels were activated when using a pipette containing 90 mm CaCl2. Monovalent mechanogated currents were not significantly affected by extracellular Ca2+ at concentrations within the physiological range (0-2 mm), and at some higher Ca2+ concentrations. PMID:12015421

  11. Noble Gas Xenon Is a Novel Adenosine Triphosphate-sensitive Potassium Channel Opener

    PubMed Central

    Bantel, Carsten; Maze, Mervyn; Trapp, Stefan

    2010-01-01

    Background Adenosine triphosphate-sensitive potassium (KATP) channels in brain are involved in neuroprotective mechanisms. Pharmacologic activation of these channels is seen as beneficial, but clinical exploitation by using classic K+ channel openers is hampered by their inability to cross the blood–brain barrier. This is different with the inhalational anesthetic xenon, which recently has been suggested to activate KATP channels; it partitions freely into the brain. Methods To evaluate the type and mechanism of interaction of xenon with neuronal-type KATP channels, these channels, consisting of Kir6.2 pore-forming subunits and sulfonylurea receptor-1 regulatory subunits, were expressed in HEK293 cells and whole cell, and excised patch-clamp recordings were performed. Results Xenon, in contrast to classic KATP channel openers, acted directly on the Kir6.2 subunit of the channel. It had no effect on the closely related, adenosine triphosphate (ATP)-regulated Kir1.1 channel and failed to activate an ATP-insensitive mutant version of Kir6.2. Furthermore, concentration–inhibition curves for ATP obtained from inside-out patches in the absence or presence of 80% xenon revealed that xenon reduced the sensitivity of the KATP channel to ATP. This was reflected in an approximately fourfold shift of the concentration causing half-maximal inhibition (IC50) from 26 ± 4 to 96 ± 6 μm. Conclusions Xenon represents a novel KATP channel opener that increases KATP currents independently of the sulfonylurea receptor-1 subunit by reducing ATP inhibition of the channel. Through this action and by its ability to readily partition across the blood–brain barrier, xenon has considerable potential in clinical settings of neuronal injury, including stroke. PMID:20179498

  12. Large-scale binding ligand prediction by improved patch-based method Patch-Surfer2.0

    PubMed Central

    Zhu, Xiaolei; Xiong, Yi; Kihara, Daisuke

    2015-01-01

    Motivation: Ligand binding is a key aspect of the function of many proteins. Thus, binding ligand prediction provides important insight in understanding the biological function of proteins. Binding ligand prediction is also useful for drug design and examining potential drug side effects. Results: We present a computational method named Patch-Surfer2.0, which predicts binding ligands for a protein pocket. By representing and comparing pockets at the level of small local surface patches that characterize physicochemical properties of the local regions, the method can identify binding pockets of the same ligand even if they do not share globally similar shapes. Properties of local patches are represented by an efficient mathematical representation, 3D Zernike Descriptor. Patch-Surfer2.0 has significant technical improvements over our previous prototype, which includes a new feature that captures approximate patch position with a geodesic distance histogram. Moreover, we constructed a large comprehensive database of ligand binding pockets that will be searched against by a query. The benchmark shows better performance of Patch-Surfer2.0 over existing methods. Availability and implementation: http://kiharalab.org/patchsurfer2.0/ Contact: dkihara@purdue.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25359888

  13. Analytical and experimental investigation on transmission loss of clamped double panels: implication of boundary effects.

    PubMed

    Xin, F X; Lu, T J

    2009-03-01

    The air-borne sound insulation performance of a rectangular double-panel partition clamp mounted on an infinite acoustic rigid baffle is investigated both analytically and experimentally and compared with that of a simply supported one. With the clamped (or simply supported) boundary accounted for by using the method of modal function, a double series solution for the sound transmission loss (STL) of the structure is obtained by employing the weighted residual (Galerkin) method. Experimental measurements with Al double-panel partitions having air cavity are subsequently carried out to validate the theoretical model for both types of the boundary condition, and good overall agreement is achieved. A consistency check of the two different models (based separately on clamped modal function and simply supported modal function) is performed by extending the panel dimensions to infinite where no boundaries exist. The significant discrepancies between the two different boundary conditions are demonstrated in terms of the STL versus frequency plots as well as the panel deflection mode shapes.

  14. Attitudes Towards the Vaginal Ring and Transdermal Patch Among Adolescents and Young Women

    PubMed Central

    Raine, Tina R.; Epstein, Laura B.; Harper, Cynthia C.; Brown, Beth A.; Boyer, Cherrie B.

    2009-01-01

    Purpose The vaginal ring and the transdermal patch offer important contraceptive options for women at high risk of unintended pregnancy. Little is known about what adolescents and young women think about these methods and why use of the ring has been relatively low compared to the patch. We sought to examine young women’s attitudes and perceptions about the ring and the patch to better understand the relationship between perceptions of these methods and decisions to use them. Methods Sixteen focus groups of young women aged 15–26 years (n=113) from family planning clinics in the San Francisco Bay Area were convened. Data from the focus groups were analyzed using standard content analysis. Results While young women expressed apprehension and doubt about both methods, for the most part women expressed more positive attitudes about the patch. Two related themes for the ring and the patch were identified: “lack of trust in effectiveness,” and “method use concerns. Two themes unique to the ring: “concerns regarding vaginal insertion” and “sexual partner perceptions” and three themes unique to the patch: “ease of remembering”, “visibility issues”, and “perceived health risk” were identified. Conclusions Increased provider education about apprehensions related to the ring and the patch may lead to increased use of the ring and counter recent declines in use of the patch. It would be unfortunate if these safe and effective options for young women are underutilized because negative attitudes and perceptions about these methods act as barriers to adoption. PMID:19699422

  15. Direct Observation of Markovian Behavior of the Mechanical Unfolding of Individual Proteins

    PubMed Central

    Cao, Yi; Kuske, Rachel; Li, Hongbin

    2008-01-01

    Single-molecule force-clamp spectroscopy is a valuable tool to analyze unfolding kinetics of proteins. Previous force-clamp spectroscopy experiments have demonstrated that the mechanical unfolding of ubiquitin deviates from the generally assumed Markovian behavior and involves the features of glassy dynamics. Here we use single molecule force-clamp spectroscopy to study the unfolding kinetics of a computationally designed fast-folding mutant of the small protein GB1, which shares a similar β-grasp fold as ubiquitin. By treating the mechanical unfolding of polyproteins as the superposition of multiple identical Poisson processes, we developed a simple stochastic analysis approach to analyze the dwell time distribution of individual unfolding events in polyprotein unfolding trajectories. Our results unambiguously demonstrate that the mechanical unfolding of NuG2 fulfills all criteria of a memoryless Markovian process. This result, in contrast with the complex mechanical unfolding behaviors observed for ubiquitin, serves as a direct experimental demonstration of the Markovian behavior for the mechanical unfolding of a protein and reveals the complexity of the unfolding dynamics among structurally similar proteins. Furthermore, we extended our method into a robust and efficient pseudo-dwell-time analysis method, which allows one to make full use of all the unfolding events obtained in force-clamp experiments without categorizing the unfolding events. This method enabled us to measure the key parameters characterizing the mechanical unfolding energy landscape of NuG2 with improved precision. We anticipate that the methods demonstrated here will find broad applications in single-molecule force-clamp spectroscopy studies for a wide range of proteins. PMID:18375518

  16. Dopamine alters glutamate receptor desensitization in retinal horizontal cells of the perch (Perca fluviatilis).

    PubMed Central

    Schmidt, K F; Kruse, M; Hatt, H

    1994-01-01

    The patch-clamp technique in combination with a fast liquid filament application system was used to study the effect of dopamine on the glutamate receptor desensitization in horizontal cells of the perch (Perca fluviatilis). Kinetics of ligand-gated ion channels in fish horizontal cells are modulated by dopamine. This modulation is presumably mediated by a cAMP-dependent protein phosphorylation. Before incubation with dopamine, the glutamate receptors of horizontal cells activate and desensitize with fast time constants. In the whole-cell recording mode, fast application of the agonists L-glutamate, quisqualate, or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid prior to the dopamine incubation gives rise to fast transient currents with peak values of about 200 pA that desensitize within 100 ms. Kainate as agonist produced higher steady-state currents but no transient currents. After incubation of the cells with dopamine for 3 min, the desensitization was significantly reduced and the agonists L-glutamate, quisqualate, or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid induced steady-state currents with amplitudes that were similar to the previously observed transient currents. Kainate-induced currents were only slightly affected. Fast desensitizing currents upon fast application of L-glutamate were also recorded from outside-out patches that were excised from horizontal cells before incubation with dopamine. The currents from excised patches desensitized to a steady-state level of about 0.2 of the peak amplitude with time constants of less than 2 ms. When the outside-out patches were excised from cells after dopamine incubation, steady-state currents were enhanced and no transient currents were observed. The results may indicate that the dopamine-dependent modulation of glutamate-induced currents, which is presumably mediated by a protein phosphorylation, is due to an alteration of the desensitization of the glutamate receptors. PMID:7520178

  17. Cross-talk between ATP-regulated K+ channels and Na+ transport via cellular metabolism in frog skin principal cells.

    PubMed Central

    Urbach, V; Van Kerkhove, E; Maguire, D; Harvey, B J

    1996-01-01

    Isolated frog skin epithelium, mounted in an Ussing chamber and bathed in standard NaCl Ringer solution, recycles K+ across the basolateral membrane of principal cells through an inward-rectifier K+ channel (Kir) operating in parallel with a Na+-K+-ATPase pump. Here we report on the metabolic control of the Kir channel using patch clamping, short-circuit current measurement and enzymatic determination of cellular (ATP (ATPi). 2. The constitutively active Kir channel in the basolateral membrane has the characteristics of an ATP-regulated K+ channel and is now classed as a KATP channel. In excised inside-out patches the open probability (Po) of KATP channels was reduced by ATPi with half-maximum inhibition at an ATPi concentration of 50 microM. 3. ATPi measured (under normal Na+ transport conditions) with luciferin-luciferase was 1.50 +/- 0.23 mM (mean +/- S.E.M.; range, 0.4-3.3 mM n = 11). Thus the KATP channel would be expected to be inactive in intact cells if ATPi was the sole regulator of channel activity. KATP channels which were inactivated by 1 mM ATPi in excised patches could be reactivated by addition of 100 microM ADP on the cytosolic side. When added alone, ADP blocks this channel with half-maximal inhibition at [ADPi] > 5 mM. 4. Sulphonylureas inhibit single KATP channels in cell-attached patches as well as the total basolateral K+ current measured in frog skin epithelia perforated with nystatin on the apical side. 5. Na+-K+-ATPase activity is a major determinant of cytosolic ATP. Blocking the pump activity with ouabain produced a time-dependent increase in ATPi and reduced the open probability of KATP channels in cell-attached membranes. 6. We conclude that the ratio of ATP/ADP is an important metabolic coupling factor between the rate of Na+-K+ pumping and K+ recycling. Images Figure 9 PMID:9011625

  18. Volume-dependent ATP-conductive large-conductance anion channel as a pathway for swelling-induced ATP release.

    PubMed

    Sabirov, R Z; Dutta, A K; Okada, Y

    2001-09-01

    In mouse mammary C127i cells, during whole-cell clamp, osmotic cell swelling activated an anion channel current, when the phloretin-sensitive, volume-activated outwardly rectifying Cl(-) channel was eliminated. This current exhibited time-dependent inactivation at positive and negative voltages greater than around +/-25 mV. The whole-cell current was selective for anions and sensitive to Gd(3)+. In on-cell patches, single-channel events appeared with a lag period of approximately 15 min after a hypotonic challenge. Under isotonic conditions, cell-attached patches were silent, but patch excision led to activation of currents that consisted of multiple large-conductance unitary steps. The current displayed voltage- and time-dependent inactivation similar to that of whole-cell current. Voltage-dependent activation profile was bell-shaped with the maximum open probability at -20 to 0 mV. The channel in inside-out patches had the unitary conductance of approximately 400 pS, a linear current-voltage relationship, and anion selectivity. The outward (but not inward) single-channel conductance was suppressed by extracellular ATP with an IC(50) of 12.3 mM and an electric distance (delta) of 0.47, whereas the inward (but not outward) conductance was inhibited by intracellular ATP with an IC(50) of 12.9 mM and delta of 0.40. Despite the open channel block by ATP, the channel was ATP-conductive with P(ATP)/P(Cl) of 0.09. The single-channel activity was sensitive to Gd(3)+, SITS, and NPPB, but insensitive to phloretin, niflumic acid, and glibenclamide. The same pharmacological pattern was found in swelling-induced ATP release. Thus, it is concluded that the volume- and voltage-dependent ATP-conductive large-conductance anion channel serves as a conductive pathway for the swelling-induced ATP release in C127i cells.

  19. Expression and permeation properties of the K(+) channel Kir7.1 in the retinal pigment epithelium.

    PubMed

    Shimura, M; Yuan, Y; Chang, J T; Zhang, S; Campochiaro, P A; Zack, D J; Hughes, B A

    2001-03-01

    Bovine Kir7.1 clones were obtained from a retinal pigment epithelium (RPE)-subtracted cDNA library. Human RPE cDNA library screening resulted in clones encoding full-length human Kir7.1. Northern blot analysis indicated that bovine Kir7.1 is highly expressed in the RPE. Human Kir7.1 channels were expressed in Xenopus oocytes and studied using the two-electrode voltage-clamp technique. The macroscopic Kir7.1 conductance exhibited mild inward rectification and an inverse dependence on extracellular K+ concentration ([K+]o). The selectivity sequence based on permeability ratios was K+ (1.0) approximately Rb+ (0.89) > Cs+ (0.013) > Na+ (0.003) approximately Li+ (0.001) and the sequence based on conductance ratios was Rb+ (9.5) > K+ (1.0) > Na+ (0.458) > Cs+ (0.331) > Li+ (0.139). Non-stationary noise analysis of Rb+ currents in cell-attached patches yielded a unitary conductance for Kir7.1 of approximately 2 pS. In whole-cell recordings from freshly isolated bovine RPE cells, the predominant current was a mild inwardly rectifying K+ current that exhibited an inverse dependence of conductance on [K+]o. The selectivity sequence based on permeability ratios was K+ (1.0) approximately Rb+ (0.89) > Cs+ (0.021) > Na+ (0.003) approximately Li+ (0.002) and the sequence based on conductance ratios was Rb+ (8.9) > K+ (1.0) > Na+ (0.59) > Cs+ (0.23) > Li+ (0.08). In cell-attached recordings with Rb+ in the pipette, inwardly rectifying currents were observed in nine of 12 patches of RPE apical membrane but in only one of 13 basolateral membrane patches. Non-stationary noise analysis of Rb+ currents in cell-attached apical membrane patches yielded a unitary conductance for RPE Kir of approximately 2 pS. On the basis of this molecular and electrophysiological evidence, we conclude that Kir7.1 channel subunits comprise the K+ conductance of the RPE apical membrane.

  20. A bursting potassium channel in isolated cholinergic synaptosomes of Torpedo electric organ.

    PubMed Central

    Edry-Schiller, J; Ginsburg, S; Rahamimoff, R

    1991-01-01

    1. Pinched-off cholinergic nerve terminals (synaptosomes) prepared from the electric organ of Torpedo ocelata were fused into large structures (greater than 20 microns) using dimethyl sulphoxide and polyethylene glycol 1500, as previously described for synaptic vesicles from the same organ. 2. The giant fused synaptosomes were easily amenable to the patch clamp technique and 293 seals with a resistance greater than 4 G omega were obtained in the 'cell-attached' configuration. In a large fraction of the experiments, an 'inside-out' patch configuration was achieved. 3. Several types of unitary ionic currents were observed. This study describes the most frequently observed single-channel activity which was found in 247 out of the 293 membrane patches (84.3%). 4. The single-channel current-voltage relation was linear between -60 and 20 mV and showed a slope conductance of 23.8 +/- 1.3 pS when the pipette contained 350-390 mM-Na+ and the bath facing the inside of the synaptosomal membrane contained 390 mM-K+. 5. From extrapolated reversal potential measurements, it was concluded that this channel has a large selectivity for K+ over Na+ (70.4 +/- 11.5, mean +/- S.E.M.). Chloride ions are not transported significantly through this potassium channel. 6. This potassium channel has a low probability of opening. The probability of being in the open state increases upon depolarization and reaches about 1% when the inside of the patch is 20 mV positive compared to the pipette side. 7. The mean channel open time increases with depolarization; thus the product current x time (= charge) also increases upon depolarization, showing properties of an outward rectifier. 8. The potassium channel in the giant synaptosome membrane has a bursting behaviour. Open-time distribution, closed-time distribution and a Poisson analysis indicate that the minimal kinetic scheme requires one open state and three closed states. PMID:1654418

  1. Low-dose CT reconstruction with patch based sparsity and similarity constraints

    NASA Astrophysics Data System (ADS)

    Xu, Qiong; Mou, Xuanqin

    2014-03-01

    As the rapid growth of CT based medical application, low-dose CT reconstruction becomes more and more important to human health. Compared with other methods, statistical iterative reconstruction (SIR) usually performs better in lowdose case. However, the reconstructed image quality of SIR highly depends on the prior based regularization due to the insufficient of low-dose data. The frequently-used regularization is developed from pixel based prior, such as the smoothness between adjacent pixels. This kind of pixel based constraint cannot distinguish noise and structures effectively. Recently, patch based methods, such as dictionary learning and non-local means filtering, have outperformed the conventional pixel based methods. Patch is a small area of image, which expresses structural information of image. In this paper, we propose to use patch based constraint to improve the image quality of low-dose CT reconstruction. In the SIR framework, both patch based sparsity and similarity are considered in the regularization term. On one hand, patch based sparsity is addressed by sparse representation and dictionary learning methods, on the other hand, patch based similarity is addressed by non-local means filtering method. We conducted a real data experiment to evaluate the proposed method. The experimental results validate this method can lead to better image with less noise and more detail than other methods in low-count and few-views cases.

  2. Tetrapentylammonium block of chloramine-T and veratridine modified rat brain type IIA sodium channels

    PubMed Central

    Ghatpande, A S; Rao, S; Sikdar, S K

    2001-01-01

    Tetrapentylammonium (TPeA) block of rat brain type IIA sodium channel α subunit was studied using whole cell patch clamp. Results indicate that TPeA blocks the inactivating brain sodium channel in a potential and use-dependent manner similar to that of the cardiac sodium channel. Removal of inactivation using chloramine-T (CT) unmasks a time-dependent block by TPeA consistent with slow blocking kinetics. On the other hand, no time dependence is observed when inactivation is abolished by modification with veratridine. TPeA does not bind in a potential-dependent fashion to veratridine-modified channels and does not significantly affect gating of veratridine-modified channels suggesting that high affinity binding of TPeA to the brain sodium channel is lost after veratridine modification. PMID:11309247

  3. Plasmonic nanopipette biosensor.

    PubMed

    Masson, Jean-Francois; Breault-Turcot, Julien; Faid, Rita; Poirier-Richard, Hugo-Pierre; Yockell-Lelièvre, Hélène; Lussier, Félix; Spatz, Joachim P

    2014-09-16

    Integrating a SERS immunoassay on a plasmonic "patch clamp" nanopipette enabled nanobiosensing for the detection of IgG. A SERS response was obtained using a sandwich assay benefiting from plasmon coupling between a capture Au nanoparticle (AuNP) on a nanotip and a second AuNP modified with a Raman active reporter and an antibody selective for IgG. The impact of nanoparticle shape and surface coverage was investigated alongside the choice of Raman active reporter, deposition pH, and plasmonic coupling, in an attempt to fully understand the plasmonic properties of nanopipettes and to optimize the nanobiosensor for the detection of IgG. These probes will find applications in various fields due to their nanoscale size leading to the possibility of spatially and temporally addressing their location near cells to monitor secretion of biomolecules.

  4. Microwell Arrays for Studying Many Individual Cells

    NASA Technical Reports Server (NTRS)

    Folch, Albert; Kosar, Turgut Fettah

    2009-01-01

    "Laboratory-on-a-chip" devices that enable the simultaneous culturing and interrogation of many individual living cells have been invented. Each such device includes a silicon nitride-coated silicon chip containing an array of micromachined wells sized so that each well can contain one cell in contact or proximity with a patch clamp or other suitable single-cell-interrogating device. At the bottom of each well is a hole, typically 0.5 m wide, that connects the well with one of many channels in a microfluidic network formed in a layer of poly(dimethylsiloxane) on the underside of the chip. The microfluidic network makes it possible to address wells (and, thus, cells) individually to supply them with selected biochemicals. The microfluidic channels also provide electrical contact to the bottoms of the wells.

  5. Pore forming properties of cecropin-melittin hybrid peptide in a natural membrane.

    PubMed

    Milani, Alberto; Benedusi, Mascia; Aquila, Marco; Rispoli, Giorgio

    2009-12-11

    The pore forming properties of synthetic cecropin-melittin hybrid peptide (Acetyl-KWKLFKKIGAVLKVL-CONH(2); CM15) were investigated by using photoreceptor rod outer segments (OS) isolated from frog retinae obtained by using the whole-cell configuration of the patch-clamp technique. CM15 was applied (and removed) to (from) the OS in approximately 50 ms with a computer-controlled microperfusion system. Once the main OS endogenous conductance was blocked with light, the OS membrane resistance was >or=1 G Omega, allowing high resolution, low-noise recordings. Different to alamethicines, CM15 produced voltage-independent membrane permeabilisation, repetitive peptide application caused a progressive permeabilisation increase, and no single-channel events were detected at low peptide concentrations. Collectively, these results indicate a toroidal mechanism of pore formation by CM15.

  6. Electrophysiological Features of Single Store-Operated Calcium Channels in HEK S4 Cell Line with Stable STIM1 Protein Knockdown.

    PubMed

    Shalygin, A V; Vigont, V A; Glushankova, L N; Zimina, O A; Kolesnikov, D O; Skopin, A Yu; Kaznacheeva, E V

    2017-07-01

    An important role in intracellular calcium signaling is played by store-operated channels activated by STIM proteins, calcium sensors of the endoplasmic reticulum. In stable STIM1 knockdown HEK S4 cells, single channels activated by depletion of intracellular calcium stores were detected by cell-attached patch-clamp technique and their electrophysiological parameters were described. Comparison of the properties of single channels in HEK293 and HEK S4 cells revealed no significant differences in their current-voltage curves, while regulation of store-operated calcium channels in these cell lines depended on the level of STIM1 expression. We can conclude that electrophysiological peculiarities of store-regulated calcium entry observed in different cells can be explained by differences in STIM1 expression.

  7. Identification Of Cells With A Compact Microscope Imaging System With Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2006-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking mic?oscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  8. Na+ current in presynaptic terminals of the crayfish opener cannot initiate action potentials.

    PubMed

    Lin, Jen-Wei

    2016-01-01

    Action potential (AP) propagation in presynaptic axons of the crayfish opener neuromuscular junction (NMJ) was investigated by simultaneously recording from a terminal varicosity and a proximal branch. Although orthodromically conducting APs could be recorded in terminals with amplitudes up to 70 mV, depolarizing steps in terminals to -20 mV or higher failed to fire APs. Patch-clamp recordings did detect Na(+) current (INa) in most terminals. The INa exhibited a high threshold and fast activation rate. Local perfusion of Na(+)-free saline showed that terminal INa contributed to AP waveform by slightly accelerating the rising phase and increasing the peak amplitude. These findings suggest that terminal INa functions to "touch up" but not to generate APs. Copyright © 2016 the American Physiological Society.

  9. Tracking of Cells with a Compact Microscope Imaging System with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously

  10. Tracking of cells with a compact microscope imaging system with intelligent controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to auto-focus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  11. Operation of a Cartesian Robotic System in a Compact Microscope with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2006-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  12. [Single channel analysis of aconitine blockade of calcium channels in rat myocardiocytes].

    PubMed

    Chen, L; Ma, C; Cai, B C; Lu, Y M; Wu, H

    1995-01-01

    Ventricular myocardiocytes from neonatal Wistar rats were isolated and cultured. Aconitine, Ca2+ channel blocker verapamil or Ca2+ channel activator BAY K8644 were added to the bath solution separately. Using the cell-attached configuration of the patch clamp technique, the single channel activities of L type Ca2+ channel were recorded before and after addition of all three drugs. The results showed the blocking effect of aconitine (50 micrograms.ml-1) on L type Ca2+ channels. Its mechanism may be relevant to the decrease in both open state probability and the mean open time of Ca2+ channel. The difference was statistically significant compared with control group (P < 0.01). The amplitude of Ba2+ currents, which flow through open L type Ca2+ channel was unchanged.

  13. Nlgn4 knockout induces network hypo-excitability in juvenile mouse somatosensory cortex in vitro.

    PubMed

    Delattre, V; La Mendola, D; Meystre, J; Markram, H; Markram, K

    2013-10-09

    Neuroligins (Nlgns) are postsynaptic cell adhesion molecules that form transynaptic complexes with presynaptic neurexins and regulate synapse maturation and plasticity. We studied the impact of the loss of Nlgn4 on the excitatory and inhibitory circuits in somatosensory cortical slices of juvenile mice by electrically stimulating these circuits using a multi-electrode array and recording the synaptic input to single neurons using the patch-clamp technique. We detected a decreased network response to stimulation in both excitatory and inhibitory circuits of Nlgn4 knock-out animals as compared to wild-type controls, and a decreased excitation-inhibition ratio. These data indicate that Nlgn4 is involved in the regulation of excitatory and inhibitory circuits and contributes to a balanced circuit response to stimulation.

  14. Open channel noise. I. Noise in acetylcholine receptor currents suggests conformational fluctuations.

    PubMed

    Sigworth, F J

    1985-05-01

    The random passage of ions through an open channel is expected to result in shot noise fluctuations in the channel current. The patch-clamp technique now allows fluctuations of this size to be observed in single-channel currents. In the experiments reported here the acetylcholine-induced currents in cultured rat muscle cells were analyzed; fluctuations were found that were considerably larger than expected for shot noise. A low-frequency component, which was fitted with a Lorentzian, was examined in detail; it appears to arise from fluctuations in channel conductance of approximately 3% on a time scale of 1 ms. The characteristic relaxation time is voltage dependent and temperature dependent (Q10 approximately equal to 3) suggesting that the fluctuations arise from conformational fluctuations in the channel protein.

  15. Faster than the Speed of Hearing: Nanomechanical Force Probes Enable the Electromechanical Observation of Cochlear Hair Cells

    PubMed Central

    Doll, Joseph C.; Peng, Anthony W.; Ricci, Anthony J.; Pruitt, Beth L.

    2012-01-01

    Understanding the mechanisms responsible for our sense of hearing requires new tools for unprecedented stimulation and monitoring of sensory cell mechanotransduction at frequencies yet to be explored. We describe nanomechanical force probes designed to evoke mechanotransduction currents at up to 100kHz in living cells. High-speed force and displacement metrology is enabled by integrating piezoresistive sensors and piezoelectric actuators onto nanoscale cantilevers. The design, fabrication process, actuator performance and actuator-sensor crosstalk compensation results are presented. We demonstrate the measurement of mammalian cochlear hair cell mechanotransduction with simultaneous patch clamp recordings at unprecedented speeds. The probes can deliver mechanical stimuli with sub-10 μs rise times in water and are compatible with standard upright and inverted microscopes. PMID:23181721

  16. Acidic pH modulation of Na+ channels in trigeminal mesencephalic nucleus neurons.

    PubMed

    Kang, In-Sik; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon; Jang, Il-Sung

    2016-12-07

    Cell bodies of trigeminal mesencephalic nucleus (Vmes) neurons are located within the central nervous system, and therefore, peripheral as well as central acidosis can modulate the excitability of Vmes neurons. Here, we report the effect of acidic pH on voltage-gated Na channels in acutely isolated rat Vmes neurons using a conventional whole-cell patch clamp technique. Acidic pH (pH 6.0) slightly but significantly shifted both the activation and steady-state fast inactivation relationships toward depolarized potentials. However, acidic pH (pH 6.0) had a minor effect on the inactivation kinetics of voltage-gated Na channels. Less sensitivity of voltage-gated Na channels to acidic pH may allow Vmes neurons to transduce the precise proprioceptive information even under acidic pH conditions.

  17. Induction of Electrode-Cellular Interfaces with ˜ 0.05 μm^2 Contact Areas

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Thapa, Prem

    2009-10-01

    Individual cells of the slime mold Dictyostelium discoideum attach themselves to negatively biased nanoelectrodes that are separated by 30 μm from grounded electrodes. There is a -43 mV voltage-threshold for cell-to-electrode attachment, with negligible probability across the 0 to -38 mV range but probability that approaches 0.7 across the -46 to -100 mV range. A cell initiates contact by extending a pseudopod to the electrode and maintains contact until the voltage is turned off. Scanning electron micrographs of these interfaces show the contact areas to be of the order of 0.05 μm^2. Insight into this straight-forward, reproducible process may lead to new electrode-cellular attachment strategies that complement established approaches, such as blind sampling and patch clamp.

  18. In vivo robotics: the automation of neuroscience and other intact-system biological fields

    PubMed Central

    Kodandaramaiah, Suhasa B.; Boyden, Edward S.; Forest, Craig R.

    2013-01-01

    Robotic and automation technologies have played a huge role in in vitro biological science, having proved critical for scientific endeavors such as genome sequencing and high-throughput screening. Robotic and automation strategies are beginning to play a greater role in in vivo and in situ sciences, especially when it comes to the difficult in vivo experiments required for understanding the neural mechanisms of behavior and disease. In this perspective, we discuss the prospects for robotics and automation to impact neuroscientific and intact-system biology fields. We discuss how robotic innovations might be created to open up new frontiers in basic and applied neuroscience, and present a concrete example with our recent automation of in vivo whole cell patch clamp electrophysiology of neurons in the living mouse brain. PMID:23841584

  19. Single Nisoldipine-Sensitive Calcium Channels in Smooth Muscle Cells Isolated from Rabbit Mesenteric Artery

    NASA Astrophysics Data System (ADS)

    Worley, Jennings F.; Deitmer, Joachim W.; Nelson, Mark T.

    1986-08-01

    Single smooth muscle cells were enzymatically isolated from the rabbit mesenteric artery. At physiological levels of external Ca, these cells were relaxed and contracted on exposure to norepinephrine, caffeine, or high levels of potassium. The patch-clamp technique was used to measure unitary currents through single channels in the isolated cells. Single channels were selective for divalent cations and exhibited two conductance levels, 8 pS and 15 pS. Both types of channels were voltage-dependent, and channel activity occurred at potentials positive to -40 mV. The activity of both channel types was almost completely inhibited by 50 nM nisoldipine. These channels appear to be the pathways for voltage-dependent Ca influx in vascular smooth muscle and may be the targets of the clinically used dihydropyridines.

  20. Epidermal growth factor upregulates motility of Mat-LyLu rat prostate cancer cells partially via voltage-gated Na+ channel activity

    PubMed Central

    Ding, Yanning; Brackenbury, William J.; Onganer, Pinar U.; Montano, Ximena; Porter, Louise M.; Bates, Lucy F.; Djamgoz, Mustafa B. A.

    2014-01-01

    The main aim of this investigation was to determine whether a functional relationship existed between epidermal growth factor (EGF) and voltage-gated sodium channel (VGSC) upregulation, both associated with strongly metastatic prostate cancer cells. Incubation with EGF for 24 h more than doubled VGSC current density. Similar treatment with EGF significantly and dose-dependently enhanced the cells’ migration through Transwell filters. Both the patch clamp recordings and the migration assay suggested that endogenous EGF played a similar role. Importantly, co-application of EGF and tetrodotoxin, a highly selective VGSC blocker, abolished 65% of the potentiating effect of EGF. It is suggested that a significant portion of the EGF-induced enhancement of migration occurred via VGSC activity. PMID:17960590

  1. Discrimination of Single Base Pair Differences Among Individual DNA Molecules Using a Nanopore

    NASA Technical Reports Server (NTRS)

    Vercoutere, Wenonah; DeGuzman, Veronica

    2003-01-01

    The protein toxin alpha-hemolysin form nanometer scale channels across lipid membranes. Our lab uses a single channel in an artificial lipid bilayer in a patch clamp device to capture and examine individual DNA molecules. This nanopore detector used with a support vector machine (SVM) can analyze DNA hairpin molecules on the millisecond time scale. We distinguish duplex stem length, base pair mismatches, loop length, and single base pair differences. The residual current fluxes also reveal structural molecular dynamics elements. DNA end-fraying (terminal base pair dissociation) can be observed as near full blockades, or spikes, in current. This technique can be used to investigate other biological processes dependent on DNA end-fraying, such as the processing of HIV DNA by HIV integrase.

  2. Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification

    PubMed Central

    Hou, Le; Samaras, Dimitris; Kurc, Tahsin M.; Gao, Yi; Davis, James E.; Saltz, Joel H.

    2016-01-01

    Convolutional Neural Networks (CNN) are state-of-the-art models for many image classification tasks. However, to recognize cancer subtypes automatically, training a CNN on gigapixel resolution Whole Slide Tissue Images (WSI) is currently computationally impossible. The differentiation of cancer subtypes is based on cellular-level visual features observed on image patch scale. Therefore, we argue that in this situation, training a patch-level classifier on image patches will perform better than or similar to an image-level classifier. The challenge becomes how to intelligently combine patch-level classification results and model the fact that not all patches will be discriminative. We propose to train a decision fusion model to aggregate patch-level predictions given by patch-level CNNs, which to the best of our knowledge has not been shown before. Furthermore, we formulate a novel Expectation-Maximization (EM) based method that automatically locates discriminative patches robustly by utilizing the spatial relationships of patches. We apply our method to the classification of glioma and non-small-cell lung carcinoma cases into subtypes. The classification accuracy of our method is similar to the inter-observer agreement between pathologists. Although it is impossible to train CNNs on WSIs, we experimentally demonstrate using a comparable non-cancer dataset of smaller images that a patch-based CNN can outperform an image-based CNN. PMID:27795661

  3. Reducible dictionaries for single image super-resolution based on patch matching and mean shifting

    NASA Astrophysics Data System (ADS)

    Rasti, Pejman; Nasrollahi, Kamal; Orlova, Olga; Tamberg, Gert; Moeslund, Thomas B.; Anbarjafari, Gholamreza

    2017-03-01

    A single-image super-resolution (SR) method is proposed. The proposed method uses a generated dictionary from pairs of high resolution (HR) images and their corresponding low resolution (LR) representations. First, HR images and the corresponding LR ones are divided into patches of HR and LR, respectively, and then they are collected into separate dictionaries. Afterward, when performing SR, the distance between every patch of the input LR image and those of available LR patches in the LR dictionary is calculated. The minimum distance between the input LR patch and those in the LR dictionary is taken, and its counterpart from the HR dictionary is passed through an illumination enhancement process. By this technique, the noticeable change of illumination between neighbor patches in the super-resolved image is significantly reduced. The enhanced HR patch represents the HR patch of the super-resolved image. Finally, to remove the blocking effect caused by merging the patches, an average of the obtained HR image and the interpolated image obtained using bicubic interpolation is calculated. The quantitative and qualitative analyses show the superiority of the proposed technique over the conventional and state-of-art methods.

  4. Attitudes about Advances in Sweat Patch Testing in Drug Courts: Insights from a Case Study in Southern California

    ERIC Educational Resources Information Center

    Polzer, Katherine

    2010-01-01

    Drug courts are reinventing the drug testing framework by experimenting with new methods, including use of the sweat patch. The sweat patch is a band-aid like strip used to monitor drug court participants. The validity and reliability of the sweat patch as an effective testing method was examined, as well as the effectiveness, meaning how likely…

  5. Efficacy of tranexamic acid plus drain-clamping to reduce blood loss in total knee arthroplasty

    PubMed Central

    Zhang, Yan; Zhang, Jun-Wei; Wang, Bao-Hua

    2017-01-01

    Abstract Background: Perioperative blood loss is still an unsolved problem in total knee arthroplasty (TKA). The efficacy of the preoperative use of tranexamic acid (TXA) plus drain-clamping to reduce blood loss in TKA has been debated. This meta-analysis aimed to illustrate the efficacy of TXA plus drain-clamping to reduce blood loss in patients who underwent a TKA. Methods: In February 2017, a systematic computer-based search was conducted in PubMed, EMBASE, Web of Science, the Cochrane Database of Systematic Reviews, and Google Scholar. Data from patients prepared for TKA in studies that compared TXA plus drain-clamping versus TXA alone, drain-clamping alone, or controls were retrieved. The primary endpoint was the need for transfusion. The secondary outcomes were total blood loss, blood loss in drainage, the decrease in hemoglobin, and the occurrence of deep venous thrombosis. After testing for publication bias and heterogeneity between studies, data were aggregated for random-effects models when necessary. Results: Ultimately, 5 clinical studies with 618 patients (TXA plus drain-clamping group = 249, control group = 130, TXA-alone group = 60, and drain-clamping group = 179) were included. TXA plus drain-clamping could decrease the need for transfusion, total blood loss, blood loss in drainage, and the decrease in hemoglobin than could the control group, the TXA-alone group, and the drain-clamping group (P < .05). There was no significant difference between the occurrence of deep venous thrombosis between the included groups (P > .05). Conclusions: TXA plus drain-clamping can achieve the maximum effects of hemostasis in patients prepared for primary TKA. Because the number and the quality of the included studies were limited, more high-quality randomized controlled trials are needed to identify the optimal dose of TXA and the clamping hours in patients prepared for TKA. PMID:28658157

  6. PKC regulates capsaicin-induced currents of dorsal root ganglion neurons in rats.

    PubMed

    Zhou, Y; Zhou, Z S; Zhao, Z Q

    2001-10-01

    Capsaicin activates a non-specific cation conductance in a subset of dorsal root ganglion (DRG) neurons. The inward current and membrane potential of acutely isolated DRG neurons were examined using whole-cell patch recording methods. We report here that the current and voltage responses activated by capsaicin were markedly increased by phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC). The mean current, after application of 0.3 microM PMA, was 153.5+/-5.7% of control (n=32) in Ca(2+)-free external solution and 181.6+/-6.8% of control (n=15) in standard external solution. Under current-clamp conditions, 0.3 microM PMA facilitated capsaicin-induced depolarization and action potential generation. Bindolylmaleimide I (BIM), a specific inhibitor of PKC activity, abolished the effect of PMA. In addition, capsaicin-evoked current was attenuated to 68.3+/-5.0% of control (n=13) by individual administration of 1 microM BIM in standard external solution, while 0.3 microM BIM did not have this effect. These data suggest that PKC can directly regulate the capsaicin response in DRG neurons, which could increase nociceptive sensory transmission and contribute to hyperalgesia.

  7. Scalable Electrophysiological Investigation of iPS Cell-Derived Cardiomyocytes Obtained by a Lentiviral Purification Strategy

    PubMed Central

    Friedrichs, Stephanie; Malan, Daniela; Voss, Yvonne; Sasse, Philipp

    2015-01-01

    Disease-specific induced pluripotent stem (iPS) cells can be generated from patients and differentiated into functional cardiomyocytes for characterization of the disease and for drug screening. In order to obtain pure cardiomyocytes for automated electrophysiological investigation, we here report a novel non-clonal purification strategy by using lentiviral gene transfer of a puromycin resistance gene under the control of a cardiac-specific promoter. We have applied this method to our previous reported wild-type and long QT syndrome 3 (LQTS 3)-specific mouse iPS cells and obtained a pure cardiomyocyte population. These cells were investigated by action potential analysis with manual and automatic planar patch clamp technologies, as well as by recording extracellular field potentials using a microelectrode array system. Action potentials and field potentials showed the characteristic prolongation at low heart rates in LQTS 3-specific, but not in wild-type iPS cell-derived cardiomyocytes. Hence, LQTS 3-specific cardiomyocytes can be purified from iPS cells with a lentiviral strategy, maintain the hallmarks of the LQTS 3 disease and can be used for automated electrophysiological characterization and drug screening. PMID:26237021

  8. NMDA Receptor Activity in Circulating Red Blood Cells: Methods of Detection.

    PubMed

    Makhro, Asya; Kaestner, Lars; Bogdanova, Anna

    2017-01-01

    Abundance and activity of N-methyl-D-aspartate (NMDA) in circulating red blood cells contributes to the maintenance of intracellular Ca 2+ in these cells and, by doing that, controls red cell volume, membrane stability, and O 2 carrying capacity. Detection of the NMDA receptor activity in red blood cells is challenging as the number of its copies is low and shows substantial cell-to-cell heterogeneity. Receptor abundance is reliably assessed using the radiolabeled antagonist ([ 3 H]MK-801) binding technique. Uptake of Ca 2+ following the NMDA receptor activation is detected in cells loaded with Ca 2+ -sensitive fluorescent dye Fluo-4 AM. Both microfluorescence live-cell imaging and flow cytometry may be used for fluorescence intensity detection. Automated patch clamp is currently used for recording of electric currents triggered by the stimulation of the NMDA receptor. These currents are mediated by the Ca 2+ -sensitive K + (Gardos) channels that open upon Ca 2+ uptake via the active NMDA receptor. Furthermore, K + flux through the Gardos channels induced by the NMDA receptor stimulation in red blood cells may be detected using unidirectional K + ( 86 Rb + ) influx.

  9. Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats

    PubMed Central

    Ren, Yi-Ming; Weng, Chuan-Huang; Zhao, Cong-Jian; Yin, Zheng-Qin

    2018-01-01

    AIM To evaluate the intrinsic excitability of retinal ganglion cells (RGCs) in degenerated retinas. METHODS The intrinsic excitability of various morphologically defined RGC types using a combination of patch-clamp recording and the Lucifer yellow tracer in retinal whole-mount preparations harvested from Royal College of Surgeons (RCS) rats, a common retinitis pigmentosa (RP) model, in a relatively late stage of retinal degeneration (P90) were investigated. Several parameters of RGC morphologies and action potentials (APs) were measured and compared to those of non-dystrophic control rats, including dendritic stratification, dendritic field diameter, peak amplitude, half width, resting membrane potential, AP threshold, depolarization to threshold, and firing rates. RESULTS Compared with non-dystrophic control RGCs, more depolarizations were required to reach the AP threshold in RCS RGCs with low spontaneous spike rates and in RCS OFF cells (especially A2o cells), and RCS RGCs maintained their dendritic morphologies, resting membrane potentials and capabilities to generate APs. CONCLUSION RGCs are relatively well preserved morphologically and functionally, and some cells are more susceptible to decreased excitability during retinal degeneration. These findings provide valuable considerations for optimizing RP therapeutic strategies. PMID:29862172

  10. Enhancement of delayed-rectifier potassium conductance by low concentrations of local anaesthetics in spinal sensory neurones

    PubMed Central

    Olschewski, Andrea; Wolff, Matthias; Bräu, Michael E; Hempelmann, Gunter; Vogel, Werner; Safronov, Boris V

    2002-01-01

    Combining the patch-clamp recordings in slice preparation with the ‘entire soma isolation' method we studied action of several local anaesthetics on delayed-rectifier K+ currents in spinal dorsal horn neurones.Bupivacaine, lidocaine and mepivacaine at low concentrations (1–100 μM) enhanced delayed-rectifier K+ current in intact neurones within the spinal cord slice, while exhibiting a partial blocking effect at higher concentrations (>100 μM). In isolated somata 0.1–10 μM bupivacaine enhanced delayed-rectifier K+ current by shifting its steady-state activation characteristic and the voltage-dependence of the activation time constant to more negative potentials by 10–20 mV.Detailed analysis has revealed that bupivacaine also increased the maximum delayed-rectifier K+ conductance by changing the open probability, rather than the unitary conductance, of the channel.It is concluded that local anaesthetics show a dual effect on delayed-rectifier K+ currents by potentiating them at low concentrations and partially suppressing at high concentrations. The phenomenon observed demonstrated the complex action of local anaesthetics during spinal and epidural anaesthesia, which is not restricted to a suppression of Na+ conductance only. PMID:12055132

  11. Artery cross-clamping during laparoscopic vascular surgeries; a computational tactile sensing approach.

    PubMed

    Pahlavan, Pedram; Najarian, Siamak; Afshari, Elnaz; Moini, Majid

    2013-01-01

    Artificial palpation is one of the most valuable achievements of artificial tactile sensing approach that can be used in various fields of medicine and more specifically in surgery. These techniques cause different surgical maneuvers to be done more precisely and noninvasively. In this study, considering the present problems and limitations of cross-clamping an artery during laparoscopic vascular surgeries, a new tactile sensory system will be introduced.Having imitated surgeon's palpation during open vascular surgeries and modeled it conceptually, the optimal amount of the total angular displacement of each robot joint in order to cross-clamping an artery without damaging to the artery surrounding tissues will be calculated. The elastic governing equation of contact occurred between the tactile sensor placed on the first link of the robot and the surrounding tissues around the artery were developed. A finite element model is coupled with genetic algorithm optimization method so that the normal stress and displacements in contact surface of the robot and artery's surrounding tissues would be minimized. Thus, reliability and accuracy of artificial tactile sensing method in artery cross-clamping will be demonstrated. Finally, the functional principles of the new tactile system capable of cross-clamping an artery during laparoscopic surgeries will be presented.

  12. Resonant frequencies of irregularly shaped microstrip antennas using method of moments

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Shively, David G.; Cockrell, C. R.

    1993-01-01

    This paper describes an application of the method of moments to determine resonant frequencies of irregularly shaped microstrip patches embedded in a grounded dielectric slab. For analysis, the microstrip patch is assumed to be excited by a linearly polarized plane wave that is normal to the patch. The surface-current density that is induced on the patch because of the incident field is expressed in terms of subdomain functions by dividing the patch into identical rectangular subdomains. The amplitudes of the subdomain functions, as a function of frequency, are determined using the electric-field integral equation (EFIE) approach in conjunction with the method of moments. The resonant frequencies of the patch are then obtained by selecting the frequency at which the amplitude of the surface-current density is real. The resonant frequencies of the equilateral triangular and other nonrectangular patches are computed using the present technique, and these frequencies are compared with measurements and other independent calculations.

  13. Large-scale binding ligand prediction by improved patch-based method Patch-Surfer2.0.

    PubMed

    Zhu, Xiaolei; Xiong, Yi; Kihara, Daisuke

    2015-03-01

    Ligand binding is a key aspect of the function of many proteins. Thus, binding ligand prediction provides important insight in understanding the biological function of proteins. Binding ligand prediction is also useful for drug design and examining potential drug side effects. We present a computational method named Patch-Surfer2.0, which predicts binding ligands for a protein pocket. By representing and comparing pockets at the level of small local surface patches that characterize physicochemical properties of the local regions, the method can identify binding pockets of the same ligand even if they do not share globally similar shapes. Properties of local patches are represented by an efficient mathematical representation, 3D Zernike Descriptor. Patch-Surfer2.0 has significant technical improvements over our previous prototype, which includes a new feature that captures approximate patch position with a geodesic distance histogram. Moreover, we constructed a large comprehensive database of ligand binding pockets that will be searched against by a query. The benchmark shows better performance of Patch-Surfer2.0 over existing methods. http://kiharalab.org/patchsurfer2.0/ CONTACT: dkihara@purdue.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Phospholipase C-independent effects of 3M3FBS in murine colon.

    PubMed

    Dwyer, Laura; Kim, Hyun Jin; Koh, Byoung Ho; Koh, Sang Don

    2010-02-25

    The muscarinic receptor subtype M(3) is coupled to Gq/11 proteins. Muscarinic receptor agonists such as carbachol stimulate these receptors that result in activation of phospholipase C (PLC) which hydrolyzes phosphatidylinositol 4,5-bisphosphate into diacylglycerol and Ins(1,4,5)P(3). This pathway leads to excitation and smooth muscle contraction. In this study the PLC agonist, 2, 4, 6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benezenesulfonamide (m-3M3FBS), was used to investigate whether direct PLC activation mimics carbachol-induced excitation. We examined the effects of m-3M3FBS and 2, 4, 6-trimethyl-N-(ortho-3-trifluoromethyl-phenyl)-benzenesulfonamide (o-3M3FBS), on murine colonic smooth muscle tissue and cells by performing conventional microelectrode recordings, isometric force measurements and patch clamp experiments. Application of m-3M3FBS decreased spontaneous contractility in murine colonic smooth muscle without affecting the resting membrane potential. Patch clamp studies revealed that delayed rectifier K(+) channels were reversibly inhibited by m-3M3FBS and o-3M3FBS. The PLC inhibitor, 1-(6-((17b-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), did not prevent this inhibition by m-3M3FBS. Both m-3M3FBS and o-3M3FBS decreased two components of delayed rectifier K(+) currents in the presence of tetraethylammonium chloride or 4-aminopyridine. Ca(2+) currents were significantly suppressed by m-3M3FBS and o-3M3FBS with a simultaneous increase in intracellular Ca(2+). Pretreatment with U73122 did not prevent the decrease in Ca(2+) currents upon m-3M3FBS application. In conclusion, both m-3M3FBS and o-3M3FBS inhibit inward and outward currents via mechanisms independent of PLC acting in an antagonistic manner. In contrast, both compounds also caused an increase in [Ca(2+)](i) in an agonistic manner. Therefore caution must be employed when interpreting their effects at the tissue and cellular level.

  15. Redox Regulation of Epithelial Sodium Channels Examined in Alveolar Type 1 and 2 Cells Patch-clamped in Lung Slice Tissue*

    PubMed Central

    Helms, My N.; Jain, Lucky; Self, Julie L.; Eaton, Douglas C.

    2008-01-01

    The alveolar surface of the lung is lined by alveolar type 1 (AT1) and type 2 (AT2) cells. Using single channel patch clamp analysis in lung slice preparations, we are able to uniquely study AT1 and AT2 cells separately from intact lung. We report for the first time the Na+ transport properties of type 2 cells accessed in live lung tissue (as we have done in type 1 cells). Type 2 cells in lung tissue slices express both highly selective cation and nonselective cation channels with average conductances of 8.8 ± 3.2 and 22.5 ± 6.3 picosiemens, respectively. Anion channels with 10-picosiemen conductance are also present in the apical membrane of type 2 cells. Our lung slice studies importantly verify the use of cultured cell model systems commonly used in lung epithelial sodium channel (ENaC) studies. Furthermore, we identify novel functional differences between the cells that make up the alveolar epithelium. One important difference is that exposure to the nitric oxide (NO) donor, PAPA-NONOate (1.5 μm), significantly decreases average ENaC NPo in type 2 cells (from 1.38 ± 0.26 to 0.82 ± 0.16; p < 0.05 and n = 18) but failed to alter ENaC activity in alveolar type 1 cells. Elevating endogenous superoxide (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{O}}_{2}^{\\overline{.}}\\end{equation*}\\end{document}) levels with Ethiolat, a superoxide dismutase inhibitor, prevented NO inhibition of ENaC activity in type 2 cells, supporting the novel hypothesis that \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{O}}_{2}^{\\overline{.}}\\end{equation*}\\end{document} and NO signaling plays an important role in maintaining lung fluid balance. PMID:18541535

  16. The stress protein heat shock cognate 70 (Hsc70) inhibits the Transient Receptor Potential Vanilloid type 1 (TRPV1) channel.

    PubMed

    Iftinca, Mircea; Flynn, Robyn; Basso, Lilian; Melo, Helvira; Aboushousha, Reem; Taylor, Lauren; Altier, Christophe

    2016-01-01

    Specialized cellular defense mechanisms prevent damage from chemical, biological, and physical hazards. The heat shock proteins have been recognized as key chaperones that maintain cell survival against a variety of exogenous and endogenous stress signals including noxious temperature. However, the role of heat shock proteins in nociception remains poorly understood. We carried out an expression analysis of the constitutively expressed 70 kDa heat-shock cognate protein, a member of the stress-induced HSP70 family in lumbar dorsal root ganglia from a mouse model of Complete Freund's Adjuvant-induced chronic inflammatory pain. We used immunolabeling of dorsal root ganglion neurons, behavioral analysis and patch clamp electrophysiology in both dorsal root ganglion neurons and HEK cells transfected with Hsc70 and Transient Receptor Potential Channels to examine their functional interaction in heat shock stress condition. We report an increase in protein levels of Hsc70 in mouse dorsal root ganglia, 3 days post Complete Freund's Adjuvant injection in the hind paw. Immunostaining of Hsc70 was observed in most of the dorsal root ganglion neurons, including the small size nociceptors immunoreactive to the TRPV1 channel. Standard whole-cell patch-clamp technique was used to record Transient Receptor Potential Vanilloid type 1 current after exposure to heat shock. We found that capsaicin-evoked currents are inhibited by heat shock in dorsal root ganglion neurons and transfected HEK cells expressing Hsc70 and TRPV1. Blocking Hsc70 with matrine or spergualin compounds prevented heat shock-induced inhibition of the channel. We also found that, in contrast to TRPV1, both the cold sensor channels TRPA1 and TRPM8 were unresponsive to heat shock stress. Finally, we show that inhibition of TRPV1 depends on the ATPase activity of Hsc70 and involves the rho-associated protein kinase. Our work identified Hsc70 and its ATPase activity as a central cofactor of TRPV1 channel function and points to the role of this stress protein in pain associated with neurodegenerative and/or metabolic disorders, including aging. © The Author(s) 2016.

  17. Activation of TRPM2 and TRPV1 Channels in Dorsal Root Ganglion by NADPH Oxidase and Protein Kinase C Molecular Pathways: a Patch Clamp Study.

    PubMed

    Nazıroğlu, Mustafa

    2017-03-01

    Despite considerable research, the mechanisms of neuropathic pain induced by excessive oxidative stress production and overload calcium ion (Ca 2+ ) entry in dorsal root ganglion (DRG) remain substantially unidentified. The transient receptor potential melastatin 2 (TRPM2) and vanilloid 1 (TRPV1) channels are activated with different stimuli including oxidative stress. TRPM2 and TRPV1 have been shown to be involved in induction of neuropathic pain. However, the activation mechanisms of TRPM2 and TRPV1 via NADPH oxidase and protein kinase C (PKC) pathways are poorly understood. In this study, I investigated the roles of NADPH oxidase and PKC on Ca 2+ entry through TRPM2 and TRPV1 channels in in vitro DRG neurons of rats. Rat DRG neurons were used in whole-cell patch clamp experiments. The H 2 O 2 -induced TRPM2 current densities were decreased by N-(p-amylcinnamoyl)anthranilic acid (ACA), and dose-dependent capsaicin (CAP) and H 2 O 2 -induced TRPV1 currents were inhibited by capsazepine (CPZ). The TRPV1 channel is activated in the DRG neurons by 0.01 mM capsaicin but not 0.001 mM or 0.05 mM capsaicin. TRPM2 and TRPV1 currents were increased by the PKC activator, phorbol myristate acetate (PMA), although the currents were decreased by ACA, CPZ, and the PKC inhibitor, bisindolylmaleimide I (BIM). Both channel currents were further increased by PMA + H 2 O 2 as compared to H 2 O 2 only. In the combined presence of PMA + BIM, no TRPM2 or TRPV1 currents were observed. The CAP and H 2 O 2 -induced TRPM2 current densities were also decreased by the NADPH oxidase inhibitors apocynin and N-Acetylcysteine. In conclusion, these results demonstrate a protective role for NADPH oxidase and PKC inhibitors on Ca 2+ entry through TRPM2 and TRPV1 channels in DRG neurons. Since excessive oxidative stress production and Ca 2+ entry are implicated in the pathophysiology of neuropathic pain, the findings may be relevant to the etiology and treatment of neuropathology in DRG neurons.

  18. TRPM4 non-selective cation channels influence action potentials in rabbit Purkinje fibres.

    PubMed

    Hof, Thomas; Sallé, Laurent; Coulbault, Laurent; Richer, Romain; Alexandre, Joachim; Rouet, René; Manrique, Alain; Guinamard, Romain

    2016-01-15

    The transient receptor potential melastatin 4 (TRPM4) inhibitor 9-phenanthrol reduces action potential duration in rabbit Purkinje fibres but not in ventricle. TRPM4-like single channel activity is observed in isolated rabbit Purkinje cells but not in ventricular cells. The TRPM4-like current develops during the notch and early repolarization phases of the action potential in Purkinje cells. Transient receptor potential melastatin 4 (TRPM4) Ca(2+)-activated non-selective cation channel activity has been recorded in cardiomyocytes and sinus node cells from mammals. In addition, TRPM4 gene mutations are associated with human diseases of cardiac conduction, suggesting that TRPM4 plays a role in this aspect of cardiac function. Here we evaluate the TRPM4 contribution to cardiac electrophysiology of Purkinje fibres. Ventricular strips with Purkinje fibres were isolated from rabbit hearts. Intracellular microelectrodes recorded Purkinje fibre activity and the TRPM4 inhibitor 9-phenanthrol was applied to unmask potential TRPM4 contributions to the action potential. 9-Phenanthrol reduced action potential duration measured at the point of 50 and 90% repolarization with an EC50 of 32.8 and 36.1×10(-6) mol l(-1), respectively, but did not modulate ventricular action potentials. Inside-out patch-clamp recordings were used to monitor TRPM4 activity in isolated Purkinje cells. TRPM4-like single channel activity (conductance = 23.8 pS; equal permeability for Na(+) and K(+); sensitivity to voltage, Ca(2+) and 9-phenanthrol) was observed in 43% of patches from Purkinje cells but not from ventricular cells (0/16). Action potential clamp experiments performed in the whole-cell configuration revealed a transient inward 9-phenanthrol-sensitive current (peak density = -0.65 ± 0.15 pA pF(-1); n = 5) during the plateau phases of the Purkinje fibre action potential. These results show that TRPM4 influences action potential characteristics in rabbit Purkinje fibres and thus could modulate cardiac conduction and be involved in triggering arrhythmias. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  19. Electroporation of DC-3F cells is a dual process.

    PubMed

    Wegner, Lars H; Frey, Wolfgang; Silve, Aude

    2015-04-07

    Treatment of biological material by pulsed electric fields is a versatile technique in biotechnology and biomedicine used, for example, in delivering DNA into cells (transfection), ablation of tumors, and food processing. Field exposure is associated with a membrane permeability increase usually ascribed to electroporation, i.e., formation of aqueous membrane pores. Knowledge of the underlying processes at the membrane level is predominantly built on theoretical considerations and molecular dynamics (MD) simulations. However, experimental data needed to monitor these processes with sufficient temporal resolution are scarce. The whole-cell patch-clamp technique was employed to investigate the effect of millisecond pulsed electric fields on DC-3F cells. Cellular membrane permeabilization was monitored by a conductance increase. For the first time, to our knowledge, it could be established experimentally that electroporation consists of two clearly separate processes: a rapid membrane poration (transient electroporation) that occurs while the membrane is depolarized or hyperpolarized to voltages beyond so-called threshold potentials (here, +201 mV and -231 mV, respectively) and is reversible within ∼100 ms after the pulse, and a long-term, or persistent, permeabilization covering the whole voltage range. The latter prevailed after the pulse for at least 40 min, the postpulse time span tested experimentally. With mildly depolarizing or hyperpolarizing pulses just above threshold potentials, the two processes could be separated, since persistent (but not transient) permeabilization required repetitive pulse exposure. Conductance increased stepwise and gradually with depolarizing and hyperpolarizing pulses, respectively. Persistent permeabilization could also be elicited by single depolarizing/hyperpolarizing pulses of very high field strength. Experimental measurements of propidium iodide uptake provided evidence of a real membrane phenomenon, rather than a mere patch-clamp artifact. In short, the response of DC-3F cells to strong pulsed electric fields was separated into a transient electroporation and a persistent permeabilization. The latter dominates postpulse membrane properties but to date has not been addressed by electroporation theory or MD simulations. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Voltage-clamp analysis of the potentiation of the slow Ca2+-activated K+ current in hippocampal pyramidal neurons.

    PubMed

    Borde, M; Bonansco, C; Fernández de Sevilla, D; Le Ray, D; Buño, W

    2000-01-01

    Exploring the principles that govern activity-dependent changes in excitability is an essential step to understand the function of the nervous system, because they act as a general postsynaptic control mechanism that modulates the flow of synaptic signals. We show an activity-dependent potentiation of the slow Ca2+-activated K+ current (sl(AHP)) which induces sustained decreases in the excitability in CA1 pyramidal neurons. We analyzed the sl(AHP) using the slice technique and voltage-clamp recordings with sharp or patch-electrodes. Using sharp electrodes-repeated activation with depolarizing pulses evoked a prolonged (8-min) potentiation of the amplitude (171%) and duration (208%) of the sl(AHP). Using patch electrodes, early after entering the whole-cell configuration (<20 min), responses were as those reported above. However, although the sl(AHP) remained unchanged, its potentiation was markedly reduced in later recordings, suggesting that the underlying mechanisms were rapidly eliminated by intracellular dialysis. Inhibition of L-type Ca2+ current by nifedipine (20 microM) markedly reduced the sl(AHP) (79%) and its potentiation (55%). Ryanodine (20 microM) that blocks the release of intracellular Ca2+ also reduced sl(AHP) (29%) and its potentiation (25%). The potentiation of the sl(AHP) induced a marked and prolonged (>50%; approximately equals 8 min) decrease in excitability. The results suggest that sl(AHP) is potentiated as a result of an increased intracellular Ca2+ concentration ([Ca2+]i) following activation of voltage-gated L-type Ca2+ channels, aided by the subsequent release of Ca2+ from intracellular stores. Another possibility is that repeated activation increases the Ca2+-binding capacity of the channels mediating the sl(AHP). This potentiation of the sl(AHP) could be relevant in hippocampal physiology, because the changes in excitability it causes may regulate the induction threshold of the long-term potentiation of synaptic efficacy. Moreover, the potentiation would act as a protective mechanism by reducing excitability and preventing the accumulation of intracellular Ca2+ to toxic levels when intense synaptic activation occurs.

Top