Sample records for patch repairs infarcted

  1. Off-pump repair of a post-infarct ventricular septal defect: the 'Hamburger procedure'

    PubMed Central

    Barker, Thomas A; Ng, Alexander; Morgan, Ian S

    2006-01-01

    We report a novel off-pump technique for the surgical closure of post-infarct ventricular septal defects (VSDs). The case report describes the peri-operative management of a 76 year old lady who underwent the 'Hamburger procedure' for closure of her apical VSD. Refractory cardiogenic shock meant that traditional patch repairs requiring cardiopulmonary bypass would be poorly tolerated. We show that echocardiography guided off-pump posterior-anterior septal plication is a safe, effective method for closing post-infarct VSDs in unstable patients. More experience is required to ascertain whether this technique will become an accepted alternative to patch repairs. PMID:16722552

  2. Gene manipulated peritoneal cell patch repairs infarcted myocardium

    PubMed Central

    Huang, Wei; Zhang, Dongsheng; Millard, Ronald W.; Wang, Tao; Zhao, Tiemin; Fan, Guo-Chang; Ashraf, Atif; Xu, Meifeng; Ashraf, Muhammad; Wang, Yigang

    2010-01-01

    A gene manipulated cell patch using a homologous peritoneum substrate was developed and applied after myocardial infarction to repair scarred myocardium. We genetically engineered male rat mesenchymal stem cells (MSC) using adenoviral transduction to over-express CXCR4/green fluorescent protein (GFP) (MSCCXCR4) or MSCNull or siRNA targeting CXCR4 (MSCsiRNA). Gene expression was studied by real-time quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). Cells were cultured on excised peritoneum for 9 days. Two weeks after left anterior descending (LAD) coronary artery ligation in female hearts, the peritoneum patch was applied over the scarred myocardium, cell side down. Efficacy of engraftment was determined by presence of GFP positive cells. One month after cell implantation, echocardiography was performed and hearts were harvested for histological analysis. Left ventricle (LV) fibrosis, LV anterior wall thickness (AWT) and blood vessel density at the margins of the graft were measured. There was significant up-regulation of the chemokines in the MSCCXCR4 group cultured under normoxic conditions when compared to the MSCNull group and a further increase was observed after exposure to hypoxia. One month after cell transplantation with the peritoneum patch, substantial numbers of GFP-positive cells were observed in and around the infarcted myocardium in MSCCXCR4 group. LV AWT, LV fibrosis and LV function were significantly improved in the MSCCXCR4 group as compared to these same variables in the MSCNull control. These salutary effects were absent in MSCsiRNA group. The gene manipulated MSC-seeded peritoneum patch promotes tissue nutrition (angiogenesis), reduces myocardial remodeling, and enhances heart function after myocardial infarction. PMID:19913551

  3. Fibrin patch-based insulin-like growth factor-1 gene-modified stem cell transplantation repairs ischemic myocardium.

    PubMed

    Li, Jun; Zhu, Kai; Yang, Shan; Wang, Yulin; Guo, Changfa; Yin, Kanhua; Wang, Chunsheng; Lai, Hao

    2015-05-01

    Bone marrow mesenchymal stem cells (BMSCs), tissue-engineered cardiac patch, and therapeutic gene have all been proposed as promising therapy strategies for cardiac repair after myocardial infarction. In our study, BMSCs were modified with insulin-like growth factor-1 (IGF-1) gene, loaded into a fibrin patch, and then transplanted into a porcine model of ischemia/reperfusion (I/R) myocardium injury. The results demonstrated that IGF-1 gene overexpression could promote proliferation of endothelial cells and cardiomyocyte-like differentiation of BMSCs in vitro. Four weeks after transplantation of fibrin patch loaded with gene-modified BMSCs, IGF-1 overexpression could successfully promote angiogenesis, inhibit remodeling, increase grafted cell survival and reduce apoptosis. In conclusion, the integrated strategy, which combined fibrin patch with IGF-1 gene modified BMSCs, could promote the histological cardiac repair for a clinically relevant porcine model of I/R myocardium injury. © 2015 by the Society for Experimental Biology and Medicine.

  4. Application of Circular Patch Plasty (Dor Procedure) or Linear Repair Techniques in the Treatment of Left Ventricular Aneurysms.

    PubMed

    Kaya, Ugur; Çolak, Abdurrahim; Becit, Necip; Ceviz, Munacettin; Kocak, Hikmet

    2018-01-01

    The aim of this study was to evaluate early clinical outcomes and echocardiographic measurements of the left ventricle in patients who underwent left ventricular aneurysm repair using two different techniques associated to myocardial revascularization. Eighty-nine patients (74 males, 15 females; mean age 58±8.4 years; range: 41 to 80 years) underwent post-infarction left ventricular aneurysm repair and myocardial revascularization performed between 1996 and 2016. Ventricular reconstruction was performed using endoventricular circular patch plasty (Dor procedure) (n=48; group A) or linear repair technique (n=41; group B). Multi-vessel disease in 55 (61.7%) and isolated left anterior descending (LAD) disease in 34 (38.2%) patients were identified. Five (5.6%) patients underwent aneurysmectomy alone, while the remaining 84 (94.3%) patients had aneurysmectomy with bypass. The mean number of grafts per patient was 2.1±1.2 with the Dor procedure and 2.9±1.3 with the linear repair technique. In-hospital mortality occurred in 4.1% and 7.3% in group A and group B, respectively (P>0.05). The results of our study demonstrate that post-infarction left ventricular aneurysm repair can be performed with both techniques with acceptable surgical risk and with satisfactory hemodynamic improvement.

  5. Left Ventricular Free Wall Rupture in Acute Myocardial Infarction

    PubMed Central

    Amir, Offer; Smith, Ronald; Nishikawa, Akaira; Gregoric, Igor D.; Smart, Frank W.

    2005-01-01

    We describe a case of subacute left ventricular free wall rupture during acute myocardial infarction in a 68-year-old man. The diagnosis was confirmed by echocardiography. The patient was supported by an intra-aortic balloon pump until the ruptured wall could be successfully repaired by suturing and gluing a pericardial patch over the defect and bypassing the left anterior descending coronary artery with a vein graft. This case demonstrates that left ventricular free wall rupture is not always fatal and that early diagnosis and institution of intra-aortic balloon pump support in such patients can allow successful bridging to definitive emergency surgical therapy. PMID:16392235

  6. Flexible shape-memory scaffold for minimally invasive delivery of functional tissues

    NASA Astrophysics Data System (ADS)

    Montgomery, Miles; Ahadian, Samad; Davenport Huyer, Locke; Lo Rito, Mauro; Civitarese, Robert A.; Vanderlaan, Rachel D.; Wu, Jun; Reis, Lewis A.; Momen, Abdul; Akbari, Saeed; Pahnke, Aric; Li, Ren-Ke; Caldarone, Christopher A.; Radisic, Milica

    2017-10-01

    Despite great progress in engineering functional tissues for organ repair, including the heart, an invasive surgical approach is still required for their implantation. Here, we designed an elastic and microfabricated scaffold using a biodegradable polymer (poly(octamethylene maleate (anhydride) citrate)) for functional tissue delivery via injection. The scaffold’s shape memory was due to the microfabricated lattice design. Scaffolds and cardiac patches (1 cm × 1 cm) were delivered through an orifice as small as 1 mm, recovering their initial shape following injection without affecting cardiomyocyte viability and function. In a subcutaneous syngeneic rat model, injection of cardiac patches was equivalent to open surgery when comparing vascularization, macrophage recruitment and cell survival. The patches significantly improved cardiac function following myocardial infarction in a rat, compared with the untreated controls. Successful minimally invasive delivery of human cell-derived patches to the epicardium, aorta and liver in a large-animal (porcine) model was achieved.

  7. A study of tensile residual strength of composite laminates under different patch-repaired series

    NASA Astrophysics Data System (ADS)

    Ding, M. H.; zhan, S.; Tang, Y. H.; Wang, L.; Ma, D. Q.; Wang, R. G.

    2017-09-01

    The tensile behavior of composite laminate structures repaired by bonding external patches was studied in the paper. Two different types of patches including wedge patches and inverted wedge patches were used and failure mechanisms, failure load and strength predictions were studied. A convenient and fast method of building 2-D finite element modeling (FEM) of laminate structure repaired was proposed and the strength of repaired laminate structures was calculated by FEM. The results showed that more than 80% tensile strength of the undamaged laminate could be recovered by bonding patch repairs. Moreover, the results indicated that the strength of inverted wedge patches repair were higher than that of wedge patches repair. FEM simulation results indicated that high stress concentration was found along the edges of invert patches and the most weakness part located in the adhesive bondline. FEM analysis results showed that the strength predicted matched well with the test strength.

  8. Prediction of Fatigue Crack Growth of Repaired Al-alloy Structures with Double Sides

    NASA Astrophysics Data System (ADS)

    Benachour, M.; Benachour, N.; Benguediab, M.; Seriari, F. Z.

    During navigation, aircrafts are subject to fatigue damage. In order to rehabilitate damaged structures some techniques are often used to resolve this problem. Efficient repair technique, called composite patch repair, was used to reinforce the damaged structures and stop cracks. In this paper, effect of composite patch repair (Boron/Epoxy) on fatigue crack growth (FCG) was investigated on 2219 T62 Al-alloy. Effects of double patch repair in single notch tensile specimen (SENT) on FCG were studied and compared to single patch repair. Results show beneficial effect of patch repair on fatigue life and FCGR in comparison with the un-patched specimen. In addition, effect of mean stress characterized by stress ratio was highlighted. Fatigue behavior of investigated Al-alloy was compared.

  9. Biomaterial strategies for alleviation of myocardial infarction

    PubMed Central

    Venugopal, Jayarama Reddy; Prabhakaran, Molamma P.; Mukherjee, Shayanti; Ravichandran, Rajeswari; Dan, Kai; Ramakrishna, Seeram

    2012-01-01

    World Health Organization estimated that heart failure initiated by coronary artery disease and myocardial infarction (MI) leads to 29 per cent of deaths worldwide. Heart failure is one of the leading causes of death in industrialized countries and is expected to become a global epidemic within the twenty-first century. MI, the main cause of heart failure, leads to a loss of cardiac tissue impairment of left ventricular function. The damaged left ventricle undergoes progressive ‘remodelling’ and chamber dilation, with myocyte slippage and fibroblast proliferation. Repair of diseased myocardium with in vitro-engineered cardiac muscle patch/injectable biopolymers with cells may become a viable option for heart failure patients. These events reflect an apparent lack of effective intrinsic mechanism for myocardial repair and regeneration. Motivated by the desire to develop minimally invasive procedures, the last 10 years observed growing efforts to develop injectable biomaterials with and without cells to treat cardiac failure. Biomaterials evaluated include alginate, fibrin, collagen, chitosan, self-assembling peptides, biopolymers and a range of synthetic hydrogels. The ultimate goal in therapeutic cardiac tissue engineering is to generate biocompatible, non-immunogenic heart muscle with morphological and functional properties similar to natural myocardium to repair MI. This review summarizes the properties of biomaterial substrates having sufficient mechanical stability, which stimulates the native collagen fibril structure for differentiating pluripotent stem cells and mesenchymal stem cells into cardiomyocytes for cardiac tissue engineering. PMID:21900319

  10. Rotator cuff repair with a tendon-fibrocartilage-bone composite bridging patch.

    PubMed

    Ji, Xiaoxi; Chen, Qingshan; Thoreson, Andrew R; Qu, Jin; An, Kai-Nan; Amadio, Peter C; Steinmann, Scott P; Zhao, Chunfeng

    2015-11-01

    To compare the mechanical performance of a rotator cuff repaired with a novel tendon-fibrocartilage-bone composite bridging patch vs the traditional Mason-Allen repair in an in vitro canine model. Twenty shoulders and 10 bridging patches from patellar tendon were harvested. The patches were trimmed and sliced into 2 layers. An infraspinatus tendon tear was created in each shoulder. Modified Mason-Allen sutures were used to repair the infraspinatus tendon to the greater tuberosity, with or without the bridging patch (bridging patch group and controls, respectively). Shoulders were loaded to failure under displacement control at a rate of 0.5mm/s. The ultimate tensile load was significantly higher in the bridging patch group than control (mean [SD], 365.46 [36.45] vs 272.79 [48.88] N; P<.001). Stiffness at the greater tuberosity repair site and the patch-infraspinatus tendon repair site was significantly higher than the control repair site (93.96 [27.72] vs 42.62 [17.48] N/mm P<.001; 65.94 [24.51] vs 42.62 [17.48] N/mm P=.02, respectively). The tendon-fibrocartilage-bone composite bridging patch achieved higher ultimate tensile load and stiffness at the patch-greater tuberosity repair site compared with traditional repair in a canine model. This composite tissue transforms the traditional tendon-to-bone healing interface (with dissimilar tissues) into a pair of bone-to-bone and tendon-to-tendon interfaces, which may improve healing quality and reduce retear rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Laparoscopic repair of perforated peptic ulcer: patch versus simple closure.

    PubMed

    Abd Ellatif, M E; Salama, A F; Elezaby, A F; El-Kaffas, H F; Hassan, A; Magdy, A; Abdallah, E; El-Morsy, G

    2013-01-01

    Laparoscopic correction of perforated peptic ulcer (PPU) has become an accepted way of management. Patch omentoplasty stayed for decades the main method of repair. The goal of the present study was to evaluate whether laparoscopic simple repair of PPU is as safe as patch omentoplasty. Since June 2005, 179 consecutive patients of PPU were treated by laparoscopic repair at our centers. We conducted a retrospective chart review in December 2012. Group I (patch group) included patients who were treated with standard patch omentoplasty. Group II (non-patch group) included patients who received simple repair without patch. From June 2007 to Dec. 2012, 179 consecutive patients of PPU who were treated by laparoscopic repair at our centers were enrolled in this multi-center retrospective study. 108 patients belong to patch group. While 71 patients were treated with laparoscopic simple repair. Operative time was significantly shorter in group II (non patch) (p = 0.01). No patient was converted to laparotomy. There was no difference in age, gender, ASA score, surgical risk (Boey's) score, and incidence of co-morbidities. Both groups were comparable in terms of hospital stay, time to resume oral intake, postoperative complications and surgical outcomes. Laparoscopic simple repair of PPU is a safe procedure compared with the traditional patch omentoplasty in presence of certain selection criteria. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  12. Rotator Cuff Repair with a Tendon-Fibrocartilage-Bone Composite Bridging Patch

    PubMed Central

    Ji, Xiaoxi; Chen, Qingshan; Thoreson, Andrew R.; Qu, Jin; An, Kai-Nan; Amadio, Peter C.; Steinmann, Scott P.; Zhao, Chunfeng

    2015-01-01

    Background To compare the mechanical performance of a rotator cuff repaired with a novel tendon-fibrocartilage-bone composite bridging patch vs the traditional Mason-Allen repair in an in vitro canine model. Methods Twenty shoulders and 10 bridging patches from patellar tendon were harvested. The patches were trimmed and sliced into 2 layers. An infraspinatus tendon tear was created in each shoulder. Modified Mason-Allen sutures were used to repair the infraspinatus tendon to the greater tuberosity, with or without the bridging patch (bridging patch group and controls, respectively). Shoulders were loaded to failure under displacement control at a rate of 0.5mm/sec. Findings The ultimate tensile load was significantly higher in the bridging patch group than control (mean [SD], 365.46 [36.45] vs 272.79 [48.88] N; P<.001). Stiffness at the greater tuberosity repair site and the patch-infraspinatus tendon repair site was significantly higher than the control repair site (93.96 [27.72] vs 42.62 [17.48] N/mm P<.001; 65.94 [24.51] vs 42.62 [17.48] N/mm P=.02, respectively). Interpretation The tendon-fibrocartilage-bone composite bridging patch achieved higher ultimate tensile load and stiffness at the patch–greater tuberosity repair site compared with traditional repair in a canine model. This composite tissue transforms the traditional tendon-to-bone healing interface (with dissimilar tissues) into a pair of bone-to-bone and tendon-to-tendon interfaces, which may improve healing quality and reduce retear rate. PMID:26190097

  13. UV-cured adhesives for carbon fiber composite applications

    NASA Astrophysics Data System (ADS)

    Lu, Hsiao-Chun

    Carbon fiber composite materials are increasingly used in automobile, marine, and aerospace industries due to their unique properties, including high strength, high stiffness and low weight. However, due to their brittle characteristic, these structures are prone to physical damage, such as a bird strike or impact damage. Once the structure is damaged, it is important to have fast and reliable temporary repair until the permanent repair or replacement can take place. In this dissertation, UV-based adhesives were used to provide a bonding strength for temporary repair. Adhesively bonded patch repair is an efficient and effective method for temporary repair. In this study, precured patches (hard patches) and dry fabric patches with laminating resins (soft patches) were performed. UV-based epoxy adhesives were applied to both patch repair systems. For precured patch repair, the bonding strengths were investigated under different surface treatments for bonding area and different adhesives thicknesses. The shear stresses of different UV exposure times and curing times were tested. Besides, the large patch repair was investigated as well. For soft patch repair, the hand wet lay-up was applied due to high viscosity of UV resins. A modified single lap shear testing (ASTM D5868) was applied to determine the shear stress. The large patches used fiber glass instead of carbon fiber to prove the possibility of repair with UV epoxy resin by hand wet lay-up process. The hand lay-up procedure was applied and assisted by vacuum pressure to eliminate the air bubbles and consolidate the patches. To enhance the bonding strength and effective soft patch repair, vacuum assisted resin transferring molding (VaRTM) is the better option. However, only low viscosity resins can be operated by VaRTM. Hence, new UV-based adhesives were formulated. The new UV-based adhesives included photoinitiator (PI), epoxy and different solvents. Solvents were used to compound the photoinitiator into epoxy monomer. Acetone, tetrahydrofuran (THF) and chloroform were used as well as their anhydrous solvents. The UV exposure times and curing times of new UV-based resins were tested. FT-IR, DSC and DMA were used to investigate structure, glass transition temperatures(Tg) and properties of polymer. In summary, the UV-based adhesive was applied to adhesively bonded hard patch and soft patch repair. In addition, new UV-based resins were formulated for the VaRTM process. The in-field repair can be effective and efficient by using UV adhesives.

  14. Surgery for left ventricular aneurysm: early and late survival after simple linear repair and endoventricular patch plasty.

    PubMed

    Lundblad, Runar; Abdelnoor, Michel; Svennevig, Jan Ludvig

    2004-09-01

    Simple linear resection and endoventricular patch plasty are alternative techniques to repair postinfarction left ventricular aneurysm. The aim of the study was to compare these 2 methods with regard to early mortality and long-term survival. We retrospectively reviewed 159 patients undergoing operations between 1989 and 2003. The epidemiologic design was of an exposed (simple linear repair, n = 74) versus nonexposed (endoventricular patch plasty, n = 85) cohort with 2 endpoints: early mortality and long-term survival. The crude effect of aneurysm repair technique versus endpoint was estimated by odds ratio, rate ratio, or relative risk and their 95% confidence intervals. Stratification analysis by using the Mantel-Haenszel method was done to quantify confounders and pinpoint effect modifiers. Adjustment for multiconfounders was performed by using logistic regression and Cox regression analysis. Survival curves were analyzed with the Breslow test and the log-rank test. Early mortality was 8.2% for all patients, 13.5% after linear repair and 3.5% after endoventricular patch plasty. When adjusted for multiconfounders, the risk of early mortality was significantly higher after simple linear repair than after endoventricular patch plasty (odds ratio, 4.4; 95% confidence interval, 1.1-17.8). Mean follow-up was 5.8 +/- 3.8 years (range, 0-14.0 years). Overall 5-year cumulative survival was 78%, 70.1% after linear repair and 91.4% after endoventricular patch plasty. The risk of total mortality was significantly higher after linear repair than after endoventricular patch plasty when controlled for multiconfounders (relative risk, 4.5; 95% confidence interval, 2.0-9.7). Linear repair dominated early in the series and patch plasty dominated later, giving a possible learning-curve bias in favor of patch plasty that could not be adjusted for in the regression analysis. Postinfarction left ventricular aneurysm can be repaired with satisfactory early and late results. Surgical risk was lower and long-term survival was higher after endoventricular patch plasty than simple linear repair. Differences in outcome should be interpreted with care because of the retrospective study design and the chronology of the 2 repair methods.

  15. Experimental Fatigue Study of Composite Patch Repaired Steel Plates with Cracks

    NASA Astrophysics Data System (ADS)

    Karatzas, Vasileios A.; Kotsidis, Elias A.; Tsouvalis, Nicholas G.

    2015-10-01

    Cracks are among the most commonly encountered defects in metallic structures operating at sea. Composite patch repairing is a repair method which is gaining popularity as it counters most of the problems faced by conventional renewal repairs. Extensive studies can be found in the literature addressing the efficiency of this novel repair method using techniques which meet higher performance and monitoring standards than these commonly found in naval applications. In this work the efficiency of practices widely used in the ship repair industry for the implementation of composite patch repairing is addressed. To this end, steel plates repaired with composite patches were tested under fatigue loading. The composite patches consisted of carbon fibers in epoxy matrix and were directly laminated to the steel surface using the vacuum infusion method. Two different surface preparation methods, namely grit-blasting and mechanical treatment with the use of a needle gun were studied. In addition, in order to account for the harsh environmental conditions during the operating life of the structure and to study its effect on the repair, two different aging scenarios were considered. Non-destructive evaluation of the patches was performed so as to assess the quality of the repair, and the evolution of debonding during testing.

  16. Biomaterials in myocardial tissue engineering

    PubMed Central

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  17. Patch-augmented rotator cuff repair: influence of the patch fixation technique on primary biomechanical stability.

    PubMed

    Jung, Christian; Spreiter, Gregor; Audigé, Laurent; Ferguson, Stephen J; Flury, Matthias

    2016-05-01

    There is an ongoing debate about the potential of patch augmentation to improve biomechanical stability and healing associated with rotator cuff repair. The biomechanical properties of three different patch-augmented rotator cuff repair techniques were assessed in vitro and compared with a standard repair. Dermal collagen patch augmentation may increase the primary stability and strength of the repaired tendon in vitro, depending on the technique used for patch application. Forty cadaveric sheep shoulders with dissected infraspinatus tendons were randomized into four groups (n = 10/group) for tendon repair using a knotless double-row suture anchor technique. A xenologous dermal extracellular matrix patch was used for augmentation in the three test groups using an "integrated", "cover", or "hybrid" technique. Tendons were preconditioned, cyclically loaded from 10 to 30 N at 1 Hz, and then loaded monotonically to failure. Biomechanical properties and the mode of failure were evaluated. Patch augmentation significantly increased the maximum load at failure by 61 % in the "cover" technique test group (225.8 N) and 51 % in the "hybrid" technique test group (211.4 N) compared with the non-augmented control group (140.2 N) (P ≤ 0.015). For the test group with "integrated" patch augmentation, the load at failure was 28 % lower (101.6 N) compared with the control group (P = 0.043). There was no significant difference in initial and linear stiffness among the four experimental groups. The most common mode of failure was tendon pullout. No anchor dislocation, patch disruption or knot breakage was observed. Additional patch augmentation with a collagen patch influences the biomechanical properties of a rotator cuff repair in a cadaveric sheep model. Primary repair stability can be significantly improved depending on the augmentation technique.

  18. Aortic valve repair with autologous pericardial patch.

    PubMed

    Lausberg, Henning F; Aicher, Diana; Langer, Frank; Schäfers, Hans-Joachim

    2006-08-01

    Isolated aortic valve repair (AVR) has been gaining increasing interest in recent times. Results of isolated aortic valve repair have been reported to be variable. Various techniques have been utilized. We analyzed our experience with isolated valve repair using autologous pericardial patch plasty and compared the results to an age-matched collective with aortic valve repair without the use of additional material. Between January 1997 and June 2005, pericardial patch plasty of the aortic valve was performed in 42 patients (PATCH). During the same period, 42 patients after AVR without the use of additional material were age matched (NO-PATCH). Mean age in both groups was 52 years with a majority of male patients (PATCH ratio, 3.7:1; NO-PATCH ratio, 5:1). Valve anatomy was similar in both groups. All patients were followed by echocardiography for a cumulative follow-up of 2341 patient months (mean 28+/-23 months). No patient died in the hospital in neither group. The average systolic gradient was 5.9+/-2.2 mmHg in PATCH and 4.8+/-2.1 mmHg in NO-PATCH; p=0.17). Freedom from aortic regurgitation > or = II degrees was 87.8% in PATCH and 95.0% in NO-PATCH after 5 years (p=0.21). Freedom from reoperation was 97.6% in PATCH and 97.4% in NO-PATCH (p=0.96). Aortic regurgitation can be treated effectively by aortic valve repair using pericardial patch plasty. The functional results are satisfactory. With the application of this technique also more complex pathologies of the aortic valve can be addressed adequately thus extending the concept of valve preservation in patients with aortic regurgitation.

  19. A bird's-eye view of cell therapy and tissue engineering for cardiac regeneration.

    PubMed

    Soler-Botija, Carolina; Bagó, Juli R; Bayes-Genis, Antoni

    2012-04-01

    Complete recovery of ischemic cardiac muscle after myocardial infarction is still an unresolved concern. In recent years, intensive research efforts have focused on mimicking the physical and biological properties of myocardium for cardiac repair. Here we show how heart regeneration approaches have evolved from cell therapy to refined tissue engineering. Despite progressive improvements, the best cell type and delivery strategy are not well established. Our group has identified a new population of cardiac adipose tissue-derived progenitor cells with inherent cardiac and angiogenic potential that is a promising candidate for cell therapy to restore ischemic myocardium. We also describe results from three strategies for cell delivery into a murine model of myocardial infarction: intramyocardial injection, implantation of a fibrin patch loaded with cells, and an engineered bioimplant (a combination of chemically designed scaffold, peptide hydrogel, and cells); dual-labeling noninvasive bioluminescence imaging enables in vivo monitoring of cardiac-specific markers and cell survival. © 2012 New York Academy of Sciences.

  20. Composite Structures Repair Development at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.

    2015-01-01

    This presentation discusses the development and results of composite patch repair perfromed at Kennedy Space Center. This includes impact damage, patch repair methods, nondestructive evaluation, and edgewise compression testing.

  1. Postinfarction Functional Recovery Driven by a Three-Dimensional Engineered Fibrin Patch Composed of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells.

    PubMed

    Roura, Santiago; Soler-Botija, Carolina; Bagó, Juli R; Llucià-Valldeperas, Aida; Férnandez, Marco A; Gálvez-Montón, Carolina; Prat-Vidal, Cristina; Perea-Gil, Isaac; Blanco, Jerónimo; Bayes-Genis, Antoni

    2015-08-01

    Considerable research has been dedicated to restoring myocardial cell slippage and limiting ventricular remodeling after myocardial infarction (MI). We examined the ability of a three-dimensional (3D) engineered fibrin patch filled with human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to induce recovery of cardiac function after MI. The UCBMSCs were modified to coexpress luciferase and fluorescent protein reporters, mixed with fibrin, and applied as an adhesive, viable construct (fibrin-cell patch) over the infarcted myocardium in mice (MI-UCBMSC group). The patch adhered well to the heart. Noninvasive bioluminescence imaging demonstrated early proliferation and differentiation of UCBMSCs within the construct in the postinfarct mice in the MI-UCBMSC group. The implanted cells also participated in the formation of new, functional microvasculature that connected the fibrin-cell patch to both the subjacent myocardial tissue and the host circulatory system. As revealed by echocardiography, the left ventricular ejection fraction and fractional shortening at sacrifice were improved in MI-UCBMSC mice and were markedly reduced in mice treated with fibrin alone and untreated postinfarction controls. In conclusion, a 3D engineered fibrin patch composed of UCBMSCs attenuated infarct-derived cardiac dysfunction when transplanted locally over a myocardial wound. ©AlphaMed Press.

  2. Investigation on laser-assisted tissue repair with NIR millisecond-long light pulses and Indocyanine Green-biopolymeric patches

    NASA Astrophysics Data System (ADS)

    Matteini, Paolo; Banchelli, Martina; Cottat, Maximilien; Osticioli, Iacopo; de Angelis, Marella; Rossi, Francesca; Pini, Roberto

    2016-03-01

    In previous works a minimally invasive laser-assisted technique for vascular repair was presented. The technique rests on the photothermal adhesion of a biocompatible and bioresorbable patch containing Indocyanine Green that is brought into contact with the site to be repaired. Afterward the use of NIR millisecond-long light pulses generates a strong welding effect between the patch and the underlying tissue and in turn the repair of the wound. This technique was shown to be effective in animal model and provides several advantages over conventional suturing methods. Here we investigate and discuss the optical stability of the ICG-biopolymeric patches and the photothermal effects induced to the irradiated tissue.

  3. A Comparison of Electrospun Polymers Reveals Poly(3-Hydroxybutyrate) Fiber as a Superior Scaffold for Cardiac Repair

    PubMed Central

    Castellano, Delia; Blanes, María; Marco, Bruno; Cerrada, Inmaculada; Ruiz-Saurí, Amparo; Pelacho, Beatriz; Araña, Miriam; Montero, Jose A.; Cambra, Vicente; Prosper, Felipe

    2014-01-01

    The development of biomaterials for myocardial tissue engineering requires a careful assessment of their performance with regards to functionality and biocompatibility, including the immune response. Poly(3-hydroxybutyrate) (PHB), poly(e-caprolactone) (PCL), silk, poly-lactic acid (PLA), and polyamide (PA) scaffolds were generated by electrospinning, and cell compatibility in vitro, and immune response and cardiac function in vitro and in vivo were compared with a noncrosslinked collagen membrane (Col) control material. Results showed that cell adhesion and growth of mesenchymal stem cells, cardiomyocytes, and cardiac fibroblasts in vitro was dependent on the polymer substrate, with PHB and PCL polymers permitting the greatest adhesion/growth of cells. Additionally, polymer substrates triggered unique expression profiles of anti- and pro-inflammatory cytokines in human peripheral blood mononuclear cells. Implantation of PCL, silk, PLA, and PA patches on the epicardial surface of healthy rats induced a classical foreign body reaction pattern, with encapsulation of polymer fibers and induction of the nonspecific immune response, whereas Col and PHB patches were progressively degraded. When implanted on infarcted rat heart, Col, PCL, and PHB reduced negative remodeling, but only PHB induced significant angiogenesis. Importantly, Col and PHB modified the inflammatory response to an M2 macrophage phenotype in cardiac tissue, indicating a more beneficial reparative process and remodeling. Collectively, these results identify PHB as a superior substrate for cardiac repair. PMID:24564648

  4. A smart composite patch for the repair of aircraft structures

    NASA Astrophysics Data System (ADS)

    Wakha, Kelah; Samuel, Paul; Pines, Darryll J.

    2005-05-01

    Recent interest in bonded composite patch repair technology for aerospace systems is because this method can be carried out at a reduced cost and time and can easily be applied to complex geometric structures. This paper details the development of a dual stiffness/energy sensor for monitoring the integrity of a composite patch used to repair an aluminum structural component. The smart sensor has the ability to predict the elastic field of a given host structure based on the strain state of two sub-sensors integrated into the structure. The present study shows the possibility of using the sensor to deduce the local instantaneous host stiffness. Damaged structures are characterized by a reduction in their elastic stiffness that evolve from microstructural defects. A local smart sensor can be developed to sense the local average properties on a host. In this paper, sensors are attached to a structure and a modified Eshelby's equivalent inclusion method is used to derive the elastic properties of the host. An analytical derivation and a sensitivity analysis for the quasistatic application is given in a papers by Majed, Dasgupta, Kelah and Pines. A summary of the derivation of the dynamic Eshelby tensor is presented. This is of importance because damage detection in structures undergoing vibratory and other motions present a greater challenge than those in quasistatic motion. An in-situ health monitoring active sensor system for a real structure (an aluminum plate with an attached repair patch) under close-to real lifecycle loading conditions is developed. The detection of the onset of any damage to the structure as well as the repair patch and the subsequent monitoring of the growth of this damage constitute important goals of the system. Both experimental and finite element methods were applied. Experimental results are presented for tests of the aluminum plate with the repair patch under monotonic quasi-static and dynamic loading vibratory conditions. In summary, the study shows that smart bonded composite repair patches are very effective in the repair of thin aluminum structures since they are able to determine the integrity of the repair structure as well as the repair patch.

  5. In vitro three-dimensional coculturing poly3-hydroxybutyrate-co-3-hydroxyhexanoate with mouse-induced pluripotent stem cells for myocardial patch application.

    PubMed

    Shijun, Xu; Junsheng, Mu; Jianqun, Zhang; Ping, Bo

    2016-03-01

    Identifying a suitable polymeric biomaterial for myocardial patch repair following myocardial infarction, cerebral infarction, and cartilage injury is essential. This study aimed to investigate the effect of the novel polymer material, poly3-hydroxybutyrate-co-3-hydroxyhexanoate, on the adhesion, proliferation, and differentiation of mouse-induced pluripotent stem cells in vitro. Mouse-induced pluripotent stem cells were isolated, expanded, and cultured on either two-dimensional or three-dimensional poly3-hydroxybutyrate-co-3-hydroxyhexanoate films (membranes were perforated to imitate three-dimensional space). Following attachment onto the films, mouse-induced pluripotent stem cell morphology was visualized using scanning electron microscopy. Cell vitality was detected using the Cell Counting Kit-8 assay and cell proliferation was observed using fluorescent 4',6-diamidino-2-phenylindole (DAPI) staining. Mouse-induced pluripotent stem cells were induced into cardiomyocytes by differentiation medium containing vitamin C. A control group in the absence of an inducer was included. Mouse-induced pluripotent stem cell survival and differentiation were observed using immunofluorescence and flow cytometry, respectively. Mouse-induced pluripotent stem cells growth, proliferation, and differentiation were observed on both two-dimensional and three-dimensional poly3-hydroxybutyrate-co-3-hydroxyhexanoate films. Vitamin C markedly improved the efficiency of mouse-induced pluripotent stem cells differentiation into cardiomyocytes on poly3-hydroxybutyrate-co-3-hydroxyhexanoate films. Three-dimensional culture was better at promoting mouse-induced pluripotent stem cell proliferation and differentiation compared with two-dimensional culture. © The Author(s) 2016.

  6. Comparison of shrinkage related properties of various patch repair materials

    NASA Astrophysics Data System (ADS)

    Kristiawan, S. A.; Fitrianto, R. S.

    2017-02-01

    A patch repair material has been developed in the form of unsaturated polyester resin (UPR)-mortar. The performance and durability of this material are governed by its compatibility with the concrete being repaired. One of the compatibility issue that should be tackled is the dimensional compatibility as a result of differential shrinkage between the repair material and the concrete substrate. This research aims to evaluate such shrinkage related properties of UPR-mortar and to compare with those of other patch repair materials. The investigation includes the following aspects: free shrinkage, resistance to delamination and cracking. The results indicate that UPR-mortar poses a lower free shrinkage, lower risk of both delamination and cracking tendency in comparison to other repair materials.

  7. Cusp repair in aortic valve reconstruction: does the technique affect stability?

    PubMed

    Aicher, Diana; Langer, Frank; Adam, Oliver; Tscholl, Dietmar; Lausberg, Henning; Schäfers, Hans-Joachim

    2007-12-01

    Cusp prolapse may be an isolated cause of aortic regurgitation or may exist in conjunction with dilatation of the proximal aorta. Prolapse can be corrected by central plication, triangular resection, or pericardial patch implantation. We retrospectively analyzed our results with these techniques. From October 1995 to December 2006, 604 patients (aged 3-86 years) underwent aortic valve repair. Cusp prolapse was found in 427 patients (246 tricuspid, 181 bicuspid). Prolapse was corrected by central plication (n = 275) or triangular resection (n = 80). A pericardial patch was implanted for pre-existing cusp defects or after excision of calcium (n = 72). One cusp was repaired in 198 patients; the remaining patients underwent repair of 2 (n = 189) or 3 cusps (n = 40). In 102 patients more than one technique was used, and the patients were allocated to the group of the assumedly more complex repair (central plication < triangular resection < pericardial patch plasty). Cumulative follow-up was 1238 patient-years (mean 35 +/- 27 months). Hospital mortality was 2.6% (11/427). Actuarial freedom from aortic regurgitation of grade II or more at 5 years was 92% (central plication), 90% (triangular resection), and 90% (pericardial patch plasty). Thirteen patients were reoperated on, with prolapse as the most common reason for failure (n = 7); 6 underwent re-repair. Freedom from reoperation at 5 years was 95% (central plication), 94% (triangular resection), and 94% (pericardial patch plasty). Freedom from valve replacement at 5 years was 97% (central plication), 99% (triangular resection), and 98% (pericardial patch plasty). In aortic valve repair, cusp prolapse can be treated reliably by central plication. In the presence of more complex disease, triangular resection or pericardial patch plasty may be used without compromising midterm durability.

  8. Static Tensile and Transient Dynamic Response of Cracked Aluminum Plate Repaired with Composite Patch - Numerical Study

    NASA Astrophysics Data System (ADS)

    Khalili, S. M. R.; Shariyat, M.; Mokhtari, M.

    2014-06-01

    In this study, the central cracked aluminum plates repaired with two sided composite patches are investigated numerically for their response to static tensile and transient dynamic loadings. Contour integral method is used to define and evaluate the stress intensity factors at the crack tips. The reinforcement for the composite patches is carbon fibers. The effect of adhesive thickness and patch thickness and configuration in tensile loading case and pre-tension, pre-compression and crack length effect on the evolution of the mode I stress intensity factor (SIF) (KI) of the repaired structure under transient dynamic loading case are examined. The results indicated that KI of the central cracked plate is reduced by 1/10 to 1/2 as a result of the bonded composite patch repair in tensile loading case. The crack length and the pre-loads are more effective in repaired structure in transient dynamic loading case in which, the 100 N pre-compression reduces the maximum KI for about 40 %, and the 100 N pre-tension reduces the maximum KI after loading period, by about 196 %.

  9. Early closure of postinfarction ventricular septal defects.

    PubMed

    Martinelli, Luigi; Dottori, Vincenzo; Caputo, Enrico; Graffigna, Angelo; Pederzolli, Carlo

    2003-05-01

    According to the guidelines of the American College of Cardiology/American Heart Association early closure of postinfarction septal defects is now a class I indication although it still carries a relevant morbidity and mortality. The operative risk is related both to the critical hemodynamic conditions of the patient and to the technical difficulties posed by the friable tissue of the infarcted area. The most recent techniques involving the use of pericardial patches reinforced by acrylic glue have significantly reduced the hospital mortality. The aim of this study was to discuss the reliability of an aggressive, tissue-sparing surgical approach to this complication. We present a consecutive series of 12 patients operated upon between January 1998 and October 2001 within 12 hours of the onset of clinical evidence of postinfarction septal rupture. Repair was achieved with minimal septal debridement and the use of a large pericardial patch reinforced by a biological glue. Three cases of dehiscence required early reoperation with no hospital mortality. This procedure is technically feasible and allows early aggressive treatment of postinfarction septal rupture with satisfactory results.

  10. Structural Durability of Damaged Metallic Panel Repaired with Composite Patches

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Chamis, Christos C.

    1997-01-01

    Structural durability/damage tolerance characteristics of an aluminum tension specimen possessing a short crack and repaired by applying a fiber composite surface patch is investigated via computational simulation. The composite patch is made of graphite/epoxy plies with various layups. An integrated computer code that accounts for all possible failure modes is utilized for the simulation of combined fiber-composite/aluminum structural degradation under loading. Damage initiation, growth, accumulation, and propagation to structural fracture are included in the simulation. Results show the structural degradation stages due to tensile loading and illustrate the use of computational simulation for the investigation of a composite patch repaired cracked metallic panel.

  11. Tank Remote Repair System Conceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriikku, E.

    2002-12-06

    This document describes two conceptual designs for a Tank Remote Repair System to perform leak site repairs of double shell waste tank walls (Types I, II, III, and IIIA) from the annulus space. The first concept uses a magnetic wall crawler and an epoxy patch system and the second concept uses a magnetic wall crawler and a magnetic patch system. The recommended concept uses the magnetic patch system, since it is simpler to deliver, easier to apply, and has a higher probability of stopping an active leak.

  12. Development of a Remote External Repair Tool for Damaged or Defective Polyethylene Pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth H. Green; Willie E. Rochefort; Nick Wannenmacher

    2006-06-30

    Current procedures for repairing polyethylene (PE) gas pipe require excavation, isolation, and removal of the damaged section of pipe followed by fusing a new section of pipe into place. These techniques are costly and very disruptive. An alternative repair method was developed at Timberline Tool with support from Oregon State University (OSU) and funding by the U. S. Department of Energy National Energy Technology Laboratory (DOE/NETL). This project was undertaken to design, develop and test a tool and method for repairing damaged PE pipe remotely and externally in situ without squeezing off the flow of gas, eliminating the need formore » large-scale excavations. Through an iterative design and development approach, a final engineered prototype was developed that utilizes a unique thermo-chemical and mechanical process to apply a permanent external patch to repair small nicks, gouges and punctures under line pressure. The project identified several technical challenges during the design and development process. The repair tool must be capable of being installed under live conditions and operate in an 18-inch keyhole. This would eliminate the need for extensive excavations thus reducing the cost of the repair. Initially, the tool must be able to control the leak by encapsulating the pipe and apply slight pressure at the site of damage. Finally, the repair method must be permanent at typical operating pressures. The overall results of the project have established a permanent external repair method for use on damaged PE gas pipe in a safe and cost-effective manner. The engineered prototype was subjected to comprehensive testing and evaluation to validate the performance. Using the new repair tool, samples of 4-inch PE pipe with simulated damage were successfully repaired under line pressure to the satisfaction of DOE/NETL and the following natural gas companies: Northwest Natural; Sempra Energy, Southwest Gas Corporation, Questar, and Nicor. However, initial results of accelerated age testing on repaired pipe samples showed that the high density polyethylene (HDPE) pipe patch material developed a small crack at the high stress areas surrounding the patched hole within the first 48 hours of hot water testing, indicating that the patch material has a 25-year lifespan. Based on these results, further research is continuing to develop a stronger repair patch for a satisfactory 50-year patch system. Additional tests were also conducted to evaluate whether any of the critical performance properties of the PE pipe were reduced or compromised by the repair technique. This testing validated a satisfactory 50-year patch system for the pipe.« less

  13. Initial Experience and Early Results of Mitral Valve Repair with Cardiocel Pericardial Patch.

    PubMed

    Tomšič, Anton; Bissessar, Daniella D; van Brakel, Thomas J; Marsan, Nina Ajmone; Klautz, Robert J M; Palmen, Meindert

    2018-06-07

    To assess the performance of a tissue engineering process-treated bovine pericardium patch (CardioCel) in the setting of reconstructive mitral valve surgery. Between 3/2014 and 4/2016, 30 patients (57.2±14.3 years, 27% female) underwent mitral valve leaflet repair with a CardioCel patch. Perioperative mortality was 7% (2 patients, non-graft-related). In 28 remaining patients, pre-discharge echocardiography demonstrated good repaired valve function. At a mean follow-up of 1.7±0.9 years, 3 additional deaths occurred (2 due to infective endocarditis, 1 non-cardiac related). On follow-up echocardiography [follow-up time 1.7±0.8 years, available for 26/28 (93%) hospital survivors], recurrent regurgitation was seen in 2 patients (both infective endocarditis) and 1 underwent reoperation (no infection at the level of patch repair was observed). In the remaining patients, the most recent echocardiogram demonstrated ≤mild regurgitation and stable gradients. The thickness and echodensity of the implanted patch on follow-up echocardiograms were comparable with postoperative echocardiograms. Initial results of the CardioCel patch in mitral valve repair surgery are satisfactory. The resistance to infection and late degeneration will need to be assessed in the future. Copyright © 2018. Published by Elsevier Inc.

  14. Sustained viral gene delivery from a micro-fibrous, elastomeric cardiac patch to the ischemic rat heart.

    PubMed

    Gu, Xinzhu; Matsumura, Yasumoto; Tang, Ying; Roy, Souvik; Hoff, Richard; Wang, Bing; Wagner, William R

    2017-07-01

    Biodegradable and elastomeric patches have been applied to the surface of infarcted hearts as temporary mechanical supports to effectively alter adverse left ventricular remodeling processes. In this report, recombinant adeno-associated virus (AAV), known for its persistent transgene expression and low pathogenicity, was incorporated into elastomeric polyester urethane urea (PEUU) and polyester ether urethane urea (PEEUU) and processed by electrospinning into two formats (solid fibers and core-sheath fibers) designed to influence the controlled release behavior. The extended release of AAV encoding green fluorescent protein (GFP) was assessed in vitro. Sustained and localized viral particle delivery was achieved over 2 months in vitro. The biodegradable cardiac patches with or without AAV-GFP were implanted over rat left ventricular lesions three days following myocardial infarction to evaluate the transduction effect of released viral vectors. AAV particles were directly injected into the infarcted hearts as a control. Cardiac function and remodeling were significantly improved for 12 weeks after patch implantation compared to AAV injection. More GFP genes was expressed in the AAV patch group than AAV injection group, with both α-SMA positive cells and cardiac troponin T positive cells transduced in the patch group. Overall, the extended release behavior, prolonged transgene expression, and elastomeric mechanical properties make the AAV-loaded scaffold an attractive option for cardiac tissue engineering where both gene delivery and appropriate mechanical support are desired. Copyright © 2017. Published by Elsevier Ltd.

  15. The Usefulness of Patch Repair Using the Repermeabilized Umbilical Vein of the Round Ligament for Hepatobiliary Malignancies.

    PubMed

    Takahashi, Michiro; Saiura, Akio; Takahashi, Yu

    2017-11-01

    Patients with tumors invading major veins may require combined resection and reconstruction. However, venous reconstruction often demands complex hepatobiliary and vascular surgical procedures. In this study, we report a simple patch repair technique for venous reconstruction using the repermeabilized umbilical vein of the round ligament. We reviewed the outcomes of eleven patients who underwent venous wedge resection and patch repair using the repermeabilized umbilical vein of the round ligament at our institution. Procurement of the round ligament and method of making a patch is simple. The duration of anastomosis was approximately 15 min. Eight patients (73%) underwent hepatic resection followed by hepatic vein reconstruction; two (18%) pancreaticoduodenectomy followed by inferior vena cava (IVC) reconstruction; one (9%) hepatic resection followed by IVC reconstruction. Although one reconstructed vein became narrowed, the other ten veins were patent after surgery. Patch repair using the repermeabilized umbilical vein of the round ligament is a simple and useful technique.

  16. Stability of double-row rotator cuff repair is not adversely affected by scaffold interposition between tendon and bone.

    PubMed

    Beitzel, Knut; Chowaniec, David M; McCarthy, Mary Beth; Cote, Mark P; Russell, Ryan P; Obopilwe, Elifho; Imhoff, Andreas B; Arciero, Robert A; Mazzocca, Augustus D

    2012-05-01

    Rotator cuff reconstructions may be improved by adding growth factors, cells, or other biologic factors into the repair zone. This usually requires a biological carrier (scaffold) to be integrated into the construct and placed in the area of tendon-to-bone healing. This needs to be done without affecting the constructs mechanics. Hypothesis/ The hypothesis was that scaffold placement, as an interposition, has no adverse effects on biomechanical properties of double-row rotator cuff repair. The purpose of this study was to examine the effect of scaffold interposition on the initial strength of rotator cuff repairs. Controlled laboratory study. Twenty-five fresh-frozen shoulders (mean age: 65.5 ± 8.9 years) were randomly assigned to 5 groups. Groups were chosen to represent a broad spectrum of commonly used scaffold types: (1) double-row repair without augmentation, (2) double-row repair with interposition of a fibrin clot (Viscogel), (3) double-row repair with interposition of a collagen scaffold (Mucograft) between tendon and bone, (4) double-row repair with interposition of human dermis patch (ArthroFlex) between tendon and bone, and (5) double-row repair with human dermis patch (ArthroFlex) placed on top of the repair. Cyclic loading to measure displacement was performed to 3000 cycles at 1 Hz with an applied 10- to 100-N load. The ultimate load to failure was determined at a rate of 31 mm/min. There were no significant differences in mean displacement under cyclic loading, slope, or energy absorbed to failure between all groups (P = .128, P = .981, P = .105). Ultimate load to failure of repairs that used the collagen patch as an interposition (573.3 ± 75.6 N) and a dermis patch on top of the reconstruction (575.8 ± 22.6 N) was higher compared with the repair without a scaffold (348.9 ± 98.8 N; P = .018 and P = .025). No significant differences were found for repairs with the fibrin clot as an interposition (426.9 ± 103.6 N) and the decellularized dermis patch as an interposition (469.9 ± 148.6 N; P = .73 and P = .35). Scaffold augmentation did not adversely affect the zero time strength of the tested standard double-row rotator cuff repairs. An increased ultimate load to failure was observed for 2 of the augmentation methods (collagen patch as an interposition and decellularized dermis patch on top of the reconstruction) compared with the nonaugmented repairs. Scaffolds intended for application of growth factors or cellular components in a repair situation did not adversely jeopardize the stability of the operative construct.

  17. Laparoscopic repair of perforated peptic ulcer-technical tip.

    PubMed

    Jayanthi, Naga Venkatesh Gupta

    2013-08-01

    Increasing number of gastrointestinal emergencies are managed laparoscopically. Laparoscopic repair of a perforated peptic ulcer remains contentious. Fashioning an omental patch is a crucial and an essential part of this repair, whether it is performed open or laparoscopically. This article describes a technique to fashion an adequate omental patch over the perforated peptic ulcer.

  18. Occupational Contact Dermatitis in Mechanics and Repairers Referred for Patch Testing: Retrospective Analysis From the North American Contact Dermatitis Group 1998-2014.

    PubMed

    Warshaw, Erin M; Hagen, Solveig L; Sasseville, Denis; Maibach, Howard I; DeKoven, Joel G; Belsito, Donald V; Fowler, Joseph F; Zug, Kathryn A; Taylor, James S; Mathias, C G Toby; Fransway, Anthony F; DeLeo, Vincent A; Marks, James G; Pratt, Melanie D; Zirwas, Matthew J; Storrs, Frances J

    Contact dermatoses are common in mechanic and repair occupations. This study aimed to (1) estimate the prevalence of occupationally related contact dermatitis among mechanics/repairers patch tested from 1998 to 2014 by the North American Contact Dermatitis Group, (2) characterize responsible allergens and irritants, and their sources, and (3) compare results among 3 occupational subgroups (mechanics, electrical/electronic, and other). A cross-sectional analysis of patients patch tested by the North American Contact Dermatitis Group between 1998 and 2014. Of 38,784 patients patch tested, 691 (1.8%) were mechanics/repairers. Male sex (93.5%) and hand involvement (59.5%) were common overall. Occupationally related skin disease was more prevalent among vehicle and mobile equipment mechanics/repairers (52.7%) and other mechanics/repairers (41.4%) than electrical/electronic equipment mechanics/repairers (21.3%). Overall, carba mix, thiuram mix, and methylchloroisothiazolone/methylisothiazolone were the most common occupation-related clinically relevant allergens. Gloves, automotive vehicles, solvents, oils, lubricants, and fuels were the most common sources of responsible allergens. Common occupationally related allergens included rubber accelerators and the preservative methylchloroisothiazolone/methylisothiazolone.

  19. Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction

    PubMed Central

    Llucià‐Valldeperas, Aida; Soler‐Botija, Carolina; Gálvez‐Montón, Carolina; Roura, Santiago; Prat‐Vidal, Cristina; Perea‐Gil, Isaac; Sanchez, Benjamin; Bragos, Ramon; Vunjak‐Novakovic, Gordana

    2016-01-01

    Abstract Cardiac cells are subjected to mechanical and electrical forces, which regulate gene expression and cellular function. Therefore, in vitro electromechanical stimuli could benefit further integration of therapeutic cells into the myocardium. Our goals were (a) to study the viability of a tissue‐engineered construct with cardiac adipose tissue‐derived progenitor cells (cardiac ATDPCs) and (b) to examine the effect of electromechanically stimulated cardiac ATDPCs within a myocardial infarction (MI) model in mice for the first time. Cardiac ATDPCs were electromechanically stimulated at 2‐millisecond pulses of 50 mV/cm at 1 Hz and 10% stretching during 7 days. The cells were harvested, labeled, embedded in a fibrin hydrogel, and implanted over the infarcted area of the murine heart. A total of 39 animals were randomly distributed and sacrificed at 21 days: groups of grafts without cells and with stimulated or nonstimulated cells. Echocardiography and gene and protein analyses were also carried out. Physiologically stimulated ATDPCs showed increased expression of cardiac transcription factors, structural genes, and calcium handling genes. At 21 days after implantation, cardiac function (measured as left ventricle ejection fraction between presacrifice and post‐MI) increased up to 12% in stimulated grafts relative to nontreated animals. Vascularization and integration with the host blood supply of grafts with stimulated cells resulted in increased vessel density in the infarct border region. Trained cells within the implanted fibrin patch expressed main cardiac markers and migrated into the underlying ischemic myocardium. To conclude, synchronous electromechanical cell conditioning before delivery may be a preferred alternative when considering strategies for heart repair after myocardial infarction. Stem Cells Translational Medicine 2017;6:970–981 PMID:28297585

  20. Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction.

    PubMed

    Llucià-Valldeperas, Aida; Soler-Botija, Carolina; Gálvez-Montón, Carolina; Roura, Santiago; Prat-Vidal, Cristina; Perea-Gil, Isaac; Sanchez, Benjamin; Bragos, Ramon; Vunjak-Novakovic, Gordana; Bayes-Genis, Antoni

    2017-03-01

    Cardiac cells are subjected to mechanical and electrical forces, which regulate gene expression and cellular function. Therefore, in vitro electromechanical stimuli could benefit further integration of therapeutic cells into the myocardium. Our goals were (a) to study the viability of a tissue-engineered construct with cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs) and (b) to examine the effect of electromechanically stimulated cardiac ATDPCs within a myocardial infarction (MI) model in mice for the first time. Cardiac ATDPCs were electromechanically stimulated at 2-millisecond pulses of 50 mV/cm at 1 Hz and 10% stretching during 7 days. The cells were harvested, labeled, embedded in a fibrin hydrogel, and implanted over the infarcted area of the murine heart. A total of 39 animals were randomly distributed and sacrificed at 21 days: groups of grafts without cells and with stimulated or nonstimulated cells. Echocardiography and gene and protein analyses were also carried out. Physiologically stimulated ATDPCs showed increased expression of cardiac transcription factors, structural genes, and calcium handling genes. At 21 days after implantation, cardiac function (measured as left ventricle ejection fraction between presacrifice and post-MI) increased up to 12% in stimulated grafts relative to nontreated animals. Vascularization and integration with the host blood supply of grafts with stimulated cells resulted in increased vessel density in the infarct border region. Trained cells within the implanted fibrin patch expressed main cardiac markers and migrated into the underlying ischemic myocardium. To conclude, synchronous electromechanical cell conditioning before delivery may be a preferred alternative when considering strategies for heart repair after myocardial infarction. Stem Cells Translational Medicine 2017;6:970-981. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  1. Lightweight Material Patches Allow for Quick Repairs

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Cornerstone Research Group Inc., of Dayton, Ohio, has been the recipient of 16 Small Business Innovation Research (SBIR) contracts with NASA with a variety of different focuses, including projects like creating inflatable structures for radio frequency antennas and, most recently, healable polymer matrix composites for future space vehicles. One of its earlier SBIR contracts, with Kennedy Space Center, led to the development of a new type of structural patch for a variety of consumer uses: Rubbn Repair, for automotive uses; and Rec Repair for the outdoors and adventure market. Both are flexible, heat-activated structural patches.

  2. An electrospun polydioxanone patch for the localisation of biological therapies during tendon repair.

    PubMed

    Hakimi, O; Murphy, R; Stachewicz, U; Hislop, S; Carr, A J

    2012-10-23

    Rotator cuff tendon pathology is thought to account for 30-70 % of all shoulder pain. For cases that have failed conservative treatment, surgical re-attachment of the tendon to the bone with a non-absorbable suture is a common option. However, the failure rate of these repairs is high, estimated at up to 75 %. Studies have shown that in late disease stages the tendon itself is extremely degenerate, with reduced cell numbers and poor matrix organisation. Thus, it has been suggested that adding biological factors such as platelet rich plasma (PRP) and mesenchymal stem cells could improve healing. However, the articular capsule of the glenohumeral joint and the subacromial bursa are large spaces, and injecting beneficial factors into these sites does not ensure localisation to the area of tendon damage. Thus, the aim of this study was to develop a biocompatible patch for improving the healing rates of rotator cuff repairs. The patch will create a confinement around the repair area and will be used to guide injections to the vicinity of the surgical repair. Here, we characterised and tested a preliminary prototype of the patch utilising in vitro tools and primary tendon-derived cells, showing exceptional biocompatibility despite rapid degradation, improved cell attachment and that cells could migrate across the patch towards a chemo-attractant. Finally, we showed the feasibility of detecting the patch using ultrasound and injecting liquid into the confinement ex vivo. There is a potential for using this scaffold in the surgical repair of interfaces such as the tendon insertion in the rotator cuff, in conjunction with beneficial factors.

  3. Fabrication and Characterization of Multi-Walled Carbon Nanotube (MWCNT) and Ni-Coated Multi-Walled Carbon Nanotube (Ni-MWCNT) Repair Patches for Carbon Fiber Reinforced Composite Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Brienne; Caraccio, Anne; Tate, LaNetra; Jackson, Dionne

    2011-01-01

    Multi-walled carbon nanotube (MWCNT)/epoxy and nickel-coated multi-walled carbon nanotube (Ni-MWCNT)/epoxy systems were fabricated into carbon fiber composite repair patches via vacuum resin infusion. Two 4 ply patches were manufactured with fiber orientations of [90/ 90/ 4590] and [0/90/ +45/ -45]. Prior to resin infusion, the MWCNT/Epoxy system and NiMWCNT/ epoxy systems were optimized for dispersion quality. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to determine the presence ofcarbon nanotubes and assess dispersion quality. Decomposition temperatures were determined via thermogravametric analysis (TGA). SEM and TGA were also used to evaluate the composite repair patches.

  4. The Effects of Platelet-Rich Plasma on Bone Marrow Stromal Cell Transplants for Tendon Healing In Vitro

    PubMed Central

    Morizaki, Yutaka; Zhao, Chunfeng; An, Kai-Nan; Amadio, Peter C.

    2010-01-01

    Purpose In this study we investigated the effect of platelet-rich plasma (PRP) and bone-marrow derived stromal cell (BMSC)-seeded interposition in an in vitro canine tendon repair model. Methods Bone marrow, peripheral blood, and tendons were harvested from mixed breed dogs. BMSC were cultured and passaged from adherent cells of bone marrow suspension. PRP was purified from peripheral blood using a commercial kit. 192 flexor digitorum profundus tendons were used for the study. Tendons repaired with a simple suture were used as a control group. In treatment groups, a collagen gel patch was interposed at the tendon repair site prior to suture. There were three treatment groups according to the type of collagen patch; a patch with PRP, a patch with BMSC, and a patch with PRP and BMSC. The repaired tendons were evaluated by biomechanical testing and by histological survey after 2 and 4 weeks in tissue culture. To evaluate viability, cells were labeled with PKH26 and surveyed under confocal microscopy after culture. Results The maximum breaking strength and stiffness of the healing tendons with the BMSC-seeded PRP patch was significantly higher than the healing tendons without a patch or with a cell-seeded patch (p<0.02). Viable BMSC were present at both 2 and 4 weeks. Conclusions PRP enhanced the effect of BMSC-seeded collagen gel interposition in this in vitro model. Based on these results we now plan to investigate this effect in vivo. PMID:20951509

  5. Cellular Encapsulation Enhances Cardiac Repair

    PubMed Central

    Levit, Rebecca D.; Landázuri, Natalia; Phelps, Edward A.; Brown, Milton E.; García, Andrés J.; Davis, Michael E.; Joseph, Giji; Long, Robert; Safley, Susan A.; Suever, Jonathan D.; Lyle, Alicia N.; Weber, Collin J.; Taylor, W. Robert

    2013-01-01

    Background Stem cells for cardiac repair have shown promise in preclinical trials, but lower than expected retention, viability, and efficacy. Encapsulation is one potential strategy to increase viable cell retention while facilitating paracrine effects. Methods and Results Human mesenchymal stem cells (hMSC) were encapsulated in alginate and attached to the heart with a hydrogel patch in a rat myocardial infarction (MI) model. Cells were tracked using bioluminescence (BLI) and cardiac function measured by transthoracic echocardiography (TTE) and cardiac magnetic resonance imaging (CMR). Microvasculature was quantified using von Willebrand factor staining and scar measured by Masson's Trichrome. Post‐MI ejection fraction by CMR was greatly improved in encapsulated hMSC‐treated animals (MI: 34±3%, MI+Gel: 35±3%, MI+Gel+hMSC: 39±2%, MI+Gel+encapsulated hMSC: 56±1%; n=4 per group; P<0.01). Data represent mean±SEM. By TTE, encapsulated hMSC‐treated animals had improved fractional shortening. Longitudinal BLI showed greatest hMSC retention when the cells were encapsulated (P<0.05). Scar size at 28 days was significantly reduced in encapsulated hMSC‐treated animals (MI: 12±1%, n=8; MI+Gel: 14±2%, n=7; MI+Gel+hMSC: 14±1%, n=7; MI+Gel+encapsulated hMSC: 7±1%, n=6; P<0.05). There was a large increase in microvascular density in the peri‐infarct area (MI: 121±10, n=7; MI+Gel: 153±26, n=5; MI+Gel+hMSC: 198±18, n=7; MI+Gel+encapsulated hMSC: 828±56 vessels/mm2, n=6; P<0.01). Conclusions Alginate encapsulation improved retention of hMSCs and facilitated paracrine effects such as increased peri‐infarct microvasculature and decreased scar. Encapsulation of MSCs improved cardiac function post‐MI and represents a new, translatable strategy for optimization of regenerative therapies for cardiovascular diseases. PMID:24113327

  6. Concomitant abdominoplasty and umbilical hernia repair using the Ventralex hernia patch.

    PubMed

    Neinstein, Ryan M; Matarasso, Alan; Abramson, David L

    2015-04-01

    Patients requesting abdominoplasty often have concomitant umbilical hernias and may request simultaneous treatment. The vascularity of the umbilicus is potentially at risk during these combined procedures. In this study, the authors present a technique for treating umbilical hernias at the time of abdominoplasty surgery using the Ventralex hernia patch. A total of 11 female patients with a mean age of 39.4 years (range, 28 to 51 years) undergoing abdominoplasty with umbilical hernia repair with the Ventralex patch were included. The mean body mass index was 27.6 kg/m (range, 20 to 34 kg/m). No vascular compromise of the umbilicus was seen. The hernia repair did not alter the abdominoplasty results. One patient had transient umbilical swelling postoperatively that resolved within 6 months postoperatively. The authors present a series of umbilical hernia repairs in abdominoplasty patients using a minimal access incision by means of the rectus fascia and the Ventralex patch that is fast and reliable and preserves the blood supply to the umbilicus.

  7. Thermal Analysis by Numerical Methods of Debonding Effects near the Crack Tip under Composite Repairs

    NASA Astrophysics Data System (ADS)

    Tsamasphyros, G. J.; Kanderakis, G. N.; Marioli-Riga, Z. P.

    2003-05-01

    Composite patch repair of metallic structures has become a rapidly grown technology in the aerospace field due to the demand for significant increases in the useful life of both military and civilian aircraft. This has led to significant advances overall in the repair technology of cracked metallic structures. Adhesively bonded composite reinforcements offer remarkable advantages such as mechanical efficiency, repair time, cost reduction, high structural integrity, repair inspectability, damage tolerance to further causes of future strains, anticorrosion and antifretting properties. However, because of the different nature and properties of the materials that form a repair (metals, composites, adhesives), side-effects may occur: debonding due to high stress concentration in the vicinity of the crack, thermal residual stresses because of different thermal expansion coefficients of the adherents, etc. In this paper a three-dimensional finite elements analysis of the area around a patch repaired crack of a typical aircraft fuselage is performed, taking into account both the properties and the geometry of the involved materials. Examined in this case are 2024-T3 aluminum alloy as base material, FM-73 as the adhesive system and F4/5521 boron/epoxy prepreg as the patch material. Through the thickness stresses near the crack tip and along the patch edges with and without temperature effects are calculated and debonding near the crack tip is examined. Finally, the calculated results are compared with existing theories.

  8. Experimental evaluation of ileal patch in delayed primary repair of penetrating colon injuries: An animal study.

    PubMed

    Abbasi, Hamid Reza; Bolandparvaz, Shahram; Yarmohammadi, Hooman; Geramizadeh, Bita; Tanideh, Nader; Paydar, Shahram; Hosseini, Seyed Vahid

    2006-10-01

    Primary repair of traumatic colonic perforation is progressively gaining acceptance as the best method of management. However, when delayed, the risk of infection-related complications may increase. Here, we present a new method of repairing colon perforation in the presence of peritonitis. Acute colon injury was simulated in 22 German shepherd dogs. The dogs were randomly divided into two groups of 11 and after 24 hours they were operated on. The perforations were repaired by subserosal suture technique. In the first group (group A), ileal patch was used. In the other group (group B), the colon was closed by debridement and anastomosis. After 6 weeks, the repairs were assessed on the basis of survival, gross and histological assessments. Nine (82%) dogs in group A and six (56%) in group B survived. Ileal patch utilization significantly decreased the mortality rate (p < 0.05). The cause of death in two group A dogs and five group B dogs was peritonitis and intra-abdominal abscess formation. None of the surviving dogs showed evidence of anastomotic leakage or breakdown. Small bowel patch used in primary repair of colon injury in the presence of peritonitis may decrease the risk of postoperative infection-related complications and the mortality rate.

  9. Natural orifice transluminal endoscopic surgery for patients with perforated peptic ulcer.

    PubMed

    Bonin, Eduardo A; Moran, Erica; Gostout, Christopher J; McConico, Andrea L; Zielinski, Martin; Bingener, Juliane

    2012-06-01

    Perforation accounts for 70% of deaths attributed to peptic ulcers. Laparoscopic repair is effective but infrequently used. Our aim was to assess how many patients with perforated peptic ulcer could be candidates for a transluminal endoscopic omental patch closure. This retrospective study reviewed patients with perforated peptic ulcer from 2005 to 2010. Demographics, ulcer characteristics, operative procedure, and outcomes were recorded. Candidates for endoscopic transluminal repair were defined as those having undergone omental patch closure of an ulcer of appropriate size and no contraindications to laparoscopy or endoscopy. In the retrospective review, a total of 104 patients were identified; 62% female, mean age = 68 years, mean ASA of 3, and 63% medication-related ulcers. Fifty-nine (63%) had an omental patch (80% open), and 35 (37%) had other procedures. Ten patients had nonoperative management. Thirty-day mortality was 14% and 1 year mortality was 35%. Forty-nine patients (52%) were considered potential candidates for transluminal repair. Sixty-three percent of our patients sustained a medication-related perforation with 1 year mortality of 35%. The majority of patients were treated using open omental patch repair. Transluminal endoscopic repair may provide an additional situation for a minimally invasive approach for a number of these patients.

  10. The effectiveness of an adhesively bonded composite patch repair as applied to a transport aircraft lower wing skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruschau, J.J.; Coate, J.E.

    1996-12-31

    Specimens were machined from lower wing skin extrusions of a transport aircraft, precracked under fatigue loading, repaired with a boron/epoxy patch, and subsequently fatigue tested under simulated flight loading conditions to evaluate the effectiveness of an adhesively bonded repair patch. Testing was performed at RT and -54{degrees}C for two configurations: one with the crack running up the integral stiffener (riser), the other running down the riser towards the outer skin surface. Cracks were initiated from a single 6.35 mm diameter hole located in the riser portion of the 7075-T6 wing skin material. Ultrasonic inspections were performed during fatigue loading tomore » determine crack growth and damage underneath the patch. Limited results show the adhesively bonded patch was successful in stopping or greatly reducing any further crack growth. Under laboratory air conditions, no crack growth occurred following 30,000 equivalent flight hours, double the expected life of the patched structure. Similarly at -54{degrees}C, no crack growth was observed for a patched crack growing up the riser following 15,000 EFH. For the case of a crack growing down the riser at the lower test temperature, some crack growth was measured, though at a greatly reduced rate.« less

  11. Large Cardiac Muscle Patches Engineered From Human Induced-Pluripotent Stem Cell-Derived Cardiac Cells Improve Recovery From Myocardial Infarction in Swine.

    PubMed

    Gao, Ling; Gregorich, Zachery R; Zhu, Wuqiang; Mattapally, Saidulu; Oduk, Yasin; Lou, Xi; Kannappan, Ramaswamy; Borovjagin, Anton V; Walcott, Gregory P; Pollard, Andrew E; Fast, Vladimir G; Hu, Xinyang; Lloyd, Steven G; Ge, Ying; Zhang, Jianyi

    2018-04-17

    Here, we generated human cardiac muscle patches (hCMPs) of clinically relevant dimensions (4 cm × 2 cm × 1.25 mm) by suspending cardiomyocytes, smooth muscle cells, and endothelial cells that had been differentiated from human induced-pluripotent stem cells in a fibrin scaffold and then culturing the construct on a dynamic (rocking) platform. In vitro assessments of hCMPs suggest maturation in response to dynamic culture stimulation. In vivo assessments were conducted in a porcine model of myocardial infarction (MI). Animal groups included: MI hearts treated with 2 hCMPs (MI+hCMP, n=13), MI hearts treated with 2 cell-free open fibrin patches (n=14), or MI hearts with neither experimental patch (n=15); a fourth group of animals underwent sham surgery (Sham, n=8). Cardiac function and infarct size were evaluated by MRI, arrhythmia incidence by implanted loop recorders, and the engraftment rate by calculation of quantitative polymerase chain reaction measurements of expression of the human Y chromosome. Additional studies examined the myocardial protein expression profile changes and potential mechanisms of action that related to exosomes from the cell patch. The hCMPs began to beat synchronously within 1 day of fabrication, and after 7 days of dynamic culture stimulation, in vitro assessments indicated the mechanisms related to the improvements in electronic mechanical coupling, calcium-handling, and force generation, suggesting a maturation process during the dynamic culture. The engraftment rate was 10.9±1.8% at 4 weeks after the transplantation. The hCMP transplantation was associated with significant improvements in left ventricular function, infarct size, myocardial wall stress, myocardial hypertrophy, and reduced apoptosis in the periscar boarder zone myocardium. hCMP transplantation also reversed some MI-associated changes in sarcomeric regulatory protein phosphorylation. The exosomes released from the hCMP appeared to have cytoprotective properties that improved cardiomyocyte survival. We have fabricated a clinically relevant size of hCMP with trilineage cardiac cells derived from human induced-pluripotent stem cells. The hCMP matures in vitro during 7 days of dynamic culture. Transplantation of this type of hCMP results in significantly reduced infarct size and improvements in cardiac function that are associated with reduction in left ventricular wall stress. The hCMP treatment is not associated with significant changes in arrhythmogenicity. © 2017 American Heart Association, Inc.

  12. Catheter enterostomy and patch repair of the abdominal wall for gastroschisis with intestinal atresia: report of a case.

    PubMed

    Ohno, Koichi; Nakamura, Tetsuro; Azuma, Takashi; Yoshida, Tatsuyuki; Yamada, Hiroto; Hayashi, Hiroaki; Masahata, Kazunori

    2009-01-01

    A male infant, weighing 2177 g, was born with the entire intestine protruding through a defect on the right side of the navel. Intestinal atresia, approximately 70 cm from the Treitz ligament, was also confirmed. Primary anastomosis and abdominal wall repair were impossible because of the intestinal dilation and thick peel, as well as the small abdominal cavity. Thus, we initially performed catheter enterostomy with a 14-F balloon catheter and patch repair of the abdominal wall, to enable the baby to be fed. Secondary anastomosis and abdominal wall repair was safely performed when the baby was 106 days old. The combination of catheter enterostomy and patch repair of the abdominal wall does not require dissection of the intestine and it can be safely performed in low-birth-weight babies. It also enables feeding and weight gain, and the overlying skin prevents contamination of the artificial sheet. We recommend this combination for neonates with both gastroschisis and intestinal atresia.

  13. Use of buccal mucosa patch graft for recurrent large urethrocutaneous fistula after hypospadias repair.

    PubMed

    Kiss, András; Pirót, László; Karsza, Levente; Merksz, Miklós

    2004-01-01

    To assess the effectiveness of buccal mucosa patch graft in the treatment of recurrent large urethrocutaneous fistula after hypospadias repair. A free graft of buccal mucosa was used for closure in 7 boys (mean age 4.8 years) with large (>4 mm) urethocutaneous fistula. Four fistulas were in the midshaft, 2 of them penoscrotal and 1 coronal type. All patients had undergone at least two previous unsuccessful fistula repairs, and 3 of them had undergone three attempts for closure. Fistula repairs were similar in all cases. The repair was successful in 6 out of 7 cases, and in these cases the urinary stream was good after the removal of the catheter. The unsuccessful case was the coronal one. Based on our experience it seems that in cases with recurrent large fistula after hypospadias reconstruction, the use of buccal mucosa patch graft for closure is a good treatment choice. Copyright 2004 S. Karger AG, Basel

  14. Damage Assessment of Composite Structures Using Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Caminero, M. A.; Lopez-Pedrosa, M.; Pinna, C.; Soutis, C.

    2014-02-01

    The steady increase of Carbon-Fiber Reinforced Polymer (CFRP) Structures in modern aircraft will reach a new dimension with the entry into service of the Boeing 787 and Airbus 350. Replacement of damaged parts will not be a preferable solution due to the high level of integration and the large size of the components involved. Consequently the need to develop repair techniques and processes for composite components is readily apparent. Bonded patch repair technologies provide an alternative to mechanically fastened repairs with significantly higher performance, especially for relatively thin skins. Carefully designed adhesively bonded patches can lead to cost effective and highly efficient repairs in comparison with conventional riveted patch repairs that cut fibers and introduce highly strained regions. In this work, the assessment of the damage process taking place in notched (open-hole) specimens under uniaxial tensile loading was studied. Two-dimensional (2D) and three-dimensional (3D) Digital Image Correlation (DIC) techniques were employed to obtain full-field surface strain measurements in carbon-fiber/epoxy T700/M21 composite plates with different stacking sequences in the presence of an open circular hole. Penetrant enhanced X-ray radiographs were taken to identify damage location and extent after loading around the hole. DIC strain fields were compared to finite element predictions. In addition, DIC techniques were used to characterise damage and performance of adhesively bonded patch repairs in composite panels under tensile loading. This part of work relates to strength/stiffness restoration of damaged composite aircraft that becomes more important as composites are used more extensively in the construction of modern jet airliners. The behaviour of bonded patches under loading was monitored using DIC full-field strain measurements. Location and extent of damage identified by X-ray radiography correlates well with DIC strain results giving confidence to the technique for structural health monitoring of bonded patches.

  15. Molecular biology of Streptococcus pneumoniae: an everlasting challenge.

    PubMed

    Sicard, M; Gasc, A M; Giammarinaro, P; Lefrançois, J; Pasta, F; Samrakandi, M

    2000-01-01

    Streptococcus pneumoniae is a model for elucidating: 1) recombination steps of DNA, from its discovery to polarity of integration; 2) long-patch mismatch repair, short-patch repair triggered by A/G and exclusion of deletions; 3) resistance to beta-lactam antibiotics; and 4) factors of virulence. Several of these topics remain a challenge for future investigations.

  16. Dimer excision in Escherichia coli in the presence of caffeine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothman, R.H.

    1980-07-01

    The observation that polA1 and recL152 mutations result in both slow pyrimidine dimer excision and large repair patch size leads to the hypothesis that patch size is directly related to the rate of excision. In this study caffeine, a known inhibitor of excision repair, was used to examine the extent of correlation between excision rate and patch size by measuring patch size in the presence of several concentrations of caffeine. Both the rate of excision and the resistance to ultraviolet radiation were reduced with increasing concentrations of caffeine after irradiation. Caffeine also inhibited the rate at which incisions were mademore » and prolonged the time required to rejoin the discontinuities. Patch size, however, was unaffected by caffeine treatment.« less

  17. Expedient Repair Materials for Roadway Pavements

    DTIC Science & Technology

    2005-03-01

    SILSPEC 900 PNS Patch/spall SSI Const. & Indus. Elastomeric conc. Matls Sikadur 22 Lo-Mod Sika Corp. Epoxy polymer concrete SikaTop 123 Plus Thin...patch Sika 2-component, polymer- 15 min modified Sikaset Roadway Patch Patch/spall Sika 1-comp. with high 15-25 min (15 min) (2000) alumina cement (not

  18. Generalized peritonitis requiring re-operation after leakage of omental patch repair of perforated peptic ulcer.

    PubMed

    Maghsoudi, Hemmat; Ghaffari, Alireza

    2011-01-01

    Peptic ulcer perforations are a common emergency, but available literature is silent on the exact definition, incidence, management, and complications of peritonitis due to omental patch leakage. Retrospective data were collected on 422 patients who underwent omental patch repair of perforated peptic ulcer between March 20, 1999 and March 20, 2006. The definitive diagnosis of perforated peptic ulcer and omental patch leakage was obtained at surgery. Seventeen (4%) patients experienced generalized peritonitis due to omental patch leakage. Mean age was 60.6 years. Mortality rate was 29.4%, and the mean hospital stay was 23.6 days. Delay in surgical approach, shock on admission, and age were all significantly associated with increased mortality. Peritonitis due to omental patch leakage can result in significant morbidity and mortality. The most common causes of omental patch leakage and operative procedures were unknown and reinsertion of omentum, respectively. Factors such as shock on admission or delayed surgery, have significantly contributed to fatal outcomes and need careful attention.

  19. The effects of platelet lysate patches on the activity of tendon-derived cells.

    PubMed

    Costa-Almeida, Raquel; Franco, Albina R; Pesqueira, Tamagno; Oliveira, Mariana B; Babo, Pedro S; Leonor, Isabel B; Mano, João F; Reis, Rui L; Gomes, Manuela E

    2018-03-01

    Platelet-derived biomaterials are widely explored as cost-effective sources of therapeutic factors, holding a strong potential for endogenous regenerative medicine. Particularly for tendon repair, treatment approaches that shift the injury environment are explored to accelerate tendon regeneration. Herein, genipin-crosslinked platelet lysate (PL) patches are proposed for the delivery of human-derived therapeutic factors in patch augmentation strategies aiming at tendon repair. Developed PL patches exhibited a controlled release profile of PL proteins, including bFGF and PDGF-BB. Additionally, PL patches exhibited an antibacterial effect by preventing the adhesion, proliferation and biofilm formation by S. aureus, a common pathogen in orthopaedic surgical site infections. Furthermore, these patches supported the activity of human tendon-derived cells (hTDCs). Cells were able to proliferate over time and an up-regulation of tenogenic genes (SCX, COL1A1 and TNC) was observed, suggesting that PL patches may modify the behavior of hTDCs. Accordingly, hTDCs deposited tendon-related extracellular matrix proteins, namely collagen type I and tenascin C. In summary, PL patches can act as a reservoir of biomolecules derived from PL and support the activity of native tendon cells, being proposed as bioinstructive patches for tendon regeneration. Platelet-derived biomaterials hold great interest for the delivery of therapeutic factors for applications in endogenous regenerative medicine. In the particular case of tendon repair, patch augmentation strategies aiming at shifting the injury environment are explored to improve tendon regeneration. In this study, PL patches were developed with remarkable features, including the controlled release of growth factors and antibacterial efficacy. Remarkably, PL patches supported the activity of native tendon cells by up-regulating tenogenic genes and enabling the deposition of ECM proteins. This patch holds great potential towards simultaneously reducing post-implantation surgical site infections and promoting tendon regeneration for prospective in vivo applications. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Transplantation of mesenchymal stem cells cultured on biomatrix support induces repairing of digestive tract defects, in animal model.

    PubMed

    Sîrbu-Boeţi, Mirela-Patricia; Chivu, Mihaela; Pâslaru, Liliana Livia; Efrimescu, C; Herlea, V; Pecheanu, C; Moldovan, Lucia; Dragomir, Laura; Bleotu, Coralia; Ciucur, Elena; Vidulescu, Cristina; Vasilescu, Mihaela; Boicea, Anişoara; Mănoiu, S; Ionescu, M I; Popescu, I

    2009-01-01

    Transplanted mesenchymal stem cells (MSCs) appear to play a significant role in adult tissue repair. The aim of this research was to obtain MSCs enriched, three dimensional (3D) patches for transplant, and to test their ability to induce repair of iatrogenic digestive tract defects in rats. MSCs were obtained from human and rat bone marrow, cultured in vitro, and seeded in a collagen-agarose scaffold, where they showed enhanced viability and proliferation. The phenotype of the cultured cells was representative for MSCs (CD105+, CD90+, and CD34-, CD45-, CD3-, CD14-). The 3D patch was obtained by laying the MSCs enriched collagen-agarose scaffold on a human or swine aortic fragment. After excision of small portions of the rat digestive tract, the 3D patches were sutured at the edge of the defect using micro-surgical techniques. The rats were sacrificed at time-points and the regeneration of the digestive wall was investigated by immunofluorescence, light and electron microscopy. The MSCs enriched 3D patches were biocompatible, biodegradable, and prompted the regeneration of the four layers of the stomach and intestine wall in rats. Human cells were identified in the rat regenerated digestive wall as a hallmark of the transplanted MSCs. For the first time we constructed 3D patches made of cultured bone marrow MSCs, embedded into a collagen-rich biomatrix, on vascular bio-material support, and transplanted them in order to repair iatrogenic digestive tract defects. The result was a complete repair with preservation of the four layered structure of the digestive wall.

  1. Methods of Making and Using Shape Memory Polymer Composite Patches

    NASA Technical Reports Server (NTRS)

    Hood, Patrick J.

    2011-01-01

    A method of repairing a composite component having a damaged area including: laying a composite patch over the damaged area: activating the shape memory polymer resin to easily and quickly mold said patch to said damaged area; deactivating said shape memory polymer so that said composite patch retains the molded shape; and bonding said composite patch to said damaged part.

  2. Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment

    PubMed Central

    Hasan, Al Shaimaa; Luo, Lan; Yan, Chen; Zhang, Tian-Xia; Urata, Yoshishige; Goto, Shinji; Mangoura, Safwat A.; Abdel-Raheem, Mahmoud H.; Zhang, Shouhua; Li, Tao-Sheng

    2016-01-01

    Cardiosphere-derived cells (CDCs), one of the promising stem cell sources for myocardial repair, have been tested in clinical trials and resulted in beneficial effects; however, the relevant mechanisms are not fully understood. In this study, we examined the hypothesis that CDCs favor heart repair by switching the macrophages from a pro-inflammatory phenotype (M1) into a regulatory anti-inflammatory phenotype (M2). Macrophages from mice were cultured with CDCs-conditioned medium or with fibroblasts-conditioned medium as a control. Immunostaining showed that CDCs-conditioned medium significantly enhanced the expression of CD206 (a marker for M2 macrophages), but decreased the expression of CD86 (a marker for M1 macrophages) 3 days after culture. For animal studies, we used an acute myocardial infarction model of mice. We injected CDCs, fibroblasts, or saline only into the border zone of infarction. Then we collected the heart tissues for histological analysis 5 and 14 days after treatment. Compared with control animals, CDCs treatment significantly decreased M1 macrophages and neutrophils but increased M2 macrophages in the infarcted heart. Furthermore, CDCs-treated mice had reduced infarct size and fewer apoptotic cells compared to the controls. Our data suggest that CDCs facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment, which may provide a new insight into the mechanisms of stem cell-based myocardial repair. PMID:27764217

  3. Endovascular treatment of false-aneurysm ten years after dacron patch aortoplasty for coarctation of the aortic isthmus. Report of a case.

    PubMed

    Illuminati, Giulio; Pacilè, Maria Antonietta; Palumbo, Piergaspare; Salvatori, Filippo Maria; Vietri, Francesco

    2013-01-01

    False aneurysm degeneration is a known complication of patch aortoplasty for coarctation of the aortic isthmus. Open surgical treatment consists of prosthetic graft repair of the involved aorta, often requires circulatory arrest to achieve a safe proximal aortic control and perform proximal anastomosis, and finally is associated with substantial perioperative morbidity. Endografting of the diseased aorta is a valuable alternative to open repair, when feasible, with good short and long term results. We now report one more case of false aneurysm ten years after Dacron patch aortoplasty for isthmic coarctation in a 26-year-old woman, successfully treated by endovascular repair via the left common iliac artery, and a complete exclusion of the aneurysm at two year follow-up.

  4. Computer-aided patch planning for treatment of complex coarctation of the aorta

    NASA Astrophysics Data System (ADS)

    Rietdorf, Urte; Riesenkampff, Eugénie; Kuehne, Titus; Huebler, Michael; Meinzer, Hans-Peter; Wolf, Ivo

    2009-02-01

    Between five and eight percent of all children born with congenitally malformed hearts suffer from coarctations of the aorta. Some severe coarctations can only be treated by surgical repair. Untreated, this defect can cause serious damage to organ development or even lead to death. Patch repair requires open surgery. It can affect patients of any age: newborns with severe coarctation and/or hypoplastic aortic arch as well as older patients with late diagnosis of coarctation of the aorta. Another patient group are patients of varying age with re-coarctation of the aorta or hypoplastic aortic arch after surgical and/or interventional repair. If anatomy is complex and interventional treatment by catheterization, balloon angioplasty or stent placement is not possible, surgery is indicated. The choice of type of surgery depends not only on the given anatomy but also on the experience the surgical team has with each method. One surgical approach is patch repair. A patch of a suitable shape and size is sewed into the aorta to expand the aortic lumen at the site of coarctation. At present, the shape and size of the patch are estimated intra-operatively by the surgeon. We have developed a software application that allows planning of the patch pre-operatively on the basis of magnetic resonance angiographic data. The application determines the diameter of the coarctation and/or hypoplastic segment and constructs a patch proposal by calculating the difference to the normal vessel diameter pre-operatively. Evaluation of MR angiographic datasets from 12 test patients with different kinds of aortic arch stenosis shows a divergence of only (1.5+/-1.2) mm in coarctation diameters between manual segmentations and our approach, with comparable time expenditure. Following this proposal the patch can be prepared and adapted to the patient's anatomy pre-operatively. Ideally, this leads to shorter operation times and a better long-term outcome with a reduced rate of residual stenosis and re-stenosis and aneurysm formation.

  5. New In-Field Composite Repair Techniques for Transmission or Distribution Pipelines

    DOT National Transportation Integrated Search

    2009-05-18

    In-field repair of a damaged pipeline must be performed safely, efficiently, rapidly and reliably. Reinforcement of damaged pipelines is typically accomplished by welding a repair patch and then recoating the repaired area. The welded full-encircleme...

  6. Surgical repair of supravalvular aortic stenosis in children with williams syndrome: a 30-year experience.

    PubMed

    Fricke, Tyson A; d'Udekem, Yves; Brizard, Christian P; Wheaton, Gavin; Weintraub, Robert G; Konstantinov, Igor E

    2015-04-01

    Williams syndrome is an uncommon genetic disorder associated with supravalvular aortic stenosis (SVAS) in childhood. We reviewed outcomes of children with Williams syndrome who underwent repair of SVAS during a 30-year period at a single institution. Between 1982 and 2012, 28 patients with Williams syndrome were operated on for SVAS. Mean age at operation was 5.2 years (range, 3 months to 13 years), and mean weight at operation was 18.6 kg (range, 4.1 to 72.4 kg). Associated cardiac lesions in 11 patients (39.3%) were repaired at the time of the SVAS repair. The most common associated cardiac lesion was main pulmonary artery stenosis (8 of 28 [28%]). A 3-patch repair was performed in 10 patients, a Doty repair in 17, and a McGoon repair in 1 (3.6%). There were no early deaths. Follow-up was 96% complete (27 of 28). Overall mean follow-up was 11.2 years (range, 1 month to 27.3 years). Mean follow-up was 5 years (range, 1 month to 14.3 years) for the 3-patch repair patients and 14.7 years (range, 6 weeks to 27 years) for the Doty repair patients. Of the 17 Doty patients, there were 4 (24%) late deaths, occurring at 6 weeks, 3.5 years, 4 years, and 16 years after the initial operation. There were no late deaths in the 3-patch repair patients. Overall survival was 86% at 5, 10, and 15 years after repair. Survival was 82% at 5, 10 and 15 years for the Doty repair patients. Overall, 6 of 27 patients (22%) patients required late reoperation at a mean of 11.2 years (range, 3.6 to 23 years). No 3-patch repair patients required reoperation. Overall freedom from reoperation was 91% at 5 years and 73% at 10 and 15 years. Freedom from reoperation for the Doty repair patients was 93% at 5 years and 71% at 10 and 15 years. Surgical repair of SVAS in children Williams syndrome has excellent early results. However, significant late mortality and morbidity warrants close follow-up. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  7. The benefit of synthetic versus biological patch augmentation in the repair of posterosuperior massive rotator cuff tears: a 3-year follow-up study.

    PubMed

    Ciampi, Pietro; Scotti, Celeste; Nonis, Alessandro; Vitali, Matteo; Di Serio, Clelia; Peretti, Giuseppe M; Fraschini, Gianfranco

    2014-05-01

    Rotator cuff repair typically results in a satisfactory, although variable, clinical outcome. However, anatomic failure of the repaired tendon often occurs. Patch augmentation can improve the results of open rotator cuff repair by supporting the healing process, protecting the suture, and reducing friction in the subacromial space. Cohort study; Level of evidence, 3. A total of 152 patients with a posterosuperior massive rotator cuff tear were treated by open repair only (control group; n = 51; mean age, 67.06 ± 4.42 years), open repair together with collagen patch augmentation (collagen group; n = 49; mean age, 66.53 ± 5.17 years), or open repair together with polypropylene patch augmentation (polypropylene group; n = 52; mean age, 66.17 ± 5.44 years) and were retrospectively studied. Patients were evaluated preoperatively and after 36 months with a visual analog scale (VAS) and the University of California, Los Angeles (UCLA) shoulder rating scale and by measuring elevation of the scapular plane and strength with a dynamometer. The VAS and UCLA scores were also obtained 2 months postoperatively. Tendon integrity was assessed after 1 year by ultrasound. Patients were homogeneous as per the preoperative assessment. After 2 months, results (mean ± standard deviation) for the control, collagen, and polypropylene groups, respectively, were as follows: VAS scores were 6.96 ± 1.11, 6.46 ± 1.02, and 4.92 ± 0.90, while UCLA scores were 11.29 ± 1.46, 11.40 ± 1.51, and 19.15 ± 1.99. After 36 months, the mean scores for the respective groups were 3.66 ± 1.05, 4.06 ± 1.02, and 3.28 ± 1.10 for the VAS and 14.88 ± 1.98, 14.69 ± 1.99, and 24.61 ± 3.22 for the UCLA scale. In addition, after 36 months, elevation on the scapular plane was 140.68° ± 9.84°, 140.61° ± 12.48°, and 174.71° ± 8.18°, and abduction strength was 8.73 ± 0.54 kg, 9.03 ± 0.60 kg, and 13.79 ± 0.64 kg for the control, collagen, and polypropylene groups, respectively. The retear rate after 12 months was 41% (21/51) for the control group, 51% (25/49) for the collagen group, and 17% (9/52) for the polypropylene group. In particular, the reduced 12-month retear rate and the increased UCLA scores, abduction strength, and elevation at 3-year follow-up were statistically significant for patients treated with a polypropylene patch compared with those treated with repair only or with a collagen patch. Polypropylene patch augmentation of rotator cuff repair was demonstrated to significantly improve the 36-month outcome in terms of function, strength, and retear rate.

  8. Colloidal gas aphron foams: A novel approach to a hydrogel based tissue engineered myocardial patch

    NASA Astrophysics Data System (ADS)

    Johnson, Elizabeth Edna

    Cardiovascular disease currently affects an estimated 58 million Americans and is the leading cause of death in the US. Over 2.3 million Americans are currently living with heart failure a leading cause of which is acute myocardial infarction, during which a part of the heart muscle is damaged beyond repair. There is a great need to develop treatments for damaged heart tissue. One potential therapy involves replacement of nonfunctioning scar tissue with a patch of healthy, functioning tissue. A tissue engineered cardiac patch would be ideal for such an application. Tissue engineering techniques require the use of porous scaffolds, which serve as a 3-D template for initial cell attachment and grow-th leading to tissue formation. The scaffold must also have mechanical properties closely matching those of the tissues at the site of implantation. Our research presents a new approach to meet these design requirements. A unique interaction between poly(vinyl alcohol) and amino acids has been discovered by our lab, resulting in the production of novel gels. These unique synthetic hydrogels along with one natural hydrogel, alginate (derived from brown seaweed), have been coupled with a new approach to tissue scaffold fabrication using solid colloidal gas aphrons (CGAs). CGAs are colloidal foams containing uniform bubbles with diameters on the order of micrometers. Upon solidification the GCAs form a porous, 3-D network suitable for a tissue scaffold. The project encompasses four specific aims: (I) characterize hydrogel formation mechanism, (II) use colloidal gas aphrons to produce hydrogel scaffolds, (III) chemically and physically characterize scaffold materials and (IV) optimize and evaluate scaffold biocompatibility.

  9. The inflammatory response in myocardial injury, repair and remodeling

    PubMed Central

    Frangogiannis, Nikolaos G.

    2015-01-01

    Myocardial infarction triggers an intense inflammatory response that is essential for cardiac repair, but which is also implicated in the pathogenesis of post-infarction remodeling and heart failure. Signals in the infarcted myocardium activate toll-like receptor signalling, while complement activation and generation of reactive oxygen species induce cytokine and chemokine upregulation. Leukocytes recruited remove dead cells and matrix debris by phagocytosis, while setting the stage for scar formation. Timely repression of the inflammatory response is critical for effective healing and followed by activation of infarct myofibroblasts that secrete matrix proteins in the infarcted area. Members of the transforming growth factor-β family are critically involved in suppression of inflammation and activation of a pro-fibrotic program. Translation of these concepts in the clinic requires understanding of the pathophysiologic complexity and heterogeneity of post-infarction remodeling in human patients with myocardial infarction. Individuals with overactive and prolonged post-infarction inflammation might exhibit dilation and systolic dysfunction and benefit from targeted anti-IL-1 or anti-chemokine therapies, whereas patients with exaggerated fibrogenic reactions can develop diastolic heart failure and might require inhibition of the smad3 cascade. Biomarker-based approaches are needed to identify patients with distinct pathophysiologic responses and to rationally implement inflammation-modulating strategies. PMID:24663091

  10. Transdermal nitroglycerin as an adjuvant to patient-controlled morphine analgesia after total knee arthroplasty

    PubMed Central

    Orbach-Zinger, Sharon; Lenchinsky, Artium; Paul-Kesslin, Lesley; Velks, Steven; Salai, Moses; Eidelman, Leonid A

    2009-01-01

    BACKGROUND: Nitroglycerin (NTG) has been shown to be a useful adjunct for pain treatment without increasing adverse side effects. The effects of NTG on postoperative morphine consumption after knee replacement were evaluated. METHODS: After undergoing total knee replacement, patients receiving patient-controlled morphine analgesia were randomly assigned to receive either an NTG or a placebo patch. The blinded investigator assessed each patient using a visual analogue scale at rest and while moving, as well as the patient’s morphine requirements, sedation score, sleep quality, nausea and vomiting, vital signs and postoperative bleeding. RESULTS: Two of the patients in the NTG group suffered postoperative myocardial infarctions after removal of the patch. Because of these two serious adverse effects, the study was stopped prematurely. In the subset of patients studied, NTG conferred no advantage over placebo in pain control (visual analogue scale at rest or during movement) and in satisfaction scores. CONCLUSIONS: The use of NTG patches conferred no advantage over the use of placebo in patients receiving patient-controlled morphine analgesia after total knee replacement. Two myocardial infarcts occurred in this group. Therefore, the safety of postoperative NTG patch use for pain control must be questioned. PMID:19532851

  11. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    PubMed Central

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-01-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408

  12. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.

    PubMed

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  13. Generalized Peritonitis Requiring Re-operation After Leakage of Omental Patch Repair of Perforated Peptic Ulcer

    PubMed Central

    Maghsoudi, Hemmat; Ghaffari, Alireza

    2011-01-01

    Background/Aim: Peptic ulcer perforations are a common emergency, but available literature is silent on the exact definition, incidence, management, and complications of peritonitis due to omental patch leakage. Patients and Methods: Retrospective data were collected on 422 patients who underwent omental patch repair of perforated peptic ulcer between March 20, 1999 and March 20, 2006. The definitive diagnosis of perforated peptic ulcer and omental patch leakage was obtained at surgery. Results: Seventeen (4%) patients experienced generalized peritonitis due to omental patch leakage. Mean age was 60.6 years. Mortality rate was 29.4%, and the mean hospital stay was 23.6 days. Delay in surgical approach, shock on admission, and age were all significantly associated with increased mortality. Conclusions: Peritonitis due to omental patch leakage can result in significant morbidity and mortality. The most common causes of omental patch leakage and operative procedures were unknown and reinsertion of omentum, respectively. Factors such as shock on admission or delayed surgery, have significantly contributed to fatal outcomes and need careful attention. PMID:21372350

  14. Evaluation of precast patches on U.S. 60 near the New Kent and James City County line.

    DOT National Transportation Integrated Search

    2006-01-01

    This project evaluated the use of precast concrete patches for repairing jointed concrete pavement. Six patches were placed: three had dowels cast into them during fabrication, and three had dowels inserted in place (dowel bar retrofit). Fabrication ...

  15. Treatment of massive and recurrent rotator cuff tears augmented with a poly-l-lactide graft, a preliminary study.

    PubMed

    Lenart, Brett A; Martens, Kelly A; Kearns, Kenneth A; Gillespie, Robert J; Zoga, Adam C; Williams, Gerald R

    2015-06-01

    The incidence of failed rotator cuff repairs remains high, especially in the setting of massive tears or revision repairs. The purpose of this study was to evaluate patient outcomes and repair integrity after augmentation with the repair patch, a poly-l-lactide synthetic polymer. Sixteen consecutive patients with massive or recurrent rotator cuff tears underwent open repair with synthetic poly-l-lactide patch augmentation. Two patients required the patch to bridge defects, and 1 patient retore after a motor vehicle accident and had revision surgery at another institution. The 13 remaining patients were retrospectively evaluated from 1.2 to 1.7 years (average, 1.5 years) after surgery by PENN, American Shoulder and Elbow Surgeons, and Single Assessment Numeric Evaluation scores. Magnetic resonance imaging was used to examine the integrity of the repair at a minimum of 1 year of follow-up. The mean age was 57.3 years (42-68 years). Five patients (38%) had an intact rotator cuff at the time of follow-up. The remaining patients (62%) had full-thickness tears. PENN scores significantly improved from a preoperative score of 50.9 to 77.6 (P < .005). American Shoulder and Elbow Surgeons scores significantly improved from 32.8 to 74.2 (P = .0001). Single Assessment Numeric Evaluation scores at latest follow-up were 76.2. Poly-l-lactide repair patch augmentation of massive and recurrent large to massive rotator cuff tears demonstrates significant improvement in shoulder outcome measures for this difficult population, despite a retear rate of 62%. Further investigation with larger, prospective long-term studies is needed to determine whether this technique provides a true benefit compared with traditional, nonaugmented repair. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  16. The extracellular matrix in myocardial injury, repair, and remodeling

    PubMed Central

    2017-01-01

    The cardiac extracellular matrix (ECM) not only provides mechanical support, but also transduces essential molecular signals in health and disease. Following myocardial infarction, dynamic ECM changes drive inflammation and repair. Early generation of bioactive matrix fragments activates proinflammatory signaling. The formation of a highly plastic provisional matrix facilitates leukocyte infiltration and activates infarct myofibroblasts. Deposition of matricellular proteins modulates growth factor signaling and contributes to the spatial and temporal regulation of the reparative response. Mechanical stress due to pressure and volume overload and metabolic dysfunction also induce profound changes in ECM composition that contribute to the pathogenesis of heart failure. This manuscript reviews the role of the ECM in cardiac repair and remodeling and discusses matrix-based therapies that may attenuate remodeling while promoting repair and regeneration. PMID:28459429

  17. Molecular Strategy to Reduce In Vivo Collagen Barrier Promotes Entry of NCX1 Positive Inducible Pluripotent Stem Cells (iPSCNCX1+) into Ischemic (or Injured) Myocardium

    PubMed Central

    Millard, Ronald W.; Yu, Xi-Yong; Luther, Kristin; Xu, Meifeng; Zhao, Ting C.; Yang, Huang-Tian; Qi, Zhihua; LaSance, Kathleen; Ashraf, Muhammad; Wang, Yigang

    2013-01-01

    Objective The purpose of this study was to assess the effect of collagen composition on engraftment of progenitor cells within infarcted myocardium. Background We previously reported that intramyocardial penetration of stem/progenitor cells in epicardial patches was enhanced when collagen was reduced in hearts overexpressing adenylyl cyclase-6 (AC6). In this study we hypothesized an alternative strategy wherein overexpression of microRNA-29b (miR-29b), inhibiting mRNAs that encode cardiac fibroblast proteins involved in fibrosis, would similarly facilitate progenitor cell migration into infarcted rat myocardium. Methods In vitro: A tri-cell patch (Tri-P) consisting of cardiac sodium-calcium exchanger-1 (NCX1) positive iPSC (iPSCNCX1+), endothelial cells (EC), and mouse embryonic fibroblasts (MEF) was created, co-cultured, and seeded on isolated peritoneum. The expression of fibrosis-related genes was analyzed in cardiac fibroblasts (CFb) by qPCR and Western blot. In vivo: Nude rat hearts were administered mimic miRNA-29b (miR-29b), miRNA-29b inhibitor (Anti-29b), or negative mimic (Ctrl) before creation of an ischemically induced regional myocardial infarction (MI). The Tri-P was placed over the infarcted region 7 days later. Angiomyogenesis was analyzed by micro-CT imaging and immunofluorescent staining. Echocardiography was performed weekly. Results The number of green fluorescent protein positive (GFP+) cells, capillary density, and heart function were significantly increased in hearts overexpressing miR-29b as compared with Ctrl and Anti-29b groups. Conversely, down-regulation of miR-29b with anti-29b in vitro and in vivo induced interstitial fibrosis and cardiac remodeling. Conclusion Overexpression of miR-29b significantly reduced scar formation after MI and facilitated iPSCNCX1+ penetration from the cell patch into the infarcted area, resulting in restoration of heart function after MI. PMID:23990893

  18. Paracrine Engineering of Human Cardiac Stem Cells With Insulin-Like Growth Factor 1 Enhances Myocardial Repair.

    PubMed

    Jackson, Robyn; Tilokee, Everad L; Latham, Nicholas; Mount, Seth; Rafatian, Ghazaleh; Strydhorst, Jared; Ye, Bin; Boodhwani, Munir; Chan, Vincent; Ruel, Marc; Ruddy, Terrence D; Suuronen, Erik J; Stewart, Duncan J; Davis, Darryl R

    2015-09-11

    Insulin-like growth factor 1 (IGF-1) activates prosurvival pathways and improves postischemic cardiac function, but this key cytokine is not robustly expressed by cultured human cardiac stem cells. We explored the influence of an enhanced IGF-1 paracrine signature on explant-derived cardiac stem cell-mediated cardiac repair. Receptor profiling demonstrated that IGF-1 receptor expression was increased in the infarct border zones of experimentally infarcted mice by 1 week after myocardial infarction. Human explant-derived cells underwent somatic gene transfer to overexpress human IGF-1 or the green fluorescent protein reporter alone. After culture in hypoxic reduced-serum media, overexpression of IGF-1 enhanced proliferation and expression of prosurvival transcripts and prosurvival proteins and decreased expression of apoptotic markers in both explant-derived cells and cocultured neonatal rat ventricular cardiomyocytes. Transplant of explant-derived cells genetically engineered to overexpress IGF-1 into immunodeficient mice 1 week after infarction boosted IGF-1 content within infarcted tissue and long-term engraftment of transplanted cells while reducing apoptosis and long-term myocardial scarring. Paracrine engineering of explant-derived cells to overexpress IGF-1 provided a targeted means of improving cardiac stem cell-mediated repair by enhancing the long-term survival of transplanted cells and surrounding myocardium. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  19. Influence of very short patch mismatch repair on SOS inducing lesions after aminoglycoside treatment in Escherichia coli.

    PubMed

    Baharoglu, Zeynep; Mazel, Didier

    2014-01-01

    Low concentrations of aminoglycosides induce the SOS response in Vibrio cholerae but not in Escherichia coli. In order to determine whether a specific factor present in E. coli prevents this induction, we developed a genetic screen where only SOS inducing mutants are viable. We identified the vsr gene coding for the Vsr protein of the very short patch mismatch repair (VSPR) pathway. The effect of mismatch repair (MMR) mutants was also studied. We propose that lesions formed upon aminoglycoside treatment are preferentially repaired by VSPR without SOS induction in E. coli and by MMR when VSPR is impaired. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Formulation and Evaluation of a Novel Adhesive Film for Use in Composite Patch Repair

    NASA Astrophysics Data System (ADS)

    Tsamasphyros, G.; Kalkanis, K.; Maroulas, P.; Anthoulis, G. I.; Grigoryeva, O.

    2008-08-01

    The current work focuses on the testing of a novel material used as an adhesive film in Composite Patch Repair (CPR). A series of Differential Scanning Calorimetry (DSC) results along with various curing cycles not only led to the optimum material composition but also demonstrated the compatibility to the composite pre-impregnated patches. This in turn was subjected to mechanical testing including shear strength measurements. The substrate was chosen to be 2017 T4 aluminium alloy which is customarily used in the aerospace industry, taking into account that CPR is a technique mainly applied in this field. The subsequent surface preparation of the specimens was investigated for the specified context resulting to the selection of the Ferric Sulphate Sulphuric acid etching process. Finally, a series of specimens representing actual skin repairs were created and subjected to cyclic loading, specifying the suitability of the novel material, compared to commercially available materials.

  1. Evaluation of bonding agent application on concrete patch performance.

    DOT National Transportation Integrated Search

    2014-08-01

    The durability of partial depth repair is directly related to the bond strength between the repair material and existing : concrete. Bond strength development sensitivity to wait time with the use of bonding agents in partial depth repair was : inves...

  2. Effect of platelet-rich plasma and porcine dermal collagen graft augmentation for rotator cuff healing in a rabbit model.

    PubMed

    Chung, Seok Won; Song, Byung Wook; Kim, Yeun Ho; Park, Kyoung Un; Oh, Joo Han

    2013-12-01

    The rate of healing failure after surgical repair of chronic rotator cuff tears is considerably high. To verify the effect of platelet-rich plasma (PRP) with and without porcine dermal collagen graft augmentation on tendon-to-bone healing, using the rabbit supraspinatus tendon. Controlled laboratory study. A total of 80 rabbits were randomly allocated into 4 groups (20 rabbits per group: 12 for histological and 8 for mechanical testing): repair (R), repair + patch augmentation (RPa), repair + PRP (RPr), and repair + patch + PRP (RPaPr). The right shoulder was used for experimental interventions, and the left served as a control. Six weeks after the detachment of the supraspinatus, the torn tendon was repaired in a transosseous manner, simulating double-row repair in all groups. Platelet-rich plasma was prepared and applied onto the repair site in the RPr and RPaPr groups, and the patch was used to augment the repair in the RPa and RPaPr groups. The mechanical tensile strength test was performed at 8 weeks after repair and the histological evaluation at 4 and 8 weeks. At 4 weeks, the collagen fibers were poorly organized, and fiber continuity was not established in all groups. However, vascularity and cellularity were higher with granulation tissue formation in the PRP-treated groups (RPr and RPaPr) than the nontreated groups (R and RPa). At 8 weeks, tendon-to-bone integration was much improved with more collagen fibers, and longitudinally oriented collagen fibers were visible in all groups. The PRP-treated groups showed better collagen fiber continuity and orientation than the nontreated groups; however, no distinctive difference was found between the patch-augmented groups (RPa and RPaPr) and nonaugmented groups (R and RPr). The mean load-to-failure results were 61.57 ± 29.99 N, 76.84 ± 16.08 N, 105.35 ± 33.82 N, and 117.93 ± 12.60 N for the R, RPa, RPr, and RPaPr groups, respectively, and they were significantly different between the R and RPr (P = .018), R and RPaPr (P = .002), and RPa and RPaPr (P = .029) groups. This animal study showed the enhancement of tendon-to-bone healing after local administration of autologous PRP assessed by histological and biomechanical testing in a rabbit model of chronic rotator cuff tears. However, there was little additive effect of the patch graft. The use of PRP might be a biological supplement to increase the rotator cuff healing rate, which still remains low even after successful cuff repair, but this result should be interpreted with caution regarding clinical applications.

  3. Stem cells in cardiac repair.

    PubMed

    Henning, Robert J

    2011-01-01

    Myocardial infarction is the leading cause of death among people in industrialized nations. Although the heart has some ability to regenerate after infarction, myocardial restoration is inadequate. Consequently, investigators are currently exploring the use of human embryonic stem cells (hESCs), skeletal myoblasts and adult bone marrow stem cells to limit infarct size. hESCs are pluripotent cells that can regenerate myocardium in infarcted hearts, attenuate heart remodeling and contribute to left ventricle (LV) systolic force development. Since hESCs can form heart teratomas, investigators are differentiating hESCs toward cardiac progenitor cells prior to transplantation into hearts. Large quantities of hESCs cardiac progenitor cells, however, must be generated, immune rejection must be prevented and grafts must survive over the long term to significantly improve myocardial performance. Transplanted autologous skeletal myoblasts can survive in infarcted myocardium in small numbers, proliferate, differentiate into skeletal myofibers and increase the LV ejection fraction. These cells, however, do not form electromechanical connections with host cardiomyocytes. Consequently, electrical re-entry can occur and cause cardiac arrhythmias. Autologous bone marrow mononuclear cells contain hematopoietic and mesenchymal stem cells. In several meta-analyses, patients with coronary disease who received autologous bone marrow cells by intracoronary injection show significant 3.7% (range: 1.9-5.4%) increases in LV ejection fraction, decreases in LV end-systolic volume of -4.8 ml (range: -1.4 to -8.2 ml) and reductions in infarct size of 5.5% (-1.9 to -9.1%), without experiencing arrhythmias. Bone marrow cells appear to release biologically active factors that limit myocardial damage. Unfortunately, bone marrow cells from patients with chronic diseases propagate poorly and can die prematurely. Substantial challenges must be addressed and resolved to advance the use of stem cells in cardiac repair including identifying the optimal stem cell(s) that permit transplantation without requirements for host immune suppression; timing of stem cell transplantation that maximizes chemoattraction of stem cells to infarcts; and determining the optimal technique for injecting stem cells for cardiac repair. Techniques must be developed to enhance survival and propagation of stem cells in the myocardium. These studies will require close cooperation and interaction of scientists and clinicians. Cell-based cardiac repair in the 21st century will offer new hope for millions of patients worldwide with myocardial infarctions who, otherwise, would suffer from the relentless progression of heart disease to heart failure and death.

  4. Membrane estrogen receptor alpha is an important modulator of bone marrow C-Kit+ cells mediated cardiac repair after myocardial infarction

    PubMed Central

    Su, Feng; Zhang, Wentian; Liu, Jianfang

    2015-01-01

    It has been validated that c-kit positive (c-kit+) cells in infarcted myocardium are from bone marrow (BM). Given the recent study that in the heart, estrogen receptor alpha (ERα) is involved in adaptive mechanisms by supporting cardiomyocytes survival via post-infarct cardiac c-kit+ cells, we tested a novel hypothesis that membrane ERα (mERа) supports survival of BM c-kit+ cells and enhance protective paracrine function for cardiac repair. Our data showed that myocardial infarction (MI) leads to an increase in c-kit+ first in bone marrow and then specifically within the infarcted myocardium. Also up-regulated mERа in post-infarct BM c-kit+ cells was found in day 3 post MI. In vitro co-culture system, mERа+ enhances the beneficial effects of BM c-kit+ cells by increasing their viability and reducing apoptosis. Post-infarct c-kit+ mERа+ cells population expresses predominant ERα and holds self-renewal as well as cardiac differentiation potentials after MI. In vivo, BM c-kit+ cells reduced infarct size, fibrosis and improved cardiac function. In conclusion, BM c-kit+ mERа+ exerted significantly cardiac protection after MI. A potential important implication of this study is that the manipulation of BM c-kit+ stem cells with ERа-dependent fashion may be helpful in recovering functional performance after cardiac tissue injury. PMID:26191121

  5. Injectable Hydrogels for Cardiac Tissue Repair after Myocardial Infarction

    PubMed Central

    Khattab, Ahmad; Islam, Mohammad Ariful; Hweij, Khaled Abou; Zeitouny, Joya; Waters, Renae; Sayegh, Malek; Hossain, Md Monowar; Paul, Arghya

    2015-01-01

    Cardiac tissue damage due to myocardial infarction (MI) is one of the leading causes of mortality worldwide. The available treatments of MI include pharmaceutical therapy, medical device implants, and organ transplants, all of which have severe limitations including high invasiveness, scarcity of donor organs, thrombosis or stenosis of devices, immune rejection, and prolonged hospitalization time. Injectable hydrogels have emerged as a promising solution for in situ cardiac tissue repair in infarcted hearts after MI. In this review, an overview of various natural and synthetic hydrogels for potential application as injectable hydrogels in cardiac tissue repair and regeneration is presented. The review starts with brief discussions about the pathology of MI, its current clinical treatments and their limitations, and the emergence of injectable hydrogels as a potential solution for post MI cardiac regeneration. It then summarizes various hydrogels, their compositions, structures and properties for potential application in post MI cardiac repair, and recent advancements in the application of injectable hydrogels in treatment of MI. Finally, the current challenges associated with the clinical application of injectable hydrogels to MI and their potential solutions are discussed to help guide the future research on injectable hydrogels for translational therapeutic applications in regeneration of cardiac tissue after MI. PMID:27668147

  6. Partial-depth precast concrete patching.

    DOT National Transportation Integrated Search

    1974-01-01

    Experiments were performed with partial-depth precast concrete patching to determine the feasibility of the method. In the experiments prefabricated slabs of various sizes, stockpiled near the pavement repair site were installed in machine cut holes ...

  7. Cementitious materials for thin patches : final report.

    DOT National Transportation Integrated Search

    2001-06-01

    Ten cementitious patching materials, which were suitable for thin, vertical repairs according to the manufacturers, were evaluated. Compatibility with cathodic protection systems was a particular concern. The materials were tested for propensity to c...

  8. DNA repair in mammalian mitochondria: Much more than we thought?

    PubMed

    Liu, Pingfang; Demple, Bruce

    2010-06-01

    For many years, the repair of most damage in mitochondrial DNA (mtDNA) was thought limited to short-patch base excision repair (SP-BER), which replaces a single nucleotide by the sequential action of DNA glycosylases, an apurinic/apyrimidinic (AP) endonuclease, the mitochondrial DNA polymerase gamma, an abasic lyase activity, and mitochondrial DNA ligase. However, the likely array of lesions inflicted on mtDNA by oxygen radicals and the possibility of replication errors and disruptions indicated that such a restricted repair repertoire would be inadequate. Recent studies have considerably expanded our knowledge of mtDNA repair to include long-patch base excision repair (LP-BER), mismatch repair, and homologous recombination and nonhomologous end-joining. In addition, elimination of mutagenic 8-oxodeoxyguanosine triphosphate (8-oxodGTP) helps prevent cell death due to the accumulation of this oxidation product in mtDNA. Although it was suspected for many years that irreparably damaged mtDNA might be targeted for degradation, only recently was clear evidence provided for this hypothesis. Therefore, multiple DNA repair pathways and controlled degradation of mtDNA function together to maintain the integrity of mitochondrial genome.

  9. Remote reactor repair: GTA (gas tungsten Arc) weld cracking caused by entrapped helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanne, Jr, W R

    1988-01-01

    A repair patch was welded to the wall of a nuclear reactor tank using remotely controlled thirty-foot long robot arms. Further repair was halted when gas tungsten arc (GTA) welds joining type 304L stainless steel patches to the 304 stainless steel wall developed toe cracks in the heat-affected zone (HAZ). The role of helium in cracking was investigated using material with entrapped helium from tritium decay. As a result of this investigation, and of an extensive array of diagnostic tests performed on reactor tank wall material, helium embrittlement was shown to be the cause of the toe cracks.

  10. Living cardiac patch: the elixir for cardiac regeneration.

    PubMed

    Lakshmanan, Rajesh; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2012-12-01

    A thorough understanding of the cellular and muscle fiber orientation in left ventricular cardiac tissue is of paramount importance for the generation of artificial cardiac patches to treat the ischemic myocardium. The major challenge faced during cardiac patch engineering is to choose a perfect combination of three entities; cells, scaffolds and signaling molecules comprising the tissue engineering triad for repair and regeneration. This review provides an overview of various scaffold materials, their mechanical properties and fabrication methods utilized in cardiac patch engineering. Stem cell therapies in clinical trials and the commercially available cardiac patch materials were summarized in an attempt to provide a recent perspective in the treatment of heart failure. Various tissue engineering strategies employed thus far to construct viable thick cardiac patches is schematically illustrated. Though many strategies have been proposed for fabrication of various cardiac scaffold materials, the stage and severity of the disease condition demands the incorporation of additional cues in a suitable scaffold material. The scaffold may be nanofibrous patch, hydrogel or custom designed films. Integration of stem cells and biomolecular cues along with the scaffold may provide the right microenvironment for the repair of unhealthy left ventricular tissue as well as promote its regeneration.

  11. New Technique of Exposed Glaucoma Drainage Tube Repair: Report of a Case.

    PubMed

    Berezina, Tamara L; Fechtner, Robert D; Cohen, Amir; Kim, Eliott E; Chu, David S

    2015-01-01

    We present the case of successful repair of an exposed glaucoma drainage tube by cornea graft fixation with tissue adhesive, and without subsequent coverage by adjacent conjunctiva or donor tissues. Patient with history of keratoglobus with thin cornea and sclera, and phthisical contralateral eye, underwent three unsuccessful corneal grafts followed by Boston type 1 keratoprosthesis in the right eye. Ahmed drainage device with sclera patch graft was implanted to control the intraocular pressure. Two years later the tube eroded through sclera graft and conjunctiva. Repair was performed by covering the tube with a corneal patch graft secured by tissue adhesive after the conjunctiva in this area was dissected away. The cornea graft was left uncovered due to fragility of adjacent conjunctiva. The healing of ocular and graft surfaces was complete prior to the 1 month follow-up. Conjunctival epithelium covered the corneal patch graft. At 12 months follow-up, the graft and the tube remained stable. Our report suggests that corneal patch graft fixation to the sclera by means of tissue adhesive, without closing the conjunctiva, can be considered as an effective alternative surgical approach for managing exposed glaucoma drainage tube, accompanied by adjacent conjunctiva tissue deficiency. How to cite this article: Berezina TL, Fechtner RD, Cohen A, Kim EE, Chu DS. New Technique of Exposed Glaucoma Drainage Tube Repair: Report of a Case. J Curr Glaucoma Pract 2015;9(2):62-64.

  12. Evaluation of concrete patching materials : final report.

    DOT National Transportation Integrated Search

    1985-01-01

    The project evaluated numerous repairs on portland cement concrete pavements and bridge decks made with a number of laboratory accepted, proprietary patching materials and portland cement concrete mixtures of different designs. It was ascertained tha...

  13. Method for Qualification of Composite Repairs for Pipelines: Patch Repairs and Considerations for Cathodic Protection

    DOT National Transportation Integrated Search

    2009-12-03

    While the mechanical properties of composite repairs for pipelines have been investigated extensively, the performance of the entire metal-composite system has not been addressed with regard to corrosion of the substrate, water intrusion at the compo...

  14. Deep patch technique for landslide repair. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helwany, B.M.

    1994-10-01

    The report describes the laboratory testing of the `USFS deep patch` technique and a CTI modification of this technique for repairing landslides with geosynthetic reinforcement. The technique involves replacing sections of roadway lost due to landslides on top of a geosynthetically-reinforced embankment. The CTI modification involves replacing the reinforced slope with a geosynthetically-reinforced retaining wall with a truncated base. Both techniques rely on the cantilevering ability of the reinforced mass to limit the load on the foundation with a high slide potential. The tests with road base showed that (1) both the USFS and CTI repair reduced effectively the adversemore » effects of local landsliding on the highway pavement by preventing crack propagation; (2) the USFS repair increased the stability of the repaired slope, which was in progressive failure, by reducing the stresses exerted on it; and (3) the CTI repair produced substantially greater stresses on its foundation due to the truncated base of the reinforced mass.« less

  15. Omental patch repair effectively treats perforated marginal ulcer following Roux-en-Y gastric bypass.

    PubMed

    Wendling, Mark R; Linn, John G; Keplinger, Kara M; Mikami, Dean J; Perry, Kyle A; Melvin, W Scott; Needleman, Bradley J

    2013-02-01

    Marginal ulcer formation remains a significant complication of Roux-en-Y gastric bypass (RYGB). Up to 1 % of all RYGB patients will develop free perforation of a marginal ulcer. Classically, this complication has required anastomotic revision; however, this approach is associated with significant morbidity. Several small series have suggested that omental patch repair may be effective. The aim of this study was to examine the management of perforated marginal ulcers following RYGB. All patients who underwent operative intervention for perforated ulcers between 2003 and 2011 were reviewed. Those with a history of RYGB with perforation of a marginal ulcer were included in the analysis. Data collected included operative approach, operative time, blood loss, length of hospital stay, complications, smoking history, and steroid or NSAID use. From January 2003 to December 2011, a total of 1,760 patients underwent RYGB at our institution. Eighteen (0.85 %) developed perforation of a marginal ulcer. Three patients' original procedure was performed at another institution. Eight patients (44 %) had at least one risk factor for ulcer formation. Treatment included omental patch repair (laparoscopic, n = 7; open, n = 9) or anastomotic revision (n = 2). Compared to anastomotic revision, omental patch repair had shorter OR time (101 ± 57 vs. 138 ± 2 min), decreased estimated blood loss (70 ± 72 vs. 250 ± 71 mL), and shorter total length of stay (5.6 ± 1.4 vs. 11.0 ± 5.7 days). Perforated marginal ulcer represents a significant complication of RYGB. Patients should be educated to reduce risk factors for perforation, as prolonged proton pump inhibitor therapy may not prevent this complication in a patient with even just one risk factor. In our sample population we found laparoscopic or open omental patch repair to be a safe and effective treatment for this condition and it was associated with decreased operative time, blood loss, and length of stay.

  16. Pothole repair

    DOT National Transportation Integrated Search

    1999-11-01

    The primary objective of the pothole experiment was to determine which combinations of materials and patching procedures provide the most cost-effective repair of potholes in asphalt concrete-surfaced pavements. This technical summary summarizes the ...

  17. The fabrication and characterization of a multi-laminate, angle-ply collagen patch for annulus fibrosus repair.

    PubMed

    McGuire, Rachel; Borem, Ryan; Mercuri, Jeremy

    2017-12-01

    One major limitation of intervertebral disc (IVD) repair is that no ideal biomaterial has been developed that effectively mimics the angle-ply collagen architecture and mechanical properties of the native annulus fibrosus (AF). Furthermore, it would be beneficial to devise a simple, scalable process by which to manufacture a biomimetic biomaterial that could function as a mechanical repair patch to be secured over a large defect in the outer AF that will support AF tissue regeneration. Such a biomaterial would: (1) enable the employment of early-stage interventional strategies to treat IVD degeneration (i.e. nucleus pulposus arthroplasty); (2) prevent IVD re-herniation in patients with large AF defects; and (3) serve as a platform to develop full-thickness AF and whole IVD tissue engineering strategies. Due to the innate collagen fibre alignment and mechanical strength of pericardium, a procedure was developed to assemble multi-laminate angle-ply AF patches derived from decellularized pericardial tissue. Patches were subsequently assessed histologically to confirm angle-ply microarchitecture, and mechanically assessed for biaxial burst strength and tensile properties. Additionally, patch cytocompatibility was evaluated following seeding with bovine AF cells. This study demonstrated the effective removal of porcine cell remnants from the pericardium, and the ability to reliably produce multi-laminate patches with angle-ply architecture using a simple assembly technique. Resultant patches demonstrated their inherent ability to resist biaxial burst pressures reminiscent of intradiscal pressures commonly borne by the AF, and exhibited tensile strength and modulus values reported for native human AF. Furthermore, the biomaterial supported AF cell viability, infiltration and proliferation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Handbook for Repairing Nonconventional Roofing Systems

    DTIC Science & Technology

    1988-12-01

    membrane. 61 PIMB (solvent) Figure 71. Apply welding solvent to the PIB patch. Figure 72. Work the solvent Into the P113 patch. Pila 62 (solvent) Figure 73...when exposed to flame but will not burn nor support combustion . PVC repair techniques are basically the same as for a new application of a PVC fully...granules (if desired) before the final coat dries. 83 PUF F4gue 102. Remove the damaged material and bevel the s! des of the hole. 4󈧵, Figure 103. Trim th

  19. Heart Repair and Regeneration: Recent Insights from Zebrafish Studies

    PubMed Central

    Lien, Ching-Ling; Harrison, Michael R.; Tuan, Tai-Lan; Starnes, Vaughn A

    2012-01-01

    Cardiovascular disease is the leading cause of death in United States and worldwide. Failure to properly repair or regenerate damaged cardiac tissues after myocardial infarction is a major cause of heart failure. In contrast to humans and other mammals, zebrafish hearts regenerate after substantial injury or tissue damage. Here, we review recent progress in studying zebrafish heart regeneration, addressing the molecular and cellular responses in the three tissue layers of the heart: myocardium, epicardium, and endocardium. We also compare different injury models utilized to study zebrafish heart regeneration, and discuss the differences in responses to injury between mammalian and zebrafish hearts. By learning how zebrafish hearts regenerate naturally, we can better design therapeutic strategies for repairing human hearts after myocardial infarction. PMID:22818295

  20. Analysis of aggregate pier systems for stabilization of subgrade settlement.

    DOT National Transportation Integrated Search

    2014-12-01

    Every year, ODOT undertakes numerous pavement patching/resurfacing projects to repair pavement : distress and structural failure due to soft and/or organic soils constituting the subgrade. Other than the : temporary solution of patching/resurfacing, ...

  1. Evaluation of cold mixes for winter pothole repair.

    DOT National Transportation Integrated Search

    1995-01-01

    This study was conducted to evaluate the performance of 13 proprietary cold-mix patching materials, 4 of which are currently approved under a Virginia Department of Transportation (VDOT) Special Provision for High Quality Cold Patching Materials. Col...

  2. Research notes : alternate method for pothole patching.

    DOT National Transportation Integrated Search

    1998-09-01

    Typically, throw and roll pothole patches will likely fail before the pavement is resurfaced or rehabilitated. Alternatively, semi-permanent repairs are time consuming and require more people and added lane closure time. An alternate method is spray ...

  3. Bacterial genes mutL, mutS, and dcm participate in repair of mismatches at 5-methylcytosine sites.

    PubMed Central

    Lieb, M

    1987-01-01

    Certain amber mutations in the cI gene of bacteriophage lambda appear to recombine very frequently with nearby mutations. The aberrant mutations included C-to-T transitions at the second cytosine in 5'CC(A/T)GG sequences (which are subject to methylation by bacterial cytosine methylase) and in 5'CCAG and 5'CAGG sequences. Excess cI+ recombinants arising in crosses that utilize these mutations are attributable to the correction of mismatches by a bacterial very-short-patch (VSP) mismatch repair system. In the present study I found that two genes required for methyladenine-directed (long-patch) mismatch repair, mutL and mutS, also functioned in VSP mismatch repair; mutH and mutU (uvrD) were dispensable. VSP mismatch repair was greatly reduced in a dcm Escherichia coli mutant, in which 5-methylcytosine was not methylated. However, mismatches in heteroduplexes prepared from lambda DNA lacking 5-methylcytosine were repaired in dcm+ bacteria. These results indicate that the product of gene dcm has a repair function in addition to its methylase activity. PMID:2959653

  4. The whole truth: comparative analysis of diaphragmatic hernia repair using 4-ply vs 8-ply small intestinal submucosa in a growing animal model.

    PubMed

    Sandoval, John A; Lou, Derek; Engum, Scott A; Fisher, Lisa M; Bouchard, Christine M; Davis, Mary M; Grosfeld, Jay L

    2006-03-01

    Diaphragmatic reconstruction remains a challenging problem. There is limited information concerning the use of small intestinal submucosa (SIS) in congenital diaphragmatic hernia repair. A canine model was used to evaluate the use of a SIS patch in diaphragmatic reconstruction. Eleven beagle puppies (1.6-4.2 kg, 8 weeks old) underwent left subcostal laparotomy, central left hemidiaphragm excision (2 x 7 cm, 50% loss), and reconstruction with a 4-ply group I (n = 5) or 8-ply group II (n = 6) SIS patch. Chest radiographs were taken at time of operation and 3 and 6 months postoperatively. Animals were killed at 6 months. Adhesion formation (both pleural and abdominal), gross visual evaluation of the patch, and histology were compared. In group I (4-ply), 1 animal died at 3 months from patch deterioration accompanied by stomach herniation that resulted in respiratory failure. In the 4 remaining animals, chest radiographs showed no evidence of herniation or eventration. On physical examination, there was no evidence of chest wall deformity. During gross surgical examination, the 4-ply patches showed thinning, multiple defects, and liver herniation in 3 animals. In 1 pup, the patch was thickened, intact, well incorporated at the repair site, and adherent to the liver and spleen. In group II (8-ply), 1 animal died of cardiopulmonary failure in the early postoperative period. In the other 5 animals, chest radiographs showed evidence of eventration in 1. On gross examination the patch adhered to the liver in all 5 surviving animals. In 4, the patches were thickened, viable, but had some shrinkage. One patch pulled away from the native diaphragm laterally; however, no visceral herniation was present. In the 1 animal with eventration, there was no evidence of a patch. Adhesion scores (AS) were graded and determined by the sum of extent (0-4), type (0-4), and tenacity (0-3). Average abdominal AS in group I was 5.6 +/- 0.8 vs 10.2 +/- 0.2 (P = .079) for group II. Average lung AS was 0.6 +/- 0.6 in group I vs 3.8 +/- 1.1 (P = .0476) for group II. Histological examination showed group II patches had greater collagen deposition with central calcification and mild inflammation within the residual graft, whereas group I patches were much thinner and were composed of granulation tissue without evidence of residual graft. These data indicate that 8-ply SIS repair of diaphragmatic defects was superior (80%; 4/5 to 4-ply, 20%; 1/5, success). Organ adherence appears to be necessary for neovascularization of the SIS composite. Eight-ply grafts appear to be more durable and persist for a longer period, which may improve neovascularization. Long-term follow-up to evaluate remodeling characteristics of the patch material is required.

  5. Of Mice and Dogs

    PubMed Central

    Dewald, Oliver; Ren, Guofeng; Duerr, Georg D.; Zoerlein, Martin; Klemm, Christina; Gersch, Christine; Tincey, Sophia; Michael, Lloyd H.; Entman, Mark L.; Frangogiannis, Nikolaos G.

    2004-01-01

    Large animal models have provided much of the descriptive data regarding the cellular and molecular events in myocardial infarction and repair. The availability of genetically altered mice may provide a valuable tool for specific cellular and molecular dissection of these processes. In this report we compare closed chest models of canine and mouse infarction/reperfusion qualitatively and quantitatively for temporal, cellular, and spatial differences. Much like the canine model, reperfused mouse hearts are associated with marked induction of endothelial adhesion molecules, cytokines, and chemokines. Reperfused mouse infarcts show accelerated replacement of cardiomyocytes by granulation tissue leading to a thin mature scar at 14 days, when the canine infarction is still cellular and evolving. Infarcted mouse hearts demonstrate a robust but transient postreperfusion inflammatory reaction, associated with a rapid up-regulation of interleukin-10 and transforming growth factor-β. Unlike canine infarcts, infarcted mouse hearts show only transient macrophage infiltration and no significant mast cell accumulation. In correlation, the growth factor for macrophages, M-CSF, shows modest and transient up-regulation in the early days of reperfusion; and the obligate growth factor for mast cells, stem cell factor, SCF, is not induced. In summary, the postinfarction inflammatory response and resultant repair in the mouse heart shares many common characteristics with large mammalian species, but has distinct temporal and qualitative features. These important species-specific differences should be considered when interpreting findings derived from studies using genetically altered mice. PMID:14742270

  6. An Enhanced Vacuum Cure Technique for On-Aircraft Repair of Carbon-Bismaleimide Composites

    NASA Astrophysics Data System (ADS)

    Rider, Andrew N.; Baker, Alan A.; Wang, Chun H.; Smith, Graeme

    2011-06-01

    Carbon/bismaleimide (BMI) composite is increasingly employed in critical load carrying aircraft structures designed to operate at temperatures approaching 180°C. The high post-cure temperature (above 220°C) required to fully react the BMI resin, however, renders existing on-aircraft prepreg or wet layup repair methods invalid. This paper presents a new on-aircraft repair technique for carbon/BMI composites. The composite prepregs are first warm-staged to improve the ability to evacuate entrapped air. Then the patch is cured in the scarf cavity using the vacuum bag technique, followed by off-aircraft post-cure. The fully cured patch then can be bonded using a structural adhesive.

  7. Towards Comprehensive Cardiac Repair and Regeneration after Myocardial Infarction: Aspects to Consider and Proteins to Deliver

    PubMed Central

    Awada, Hassan K.; Hwang, Mintai P.; Wang, Yadong

    2016-01-01

    Ischemic heart disease is a leading cause of death worldwide. After the onset of myocardial infarction, many pathological changes take place and progress the disease towards heart failure. Pathologies such as ischemia, inflammation, cardiomyocyte death, ventricular remodeling and dilation, and interstitial fibrosis, develop and involve the signaling of many proteins. Proteins can play important roles in limiting or countering pathological changes after infarction. However, they typically have short half-lives in vivo in their free form and can benefit from the advantages offered by controlled release systems to overcome their challenges. The controlled delivery of an optimal combination of proteins per their physiologic spatiotemporal cues to the infarcted myocardium holds great potential to repair and regenerate the heart. The effectiveness of therapeutic interventions depends on the elucidation of the molecular mechanisms of the cargo proteins and the spatiotemporal control of their release. It is likely that multiple proteins will provide a more comprehensive and functional recovery of the heart in a controlled release strategy. PMID:26757257

  8. The "Flat Diaphragm": Does the Degree of Curvature of the Diaphragm on Postoperative X-Ray Predict Congenital Diaphragmatic Hernia Recurrence?

    PubMed

    Short, Heather L; Clifton, Matthew S; Arps, Kelly; Travers, Curtis; Loewen, Jonathan; Schlager, Avraham

    2018-04-01

    The appearance of the diaphragmatic curvature and the rib insertion level of the diaphragm on postoperative chest X-ray (CXR) may predict recurrence. Our purpose was to examine the relationship between the curvature of the diaphragm on postoperative CXR and recurrence. We performed a retrospective review of left-sided, Bochdalek congenital diaphragmatic hernia (CDH) surgical repairs from 2004 to 2015 at a single institution. We developed a tool to measure the flatness of the diaphragm on postoperative CXR, termed the diaphragmatic curvature index (τ). The primary outcome of interest was recurrence after surgical repair. Of the 127 patients identified, 54% (n = 69) had a primary repair, while 46% (n = 58) required a patch repair. The overall recurrence rate was 21.3% (n = 27). There was no difference in median lateral rib insertion level in patients with and without recurrence or those who had a primary or patch repair. The overall median diaphragmatic curvature index was 6.29 (interquartile range [IQR] 5.30-8.09) and was not significantly different among patients who had a recurrence (6.00, IQR 5.34-8.24) and those who did not (6.46, IQR 5.24-8.07) (P = .853). Within the primary repair group (6.34 versus 6.93, P = .84) and the patch repair group (5.59 versus 6.18, P = .46), the median diaphragmatic curvature index was not different among patients who had a recurrence and those who did not. A flat appearance of the diaphragm on postoperative CXR as measured by the median diaphragmatic curvature index (τ) is not associated with recurrence. The shape of the diaphragm on CXR after CDH repair may not be predictive of recurrence as previously thought.

  9. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges.

    PubMed

    Huang, Shuaibo; Frangogiannis, Nikolaos G

    2018-05-01

    In the infarcted heart, the damage-associated molecular pattern proteins released by necrotic cells trigger both myocardial and systemic inflammatory responses. Induction of chemokines and cytokines and up-regulation of endothelial adhesion molecules mediate leukocyte recruitment in the infarcted myocardium. Inflammatory cells clear the infarct of dead cells and matrix debris and activate repair by myofibroblasts and vascular cells, but may also contribute to adverse fibrotic remodelling of viable segments, accentuate cardiomyocyte apoptosis and exert arrhythmogenic actions. Excessive, prolonged and dysregulated inflammation has been implicated in the pathogenesis of complications and may be involved in the development of heart failure following infarction. Studies in animal models of myocardial infarction (MI) have suggested the effectiveness of pharmacological interventions targeting the inflammatory response. This article provides a brief overview of the cell biology of the post-infarction inflammatory response and discusses the use of pharmacological interventions targeting inflammation following infarction. Therapy with broad anti-inflammatory and immunomodulatory agents may also inhibit important repair pathways, thus exerting detrimental actions in patients with MI. Extensive experimental evidence suggests that targeting specific inflammatory signals, such as the complement cascade, chemokines, cytokines, proteases, selectins and leukocyte integrins, may hold promise. However, clinical translation has proved challenging. Targeting IL-1 may benefit patients with exaggerated post-MI inflammatory responses following infarction, not only by attenuating adverse remodelling but also by stabilizing the atherosclerotic plaque and by inhibiting arrhythmia generation. Identification of the therapeutic window for specific interventions and pathophysiological stratification of MI patients using inflammatory biomarkers and imaging strategies are critical for optimal therapeutic design. © 2018 The British Pharmacological Society.

  10. Damage Tolerant Analysis of Cracked Al 2024-T3 Panels repaired with Single Boron/Epoxy Patch

    NASA Astrophysics Data System (ADS)

    Mahajan, Akshay D.; Murthy, A. Ramachandra; Nanda Kumar, M. R.; Gopinath, Smitha

    2018-06-01

    It is known that damage tolerant analysis has two objectives, namely, remaining life prediction and residual strength evaluation. To achieve the these objectives, determination of accurate and reliable fracture parameter is very important. XFEM methodologies for fatigue and fracture analysis of cracked aluminium panels repaired with different patch shapes made of single boron/epoxy have been developed. Heaviside and asymptotic crack tip enrichment functions are employed to model the crack. XFEM formulations such as displacement field formulation and element stiffness matrix formulation are presented. Domain form of interaction integral is employed to determine Stress Intensity Factor of repaired cracked panels. Computed SIFs are incorporated in Paris crack growth model to predict the remaining fatigue life. The residual strength has been computed by using the remaining life approach, which accounts for both crack growth constants and no. of cycles to failure. From the various studies conducted, it is observed that repaired panels have significant effect on reduction of the SIF at the crack tip and hence residual strength as well as remaining life of the patched cracked panels are improved significantly. The predicted remaining life and residual strength will be useful for design of structures/components under fatigue loading.

  11. Epicardial infarct repair with bioinductive extracellular matrix promotes vasculogenesis and myocardial recovery.

    PubMed

    Mewhort, Holly E M; Turnbull, Jeannine D; Satriano, Alessandro; Chow, Kelvin; Flewitt, Jacqueline A; Andrei, Adin-Cristian; Guzzardi, David G; Svystonyuk, Daniyil A; White, James A; Fedak, Paul W M

    2016-05-01

    Infarcted myocardium can remodel after successful reperfusion, resulting in left ventricular dilation and heart failure. Epicardial infarct repair (EIR) using a bioinductive extracellular matrix (ECM) biomaterial is a novel surgical approach to promote endogenous myocardial repair and functional recovery after myocardial infarction. Using a pre-clinical porcine model of coronary ischemia-reperfusion, we assessed the effects of EIR on regional functional recovery, safety, and possible mechanisms of benefit. An ECM biomaterial (CorMatrix ECM) was applied to the epicardium after 75 minutes of coronary ischemia in a porcine model. Following ischemia-reperfusion injury, animals were randomly assigned in 2:1 fashion to EIR (n = 8) or sham treatment (n = 4). Serial cardiac magnetic resonance imaging was performed on normal (n = 4) and study animals at baseline (1 week) and 6 weeks after treatment. Myocardial function and tissue characteristics were assessed. Functional myocardial recovery was significantly increased by EIR compared with sham treatment (change in regional myocardial contraction at 6 weeks, 28.6 ± 14.0% vs 4.2 ± 13.5% wall thickening, p < 0.05). Animals receiving EIR had reduced adhesions compared with animals receiving sham treatment (1.44 ± 0.51 vs 3.08 ± 0.89, p < 0.05). Myocardial fibrosis was not increased, and EIR did not cause myocardial constriction, as left ventricular compliance by passive pressure distention at matched volumes was similar between groups (13.9 ± 4.0 mm Hg in EIR group vs 16.0 ± 5.2 mm Hg in sham group, p = 0.61). Animals receiving EIR showed evidence of vasculogenesis in the region of functional recovery. In addition to the beneficial effects of successful reperfusion, EIR using a bioinductive ECM enhances myocardial repair and functional recovery. Clinical translation of EIR early after myocardial infarction as an adjunct to surgical revascularization may be warranted in the future. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Partial-depth repair of jointed PCC pavements : cast-in-place and precast procedures.

    DOT National Transportation Integrated Search

    1977-01-01

    The installation of durable patches on jointed portland cement concrete pavement using several types of cast-in-place concrete, is described. The recommended procedures for pavement preparation and patch installation are given, and additional mainten...

  13. Development of a Hard-Patch Approach for Scarf Repair of Composite Structure

    DTIC Science & Technology

    2006-06-01

    composite skins are bonded to a Ti- 6Al - 4V titanium alloy splice plate. The inboard and outboard ribs are also made of this alloy, as is the root rib which...operation. Options for the patch material include composite laminate, titanium alloy sheet laminate or solid titanium alloy. d) Semi-Hard Patch – The...patch is manufactured from a series of pre-cured composite laminates each containing several plies or titanium sheets, which are interleaved with

  14. Modeling and Application of Piezoelectric Materials in Repair of Engineering Structures

    NASA Astrophysics Data System (ADS)

    Wu, Nan

    The shear horizontal wave propagation and vibration of piezoelectric coupled structures under an open circuit electrical boundary condition are studied. Following the studies on the dynamic response of piezoelectric coupled structures, the repair of both crack/notch and delaminated structures using piezoelectric materials are conducted. The main contribution was the proposed the active structural repair design using piezoelectric materials for different structures. An accurate model for the piezoelectric effect on the shear wave propagation is first proposed to guide the application of piezoelectric materials as sensors and actuators in the repair of engineering structures. A vibration analysis of a circular steel substrate surface bonded by a piezoelectric layer with open circuit is presented. The mechanical models and solutions for the wave propagation and vibration analysis of piezoelectric coupled structures are established based on the Kirchhoff plate model and Maxwell equation. Following the studies of the dynamic response of piezoelectric coupled structures, a close-loop feedback control repair methodology is proposed for a vibrating delaminated beam structure by using piezoelectric patches. The electromechanical characteristic of the piezoelectric material is employed to induce a local shear force above the delamination area via an external actuation voltage, which is designed as a feedback of the deflection of a vibrating beam and a delaminated plate, to reduce the stress singularity around the delamination tips. Furthermore, an experimental realization of an effective repair of a notched cantilever beam structure subjected to a dynamic loading by use of piezoelectric patches is reported. A small piezoelectric patch used as a sensor is placed on the notch position to monitor the severity of the stress singularity around the notch area by measuring the charge output on the sensor, and a patch used as an actuator is located around the notch area to generate a required bending moment by employing an actuation voltage to reduce the stress singularity at the notch position. The actuation voltage on the actuator is designed from a feedback circuit process. Through the analytical model, FEM simulation and experimental studies, the active structural repair method using piezoelectric materials is realized and proved to be feasible and practical.

  15. Repair of Tricuspid Valve Leaflet With CardioCel Patch After Traumatic Tricuspid Regurgitation.

    PubMed

    Konstantinidou, Maria Kalliopi; Moat, Neil

    2017-09-01

    Posttraumatic tricuspid valve regurgitation (TR) is a rare entity and is almost always associated with blunt chest trauma. It is usually identified by transthoracic echocardiography after the manifestation of clinical symptoms of heart failure. Treatment varies from long-term medical therapy and observation to surgical correction with tricuspid valve replacement or repair. We describe the case of a 26-year-old man who was involved in a major road traffic accident and was referred for surgical repair a year later because of severe posttraumatic TR. The tricuspid valve was successfully reconstructed with a CardioCel patch, Gore-Tex neochordae, and a tricuspid ring. The patient recovered well. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Base Excision Repair

    PubMed Central

    Krokan, Hans E.; Bjørås, Magnar

    2013-01-01

    Base excision repair (BER) corrects DNA damage from oxidation, deamination and alkylation. Such base lesions cause little distortion to the DNA helix structure. BER is initiated by a DNA glycosylase that recognizes and removes the damaged base, leaving an abasic site that is further processed by short-patch repair or long-patch repair that largely uses different proteins to complete BER. At least 11 distinct mammalian DNA glycosylases are known, each recognizing a few related lesions, frequently with some overlap in specificities. Impressively, the damaged bases are rapidly identified in a vast excess of normal bases, without a supply of energy. BER protects against cancer, aging, and neurodegeneration and takes place both in nuclei and mitochondria. More recently, an important role of uracil-DNA glycosylase UNG2 in adaptive immunity was revealed. Furthermore, other DNA glycosylases may have important roles in epigenetics, thus expanding the repertoire of BER proteins. PMID:23545420

  17. Laparoscopic versus open operation for perforated peptic ulcer in pediatric patients: A 10-year experience.

    PubMed

    Wong, Carol W Y; Chung, Patrick H Y; Tam, Paul K H; Wong, Kenneth K Y

    2015-12-01

    Perforated peptic ulcer (PPU) is a relatively uncommon condition in children. We aim to evaluate and compare the outcomes of laparoscopic omental patch repair versus open repair for PPU in pediatric patients. Children who underwent omental patch repair for PPU from 2004 to 2014 in our hospital were reviewed retrospectively. Patient demographics, perioperative as well as intraoperative details and surgical outcomes, were analyzed. Thirteen patients were identified, and all presented with abdominal pain. The median age of the study group was 14.9years (range 6.3 to 18.4years). Radiological evidence of pneumoperitoneum on erect chest x-ray (CXR) was found only in five patients (38.5%). None of the patients had a known history of peptic ulcer disease. Diagnosis other than PPU was made in five patients preoperatively. Laparoscopic repair was attempted in eight patients with one of them requiring conversion. There was no significant difference in patient demographics when compared with the open repair group. The perforation site was in the duodenum in 11 patients and in the antrum in two patients. The mean size of perforation was larger in the open repair group (p=0.005). Although the operating time was longer in the laparoscopic group (p=0.51), the length of hospital stay was significantly shorter (p=0.048). Only two patient diseases were Helicobacter pylori related. Clinical features of perforated peptic ulcer in children are different from adults. Risk factors are less frequently identified. Laparoscopic omental patch repair is a feasible surgical option and is associated with satisfactory outcomes in pediatric practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Advanced optimal design concepts for composite material aircraft repair

    NASA Astrophysics Data System (ADS)

    Renaud, Guillaume

    The application of an automated optimization approach for bonded composite patch design is investigated. To do so, a finite element computer analysis tool to evaluate patch design quality was developed. This tool examines both the mechanical and the thermal issues of the problem. The optimized shape is obtained with a bi-quadratic B-spline surface that represents the top surface of the patch. Additional design variables corresponding to the ply angles are also used. Furthermore, a multi-objective optimization approach was developed to treat multiple and uncertain loads. This formulation aims at designing according to the most unfavorable mechanical and thermal loads. The problem of finding the optimal patch shape for several situations is addressed. The objective is to minimize a stress component at a specific point in the host structure (plate) while ensuring acceptable stress levels in the adhesive. A parametric study is performed in order to identify the effects of various shape parameters on the quality of the repair and its optimal configuration. The effects of mechanical loads and service temperature are also investigated. Two bonding methods are considered, as they imply different thermal histories. It is shown that the proposed techniques are effective and inexpensive for analyzing and optimizing composite patch repairs. It is also shown that thermal effects should not only be present in the analysis, but that they play a paramount role on the resulting quality of the optimized design. In all cases, the optimized configuration results in a significant reduction of the desired stress level by deflecting the loads away from rather than over the damage zone, as is the case with standard designs. Furthermore, the automated optimization ensures the safety of the patch design for all considered operating conditions.

  19. Patch-Augmented Rotator Cuff Repair and Superior Capsule Reconstruction

    PubMed Central

    Petri, M.; Greenspoon, J.A.; Moulton, S.G.; Millett, P.J.

    2016-01-01

    Background: Massive rotator cuff tears in active patients with minimal glenohumeral arthritis remain a particular challenge for the treating surgeon. Methods: A selective literature search was performed and personal surgical experiences are reported. Results: For patients with irreparable rotator cuff tears, a reverse shoulder arthroplasty or a tendon transfer are often performed. However, both procedures have rather high complication rates and debatable long-term results, particularly in younger patients. Therefore, patch-augmented rotator cuff repair or superior capsule reconstruction (SCR) have been recently developed as arthroscopically applicable treatment options, with promising biomechanical and early clinical results. Conclusion: For younger patients with irreparable rotator cuff tears wishing to avoid tendon transfers or reverse total shoulder arthroplasty, both patch-augmentation and SCR represent treatment options that may delay the need for more invasive surgery. PMID:27708733

  20. Bonding agents for portland cement concrete and mortar.

    DOT National Transportation Integrated Search

    1983-01-01

    Structural repairs of bridge piers and abutements require patching concrete : used depends upon the depth of the patch to be made. In some instances, the : use of a liquid bonding agent has been specified in the mixes as well as in a : grout scrubbed...

  1. A field investigation of concrete patches containing pyrament blended concrete.

    DOT National Transportation Integrated Search

    1994-01-01

    During roadway repairs, state highway officials try to minimize lane closure times. This reduces inconvenience to travelers, reduces traffic control needs, and helps minimize work zone accidents. For rapid repairs, materials that provide high early s...

  2. Portland cement concrete (PCC) partial-depth spall repair

    DOT National Transportation Integrated Search

    1999-11-01

    The primary aim of the partial-depth spall repair study was to determine the most effective and economical materials and procedures for placing quality, long-lasting partial-depth patches in jointed concrete pavements. A secondary objective of the st...

  3. Numerical simulations of mechanical properties of innovative pothole patching materials featuring high toughness, low viscosity nano-molecular resins

    NASA Astrophysics Data System (ADS)

    Yuan, K. Y.; Yuan, W.; Ju, J. W.; Yang, J. M.; Kao, W.; Carlson, L.

    2012-04-01

    As asphalt pavements age and deteriorate, recurring pothole repair failures and propagating alligator cracks in the asphalt pavements have become a serious issue to our daily life and resulted in high repairing costs for pavement and vehicles. To solve this urgent issue, pothole repair materials with superior durability and long service life are needed. In the present work, revolutionary pothole patching materials with high toughness, high fatigue resistance that are reinforced with nano-molecular resins have been developed to enhance their resistance to traffic loads and service life of repaired potholes. In particular, DCPD resin (dicyclopentadiene, C10H12) with a Rhuthinium-based catalyst is employed to develop controlled properties that are compatible with aggregates and asphalt binders. In this paper, a multi-level numerical micromechanics-based model is developed to predict the mechanical properties of these innovative nanomolecular resin reinforced pothole patching materials. Coarse aggregates in the finite element analysis are modeled as irregular shapes through image processing techniques and randomly-dispersed coated particles. The overall properties of asphalt mastic, which consists of fine aggregates, asphalt binder, cured DCPD and air voids are theoretically estimated by the homogenization technique of micromechanics. Numerical predictions are compared with suitably designed experimental laboratory results.

  4. Pipe inspection and repair system

    NASA Technical Reports Server (NTRS)

    Schempf, Hagen (Inventor); Mutschler, Edward (Inventor); Chemel, Brian (Inventor); Boehmke, Scott (Inventor); Crowley, William (Inventor)

    2004-01-01

    A multi-module pipe inspection and repair device. The device includes a base module, a camera module, a sensor module, an MFL module, a brush module, a patch set/test module, and a marker module. Each of the modules may be interconnected to construct one of an inspection device, a preparation device, a marking device, and a repair device.

  5. Repairing Hard-to-Reach Cracks in Heat-Exchanger Tubes

    NASA Technical Reports Server (NTRS)

    Mills, R. C., Sr.; Duesberg, J.

    1986-01-01

    Inaccessible leaks repaired from accessible side of tube. Fish-Mouth insert placed in cut in leaky heat-exchanger tube. Insert welded or brazed to tube, and remaining open area of cut patched. Method developed for repairing leaks in nozzle coolant tubes of Space Shuttle main engine. Method also used on other types of tubular heat exchangers.

  6. Is Decellularized Porcine Small Intestine Sub-mucosa Patch Suitable for Aortic Arch Repair?

    PubMed Central

    Corno, Antonio F.; Smith, Paul; Bezuska, Laurynas; Mimic, Branko

    2018-01-01

    Introduction: We reviewed our experience with decellularized porcine small intestine sub-mucosa (DPSIS) patch, recently introduced for congenital heart defects. Materials and Methods: Between 10/2011 and 04/2016 a DPSIS patch was used in 51 patients, median age 1.1 months (5 days to 14.5 years), for aortic arch reconstruction (45/51 = 88.2%) or aortic coarctation repair (6/51 = 11.8%). All medical records were retrospectively reviewed, with primary endpoints interventional procedure (balloon dilatation) or surgery (DPSIS patch replacement) due to patch-related complications. Results: In a median follow-up time of 1.5 ± 1.1 years (0.6–2.3years) in 13/51 patients (25.5%) a re-intervention, percutaneous interventional procedure (5/51 = 9.8%) or re-operation (8/51 = 15.7%) was required because of obstruction in the correspondence of the DPSIS patch used to enlarge the aortic arch/isthmus, with median max velocity flow at Doppler interrogation of 4.0 ± 0.51 m/s. Two patients required surgery after failed interventional cardiology. The mean interval between DPSIS patch implantation and re-intervention (percutaneous procedure or re-operation) was 6 months (1–17 months). While there were 3 hospital deaths (3/51 = 5.9%) not related to the patch implantation, no early or late mortality occurred for the subsequent procedure required for DPSIS patch interventional cardiology or surgery. The median max velocity flow at Doppler interrogation through the aortic arch/isthmus for the patients who did not require interventional procedure or surgery was 1.7 ± 0.57 m/s. Conclusions: High incidence of re-interventions with DPSIS patch for aortic arch and/or coarctation forced us to use alternative materials (homografts and decellularized gluteraldehyde preserved bovine pericardial matrix). PMID:29900163

  7. Role of the immune system in cardiac tissue damage and repair following myocardial infarction.

    PubMed

    Saparov, Arman; Ogay, Vyacheslav; Nurgozhin, Talgat; Chen, William C W; Mansurov, Nurlan; Issabekova, Assel; Zhakupova, Jamilya

    2017-09-01

    The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.

  8. MDOT innovation leading to faster, longer-lasting pavement repairs : research spotlight.

    DOT National Transportation Integrated Search

    2015-01-01

    Current methods of patching pavement must evolve to meet increasing mobility demands. : To address this need, MDOT has been testing a new generation of rapid set full-depth : pavement repair materials. Initial results are promising. The new materials...

  9. Evaluation of a tissue-engineered bovine pericardial patch in paediatric patients with congenital cardiac anomalies: initial experience with the ADAPT-treated CardioCel(R) patch.

    PubMed

    Neethling, William M L; Strange, Geoff; Firth, Laura; Smit, Francis E

    2013-10-01

    This study evaluated the safety, efficacy and clinical performance of the tissue-engineered ADAPT® bovine pericardial patch (ABPP) in paediatric patients with a range of congenital cardiac anomalies. In this single-centre, prospective, non-randomized clinical study, paediatric patients underwent surgery for insertion of the ABPP. Primary efficacy measures included early (<30 day) morbidity; incidence of device-related complications; haemodynamic performance derived from echocardiography assessment at 6- and 12-month follow-up and magnetic resonance imaging findings in 10 randomly selected patients at 12 months. Secondary measures included device-handling characteristics; shape and sizing characteristics and perioperative implant complications. The Aristotle complexity scoring system was used to score the complexity level of all surgical procedures. Patients completing the 12-month study were eligible to enter a long-term evaluation study. Between April 2008 and September 2009, the ABPP was used in 30 paediatric patients. In the 30-day postoperative period, no graft-related morbidity was observed. In total, there were 5 deaths (2 in the 30-day postoperative period and 3 within the first 6 postoperative months). All deaths were deemed due to comorbid non-graft-related events. Echocardiography assessment at 6 and 12 months revealed intact anatomical and haemodynamically stable repairs without any visible calcification of the patch. Magnetic resonance imaging assessment in 10 patients at 12 months revealed no signs of calcification. Fisher's exact test demonstrated that patients undergoing more complex, higher risk surgical repairs (Aristotle complexity score >8) were significantly more likely to die (P = 0.0055, 58% survival compared with 100% survival for less complex surgical repairs). In 19 patients, echocardiographic data were available at 18-36 months with no evidence of device calcification, infection, thromboembolic events or device failure. This study demonstrates the safety and efficacy of this engineered bovine pericardial patch as a cardiovascular substitute for surgical repair of both simple and more complex congenital cardiac defects.

  10. Safety and efficacy of cardiopoietic stem cells in the treatment of post-infarction left-ventricular dysfunction - From cardioprotection to functional repair in a translational pig infarction model.

    PubMed

    Emmert, Maximilian Y; Wolint, Petra; Jakab, Andras; Sheehy, Sean P; Pasqualini, Francesco S; Nguyen, Thi Dan Linh; Hilbe, Monika; Seifert, Burkhardt; Weber, Benedikt; Brokopp, Chad E; Macejovska, Dominika; Caliskan, Etem; von Eckardstein, Arnold; Schwartlander, Ruth; Vogel, Viola; Falk, Volkmar; Parker, Kevin Kit; Gyöngyösi, Mariann; Hoerstrup, Simon P

    2017-04-01

    To date, clinical success of cardiac cell-therapies remains limited. To enhance the cardioreparative properties of stem cells, the concept of lineage-specification through cardiopoietic-guidance has been recently suggested. However, so far, only results from murine studies and from a clinical pilot-trial in chronic heart-failure (CHF) are available, while systematic evidence of its therapeutic-efficacy is still lacking. Importantly, also no data from large animals or for other indications are available. Therefore, we here investigate the therapeutic-efficacy of human cardiopoietic stem cells in the treatment of post-infarction LV-dysfunction using a translational pig-model. Using growth-factor priming, lineage-specification of human bone-marrow derived MSCs was achieved to generate cardiopoietic stem cells according to GMP-compliant protocols. Thereafter, pigs with post-infarction LV-dysfunction (sub-acute phase;1-month) were randomized to either receive transcatheter NOGA 3D electromechanical-mapping guided intramyocardial transplantation of cardiopoietic cells or saline (control). After 30days, cardiac MRI (cMRI) was performed for functional evaluation and in-vivo cell-tracking. This approach was coupled with a comprehensive post-mortem cell-fate and mode-of-repair analysis. Cardiopoietic cell therapy was safe and ejection-fraction was significantly higher when compared to controls (p = 0.012). It further prevented maladaptive LV-remodeling and revealed a significantly lower relative and total infarct-size (p = 0.043 and p = 0.012). As in-vivo tracking and post-mortem analysis displayed only limited intramyocardial cardiopoietic cell-integration, the significant induction of neo-angiogenesis (∼40% higher; p = 0.003) and recruitment of endogenous progenitors (∼2.5x higher; p = 0.008) to the infarct border-zone appeared to be the major modes-of-repair. This is the first report using a pre-clinical large animal-model to demonstrate the safety and efficacy of cardiopoietic stem cells for the treatment of post-infarction LV-dysfunction to prevent negative LV-remodeling and subsequent CHF. It further provides insight into post-delivery cardiopoietic cell-fate and suggests the mechanisms of cardiopoietic cell-induced cardiac-repair. The adoption of GMP-/GLP-compliant methodologies may accelerate the translation into a phase-I clinical-trial in patients with post-ischemic LV-dysfunction broadening the current indication of this interesting cell-type. Copyright © 2016. Published by Elsevier Ltd.

  11. Renal Infarction Caused by Spontaneous Renal Artery Dissection: Treatment with Catheter-Directed Thrombolysis and Stenting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Yong Sun, E-mail: radjeon@korea.com; Cho, Soon Gu; Hong, Ki Cheon

    2009-03-15

    Spontaneous renal artery dissection (SRAD) is rare and presents a diagnostic and therapeutic challenge. We report a case of a 36-year-old man who had an SRAD-complicated renal infarction. The patient experienced severe unilateral flank pain. Enhanced abdominal computed axial tomography scan showed renal infarction, and urinalysis showed no hematuria. Selective renal angiography was essential to evaluate the extent of dissection and suitability for repair. The patient was treated with catheter-directed thrombolysis and frenal artery stenting.

  12. Effectiveness of sacrificial anodes in high-resistivity shotcrete repairs.

    DOT National Transportation Integrated Search

    2005-01-01

    This study investigated the use of discrete sacrificial anodes to improve the durability and extend the life of a shotcrete patch repair in a column. Three columns were used in the investigation. In two columns, anodes were placed around the perimete...

  13. Analysis of repair and PCNA complex formation induced by ionizing radiation in human fibroblast cell lines.

    PubMed

    Karmakar, P; Balajee, A S; Natarajan, A T

    2001-05-01

    Proliferating cell nuclear antigen (PCNA), an auxiliary factor for DNA polymerase delta and epsilon, is involved in both DNA replication and repair. Previous studies in vitro have demonstrated the requirement of PCNA in the resynthesis step of nucleotide excision repair (NER) and base excision repair (BER). Using a native chromatin template isolated under near physiological conditions, we have analysed the involvement of PCNA in the BER pathway in different NER defective human cell lines. The repair sites and PCNA were visualized by indirect immunolabelling followed by fluorescence microscopy. The results indicate that exposure to X-rays triggers the induction of PCNA in all the three human fibroblast cell lines studied, namely normal, xeroderma pigmentosum group A (XP-A) and Cockayne syndrome group B (CS-B). In all the cell lines, induction of PCNA and repair patches occurred in a dose- and time-dependent fashion. Induction of repair patches in NER-deficient XP-A cells suggests that the X-ray-induced lesions are largely repaired via the BER pathway involving PCNA as one of the key components of this pathway. X-ray-induced repair synthesis was greatly inhibited by treatment of cells with DNA polymerase inhibitors aphidicolin and cytosine arabinoside. Interestingly, inhibition of repair resynthesis did not affect the intensity of PCNA staining in X-irradiated cells indicating that the PCNA may be required for the BER pathway at a step preceding the resynthesis step.

  14. Planar biaxial testing of heart valve cusp replacement biomaterials: Experiments, theory and material constants.

    PubMed

    Labrosse, Michel R; Jafar, Reza; Ngu, Janet; Boodhwani, Munir

    2016-11-01

    Aortic valve (AV) repair has become an attractive option to correct aortic insufficiency. Yet, cusp reconstruction with various cusp replacement materials has been associated with greater long-term repair failures, and it is still unknown how such materials mechanically compare with native leaflets. We used planar biaxial testing to characterize six clinically relevant cusp replacement materials, along with native porcine AV leaflets, to ascertain which materials would be best suited for valve repair. We tested at least six samples of: 1) fresh autologous porcine pericardium (APP), 2) glutaraldehyde fixed porcine pericardium (GPP), 3) St Jude Medical pericardial patch (SJM), 4) CardioCel patch (CC), 5) PeriGuard (PG), 6) Supple PeriGuard (SPG) and 7) fresh porcine AV leaflets (PC). We introduced efficient displacement-controlled testing protocols and processing, as well as advanced convexity requirements on the strain energy functions used to describe the mechanical response of the materials under loading. The proposed experimental and data processing pipeline allowed for a robust in-plane characterization of all the materials tested, with constants determined for two Fung-like hyperelastic, anisotropic strain energy models. Overall, CC and SPG (respectively PG) patches ranked as the closest mechanical equivalents to young (respectively aged) AV leaflets. Because the native leaflets as well as CC, PG and SPG patches exhibit significant anisotropic behaviors, it is suggested that the fiber and cross-fiber directions of these replacement biomaterials be matched with those of the host AV leaflets. The long-term performance of cusp replacement materials would ideally be evaluated in large animal models for AV disease and cusp repair, and over several months or more. Given the unavailability and impracticality of such models, detailed information on stress-strain behavior, as studied herein, and investigations of durability and valve dynamics will be the best surrogates, as they have been for prosthetic valves. Overall, comparison with Fig. 3 suggests that CC and SPG (respectively PG) patches may be the closest mechanical equivalents to young (respectively aged) AV leaflets. Interestingly, the thicknesses of these materials are close to those reported for porcine and younger human AV leaflets, which may facilitate surgical implantation, by contrast to the thinner APP which has poor handling qualities. Because the native leaflets as well as CC, PG and SPG patches exhibit anisotropic behaviors, from a mechanistic perspective alone, it stands to reason that cardiac surgeons should seek to intraoperatively match the fiber and cross-fiber directions of these replacement biomaterials with those of the repaired AV leaflets. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Image-guided therapies for myocardial repair: concepts and practical implementation

    PubMed Central

    Bengel, Frank M.; George, Richard T.; Schuleri, Karl H.; Lardo, Albert C.; Wollert, Kai C.

    2013-01-01

    Cell- and molecule-based therapeutic strategies to support wound healing and regeneration after myocardial infarction (MI) are under development. These emerging therapies aim at sustained preservation of ventricular function by enhancing tissue repair after myocardial ischaemia and reperfusion. Such therapies will benefit from guidance with regard to timing, regional targeting, suitable candidate selection, and effectiveness monitoring. Such guidance is effectively obtained by non-invasive tomographic imaging. Infarct size, tissue characteristics, muscle mass, and chamber geometry can be determined by magnetic resonance imaging and computed tomography. Radionuclide imaging can be used for the tracking of therapeutic agents and for the interrogation of molecular mechanisms such as inflammation, angiogenesis, and extracellular matrix activation. This review article portrays the hypothesis that an integrated approach with an early implementation of structural and molecular tomographic imaging in the development of novel therapies will provide a framework for achieving the goal of improved tissue repair after MI. PMID:23720377

  16. Structural Repair of Steel Piping by In-Situ Sleeving of Nanostructured Materials

    DOT National Transportation Integrated Search

    2009-06-03

    The focus of Task 1 is to demonstrate the repair of degraded pipeline steel using patches of high strength nanocrystalline metal. As mentioned in Bi-Monthly Research Progress Report #2, the cracking caused by corrosion damage in the steel pipe sectio...

  17. Enhanced phasic GABA inhibition during the repair phase of stroke: a novel therapeutic target.

    PubMed

    Hiu, Takeshi; Farzampour, Zoya; Paz, Jeanne T; Wang, Eric Hou Jen; Badgely, Corrine; Olson, Andrew; Micheva, Kristina D; Wang, Gordon; Lemmens, Robin; Tran, Kevin V; Nishiyama, Yasuhiro; Liang, Xibin; Hamilton, Scott A; O'Rourke, Nancy; Smith, Stephen J; Huguenard, John R; Bliss, Tonya M; Steinberg, Gary K

    2016-02-01

    Ischaemic stroke is the leading cause of severe long-term disability yet lacks drug therapies that promote the repair phase of recovery. This repair phase of stroke occurs days to months after stroke onset and involves brain remapping and plasticity within the peri-infarct zone. Elucidating mechanisms that promote this plasticity is critical for the development of new therapeutics with a broad treatment window. Inhibiting tonic (extrasynaptic) GABA signalling during the repair phase was reported to enhance functional recovery in mice suggesting that GABA plays an important function in modulating brain repair. While tonic GABA appears to suppress brain repair after stroke, less is known about the role of phasic (synaptic) GABA during the repair phase. We observed an increase in postsynaptic phasic GABA signalling in mice within the peri-infarct cortex specific to layer 5; we found increased numbers of α1 receptor subunit-containing GABAergic synapses detected using array tomography, and an associated increased efficacy of spontaneous and miniature inhibitory postsynaptic currents in pyramidal neurons. Furthermore, we demonstrate that enhancing phasic GABA signalling using zolpidem, a Food and Drug Administration (FDA)-approved GABA-positive allosteric modulator, during the repair phase improved behavioural recovery. These data identify potentiation of phasic GABA signalling as a novel therapeutic strategy, indicate zolpidem's potential to improve recovery, and underscore the necessity to distinguish the role of tonic and phasic GABA signalling in stroke recovery. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  18. Enhanced phasic GABA inhibition during the repair phase of stroke: a novel therapeutic target

    PubMed Central

    Paz, Jeanne T.; Wang, Eric Hou Jen; Badgely, Corrine; Olson, Andrew; Micheva, Kristina D.; Wang, Gordon; Lemmens, Robin; Tran, Kevin V.; Nishiyama, Yasuhiro; Liang, Xibin; Hamilton, Scott A.; O’Rourke, Nancy; Smith, Stephen J.; Huguenard, John R.; Bliss, Tonya M.

    2016-01-01

    Abstract Ischaemic stroke is the leading cause of severe long-term disability yet lacks drug therapies that promote the repair phase of recovery. This repair phase of stroke occurs days to months after stroke onset and involves brain remapping and plasticity within the peri-infarct zone. Elucidating mechanisms that promote this plasticity is critical for the development of new therapeutics with a broad treatment window. Inhibiting tonic (extrasynaptic) GABA signalling during the repair phase was reported to enhance functional recovery in mice suggesting that GABA plays an important function in modulating brain repair. While tonic GABA appears to suppress brain repair after stroke, less is known about the role of phasic (synaptic) GABA during the repair phase. We observed an increase in postsynaptic phasic GABA signalling in mice within the peri-infarct cortex specific to layer 5; we found increased numbers of α1 receptor subunit-containing GABAergic synapses detected using array tomography, and an associated increased efficacy of spontaneous and miniature inhibitory postsynaptic currents in pyramidal neurons. Furthermore, we demonstrate that enhancing phasic GABA signalling using zolpidem, a Food and Drug Administration (FDA)-approved GABA-positive allosteric modulator, during the repair phase improved behavioural recovery. These data identify potentiation of phasic GABA signalling as a novel therapeutic strategy, indicate zolpidem’s potential to improve recovery, and underscore the necessity to distinguish the role of tonic and phasic GABA signalling in stroke recovery. PMID:26685158

  19. Selective versus routine patch metal allergy testing to select bar material for the Nuss procedure in 932 patients over 10years.

    PubMed

    Obermeyer, Robert J; Gaffar, Sheema; Kelly, Robert E; Kuhn, M Ann; Frantz, Frazier W; McGuire, Margaret M; Paulson, James F; Kelly, Cynthia S

    2018-02-01

    The aim of the study was to determine the role of patch metal allergy testing to select bar material for the Nuss procedure. An IRB-approved (11-04-WC-0098) single institution retrospective, cohort study comparing selective versus routine patch metal allergy testing to select stainless steel or titanium bars for Nuss repair was performed. In Cohort A (9/2004-1/2011), selective patch testing was performed based on clinical risk factors. In Cohort B (2/2011-9/2014), all patients were patch tested. The cohorts were compared for incidence of bar allergy and resultant premature bar loss. Risk factors for stainless steel allergy or positive patch test were evaluated. Cohort A had 628 patients with 63 (10.0%) selected for patch testing, while all 304 patients in Cohort B were tested. Over 10years, 15 (1.8%) of the 842 stainless steel Nuss repairs resulted in a bar allergy, and 5 had a negative preoperative patch test. The incidence of stainless steel bar allergy (1.8% vs 1.7%, p=0.57) and resultant bar loss (0.5% vs 1.3%, p=0.23) was not statistically different between cohorts. An allergic reaction to a stainless steel bar or a positive patch test was more common in females (OR=2.3, p<0.001) and patients with a personal (OR=24.8, p<0.001) or family history (OR=3.1, p<0.001) of metal sensitivity. Stainless steel bar allergies occur at a low incidence with either routine or selective patch metal allergy testing. If selective testing is performed, it is advisable in females and patients with a personal or family history of metal sensitivity. A negative preoperative patch metal allergy test does not preclude the possibility of a postoperative stainless steel bar allergy. Level III Treatment Study and Study of Diagnostic Test. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Field evaluation of corrosion inhibitors for concrete : interim report 2, evaluation of installation and initial condition of bridge repairs done with corrosion-inhibiting admixtures and topical treatments.

    DOT National Transportation Integrated Search

    1999-06-01

    Four bridge decks were overlayed and patched and one bridge pier was patched using concrete with and without corrosion inhibiting admixtures. Some concrete surfaces received topically applied corrosion-inhibiting treatments prior to placement of the ...

  1. Annexins in plasma membrane repair.

    PubMed

    Boye, Theresa Louise; Nylandsted, Jesper

    2016-10-01

    Disruption of the plasma membrane poses deadly threat to eukaryotic cells and survival requires a rapid membrane repair system. Recent evidence reveal various plasma membrane repair mechanisms, which are required for cells to cope with membrane lesions including membrane fusion and replacement strategies, remodeling of cortical actin cytoskeleton and vesicle wound patching. Members of the annexin protein family, which are Ca2+-triggered phospholipid-binding proteins emerge as important components of the plasma membrane repair system. Here, we discuss the mechanisms of plasma membrane repair involving annexins spanning from yeast to human cancer cells.

  2. Nanovector-based prolyl hydroxylase domain 2 silencing system enhances the efficiency of stem cell transplantation for infarcted myocardium repair.

    PubMed

    Zhu, Kai; Lai, Hao; Guo, Changfa; Li, Jun; Wang, Yulin; Wang, Lingyan; Wang, Chunsheng

    2014-01-01

    Mesenchymal stem cell (MSC) transplantation has attracted much attention in myocardial infarction therapy. One of the limitations is the poor survival of grafted cells in the ischemic microenvironment. Small interfering RNA-mediated prolyl hydroxylase domain protein 2 (PHD2) silencing in MSCs holds tremendous potential to enhance their survival and paracrine effect after transplantation. However, an efficient and biocompatible PHD2 silencing system for clinical application is lacking. Herein, we developed a novel PHD2 silencing system based on arginine-terminated generation 4 poly(amidoamine) (Arg-G4) nanoparticles. The system exhibited effective and biocompatible small interfering RNA delivery and PHD2 silencing in MSCs in vitro. After genetically modified MSC transplantation in myocardial infarction models, MSC survival and paracrine function of IGF-1 were enhanced significantly in vivo. As a result, we observed decreased cardiomyocyte apoptosis, scar size, and interstitial fibrosis, and increased angiogenesis in the diseased myocardium, which ultimately attenuated ventricular remodeling and improved heart function. This work demonstrated that an Arg-G4 nanovector-based PHD2 silencing system could enhance the efficiency of MSC transplantation for infarcted myocardium repair.

  3. Hyaluronan Enhances Bone Marrow Cell Therapy for Myocardial Repair After Infarction

    PubMed Central

    Chen, Chien-Hsi; Wang, Shoei-Shen; Wei, Erika IH; Chu, Ting-Yu; Hsieh, Patrick CH

    2013-01-01

    Hyaluronan (HA) has been shown to play an important role during early heart development and promote angiogenesis under various physiological and pathological conditions. In recent years, stem cell therapy, which may reduce cardiomyocyte apoptosis, increase neovascularization, and prevent cardiac fibrosis, has emerged as a promising approach to treat myocardial infarction (MI). However, effective delivery of stem cells for cardiac therapy remains a major challenge. In this study, we tested whether transplanting a combination of HA and allogeneic bone marrow mononuclear cells (MNCs) promotes cell therapy efficacy and thus improves cardiac performance after MI in rats. We showed that HA provided a favorable microenvironment for cell adhesion, proliferation, and vascular differentiation in MNC culture. Following MI in rats, compared with the injection of HA alone or MNC alone, injection of both HA and MNCs significantly reduced inflammatory cell infiltration, cardiomyocyte apoptosis, and infarct size and also improved cell retention, angiogenesis, and arteriogenesis, and thus the overall cardiac performance. Ultimately, HA/MNC treatment improved vasculature engraftment of transplanted cells in the infarcted region. Together, our results indicate that combining the biocompatible material HA with bone marrow stem cells exerts a therapeutic effect on heart repair and may further provide potential treatment for ischemic diseases. PMID:23295948

  4. The use of epoxy patch grafts for the repair of experimentally-created diaphragmatic defects in dogs.

    PubMed

    Matsumoto, H; Oguchi, Y; Miyake, Y; Masuda, Y; Masada, S; Kuno, Y; Shibahara, I; Takashima, K; Yamane, H; Yamagata, S; Noishiki, Y; Yamane, Y

    1996-07-01

    Canine pericardium which had been treated with polyepoxy compounds (Denacol EX-313) was used as a patch graft for the correction of experimentally-created diaphragmatic defects in five dogs belonging to the same litter. Clinical, macroscopic and histological examinations were conducted every month up to five months after suturing of the patch graft. Clinical examination of the patch graft showed no apparent abnormalities. Macroscopic examination conducted during autopsy showed that the patch graft maintained adequate elasticity for five months after suturing, the surface of the patch graft was covered with a thin membrane and neovascularization was observed. Histological examination showed that the surface of the patch graft was covered with a thin membrane. Inflammatory tissue reactions were observed at one month, but gradually decreased from the second month onwards. In addition, the patch graft had excellent tissue affinity.

  5. RGDfK-Peptide Modified Alginate Scaffold for Cell Transplantation and Cardiac Neovascularization.

    PubMed

    Sondermeijer, Hugo P; Witkowski, Piotr; Seki, Tetsunori; van der Laarse, Arnoud; Itescu, Silviu; Hardy, Mark A

    2018-05-01

    Cell implantation for tissue repair is a promising new therapeutic strategy. Although direct injection of cells into tissue is appealing, cell viability and retention are not very good. Cell engraftment and survival following implantation are dependent on a sufficient supply of oxygen and nutrients through functional microcirculation as well as a suitable local microenvironment for implanted cells. In this study, we describe the development of a porous, biocompatible, three-dimensional (3D) alginate scaffold covalently modified with the synthetic cyclic RGDfK (Arg-Gly-Asp-D-Phe-Lys) peptide. Cyclic RGDfK peptide is protease resistant, highly stable in aqueous solutions, and has high affinity for cellular integrins. Cyclic RGDfK-modified alginate scaffolds were generated using a novel silicone sheet sandwich technique in combination with freeze-gelation, resulting in highly porous nonimmunogenic scaffolds that promoted both human and rodent cell survival in vitro, and neoangiogenesis in vivo. Two months following implantation in abdominal rectus muscles in rats, cyclic RGDfK-modified scaffolds were fully populated by host cells, especially microvasculature without an overt immune response or fibrosis, whereas unmodified control scaffolds did not show cell ingrowth. Importantly, modified scaffolds that were seeded with human mesenchymal precursor cells and were patched to the epicardial surface of infarcted myocardium induced myocardial neoangiogenesis and significantly improved cardiac function. In summary, purified cyclic RGDfK peptide-modified 3D alginate scaffolds are biocompatible and nonimmunogenic, enhance cell viability, promote angiogenesis, and may be used as a means to deliver cells to myocardial infarct areas to improve neovascularization and cardiac function.

  6. Rapid road repair vehicle

    DOEpatents

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  7. Rapid road repair vehicle

    DOEpatents

    Mara, L.M.

    1998-05-05

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

  8. Fibroblasts in myocardial infarction: a role in inflammation and repair

    PubMed Central

    Shinde, Arti V.; Frangogiannis, Nikolaos G.

    2014-01-01

    Fibroblasts do not only serve as matrix-producing reparative cells, but exhibit a wide range of functions in inflammatory and immune responses, angiogenesis and neoplasia. The adult mammalian myocardium contains abundant fibroblasts enmeshed within the interstitial and perivascular extracellular matrix. The current review manuscript discusses the dynamic phenotypic and functional alterations of cardiac fibroblasts following myocardial infarction. Extensive necrosis of cardiomyocytes in the infarcted heart triggers an intense inflammatory reaction. In the early stages of infarct healing, fibroblasts become pro-inflammatory cells, activating the inflammasome and producing cytokines, chemokines and proteases. Pro-inflammatory cytokines (such as Interleukin-1) delay myofibroblast transformation, until the wound is cleared from dead cells and matrix debris. Resolution of the inflammatory infiltrate is associated with fibroblast migration, proliferation, matrix protein synthesis and myofibroblast conversion. Growth factors and matricellular proteins play an important role in myofibroblast activation during the proliferative phase of healing. Formation of a mature cross-linked scar is associated with clearance of fibroblasts, as poorly-understood inhibitory signals restrain the fibrotic response. However, in the non-infarcted remodeling myocardium, local fibroblasts may remain activated in response to volume and pressure overload and may promote interstitial fibrosis. Considering their abundance, their crucial role in cardiac inflammation and repair, and their involvement in myocardial dysfunction and arrhythmogenesis, cardiac fibroblasts may be key therapeutic targets in cardiac remodeling. PMID:24321195

  9. Structural Technology and Analysis Program (STAP) Delivery Order 0004: Durability Patch

    NASA Astrophysics Data System (ADS)

    Ikegami, Roy; Haugse, Eric; Trego, Angela; Rogers, Lynn; Maly, Joe

    2001-06-01

    Structural cracks in secondary structure, resulting from a high cycle fatigue (HCF) environment, are often referred to as nuisance cracks. This type of damage can result in costly inspections and repair. The repairs often do not last long because the repaired structure continues to respond in a resonant fashion to the environment. Although the use of materials for passive damping applications is well understood, there are few applications to high-cycle fatigue problems. This is because design information characterization temperature, resonant response frequency and strain levels are difficult to determine. The Durability Patch and Damage Dosimeter Program addressed these problems by: (1) Developing a damped repair design process which includes a methodology for designing the material and application characteristics required to optimally damp the repair. (2) Designing and developing a rugged, small, and lightweight data acquisition unit called the damage dosimeter. This is a battery operated, single board computer, capable of collecting three channels of strain and one channel of temperature, processing this data by user developed algorithms written in the C programming language, and storing the processed data in resident memory. The dosimeter is used to provide flight data needed to characterize the vibration environment. The vibration environment is then used to design the damping material characteristics and repair. The repair design methodology and dosimeter were demonstrated on B-52, C-130, and F-15 aircraft applications.

  10. Stem cells are dispensable for lung homeostasis but restore airways after injury.

    PubMed

    Giangreco, Adam; Arwert, Esther N; Rosewell, Ian R; Snyder, Joshua; Watt, Fiona M; Stripp, Barry R

    2009-06-09

    Local tissue stem cells have been described in airways of the lung but their contribution to normal epithelial maintenance is currently unknown. We therefore developed aggregation chimera mice and a whole-lung imaging method to determine the relative contributions of progenitor (Clara) and bronchiolar stem cells to epithelial maintenance and repair. In normal and moderately injured airways chimeric patches were small in size and not associated with previously described stem cell niches. This finding suggested that single, randomly distributed progenitor cells maintain normal epithelial homeostasis. In contrast we found that repair following severe lung injury resulted in the generation of rare, large clonal cell patches that were associated with stem cell niches. This study provides evidence that epithelial stem cells are dispensable for normal airway homeostasis. We also demonstrate that stem cell activation and robust clonal cellular expansion occur only during repair from severe lung injury.

  11. A New Absorbable Synthetic Substitute With Biomimetic Design for Dural Tissue Repair.

    PubMed

    Shi, Zhidong; Xu, Tao; Yuan, Yuyu; Deng, Kunxue; Liu, Man; Ke, Yiquan; Luo, Chengyi; Yuan, Tun; Ayyad, Ali

    2016-04-01

    Dural repair products are evolving from animal tissue-derived materials to synthetic materials as well as from inert to absorbable features; most of them lack functional and structural characteristics compared with the natural dura mater. In the present study, we evaluated the properties and tissue repair performance of a new dural repair product with biomimetic design. The biomimetic patch exhibits unique three-dimensional nonwoven microfiber structure with good mechanical strength and biocompatibility. The animal study showed that the biomimetic patch and commercially synthetic material group presented new subdural regeneration at 90 days, with low level inflammatory response and minimal to no adhesion formation detected at each stage. In the biological material group, no new subdural regeneration was observed and severe adhesion between the implant and the cortex occurred at each stage. In clinical case study, there was no cerebrospinal fluid leakage, and all the postoperation observations were normal. The biomimetic structure and proper rate of degradation of the new absorbable dura substitute can guide the meaningful reconstruction of the dura mater, which may provide a novel approach for dural defect repair. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. IFATS Collection: Human Adipose Tissue-Derived Stem Cells Induce Angiogenesis and Nerve Sprouting Following Myocardial Infarction, in Conjunction with Potent Preservation of Cardiac Function

    PubMed Central

    Cai, Liying; Johnstone, Brian H.; Cook, Todd G.; Tan, Jian; Fishbein, Michael C.; Chen, Peng-Sheng; March, Keith L.

    2010-01-01

    The administration of therapeutic cell types, such as stem and progenitor cells, has gained much interest for the limitation or repair of tissue damage caused by a variety of insults. However, it is still uncertain whether the morphological and functional benefits are mediated predominantly via cell differentiation or paracrine mechanisms. Here, we assessed the extent and mechanisms of adipose-derived stromal/stem cells (ASC)-dependent tissue repair in the context of acute myocardial infarction. Human ASCs in saline or saline alone was injected into the peri-infarct region in athymic rats following left anterior descending (LAD) coronary artery ligation. Cardiac function and structure were evaluated by serial echocardiography and histology. ASC-treated rats consistently exhibited better cardiac function, by all measures, than control rats 1 month following LAD occlusion. Left ventricular (LV) ejection fraction and fractional shortening were improved in the ASC group, whereas LV remodeling and dilation were limited in the ASC group compared with the saline control group. Anterior wall thinning was also attenuated by ASC treatment, and post-mortem histological analysis demonstrated reduced fibrosis in ASC-treated hearts, as well as increased peri-infarct density of both arterioles and nerve sprouts. Human ASCs were persistent at 1 month in the peri-infarct region, but they were not observed to exhibit significant cardiomyocyte differentiation. Human ASCs preserve heart function and augment local angiogenesis and cardiac nerve sprouting following myocardial infarction predominantly by the provision of beneficial trophic factors. PMID:18772313

  13. Exogenous Nkx2.5- or GATA-4-transfected rabbit bone marrow mesenchymal stem cells and myocardial cell co-culture on the treatment of myocardial infarction in rabbits.

    PubMed

    Li, Pu; Zhang, Lei

    2015-08-01

    The present study aimed to investigate the effects of Nkx2.5 or GATA-4 transfection with myocardial extracellular environment co-culture on the transformation of bone marrow mesenchymal stem cells (BMSCs) into differentiated cardiomyocytes. Nkx2.5 or GATA-4 were transfected into myocardial extracellular environment co-cultured BMSCs, and then injected into the periphery of infarcted myocardium of a myocardial infarction rabbit model. The effects of these gene transfections and culture on the infarcted myocardium were observed and the results may provide an experimental basis for the efficient myocardial cell differentiation of BMSCs. The present study also suggested that these cells may provide a source and clinical basis for myocardial injury repair via stem cell transplantation. The present study examined whether Nkx2.5 or GATA-4 exogenous gene transfection with myocardial cell extracellular environment co-culture were able to induce the differentiation of BMSCs into cardiac cells. In addition, the effect of these transfected BMSCs on the repair of the myocardium following myocardial infarction was determined using New Zealand rabbit models. The results demonstrated that myocardial cell differentiation was significantly less effective following exogenous gene transfection of Nkx2.5 or GATA-4 alone compared with that of transfection in combination with extracellular environment co-culture. In addition, the results of the present study showed that exogenous gene transfection of Nkx2.5 or GATA-4 into myocardial cell extracellular environment co-cultured BMSCs was able to significantly enhance the ability to repair, mitigating the death of myocardial cells and activation of the myocardium in rabbits with myocardial infarction compared with those of the rabbits transplanted with untreated BMSCs. In conclusion, the exogenous Nkx2.5 and GATA-4 gene transfection into myocardial extracellular environment co-cultured BMSCs induced increased differentiation into myocardial cells compared with that of gene transfection alone. Furthermore, significantly enhanced reparative effects were observed in the myocardium of rabbits following treatment with Nkx2.5-or GATA-4-transfected myocardial cell extracellular environment co-cultured BMSCs compared with those treated with untreated BMSCs.

  14. The biomechanical effects of polytetrafluoroethylene suture augmentations in lateral-row rotator cuff repairs in an ovine model.

    PubMed

    Beimers, Lijkele; Lam, Patrick H; Murrell, George A C

    2014-10-01

    This study investigated the biomechanical effects of expanded polytetrafluoroethylene (ePTFE) suture augmentation patches in rotator cuff repair constructs. The infraspinatus tendon in 24 cadaveric ovine shoulders was repaired using an inverted horizontal mattress suture with 2 knotless bone anchors (ArthroCare, Austin, TX, USA) in a lateral-row configuration. Four different repair groups (6 per group) were created: (1) standard repair using inverted horizontal mattress sutures, (2) repair with ePTFE suture augmentations on the bursal side of the tendon, (3) repair with ePTFE suture augmentations on the articular side, and, (4) repair with ePTFE suture augmentations on both sides of the tendon. Footprint contact pressure, stiffness, and the load to failure of the repair constructs were measured. Repairs with ePTFE suture augmentations on the bursal side exerted significantly more footprint contact pressure (0.40 ± 0.01 MPa) than those on the articular side (0.34 ± 0.02 MPa, P = .04) and those on both sides (0.33 ± 0.02 MPa, P = .01). At 15 degrees of abduction, ePTFE-augmented repairs on the bursal side had higher footprint contact pressure (0.26 ± 0.03 MPa) compared with standard repairs (0.15 ± 0.02 MPa, P = .01) and with ePTFE-augmented repairs on the articular side (0.18 ± 0.02 MPa, P = .03). The ePTFE-augmented repairs on the bursal side demonstrated significantly higher failure loads (178 ± 18 N) than standard repairs (120 ± 17 N, P = .04). Inverted horizontal mattress sutures augmented with ePTFE patches on the bursal side of the tendon enhanced footprint contact pressures and the ultimate load to failure of lateral-row rotator cuff repairs in an ovine model. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  15. Long-term successful arthroscopic repair of large and massive rotator cuff tears with a functional and degradable reinforcement device.

    PubMed

    Proctor, Christopher S

    2014-10-01

    Rotator cuff repair is a procedure with varying outcomes, and there has been subsequent interest in devices that reinforce the repair and enhance structural and functional outcomes. The objective of this study was to determine these outcomes for arthroscopic repair of large and massive rotator cuff tears augmented with a synthetic absorbable mesh designed specifically for reinforcement of tendon repair by imaging and clinical assessments. Consecutive arthroscopic repairs were performed on 18 patients with large to massive rotator cuff tears by use of a poly-l-lactic acid synthetic patch as a reinforcement device and fixation with 4 sutures. Patients were assessed preoperatively and at 6 months, 12 months, and a mean of 42 months after surgery by the American Shoulder and Elbow Surgeons (ASES) shoulder score to evaluate clinical performance and at 12 months by ultrasound to assess structural repair. Ultrasound showed that 15 of 18 patients had intact rotator cuff repair at 12 months; at 42 months, an additional patient had a failed repair. Patients showed improvement in the ASES shoulder score from 25 preoperatively to 71 at 12 months and 70 at 42 months after surgery. Patients with intact rotator cuff (n = 14) at 42 months had an ASES shoulder score of 82. The poly-l-lactic acid bioabsorbable patch designed specifically to reinforce the surgical repair of tendons supported successful repair of large to massive rotator cuff tears in 83% of patients at 12 months after surgery and 78% of patients at 42 months after surgery, with substantial functional improvement. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  16. Repair Types, Procedures - Part 1

    DTIC Science & Technology

    2010-05-01

    Affordable Combat Aircraft, AGARD - CP -600, 1997. [17] Helbling J, Grover R and Ratwani M. M “Analysis and Structural Test of Composite Reinforcement to...considered suitable for the composite patch repair of aluminum structure. Ductile adhesives such as FM- 73 are preferred over brittle adhesives Repair Types...zone. A proper cure cycle is followed as prescribed by the adhesive manufacturer. For FM- 73 adhesive cure at 2500F (1210C) for 120 minutes is

  17. A rapid non-radioactive technique for measurement of repair synthesis in primary human fibroblasts by incorporation of ethynyl deoxyuridine (EdU).

    PubMed

    Limsirichaikul, Siripan; Niimi, Atsuko; Fawcett, Heather; Lehmann, Alan; Yamashita, Shunichi; Ogi, Tomoo

    2009-03-01

    Xeroderma pigmentosum (XP) is an autosomal recessive genetic disorder. Afflicted patients show extreme sun-sensitivity and skin cancer predisposition. XP is in most cases associated with deficient nucleotide excision repair (NER), which is the process responsible for removing photolesions from DNA. Measuring NER activity by nucleotide incorporation into repair patches, termed 'unscheduled DNA synthesis (UDS)', is one of the most commonly used assays for XP-diagnosis and NER research. We have established a rapid and accurate procedure for measuring UDS by replacement of thymidine with 5-ethynyl-2'-deoxyuridine (EdU). EdU incorporated into repair patches can be directly conjugated to fluorescent azide derivatives, thereby obviating the need for either radiolabeled thymidine or denaturation and antibody detection of incorporated bromodeoxyuridine (BrdU). We demonstrate that the EdU incorporation assay is compatible with conventional techniques such as immunofluorescent staining and labeling of cells with micro-latex beads. Importantly, we can complete the entire UDS assay within half a day from preparation of the assay coverslips; this technique may prove useful as a method for XP diagnosis.

  18. Cardiac Progenitor Cells and Bone Marrow-Derived Very Small Embryonic-Like Stem Cells for Cardiac Repair After Myocardial Infarction

    PubMed Central

    Tang, Xian-Liang; Rokosh, D. Gregg; Guo, Yiru; Bolli, Roberto

    2010-01-01

    Heart failure after myocardial infarction (MI) continues to be the most prevalent cause of morbidity and mortality worldwide. Although pharmaceutical agents and interventional strategies have contributed greatly to therapy, new and superior treatment modalities are urgently needed given the overall disease burden. Stem cell-based therapy is potentially a promising strategy to lead to cardiac repair after MI. An array of cell types has been explored in this respect, including skeletal myoblasts, bone marrow (BM)-derived stem cells, embryonic stem cells, and more recently, cardiac progenitor cells (CPCs). Recently studies have obtained evidence that transplantation of CPCs or BM-derived very small embryonic-like stem cells can improve cardiac function and alleviate cardiac remodeling, supporting the potential therapeutic utility of these cells for cardiac repair. This report summarizes the current data from those studies and discusses the potential implication of these cells in developing clinically-relevant stem cell-based therapeutic strategies for cardiac regeneration. PMID:20081317

  19. Marginal ulcer perforation: a single center experience.

    PubMed

    Natarajan, S K; Chua, D; Anbalakan, K; Shelat, V G

    2017-10-01

    Marginal ulcer (MU) is defined as ulcer on the jejunal side of the gastrojejunostomy (GJ) anastomosis. Most MUs are managed medically but those with complications like bleeding or perforation require intervention. It is recommended that GJ anastomosis be revised in patients with MU perforation (MUP). The aim of this case series is to study the clinical presentation and management of MUP. Three hundred and thirty-two patients who underwent emergency surgery for perforated peptic ulcer at a single center were studied over a period of 5 years. Nine patients (2.7 %) presented with MUP. GJ was previously done for either complicated peptic ulcer (n = 4) or for suspected gastric malignancy (n = 5). Two patients had previously completed H. pylori therapy. None of the patients presented with septic shock. MU was on the jejunal side of GJ in all patients. The median MUP size was 10 mm. Four patients (44.4 %) had omental patch repair, three (33.3 %) had primary closure, and one each had revision of GJ and jejunal serosal patch repair. There were no leaks, intra-abdominal abscess or reoperation and no malignancies. MUP patients do not present with septic shock. Omental patch repair or primary closure is sufficient enough. Revision of Billroth-II-GJ into Roux-en-Y-GJ is not mandatory.

  20. Patch-Augmented Latissimus Dorsi Transfer and Open Reduction–Internal Fixation of Unstable Os Acromiale for Irreparable Massive Posterosuperior Rotator Cuff Tear

    PubMed Central

    Petri, Maximilian; Greenspoon, Joshua A.; Bhatia, Sanjeev; Millett, Peter J.

    2015-01-01

    Latissimus dorsi transfer is a reasonable treatment option for massive posterosuperior rotator cuff tears that can substantially improve chronically painful and dysfunctional shoulders. This report and accompanying video describe the treatment of an active 43-year-old man with severe pain and weakness in the right shoulder after 3 failed rotator cuff repairs. Preoperative imaging showed a massive posterosuperior rotator cuff tear retracted to the glenoid as well as a hypermobile os acromiale likely causing dynamic impingement and recurrent rotator cuff tears. After diagnostic arthroscopy, the latissimus tendon is harvested and augmented with a 3-mm human acellular dermal patch (ArthroFlex; Arthrex, Naples, FL). The native rotator cuff tissue is repaired as much as possible, and the latissimus tendon is passed underneath the deltoid and posterior to the teres minor. The patch-augmented tendon is then integrated into a double-row SpeedBridge repair of eight 4.75-mm BioComposite SwiveLock anchors (Arthrex). The bony surface of the os acromiale is prepared and then fixed to the acromion with 2 cannulated partially threaded screws and additional tension-band wiring. Postoperative rehabilitation initially focuses on early passive range of motion, followed by active and active-assisted motion and a biofeedback program starting at 6 weeks postoperatively. PMID:26697309

  1. Laparoscopic versus Open Omental Patch Repair for Early Presentation of Perforated Peptic Ulcer: Matched Retrospective Cohort Study.

    PubMed

    Lee, Daniel Jin Keat; Ye, MaDong; Sun, Keith Haozhe; Shelat, Vishalkumar G; Koura, Aaryan

    2016-01-01

    Introduction. The aim of this study was to compare the outcomes between laparoscopic and open omental patch repair (LOPR versus OR) in patients with similar presentation of perforated peptic ulcer (PPU). The secondary aim was to evaluate the outcomes according to the severity of peritonitis. Methods. All patients who underwent omental patch repair at two university-affiliated institutes between January 2010 and December 2014 were reviewed. Matched cohort between LOPR and OR groups was achieved by only including patients that had ulcer perforation <2 cm in size and symptoms occurring <48 hours. Outcome measures were defined in accordance with length of stay (LOS), postoperative complications, and mortality. Results. 148 patients met the predefined inclusion criteria with LOPR performed in 40 patients. Outcome measures consistently support laparoscopic approach but only length of hospital stay (LOS) achieved statistical significance (LOPR 4 days versus OR 5 days, p < 0.01). In a subgroup analysis of patients with MPI score >21, LOPR is also shown to benefit, particularly resulting in significant shorter LOS (4 days versus 11 days, p < 0.01). Conclusion. LOPR offers improved short-term outcomes in patients who present within 48 hours and with perforation size <2 cm. LOPR also proved to be more beneficial in high MPI cases.

  2. Laparoscopic versus Open Omental Patch Repair for Early Presentation of Perforated Peptic Ulcer: Matched Retrospective Cohort Study

    PubMed Central

    Sun, Keith Haozhe; Koura, Aaryan

    2016-01-01

    Introduction. The aim of this study was to compare the outcomes between laparoscopic and open omental patch repair (LOPR versus OR) in patients with similar presentation of perforated peptic ulcer (PPU). The secondary aim was to evaluate the outcomes according to the severity of peritonitis. Methods. All patients who underwent omental patch repair at two university-affiliated institutes between January 2010 and December 2014 were reviewed. Matched cohort between LOPR and OR groups was achieved by only including patients that had ulcer perforation <2 cm in size and symptoms occurring <48 hours. Outcome measures were defined in accordance with length of stay (LOS), postoperative complications, and mortality. Results. 148 patients met the predefined inclusion criteria with LOPR performed in 40 patients. Outcome measures consistently support laparoscopic approach but only length of hospital stay (LOS) achieved statistical significance (LOPR 4 days versus OR 5 days, p < 0.01). In a subgroup analysis of patients with MPI score >21, LOPR is also shown to benefit, particularly resulting in significant shorter LOS (4 days versus 11 days, p < 0.01). Conclusion. LOPR offers improved short-term outcomes in patients who present within 48 hours and with perforation size <2 cm. LOPR also proved to be more beneficial in high MPI cases. PMID:27722200

  3. Long-term outcomes of reoperations following repair of partial atrioventricular septal defect.

    PubMed

    Buratto, Edward; Ye, Xin Tao; Bullock, Andrew; Kelly, Andrew; d'Udekem, Yves; Brizard, Christian P; Konstantinov, Igor E

    2016-08-01

    Partial atrioventricular septal defect (pAVSD) is repaired with excellent long-term survival. However, up to 25% of patients require reoperations. This study reviews results of reoperation following pAVSD repair at a single institution. From 1975 to 2012, 40 patients (16%, 40/246) underwent reoperation following pAVSD repair at the study institution. The data were retrospectively reviewed. The mean time to reoperation was 5.4 ± 5.8 years. The most common reoperations were left atrioventricular valve (LAVV) surgery (78%, 31/40) and resection of left ventricular outflow tract obstruction (20%, 8/40). The most common cause for LAVV surgery was regurgitation through the cleft (58%, 18/31), followed by central regurgitation (29%, 9/31). Most cases of LAVV regurgitation were treated by repair (77%, 24/31), rather than replacement (23%, 7/31). Since the introduction of a patch augmentation technique for LAVV repair in 1998, the rate of repair has increased from 54 to 94% (P = 0.012). The early mortality rate was 2.5% (1/40). The survival rate was 90% (95% CI: 76-96) at 10 years and 83% (95% CI: 60-94) at 20 years. The rate of freedom from further reoperation was 66% (95% CI: 46-80) at 10- and 20-year follow-up. The most common cause for reoperation following pAVSD repair was LAVV regurgitation through the LAVV cleft. Reoperation is performed with survival comparable to that of primary pAVSD repair, yet the rate of further reoperations remains high. The patch augmentation technique for LAVVR has significantly increased the rate of successful LAVV repair. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  4. Survival after heart and coronary-artery penetration by an air-rifle projectile.

    PubMed

    Doetsch, N; Wolfhard, U; Mathers, M J; Zerkowski, H R

    1989-10-01

    Gunshot injuries of the heart are extremely rare thoracic traumas in Europe during peacetime. Concomitant lesions of the coronary arteries occur in less than 5%. This case reports on a 26-year-old man who was shot with an air rifle at short range. On admission the patient showed signs of pericardial tamponade. Emergency thoracotomy was performed and a frontal cardiac lesion was found in the distal third of the anterior descending branch of the left coronary artery. The bullet crossed the cavum of the left ventricle and remained in the posterior wall in the subepicardial layer adjacent to the posterior descending coronary branch. Under the conditions of extracorporeal circulation we removed the bullet, repaired both ventricle walls using patches in sandwich technique, and bypassed the coronary lesion by single aortocoronary venous graft. No signs of myocardial infarction could be detected by ECG. The follow-up after 3 years shows no cardiac problems and normal stress tolerance. This case report proves that even air rifle shots, which in general are considered to be harmless, may result in life-threatening injuries. For the severity of the injury are decisive the kinetic energy at the muzzle as well as configuration and type of the bullet.

  5. Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury

    PubMed Central

    Tao, Ge; Kahr, Peter C.; Morikawa, Yuka; Zhang, Min; Rahmani, Mahdis; Heallen, Todd R.; Li, Lele; Sun, Zhao; Olson, Eric N.; Amendt, Brad A.; Martin, James F.

    2016-01-01

    Summary Myocardial infarction results in compromised myocardial function with heart failure due to insufficient cardiomyocyte self-renewal1. Unlike lower vertebrates, mammalian hearts only have a transient neonatal renewal capacity2. Reactivating primitive reparative ability in the mature heart requires knowledge of the mechanisms promoting early heart repair. By testing an established Hippo-deficient heart regeneration model for renewal promoting factors, we found that Pitx2 expression was induced in injured, Hippo-deficient ventricles. Pitx2-deficient neonatal hearts failed to repair after apex resection while Pitx2-gain-of-function in adult cardiomyocytes conferred reparative ability after myocardial infarction. Genomic analyses indicated that Pitx2 activated genes encoding electron transport chain components and reactive oxygen species scavengers. A subset of Pitx2 target genes was cooperatively regulated with the Hippo effector, Yap. Furthermore, Nrf2, a regulator of antioxidant response3, directly regulated Pitx2 expression and subcellular localization. Pitx2 mutant myocardium had elevated reactive oxygen species levels while antioxidant supplementation suppressed the Pitx2-loss-of-function phenotype. These findings reveal a genetic pathway, activated by tissue damage that is essential for cardiac repair. PMID:27251288

  6. Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury.

    PubMed

    Tao, Ge; Kahr, Peter C; Morikawa, Yuka; Zhang, Min; Rahmani, Mahdis; Heallen, Todd R; Li, Lele; Sun, Zhao; Olson, Eric N; Amendt, Brad A; Martin, James F

    2016-06-02

    Myocardial infarction results in compromised myocardial function and heart failure owing to insufficient cardiomyocyte self-renewal. Unlike many vertebrates, mammalian hearts have only a transient neonatal renewal capacity. Reactivating primitive reparative ability in the mature mammalian heart requires knowledge of the mechanisms that promote early heart repair. By testing an established Hippo-deficient heart regeneration mouse model for factors that promote renewal, here we show that the expression of Pitx2 is induced in injured, Hippo-deficient ventricles. Pitx2-deficient neonatal mouse hearts failed to repair after apex resection, whereas adult mouse cardiomyocytes with Pitx2 gain-of-function efficiently regenerated after myocardial infarction. Genomic analyses indicated that Pitx2 activated genes encoding electron transport chain components and reactive oxygen species scavengers. A subset of Pitx2 target genes was cooperatively regulated with the Hippo pathway effector Yap. Furthermore, Nrf2, a regulator of the antioxidant response, directly regulated the expression and subcellular localization of Pitx2. Pitx2 mutant myocardium had increased levels of reactive oxygen species, while antioxidant supplementation suppressed the Pitx2 loss-of-function phenotype. These findings reveal a genetic pathway activated by tissue damage that is essential for cardiac repair.

  7. Biocompatibility evaluation of cigarette and carbon papers used in repair of traumatic tympanic membrane perforations: experimental study.

    PubMed

    Altuntaş, Emine Elif; Sümer, Zeynep

    2013-01-01

    The purposes of this study were to investigate the biocompatibility of two different paper patches (carbon and cigarette papers) and compare the adhesion and proliferation features of L929 fibroblast cells by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT Test) test and scanning electron microscopy (SEM). In this study, time-dependent cytotoxic effects of cigarette and carbon papers used in repairing small traumatic TM perforations were investigated in vitro by using MTT test. And also adhesion and spreading of cells over disk surface were observed by SEM. Cytotoxicity test carried out by MTT analysis on leakage products collected from two types of paper patches at the end of 24 and 48 h revealed no cytotoxicity (P > 0.05). In SEM studies, it was observed that cells started to proliferate over disk surface as a result of 48-h incubation, and SEM revealed that the cell proliferation over cigarette paper was more compared to the one over carbon paper. We believe that this is the first study where biocompatibility and adhesion features of carbon and cigarette paper have been studied by using L929 fibroblast cell culture. As a result, biocompatibility of cigarette paper and also whether cigarette paper was superior to carbon paper in cell attachment and biocompatibility were studied. It was found, by MTT test and SEM test, that cigarette paper had a higher biocompatibility and cell attachment, and thus cigarette paper should be the patch to be preferred in cases where TM perforations are repaired by paper-patch method.

  8. iPS Cells for Post-myocardial Infarction Repair: Remarkable Opportunities and Challenges

    PubMed Central

    Lalit, Pratik A.; Hei, Derek J.; Raval, Amish N.; Kamp, Timothy J.

    2014-01-01

    Coronary artery disease with associated myocardial infarction continues to be a major cause of death and morbidity around the world despite significant advances in therapy. Patients who suffer large myocardial infarctions are at highest risk for progressive heart failure and death, and cell-based therapies offer new hope for these patients. A recently discovered cell source for cardiac repair has emerged as a result of a breakthrough reprogramming somatic cells to induced pluripotent stem cells (iPSCs). The iPSCs can proliferate indefinitely in culture and can differentiate into cardiac lineages including cardiomyocytes, smooth muscle cells, endothelial cells, and cardiac progenitors. Thus large quantities of desired cell products can be generated without being limited by cellular senescence. The iPSCs can be obtained from patients to allow autologous therapy or, alternatively, banks of HLA diverse iPSCs are possible for allogeneic therapy. Preclinical animal studies using a variety of cell preparations generated from iPSCs have shown evidence of cardiac repair. Methodology for the production of clinical grade products from human iPSCs is in place. Ongoing studies of the safety of various iPSC preparations with regard to the risk of tumor formation, immune rejection, induction of arrhythmias, and formation of stable cardiac grafts are needed as the field advances toward the first in man trials of iPSCs post-MI. PMID:24723658

  9. Implantation of the Medtronic Harmony Transcatheter Pulmonary Valve Improves Right Ventricular Size and Function in an Ovine Model of Postoperative Chronic Pulmonary Insufficiency.

    PubMed

    Schoonbeek, Rosanne C; Takebayashi, Satoshi; Aoki, Chikashi; Shimaoka, Toru; Harris, Matthew A; Fu, Gregory L; Kim, Timothy S; Dori, Yoav; McGarvey, Jeremy; Litt, Harold; Bouma, Wobbe; Zsido, Gerald; Glatz, Andrew C; Rome, Jonathan J; Gorman, Robert C; Gorman, Joseph H; Gillespie, Matthew J

    2016-10-01

    Pulmonary insufficiency is the nexus of late morbidity and mortality after transannular patch repair of tetralogy of Fallot. This study aimed to establish the feasibility of implantation of the novel Medtronic Harmony transcatheter pulmonary valve (hTPV) and to assess its effect on pulmonary insufficiency and ventricular function in an ovine model of chronic postoperative pulmonary insufficiency. Thirteen sheep underwent baseline cardiac magnetic resonance imaging, surgical pulmonary valvectomy, and transannular patch repair. One month after transannular patch repair, the hTPV was implanted, followed by serial magnetic resonance imaging and computed tomography imaging at 1, 5, and 8 month(s). hTPV implantation was successful in 11 animals (85%). There were 2 procedural deaths related to ventricular fibrillation. Seven animals survived the entire follow-up protocol, 5 with functioning hTPV devices. Two animals had occlusion of hTPV with aneurysm of main pulmonary artery. A strong decline in pulmonary regurgitant fraction was observed after hTPV implantation (40.5% versus 8.3%; P=0.011). Right ventricular end diastolic volume increased by 49.4% after transannular patch repair (62.3-93.1 mL/m 2 ; P=0.028) but was reversed to baseline values after hTPV implantation (to 65.1 mL/m 2 at 8 months, P=0.045). Both right ventricular ejection fraction and left ventricular ejection fraction were preserved after hTPV implantation. hTPV implantation is feasible, significantly reduces pulmonary regurgitant fraction, facilitates right ventricular volume improvements, and preserves biventricular function in an ovine model of chronic pulmonary insufficiency. This percutaneous strategy could potentially offer an alternative for standard surgical pulmonary valve replacement in dilated right ventricular outflow tracts, permitting lower risk, nonsurgical pulmonary valve replacement in previously prohibitive anatomies. © 2016 American Heart Association, Inc.

  10. Text Message Intervention to Improve Cardiac Rehab Participation

    ClinicalTrials.gov

    2017-11-14

    Myocardial Infarction; Percutaneous Coronary Intervention; Coronary Artery Bypass Surgery; Heart Valve Repair or Replacement; Heart Transplant; Left Ventricular Assist Device; Chronic Stable Angina; Chronic Stable Heart Failure

  11. Atelocollagen Enhances the Healing of Rotator Cuff Tendon in Rabbit Model.

    PubMed

    Suh, Dong-Sam; Lee, Jun-Keun; Yoo, Ji-Chul; Woo, Sang-Hun; Kim, Ga-Ram; Kim, Ju-Won; Choi, Nam-Yong; Kim, Yongdeok; Song, Hyun-Seok

    2017-07-01

    Failure of rotator cuff healing is a common complication despite the rapid development of surgical repair techniques for the torn rotator cuff. To verify the effect of atelocollagen on tendon-to-bone healing in the rabbit supraspinatus tendon compared with conventional cuff repair. Controlled laboratory study. A tear of the supraspinatus tendon was created and repaired in 46 New Zealand White rabbits. They were then randomly allocated into 2 groups (23 rabbits per group; 15 for histological and 8 for biomechanical test). In the experimental group, patch-type atelocollagen was implanted between bone and tendon during repair; in the control group, the torn tendon was repaired without atelocollagen. Each opposite shoulder served as a sham (tendon was exposed only). Histological evaluation was performed at 4, 8, and 12 weeks. Biomechanical tensile strength was tested 12 weeks after surgery. Histological evaluation scores of the experimental group (4.0 ± 1.0) were significantly superior to those of the control group (7.7 ± 2.7) at 12 weeks ( P = .005). The load to failure was significantly higher in the experimental group (51.4 ± 3.9 N) than in the control group (36.4 ± 5.9 N) ( P = .001). Histological and biomechanical studies demonstrated better results in the experimental group using atelocollagen in a rabbit model of the supraspinatus tendon tear. Atelocollagen patch could be used in the cuff repair site to enhance healing.

  12. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart.

    PubMed

    Wei, Ke; Serpooshan, Vahid; Hurtado, Cecilia; Diez-Cuñado, Marta; Zhao, Mingming; Maruyama, Sonomi; Zhu, Wenhong; Fajardo, Giovanni; Noseda, Michela; Nakamura, Kazuto; Tian, Xueying; Liu, Qiaozhen; Wang, Andrew; Matsuura, Yuka; Bushway, Paul; Cai, Wenqing; Savchenko, Alex; Mahmoudi, Morteza; Schneider, Michael D; van den Hoff, Maurice J B; Butte, Manish J; Yang, Phillip C; Walsh, Kenneth; Zhou, Bin; Bernstein, Daniel; Mercola, Mark; Ruiz-Lozano, Pilar

    2015-09-24

    The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans.

  13. Long-term outcome of large artificial patch aortic repair for diffuse stenosis in Williams syndrome.

    PubMed

    Sughimoto, Koichi; Takahara, Yoshiharu; Mogi, Kenji; Sakurai, Manabu; Aoki, Chikashi

    2010-10-01

    There have been only a few reports concerning the long-term results of a surgical procedure using a large artificial patch for patients with Williams syndrome. Twelve years have passed since a patient with William's syndrome underwent a surgery with a patch angioplasty for the diffuse supravalvular aortic stenosis and deformities of the neck branch arteries. The patient had a well-balanced aortic growth without stenotic or aneurysmal changes, which was confirmed during the time of the second surgery when replacing the mitral valve. This technique of using a large patch has proven to be safe for Williams syndrome patients with diffuse supravalvular aortic stenosis in the long term.

  14. Obesity is not an independent risk factor for adverse perioperative and long-term clinical outcomes following open AAA repair or EVAR.

    PubMed

    Park, Brian; Dargon, Phong; Binette, Christopher; Babic, Bruna; Thomas, Tina; Divinagracia, Thomas; Dahn, Michael S; Menzoian, James O

    2011-10-01

    Moderate (body mass index [BMI] ≥30) and morbid obesity (BMI ≥35) is increasing at an alarming rate in vascular surgery patients. The objective of this study was to determine the impact of obesity on perioperative and long-term clinical outcomes following open abdominal aortic aneurysm (AAA) repair or endovascular aneurysm repair (EVAR). This review includes patients that underwent open AAA repair (n = 403) or EVAR (n = 223) from 1999 to 2009. Specific patient characteristics such as comorbid diseases, medications, and body mass index (BMI) were assessed. Specific perioperative outcomes such as length of stay, myocardial infarctions, and mortality were reviewed. In addition, long-term outcomes such as rates of reintervention, permanent renal dysfunction, and mortality beyond 30 days were also assessed. The incidence of obesity in open AAA patients was 25.3% (documented incidence 1.5%) and for EVAR was 24.6% (documented incidence 4%). Moderate and morbid obesity was associated with longer intensive care unit (ICU) admissions for both open AAA or EVAR patients (P < .05). However, no significant differences in perioperative outcomes in terms of overall length of stay, myocardial infarction, acute renal failure, wound infections, or mortality were noted between obese and nonobese patients underoing open AAA repair or EVAR (P > .05). Similarly, moderate and morbid obesity was not associated with significant differences in rates of reintervention, permanent renal dysfunction, and mortality beyond 30 days for patients undergoing open AAA repair or EVAR (P > .05). The results of this study indicate that moderate and morbid obesity are not independently associated with adverse perioperative and long-term clinical outcomes for patients undergoing open AAA repair or EVAR. Therefore, either open AAA repair or EVAR can be accomplished safely in moderately obese and morbidly obese patients.

  15. Mitral valve repair for post-myocardial infarction papillary muscle rupture

    PubMed Central

    Bouma, Wobbe; Wijdh-den Hamer, Inez J.; Klinkenberg, Theo J.; Kuijpers, Michiel; Bijleveld, Aanke; van der Horst, Iwan C.C.; Erasmus, Michiel E.; Gorman, Joseph H.; Gorman, Robert C.; Mariani, Massimo A.

    2013-01-01

    OBJECTIVES Papillary muscle rupture (PMR) is a rare, but serious mechanical complication of myocardial infarction (MI). Although mitral valve replacement is usually the preferred treatment for this condition, mitral valve repair may offer an improved outcome. In this study, we sought to determine the outcome of mitral valve repair for post-MI PMR and to provide a systematic review of the literature on this topic. METHODS Between January 1990 and December 2010, 9 consecutive patients (mean age 63.5 ± 14.2 years) underwent mitral valve repair for partial post-MI PMR. Clinical data, echocardiographic data, catheterization data and surgical reports were reviewed. Follow-up was obtained in December of 2012 and it was complete; the mean follow-up was 8.7 ± 6.1 (range 0.2–18.8 years). RESULTS Intraoperative and in-hospital mortality were 0%. Intraoperative repair failure rate was 11.1% (n = 1). Freedom from Grade 3+ or 4+ mitral regurgitation and from reoperation at 1, 5, 10 and 15 years was 87.5 ± 11.7%. Estimated 1-, 5-, 10- and 15-year survival rates were 100, 83.3 ± 15.2, 66.7 ± 19.2 and 44.4 ± 22.2%, respectively. There were 3 late deaths, and 2 were cardiac-related. All late survivors were in New York Heart Association Class I or II. No predictors of long-term survival could be identified. CONCLUSIONS Mitral valve repair for partial or incomplete post-MI PMR is reliable and provides good short- and long-term results, provided established repair techniques are used and adjacent tissue is not friable. PMR type and adjacent tissue quality ultimately determine the feasibility and durability of repair. PMID:23520228

  16. In vivo experimental study on laser welded ICG-loaded chitosan patches for vessel repair

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Matteini, Paolo; Esposito, Giuseppe; Albanese, Alessio; Puca, Alfredo; Maira, Giulio; Rossi, Giacomo; Pini, Roberto

    2011-03-01

    Laser welding of microvessels provides several advantages over conventional suturing techniques: surgical times reduction, vascular healing process improvement, tissue damage reduction. We present the first application of biopolymeric patches in an in vivo laser assisted procedure for vessel repair. The study was performed in 20 New Zealand rabbits. After anesthesia, a 3-cm segment of the right common carotid artery was exposed and clamped proximally and distally. A linear lesion 3 mm in length was carried out. We used a diode laser emitting at 810 nm and equipped with a 300 μm diameter optical fiber. To close the cut, ICG-loaded chitosan films were prepared: chitosan is characterized by biodegradability, biocompatibility, antimicrobial, haemostatic and wound healing-promoting activity. ICG is an organic chromophore commonly used in the laser welding procedures to mediate the photothermal conversion at the basis of the welding effect. The membranes were used to wrap the whole length of the cut, and then they were welded in the correct position by delivering single laser spots to induce local patch/tissue adhesion. The result is an immediate closure of the wound, with no bleeding at clamps release. The animals were observed during follow-up and sacrificed after 2, 7, 30 and 90 days. All the repaired vessels were patent, no bleeding signs were documented. The carotid samples underwent histological examinations. The advantages of the proposed technique are: simplification of the surgical procedure and shortening of the operative time; good strength of the vessel repair; decreased foreign-body reaction, reduced inflammatory response and improved vascular healing process.

  17. Fetoscopic single-layer repair of open spina bifida using a cellulose patch: preliminary clinical experience.

    PubMed

    Pedreira, Denise A L; Zanon, Nelci; de Sá, Renato A M; Acacio, Gregório L; Ogeda, Edilson; Belem, Teresa M L O U; Chmait, Ramen H; Kontopoulos, Eftichia; Quintero, Ruben A

    2014-11-01

    To report our preliminary clinical experience in the antenatal correction of open spina bifida (OSB) using a fetoscopic approach and a simplified closure technique. Four fetuses with lumbar-sacral defects were operated in utero from 25 to 27 weeks. Surgeries were performed percutaneously under general anesthesia using three trocars and partial carbon dioxide insufflation. After dissection of the neural placode, the surrounding skin was closed over a cellulose patch using a single continuous stitch. Surgical closure was successful in three of the four cases. All successful cases showed improvement of the hindbrain herniation and no neonatal neurosurgical repair was required in two cases. Delivery occurred between 31 and 33 weeks, and no fetal or neonatal deaths occurred. Ventriculoperitoneal shunting was not needed in two out of the 3 successful cases. Our preliminary experience suggests that definitive fetoscopic repair of OSB is feasible using our innovative surgical technique. A phase I trial for the fetoscopic correction of OSB with this technique is currently being conducted.

  18. Reparative resynchronization in ischemic heart failure: an emerging strategy.

    PubMed

    Yamada, Satsuki; Terzic, Andre

    2014-08-01

    Cardiac dyssynchrony refers to disparity in cardiac wall motion, a serious consequence of myocardial infarction associated with poor outcome. Infarct-induced scar is refractory to device-based cardiac resynchronization therapy, which relies on viable tissue. Leveraging the prospect of structural and functional regeneration, reparative resynchronization has emerged as a potentially achievable strategy. In proof-of-concept studies, stem-cell therapy eliminates contractile deficit originating from infarcted regions and secures long-term synchronization with tissue repair. Limited clinical experience suggests benefit of cell interventions in acute and chronic ischemic heart disease as adjuvant to standard of care. A regenerative resynchronization option for dyssynchronous heart failure thus merits validation.

  19. Iatrogenic Aortic Valve Perforation after Ventricular Septal Defect Repair

    PubMed Central

    Ren, Chonglei; Wang, Mingyan; Wang, Yao; Gao, Changqing

    2017-01-01

    Iatrogenic aortic valve (AV) perforation during non-aortic cardiac operations is a rare complication. The suture-related inadvertent injury to an AV leaflet can produce leaflet perforation with aortic regurgitation after ventricular septal defect repair (VSDR). We report three consecutive patients who had iatrogenic aortic leaflet perforation during VSDR in other hospitals and referred to our hospital for reoperation. In all three cases, the perforated AV leaflets were preserved and repaired by autologous pericardial patch or direct local closure. PMID:29057770

  20. The immune system and the remodeling infarcted heart: cell biological insights and therapeutic opportunities

    PubMed Central

    Frangogiannis, Nikolaos G

    2014-01-01

    Extensive necrosis of ischemic cardiomyocytes in the infarcted myocardium activates the innate immune response triggering an intense inflammatory reaction. Release of danger signals from dying cells and damaged matrix activates the complement cascade and stimulates Toll-Like Receptor (TLR)/Interleukin (IL)-1 signaling, resulting in activation of the Nuclear Factor (NF)-κB system and induction of chemokines, cytokines and adhesion molecules. Subsequent infiltration of the infarct with neutrophils and mononuclear cells serves to clear the wound from dead cells and matrix debris, while stimulating reparative pathways. In addition to its role in repair of the infarcted heart and formation of a scar, the immune system is also involved in adverse remodeling of the infarcted ventricle. Overactive immune responses and defects in suppression, containment and resolution of the post-infarction inflammatory reaction accentuate dilative remodeling in experimental models and may be associated with chamber dilation, systolic dysfunction and heart failure in patients surviving a myocardial infarction. Interventions targeting the inflammatory response to attenuate adverse remodeling may hold promise in patients with myocardial infarction that exhibit accentuated, prolonged, or dysregulated immune responses to the acute injury. PMID:24072174

  1. Cardiac Stem Cell Hybrids Enhance Myocardial Repair

    PubMed Central

    Quijada, Pearl; Salunga, Hazel T.; Hariharan, Nirmala; Cubillo, Jonathan D.; El-Sayed, Farid G.; Moshref, Maryam; Bala, Kristin M.; Emathinger, Jacqueline M.; La Torre, Andrea De; Ormachea, Lucia; Alvarez, Roberto; Gude, Natalie A.; Sussman, Mark A.

    2015-01-01

    Rationale Dual cell transplantation of cardiac progenitor cells (CPCs) and mesenchymal stem cells (MSCs) after infarction improves myocardial repair and performance in large animal models relative to delivery of either cell population. Objective To demonstrate that CardioChimeras (CCs) formed by fusion between CPCs and MSCs have enhanced reparative potential in a mouse model of myocardial infarction relative to individual stem cells or combined cell delivery. Methods and Results Two distinct and clonally derived CCs, CC1 and CC2 were utilized for this study. CCs improved left ventricular anterior wall thickness (AWT) at 4 weeks post injury, but only CC1 treatment preserved AWT at 18 weeks. Ejection fraction was enhanced at 6 weeks in CCs, and functional improvements were maintained in CCs and CPC + MSC groups at 18 weeks. Infarct size was decreased in CCs, whereas CPC + MSC and CPC parent groups remained unchanged at 12 weeks. CCs exhibited increased persistence, engraftment, and expression of early commitment markers within the border zone relative to combinatorial and individual cell population-injected groups. CCs increased capillary density and preserved cardiomyocyte size in the infarcted regions suggesting CCs role in protective paracrine secretion. Conclusions CCs merge the application of distinct cells into a single entity for cellular therapeutic intervention in the progression of heart failure. CCs are a novel cell therapy that improves upon combinatorial cell approaches to support myocardial regeneration. PMID:26228030

  2. Effects of combined mesenchymal stem cells and heme oxygenase-1 therapy on cardiac performance.

    PubMed

    Zeng, Bin; Chen, Honglei; Zhu, Chengang; Ren, Xiaofeng; Lin, Guosheng; Cao, Feng

    2008-10-01

    Bone marrow mesenchymal stem cells (MSCs) have the potential to repair the infarcted myocardium and improve cardiac function. However, this approach is limited by its poor viability after transplantation, and controversy still exists over the mechanism by which MSCs contribute to the tissue repair. The human heme oxygenase-1 (hHO-1) was transfected into cultured MSCs using an adenoviral vector. 1 x 10(6) Ad-hHO-1-transfected MSCs (HO-1-MSCs) or Ad-Null-transfected MSCs (Null-MSCs) or PBS only (PBS group) were injected intramyocardially into rat hearts 1h after myocardial infarction. HO-1-MSCs survived in the infarcted myocardium, and expressed hHO-1 mRNA. The expression of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) was significantly enhanced in HO-1-MSCs-treated hearts. At the same time, there were significant reduction of TNF-alpha, IL-1-beta and IL-6 mRNA, and marked increase of IL-10 mRNA in HO-1-MSCs-treated hearts. Moreover, a further downregulation of proapoptotic protein, Bax, and a marked increase in microvessel density were observed in HO-1-MSCs-treated hearts. The infarct size and cardiac performance were also significantly improved in HO-1-MSCs-treated hearts. The combined approach improves MSCs survival and is superior to MSCs injection alone.

  3. Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges

    PubMed Central

    Saxena, Amit; Russo, Ilaria; Frangogiannis, Nikolaos G

    2015-01-01

    In the infarcted myocardium, necrotic cardiomyocytes release danger signals, activating an intense inflammatory response. Inflammatory pathways play a crucial role in regulation of a wide range of cellular processes involved in injury, repair and remodeling of the infarcted heart. Pro-inflammatory cytokines, such as tumor necrosis factor-a and interleukin (IL)-1, are markedly upregulated in the infarcted myocardium and promote adhesive interactions between endothelial cells and leukocytes, by stimulating chemokine and adhesion molecule expression. Distinct chemokine/chemokine receptor pairs are implicated in recruitment of various leukocyte subpopulations in the infarcted myocardium. Over the last 30 years, extensive experimental work has explored the role of inflammatory signals and the contributions of leukocyte subpopulations, in myocardial infarction. Robust evidence derived from experimental models of myocardial infarction has identified inflammatory targets that may attenuate cardiomyocyte injury, or protect from adverse remodeling. Unfortunately, attempts to translate the promising experimental findings to clinical therapy have failed. This review manuscript discusses the biology of the inflammatory response following myocardial infarction, attempts to identify the causes for the translational failures of the past, and proposes promising new therapeutic directions. Because of their potential involvement in injurious, reparative and regenerative responses, inflammatory cells may hold the key for design of new therapies in myocardial infarction. PMID:26241027

  4. Outcomes of aortopulmonary window repair in children: 33 years of experience.

    PubMed

    Naimo, Phillip S; Yong, Matthew S; d'Udekem, Yves; Brizard, Christian P; Kelly, Andrew; Weintraub, Robert; Konstantinov, Igor E

    2014-11-01

    The purpose of this study was to assess the outcomes of children undergoing repair of aortopulmonary window (APW). We conducted a retrospective review of all children (n=43) who underwent surgical repair of APW between 1980 and 2013. Median age at surgery was 40 days (range, 13 to 125). Simple APW was present in 15 of 43 patients (35%), and 28 of 43 patients (65%) patients had concomitant cardiovascular anomalies. The aorta was repaired by direct suturing in 36 patients (84%) patients and patching in 7 patients (16%). The main pulmonary artery was repaired by direct suturing in 22 patients (51%) patients and by patching in 21 (49%). Cardiopulmonary bypass was used in 42 of the 43 patients (97.7%). Single-staged repair of concomitant cardiovascular anomalies was undertaken in 26 of 28 patients (93%). Only 2 of the 28 patients (7%) underwent repair of interrupted aortic arch before APW repair. Operative mortality was 6.7% (1 of 15 patients) among patients with simple APW and 18% (5 of 28 patients) among patients with concomitant anomalies. Operative weight less than 2.5 kg was associated with mortality on univariable analysis (p=0.02). Median follow-up was 10.1 years (range, 0.17 to 24.2). There were no late deaths. Overall survival was 86% (95% confidence interval: 71.3 to 94.2) at 10 years. Freedom from reoperation was 95.3% (95% confidence interval: 86.2 to 99.9) at 10 years. At last follow-up, all patients were in New York Heart Association functional class I/II. Survival beyond discharge from the hospital is associated with excellent outcomes. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  5. No patch technique for complete atrioventricular canal repair.

    PubMed

    Aramendi, José Ignacio; Rodriguez, Miguel Angel; Luis, Teresa; Voces, Roberto

    2006-08-01

    We describe our initial experience with a new technique, consisting in direct closure of the ventricular septal defect component of the AV canal, by directly attaching the common bridging leaflets to the crest of the ventricular septum with interrupted sutures. After closure of the cleft, the ostium primum defect was closed with a running suture suturing the border of the septum primum to the newly created AV valve annulus. Three patients were operated upon. There was no mortality. Mean ischemic time was 39 min and mean pump time 77 min. All patients remained in sinus rhythm. At follow-up only trivial or mild mitral regurgitation was observed. This new technique permits the repair of complete AV canal without the need for any patch. It is fast, simple and reproducible.

  6. Conjunctival inclusion cyst following repair of tube erosion in a child with aphakic glaucoma, leading to endophthalmitis.

    PubMed

    Roy, Avik Kumar; Senthil, Sirisha

    2015-01-01

    Glaucoma in aphakia is a major long term complication following congenital cataract surgery. Implantation of glaucoma drainage device provides an effective approach to manage refractory paediatric glaucoma. However implant surgery in young individuals is not free of complications. The prompt detection and management of tube erosion is of utmost importance to prevent devastating sequel of endophthalmitis. Implantation cyst following repair of tube erosion has not been reported so far. This case illustrates the rare occurrence of inclusion cyst following repair of tube erosion, the possible causes and its consequences. A 2-year-old child with aphakia developed intractable glaucoma. Following a failed glaucoma filtering surgery he underwent sequential Ahmed Glaucoma Valve implantation in both the eyes. Six weeks following right eye surgery, the child presented with conjunctival erosion overlying the tube, which was treated with scleral patch graft and conjunctival advancement. One month after the repair of tube erosion, the child presented with implantation cyst under the scleral patch graft, which was treated by drainage with a 29G needle. The child presented with endophthalmitis of his right eye following an episode of bilateral conjunctivitis. This was managed by an emergency pars plana vitrectomy, intraocular antibiotics and tube excision. At the last follow up visit, the IOP was 20 mmHg with 2 topical antiglaucoma medications in the right eye following a trans scleral photocoagulation. Lifelong careful follow-up of paediatric eyes with implant surgery is mandatory to look for complication such as tube erosion. It is important to place additional sutures to secure the patch graft during implantation of glaucoma drainage devices in children to prevent graft displacement and consequent tube erosion. During repair of tube erosion, it is crucial to remove all the conjunctival epithelium around the tube, thus not to incorporate epithelial tissue within the surgical wound.

  7. Repair of tetralogy of Fallot associated with atrioventricular septal defect.

    PubMed

    Tláskal, T; Hucín, B; Kostelka, M; Chaloupecký, V; Marek, J; Tax, P; Janouàek, J; Kuèera, V; Hruda, J; Reich, O; Skovránek, J

    1998-01-01

    Tetralogy of Fallot, when associated with atrioventricular septal defect permitting shunting at ventricular level, represents a complex cyanotic congenital malformation. Experience with surgical repair is limited, and results vary considerably. Between 1984 and 1996, we repaired 14 consecutive patients with this combination seen in our center. Their ages ranged from 8 months to 21 years (median 7.4 years). Six (42.9%) had Down's syndrome. In eight patients the correct diagnosis was made using echocardiography alone. In the remaining six patients, who had previously-constructed arterial shunts and/or suspected pulmonary arterial stenosis, catheterization and angiocardiography were also performed. The repair consisted of double patch closure of the septal defect, reconstruction of two atrioventricular orifices, and relief of pulmonary stenosis at all levels. In five patients with a hypoplastic pulmonary trunk, a monocusp transannular patch (four patients) or an allograft (one patient) was used for restoration of continuity from the right ventricle to the pulmonary arteries. Patch enlargement of one or both pulmonary arteries was necessary in five patients. One patient (7.1%) died early, and another late. The twelve surviving (85.8%) patients have been followed for 1.2-12.5 years after surgery (median 4.9 years, mean 5.9+/-3.9 years). During the follow-up, reoperation was necessary for repair of residual ventricular septal defect and pulmonary regurgitation in two patients, and closure of an atrial septal defect and alteration to left atrioventricular valvar regurgitation in one patient. Seven patients are in class I of the New York Heart Association, four in class II, and one in class III. Tetralogy of Fallot associated with atrioventricular septal defect can be corrected with low mortality and good long-term results. Residual lesions, however, have a tendency to progress, especially when seen in combination. After surgery, all patients need long-term close follow-up.

  8. Long-term results of pulmonary valve annular enlargement with valve repair in tetralogy of Fallot.

    PubMed

    Kim, Hyungtae; Sung, Si Chan; Choi, Kwang Ho; Lee, Hyoung Doo; Kim, Geena; Ko, Hoon; Lee, Young Seok

    2018-06-01

    We adopted an operative technique of pulmonary valve (PV) annular enlargement with valve repair in tetralogy of Fallot (TOF) correction to reduce postoperative pulmonary regurgitation (PR) 16 years ago. Here, we have evaluated the long-term results. Between April 2000 and August 2005, 43 patients (26 men) with tetralogy of Fallot with pulmonary stenosis underwent PV annular enlargement with valve repair. The median age and body weight at the time of surgery were 14 months and 10.2 kg, respectively. There was no operative mortality. Mean postoperative PR grade at discharge was 0.93 ± 0.40 (none or trivial in 10 patients, mild in 27 patients, mild to moderate in 5 patients and moderate in 1 patient), and the mean postoperative pressure gradient across PV was 13.0 ± 10.9 mmHg. The mean follow-up duration was 131.9 ± 42.9 months. During follow-up, 1 reoperation was performed for residual ventricular septal defect. The mean PR grade at the last follow-up echocardiography was 1.59 ± 0.60 (mild in 17 patients, mild to moderate in 8 patients, moderate in 14 patients, moderate to severe in 1 patient and severe in 3 patients), and the mean pressure gradient was 22.7 ± 9.9 mmHg. We have compared the incidence of moderate or more PR with the incidence of patients who underwent simple transannular patch enlargement through propensity score matching. The PV repair group had a lower incidence of moderate or more PR compared with the simple transannular patch group (40% vs 68%, P = 0.04). PV annular enlargement with valve repair has reasonable long-term results and yields a lower long-term incidence of significant PR compared with the simple transannular patch enlargement technique.

  9. Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration.

    PubMed

    Liu, Xiaolin; Yang, Yunlong; Li, Yan; Niu, Xin; Zhao, Bizeng; Wang, Yang; Bao, Chunyan; Xie, Zongping; Lin, Qiuning; Zhu, Linyong

    2017-03-30

    The regeneration of articular cartilage, which scarcely shows innate self-healing ability, is a great challenge in clinical treatment. Stem cell-derived exosomes (SC-Exos), an important type of extracellular nanovesicle, exhibit great potential for cartilage regeneration to replace stem cell-based therapy. Cartilage regeneration often takes a relatively long time and there is currently no effective administration method to durably retain exosomes at cartilage defect sites to effectively exert their reparative effect. Therefore, in this study, we exploited a photoinduced imine crosslinking hydrogel glue, which presents excellent operation ability, biocompatibility and most importantly, cartilage-integration, as an exosome scaffold to prepare an acellular tissue patch (EHG) for cartilage regeneration. It was found that EHG can retain SC-Exos and positively regulate both chondrocytes and hBMSCs in vitro. Furthermore, EHG can integrate with native cartilage matrix and promote cell deposition at cartilage defect sites, finally resulting in the promotion of cartilage defect repair. The EHG tissue patch therefore provides a novel, cell-free scaffold material for wound repair.

  10. Esophageal replacement by hydroxylated bacterial cellulose patch in a rabbit model.

    PubMed

    Zhu, Changlai; Liu, Fang; Qian, Wenbo; Wang, Yingjie; You, Qingsheng; Zhang, Tianyi; Li, Feng

    2015-01-01

    To repair esophageal defects by hydroxylated and kombucha-synthesized bacterial cellulose (HKBC) patch in a rabbit model. Semicircular esophageal defects 1 cm in length of the cervical esophagus were initially created in 18 Japanese big-ear rabbits and then repaired with HKBC patch grafts. The clinical outcomes including survival rate, weight change, food intake, and hematological and radiologic evaluation were observed. After X-ray evaluation, the rabbits were sacrificed sequentially at 1, 3, and 6 months for histopathologic analysis with light microscopy and scanning electron microscopy. Survival rate during the first month was 88.9% (n = 16). Two rabbits died from anastomotic leakage during the entire follow-up. Postoperatively, feeding function and body weight were gradually restored in the surviving animals. No hematological abnormalities were found, and no obvious anastomotic leakage, stenosis, or obstruction was observed under X-ray examination. The histopathologic results showed a progressive regeneration of the esophagus in the graft area, where the neo-esophagus tissue had characteristics similar to native esophageal tissue after 3 months of surgery. HKBC is beneficial for esophageal tissue regeneration and may be a promising material for esophageal reconstruction.

  11. New Technologies for Surgery of the Congenital Cardiac Defect

    PubMed Central

    Kalfa, David; Bacha, Emile

    2013-01-01

    The surgical repair of complex congenital heart defects frequently requires additional tissue in various forms, such as patches, conduits, and valves. These devices often require replacement over a patient’s lifetime because of degeneration, calcification, or lack of growth. The main new technologies in congenital cardiac surgery aim at, on the one hand, avoiding such reoperations and, on the other hand, improving long-term outcomes of devices used to repair or replace diseased structural malformations. These technologies are: 1) new patches: CorMatrix® patches made of decellularized porcine small intestinal submucosa extracellular matrix; 2) new devices: the Melody® valve (for percutaneous pulmonary valve implantation) and tissue-engineered valved conduits (either decellularized scaffolds or polymeric scaffolds); and 3) new emerging fields, such as antenatal corrective cardiac surgery or robotically assisted congenital cardiac surgical procedures. These new technologies for structural malformation surgery are still in their infancy but certainly present great promise for the future. But the translation of these emerging technologies to routine health care and public health policy will also largely depend on economic considerations, value judgments, and political factors. PMID:23908869

  12. Comparison of a novel bone-tendon allograft with a human dermis-derived patch for repair of chronic large rotator cuff tears using a canine model.

    PubMed

    Smith, Matthew J; Cook, James L; Kuroki, Keiichi; Jayabalan, Prakash S; Cook, Cristi R; Pfeiffer, Ferris M; Waters, Nicole P

    2012-02-01

    This study tested a bone-tendon allograft versus human dermis patch for reconstructing chronic rotator cuff repair by use of a canine model. Mature research dogs (N = 15) were used. Radiopaque wire was placed in the infraspinatus tendon (IST) before its transection. Three weeks later, radiographs showed IST retraction. Each dog then underwent 1 IST treatment: debridement (D), direct repair of IST to bone with a suture bridge and human dermis patch augmentation (GJ), or bone-tendon allograft (BT) reconstruction. Outcome measures included lameness grading, radiographs, and ultrasonographic assessment. Dogs were killed 6 months after surgery and both shoulders assessed biomechanically and histologically. BT dogs were significantly (P = .01) less lame than the other groups. BT dogs had superior bone-tendon, tendon, and tendon-muscle integrity compared with D and GJ dogs. Biomechanical testing showed that the D group had significantly (P = .05) more elongation than the other groups whereas BT had stiffness and elongation characteristics that most closely matched normal controls. Radiographically, D and GJ dogs showed significantly more retraction than BT dogs (P = .003 and P = .045, respectively) Histologically, GJ dogs had lymphoplasmacytic infiltrates, tendon degeneration and hypocellularity, and poor tendon-bone integration. BT dogs showed complete incorporation of allograft bone into host bone, normal bone-tendon junctions, and well-integrated allograft tendon. The bone-tendon allograft technique re-establishes a functional IST bone-tendon-muscle unit and maintains integrity of repair in this model. Clinical trials using this bone-tendon allograft technique are warranted. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  13. Biodegradable materials for surgical management of infective endocarditis: new solution or a dead end street?

    PubMed

    Myers, Patrick O; Cikirikcioglu, Mustafa; Kalangos, Afksendiyos

    2014-08-03

    One third of patients with infective endocarditis will require operative intervention. Given the superiority of valve repair over valve replacement in many indications other than endocarditis, there has been increasing interest and an increasing number of reports of excellent results of valve repair in acute infective endocarditis. The theoretically ideal material for valve repair in this setting is non-permanent, "vanishing" material, not at risk of seeding or colonization. The goal of this contribution is to review currently available data on biodegradable materials for valve repair in infective endocarditis. Rigorous electronic and manual literature searches were conducted to identify reports of biodegradable materials for valve repair in infective endocarditis. Articles were identified in electronic database searches of Medline, Embase and the Cochrane Library, using a predetermined search strategy. 49 manuscripts were included in the review. Prosthetic materials needed for valve repair can be summarized into annuloplasty rings to remodel the mitral or tricuspid annulus, and patch materials to replace resected valvar tissue. The commercially available biodegradable annuloplasty ring has shown interesting clinical results in a single-center experience; however further data is required for validation and longer follow-up. Unmodified extra-cellular matrix patches, such as small intestinal submucosa, have had promising initial experimental and clinical results in non-infected valve repair, although in valve repair for endocarditis has been reported in only one patient, and concerns have been raised regarding their mechanical stability in an infected field. These evolving biodegradable devices offer the potential for valve repair with degradable materials replaced with autologous tissue, which could further improve the results of valve repair for infective endocarditis. This is an evolving field with promising experimental or initial clinical results, however long-term outcomes are lacking and further data is necessary to validate this theoretically interesting approach to infective endocarditis.

  14. Biodegradable materials for surgical management of infective endocarditis: new solution or a dead end street?

    PubMed Central

    2014-01-01

    Background One third of patients with infective endocarditis will require operative intervention. Given the superiority of valve repair over valve replacement in many indications other than endocarditis, there has been increasing interest and an increasing number of reports of excellent results of valve repair in acute infective endocarditis. The theoretically ideal material for valve repair in this setting is non-permanent, “vanishing” material, not at risk of seeding or colonization. The goal of this contribution is to review currently available data on biodegradable materials for valve repair in infective endocarditis. Discussion Rigorous electronic and manual literature searches were conducted to identify reports of biodegradable materials for valve repair in infective endocarditis. Articles were identified in electronic database searches of Medline, Embase and the Cochrane Library, using a predetermined search strategy. 49 manuscripts were included in the review. Prosthetic materials needed for valve repair can be summarized into annuloplasty rings to remodel the mitral or tricuspid annulus, and patch materials to replace resected valvar tissue. The commercially available biodegradable annuloplasty ring has shown interesting clinical results in a single-center experience; however further data is required for validation and longer follow-up. Unmodified extra-cellular matrix patches, such as small intestinal submucosa, have had promising initial experimental and clinical results in non-infected valve repair, although in valve repair for endocarditis has been reported in only one patient, and concerns have been raised regarding their mechanical stability in an infected field. Summary These evolving biodegradable devices offer the potential for valve repair with degradable materials replaced with autologous tissue, which could further improve the results of valve repair for infective endocarditis. This is an evolving field with promising experimental or initial clinical results, however long-term outcomes are lacking and further data is necessary to validate this theoretically interesting approach to infective endocarditis. PMID:25087015

  15. [Inguinal hernia repair: results of randomized clinical trials and meta-analyses].

    PubMed

    Slim, K; Vons, C

    2008-01-01

    This evidence-based review of the literature aims to answer two questions regarding inguinal hernia repair: 1. should a prosthetic patch be used routinely? 2. Which approach is better - laparoscopic or open surgery? After a comprehensive search of electronic databases we retained only meta-analyses (n=14) and/or randomised clinical trials (n=4). Review of this literature suggests with a good level of evidence that prosthetic hernia repair is the gold standard; the laparoscopic approach has very few proven benefits and may involve more serious complications when performed outside expert centers. The role of laparoscopy for the repair of bilateral or recurrent hernias needs better evaluation.

  16. Light-Curing Adhesive Repair Tapes

    NASA Technical Reports Server (NTRS)

    Allred, Ronald; Haight, Andrea Hoyt

    2009-01-01

    Adhesive tapes, the adhesive resins of which can be cured (and thereby rigidized) by exposure to ultraviolet and/or visible light, are being developed as repair patch materials. The tapes, including their resin components, consist entirely of solid, low-outgassing, nonhazardous or minimally hazardous materials. They can be used in air or in vacuum and can be cured rapidly, even at temperatures as low as -20 C. Although these tapes were originally intended for use in repairing structures in outer space, they can also be used on Earth for quickly repairing a wide variety of structures. They can be expected to be especially useful in situations in which it is necessary to rigidize tapes after wrapping them around or pressing them onto the parts to be repaired.

  17. Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function

    PubMed Central

    Zhou, Jin; Chen, Jun; Sun, Hongyu; Qiu, Xiaozhong; Mou, Yongchao; Liu, Zhiqiang; Zhao, Yuwei; Li, Xia; Han, Yao; Duan, Cuimi; Tang, Rongyu; Wang, Chunlan; Zhong, Wen; Liu, Jie; Luo, Ying; (Mengqiu) Xing, Malcolm; Wang, Changyong

    2014-01-01

    Recently, carbon nanotubes together with other types of conductive materials have been used to enhance the viability and function of cardiomyocytes in vitro. Here we demonstrated a paradigm to construct ECTs for cardiac repair using conductive nanomaterials. Single walled carbon nanotubes (SWNTs) were incorporated into gelatin hydrogel scaffolds to construct three-dimensional ECTs. We found that SWNTs could provide cellular microenvironment in vitro favorable for cardiac contraction and the expression of electrochemical associated proteins. Upon implantation into the infarct hearts in rats, ECTs structurally integrated with the host myocardium, with different types of cells observed to mutually invade into implants and host tissues. The functional measurements showed that SWNTs were essential to improve the performance of ECTs in inhibiting pathological deterioration of myocardium. This work suggested that conductive nanomaterials hold therapeutic potential in engineering cardiac tissues to repair myocardial infarction. PMID:24429673

  18. Anomalous origin of right coronary artery from left coronary sinus.

    PubMed

    Hamzeh, Gadah; Crespo, Alex; Estarán, Rafael; Rodríguez, Miguel A; Voces, Roberto; Aramendi, José I

    2008-08-01

    Anomalous aortic origin of the coronary arteries is uncommon but clinically significant. Manifestations vary from asymptomatic patients to those who present with angina pectoris, myocardial infarction, heart failure, syncope, arrhythmias, and sudden death. We describe 4 patients, aged 34 to 59 years, who were diagnosed with right coronary artery arising from the left sinus of Valsalva, confirmed by coronary angiography, which was surgically repaired. Three patients presented dyspnea and angina, and one with acute myocardial infarction. At operation, the right coronary artery was dissected at the take-off from the intramural course, and reimplanted into the right sinus of Valsalva. There was no mortality. One patient had associated coronary artery disease that required stent placement postoperatively. This reimplantation technique provides a good physiological and anatomical repair, eliminates a slit-like ostium, avoids compression of the coronary artery between the aorta and the pulmonary artery, and gives superior results to coronary artery bypass grafting or the unroofing technique.

  19. On structural health monitoring of aircraft adhesively bonded repairs

    NASA Astrophysics Data System (ADS)

    Pavlopoulou, Sofia

    The recent interest in life extension of ageing aircraft and the need to address the repair challenges in the new age composite ones, led to the investigation of new repair methodologies such as adhesively bonded repair patches. The present thesis focuses on structural health monitoring aspects of the repairs, evaluating their performance with guided ultrasonic waves aiming to develop a monitoring strategy which would eliminate unscheduled maintenance and unnecessary inspection costs. To address the complex nature of the wave propagation phenomena, a finite element based model identified the existing challenges by exploring the interaction of the excitation waves with different levels of damage. The damage sensitivity of the first anti-symmetric mode was numerically investigated. An external bonded patch and a scarf repair, were further tested in static and dynamic loadings, and their performance was monitored with Lamb waves, excited by surface-bonded piezoelectric transducers.. The response was processed by means of advanced pattern recognition and data dimension reduction techniques such as novelty detection and principal component analysis. An optimisation of these tools enabled an accurate damage detection under complex conditions. The phenomena of mode isolation and precise arrival time determination under a noisy environment and the problem of inadequate training data were investigated and solved through appropriate transducer arrangements and advanced signal processing respectively. The applicability of the established techniques was demonstrated on an aluminium repaired helicopter tail stabilizer. Each case study utilised alternative non-destructive techniques for validation such as 3D digital image correlation, X-ray radiography and thermography. Finally a feature selection strategy was developed through the analysis of the instantaneous properties of guided waves for damage detection purposes..

  20. Earlier Pulmonary Valve Replacement in Down Syndrome Patients Following Tetralogy of Fallot Repair.

    PubMed

    Sullivan, Rachel T; Frommelt, Peter C; Hill, Garick D

    2017-08-01

    The association between Down syndrome and pulmonary hypertension could contribute to more severe pulmonary regurgitation after tetralogy of Fallot repair and possibly earlier pulmonary valve replacement. We compared cardiac magnetic resonance measures of pulmonary regurgitation and right ventricular dilation as well as timing of pulmonary valve replacement between those with and without Down syndrome after tetralogy of Fallot repair. Review of our surgical database from 2000 to 2015 identified patients with tetralogy of Fallot with pulmonary stenosis. Those with Down syndrome were compared to those without. The primary outcome of interest was time from repair to pulmonary valve replacement. Secondary outcomes included pulmonary regurgitation and indexed right ventricular volume on cardiac magnetic resonance imaging. The cohort of 284 patients included 35 (12%) with Down syndrome. Transannular patch repair was performed in 210 (74%). Down syndrome showed greater degree of pulmonary regurgitation (55 ± 14 vs. 37 ± 16%, p = 0.01) without a significantly greater rate of right ventricular dilation (p = 0.09). In multivariable analysis, Down syndrome (HR 2.3, 95% CI 1.2-4.5, p = 0.02) and transannular patch repair (HR 5.5, 95% CI 1.7-17.6, p = 0.004) were significant risk factors for valve replacement. Those with Down syndrome had significantly lower freedom from valve replacement (p = 0.03). Down syndrome is associated with an increased degree of pulmonary regurgitation and earlier pulmonary valve replacement after tetralogy of Fallot repair. These patients require earlier assessment by cardiac magnetic resonance imaging to determine timing of pulmonary valve replacement and evaluation for and treatment of preventable causes of pulmonary hypertension.

  1. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    NASA Astrophysics Data System (ADS)

    El-Tahan, M.; Dawood, M.; Song, G.

    2015-06-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.

  2. The Fanconi Anemia DNA Repair Pathway Is Regulated by an Interaction between Ubiquitin and the E2-like Fold Domain of FANCL*

    PubMed Central

    Miles, Jennifer A.; Frost, Mark G.; Carroll, Eilis; Rowe, Michelle L.; Howard, Mark J.; Sidhu, Ateesh; Chaugule, Viduth K.; Alpi, Arno F.; Walden, Helen

    2015-01-01

    The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). Inefficient repair of these ICL can lead to leukemia and bone marrow failure. A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL. FANCL comprises 3 domains, a RING domain that interacts with E2 conjugating enzymes, a central domain required for substrate interaction, and an N-terminal E2-like fold (ELF) domain. The ELF domain is found in all FANCL homologues, yet the function of the domain remains unknown. We report here that the ELF domain of FANCL is required to mediate a non-covalent interaction between FANCL and ubiquitin. The interaction involves the canonical Ile44 patch on ubiquitin, and a functionally conserved patch on FANCL. We show that the interaction is not necessary for the recognition of the core complex, it does not enhance the interaction between FANCL and Ube2T, and is not required for FANCD2 monoubiquitination in vitro. However, we demonstrate that the ELF domain is required to promote efficient DNA damage-induced FANCD2 monoubiquitination in vertebrate cells, suggesting an important function of ubiquitin binding by FANCL in vivo. PMID:26149689

  3. Damage Tolerant Repair Techniques for Pressurized Aircraft Fuselages

    DTIC Science & Technology

    1994-01-01

    2 if20 20 offset 50, fatigue GST, GLARE 2 if20 20 static, no fatigue *Unidirectional SP500 carbon/epoxy tape . "* Fatigue load did not initiate a crack...Et value, so this is a reasonable assumption. It further implies zero crack opening under the patch. The Erdogan solution [51 for two collinear...Cr Figure 6. 11. Idealization of patched crack as unfailed ligament between two collinear cracks (after [5, 6)). The Erdogan solution leads to the AK

  4. Segmentation of Hyperacute Cerebral Infarcts Based on Sparse Representation of Diffusion Weighted Imaging.

    PubMed

    Zhang, Xiaodong; Jing, Shasha; Gao, Peiyi; Xue, Jing; Su, Lu; Li, Weiping; Ren, Lijie; Hu, Qingmao

    2016-01-01

    Segmentation of infarcts at hyperacute stage is challenging as they exhibit substantial variability which may even be hard for experts to delineate manually. In this paper, a sparse representation based classification method is explored. For each patient, four volumetric data items including three volumes of diffusion weighted imaging and a computed asymmetry map are employed to extract patch features which are then fed to dictionary learning and classification based on sparse representation. Elastic net is adopted to replace the traditional L 0 -norm/ L 1 -norm constraints on sparse representation to stabilize sparse code. To decrease computation cost and to reduce false positives, regions-of-interest are determined to confine candidate infarct voxels. The proposed method has been validated on 98 consecutive patients recruited within 6 hours from onset. It is shown that the proposed method could handle well infarcts with intensity variability and ill-defined edges to yield significantly higher Dice coefficient (0.755 ± 0.118) than the other two methods and their enhanced versions by confining their segmentations within the regions-of-interest (average Dice coefficient less than 0.610). The proposed method could provide a potential tool to quantify infarcts from diffusion weighted imaging at hyperacute stage with accuracy and speed to assist the decision making especially for thrombolytic therapy.

  5. Single-Dose Intracardiac Injection of Pro-Regenerative MicroRNAs Improves Cardiac Function After Myocardial Infarction.

    PubMed

    Lesizza, Pierluigi; Prosdocimo, Giulia; Martinelli, Valentina; Sinagra, Gianfranco; Zacchigna, Serena; Giacca, Mauro

    2017-04-14

    Recent evidence indicates that a few human microRNAs (miRNAs), in particular hsa-miR-199a-3p and hsa-miR-590-3p, stimulate proliferation of cardiomyocytes and, once expressed in the mouse heart using viral vectors, induce cardiac regeneration after myocardial infarction. Viral vectors, however, are not devoid of safety issues and, more notably, drive expression of the encoded miRNAs for indefinite periods of time, which might not be desirable in light of human therapeutic application. As an alternative to the use of viral vectors, we wanted to assess the efficacy of synthetic miRNA mimics in inducing myocardial repair after single intracardiac injection using synthetic lipid formulations. We comparatively analyzed the efficacy of different lipid formulations in delivering hsa-miR-199a-3p and hsa-miR-590-3p both in primary neonatal mouse cardiomyocytes and in vivo. We established a transfection protocol allowing persistence of these 2 mimics for at least 12 days after a single intracardiac injection, with minimal dispersion to other organs and long-term preservation of miRNA functional activity, as assessed by monitoring the expression of 2 mRNA targets. Administration of this synthetic formulation immediately after myocardial infarction in mice resulted in marked reduction of infarct size and persistent recovery of cardiac function. A single administration of synthetic miRNA-lipid formulations is sufficient to stimulate cardiac repair and restoration of cardiac function. © 2017 American Heart Association, Inc.

  6. Bone Marrow Mononuclear Cell Transplantation Restores Inflammatory Balance of Cytokines after ST Segment Elevation Myocardial Infarction

    PubMed Central

    Alestalo, Kirsi; Miettinen, Johanna A.; Vuolteenaho, Olli; Huikuri, Heikki; Lehenkari, Petri

    2015-01-01

    Background Acute myocardial infarction (AMI) launches an inflammatory response and a repair process to compensate cardiac function. During this process, the balance between proinflammatory and anti-inflammatory cytokines is important for optimal cardiac repair. Stem cell transplantation after AMI improves tissue repair and increases the ventricular ejection fraction. Here, we studied in detail the acute effect of bone marrow mononuclear cell (BMMNC) transplantation on proinflammatory and anti-inflammatory cytokines in patients with ST segment elevation myocardial infarction (STEMI). Methods Patients with STEMI treated with thrombolysis followed by percutaneous coronary intervention (PCI) were randomly assigned to receive either BMMNC or saline as an intracoronary injection. Cardiac function was evaluated by left ventricle angiogram during the PCI and again after 6 months. The concentrations of 27 cytokines were measured from plasma samples up to 4 days after the PCI and the intracoronary injection. Results Twenty-six patients (control group, n = 12; BMMNC group, n = 14) from the previously reported FINCELL study (n = 80) were included to this study. At day 2, the change in the proinflammatory cytokines correlated with the change in the anti-inflammatory cytokines in both groups (Kendall’s tau, control 0.6; BMMNC 0.7). At day 4, the correlation had completely disappeared in the control group but was preserved in the BMMNC group (Kendall’s tau, control 0.3; BMMNC 0.7). Conclusions BMMNC transplantation is associated with preserved balance between pro- and anti-inflammatory cytokines after STEMI in PCI-treated patients. This may partly explain the favorable effect of stem cell transplantation after AMI. PMID:26690350

  7. Embryonic Stem Cell-Derived Exosomes Promote Endogenous Repair Mechanisms and Enhance Cardiac Function Following Myocardial Infarction

    PubMed Central

    Khan, Mohsin; Nickoloff, Emily; Abramova, Tatiana; Johnson, Jennifer; Verma, Suresh Kumar; Krishnamurthy, Prasanna; Mackie, Alexander Roy; Vaughan, Erin; Garikipati, Venkata Naga Srikanth; Benedict, Cynthia; Ramirez, Veronica; Lambers, Erin; Ito, Aiko; Gao, Erhe; Misener, Sol; Luongo, Timothy; Elrod, John; Qin, Gangjian; Houser, Steven R; Koch, Walter J; Kishore, Raj

    2015-01-01

    Rationale Embryonic stem cells (ESCs) hold great promise for cardiac regeneration but are susceptible to various concerns. Recently, salutary effects of stem cells have been connected to exosome secretion. ESCs have the ability to produce exosomes however their effect in the context of the heart is unknown. Objective Determine the effect of ESC-derived exosome for the repair of ischemic myocardium and whether c-kit+ CPCs function can be enhanced with ESC exosomes Methods and Results This study demonstrates that mouse ESC derived exosomes (mES Ex) possess ability to augment function in infarcted hearts. mES Ex enhanced neovascularization, cardiomyocyte survival and reduced fibrosis post infarction consistent with resurgence of cardiac proliferative response. Importantly, mES Ex augmented cardiac progenitor cell (CPC) survival, proliferation and cardiac commitment concurrent with increased c-kit+ CPCs in vivo 8 weeks after in vivo transfer along with formation of bonafide new cardiomyocytes in the ischemic heart. miRNA array revealed significant enrichment of miR290–295 cluster and particularly miR-294 in ESC exosomes. The underlying basis for the beneficial effect of mES Ex was tied to delivery of ESC specific miR-294 to CPCs promoting increased survival, cell cycle progression and proliferation. Conclusions mES Ex provide a novel cell free system that utilizes the immense regenerative power of ES cells while avoiding the risks associated with direct ES or ES derived cell transplantation and risk of teratomas. ESC exosomes possess cardiac regeneration ability and modulate both cardiomyocyte and CPC based repair programs in the heart. PMID:25904597

  8. Sustained co-delivery of BIO and IGF-1 by a novel hybrid hydrogel system to stimulate endogenous cardiac repair in myocardial infarcted rat hearts.

    PubMed

    Fang, Rui; Qiao, Shupei; Liu, Yi; Meng, Qingyuan; Chen, Xiongbiao; Song, Bing; Hou, Xiaolu; Tian, Weiming

    2015-01-01

    Dedifferentiation and proliferation of endogenous cardiomyocytes in situ can effectively improve cardiac repair following myocardial infarction (MI). 6-Bromoindirubin-3-oxime (BIO) and insulin-like growth factor 1 (IGF-1) are two potent factors that promote cardiomyocyte survival and proliferation. However, their delivery for sustained release in MI-affected areas has proved to be challenging. In the current research, we present a study on the sustained co-delivery of BIO and IGF-1 in a hybrid hydrogel system to simulate endogenous cardiac repair in an MI rat model. Both BIO and IGF-1 were efficiently encapsulated in gelatin nanoparticles, which were later cross-linked with the oxidized alginate to form a novel hybrid hydrogel system. The in vivo results indicated that the hybrid system could enhance the proliferation of cardiomyocytes in situ and could promote revascularization around the MI sites, allowing improved cardiac function. Taken together, we concluded that the hybrid hydrogel system can co-deliver BIO and IGF-1 to areas of MI and thus improve cardiac function by promoting the proliferation of cardiomyocytes and revascularization.

  9. Sustained co-delivery of BIO and IGF-1 by a novel hybrid hydrogel system to stimulate endogenous cardiac repair in myocardial infarcted rat hearts

    PubMed Central

    Fang, Rui; Qiao, Shupei; Liu, Yi; Meng, Qingyuan; Chen, Xiongbiao; Song, Bing; Hou, Xiaolu; Tian, Weiming

    2015-01-01

    Dedifferentiation and proliferation of endogenous cardiomyocytes in situ can effectively improve cardiac repair following myocardial infarction (MI). 6-Bromoindirubin-3-oxime (BIO) and insulin-like growth factor 1 (IGF-1) are two potent factors that promote cardiomyocyte survival and proliferation. However, their delivery for sustained release in MI-affected areas has proved to be challenging. In the current research, we present a study on the sustained co-delivery of BIO and IGF-1 in a hybrid hydrogel system to simulate endogenous cardiac repair in an MI rat model. Both BIO and IGF-1 were efficiently encapsulated in gelatin nanoparticles, which were later cross-linked with the oxidized alginate to form a novel hybrid hydrogel system. The in vivo results indicated that the hybrid system could enhance the proliferation of cardiomyocytes in situ and could promote revascularization around the MI sites, allowing improved cardiac function. Taken together, we concluded that the hybrid hydrogel system can co-deliver BIO and IGF-1 to areas of MI and thus improve cardiac function by promoting the proliferation of cardiomyocytes and revascularization. PMID:26251592

  10. Product evaluation : Thoro product demonstration

    DOT National Transportation Integrated Search

    1986-07-18

    This report contains a product evaluation of Thoro System's "Roadpatch" and "Thorite". Roadpatch is a cement base, fast-setting patching material. The material is fortified with special alkali resistant glass fibers. It is designed to repair potholes...

  11. Graft Utilization in the Augmentation of Large-to-Massive Rotator Cuff Repairs: A Systematic Review.

    PubMed

    Ferguson, Devin P; Lewington, Matthew R; Smith, T Duncan; Wong, Ivan H

    2016-11-01

    Current treatment options for symptomatic large-to-massive rotator cuff tears can reduce pain, but failure rates remain high. Surgeons have incorporated synthetic and biologic grafts to augment these repairs, with promising results. Multiple reviews exist that summarize these products; however, no systematic review has investigated the grafts' ability to maintain structural integrity after augmentation of large-to-massive rotator cuff repairs. To systematically review and evaluate the effectiveness of grafts in the augmentation of large-to-massive rotator cuff repairs. Systematic review. A comprehensive search of 4 reputable databases was completed. Inclusion criteria were (1) large-to-massive rotator cuff tear, (2) graft augmentation of primary repairs ± primary repair control group, and (3) minimum clinical and radiologic follow-up of 12 months. Two reviewers screened the titles, abstracts, and full articles and extracted the data from eligible studies. Results were summarized into evidence tables stratified by graft origin and level of evidence. Ten studies fit the inclusion criteria. Allograft augmentation was functionally and structurally superior to primary repair controls, with intact repairs in 85% versus 40% of patients (P < .01). This was supported by observational study data. Xenograft augmentation failed to demonstrate superiority to primary repair controls, with worse structural healing rates (27% vs 60%; P =.11). Both comparative studies supported this finding. There have also been many reports of inflammatory reactions with xenograft use. Polypropylene patches are associated with improved structural (83% vs 59% and 49%; P < .01) and functional outcomes when compared with controls and xenograft augmentation; however, randomized data are lacking. Augmentation of large-to-massive rotator cuff repairs with human dermal allografts is associated with superior functional and structural outcome when compared with conventional primary repair. Xenograft augmentation failed to demonstrate a statistically significant difference and may be associated with worse rerupture rates and occasional severe inflammatory reactions. Polypropylene patches have initial promising results. Research in this field is limited; future researchers should continue to develop prospective, randomized controlled trials to establish clear recommendations. © 2016 The Author(s).

  12. Reduced Collagen Deposition in Infarcted Myocardium Facilitates Induced Pluripotent Stem Cell Engraftment and Angiomyogenesis for Improvement of Left Ventricular Function

    PubMed Central

    Dai, Bo; Huang, Wei; Xu, Meifeng; Millard, Ronald W.; Gao, Mei Hua; Hammond, H. Kirk; Menick, Donald R.; Ashraf, Muhammad; Wang, Yigang

    2012-01-01

    Objectives The purpose of this study was to assess the effect of scar tissue composition on engraftment of progenitor cells into infarcted myocardium. Background Scar tissue formation after myocardial infarction creates a barrier that severely compromises tissue regeneration, limiting potential functional recovery. Methods In vitro: A tricell patch (Tri-P) was created from peritoneum seeded and cultured with induced pluripotent stem cell–derived cardiomyocytes, endothelial cells, and mouse embryonic fibroblasts. The expression of fibrosis-related molecules from mouse embryonic fibroblasts and infarcted heart was measured by Western blot and quantitative reverse transcriptase polymerase chain reaction. In vivo: A Tri-P was affixed over the entire infarcted area 7 days after myocardial infarction in mice overexpressing adenylyl cyclase 6 (AC6). Engraftment efficiency of progenitor cells in hearts of AC6 mice was compared with that of control wild-type (WT) mice using a combination of in vivo bioluminescence imaging, post-mortem ex vivo tissue analysis, and the number of green fluorescent protein–positive cells. Echocardiography of left ventricular (LV) function was performed weekly. Hearts were harvested for analysis 4 weeks after Tri-P application. Mouse embryonic fibroblasts were stimulated with forskolin before an anoxia/reoxygenation protocol. Fibrosis-related molecules were analyzed. Results In AC6 mice, infarcted hearts treated with Tri-P showed significantly higher bioluminescence imaging intensity and numbers of green fluorescent protein–positive cells than in WT mice. LV function improved progressively in AC6 mice from weeks 2 to 4 and was associated with reduced LV fibrosis. Conclusions Application of a Tri-P in AC6 mice resulted in significantly higher induced pluripotent stem cell engraftment accompanied by angiomyogenesis in the infarcted area and improvement in LV function. PMID:22051336

  13. Fatigue behavior of a thermally-activated NiTiNb SMA-FRP patch

    NASA Astrophysics Data System (ADS)

    El-Tahan, M.; Dawood, M.

    2016-01-01

    This paper presents the details of an experimental study that was conducted to characterize the fatigue behavior of a thermally-activated shape memory alloy (SMA)/carbon fiber reinforced polymer (CFRP) patch that can be used to repair cracked steel members. A total of 14 thermally-activated patches were fabricated and tested to evaluate the stability of the prestress under fatigue loading. The parameters considered in this study are the prestress level in the nickel-titanium-niobium SMA wires and the applied force range. An empirical model to predict the degradation of the prestress is also presented. The results indicate that patches for which the maximum applied loads in a fatigue cycle did not cause debonding of the SMA wires from the CFRP sustained two million loading cycles with less than 20% degradation of the prestress.

  14. Use of high-dose erythropoietin for repair after injury: A comparison of outcomes in heart and kidney.

    PubMed

    Gobe, Glenda C; Morais, Christudas; Vesey, David A; Johnson, David W

    2013-07-01

    There is a need to define the exact benefits and contraindications of use of high-dose recombinant human erythropoietin (EPO) for its non-hematopoietic function as a cytokine that enhances tissue repair after injury. This review compares the outcomes from use of EPO in the injured heart and kidney, two organs that are thought, traditionally, to have intrinsically-different repair mechanisms. Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Ongoing work by us on EPO protection of ischemia-reperfusion-injured kidneys indicated, first, that EPO acutely enhanced kidney repair via anti-apoptotic, pro-regenerative mechanisms, and second, that EPO may promote chronic fibrosis in the long term. Work by others on the ischaemia-injured heart has also indicated that EPO promotes repair. Although myocardial infarcts are made up mostly of necrotic tissue, many publications state EPO is anti-apoptotic in the heart, as well as promoting healing via cell differentiation and stimulation of granulation tissue. In the case of the heart, promotion of fibrosis may be advantageous where an infarct has destroyed a zone of cardiomyocytes, but if EPO stimulates progressive fibrosis in the heart, this may promote cardiac failure. A major concern in relation to the use of EPO in a cytoprotective role is its stimulation of long-term inflammation and fibrosis. EPO usage for cytoprotection is undoubtedly advantageous, but it may need to be offset with an anti-inflammatory agent in some organs, like kidney and heart, where progression to chronic fibrosis after acute injury is often recorded.

  15. An injectable silk sericin hydrogel promotes cardiac functional recovery after ischemic myocardial infarction.

    PubMed

    Song, Yu; Zhang, Cheng; Zhang, Jinxiang; Sun, Ning; Huang, Kun; Li, Huili; Wang, Zheng; Huang, Kai; Wang, Lin

    2016-09-01

    Acute myocardial infarction (MI) leads to morbidity and mortality due to cardiac dysfunction. Here we identify sericin, a silk-derived protein, as an injectable therapeutic biomaterial for the minimally invasive MI repair. For the first time, sericin prepared in the form of an injectable hydrogel has been utilized for cardiac tissue engineering and its therapeutical outcomes evaluated in a mouse MI model. The injection of this sericin hydrogel into MI area reduces scar formation and infarct size, increases wall thickness and neovascularization, and inhibits the MI-induced inflammatory responses and apoptosis, thereby leading to a significant functional improvement. The potential therapeutical mechanisms have been further analyzed in vitro. Our results indicate that sericin downregulates pro-inflammatory cytokines (TNF-α and IL-18) and chemokine (CCL2) and reduces TNF-α expression by suppressing the TLR4-MAPK/NF-κB pathways. Moreover, sericin exhibits angiogenic activity by promoting migration and tubular formation of human umbilical vessel endothelial cells (HUVECs). Also, sericin stimulates VEGFa expression via activating ERK phosphorylation. Further, sericin protects endothelial cells and cardiomyocytes from apoptosis by inhibiting the activation of caspase 3. Together, these diverse biochemical activities of sericin protein lead to a significant recovery of cardiac function. This work represents the first study reporting sericin as an effective therapeutic biomaterial for ischemic myocardial repair in vivo. Intramyocardial biomaterial injection is thought to be a potential therapeutic approach to improve cardiac performance after ischemic myocardial infarction. In this study, we report the successful fabrication and in vivo application of an injectable sericin hydrogel for ischemic heart disease. We for the first time show that the injection of in situ forming crosslinked sericin hydrogel promotes heart functional recovery accompanied with reduced inflammatory responses, attenuated apoptosis and increased microvessel density in the infarcted hearts. Further, we reveal that the improvement in those aspects is ascribed to sericin protein's functional bioactivities that are comprehensively uncovered in this study. Thus, we identify sericin, a natural protein, as a biomaterial suitable for myocardial repair and demonstrate that the in vivo application of this injectable sericin hydrogel can be an effective strategy for treating MI. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Portable Holographic Interferometry Testing System: Application to crack patching quality control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heslehurst, R.B.; Baird, J.P.; Williamson, H.M.

    Over recent years the repair of metallic structures has been improved through the use of patches fabricated from composite materials and adhesively bonded to the damaged area. This technology is termed crack patching, and has been successfully and extensively used by the RAAF and the USAF. However, application of the technology to civilian registered aircraft has had limited success due to the apparent lack of suitable quality assurance testing methods and the airworthiness regulators concern overpatch adhesion integrity. Holographic interferometry has previously shown the advantages of detecting out-of-plane deformations of the order of the wavelength of light (1{mu}). Evidence willmore » be presented that holography is able to detect changes in load path due to debonds and weakened adhesion in an adhesively bonded patch. A Portable Holographic Interferometry Testing System (PHITS) which overcomes the vibration isolation problem associated with conventional holography techniques has been developed. The application of PHITS to crack patching technology now provides a suitable method to verify the integrity of bonded patches in-situ.« less

  17. A modern era comparison of right versus left sided congenital diaphragmatic hernia outcomes.

    PubMed

    Collin, Michael; Trinder, Sarah; Minutillo, Corrado; Rao, Shripada; Dickinson, Jan; Samnakay, Naeem

    2016-09-01

    This study aims to retrospectively review outcomes, including neurodevelopmental outcomes, of neonatal right sided congenital diaphragmatic hernias (RCDH) compared with left sided congenital diaphragmatic hernias (L-CDH) treated surgically at our institute. A retrospective review was undertaken of all cases of congenital diaphragmatic hernia (CDH) treated at Princess Margaret Hospital for Children (PMH), Perth, born between 1st January 2002 and 1st August 2012. The outcomes of R-CDH cases were compared with L-CDH cases. We examined duration of ventilatory support, use of patch versus primary closure, the CDH recurrence rates, the number of reoperations and neurodevelopmental follow-up at one year of age. Forty-nine cases of CDH were operated on at PMH during the 10-year period. Of these, ten cases were R-CDH with 39 L-CDH cases. Of 49 cases, 34 were diagnosed antenatally, 5 R-CDH versus 29 L-CDH. Only 8/39 cases of L-CDH required patch repair for larger defects, while 5/10 R-CDH required patch repair. Postoperative mortality was 6/49 (1/10 right sided versus 5/39 left sided). Recurrence was observed in 5/10 R-CDH versus 6/39 L-CDH with p=0.03. Thirty-three of 43 surviving patients received one-year follow-up with Griffiths general quotient (GQ) assessment demonstrating a median score of 98 for L-CDH (IQR 86 to 104.25) and 91 for R-CDH (IQR 76.5 to 93). R-CDH required patch repair more commonly than L-CDH because of larger defect size or complete agenesis. The rate of recurrent herniation was the only morbidity significantly higher in the R-CDH group. Survivors of R-CDH did not have a significant difference in neurodevelopmental outcome compared to L-CDH cases, with both groups exhibiting normal median GQ scores at one year of age. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  18. Engineering properties of brittle repair materials : summary report.

    DOT National Transportation Integrated Search

    1992-09-01

    Most codes of practice prescribe procedures for selecting patch configuration and materials based on test devised for evaluating new pavement materials. This study is aimed at examining the special consideration to be given to such evaluation procedu...

  19. Finite element modeling to determine thermal residual strain distribution of bonded composite repairs for structural health monitoring design

    NASA Astrophysics Data System (ADS)

    Baker, Wayne; Jones, Rhys; Davis, Claire; Galea, Stephen C.

    2002-11-01

    The economic implication of fleet upgrades, particularly in Australia with military aircraft such as the F-111 and F/A-18, has led to an increasing reliance on composite repair technology to address fatigue and corrosion-affected aircraft components. The increasing use of such repairs has led to a research effort to develop various in-situ health monitoring systems that may be incorporated with a repair. This paper reports on the development of a theoretical methodology that uses finite element analysis (FEA) to model the strain profiles which optical sensors, on or within the patch, will be exposed to under various operational scenarios, including load and disbond. Numerical techniques are then used to predict the fibre Bragg grating (FBG) reflections which occur with these strain profiles. The quality of these reflection are a key consideration when designing FBG based structural health monitoring (SHM) systems. This information can be used to optimise the location of both surface mounted, and embedded sensors, and determine feasibility of SHM system design. Research was conducted into the thermal residual strain (TRS) within the patch. A finite element study revealed the presence of significant thermal residual strain gradients along the surface of the tapered region of the patch. As Bragg gratings are particularly sensitive to strain gradients, (producing a result similar to a chirped grating) the strain gradient on the composite at potential sensor locations both under load, and in the event of disbond was considered. A sufficiently high gradient leads to an altered Bragg reflection. These spurious reflections need to be considered, and theoretically obtained reflections can provide information to allow for load scenarios where the Bragg shift is not a smooth, well defined peak. It can also be shown that embedded fibres offer a higher average thermal residual strain reading, while being subject to a much lower strain gradient. This particularly favors the optical disbond detection system that is being developed. While certification concerns exist with embedding sensors in repairs, this study shows that embedded optical fibre sensors may provide for a health monitoring system with enhanced reliability and sensitivity.

  20. Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites.

    PubMed

    Mushaben, Madaline; Urie, Russell; Flake, Tanner; Jaffe, Michael; Rege, Kaushal; Heys, Jeffrey

    2018-02-01

    Laser tissue soldering using photothermal solders is a technology that facilitates rapid sealing using heat-induced changes in the tissue and the solder material. The solder material is made of gold nanorods embedded in a protein matrix patch that can be placed over the tissue rupture site and heated with a laser. Although laser tissue soldering is an attractive approach for surgical repair, potential photothermal damage can limit the success of this approach. Development of predictive mathematical models of photothermal effects including cell death, can lead to more efficient approaches in laser-based tissue repair. We describe an experimental and modeling investigation into photothermal solder patches for sealing porcine and mouse cadaver intestine sections using near-infrared laser irradiation. Spatiotemporal changes in temperature were determined at the surface as well as various depths below the patch. A mathematical model, based on the finite element method, predicts the spatiotemporal temperature distribution in the patch and surrounding tissue, as well as concomitant cell death in the tissue is described. For both the porcine and mouse intestine systems, the model predicts temperatures that are quantitatively similar to the experimental measurements with the model predictions of temperature increase often being within a just a few degrees of experimental measurements. This mathematical model can be employed to identify optimal conditions for minimizing healthy cell death while still achieving a strong seal of the ruptured tissue using laser soldering. Lasers Surg. Med. 50:143-152, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Plating Patches On Heat-Exchanger Jackets

    NASA Technical Reports Server (NTRS)

    Loureiro, Henry; Kubik, Frank

    1989-01-01

    Permanent repairs made without welding. Technique used to repair nickel-alloy nozzle jacket of Space Shuttle main engine. Applicable to other metal heat-exchanger jackets with similar configurations. Does not require welding, brazing, soldering, or other operations involving high temperatures and consequent damage to surrounding areas. Portion of jacket around damaged area removed by grinding and polishing out to edges adjacent to tube/jacket braze bonds. Spaces between tubes filled with wax preventing contamination of spaces during subsequent plating.

  2. The Fanconi Anemia DNA Repair Pathway Is Regulated by an Interaction between Ubiquitin and the E2-like Fold Domain of FANCL.

    PubMed

    Miles, Jennifer A; Frost, Mark G; Carroll, Eilis; Rowe, Michelle L; Howard, Mark J; Sidhu, Ateesh; Chaugule, Viduth K; Alpi, Arno F; Walden, Helen

    2015-08-21

    The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). Inefficient repair of these ICL can lead to leukemia and bone marrow failure. A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL. FANCL comprises 3 domains, a RING domain that interacts with E2 conjugating enzymes, a central domain required for substrate interaction, and an N-terminal E2-like fold (ELF) domain. The ELF domain is found in all FANCL homologues, yet the function of the domain remains unknown. We report here that the ELF domain of FANCL is required to mediate a non-covalent interaction between FANCL and ubiquitin. The interaction involves the canonical Ile44 patch on ubiquitin, and a functionally conserved patch on FANCL. We show that the interaction is not necessary for the recognition of the core complex, it does not enhance the interaction between FANCL and Ube2T, and is not required for FANCD2 monoubiquitination in vitro. However, we demonstrate that the ELF domain is required to promote efficient DNA damage-induced FANCD2 monoubiquitination in vertebrate cells, suggesting an important function of ubiquitin binding by FANCL in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Endoscopic observation of different repair patterns in human traumatic tympanic membrane perforations.

    PubMed

    Huang, Peng; Zhang, Shujun; Gong, Xinhong; Wang, Xuesong; Lou, Zi-Han

    2017-08-03

    In the last decade, there has been an increasing use of biomaterial patches in the regeneration of traumatic tympanic membrane perforations. The major advantages of biomaterial patches are to provisionally restore the physiological function of the middle ear, thereby immediately improving ear symptoms, and act as a scaffold for epithelium migration. However, whether there are additional biological effects on eardrum regeneration is unclear for biological material patching in the clinic. This study evaluated the healing response for different repair patterns in human traumatic tympanic membrane perforations by endoscopic observation. In total, 114 patients with traumatic tympanic membrane perforations were allocated sequentially to two groups: the spontaneous healing group (n=57) and Gelfoam patch-treated group (n=57). The closure rate, closure time, and rate of otorrhea were compared between the groups at 3 months. Ultimately, 107 patients were analyzed in the two groups (52 patients in the spontaneous healing group vs. 55 patients in the Gelfoam patch-treated group). The overall closure rate at the end of the 3 month follow-up period was 90.4% in the spontaneous healing group and 94.5% in the Gelfoam patch-treated group; the difference was not statistically significant (p>0.05). However, the total average closure time was significantly different between the two groups (26.8±9.1 days in the spontaneous healing group vs. 14.7±9.1 days in the Gelfoam patch-treated group, p<0.01). In addition, the closure rate was not significantly different between the spontaneous healing group and Gelfoam patch-treated group regardless of the perforation size. The closure time in the Gelfoam patch-treated group was significantly shorter than that in the spontaneous healing group regardless of the perforation size (small perforations: 7.1±1.6 days vs. 12.6±3.9, medium-sized perforations: 13.3±2.2 days vs. 21.8±4.2 days, and large perforations: 21.2±4.7 days vs. 38.4±5.7 days; p<0.01). In the regeneration of traumatic tympanic membrane perforations, Gelfoam patching not only plays a scaffolding role for epithelial migration, it also promotes edema and hyperplasia of granulation tissue at the edges of the perforation and accelerates eardrum healing. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  4. Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction

    PubMed Central

    Wang, Ning-Ping; Wang, Zhang-Feng; Tootle, Stephanie; Philip, Tiji; Zhao, Zhi-Qing

    2012-01-01

    BACKGROUND AND PURPOSE Curcumin, the natural yellow pigment extracted from the rhizomes of the plant curcuma longa, has been demonstrated to exhibit a variety of potent beneficial effects, acting as an antioxidant, anti-inflammatory and anti-fibrotic. In this study we tested the hypothesis that curcumin attenuates maladaptive cardiac repair and improves cardiac function after ischaemia and reperfusion by reducing degradation of extracellular matrix (ECM) and inhibiting synthesis of collagens via TGFβ/Smad-mediated signalling pathway. EXPERIMENTAL APPROACH Sprague-Dawley rats were subjected to 45 min of ischaemia followed by 7, 21 and 42 days of reperfusion respectively. Curcumin was fed orally at a dose of 150 mg·kg−1·day−1 only during reperfusion. KEY RESULTS Curcumin reduced the level of malondialdehyde, inhibited activity of MMPs, preserved ECM from degradation and attenuated collagen deposition, as it reduced the extent of collagen-rich scar and increased mass of viable myocardium. In addition to reducing collagen synthesis and fibrosis in the ischaemic/reperfused myocardium, curcumin significantly down-regulated the expression of TGFβ1 and phospho-Smad2/3, and up-regulated Smad7 and also increased the population of α-smooth muscle actin expressing myofibroblasts within the infarcted myocardium relative to the control. Echocardiography showed it significantly improved left ventricular end-diastolic volume, stroke volume and ejection fraction. The wall thickness of the infarcted middle anterior septum in the curcumin group was also greater than that in the control group. CONCLUSION AND IMPLICATIONS Dietary curcumin is effective at inhibiting maladaptive cardiac repair and preserving cardiac function after ischaemia and reperfusion. Curcumin has potential as a treatment for patients who have had a heart attack. PMID:22823335

  5. Proteomics-based network analysis characterizes biological processes and pathways activated by preconditioned mesenchymal stem cells in cardiac repair mechanisms.

    PubMed

    Di Silvestre, Dario; Brambilla, Francesca; Scardoni, Giovanni; Brunetti, Pietro; Motta, Sara; Matteucci, Marco; Laudanna, Carlo; Recchia, Fabio A; Lionetti, Vincenzo; Mauri, Pierluigi

    2017-05-01

    We have demonstrated that intramyocardial delivery of human mesenchymal stem cells preconditioned with a hyaluronan mixed ester of butyric and retinoic acid (MSCp + ) is more effective in preventing the decay of regional myocardial contractility in a swine model of myocardial infarction (MI). However, the understanding of the role of MSCp + in proteomic remodeling of cardiac infarcted tissue is not complete. We therefore sought to perform a comprehensive analysis of the proteome of infarct remote (RZ) and border zone (BZ) of pigs treated with MSCp + or unconditioned stem cells. Heart tissues were analyzed by MudPIT and differentially expressed proteins were selected by a label-free approach based on spectral counting. Protein profiles were evaluated by using PPI networks and their topological analysis. The proteomic remodeling was largely prevented in MSCp + group. Extracellular proteins involved in fibrosis were down-regulated, while energetic pathways were globally up-regulated. Cardioprotectant pathways involved in the production of keto acid metabolites were also activated. Additionally, we found that new hub proteins support the cardioprotective phenotype characterizing the left ventricular BZ treated with MSCp + . In fact, the up-regulation of angiogenic proteins NCL and RAC1 can be explained by the increase of capillary density induced by MSCp + . Our results show that angiogenic pathways appear to be uniquely positioned to integrate signaling with energetic pathways involving cardiac repair. Our findings prompt the use of proteomics-based network analysis to optimize new approaches preventing the post-ischemic proteomic remodeling that may underlie the limited self-repair ability of adult heart. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dual ACE-inhibition and angiotensin II AT1 receptor antagonism with curcumin attenuate maladaptive cardiac repair and improve ventricular systolic function after myocardial infarctionin rat heart.

    PubMed

    Pang, Xue-Fen; Zhang, Li-Hui; Bai, Feng; Wang, Ning-Ping; Ijaz Shah, Ahmed; Garner, Ron; Zhao, Zhi-Qing

    2015-01-05

    Curcumin has been shown to improve cardiac function by reducing degradation of extracellular matrix and inhibiting synthesis of collagen after ischemia. This study tested the hypothesis that attenuation of maladaptive cardiac repair with curcumin is associated with a dual ACE-inhibition and angiotensin II AT1 receptor antagonism after myocardial infarction. Sprague-Dawley rats were subjected to 45min ischemia followed by 7 and 42 days of reperfusion, respectively. Curcumin was fed orally at a dose of 150mg/kg/day only during reperfusion. Relative to the control animals, dietary treatment with curcumin significantly reduced levels of ACE and AT1 receptor protein as determined by Western blot assay, coincident with less locally-expressed ACE and AT1 receptor in myocardium and coronary vessels as identified by immunohistochemistry. Along with this inhibition, curcumin significantly increased protein level of AT2 receptor and its expression compared with the control. As evidenced by less collagen deposition in fibrotic myocardium, curcumin also reduced the extent of collagen-rich scar and increased mass of viable myocardium detected by Masson׳s trichrome staining. Echocardiography showed that the wall thickness of the infarcted anterior septum in the curcumin group was significantly greater than that in the control group. Cardiac contractile function was improved in the curcumin treated animals as measured by fraction shortening and ejection fraction. In cultured cardiac muscle cells, curcumin inhibited oxidant-induced AT1 receptor expression and promoted cell survival. These results suggest that curcumin attenuates maladaptive cardiac repair and enhances cardiac function, primarily mediated by a dual ACE-inhibition and AT1 receptor antagonism after myocardial infarction. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Oral buccal mucous membrane allograft with a corneal lamellar graft for the repair of Boston type 1 keratoprosthesis stromal melts.

    PubMed

    Ziai, Setareh; Rootman, David S; Slomovic, Allan R; Chan, Clara C

    2013-11-01

    To describe a surgical technique to repair Boston type 1 keratoprosthesis (KPro)-related corneal melts. Technique description and review of 3 representative cases. After harvesting the buccal mucosa from the patient's inner lower lip, the exposed area of the KPro back plate is prepared for repair by adequate exposure and removal of necrotic tissue. The area is then covered with a lamellar patch of cornea secured in place with interrupted 10-0 nylon sutures, followed by a thin layer of buccal mucosa secured in place with interrupted 8-0 vicryl sutures. This technique provides surgeons with a method to repair KPro-related corneal melts when there is a conjunctival deficiency.

  8. Application of the bridged crack model for evaluation of materials repairing and self-healing

    NASA Astrophysics Data System (ADS)

    Perelmuter, M.

    2017-12-01

    The bridged crack model is used for analysis of repairing and self-healing of cracked structures. Material repairing is treated as insertions of external ligaments into cracks or placement of the reinforcing patches over cracks. Bonds destruction and regeneration at the crack bridged zone is evaluated by the thermo-fluctuation kinetic theory. The healing time is dependent on the chemical reaction rate of the healing agent, the crack size and the external loads. The decreasing of the stress intensity factors is used as the measure of the repairing and healing effects. The mathematical background of the problem solution is based on the methods of the singular integral-differential equations. The model can be used for the evaluation of composite materials durability.

  9. Engineering properties of brittle repair materials : final report : volume I.

    DOT National Transportation Integrated Search

    1992-09-01

    Most codes of practice prescribe procedures for selecting patch configuration and materials based on tests devised for evaluating new pavement materials. This study is aimed at examining the special consideration to be given to such evaluation proced...

  10. Engineering properties of brittle repair materials : final report : volume II.

    DOT National Transportation Integrated Search

    1992-09-01

    Most codes of practice prescribe procedures for selecting patch configuration and materials based on tests devised for evaluating new pavement materials. This study is aimed at examining the special consideration to be given to such evaluation proced...

  11. Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part I: Synthesis, characterization, and myoblast proliferation and differentiation.

    PubMed

    Baheiraei, Nafiseh; Gharibi, Reza; Yeganeh, Hamid; Miragoli, Michele; Salvarani, Nicolò; Di Pasquale, Elisa; Condorelli, Gianluigi

    2016-03-01

    Tissue-engineered cardiac patch aims at regenerating an infarcted heart by improving cardiac function and providing mechanical support to the diseased myocardium. In order to take advantages of electroactivity, a new synthetic method was developed for the introduction of an electroactive oligoaniline into the backbone of prepared patches. For this purpose, a series of electroactive polyurethane/siloxane films containing aniline tetramer (AT) was prepared through sol-gel reaction of trimethoxysilane functional intermediate polyurethane prepolymers made from castor oil and poly(ethylene glycol). Physicochemical, mechanical, and electrical conductivity of samples were evaluated and the recorded results were correlated to their structural characteristics. The optimized films were proved to be biodegradable and have tensile properties suitable for cardiac patch application. The embedded AT moieties in the backbone of the prepared samples preserved their electroactivity with the electrical conductivity in the range of 10 -4 S/cm. The prepared films were compatible with proliferation of C2C12 and had potential for enhancing myotube formation even without external electrical stimulation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 775-787, 2016. © 2015 Wiley Periodicals, Inc.

  12. Dye-enhanced protein solders and patches in laser-assisted tissue welding.

    PubMed

    Small, W; Heredia, N J; Maitland, D J; Da Silva, L B; Matthews, D L

    1997-01-01

    This study examines the use of dye-enhanced protein bonding agents in 805 nm diode laser-assisted tissue welding. A comparison of an albumin liquid solder and collagen solid-matrix patches used to repair arteriotomies in an in vitro porcine model is presented. Extrinsic bonding media in the form of solders and patches have been used to enhance the practice of laser tissue welding. Preferential absorption of the laser wavelength has been achieved by the incorporation of chromophores. Both the solder and the patch included indocyanine green dye (ICG) to absorb the 805 nm continuous-wave diode laser light used to perform the welds. Solder-mediated welds were divided into two groups (high power/short exposure and low power/long exposure), and the patches were divided into three thickness groups ranging from 0.1 to 1.3 mm. The power used to activate the patches was constant, but the exposure time was increased with patch thickness. Burst pressure results indicated that solder-mediated and patched welds yielded similar average burst strengths in most cases, but the patches provided a higher success rate (i.e., more often exceeded 150 mmHg) and were more consistent (i.e., smaller standard deviation) than the solder. The strongest welds were obtained using 1.0-1.3 mm thick patches, while the high power/short exposure solder group was the weakest. Though the solder and patches yielded similar acute weld strengths, the solid-matrix patches facilitated the welding process and provided consistently strong welds. The material properties of the extrinsic agents influenced their performance.

  13. Tissue repair

    PubMed Central

    2010-01-01

    As living beings that encounter every kind of traumatic event from paper cut to myocardial infarction, we must possess ways to heal damaged tissues. While some animals are able to regrow complete body parts following injury (such as the earthworm who grows a new head following bisection), humans are sadly incapable of such feats. Our means of recovery following tissue damage consists largely of repair rather than pure regeneration. Thousands of times in our lives, a meticulously scripted but unseen wound healing drama plays, with cells serving as actors, extracellular matrix as the setting and growth factors as the means of communication. This article briefly reviews the cells involved in tissue repair, their signaling and proliferation mechanisms and the function of the extracellular matrix, then presents the actors and script for the three acts of the tissue repair drama. PMID:21220961

  14. Repair of Inaccessible Ventral Dural Defect in Thoracic Spine: Double Layered Duraplasty

    PubMed Central

    Lee, Dong-Hyun; Park, Jeong-Ill; Park, Ki-Su; Cho, Dae-Chul; Sung, Joo-Kyung

    2016-01-01

    We propose a double layered (intradural and epidural patch) duraplasty that utilizes Lyoplant and Duraseal. We examined a 47-year-old woman after decompression for thoracic ossification of posterior longitudinal ligament was performed in another hospital. On postoperative day 7, she complained of weakness in both legs. Postoperative magnetic resonance imaging (MRI) showed cerebrospinal fluid (CSF) collection with cord compression. In the operative field, we found 2 large dural defects on the ventral dura mater. We performed a conventional fat graft with fibrin glue. However, the patient exhibited neurologic deterioration, and a postoperative MRI again showed CSF collection. We performed dorsal midline durotomy and inserted a intradural and epidural Lyoplant patch. She immediately experienced diminishing back pain postoperatively. Her visual analog scale and motor power improved markedly. Postoperative MRIs performed at 2 and 16 months showed no spinal cord compression or CSF leakage to the epidural space. We describe a new technique for double layered duraplasty. Although we do not recommend this technique for all dural repairs, double-layered duraplasty may be useful for repairing large inaccessible dural tears in cases of persistent CSF leakage refractory to conventional management. PMID:27437022

  15. Acrylate-induced allergic contact dermatitis in a car windscreen repairer.

    PubMed

    Fremlin, G; Sansom, J

    2014-10-01

    We report a case of an allergic skin reaction to ultraviolet-cured acrylates in a windscreen repair worker. The patient presented with a 6 month history of fingertip dryness, vesicles and desquamation. He had worked as a self-employed car windscreen repairer for 19 years. Previous management with vinyl glove protection and treatment with clobetasol propionate ointment had produced little improvement. He was patch tested to the British Society for Cutaneous Allergy standard and preservatives series and to the two acrylates used in his work environment, identified using safety data sheets, methyl methacrylate 2% pet and 2-hydroxyethylmethacrylate (2-HEMA) 2% pet. A positive reaction was seen at Day 4 to 2-HEMA, but all other patch tests were negative. An occupational allergic contact dermatitis to 2-HEMA was diagnosed. The patient was given avoidance advice and advised to use nitrile gloves. Although he was unable to give up his current work, he has continued his job using nitrile gloves with marked improvement. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Development of stroke-induced quadriplegia after endovascular repair of blunt aortic injury pseudoaneurysm.

    PubMed

    Amoudi, Abdullah S; Merdad, Anas A; Makhdoom, Ahmed Q; Jamjoom, Reda A

    2015-01-01

    Endovascular repair of blunt aortic injury is now a first-line approach in management. This can warrant coverage of the left subclavian artery (LSA), which could lead to posterior strokes. In this case report, we present a severe complication of endovascular repair of a traumatic aortic aneurysm. A 53-year-old man presented with blunt aortic injury, endovascular repair was carried out where the left subclavian artery was covered. The intervention had a 100% technical success. Twelve hours later, he was discovered to have quadriplegia, a CT scan showed a large left cerebellar infarction extending to the medulla oblongata and proximal spinal cord. Strokes complicate 3% of thoracic endovascular aortic repairs, 80% of those strokes occur in patients who had their LSA`s covered. Most patients however, tolerate the coverage. Although our patient had a dominant right vertebral artery, and lacked risks for these strokes, he developed an extensive stroke that left him quadriplegic.

  17. Surgical repair of tricuspid valve leaflet tear following percutaneous closure of perimembranous ventricular septal defect using Amplatzer duct occluder I: Report of two cases

    PubMed Central

    Kuwelker, Saatchi Mahesh; Shetty, Devi Prasad; Dalvi, Bharat

    2017-01-01

    Tricuspid valve (TV) injury following transcatheter closure of perimembranous ventricular septal defect (PMVSD) with Amplatzer ductal occluder I (ADO I), requiring surgical repair, is rare. We report two cases of TV tear involving the anterior and septal leaflets following PMVSD closure using ADO I. In both the patients, the subvalvular apparatus remained unaffected. The patients presented with severe tricuspid regurgitation (TR) 6 weeks and 3 months following the device closure. They underwent surgical repair with patch augmentation of the TV leaflets. Postoperatively, both are asymptomatic with a mild residual TR. PMID:28163430

  18. Structure and specificity of FEN-1 from Methanopyrus kandleri

    DOE PAGES

    Shah, Santosh; Dunten, Pete; Stiteler, Amanda; ...

    2014-11-18

    DNA repair is fundamental to genome stability and is found in all three domains of life. However, many archaeal species, such as Methanopyrus kandleri, contain only a subset of the eukaryotic nucleotide excision repair (NER) homologues, and those present often contain significant differences compared to their eukaryotic homologues. To clarify the role of the NER XPG-like protein Mk0566 from M. kandleri, its biochemical activity and three dimensional structure were investigated. Ultimately, we found both to be more similar to human FEN-1 than human XPG, suggesting a biological role in replication and long-patch base excision repair rather than in NER.

  19. Type A Aortic Dissection Presenting with Inferior ST-Elevation Myocardial Infarction.

    PubMed

    Wu, Bao-Tzung; Li, Chun-Yi; Chen, Ying-Tsung

    2014-05-01

    Type A aortic dissection with concurrent ST-elevation myocardial infarction (STEMI) is relatively rare. However, it can be potentially fatal and easily misdiagnosed as STEMI alone. Misdiagnosis will lead to inappropriate administration of anticoagulant and thrombolytic therapy and delayed surgical repair of the aorta. In patients with STEMI, short reperfusion time is associated with improved survival, and minimizing the door-to-balloon time is the goal of therapy worldwide. However, signs critical for differential diagnosis may be overlooked in the rush to primary percutaneous coronary intervention. When a patient is encountered who presents with chest pain and ST elevation on electrocardiogram, STEMI should not be the only diagnosis considered. By using bedside available information, detailed history taking and focused physical examination, it is possible to avoid a mistaken diagnosis. Here we report a case of Stanford type A aortic dissection with STEMI that was initially misdiagnosed as sole acute inferior wall myocardial infarction. Patient mortality may have resulted from delayed diagnosis and surgical treatment. Acute myocardial infarction; Aortic dissection.

  20. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart

    PubMed Central

    Malliaras, Konstantinos; Zhang, Yiqiang; Seinfeld, Jeffrey; Galang, Giselle; Tseliou, Eleni; Cheng, Ke; Sun, Baiming; Aminzadeh, Mohammad; Marbán, Eduardo

    2013-01-01

    Cardiosphere-derived cells (CDCs) have been shown to regenerate infarcted myocardium in patients after myocardial infarction (MI). However, whether the cells of the newly formed myocardium originate from the proliferation of adult cardiomyocytes or from the differentiation of endogenous stem cells remains unknown. Using genetic fate mapping to mark resident myocytes in combination with long-term BrdU pulsing, we investigated the origins of postnatal cardiomyogenesis in the normal, infarcted and cell-treated adult mammalian heart. In the normal mouse heart, cardiomyocyte turnover occurs predominantly through proliferation of resident cardiomyocytes at a rate of ∼1.3–4%/year. After MI, new cardiomyocytes arise from both progenitors as well as pre-existing cardiomyocytes. Transplantation of CDCs upregulates host cardiomyocyte cycling and recruitment of endogenous progenitors, while boosting heart function and increasing viable myocardium. The observed phenomena cannot be explained by cardiomyocyte polyploidization, bi/multinucleation, cell fusion or DNA repair. Thus, CDCs induce myocardial regeneration by differentially upregulating two mechanisms of endogenous cell proliferation. PMID:23255322

  1. Systemic inflammatory response following acute myocardial infarction

    PubMed Central

    Fang, Lu; Moore, Xiao-Lei; Dart, Anthony M; Wang, Le-Min

    2015-01-01

    Acute cardiomyocyte necrosis in the infarcted heart generates damage-associated molecular patterns, activating complement and toll-like receptor/interleukin-1 signaling, and triggering an intense inflammatory response. Inflammasomes also recognize danger signals and mediate sterile inflammatory response following acute myocardial infarction (AMI). Inflammatory response serves to repair the heart, but excessive inflammation leads to adverse left ventricular remodeling and heart failure. In addition to local inflammation, profound systemic inflammation response has been documented in patients with AMI, which includes elevation of circulating inflammatory cytokines, chemokines and cell adhesion molecules, and activation of peripheral leukocytes and platelets. The excessive inflammatory response could be caused by a deregulated immune system. AMI is also associated with bone marrow activation and spleen monocytopoiesis, which sustains a continuous supply of monocytes at the site of inflammation. Accumulating evidence has shown that systemic inflammation aggravates atherosclerosis and markers for systemic inflammation are predictors of adverse clinical outcomes (such as death, recurrent myocardial infarction, and heart failure) in patients with AMI. PMID:26089856

  2. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis

    PubMed Central

    Prabhu, Sumanth D.; Frangogiannis, Nikolaos G.

    2016-01-01

    In adult mammals, massive sudden loss of cardiomyocytes following infarction overwhelms the limited regenerative capacity of the myocardium, resulting in formation of a collagen-based scar. Necrotic cells release danger signals, activating innate immune pathways and triggering an intense inflammatory response. Stimulation of toll-like receptor signaling and complement activation induces expression of pro-inflammatory cytokines (such as interleukin-1 and tumor necrosis factor-α) and chemokines (such as monocyte chemoattractant protein-1/CCL2). Inflammatory signals promote adhesive interactions between leukocytes and endothelial cells, leading to extravasation of neutrophils and monocytes. As infiltrating leukocytes clear the infarct from dead cells, mediators repressing inflammation are released, and anti-inflammatory mononuclear cell subsets predominate. Suppression of the inflammatory response is associated with activation of reparative cells. Fibroblasts proliferate, undergo myofibroblast transdifferentiation, and deposit large amounts of extracellular matrix proteins maintaining the structural integrity of the infarcted ventricle. The renin-angiotensin-aldosterone system and members of the transforming growth factor-β family play an important role in activation of infarct myofibroblasts. Maturation of the scar follows, as a network of cross-linked collagenous matrix is formed and granulation tissue cells become apoptotic. This review discusses the cellular effectors and molecular signals regulating the inflammatory and reparative response following myocardial infarction. Dysregulation of immune pathways, impaired suppression of post-infarction inflammation, perturbed spatial containment of the inflammatory response, and overactive fibrosis may cause adverse remodeling in patients with infarction contributing to the pathogenesis of heart failure. Therapeutic modulation of the inflammatory and reparative response may hold promise for prevention of post-infarction heart failure. PMID:27340270

  3. Use of a platelet-rich fibrin membrane to repair traumatic tympanic membrane perforations: a comparative study.

    PubMed

    Gür, Özer Erdem; Ensari, Nuray; Öztürk, Mehmet Türker; Boztepe, Osman Fatih; Gün, Taylan; Selçuk, Ömer Tarık; Renda, Levent

    2016-10-01

    (1) To evaluate the effects of a platelet-rich fibrin (PRF) membrane in the repair of traumatic tympanic membrane (TM) perforations; and (2) to compare the use of a PRF membrane with the paper patch technique with regard to recovery rates, healing time, and correction of the mean air-bone gap. A randomized, prospective analysis was performed for 60 patients who were treated for traumatic TM perforations using one of the two methods. Closure rate, speed of healing, and hearing gain were compared between the PRF (Group 1) and paper patch (Group 2) groups. Closure was obtained in 28 (93%) perforations in Group 1 and 25 (83%) perforations in Group 2 (p > 0.05). On day 10, full closure of the TM was observed in 24 (80%) patients in Group 1 and 16 (53%) patients in Group 2 (p < 0.05). The improvement in the mean air-bone gap was 14.1 dB in Group 1 and 12.4 dB in Group 2 on post-operative day 45 (p < 0.05). In comparison with the paper patch method, PRF, a new method, provided more rapid healing with more successful audiological results, and with no requirement for a second procedure.

  4. Compressive strength of damaged and repaired composite plates

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; He, Yi-Fei; Springer, George S.; Lee, Hung-Joo

    1992-01-01

    Tests were performed assessing the effectiveness of repair in restoring the mechanical properties of damaged, solid composite plates made either of Fiberite T300/976 graphite-epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, or ICI APC-2 graphite-PEEK. The plate length, the layup and the amount of damage were also varied. Damage was introduced in the plates either by impacting them with a solid projectile or by applying a transverse static load. Some (75 percent) or all (100 percent) of the damaged zone was then cut out, and the plate was repaired by plugging and patching the hole. The effectiveness of the repair was evaluated by measuring the compressive strengths of undamaged plates, damaged plates with no cutout, damaged plates with a cutout, and repaired plates. The data at an intermediate stage of repair provide information on the effect of each repair step on the compressive strength. The results indicated that for the solid plates used in these tests, the repair methods used herein did not improve the compressive strength of already damaged plates.

  5. The role of the sca-1+/CD31- cardiac progenitor cell population in postinfarction left ventricular remodeling.

    PubMed

    Wang, Xiaohong; Hu, Qingsong; Nakamura, Yasuhiro; Lee, Joseph; Zhang, Ge; From, Arthur H L; Zhang, Jianyi

    2006-07-01

    Cardiac stem cell-like populations exist in adult hearts, and their roles in cardiac repair remain to be defined. Sca-1 is an important surface marker for cardiac and other somatic stem cells. We hypothesized that heart-derived Sca-1(+)/CD31(-) cells may play a role in myocardial infarction-induced cardiac repair/remodeling. Mouse heart-derived Sca-1(+)/CD31(-) cells cultured in vitro could be induced to express both endothelial cell and cardiomyocyte markers. Immunofluorescence staining and fluorescence-activated cell sorting analysis indicated that endogenous Sca-1(+)/CD31(-) cells were significantly increased in the mouse heart 7 days after myocardial infarction (MI). Western blotting confirmed elevated Sca-1 protein expression in myocardium 7 days after MI. Transplantation of Sca-1(+)/CD31(-) cells into the acutely infarcted mouse heart attenuated the functional decline and adverse structural remodeling initiated by MI as evidenced by an increased left ventricular (LV) ejection fraction, a decreased LV end-diastolic dimension, a decreased LV end-systolic dimension, a significant increase of myocardial neovascularization, and modest cardiomyocyte regeneration. Attenuation of LV remodeling was accompanied by remarkably improved myocardial bioenergetic characteristics. The beneficial effects of cell transplantation appear to primarily depend on paracrine effects of the transplanted cells on new vessel formation and native cardiomyocyte function. Sca-1(+)/CD31(-) cells may hold therapeutic possibilities with regard to the treatment of ischemic heart disease.

  6. Sealing Materials for Use in Vacuum at High Temperatures

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Camarda, Charles J.; Lee Vaughn, Wallace

    2012-01-01

    Sealing materials that can be applied and left in place in vacuum over a wide range of temperatures (especially temperatures of a few thousand degrees Celsius) have been conceived and investigated for potential utility in repairing thermal-protection tiles on the space shuttles in orbit before returning to Earth. These materials are also adaptable to numerous terrestrial applications that involve vacuum processing and/or repair of structures that must withstand high temperatures. These materials can be formulated to have mechanical handling characteristics ranging from almost freely flowing liquid-like consistency through paste-like consistency to stiff puttylike consistency, and to retain these characteristics in vacuum until heated to high curing temperatures. A sealing material of this type can be formulated to be used in any of several different ways for example, to be impregnated into a high-temperature-fabric patch, impregnated into a high-temperature-fabric gasket for sealing a patch, applied under a patch, or applied alone in the manner of putty or wallboard compound. The sealing material must be formulated to be compatible with, and adhere to, the structural material(s) to be repaired. In general, the material consists of a vacuum-compatible liquid containing one or more dissolved compound(s) and/or mixed with suspended solid particles. Depending on the intended application, the liquid can be chosen to be of a compound that can remain in place in vacuum for a time long enough to be useful, and/or to evaporate or decompose in a controlled way to leave a useful solid residue behind. The evaporation rate is determined by proper choice of vapor pressure, application of heat, and/or application of ultraviolet light or other optical radiation. The liquid chosen for the original space shuttle application is a commercial silicone vacuum-pump oil.

  7. Ebselen attenuates oxidative DNA damage and enhances its repair activity in the thalamus after focal cortical infarction in hypertensive rats.

    PubMed

    He, Meixia; Xing, Shihui; Yang, Bo; Zhao, Liqun; Hua, Haiying; Liang, Zhijian; Zhou, Wenliang; Zeng, Jinsheng; Pei, Zhong

    2007-11-21

    Oxidative DNA damage has been proposed to be a major contributor to focal cerebral ischemic injury. However, little is known about the role of oxidative DNA damage in remote damage secondary to the primary infarction. In the present study, we investigated oxidative damage within the ventroposterior nucleus (VPN) after distal middle cerebral artery occlusion (MCAO) in hypertensive rats. We also examined the possible protective effect of ebselen, one glutathione peroxidase mimic, on delayed degeneration in the VPN after distal MCAO. Neuronal damage in the ipsilateral VPN was examined by Nissl staining. Oxidative DNA damage and base repair enzyme activity were assessed by analyzing immunoreactivity of 8-hydroxy-2'-deoxyguanosine (8-ohdG) and 8-oxoguanine DNA glycosylase (OGG1), respectively. The number of intact neurons in the ipsilateral VPN decreased by 52% compared to the contralateral side in ischemia group 2 weeks after distal cerebral cortical infarction. The immunoreactivity of 8-ohdG significantly increased while OGG1 immunoreactivity significantly decreased in the ipsilateral VPN 2 weeks after distal cortical infarction (all p<0.01). Compared with vehicle treatment, ebselen significantly attenuated the neuron loss, ameliorated ischemia-induced increase in 8-ohdG level as well as decrease in OGG1 level within the ipsilateral VPN (all p<0.01). OGG1 was further demonstrated to mainly express in neurons. These findings strongly suggest that oxidative DNA damage may be involved in the delayed neuronal death in the VPN region following distal MCAO. Furthermore, ebselen protects against the delayed damage in the VPN when given at 24 h following distal MCAO.

  8. Assessment of Pulmonary Artery Stiffness of Repaired Congenital Heart Disease Patients

    NASA Astrophysics Data System (ADS)

    Lee, Namheon; Banerjee, Rajit; Taylor, Michael; Hor, Kan

    2012-10-01

    Surgical correction or palliation of congenital heart disease (CHD) often requires augmenting the main pulmonary artery (MPA) with non-native material or placing a cylindrical graft. The degree to which this intervention affects PA compliance is largely unknown. In this study, the MPA stiffness characteristics were assessed by its compliance, distensibility, and pressure-strain modulus. Coregistered velocity encoded phase-contrast MRI and cardiac catheterization data were available for a cohort of repaired CHD patients (n=8) and controls (n=3). All patients were repaired with either an RV-PA conduit or a RV outflow tract patch. We measured the MPA area change by MRI and MPA pressure during the cath. The measurements were taken through or just distal to the conduit. The MPA compliance and distensibility for the patients were significantly lower than the controls: compliance (9.8±10.8 vs 28.3±7.7mm^2/mmHg, p<0.05), distensibility (2.2±1.5 vs 6.6±2.1%Area change/mmHg, p=0.05). The patients had a significantly higher pressure-strain modulus (152.3±116.4mmHg, p<0.05) than the controls (35.8±10.6mmHg). The abnormally elevated PA stiffness due to the rigidity of the conduit or patch material may cause a compliance mismatch resulting in high stress levels contributing to the observed progressive PA dilatation. This may be a factor in the progressive RV dilatation seen in this cohort of repaired CHD patients.

  9. Effects of nerve growth factor on the action potential duration and repolarizing currents in a rabbit model of myocardial infarction

    PubMed Central

    Lan, Yun-Feng; Zhang, Jian-Cheng; Gao, Jin-Lao; Wang, Xue-Ping; Fang, Zhou; Fu, Yi-Cheng; Chen, Mei-Yan; Lin, Min; Xue, Qiao; Li, Yang

    2013-01-01

    Objectives To investigate the effect of nerve growth factor (NGF) on the action potential and potassium currents of non-infarcted myocardium in the myocardial infarcted rabbit model. Methods Rabbits with occlusion of the left anterior descending coronary artery were prepared and allowed to recover for eight weeks (healed myocardial infarction, HMI). During ligation surgery of the left coronary artery, a polyethylene tube was placed near the left stellate ganglion in the subcutis of the neck for the purpose of administering NGF 400 U/d for eight weeks (HMI + NGF group). Cardiomyocytes were isolated from regions of the non-infarcted left ventricular wall and the action potentials and ion currents in these cells were recorded using whole-cell patch clamps. Results Compared with HMI and control cardiomyocytes, significant prolongation of APD50 or APD90 (Action potential duration (APD) measured at 50% and 90% of repolarization) in HMI + NGF cardiomyocytes was found. The results showed that the 4-aminopyridine sensitive transient outward potassium current (Ito), the rapidly activated omponent of delayed rectifier potassium current (IKr), the slowly activated component of delayed rectifier potassium current (IKs), and the L-type calcium current (ICaL) were significantly altered in NGF + HMI cardiomyocytes compared with HMI and control cells. Conclusions Our results suggest that NGF treatment significantly prolongs APD in HMI cardiomyocytes and that a decrease in outward potassium currents and an increase of inward Ca2+ current are likely the underlying mechanism of action. PMID:23610573

  10. Effects of nerve growth factor on the action potential duration and repolarizing currents in a rabbit model of myocardial infarction.

    PubMed

    Lan, Yun-Feng; Zhang, Jian-Cheng; Gao, Jin-Lao; Wang, Xue-Ping; Fang, Zhou; Fu, Yi-Cheng; Chen, Mei-Yan; Lin, Min; Xue, Qiao; Li, Yang

    2013-03-01

    To investigate the effect of nerve growth factor (NGF) on the action potential and potassium currents of non-infarcted myocardium in the myocardial infarcted rabbit model. Rabbits with occlusion of the left anterior descending coronary artery were prepared and allowed to recover for eight weeks (healed myocardial infarction, HMI). During ligation surgery of the left coronary artery, a polyethylene tube was placed near the left stellate ganglion in the subcutis of the neck for the purpose of administering NGF 400 U/d for eight weeks (HMI + NGF group). Cardiomyocytes were isolated from regions of the non-infarcted left ventricular wall and the action potentials and ion currents in these cells were recorded using whole-cell patch clamps. Compared with HMI and control cardiomyocytes, significant prolongation of APD50 or APD90 (Action potential duration (APD) measured at 50% and 90% of repolarization) in HMI + NGF cardiomyocytes was found. The results showed that the 4-aminopyridine sensitive transient outward potassium current (I to), the rapidly activated omponent of delayed rectifier potassium current (I Kr), the slowly activated component of delayed rectifier potassium current (I Ks), and the L-type calcium current (I CaL) were significantly altered in NGF + HMI cardiomyocytes compared with HMI and control cells. Our results suggest that NGF treatment significantly prolongs APD in HMI cardiomyocytes and that a decrease in outward potassium currents and an increase of inward Ca(2+) current are likely the underlying mechanism of action.

  11. Repair Options for Airframes

    DTIC Science & Technology

    2001-03-01

    typical applications. This patch configuration can be best obtained with unidirectional tape . Woven material has greater formability and could also...1979. 15. Erdogan F and Arn K, "A Sandwich Plate With a Part-Through and a Debonding Crack," Engineering Fracture Mechanics, Vol. 4, June 1972. 16

  12. Dynamic Analysis with Fibre Optic Sensors for Structural Health Monitoring

    DTIC Science & Technology

    2006-10-01

    cracked thick aluminum plate repaired with a bonded composite patch using transmission-type extrinsic Fabry – Perot interferometric optical fiber...and optical filtering have been used to demodulate returned Bragg signals. Due to the passive nature of the interrogation unit, system bandwidth is

  13. Angle-ply biomaterial scaffold for annulus fibrosus repair replicates native tissue mechanical properties, restores spinal kinematics, and supports cell viability.

    PubMed

    Borem, Ryan; Madeline, Allison; Walters, Joshua; Mayo, Henry; Gill, Sanjitpal; Mercuri, Jeremy

    2017-08-01

    Annulus fibrosus (AF) damage commonly occurs due to intervertebral disc (IVD) degeneration/herniation. The dynamic mechanical role of the AF is essential for proper IVD function and thus it is imperative that biomaterials developed to repair the AF withstand the mechanical rigors of the native tissue. Furthermore, these biomaterials must resist accelerated degradation within the proteolytic environment of degenerate IVDs while supporting integration with host tissue. We have previously reported a novel approach for developing collagen-based, multi-laminate AF repair patches (AFRPs) that mimic the angle-ply architecture and basic tensile properties of the human AF. Herein, we further evaluate AFRPs for their: tensile fatigue and impact burst strength, IVD attachment strength, and contribution to functional spinal unit (FSU) kinematics following IVD repair. Additionally, AFRP resistance to collagenase degradation and cytocompatibility were assessed following chemical crosslinking. In summary, AFRPs demonstrated enhanced durability at high applied stress amplitudes compared to human AF and withstood radially-directed biaxial stresses commonly borne by the native tissue prior to failure/detachment from IVDs. Moreover, FSUs repaired with AFRPs and nucleus pulposus (NP) surrogates had their axial kinematic parameters restored to intact levels. Finally, carbodiimide crosslinked AFRPs resisted accelerated collagenase digestion without detrimentally effecting AFRP tensile properties or cytocompatibility. Taken together, AFRPs demonstrate the mechanical robustness and enzymatic stability required for implantation into the damaged/degenerate IVD while supporting AF cell infiltration and viability. The quality of life for millions of individuals globally is detrimentally impacted by IVD degeneration and herniation. These pathologies often result in the structural demise of IVD tissue, particularly the annulus fibrosus (AF). Biomaterials developed for AF repair have yet to demonstrate the mechanical strength and durability required for utilization in the spine. Herein, we demonstrate the development of an angle-ply AF repair patch (AFRP) that can resist the application of physiologically relevant stresses without failure and which contributes to the restoration of functional spinal unit axial kinematics following repair. Furthermore, we show that this biomaterial can resist accelerated degradation in a simulated degenerate environment and supports AF cell viability. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Valve-sparing options in tetralogy of Fallot surgery.

    PubMed

    Bacha, Emile

    2012-01-01

    Given late outcomes of patients with tetralogy of Fallot repaired in the 1970s and 1980s, as well as a better understanding of the late deleterious effects of pulmonary regurgitation, there is a tendency toward preservation of the pulmonary valve function during primary repair of tetralogy of Fallot. The bar keeps moving downward, to include smaller and more dysmorphic pulmonary valves. This article reviews some useful indications and techniques for valve-sparing options, including intraoperative balloon dilation and cusp reconstruction using a patch. Just like other valve repair techniques, no one technique can be applied uniformly, and surgeons must master a wide armamentarium of techniques. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Role of heterotopic kidney auto-transplantation for renal artery aneurysms.

    PubMed

    Gwon, Jun G; Han, Duck J; Cho, Yong-Pil; Kim, Young H; Kwon, Tae-Won

    2018-06-01

    To assess the applicability and surgical outcomes of ex vivo repair with heterotopic kidney auto-transplantation (HKA) for the treatment of renal artery aneurysms (RAA).We retrospectively examined 36 cases presenting with RAA from September 2005 to June 2016. Patient demographics, estimated glomerular filtration rate (eGFR), and common vascular risk factors were evaluated. Patients were classified into 3 groups: those who received endovascular treatment, in situ open surgical repair, or ex vivo repair with HKA. The findings were compared among the groups.The endovascular repair, in situ open repair, and ex vivo repair with HKA groups included 14, 9, and 13 patients, respectively (mean follow-up, 30.42 ± 30.54 months). The eGFR (P = .32) and number of anti-hypertension medications (P = .33) did not significantly differ among the groups. Moreover, 3 renal infarctions were detected in the endovascular group and only 1 was detected in the in situ repair group. One patient in the endovascular repair group required dialysis due to renal failure. Patients in the ex vivo repair with HKA group did not exhibit any complications.With safety and effectiveness comparable to other RAA treatment methods, ex vivo repair with HKA for RAA treatment appears suitable particularly in cases with complicated renal artery branch aneurysm and marginal renal function.

  16. [Right branch pulmonary artery stenosis with supravalvar aortic stenosis as a complication of Lecompte maneuver for tetralogy of Fallot associated with absent pulmonary valve].

    PubMed

    Honda, Yoshihiro; Suzuki, Shoji; Kaga, Shigeaki; Yoshida, Yukiyo; Kimura, Mitsuhiro; Kamiya, Kentaro; Sakakibara, Kenji; Katsu, Masatake

    2015-05-01

    The patient was diagnosed with tetralogy of Fallot associated with absent pulmonary valve syndrome and a low birth weight of 1,912 g. He suffered from respiratory distress on day 14 and received non-invasive positive pressure ventilation. At 5 months of age and 4.1 kg, he underwent intracardiac repair including right ventricular outflow repair with a monocusp patch, patch closure of the ventricular septum defect and right pulmonary transposition to the anterior of the ascending aorta following the Lecompte maneuver for airway decompression. He was subsequently discharged to home and exhibited an uneventful clinical course with non-invasive positive pressure ventilation for 5 months postoperatively. However, right pulmonary artery and supra-aortic stenosis was noted 2 years after the operation. Computed tomography (CT) and angiography showed ascending aorta strangulation by the right pulmonary artery with right ventricular outflow regurgitation. Right pulmonary artery reconstruction using polytetrafluoroethylene graft interposition and repeat right ventricular outflow repair with bicuspid hand-sewn valves was therefore performed;the postoperative course was uneventful. Pre- and post-operative management using non-invasive positive pressure ventilation and airway decompression with pulmonary artery translocation is a useful strategy in patients exhibiting symptomatic tetralogy of Fallot associated with absent pulmonary valve syndrome in the neonatal period.

  17. Strand displacement synthesis by yeast DNA polymerase ε

    PubMed Central

    Ganai, Rais A.; Zhang, Xiao-Ping; Heyer, Wolf-Dietrich; Johansson, Erik

    2016-01-01

    DNA polymerase ε (Pol ε) is a replicative DNA polymerase with an associated 3′–5′ exonuclease activity. Here, we explored the capacity of Pol ε to perform strand displacement synthesis, a process that influences many DNA transactions in vivo. We found that Pol ε is unable to carry out extended strand displacement synthesis unless its 3′–5′ exonuclease activity is removed. However, the wild-type Pol ε holoenzyme efficiently displaced one nucleotide when encountering double-stranded DNA after filling a gap or nicked DNA. A flap, mimicking a D-loop or a hairpin structure, on the 5′ end of the blocking primer inhibited Pol ε from synthesizing DNA up to the fork junction. This inhibition was observed for Pol ε but not with Pol δ, RB69 gp43 or Pol η. Neither was Pol ε able to extend a D-loop in reconstitution experiments. Finally, we show that the observed strand displacement synthesis by exonuclease-deficient Pol ε is distributive. Our results suggest that Pol ε is unable to extend the invading strand in D-loops during homologous recombination or to add more than two nucleotides during long-patch base excision repair. Our results support the hypothesis that Pol ε participates in short-patch base excision repair and ribonucleotide excision repair. PMID:27325747

  18. Nanomaterials for Cardiac Myocyte Tissue Engineering.

    PubMed

    Amezcua, Rodolfo; Shirolkar, Ajay; Fraze, Carolyn; Stout, David A

    2016-07-19

    Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possibly resulting in the development of arrhythmia, ventricular remodeling, and eventual heart failure. Scarred cardiac muscle results in heart failure for millions of heart attack survivors worldwide. Modern cardiac tissue engineering research has developed nanomaterial applications to combat heart failure, preserve normal heart tissue, and grow healthy myocardium around the infarcted area. This review will discuss the recent progress of nanomaterials for cardiovascular tissue engineering applications through three main nanomaterial approaches: scaffold designs, patches, and injectable materials.

  19. A new technique for the closure of the lens capsule by laser welding.

    PubMed

    Pini, Roberto; Rossi, Francesca; Menabuoni, Luca; Lenzetti, Ivo; Yoo, Sonia; Parel, Jean-Marie

    2008-01-01

    A new method is presented for the closure of the lens capsule based on laser welding of suitably prepared patches of anterior capsular tissue. Experiments were performed in freshly enucleated porcine eyes. The patches were previously stained with a solution of indocyanine green in sterile water and then welded on the recipient capsule by means of diode laser radiation at 810 nm. The welded tissue revealed mechanical properties comparable to those of healthy tissue. This technique is proposed to repair capsular breaks and to provide the closure of the capsulorhexis in lens refilling procedures.

  20. Stress Analysis of Adhesively Bonded Repairs to Fibre Composite Structures,

    DTIC Science & Technology

    1981-03-01

    which is bonded to a thin sheet of fibre composite material. The x and y axes are taken in a plane parallel to the midsurface of the sheet with the z...SHEET vI X1 FIG. 1 AXIS SYSTEM IN PATCH related to the displacements at the midsurface of the patch, which we will denote by uo, vo and w, and the...displacements at the midsurface of the sheet, which we will denote by u, vs and w, by the following expression: T ( =uo - us +f7 ’ f/fg + (VO - v, +f 7 3)f4

  1. Development of stroke-induced quadriplegia after endovascular repair of blunt aortic injury pseudoaneurysm

    PubMed Central

    Amoudi, Abdullah S.; Merdad, Anas A.; Makhdoom, Ahmed Q.; Jamjoom, Reda A.

    2015-01-01

    Endovascular repair of blunt aortic injury is now a first-line approach in management. This can warrant coverage of the left subclavian artery (LSA), which could lead to posterior strokes. In this case report, we present a severe complication of endovascular repair of a traumatic aortic aneurysm. A 53-year-old man presented with blunt aortic injury, endovascular repair was carried out where the left subclavian artery was covered. The intervention had a 100% technical success. Twelve hours later, he was discovered to have quadriplegia, a CT scan showed a large left cerebellar infarction extending to the medulla oblongata and proximal spinal cord. Strokes complicate 3% of thoracic endovascular aortic repairs, 80% of those strokes occur in patients who had their LSA’s covered. Most patients however, tolerate the coverage. Although our patient had a dominant right vertebral artery, and lacked risks for these strokes, he developed an extensive stroke that left him quadriplegic. PMID:25630782

  2. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction.

    PubMed

    Miyahara, Yoshinori; Nagaya, Noritoshi; Kataoka, Masaharu; Yanagawa, Bobby; Tanaka, Koichi; Hao, Hiroyuki; Ishino, Kozo; Ishida, Hideyuki; Shimizu, Tatsuya; Kangawa, Kenji; Sano, Shunji; Okano, Teruo; Kitamura, Soichiro; Mori, Hidezo

    2006-04-01

    Mesenchymal stem cells are multipotent cells that can differentiate into cardiomyocytes and vascular endothelial cells. Here we show, using cell sheet technology, that monolayered mesenchymal stem cells have multipotent and self-propagating properties after transplantation into infarcted rat hearts. We cultured adipose tissue-derived mesenchymal stem cells characterized by flow cytometry using temperature-responsive culture dishes. Four weeks after coronary ligation, we transplanted the monolayered mesenchymal stem cells onto the scarred myocardium. After transplantation, the engrafted sheet gradually grew to form a thick stratum that included newly formed vessels, undifferentiated cells and few cardiomyocytes. The mesenchymal stem cell sheet also acted through paracrine pathways to trigger angiogenesis. Unlike a fibroblast cell sheet, the monolayered mesenchymal stem cells reversed wall thinning in the scar area and improved cardiac function in rats with myocardial infarction. Thus, transplantation of monolayered mesenchymal stem cells may be a new therapeutic strategy for cardiac tissue regeneration.

  3. Repair of damaged DNA in-vivo. Comprehensive progress report, August 1980-August 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanawalt, P.C.

    1983-07-01

    We have extended our characterization of long patch excision repair (LPER) and have demonstrated that LPER is not mutagenic (or error-prone); that the recA function is required for LPER, at least for its regulation; that the substrate for LPER is produced as a linear (not an exponential) function of uv (254 nm) dose; and that LPER can occur in uvr/sup -/ cells treated with N-methyl-N-nitro-N-nitrosoguanidine (MNNG). We have developed 3 methods for measuring the frequency of interstrand crosslinks in DNA and are now applying these methods to the study of the formation and repair of DNA crosslinks in E.Coli. Wemore » have developed a monoclonal antibody specific for thymine glycol in DNA, and are using it to study the repair of thymine glycol in E. coli.« less

  4. Hydrogen Sulfide Recruits Macrophage Migration by Integrin β1-Src-FAK/Pyk2-Rac Pathway in Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Miao, Lei; Xin, Xiaoming; Xin, Hong; Shen, Xiaoyan; Zhu, Yi-Zhun

    2016-03-01

    Myocardial infarction (MI) triggers an inflammatory reaction, in which macrophages are of key importance for tissue repairing. Infiltration and/or migration of macrophages into the infarct area early after MI is critical for infarct healing, vascularization, and cardiac function. Hydrogen sulfide (H2S) has been demonstrated to possess cardioprotective effects post MI and during the progress of cardiac remodeling. However, the specific molecular and cellular mechanisms involved in macrophage recruitment by H2S remain to be identified. In this study, the NaHS (exogenous sources of H2S) treatment exerted an increased infiltration of macrophages into the infarcted myocardium at early stage of MI cardiac tissues in both wild type (WT) and cystathionine-γ-lyase-knockout (CSE-KO) mice. And NaHS accelerated the migration of macrophage cells in vitro. While, the inhibitors not only significantly diminished the migratory ability in response to NaHS, but also blocked the activation of phospho-Src, -Pyk2, -FAK397, and -FAK925. Furthermore, NaHS induced the internalization of integrin β1 on macrophage surface, but, integrin β1 silencing inhibited macrophage migration and Src signaling activation. These results indicate that H2S may have the potential as an anti-infarct of MI by governing macrophage migration, which was achieved by accelerating internalization of integrin β1 and activating downstream Src-FAK/Pyk2-Rac pathway.

  5. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction

    PubMed Central

    Ma, Yonggang; Mouton, Alan J.; Lindsey, Merry L.

    2018-01-01

    Macrophages play critical roles in homeostatic maintenance of the myocardium under normal conditions and in tissue repair after injury. In the steady-state heart, resident cardiac macrophages remove senescent and dying cells and facilitate electrical conduction. In the aging heart, the shift in macrophage phenotype to a proinflammatory subtype leads to inflammaging. Following myocardial infarction (MI), macrophages recruited to the infarct produce both proinflammatory and anti-inflammatory mediators (cytokines, chemokines, matrix metalloproteinases, and growth factors), phagocytize dead cells, and promote angiogenesis and scar formation. These diverse properties are attributed to distinct macrophage subtypes and polarization status. Infarct macrophages exhibit a proinflammatory M1 phenotype early and become polarized toward an anti-inflammatory M2 phenotype later post- MI. Although this classification system is oversimplified and needs to be refined to accommodate the multiple different macrophage subtypes that have been recently identified, general concepts on macrophage roles are independent of subtype classification. This review summarizes current knowledge about cardiac macrophage origins, roles, and phenotypes in the steady state, with aging, and after MI, as well as highlights outstanding areas of investigation. PMID:29106912

  6. Cardiogenic Genes Expressed in Cardiac Fibroblasts Contribute to Heart Development and Repair

    PubMed Central

    Furtado, Milena B.; Costa, Mauro W.; Pranoto, Edward Adi; Salimova, Ekaterina; Pinto, Alex; Lam, Nicholas T.; Park, Anthony; Snider, Paige; Chandran, Anjana; Harvey, Richard P.; Boyd, Richard; Conway, Simon J.; Pearson, James; Kaye, David M.; Rosenthal, Nadia A.

    2014-01-01

    Rationale Cardiac fibroblasts are critical to proper heart function through multiple interactions with the myocardial compartment but appreciation of their contribution has suffered from incomplete characterization and lack of cell-specific markers. Objective To generate an unbiased comparative gene expression profile of the cardiac fibroblast pool, identify and characterize the role of key genes in cardiac fibroblast function, and determine their contribution to myocardial development and regeneration. Methods and Results High-throughput cell surface and intracellular profiling of cardiac and tail fibroblasts identified canonical MSC and a surprising number of cardiogenic genes, some expressed at higher levels than in whole heart. Whilst genetically marked fibroblasts contributed heterogeneously to interstitial but not cardiomyocyte compartments in infarcted hearts, fibroblast-restricted depletion of one highly expressed cardiogenic marker, Tbx20, caused marked myocardial dysmorphology and perturbations in scar formation upon myocardial infarction. Conclusions The surprising transcriptional identity of cardiac fibroblasts, the adoption of cardiogenic gene programs and direct contribution to cardiac development and repair provokes alternative interpretations for studies on more specialized cardiac progenitors, offering a novel perspective for reinterpreting cardiac regenerative therapies. PMID:24650916

  7. Fabrication of tissue engineered tympanic membrane patches using computer-aided design and injection molding.

    PubMed

    Hott, Morgan E; Megerian, Cliff A; Beane, Rich; Bonassar, Lawrence J

    2004-07-01

    The goal of the current study was to use computer-aided design and injection molding technologies to tissue engineer precisely shaped cartilage in the shape of butterfly tympanic membrane patches out of chondrocyte-seeded calcium alginate gels. Molds were designed on SolidWorks 2000 and built out of acrylonitrile butadiene styrene (ABS) using fused deposition modeling (FDM). Tympanic membrane patches were fabricated using bovine articular chondrocytes seeded at 50 x 10 cells/mL in 2% calcium alginate gels. Molded patches were cultured in vitro for up to 10 weeks and assessed biochemically, morphologically, and histologically. Unmolded patches demonstrated outstanding dimensional fidelity, with a volumetric precision of at least 3 microL, and maintained their shape well for up to 10 weeks of in vitro culture. Glycosaminoglycan and collagen content increased steadily over 10 weeks in culture, demonstrating continual deposition of new extracellular matrix consistent with new tissue development. The use of computer-aided design and injection molding technologies allows for the fabrication of very small, precisely shaped chondrocyte-seeded calcium alginate structures that faithfully maintain their shape during in vitro culture. In vitro fabrication of tympanic membrane patches with a precisely controlled geometry may have the potential to provide a minimally invasive alternative to traditional methods for the repair of chronic tympanic membrane perforations.

  8. Fistula repair after hypospadias surgery using buccal mucosal graft.

    PubMed

    Hosseini, Jalil; Kaviani, Ali; Mohammadhosseini, Mojtaba; Rezaei, Alireza; Rezaei, Iraj; Javanmard, Babak

    2009-01-01

    The aim of this study was to evaluate the success rate of urethrocutaneous fistula repair using buccal mucosal graft in patients with a previous hypospadias repair. We reviewed records of our patients with urethrocutaneous fistula developed after hypospadias repair in whom buccal mucosal graft fistula repair had been performed. All of the patients had been followed up for 24 postoperative months. A successful surgical operation was defined as no fistula recurrence or urethral stricture. Retrograde urethrography and urethrocystoscopy would be performed in patients who had any history of decreased force and caliber of urine or any difficulty in urination. Fistula repair using buccal mucosa patch graft had been done in 14 children with urethrocutaneous fistula developing after hypospadias reconstruction. The mean age of the children was 8.70 +/- 1.99 years old (range, 4 to 11 years). Seven fistulas were in the midshaft, 4 were in the penoscrotal region, and 3 were in the coronal region. Repair of the fistulas was successful in 11 of 14 patients (78.6%). In the remaining children, the diameter of the fistula was smaller than that before the operation, offering a good opportunity for subsequent closure. Our findings showed that fistula repair using buccal mucosal graft can be one of the acceptable techniques for repairing fistulas developed after hypospadias repair.

  9. Asphalt Raking. Instructor Manual. Trainee Manual.

    ERIC Educational Resources Information Center

    Laborers-AGC Education and Training Fund, Pomfret Center, CT.

    This packet consists of the instructor and trainee manuals for an asphalt raking course. The instructor manual contains a course schedule for 4 days of instruction, content outline, and instructor outline. The trainee manual is divided into five sections: safety, asphalt basics, placing methods, repair and patching, and clean-up and maintenance.…

  10. Evaluation of epoxy compounds as a material for patching and protecting concrete : final report.

    DOT National Transportation Integrated Search

    1971-01-01

    The final report summarizes the results of a study of the use of epoxy compounds in the shallow surface repair and sealing of concrete bridge decks. The research effort concentrated on the use of epoxy resin systems as bonded overlays and included ev...

  11. Masonry Procedures. Building Maintenance. Module V. Instructor's Guide.

    ERIC Educational Resources Information Center

    Eck, Francis

    This curriculum guide, one of six modules keyed to the building maintenance competency profile developed by industry and education professionals, provides materials for a masonry procedures unit containing eight lessons. Lesson topics are masonry safety practices; set forms; mix concrete; patch and/or repair concrete; pour and finish concrete; mix…

  12. Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Katnam, K. B.; Da Silva, L. F. M.; Young, T. M.

    2013-08-01

    Advanced composite materials have gained popularity in high-performance structural designs such as aerospace applications that require lightweight components with superior mechanical properties in order to perform in demanding service conditions as well as provide energy efficiency. However, one of the major challenges that the aerospace industry faces with advanced composites - because of their inherent complex damage behaviour - is structural repair. Composite materials are primarily damaged by mechanical loads and/or environmental conditions. If material damage is not extensive, structural repair is the only feasible solution as replacing the entire component is not cost-effective in many cases. Bonded composite repairs (e.g. scarf patches) are generally preferred as they provide enhanced stress transfer mechanisms, joint efficiencies and aerodynamic performance. With an increased usage of advanced composites in primary and secondary aerospace structural components, it is thus essential to have robust, reliable and repeatable structural bonded repair procedures to restore damaged composite components. But structural bonded repairs, especially with primary structures, pose several scientific challenges with the current existing repair technologies. In this regard, the area of structural bonded repair of composites is broadly reviewed - starting from damage assessment to automation - to identify current scientific challenges and future opportunities.

  13. Hypoxic remodelling of Ca{sup 2+} stores does not alter human cardiac myofibroblast invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riches, K.; Hettiarachchi, N.T.; Porter, K.E.

    2010-12-17

    Research highlights: {yields} Bradykinin promotes migration and proliferation of myofibroblasts. {yields} Such activity is Ca{sup 2+}-dependent and occurs under hypoxic conditions. {yields} Hypoxia increased myofibroblast Ca{sup 2+} stores but not influx evoked by bradykinin. {yields} Myofibroblast migration and proliferation was unaffected by hypoxia. -- Abstract: Cardiac fibroblasts are the most abundant cell type in the heart, and play a key role in the maintenance and repair of the myocardium following damage such as myocardial infarction by transforming into a cardiac myofibroblast (CMF) phenotype. Repair occurs through controlled proliferation and migration, which are Ca{sup 2+} dependent processes, and often requires themore » cells to operate within a hypoxic environment. Angiotensin converting enzyme (ACE) inhibitors reduce infarct size through the promotion of bradykinin (BK) stability. Although CMF express BK receptors, their activity under the reduced O{sub 2} conditions that occur following infarct are entirely unexplored. Using Fura-2 microfluorimetry on primary human CMF, we found that hypoxia significantly increased the mobilisation of Ca{sup 2+} from intracellular stores in response to BK whilst capacitative Ca{sup 2+} entry (CCE) remained unchanged. The enhanced store mobilisation was due to a striking increase in CMF intracellular Ca{sup 2+}-store content under hypoxic conditions. However, BK-induced CMF migration or proliferation was not affected following hypoxic exposure, suggesting that Ca{sup 2+} influx rather than mobilisation is of primary importance in CMF migration and proliferation.« less

  14. Quality of inguinal hernia operative reports: room for improvement

    PubMed Central

    Ma, Grace W.; Pooni, Amandeep; Forbes, Shawn S.; Eskicioglu, Cagla; Pearsall, Emily; Brenneman, Fred D.; McLeod, Robin S.

    2013-01-01

    Background Operative reports (ORs) serve as the official documentation of surgical procedures. They are essential for optimal patient care, physician accountability and billing, and direction for clinical research and auditing. Nonstandardized narrative reports are often of poor quality and lacking in detail. We sought to audit the completeness of narrative inguinal hernia ORs. Methods A standardized checklist for inguinal hernia repair (IHR) comprising 33 variables was developed by consensus of 4 surgeons. Five high-volume IHR surgeons categorized items as essential, preferable or nonessential. We audited ORs for open IHR at 6 academic hospitals. Results We audited 213 ORs, and we excluded 7 femoral hernia ORs. Tension-free repairs were the most common (82.5%), and the plug-and-patch technique was the most frequent (52.9%). Residents dictated 59% of ORs. Of 33 variables, 15 were considered essential and, on average, 10.8 ± 1.3 were included. Poorly reported elements included first occurrence versus recurrent repair (8.3%), small bowel viability in incarcerated hernias (10.7%) and occurrence of intraoperative complications (32.5%). Of 18 nonessential elements, deep vein thrombosis prophylaxis, preoperative antibiotics and urgency were reported in 1.9%, 11.7% and 24.3% of ORs, respectively. Repair-specific details were reported in 0 to 97.1% of ORs, including patch sutured to tubercle (55.1%) and location of plug (67.0%). Conclusion Completeness of IHR ORs varied with regards to essential and nonessential items but were generally incomplete, suggesting there is opportunity for improvement, including implementation of a standardized synoptic OR. PMID:24284146

  15. The changes of potassium currents in rabbit ventricle with healed myocardial infarction.

    PubMed

    Liu, Nian; Niu, Huiyan; Li, Yang; Zhang, Cuntai; Zhou, Qiang; Ruan, Yanfei; Pu, Jun; Lu, Zaiying

    2004-01-01

    To elucidate the mechanism of arrhythmia in healed myocardial infarction (HMI), the changes of action potential duration (APD), transient outward potassium current (Ito), delayed rectifier potassium current (IK) and inward rectifier potassium current (IK1) of left ventricular myocytes in non-infarcted zone of HMI were investigated. Rabbits were randomly assigned into two groups: HMI group, in which animals were subjected to thoracotomy and ligation of the circumflex coronary and sham-operated group, in which rabbits underwent thoracotomy but no conorary ligation. 3 months after the operation, the whole myocyte patch clamp technique was used to record APD, Ito, IK, and IK1 of ventricular myocytes in non-infarcted zone. Our results showed that the membrane capacitance was larger in HMI group than in sham-operated group. Action potential duration was significantly lengthened in HMI group and early afterdepolarization (EAD) appeared in HMI group. The densities of Ito, I(K, tail), and IK1 were reduced significantly in HMI group, from 6.72 +/- 0.42 pA/pF, 1.54 +/- 0.13 pA/pF and 25.6 +/- 2.6 pA/pF in sham-operated group to 4.03 +/- 0.33 pA/pF, 1.14 +/- 0.11 pA/pF and 17.6 +/- 2.3 pA/pF, respectively. It is concluded that the reduced densities of Ito, I(K, tail) and IK1 in ventricular myocytes of non-infarcted zone in HMI were responsible for the prolongation of APD and the presentation of EAD which played important roles in the development of malignant arrhythmia in HMI.

  16. Two layer structure for reinforcing pothole repair

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Yuan, Kuo-Yao; Zou, Linhua; Yang, Jenn-Ming; Ju, Jiann-Wen; Kao, Wei; Carlson, Larry

    2013-04-01

    We have applied dicyclopentadiene (DCPD) resin for reinforcing pothole patch materials due to its unique properties - low cost, low viscosity at beginning and ultra-toughness after curing, chemical compatibility with tar, tunable curing profile through catalyst design. In this paper, we have designed a two layer structure - well compacted base layer and DCPD reinforced 1-1.5" top layer - for pothole repair. By choosing two graded asphalt mixes, a porous top layer and fully compacted base layer was prepared after compaction and ready for DCPD resin infiltration. The DCPD curing and infiltration profile within this porous top layer was measured with thermocouples. The rutting resistance was tested with home-made wheel rutter. The cage effect due to the p-DCPD wrapping was characterized with wheel penetration test. The results showed that this two layer structure pothole repair has greatly improved properties and can be used for pothole repair to increase the service life.

  17. The evaluation of clopidogrel use in perioperative general surgery patients: a prospective randomized controlled trial.

    PubMed

    Chu, Edward W; Chernoguz, Artur; Divino, Celia M

    2016-06-01

    The perioperative safety profile of clopidogrel, a potent antiplatelet agent used in the management of cardiovascular disease, is unknown, and there are no evidence-based guidelines recommending for either its interruption or continuation at this time. The aim of this study was to determine whether patients who are maintained on clopidogrel before general surgical procedures are at increased risk of perioperative bleeding complications. Patients receiving clopidogrel at the time of elective general surgery were randomized to either discontinue clopidogrel 1 week before surgery (group A) or continue clopidogrel into surgery (group B). All other antiplatelet and anticoagulant agents were discontinued before surgery. The primary end points were perioperative bleeding requiring intraoperative or postoperative transfusion of blood or blood components and bleeding-related readmission, reoperation, or mortality within 90 days of surgery. The secondary end points were perioperative myocardial infarction or cerebrovascular accidents within 90 days of surgery. Thirty-nine patients were enrolled and underwent 43 general surgical operations. Twenty-one procedures were randomized to group A and 22 to group B. The most commonly performed individual procedures were open inguinal hernia repair (23%), laparoscopic cholecystectomy (21%), open ventral hernia repair (15%), laparoscopic ventral hernia repair (11%), and laparoscopic inguinal hernia repair (9%). No perioperative mortalities, bleeding events requiring blood transfusion, or reoperations occurred. One readmission for intra-abdominal hematoma requiring percutaneous drainage occurred in each group (group A: 4.8% vs group B: 4.5%; P = 1.0). No myocardial infarctions or cerebrovascular accidents were observed or reported. The outcomes from this prospective study suggest that, patients undergoing commonly performed elective general surgical procedures can be safely maintained on clopidogrel without increased perioperative bleeding risk. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Ventricular septal rupture, right ventricular dissection, and tricuspid chordae rupture--A rare complication after inferior and right ventricular infarction.

    PubMed

    Li, Xiao-hong; Zhao, Ying; Dong, Jianzeng; He, Yihua; Liu, Wenxu; Han, Jiancheng

    2015-10-01

    A 76-year-old man under stable hemodynamic condition was admitted to our hospital for delayed percutaneous coronary intervention following a diagnosis of acute inferior myocardial infarction. Bedside echocardiography revealed ventricular septal rupture at the basal posteroinferior wall with a large left-to-right shunt. Right ventricular free-wall intramyocardial dissection and tricuspid chordae rupture were noted. Coronary angiography demonstrated occlusion of the proximal right coronary artery, which was treated by balloon angioplasty and stenting. While preparing for surgical repair, the patient's overall cardiac and renal function deteriorated and surgery was contraindicated. The patient died 16 days after discharge. © 2014 Wiley Periodicals, Inc.

  19. Strand displacement synthesis by yeast DNA polymerase ε.

    PubMed

    Ganai, Rais A; Zhang, Xiao-Ping; Heyer, Wolf-Dietrich; Johansson, Erik

    2016-09-30

    DNA polymerase ε (Pol ε) is a replicative DNA polymerase with an associated 3'-5' exonuclease activity. Here, we explored the capacity of Pol ε to perform strand displacement synthesis, a process that influences many DNA transactions in vivo We found that Pol ε is unable to carry out extended strand displacement synthesis unless its 3'-5' exonuclease activity is removed. However, the wild-type Pol ε holoenzyme efficiently displaced one nucleotide when encountering double-stranded DNA after filling a gap or nicked DNA. A flap, mimicking a D-loop or a hairpin structure, on the 5' end of the blocking primer inhibited Pol ε from synthesizing DNA up to the fork junction. This inhibition was observed for Pol ε but not with Pol δ, RB69 gp43 or Pol η. Neither was Pol ε able to extend a D-loop in reconstitution experiments. Finally, we show that the observed strand displacement synthesis by exonuclease-deficient Pol ε is distributive. Our results suggest that Pol ε is unable to extend the invading strand in D-loops during homologous recombination or to add more than two nucleotides during long-patch base excision repair. Our results support the hypothesis that Pol ε participates in short-patch base excision repair and ribonucleotide excision repair. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. 46 CFR 59.10-20 - Patches in shells and tube sheets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service... inside the drum or shell and sealed against leakage by welding. Such plates shall have a diameter of at... wasted portion with a new section. The ligaments between the tube holes may be joined by means of welding...

  1. The $7-Billion Patch for Campus Maintenance

    ERIC Educational Resources Information Center

    Carlson, Scott

    2009-01-01

    Colleges are facing a growing deferred-maintenance problem, which at many public institutions adds up to repair bills in the hundreds of millions of dollars. Sometimes state legislatures have not supported those colleges at levels needed to maintain campus infrastructure. But at the same time, colleges continue to expand their campuses even as…

  2. 46 CFR 59.10-20 - Patches in shells and tube sheets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service... inside the drum or shell and sealed against leakage by welding. Such plates shall have a diameter of at... wasted portion with a new section. The ligaments between the tube holes may be joined by means of welding...

  3. 46 CFR 59.10-20 - Patches in shells and tube sheets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service... inside the drum or shell and sealed against leakage by welding. Such plates shall have a diameter of at... wasted portion with a new section. The ligaments between the tube holes may be joined by means of welding...

  4. 46 CFR 59.10-20 - Patches in shells and tube sheets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service... inside the drum or shell and sealed against leakage by welding. Such plates shall have a diameter of at... wasted portion with a new section. The ligaments between the tube holes may be joined by means of welding...

  5. 46 CFR 59.10-20 - Patches in shells and tube sheets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service... inside the drum or shell and sealed against leakage by welding. Such plates shall have a diameter of at... wasted portion with a new section. The ligaments between the tube holes may be joined by means of welding...

  6. Repair of pig dura in vivo using temperature controlled CO(2) laser soldering.

    PubMed

    Forer, Boaz; Vasilyev, Tamar; Brosh, Tamar; Kariv, Noam; Gil, Ziv; Fliss, Dan M; Katzir, Abraham

    2005-10-01

    The purpose of this study was to demonstrate that laser soldering might be successfully used for closing holes or cuts in the dura layer, which encapsulates the brain. A temperature controlled fiberoptic CO(2) laser system and albumin solder were used for spot soldering of fascia patches to holes in the dura of farm pigs, in vitro and in vivo. The mean burst pressure of the soldered patches in the in vitro experiments was 190 +/- 88 mm Hg-significantly higher than typical maximum CSF pressure of 15 mm Hg. In the in vivo experiments the pigs showed no postoperative complications. Histopathological studies exhibited an accepted level of inflammatory reaction and showed no thermal damage to the underlying brain tissue. It has been clearly demonstrated that temperature controlled laser soldering is a very useful technique for the repair of the dura. It provides significant advantages over standard closure techniques: it is easy to apply, the bond is strong and watertight and the procedure is likely to be much faster than suturing. This research work will lead to clinical trials.

  7. Partial hammock valve: surgical repair in adulthood.

    PubMed

    Aramendi, José I; Rodríguez, Miguel A; Voces, Roberto; Pérez, Pedro; Rodrigo, David

    2006-09-01

    We describe a forme frustrée of hammock valve involving only the posterior mitral leaflet. Three adult patients were referred to surgery with the diagnosis of severe mitral regurgitation due to fibrosis of the posterior mitral leaflet. The final diagnosis was done intraoperatively. In all of them the posterior leaflet was attached to some accessory papillary muscles arranged en palisade, with three to four fused muscle heads producing restrictive leaflet motion in systole. Repair consisted in division of the papillary muscles, patch augmentation, and ring annuloplasty. This previously unreported lesion is congenital but manifests itself in adulthood.

  8. Management of carotid Dacron patch infection: a case report using median sternotomy for proximal common carotid artery control and in situ polytetrafluoroethylene grafting.

    PubMed

    Illuminati, Giulio; Calio', Francesco G; D'Urso, Antonio; Ceccanei, Gianluca; Pacilè, Maria Antonietta

    2009-01-01

    We report on a 58-year-old male who presented with an enlarging cervical hematoma 3 months following carotid endarterectomy with Dacron patch repair, due to septic disruption of the Dacron patch secondary to presumed infection. The essential features of this case are the control of the proximal common carotid artery gained through a median sternotomy, because the patient was markedly obese with minimal thyromental distance, and the treatment consisting of in situ polytetrafluoroethylene bypass grafting, due to the absence of a suitable autogenous saphenous vein. Median sternotomy is rarely required in case of reintervention for septic false aneurysms and hematomas following carotid endarterectomy but should be considered whenever difficult control of the common carotid artery, when entering the previous cervicotomy, is anticipated. In situ polytetrafluoroethylene grafting can be considered if autogenous vein material is lacking.

  9. Engineering human ventricular heart muscles based on a highly efficient system for purification of human pluripotent stem cell-derived ventricular cardiomyocytes.

    PubMed

    Li, Bin; Yang, Hui; Wang, Xiaochen; Zhan, Yongkun; Sheng, Wei; Cai, Huanhuan; Xin, Haoyang; Liang, Qianqian; Zhou, Ping; Lu, Chao; Qian, Ruizhe; Chen, Sifeng; Yang, Pengyuan; Zhang, Jianyi; Shou, Weinian; Huang, Guoying; Liang, Ping; Sun, Ning

    2017-09-29

    Most infarctions occur in the left anterior descending coronary artery and cause myocardium damage of the left ventricle. Although current pluripotent stem cells (PSCs) and directed cardiac differentiation techniques are able to generate fetal-like human cardiomyocytes, isolation of pure ventricular cardiomyocytes has been challenging. For repairing ventricular damage, we aimed to establish a highly efficient purification system to obtain homogeneous ventricular cardiomyocytes and prepare engineered human ventricular heart muscles in a dish. The purification system used TALEN-mediated genomic editing techniques to insert the neomycin or EGFP selection marker directly after the myosin light chain 2 (MYL2) locus in human pluripotent stem cells. Purified early ventricular cardiomyocytes were estimated by immunofluorescence, fluorescence-activated cell sorting, quantitative PCR, microelectrode array, and patch clamp. In subsequent experiments, the mixture of mature MYL2-positive ventricular cardiomyocytes and mesenchymal cells were cocultured with decellularized natural heart matrix. Histological and electrophysiology analyses of the formed tissues were performed 2 weeks later. Human ventricular cardiomyocytes were efficiently isolated based on the purification system using G418 or flow cytometry selection. When combined with the decellularized natural heart matrix as the scaffold, functional human ventricular heart muscles were prepared in a dish. These engineered human ventricular muscles can be great tools for regenerative therapy of human ventricular damage as well as drug screening and ventricular-specific disease modeling in the future.

  10. PEMFs: new post-surgical management in dentristry

    NASA Astrophysics Data System (ADS)

    Tonetti, Luca

    2014-01-01

    Aim of study: the possible effects on dental postsurgical management using small and not invasive devices: RecoveryRx or ActiPatch producted by Bioelectronics company (USA) Materials and methods: review of literature using searching engines Keywords: PEMFs, postsurgical treatment, pain, wound healing, RecoveryRx, ActiPatch Results: Pulsed Electro Magnetic Fields have been used extensively for decades for many conditions and medical disciplines. Imperceptible cell dysfunction that is not corrected early can lead to disease. Fine-tuning can be done daily in only minutes, using pulsed electromagnetic fields (PEMFs). In addition, when there is a known imbalance (when symptoms are present) or there is a known disease or condition, PEMF treatments, used either alone or along with other therapies, can often help cells rebalance dysfunction faster. It is seen in literature that RecoveryRX and ActiPatch improve the cell metabolism, rebalance the membrane potential difference, improve the circulation and the oxigenation of the tissues, acceleration of osteogenesis, acceleration repair of soft tissues, reduce pain. Conclusion: the RecoveryRX and ActiPatch devices could improve the postsurgical healing reducing the patient discomfort.

  11. Maladaptive hypertrophy after acute myocardial infarction positive effect of bone marrow-derived stem cell therapy on regional remodeling measured by cardiac MRI.

    PubMed

    Rolf, Andreas; Assmus, Birgit; Schächinger, Volker; Rixe, Johannes; Möllmann, Susanne; Möllmann, Helge; Dimmeler, Stefanie; Zeiher, Andreas M; Hamm, Christian W; Dill, Thorsten

    2011-11-01

    In the aftermath of myocardial infarction, increased loading conditions will trigger hypertrophy of viable myocardium. This in turn causes deterioration of regional contractility. Cardiac magnetic resonance imaging (cMRI) allows the exact differentiation of viable and infarcted myocardium and therefore the measurement of regional wall thickness and function. Bone marrow-derived stem cell (BMC) transfer has been shown to improve global function and remodeling. The present study examines the effect of BMC transfer on regional remodeling and function after myocardial infarction by cMRI. Fifty-four patients of the MR substudy of the REPAIR-AMI trial have been studied at baseline and 12-month follow-up. Enddiastolic wall thickness (EDWT) and wall thickening (WT%) have been measured on SSFP cine sequences. Enddiastolic wall thickness decreased in both placebo and BMC groups in viable as well as infarcted segments. The effect was largest in the pre-specified subgroup of patients below the median EF of 48.9% (infarcted segments -1.14 mm Placebo vs. -1.91 mm BMC, p for interaction 0.01, remote segments -0.19 mm Placebo vs. -0.94 mm BMC, p for interaction 0.00001). Corrected for baseline values BMC therapy yielded smaller EDWT at 12 months in infarcted and remote segments (infarcted 7.58 mm Placebo vs. 6.13 mm BMC p = 0.0001, remote 8.76 mm Placebo vs. 7.32 mm BMC, p = 0.0001). This was associated with better contractility within the infarcted segments among BMC patients (WT% 24.17% Placebo vs. 49.31% BMC, p = 0.0001). The WT% was inversely correlated with EDWT (r = -0.37, p = 0.0001). Bone marrow-derived stem cell therapy yields smaller EDWT when compared with placebo patients suggesting a positive effect on maladaptive hypertrophy of viable myocardium. This notion is supported by the enhanced regional contractility within the BMC group which is inversely correlated with EDWT.

  12. Current Trends in the Management of Abdominal Aortic Aneurysms

    PubMed Central

    Harris, K.A.; Ameli, F. Michael; Louis, E.L. St.

    1987-01-01

    The treatment of abdominal aortic aneurysm has undergone dramatic changes over the last three decades. More sophisticated diagnostic techniques have allowed early elective repair to be carried out. Improvement has resulted in both morbidity and mortality rates. Investigations such as ultrasound, computerized tomographic scanning and arteriography allow easy confirmation of the diagnosis of aortic aneurysms and permit a better assessment of the extent prior to surgical intervention. Improvement in the pre-operative management, particularly in relation to cardiac, renal, and pulmonary disease, has led to greatly improved results. The most important change in surgical technique has been repair of the aneurysm rather than resection. Combined with better post-operative intensive care units, this development has contributed to the improved morbidity and mortality rates. Although the complication rate of elective repair is low, the major cause of death remains myocardial infarction. As a result of all these improvements, indication for repair of abdominal aortic aneurysms has been extended to patients over the age of 80. Following surgical repair, most patients can be expected to return to normal lifestyles and lifespans. ImagesFigure 2Figure 3Figure 4 PMID:21263973

  13. An analytical review of vasculobiliary injury in laparoscopic and open cholecystectomy

    PubMed Central

    Strasberg, Steven M; Helton, W Scott

    2011-01-01

    Objectives Biliary injuries are frequently accompanied by vascular injuries, which may worsen the bile duct injury and cause liver ischemia. We performed an analytical review with the aim of defining vasculobiliary injury and setting out the important issues in this area. Methods A literature search of relevant terms was peformed using OvidSP. Bibliographies of papers were also searched to obtain older literature. Results Vasculobiliary injury was defined as: an injury to both a bile duct and a hepatic artery and/or portal vein; the bile duct injury may be caused by operative trauma, be ischaemic in origin or both, and may or may not be accompanied by various degrees of hepatic ischaemia. Right hepatic artery (RHA) vasculobiliary injury (VBI) is the most common variant. Injury to the RHA likely extends the biliary injury to a higher level than the gross observed mechanical injury. VBI results in slow hepatic infarction in about 10% of patients. Repair of the artery is rarely possible and the overall benefit unclear. Injuries involving the portal vein or common or proper hepatic arteries are much less common, but have more serious effects including rapid infarction of the liver. Conclusions Routine arteriography is recommended in patients with a biliary injury if early repair is contemplated. Consideration should be given to delaying repair of a biliary injury in patients with occlusion of the RHA. Patients with injuries to the portal vein or proper or common hepatic should be emergently referred to tertiary care centers. PMID:21159098

  14. Hippo pathway deficiency reverses systolic heart failure after infarction.

    PubMed

    Leach, John P; Heallen, Todd; Zhang, Min; Rahmani, Mahdis; Morikawa, Yuka; Hill, Matthew C; Segura, Ana; Willerson, James T; Martin, James F

    2017-10-12

    Mammalian organs vary widely in regenerative capacity. Poorly regenerative organs, such as the heart are particularly vulnerable to organ failure. Once established, heart failure commonly results in mortality. The Hippo pathway, a kinase cascade that prevents adult cardiomyocyte proliferation and regeneration, is upregulated in human heart failure. Here we show that deletion of the Hippo pathway component Salvador (Salv) in mouse hearts with established ischaemic heart failure after myocardial infarction induces a reparative genetic program with increased scar border vascularity, reduced fibrosis, and recovery of pumping function compared with controls. Using translating ribosomal affinity purification, we isolate cardiomyocyte-specific translating messenger RNA. Hippo-deficient cardiomyocytes have increased expression of proliferative genes and stress response genes, such as the mitochondrial quality control gene, Park2. Genetic studies indicate that Park2 is essential for heart repair, suggesting a requirement for mitochondrial quality control in regenerating myocardium. Gene therapy with a virus encoding Salv short hairpin RNA improves heart function when delivered at the time of infarct or after ischaemic heart failure following myocardial infarction was established. Our findings indicate that the failing heart has a previously unrecognized reparative capacity involving more than cardiomyocyte renewal.

  15. MG53-mediated cell membrane repair protects against acute kidney injury

    PubMed Central

    Lin, Peihui; Tan, Tao; Wang, Zhen; Chen, Ken; Zhou, Xinyu; Gumpper, Kristyn; Zhu, Hua; Ludwig, Thomas; Mohler, Peter J.; Rovin, Brad; Abraham, William T.; Zeng, Chunyu; Ma, Jianjie

    2015-01-01

    Injury to the renal proximal tubular epithelium (PTE) represents the underlying consequence of acute kidney injury (AKI) after exposure to various stressors, including nephrotoxins and ischemia/reperfusion (I/R). Although the kidney has the ability to repair itself after mild injury, insufficient repair of PTE cells may trigger inflammatory and fibrotic responses, leading to chronic renal failure. We report that MG53, a member of the TRIM family of proteins, participates in repair of injured PTE cells and protects against the development of AKI. We show that MG53 translocates to acute injury sites on PTE cells and forms a repair patch. Ablation of MG53 leads to defective membrane repair. MG53-deficient mice develop pronounced tubulointerstitial injury and increased susceptibility to I/R-induced AKI compared to wild-type mice. Recombinant human MG53 (rhMG53) protein can target injury sites on PTE cells to facilitate repair after I/R injury or nephrotoxin exposure. Moreover, in animal studies, intravenous delivery of rhMG53 ameliorates cisplatin-induced AKI without affecting the tumor suppressor efficacy of cisplatin. These findings identify MG53 as a vital component of reno-protection, and targeting MG53-mediated repair of PTE cells represents a potential approach to prevention and treatment of AKI. PMID:25787762

  16. NAMPT and NAMPT-controlled NAD Metabolism in Vascular Repair.

    PubMed

    Wang, Pei; Li, Wen-Lin; Liu, Jian-Min; Miao, Chao-Yu

    2016-06-01

    Vascular repair plays important roles in postischemic remodeling and rehabilitation in cardiovascular and cerebrovascular disease, such as stroke and myocardial infarction. Nicotinamide adenine dinucleotide (NAD), a well-known coenzyme involved in electron transport chain for generation of adenosine triphosphate, has emerged as an important controller regulating various biological signaling pathways. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for NAD biosynthesis in mammals. NAMPT may also act in a nonenzymatic manner, presumably mediated by unknown receptor(s). Rapidly accumulating data in the past decade show that NAMPT and NAMPT-controlled NAD metabolism regulate fundamental biological functions in endothelial cells, vascular smooth muscle cells, and endothelial progenitor cells. The NAD-consuming proteins, including sirtuins, poly-ADP-ribose polymerases (PARPs), and CD38, may contribute to the regulatory effects of NAMPT-NAD axis in these cells and vascular repair. This review discusses the current data regarding NAMPT and NAMPT-controlled NAD metabolism in vascular repair and the clinical potential translational application of NAMPT-related products in treatment of cardiovascular and cerebrovascular disease.

  17. Symposium on the management of inguinal hernias: 3. Laparoscopic groin hernia surgery: the TAPP procedure

    PubMed Central

    Litwin, Demetrius E.M.; Pham, Quynh N.; Oleniuk, Fredrick H.; Kluftinger, Andreas M.; Rossi, Ljubomir

    1997-01-01

    Objective To describe the technique and results of laparoscopic transabdominal preperitoneal (TAPP) hernia repair. Design A case series, with a detailed description of the operative technique. Setting A university affiliated hospital. Patients A consecutive series of 554 patients (494 male, 60 female) who underwent laparoscopic hernia repair in a single institution. The mean follow-up was 14 months. Interventions Laparoscopic TAPP hernia repair was performed in almost all patients. Simple closure was performed in a patient with a strangulated hernia, and a mesh-based repair was used in a patient with bilateral obturator hernias. Main outcome measures Complications and recurrence. Results The laparoscopic TAPP repair was successful in 550 of the 554 patients who underwent 632 hernia repairs. Conversion was necessary in 4 patients. Complications were infrequent and there were no recurrences. Only 3.4% of patients were lost to follow-up. The most frequent complications were urinary retention (27) and hematoma and seroma (38) in the early postoperative period. Neuralgia (11) and hydrocele (10) also occurred. Mesh infection occurred in only 1 patient and port-site hernias in 3 patients. There was 1 death from an acute myocardial infarction. Conclusion Laparoscopic TAPP hernia repair is associated with an exceedingly low recurrence rate and an acceptable complication rate. PMID:9194780

  18. GDF10 Is a Signal for Axonal Sprouting and Functional Recovery after Stroke

    PubMed Central

    Li, S; Nie, EH; Yin, Y; Benowitz, LI; Tung, S; Vinters, HV; Bahjat, FR; Stenzel-Poore, MP; Kawaguchi, R; Coppola, G; Carmichael, ST

    2016-01-01

    Stroke produces a limited process of neural repair. Axonal sprouting in cortex adjacent to the infarct is part of this recovery process, but the signal that initiates axonal sprouting is not known. Growth and Differentiation Factor 10 (GDF10) is induced in peri-infarct neurons in mouse, non-human primate and human. GDF10 promotes axonal outgrowth in vitro in mouse, rat and human neurons through TGFβRI/II signaling. Using pharmacogenetic gain and loss of function studies, GDF10 produces axonal sprouting and enhanced functional recovery after stroke; knocking down GDF10 blocks axonal sprouting and reduces recovery. RNA-seq from peri-infarct cortical neurons indicates that GDF10 downregulates PTEN and upregulates PI3 kinase signaling and induces specific axonal guidance molecules. Unsupervised genome-wide association analysis of the GDF10 transcriptome shows that it is not related to neurodevelopment but may partially overlap with other CNS injury patterns. GDF10 is a stroke-induced signal for axonal sprouting and functional recovery. PMID:26502261

  19. Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents

    PubMed Central

    Lee, Boyeon; Clarke, Douglas; Al Ahmad, Abraham; Kahle, Michael; Parham, Christi; Auckland, Lisa; Shaw, Courtney; Fidanboylu, Mehmet; Orr, Anthony Wayne; Ogunshola, Omolara; Fertala, Andrzej; Thomas, Sarah A.; Bix, Gregory J.

    2011-01-01

    Stroke is the leading cause of long-term disability and the third leading cause of death in the United States. While most research thus far has focused on acute stroke treatment and neuroprotection, the exploitation of endogenous brain self-repair mechanisms may also yield therapeutic strategies. Here, we describe a distinct type of stroke treatment, the naturally occurring extracellular matrix fragment of perlecan, domain V, which we found had neuroprotective properties and enhanced post-stroke angiogenesis, a key component of brain repair, in rodent models of stroke. In both rat and mouse models, Western blot analysis revealed elevated levels of perlecan domain V. When systemically administered 24 hours after stroke, domain V was well tolerated, reached infarct and peri-infarct brain vasculature, and restored stroke-affected motor function to baseline pre-stroke levels in these multiple stroke models in both mice and rats. Post-stroke domain V administration increased VEGF levels via a mechanism involving brain endothelial cell α5β1 integrin, and the subsequent neuroprotective and angiogenic actions of domain V were in turn mediated via VEGFR. These results suggest that perlecan domain V represents a promising approach for stroke treatment. PMID:21747167

  20. Recapitulation of developmental mechanisms to revascularize the ischemic heart

    PubMed Central

    Dubé, Karina N.; Thomas, Tonia M.; Munshaw, Sonali; Rohling, Mala; Riley, Paul R.

    2017-01-01

    Restoring blood flow after myocardial infarction (MI) is essential for survival of existing and newly regenerated tissue. Endogenous vascular repair processes are deployed following injury but are poorly understood. We sought to determine whether developmental mechanisms of coronary vessel formation are intrinsically reactivated in the adult mouse after MI. Using pulse-chase genetic lineage tracing, we establish that de novo vessel formation constitutes a substantial component of the neovascular response, with apparent cellular contributions from the endocardium and coronary sinus. The adult heart reverts to its former hypertrabeculated state and repeats the process of compaction, which may facilitate endocardium-derived neovascularization. The capacity for angiogenic sprouting of the coronary sinus vein, the adult derivative of the sinus venosus, may also reflect its embryonic origin. The quiescent epicardium is reactivated and, while direct cellular contribution to new vessels is minimal, it supports the directional expansion of the neovessel network toward the infarcted myocardium. Thymosin β4, a peptide with roles in vascular development, was required for endocardial compaction, epicardial vessel expansion, and smooth muscle cell recruitment. Insight into pathways that regulate endogenous vascular repair, drawing on comparisons with development, may reveal novel targets for therapeutically enhancing neovascularization. PMID:29202457

  1. Ventral incisional hernia (VIH) repair after liver transplantation (OLT) with a biological mesh: experience in 3 cases.

    PubMed

    Schaffellner, S; Sereinigg, M; Wagner, D; Jakoby, E; Kniepeiss, D; Stiegler, P; Haybäck, J; Müller, H

    2016-05-01

    Hernias after orthotopic liver transplant (OLT) occur in about 30 % of cases. Predisposing factors in liver cirrhotic patients of cases are ascites, low abdominal muscle mass and cachexia before and immunosuppression after OLT. Standard operative transplant-technique even in small hernias is to implant a mesh. For patients after liver transplantation a porcine non-cross linked biological patch being less immunogenic than synthetic and cross-linked meshes is chosen for ventral incisional hernia repair. 3 patients (1 female, 2 male), OLT indications Hepatitis C, exogenous- toxic cirrhosis, median-age 53 (51 - 56) and median time to hernia occurrence after OLT were 10 month (6 - 18 m) are documented. 2 patients suffered from diabetes, 2 from chronic-obstructive lung disease. Maintenance immunosuppressions were Everolimus in 1 patient, Everolimus + MMF in the second and Everolimus +Tacrolimus in the third patient. The biological was chosen for hernia repair due to the preexisting risk- factors. Meshes, 10 × 16 cm were placed, in IPOM (Intra-Peritonel-Onlay-Mesh) -position by relaparatomy. Insolvable, monofile, interrupted sutures were used. All patients recovered primarily, and were dismissed within 10 d post OP. No wound healing disorders or signs of postoperative infections occurred. All are free of hernia recurrence in a mean observation time of 22 month (10 - 36). The usage of porcine non-cross-linked biological patches seems feasible for incisional hernia repair after OLT. Wound infections in these patients have been observed with other meshes. Further investigation is needed to prove potential superiority of this biological to the other meshes. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Early Results of Rheumatic Mitral Valve Repair.

    PubMed

    Petrone, Giuseppe; Theodoropoulos, Panagiotis; Punjabi, Prakash P

    2016-11-01

    Mitral valve repair (MVr) in rheumatic heart disease (RHD) remains challenging. The present authors' surgical experience of MVr in 56 patients with RHD operated in between January 2011 and September 2014 is reported. Among the patients (mean age 32 ± 11 years), 11 were in NYHA functional class II, 32 in class III, and seven in class IV. An adequate or oversized autologous pericardial patch was sutured to extend the coaptating edge of both the anterior leaflet (in 18 patients) and the posterior leaflet (in 30 patients). Neochordae were implanted as needed (n = 43), and leaflet thinning (n = 13), commissurotomy (n = 15) and chordal splitting (n = 9) were also performed. A rigid annuloplasty ring was implanted in 32 patients, and in 24 patients a complete flexible annuloplasty ring made from pericardium, 4 mm Gore-Tex tube graft or a Dacron patch was constructed. Repair was not attempted in 16 patients, with replacement using a mechanical bileaflet prosthesis being considered the only option. Intraoperative post-repair transesophageal echocardiography demonstrated competency, with trivial mitral regurgitation (MR) up to grade I in all patients and a minimum coaptation depth ≥5 mm. There were no intraoperative or in-hospital deaths. Clinical and echocardiographic evaluations were performed up to six weeks after surgery, at which time 51 patients were in NYHA classes I-II and five were in class III. Residual mild MR up to grade I was identified in six patients. No recurrence of MR was observed in any of the patients, and no patients were reoperated on. The lack of adequate access to anticoagulation medication and monitoring, in addition to religious/cultural bias to the type of prosthetic valve used in low-income countries, necessitates an increase in the numbers of rheumatic MVr.

  3. Repair of extrahepatic bile duct defect using a collagen patch in a Swine model.

    PubMed

    Tao, Liang; Li, Qiang; Ren, Haozhen; Chen, Bing; Hou, Xianglin; Mou, Lingjun; Zhou, Siqiao; Zhou, Jianxin; Sun, Xitai; Dai, Jianwu; Ding, Yitao

    2015-04-01

    Extrahepatic bile duct (EBD) injury can happen during surgery. To repair a defect of the EBD and prevent postoperative biliary complications, a collagen membrane was designed. The collagen material was porous, biocompatible, and degradable and could maintain its shape in bile soaking for about 4 weeks. The goal was to induce rapid bile duct tissue regeneration. Twenty Chinese experimental hybrid pigs were used in this study and divided into a patch group and a control group. A spindle-shaped defect (20 mm × 6 mm) was made in the anterior wall of the lower EBD in the swine model, and then the defect was reconstructed using a collagen patch with a drainage tube and wrapped with greater omentum. Ultrasound was performed at 2, 4, 8, and 12 weeks postoperatively. Liver function tests and white blood cell count (WBC) were measured. Hematoxylin-eosin staining, cytokeratin 7 immunohistochemical staining, and Van Gieson's staining of EBD were used. The diameter and thickness of the EBD at the graft site were measured. There was no significant difference in liver function tests or WBC in the patch group compared with the control group. No evidence of leakage or stricture was observed, but some pigs developed biliary sludge or stone at 4 and 8 weeks. The drainage tube was lost within 12 weeks. The neo-EBD could withstand normal biliary pressure 2 weeks after surgery. Histological study showed the accessory glands and epithelial cells gradually regenerated at graft sites from 4 weeks, with increasing vessel infiltration and decreasing inflammation. The collagen fibers became regular with full coverage of epithelial cells. The statistical analysis of diameter and thickness showed no stricture formation at the graft site, but the EBD wall was slightly thicker than in the normal bile duct due to collagen fiber deposition. The structure of the neo-EBD was similar to that of the normal EBD. The collagen membrane patch associated with a drainage tube and wrapped with greater omentum effectively induced the regeneration of the EBD defect within 12 weeks. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Certification Tests on Cold Patch Asphalt Repair Materials for Use in Airfield Pavements

    DTIC Science & Technology

    2010-06-01

    in Airfield Pavements Mariely Mejías-Santiago, Franciso del Valle Roldán, and Lucy P. Priddy Geotechnical and Structures Laboratory U.S. Army...28 Figure 19. Pavement structure in the test section...ERDC), Geotechnical and Structures Laboratory (GSL), Vicksburg, MS. The findings and recommendations presented in this report are based upon laboratory

  5. Concrete Finisher: Apprenticeship Course Outline. Apprenticeship and Industry Training. 4805.2

    ERIC Educational Resources Information Center

    Alberta Advanced Education, 2005

    2005-01-01

    The graduate of the Concrete Finisher apprenticeship program is a certified journeyperson who will be able to: (1) perform tests to confirm concrete quality; (2) interpret building codes, plans and specifications as they apply to the trade; (3) place and finish concrete in a professional manner; (4) cut, patch, maintain and repair concrete…

  6. Amplification of unscheduled DNA synthesis signal enables fluorescence-based single cell quantification of transcription-coupled nucleotide excision repair

    PubMed Central

    Wienholz, Franziska; Vermeulen, Wim

    2017-01-01

    Abstract Nucleotide excision repair (NER) comprises two damage recognition pathways: global genome NER (GG-NER) and transcription-coupled NER (TC-NER), which remove a wide variety of helix-distorting lesions including UV-induced damage. During NER, a short stretch of single-stranded DNA containing damage is excised and the resulting gap is filled by DNA synthesis in a process called unscheduled DNA synthesis (UDS). UDS is measured by quantifying the incorporation of nucleotide analogues into repair patches to provide a measure of NER activity. However, this assay is unable to quantitatively determine TC-NER activity due to the low contribution of TC-NER to the overall NER activity. Therefore, we developed a user-friendly, fluorescence-based single-cell assay to measure TC-NER activity. We combined the UDS assay with tyramide-based signal amplification to greatly increase the UDS signal, thereby allowing UDS to be quantified at low UV doses, as well as DNA-repair synthesis of other excision-based repair mechanisms such as base excision repair and mismatch repair. Importantly, we demonstrated that the amplified UDS is sufficiently sensitive to quantify TC-NER-derived repair synthesis in GG-NER-deficient cells. This assay is important as a diagnostic tool for NER-related disorders and as a research tool for obtaining new insights into the mechanism and regulation of excision repair. PMID:28088761

  7. Contact allergy to denture materials in the burning mouth syndrome.

    PubMed

    van Joost, T; van Ulsen, J; van Loon, L A

    1988-02-01

    Several factors may be responsible for stomatitis in general and the burning mouth syndrome in particular. The results of patch testing are reported in 4 patients with burning mouth symptoms thought to be due to sensitization to denture material. 2 patients reacted to substances in Luxene dentures, but the allergens were not identified. In a 3rd patient, sensitization was found to monomeric methyl methacrylate. The other patient gave positive patch tests to epoxy resin (and bisphenol A), probably present in glue used for repair of dental plates. To obtain a complete diagnosis in cases of suspected contact stomatitis due to allergens in dentures, a reliable standard test series is required.

  8. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction.

    PubMed

    Chen, Yueqiu; Zhao, Yunfeng; Chen, Weiqian; Xie, Lincen; Zhao, Zhen-Ao; Yang, Junjie; Chen, Yihuan; Lei, Wei; Shen, Zhenya

    2017-11-25

    Our study aim was to evaluate the therapeutic efficacy and mechanisms of miR-133-overexpressing mesenchymal stem cells (MSCs) on acute myocardial infarction. Rat MSCs were isolated and purified by whole bone marrow adherent culturing. After transfection with the agomir or antagomir of miR-133, MSCs were collected for assay of cell vitality, apoptosis, and cell cycle progression. At the same time, exosomes were isolated from the supernatant to analyze the paracrine miR-133. For in-vivo studies, constitutive activation of miR-133 in MSCs was achieved by lentivirus-mediated miR-133 overexpression. A rat myocardial infarction model was created by ligating the left anterior descending coronary artery, while control MSCs (vector-MSCs) or miR-133-overexpressed MSCs (miR-133-MSCs) were injected into the zone around the myocardial infarction. Subsequently, myocardial function was evaluated by echocardiography on days 7 and 28 post infarction. Finally the infarcted hearts were collected on days 7 and 28 for myocardial infarct size measurement and detection of snail 1 expression. Hypoxia-induced apoptosis of MSCs obviously reduced, along with enhanced expression of total poly ADP-ribose polymerase protein, after miR-133 agomir transfection, while the apoptosis rate increased in MSCs transfected with miR-133 antagomir. However, no change in cell viability and cell-cycle distribution was observed in control, miR-133-overexpressed, and miR-133-interfered MSCs. Importantly, rats transplanted with miR-133-MSCs displayed more improved cardiac function after acute myocardial infarction, compared with those that received vector-MSC injection. Further studies indicated that cardiac expression of snail 1 was significantly repressed by adjacent miR-133-overexpressing MSCs, and both the inflammatory level and the infarct size decreased in miR-133-MSC-injected rat hearts. miR-133-MSCs obviously improved cardiac function in a rat model of myocardial infarction. Transplantation of miR-133-overexpressing MSCs provides an effective strategy for cardiac repair and modulation of cardiac-related diseases.

  9. Reduction of Moisture Effects During the Cure of Epoxy Adhesives Used in Composite Repair

    NASA Technical Reports Server (NTRS)

    Augl, J. M.; Sivy, G. T.

    1985-01-01

    The requirements for repair work on Naval aircraft composite wing skins that can be performed under depot conditions (or still worse, under field conditions) are quite restrictive. Equipment that can be used is rather limited as are the available repair space and time. The procedures must be simple enough so that they can be performed satisfactorily by personnel without special knowledge in composite materials technology. Repairs of small holes should not require more than perhaps a short predrying cycle (with heat guns) and a subsequent patch bonding using a heating blanket, held in place by applying a vacuum. However, it has been observed during simulated experimental repair work that the glue lines frequently show a high content of pores and bubbles which are attributed to evaporation of moisture during the curing cycle. (Of course, other volatile materials such as residual solvent would act similarly). The purpose of this paper is to give some detailed analysis of the problem of moisture transport as a function of repair conditions, and to discuss some preliminary work to reduce the effect of moisture by removing moisture chemically with carbodiimides before it reaches a critical level for bubble formations.

  10. Laparoscopic inguinal hernia repair: gold standard in bilateral hernia repair? Results of more than 2800 patients in comparison to literature.

    PubMed

    Wauschkuhn, Constantin Aurel; Schwarz, Jochen; Boekeler, Ulf; Bittner, Reinhard

    2010-12-01

    Advantages and disadvantages of open and endoscopic hernia surgery are still being discussed. Until now there has been no study that evaluated the advantages and disadvantages of bilateral hernia repair in a large number of patients. Our prospectively collected database was analyzed to compare the results of laparoscopic bilateral with laparoscopic unilateral hernia repair. We then compared these results with the results of a literature review regarding open and laparoscopic bilateral hernia repair. From April 1993 to December 2007 there were 7240 patients with unilateral primary hernia (PH) and 2880 patients with bilateral hernia (5760 hernias) who underwent laparoscopic transabdominal preperitoneal patch plastic (TAPP). Of the 10,120 patients, 28.5% had bilateral hernias. Adjusted for the number of patients operated on, the mean duration of surgery for unilateral hernia repair was shorter than that for bilateral repair (45 vs. 70 min), but period of disability (14 vs. 14 days) was the same. Adjusted for the number of hernias repaired, morbidity (1.9 vs. 1.4%), reoperation (0.5 vs. 0.43%), and recurrence rate (0.63 vs. 0.42%) were similar for unilateral versus bilateral repair, respectively. The review of the literature shows a significantly shorter time out of work after laparoscopic bilateral repair than after the bilateral open approach. Simultaneous laparoscopic repair of bilateral inguinal hernias does not increase the risk for the patient and has an equal length of down time compared with unilateral repair. According to literature, recovery after laparoscopic repair is faster than after open simultaneous repair. Laparoscopic/endoscopic inguinal hernia repair of bilateral hernias should be recommended as the gold standard.

  11. Construction and characterization of mismatch-containing circular DNA molecules competent for assessment of nick-directed human mismatch repair in vitro.

    PubMed

    Larson, Erik D; Nickens, David; Drummond, James T

    2002-02-01

    The ability of cell-free extracts to correct DNA mismatches has been demonstrated in both prokaryotes and eukaryotes. Such an assay requires a template containing both a mismatch and a strand discrimination signal, and the multi-step construction process can be technically difficult. We have developed a three-step procedure for preparing DNA heteroduplexes containing a site-specific nick. The mismatch composition, sequence context, distance to the strand signal, and the means for assessing repair in each strand are adjustable features built into a synthetic oligonucleotide. Controlled ligation events involving three of the four DNA strands incorporate the oligonucleotide into a circular template and generate the repair-directing nick. Mismatch correction in either strand of a prototype G.T mismatch was achieved by placing a nick 10-40 bp away from the targeted base. This proximity of nick and mismatch represents a setting where repair has not been well characterized, but the presence of a nick was shown to be essential, as was the MSH2/MSH6 heterodimer, although low levels of repair occurred in extract defective in each protein. All repair events were inhibited by a peptide that interacts with proliferating cell nuclear antigen and inhibits both mismatch repair and long-patch replication.

  12. Endoscope-assisted laparoscopic repair of perforated peptic ulcers.

    PubMed

    Lee, Kun-Hua; Chang, Hung-Chi; Lo, Chong-Jeh

    2004-04-01

    Laparoscopic repairs for perforated peptic ulcer (PPU) are likely to fail in patients with shock, gastric outlet obstruction, or large perforations. This prospective study was performed to evaluate a revised approach of laparoscopic repair with endoscopic assistance to treat these patients. Between April 2001 and February 2002, 30 consecutive patients with PPU were enrolled in this study. The mean age was 43.1 +/- 12.2 years. Male to female ratio was 27:2. One patient was excluded from laparoscopic repair due to a gastric outlet obstruction. The other 29 patients were managed according to a protocol of preoperative upper endoscopy and laparoscopic intracorporeal suture repair with an omental patch. The average operative time was 58.1 +/- 13.5 minutes (range, 36-96 min). The average diameter of perforation was 4.2 +/- 2.0 mm (range, 1-12 mm). The average time to resume oral fluids was 3.2 +/- 0.8 days (range, 2-8 days). The average hospital stay was 4.7 +/- 1.1 days (range, 3-10 days). There was no leakage or mortality. Most patients did not receive parenteral analgesics postoperatively. We conclude that endoscope-assisted laparoscopic repair for PPU is safe and effective. This revised technique allows surgeons to exclude patients who are likely to fail the laparoscopic repair.

  13. Potential of Bioactive Glasses for Cardiac and Pulmonary Tissue Engineering

    PubMed Central

    Hamzehlou, Sepideh

    2017-01-01

    Repair and regeneration of disorders affecting cardiac and pulmonary tissues through tissue-engineering-based approaches is currently of particular interest. On this matter, different families of bioactive glasses (BGs) have recently been given much consideration with respect to treating refractory diseases of these tissues, such as myocardial infarction. The inherent properties of BGs, including their ability to bond to hard and soft tissues, to stimulate angiogenesis, and to elicit antimicrobial effects, along with their excellent biocompatibility, support these newly proposed strategies. Moreover, BGs can also act as a bioactive reinforcing phase to finely tune the mechanical properties of polymer-based constructs used to repair the damaged cardiac and pulmonary tissues. In the present study, we evaluated the potential of different forms of BGs, alone or in combination with other materials (e.g., polymers), in regards to repair and regenerate injured tissues of cardiac and pulmonary systems. PMID:29244726

  14. Minimally invasive cell-seeded biomaterial systems for injectable/epicardial implantation in ischemic heart disease

    PubMed Central

    Ravichandran, Rajeswari; Venugopal, Jayarama Reddy; Sundarrajan, Subramanian; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-01-01

    Myocardial infarction (MI) is characterized by heart-wall thinning, myocyte slippage, and ventricular dilation. The injury to the heart-wall muscle after MI is permanent, as after an abundant cell loss the myocardial tissue lacks the intrinsic capability to regenerate. New therapeutics are required for functional improvement and regeneration of the infarcted myocardium, to overcome harmful diagnosis of patients with heart failure, and to overcome the shortage of heart donors. In the past few years, myocardial tissue engineering has emerged as a new and ambitious approach for treating MI. Several left ventricular assist devices and epicardial patches have been developed for MI. These devices and acellular/cellular cardiac patches are employed surgically and sutured to the epicardial surface of the heart, limiting the region of therapeutic benefit. An injectable system offers the potential benefit of minimally invasive release into the myocardium either to restore the injured extracellular matrix or to act as a scaffold for cell delivery. Furthermore, intramyocardial injection of biomaterials and cells has opened new opportunities to explore and also to augment the potentials of this technique to ease morbidity and mortality rates owing to heart failure. This review summarizes the growing body of literature in the field of myocardial tissue engineering, where biomaterial injection, with or without simultaneous cellular delivery, has been pursued to enhance functional and structural outcomes following MI. Additionally, this review also provides a complete outlook on the tissue-engineering therapies presently being used for myocardial regeneration, as well as some perceptivity into the possible issues that may hinder its progress in the future. PMID:23271906

  15. VRPI Thermoresponsive Reversibly Attachable Patch for Temporary Intervention in Ocular Trauma

    DTIC Science & Technology

    2014-09-01

    Polymerization (ATRP) on biocompatible substrates (e.g. parylene, polyimide , etc.). Adhesion data performed on preliminary samples under uniaxial testing...adhesion performance is completed in vitro, adhesion in vivo and biocompatibility will be assessed using a rabbit animal model. 15. SUBJECT TERMS...vitro, validate adhesive performance in vivo and perform preliminary biocompatibility assessments. 2. Keywords. sutureless wound repair

  16. Experimental study of ASCs combined with POC-PLA patch for the reconstruction of full-thickness chest wall defects.

    PubMed

    Zhang, Yuanzheng; Fang, Shuo; Dai, Jiezhi; Zhu, Lei; Fan, Hao; Tang, Weiya; Fan, Yongjie; Dai, Haiying; Zhang, Peipei; Wang, Ying; Xing, Xin; Yang, Chao

    2017-01-01

    To explore the repairing effect of combination of adipose stem cells (ASCs) and composite scaffolds on CWR, the electrospun Poly 1, 8-octanediol-co-citric acid (POC)-poly-L-lactide acid (PLA) composite scaffolds were prepared, followed by in vitro and in vivo biocompatibility evaluation of the scaffolds. Afterwards, ASCs were seeded on POC-PLA to construct the POC-PLA-ASCs scaffolds, and the POC-PLA, POC-PLA-ASCs, and traditional materials expanded polytetrafluoroethylene (ePTFE) were adopt for CWR in New Zealand white (NZW) rabbit models. As results, the POC-PLA-ASCs patches possessed good biocompatibility as the high proliferation ability of cells surrounding the patches. Rabbits in POC-PLA-ASCs groups showed better pulmonary function, less pleural adhesion, higher degradation rate and more neovascularization when compared with that in other two groups. The results of western blot indicated that POC-PLA-ASCs patches accelerated the expression of VEGF and Collagen I in rabbit models. From the above, our present study demonstrated that POC-PLA material was applied for CWR successfully, and ASCs seeded on the sheets could improve the pleural adhesions and promote the reparation of chest wall defects.

  17. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice.

    PubMed

    Rosen, Chava; Shezen, Elias; Aronovich, Anna; Klionsky, Yael Zlotnikov; Yaakov, Yasmin; Assayag, Miri; Biton, Inbal Eti; Tal, Orna; Shakhar, Guy; Ben-Hur, Herzel; Shneider, David; Vaknin, Zvi; Sadan, Oscar; Evron, Shmuel; Freud, Enrique; Shoseyov, David; Wilschanski, Michael; Berkman, Neville; Fibbe, Willem E; Hagin, David; Hillel-Karniel, Carmit; Krentsis, Irit Milman; Bachar-Lustig, Esther; Reisner, Yair

    2015-08-01

    Repair of injured lungs represents a longstanding therapeutic challenge. We show that human and mouse embryonic lung tissue from the canalicular stage of development (20-22 weeks of gestation for humans, and embryonic day 15-16 (E15-E16) for mouse) are enriched with progenitors residing in distinct niches. On the basis of the marked analogy to progenitor niches in bone marrow (BM), we attempted strategies similar to BM transplantation, employing sublethal radiation to vacate lung progenitor niches and to reduce stem cell competition. Intravenous infusion of a single cell suspension of canalicular lung tissue from GFP-marked mice or human fetal donors into naphthalene-injured and irradiated syngeneic or SCID mice, respectively, induced marked long-term lung chimerism. Donor type structures or 'patches' contained epithelial, mesenchymal and endothelial cells. Transplantation of differentially labeled E16 mouse lung cells indicated that these patches were probably of clonal origin from the donor. Recipients of the single cell suspension transplant exhibited marked improvement in lung compliance and tissue damping reflecting the energy dissipation in the lung tissues. Our study provides proof of concept for lung reconstitution by canalicular-stage human lung cells after preconditioning of the pulmonary niche.

  18. Simple patch closure for perforated peptic ulcer in children followed by helicobacter pylori eradication.

    PubMed

    Yildiz, Turan; Ilce, Huri Tilla; Ceran, Canan; Ilce, Zekeriya

    2014-05-01

    Peptic ulcer disease in children is rare. Therefore, the diagnosis can be missed until complications such as perforation or hemorrhage occur. Few reports have investigated the procedures and outcomes of children who have undergone operations for perforated duodenal ulcers. We report our experience with the modified Graham technique for perforated duodenal ulcers in nine children and review the literature. Methods : The records of patients operated on for a perforated duodenal ulcer in the last 8 years in two pediatric surgery centers were evaluated retrospectively. Patient demographics, symptoms, time to admission to hospital, operative findings, and postoperative clinical course were evaluated. Results : Nine children (mean age 13.2 years, range 6-170 years) were included. All patients were admitted in the first six hours after their abdominal pain started. In three patients, there was free air on plain x-rays, while the x-rays were normal in six. All perforations were located on the anterior surface of the first part of the duodenum and repaired with primary suturing and Graham patch omentoplasty. The recovery was uneventful in all patients. In five patients, urea breath tests were performed postoperatively for Helicobacter Pylori, and the results were positive. All patients underwent triple therapy with lansoprazole, amoxicillin, and clarithromycin. The mean follow-up time was 58 (range 3-94) months. Conclusions : Peptic ulcer perforation should be suspected in children who have acute abdominal pain and peritoneal signs, especially when their suffering is intense. The simple patch repair and postoperative triple therapy for Helicobacter Pylori are safe and satisfactory for treating peptic ulcer perforation in children.

  19. Improving left ventricular outflow tract obstruction repair in common atrioventricular canal defects.

    PubMed

    Myers, Patrick O; del Nido, Pedro J; Marx, Gerald R; Emani, Sitaram; Mayer, John E; Pigula, Frank A; Baird, Christopher W

    2012-08-01

    Left ventricular outflow tract obstruction (LVOTO) is the second most frequent reason for reoperation after atrioventricular canal (AVC) defect repair. Limited data are available on the mechanisms of LVOTO, their treatment, and outcomes. Between 1998 and 2010, 56 consecutive children with AVC underwent 68 LVOTO procedures. The AVC was partial in 4, transitional in 9, and complete in 43. The LVOTO procedure was required in 21 patients at the primary AVC repair, and the initial LVOTO procedure in 35 patients was a late reoperation after AVC repair. During a mean follow-up of 50±41 months, 5 patients (24%) with LVOTO repair at AVC repair required a reoperation for LVOTO, and 7 patients (20%) whose initial LVOTO repair was a reoperation required a second reoperation for LVOTO repair. Overall freedom from LVOTO reoperation was 98.5% at 1 year, 92.5% at 3 years, 81% at 5 years, 72.2% at 7 years, and 52.5% at 10 and 12 years. The freedom from reoperation was neither significantly different between partial, transitional, and complete AVC (p=0.78) nor between timing of the LVOT procedure (p=0.49). Modified single-patch AVC repair was associated with a higher LVOTO reoperation rate (p=0.04). Neither the mechanisms leading to LVOTO nor the surgical techniques used were independent predictors of reoperation. LVOTO in AVC is a complex and multifactorial disease. Aggressive surgical repair has improved late outcomes; however, risk factors for reoperation and the ideal approach for repair remain to be defined. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Changes in magnesium, zinc, calcium, potassium, cholesterol, and creatine kinase concentrations in patients from pre-infarction syndrome to fatal myocardial infarction.

    PubMed

    Speich, M; Gelot, S; Arnaud, P; Nicolas, G

    1988-10-01

    We measured changes in concentrations of magnesium, zinc, calcium, potassium, cholesterol [total and high-density lipoproteins (HDL)], total creatine kinase (CK), and CK isoenzyme-MB in plasma (PI) and/or erythrocytes (Erc) from apparently healthy subjects and from patients with either pre-infarction syndrome (PIS) or myocardial infarction (MI) with a favorable (MI1) or fatal (MI2) outcome, to assess the relationship of these changes to the increasing severity of ischemic disease. Significant sex-related differences led us to study men and women separately. In MI1 and MI2 patients, concentrations of Mg in PI and Erc were increased as a function of time since the infarct, confirming the cardiac Mg leaves the heart and enters the circulatory compartment. Compared with concentrations in MI2 patients, Zn concentrations in PI were lower in MI2 patients in the days before death. Significant negative correlations between Zn in PI in MI1 men or Zn in Erc in MI2 men and CK or CK isoenzyme MB suggest that circulating Zn is taken up by non-necrotic myocardial tissue as part of the repair process. MI2 patients had gradually decreasing Ca concentrations in PI even more marked than those observed in PIS and MI1 patients. We also noted a marked decrease in total and HDL cholesterol concentrations in both MI2 men and MI2 women shortly before death.

  1. In-Space Repair of Reinforced Carbon-Carbon (RCC) Thermal Protection System Structures

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2005-01-01

    Advanced repair and refurbishment technologies are critically needed for the RCC-based thermal protection system of current space transportation system as well as for future Crew Exploration Vehicles (CEV). The damage to these components could be caused by impact during ground handling or due to falling of ice or other objects during launch. In addition, in-orbit damage includes micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate adhesives and then applying the paste to the damaged/cracked area of the RCC composites with adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during simulated entry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, PLASTER (Patch Laminates and Sealant Technology for Exterior Repair) based systems have been developed. In this presentation, critical in-space repair needs and technical challenges as well as various issues and complexities will be discussed along with the plasma performance and post test characterization of repaired RCC materials.

  2. Proximity to AGCT sequences dictates MMR-independent versus MMR-dependent mechanisms for AID-induced mutation via UNG2

    PubMed Central

    Thientosapol, Eddy Sanchai; Sharbeen, George; Lau, K.K. Edwin; Bosnjak, Daniel; Durack, Timothy; Stevanovski, Igor; Weninger, Wolfgang

    2017-01-01

    Abstract AID deaminates C to U in either strand of Ig genes, exclusively producing C:G/G:C to T:A/A:T transition mutations if U is left unrepaired. Error-prone processing by UNG2 or mismatch repair diversifies mutation, predominantly at C:G or A:T base pairs, respectively. Here, we show that transversions at C:G base pairs occur by two distinct processing pathways that are dictated by sequence context. Within and near AGCT mutation hotspots, transversion mutation at C:G was driven by UNG2 without requirement for mismatch repair. Deaminations in AGCT were refractive both to processing by UNG2 and to high-fidelity base excision repair (BER) downstream of UNG2, regardless of mismatch repair activity. We propose that AGCT sequences resist faithful BER because they bind BER-inhibitory protein(s) and/or because hemi-deaminated AGCT motifs innately form a BER-resistant DNA structure. Distal to AGCT sequences, transversions at G were largely co-dependent on UNG2 and mismatch repair. We propose that AGCT-distal transversions are produced when apyrimidinic sites are exposed in mismatch excision patches, because completion of mismatch repair would require bypass of these sites. PMID:28039326

  3. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification

    PubMed Central

    Almeida, Karen H.; Sobol, Robert W.

    2007-01-01

    Base excision repair (BER) proteins act upon a significantly broad spectrum of DNA lesions that result from endogenous and exogenous sources. Multiple sub-pathways of BER (short-path or long-patch) and newly designated DNA repair pathways (e.g., SSBR and NIR) that utilize BER proteins complicate any comprehensive understanding of BER and its role in genome maintenance, chemotherapeutic response, neurodegeneration, cancer or aging. Herein, we propose a unified model of BER, comprised of three functional processes: Lesion Recognition/Strand Scission, Gap Tailoring and DNA Synthesis/Ligation, each represented by one or more multiprotein complexes and coordinated via the XRCC1/DNA Ligase III and PARP1 scaffold proteins. BER therefore may be represented by a series of repair complexes that assemble at the site of the DNA lesion and mediates repair in a coordinated fashion involving protein-protein interactions that dictate subsequent steps or sub-pathway choice. Complex formation is influenced by post-translational protein modifications that arise from the cellular state or the DNA damage response, providing an increase in specificity and efficiency to the BER pathway. In this review, we have summarized the reported BER protein-protein interactions and protein post-translational modifications and discuss the impact on DNA repair capacity and complex formation. PMID:17337257

  4. Laser welding versus suturing in tunica vaginalis and venous patch graft corporoplasty.

    PubMed

    Kirsch, A J; Chang, D T; Miller, M I; Connor, J P; Hensle, T W; Shabsigh, R

    1995-08-01

    Congenital penile curvature may result from corporeal disproportion in nearly 40% of cases, while in adults scarring of the corporeal bodies or periurethral fibrosis accounts for the majority of cases. Some surgeons advocate lengthening the fibrosed corporeal bodies by excising tunica albuginea and grafting such defects to straighten the penis. Tunica vaginalis, dermis, dorsal vein and lyophilized dura have been used for this purpose. Traditionally, these graft biomaterials have been sutured to the tunica albuginea. We assessed the feasibility, short-term safety and efficacy of diode laser tissue welding using albumin based solder and indocyanine green dye to perform patch graft corporoplasty in the dog. Ten animals were subjected to bilateral transverse excision of 1 x 2 cm. sections of tunica albuginea. Corporoplasty was performed using grafts composed of saphenous vein (5) or tunica vaginalis (5). Microsurgical repair with 7-zero polydioxanone suture (10) was compared to contralateral laser welded repair (10) by recording operative time, initial and short-term bursting pressures (mean plus or minus standard deviation) and histological analysis. Operative time on the laser side (9.8 +/- 2.3 minutes) was significantly shorter (p < 0.05) than on the suture side (17.1 +/- 5.1 minutes). Leak pressures, initially (laser 105.7 +/- 23.8 mm. Hg versus suture 35.3 +/- 8.0 mm. Hg), at 3 to 5 days (greater than 333.3 +/- 62.4 mm. Hg versus 136.6 +/- 39.4 mm. Hg) and at 7 to 10 days (greater than 397.8 +/- 39.8 mm. Hg versus 191.5 +/- 46.4 mm. Hg) were higher (p < 0.05) in the laser side compared to controls. Graft failure (necrosis) occurred in 3 repairs (2 laser on day 4 and 1 suture on day 10). Viable tissue with minimal differences in foreign body reaction between groups was observed in the remaining grafts. We conclude that laser welded patch graft corporoplasty using tunica vaginalis or vein is easy to perform, and provides excellent initial and short-term leak pressures. The use of laser welding in conjunction with suturing may be beneficial in corporoplasty for congenital or acquired penile curvature.

  5. Stem cells for cardiac repair: problems and possibilities.

    PubMed

    Henning, Robert J

    2013-11-01

    Ischemic heart disease is a major cause of death throughout the world. In order to limit myocardial damage and possibly generate new myocardium, stem cells are currently being injected into patients with ischemic heart disease. Three major patient investigations, The LateTIME, the TIME and the Swiss Myocardial Infarction trials, have recently addressed the questions of whether progenitor cells from unfractionated bone marrow mononuclear cells limit myocardial damage and what the optimal time to inject these cells after acute myocardial infarctions (AMIs) is. In each of these trials, there were no significant differences between treated and control patients when bone marrow cells were administered 5-7 days or 2-3 weeks after AMIs. Nevertheless, these investigations provide important information regarding clinical trial designs. Patients with AMIs in these trials were treated with percutaneous coronary intervention within a median of 4-5 h after the onset of chest pain. Thereafter, all patients received guideline-guided optimal medical therapy. Consequently, the sizes of AMIs were significantly limited. In patients with small AMIs and near-normal left ventricular ejection fractions, progenitor cells are least effective. However, these trials do question whether autologous bone marrow mononuclear cells are the optimal cells for myocardial repair owing to low numbers of progenitor cells in bone marrow aspirates and the significant variability in potency and efficacy of these cells in patients with chronic multisystem diseases. In contrast, the SCIPIO and the CAUDUCEUS trials examined cardiac progenitor cells in patients with ischemic cardiomyopathies. These trials reported over 1-2 years that cardiac progenitor cells produced significant improvements in left ventricular contractility due to 12-24 g decreases in myocardial scars and 18-23 g increases in viable myocardial muscle. However, caution must be exercised in the interpretation of these studies due to the small numbers of highly selected patients and intra- and inter-observer variability in infarct size measurements. Anatomical and histological examinations of large numbers of patients treated with these cells are necessary to confirm significant generation of myocytes and decreases in infarct size and fibrosis.

  6. Removal of N-6-methyladenine by the nucleotide excision repair pathway triggers the repair of mismatches in yeast gap-repair intermediates.

    PubMed

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-12-01

    Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the collateral introduction of UV damage can potentially compromise genetic interpretations. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Removal of N-6-methyladenine by the nucleotide excision repair pathway triggers the repair of mismatches in yeast gap-repair intermediates

    PubMed Central

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-01-01

    Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the cillateral introduction of UV damage can potentially compromise genetic interpretations. PMID:24120148

  8. Myeloid-Epithelial-Reproductive Receptor Tyrosine Kinase and Milk Fat Globule Epidermal Growth Factor 8 Coordinately Improve Remodeling After Myocardial Infarction via Local Delivery of Vascular Endothelial Growth Factor.

    PubMed

    Howangyin, Kiave-Yune; Zlatanova, Ivana; Pinto, Cristina; Ngkelo, Anta; Cochain, Clément; Rouanet, Marie; Vilar, José; Lemitre, Mathilde; Stockmann, Christian; Fleischmann, Bernd K; Mallat, Ziad; Silvestre, Jean-Sébastien

    2016-03-01

    In infarcted heart, improper clearance of dying cells by activated neighboring phagocytes may precipitate the transition to heart failure. We analyzed the coordinated role of 2 major mediators of efferocytosis, the myeloid-epithelial-reproductive protein tyrosine kinase (Mertk) and the milk fat globule epidermal growth factor (Mfge8), in directing cardiac remodeling by skewing the inflammatory response after myocardial infarction. We generated double-deficient mice for Mertk and Mfge8 (Mertk(-/-)/Mfge8(-/-)) and challenged them with acute coronary ligature. Compared with wild-type, Mertk-deficient (Mertk(-/-)), or Mfge8-deficient (Mfge8(-/-)) animals, Mertk(-/-)/Mfge8(-/-) mice displayed greater alteration in cardiac function and remodeling. Mertk and Mfge8 were expressed mainly by cardiac Ly6C(High and Low) monocytes and macrophages. In parallel, Mertk(-/-)/Mfge8(-/-) bone marrow chimeras manifested increased accumulation of apoptotic cells, enhanced fibrotic area, and larger infarct size, as well as reduced angiogenesis. We found that the abrogation of efferocytosis affected neither the ability of circulating monocytes to infiltrate cardiac tissue nor the number of resident Ly6C(High) and Ly6C(How) monocytes/macrophages populating the infarcted milieu. In contrast, combined Mertk and Mfge8 deficiency in Ly6C(High)/Ly6C(Low) monocytes/macrophages either obtained from in vitro differentiation of bone marrow cells or isolated from infarcted hearts altered their capacity of efferocytosis and subsequently blunted vascular endothelial growth factor A (VEGFA) release. Using LysMCre(+)/VEGFA(fl/fl) mice, we further identified an important role for myeloid-derived VEGFA in improving cardiac function and angiogenesis. After myocardial infarction, Mertk- and Mfge8-expressing monocyte/macrophages synergistically engage the clearance of injured cardiomyocytes, favoring the secretion of VEGFA to locally repair the dysfunctional heart. © 2016 The Authors.

  9. Myeloid-Epithelial-Reproductive Receptor Tyrosine Kinase and Milk Fat Globule Epidermal Growth Factor 8 Coordinately Improve Remodeling After Myocardial Infarction via Local Delivery of Vascular Endothelial Growth Factor

    PubMed Central

    Howangyin, Kiave-Yune; Zlatanova, Ivana; Pinto, Cristina; Ngkelo, Anta; Cochain, Clément; Rouanet, Marie; Vilar, José; Lemitre, Mathilde; Stockmann, Christian; Fleischmann, Bernd K.; Mallat, Ziad

    2016-01-01

    Background— In infarcted heart, improper clearance of dying cells by activated neighboring phagocytes may precipitate the transition to heart failure. We analyzed the coordinated role of 2 major mediators of efferocytosis, the myeloid-epithelial-reproductive protein tyrosine kinase (Mertk) and the milk fat globule epidermal growth factor (Mfge8), in directing cardiac remodeling by skewing the inflammatory response after myocardial infarction. Methods and Results— We generated double-deficient mice for Mertk and Mfge8 (Mertk−/−/Mfge8−/−) and challenged them with acute coronary ligature. Compared with wild-type, Mertk-deficient (Mertk−/−), or Mfge8-deficient (Mfge8−/−) animals, Mertk−/−/Mfge8−/− mice displayed greater alteration in cardiac function and remodeling. Mertk and Mfge8 were expressed mainly by cardiac Ly6CHigh and Low monocytes and macrophages. In parallel, Mertk−/−/Mfge8−/− bone marrow chimeras manifested increased accumulation of apoptotic cells, enhanced fibrotic area, and larger infarct size, as well as reduced angiogenesis. We found that the abrogation of efferocytosis affected neither the ability of circulating monocytes to infiltrate cardiac tissue nor the number of resident Ly6CHigh and Ly6CHow monocytes/macrophages populating the infarcted milieu. In contrast, combined Mertk and Mfge8 deficiency in Ly6CHigh/Ly6CLow monocytes/macrophages either obtained from in vitro differentiation of bone marrow cells or isolated from infarcted hearts altered their capacity of efferocytosis and subsequently blunted vascular endothelial growth factor A (VEGFA) release. Using LysMCre+/VEGFAfl/fl mice, we further identified an important role for myeloid-derived VEGFA in improving cardiac function and angiogenesis. Conclusions— After myocardial infarction, Mertk- and Mfge8-expressing monocyte/macrophages synergistically engage the clearance of injured cardiomyocytes, favoring the secretion of VEGFA to locally repair the dysfunctional heart. PMID:26819373

  10. Successful Aortic Banding for Type IA Endoleak Due to Neck Dilatation after Endovascular Abdominal Aortic Aneurysm Repair: Case Report.

    PubMed

    Tashima, Yasushi; Tamai, Koichi; Shirasugi, Takehiro; Sato, Kenichiro; Yamamoto, Takahiro; Imamura, Yusuke; Yamaguchi, Atsushi; Adachi, Hideo; Kobinata, Toshiyuki

    2017-09-25

    A 69-year-old man with a type IA endoleak that developed approximately 21 months after endovascular abdominal aortic aneurysm repair (EVAR) of a 46 mm diameter aneurysm was referred to our department. He had impaired renal function, Parkinson's disease, and previous cerebral infarction. Computed tomography angiography showed a type IA endoleak with neck dilatation and that the aneurysm had grown to 60 mm in diameter. We decided to perform aortic banding. The type IA endoleak disappeared after banding and the patient was discharged on postoperative day 10. Aortic banding may be effective for type IA endoleak after EVAR and less invasive for high-risk patients in particular.

  11. Polymers Advance Heat Management Materials for Vehicles

    NASA Technical Reports Server (NTRS)

    2013-01-01

    For 6 years prior to the retirement of the Space Shuttle Program, the shuttles carried an onboard repair kit with a tool for emergency use: two tubes of NOAX, or "good goo," as some people called it. NOAX flew on all 22 flights following the Columbia accident, and was designed to repair damage that occurred on the exterior of the shuttle. Bill McMahon, a structural materials engineer at Marshall Space Flight Center says NASA needed a solution for the widest range of possible damage to the shuttle s exterior thermal protection system. "NASA looked at several options in early 2004 and decided on a sealant. Ultimately, NOAX performed the best and was selected," he says. To prove NOAX would work effectively required hundreds of samples manufactured at Marshall and Johnson, and a concerted effort from various NASA field centers. Johnson Space Center provided programmatic leadership, testing, tools, and crew training; Glenn Research Center provided materials analysis; Langley Research Center provided test support and led an effort to perform large patch repairs; Ames Research Center provided additional testing; and Marshall provided further testing and the site of NOAX manufacturing. Although the sealant never had to be used in an emergency situation, it was tested by astronauts on samples of reinforced carbon-carbon (RCC) during two shuttle missions. (RCC is the thermal material on areas of the shuttle that experience the most heat, such as the nose cone and wing leading edges.) The material handled well on orbit, and tests showed the NOAX patch held up well on RCC.

  12. Mechanisms of double-strand-break repair during gene targeting in mammalian cells.

    PubMed Central

    Ng, P; Baker, M D

    1999-01-01

    In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting.In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp.The hDNA was efficiently repaired prior to DNA replication.The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism. PMID:10049929

  13. Lectin-based food poisoning: a new mechanism of protein toxicity.

    PubMed

    Miyake, Katsuya; Tanaka, Toru; McNeil, Paul L

    2007-08-01

    Ingestion of the lectins present in certain improperly cooked vegetables can result in acute GI tract distress, but the mechanism of toxicity is unknown. In vivo, gut epithelial cells are constantly exposed to mechanical and other stresses and consequently individual cells frequently experience plasma membrane disruptions. Repair of these cell surface disruptions allows the wounded cell to survive: failure results in necrotic cell death. Plasma membrane repair is mediated, in part, by an exocytotic event that adds a patch of internal membrane to the defect site. Lectins are known to inhibit exocytosis. We therefore tested the novel hypothesis that lectin toxicity is due to an inhibitory effect on plasma membrane repair. Repair of plasma membrane disruptions and exocytosis of mucus was assessed after treatment of cultured cell models and excised segments of the GI tract with lectins. Plasma membrane disruptions were produced by focal irradiation of individual cells, using a microscope-based laser, or by mechanical abrasion of multiple cells, using a syringe needle. Repair was then assessed by monitoring the cytosolic penetration of dyes incapable of crossing the intact plasma membrane. We found that cell surface-bound lectins potently inhibited plasma membrane repair, and the exocytosis of mucus that normally accompanies the repair response. Lectins potently inhibit plasma membrane repair, and hence are toxic to wounded cells. This represents a novel form of protein-based toxicity, one that, we propose, is the basis of plant lectin food poisoning.

  14. Pulmonary annulus growth after the modified Blalock-Taussig shunt in tetralogy of Fallot.

    PubMed

    Nakashima, Kouki; Itatani, Keiichi; Oka, Norihiko; Kitamura, Tadashi; Horai, Tetsuya; Hari, Yosuke; Miyaji, Kagami

    2014-09-01

    In tetralogy of Fallot (TOF), it is well known that postoperative pulmonary regurgitation reduces right ventricular function during long-term follow-up. Complete repair without a transannular patch should help avoid pulmonary regurgitation. Recently, primary complete repair has been preferred to the staged repair with use of a Blalock-Taussig shunt (BTS) even in neonates or small infants; however, little has been reported about the influence of a BTS on pulmonary annular growth. We examined 40 patients with TOF or double-outlet right ventricle with pulmonary stenosis. Twenty-one patients received a BTS before complete repair, whereas 19 patients underwent primary complete repair. Pulmonary annular size was measured by echocardiography before BTS, complete repair, or both, and ventricular volume was measured by cardiac catheterization. There were no significant differences in complete repair age or body size between the groups. Pulmonary annulus sizes in the BTS group were smaller than those in the primary repair group (Z score, -5.1 ± 2.5 vs -3.7 ± 1.8). After the BTS, significant annular growth (Z score, -2.8 ± 2.1) was observed (p = 0.0028), with a significant increase in left ventricular end-diastolic volume (p = 0.015). When patients with severe pulmonary stenosis (Z score > -7.0) were excluded, pulmonary annular preservation at complete repair was achieved in 64.7% (11/17) of the BTS group and 36.8% (7/19) of the primary repair group (p = 0.088). The BTS increased the pulmonary annular size and the left ventricular volume during the 6 months before complete repair, resulting in preservation of the pulmonary valve function. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells.

    PubMed

    Luther, Kristin M; Haar, Lauren; McGuinness, Myc; Wang, Yang; Lynch Iv, Thomas L; Phan, Anh; Song, Yang; Shen, Zilong; Gardner, George; Kuffel, Gina; Ren, Xiaoping; Zilliox, Michael J; Jones, W Keith

    2018-06-01

    Though experimental, stem cell transplantation has the potential to improve the condition of the heart after myocardial infarction. It does so by reducing infarct size and inducing repair of heart muscle and its blood supply. Mesenchymal stem cells (MSC) have been found to be effective in pre-clinical animal models and clinical trials, but the mechanisms by which they induce cardioprotection and repair are still not fully understood. Small extracellular vesicles known as exosomes are now recognized to be key mediators of beneficial MSC paracrine effects, and the concept that they transfer miRNA to change gene expression in recipient cells is of current therapeutic interest. We present complete deep miRNA sequencing of MSC exosome cargo, and found that of several cardioprotective miRNAs, miR-21a-5p was the most abundant. Because miR-21a-5p is a well-known cardioprotective miRNA, we investigated the hypothesis that MSC exosomes can cardioprotect the heart by increasing the level of miR-21a-5p in recipient cardiac cells, thereby downregulating expression of the pro-apoptotic gene products PDCD4, PTEN, Peli1 and FasL in the myocardium. Using miR-21 mimic transfection and treatment with wild type and miR-21a knockout MSC exosomes, we confirmed that exosomal miR-21a-5p is transferred into myocardium and is a major cardioprotective paracrine factor produced by MSCs acting via synergistic activity on multiple pathways. The data supports that residual cardioprotective effect may be due to other ncRNA or protein cargo. In silico analyses support that MSC exosomes may also contribute to angiogenesis, cell proliferation and other aspects of cardiac repair. Copyright © 2018. Published by Elsevier Ltd.

  16. Orchiectomy as a result of ischemic orchitis after laparoscopic inguinal hernia repair: case report of a rare complication.

    PubMed

    Moore, John B; Hasenboehler, Erik A

    2007-11-07

    Ischemic orchitis is an established complication after open inguinal hernia repair, but ischemic orchitis resulting in orchiectomy after the laparoscopic approach has not been reported. The patient was a thirty-three year-old man who presented with bilateral direct inguinal hernias, right larger than left. He was a thin, muscular male with a narrow pelvis who underwent bilateral extraperitoneal mesh laparoscopic inguinal hernia repair. The case was complicated by pneumoperitoneum which limited the visibility of the pelvic anatomy; however, the mesh was successfully deployed bilaterally. Cautery was used to resect the direct sac on the right. The patient was discharged the same day and doing well with minimal pain and swelling until the fourth day after surgery. That night he presented with sudden-onset pain and swelling of his right testicle and denied both trauma to the area and any sexual activity. Ultrasound of the testicle revealed no blood flow to the testicle which required exploration and subsequent orchiectomy. Ischemic orchitis typically presents 2-3 days after inguinal hernia surgery and can progress to infarction. This ischemic injury is likely due to thrombosis of the venous plexus, rather than iatrogenic arterial injury or inappropriate closure of the inguinal canal. Ultrasound/duplex scanning of the postoperative acute scrotum can help differentiate ischemic orchitis from infarction. Unfortunately, testicular torsion cannot be ruled out and scrotal exploration may be necessary. Although ischemic orchitis, atrophy, and orhiectomy are uncommon complications, all patients should be warned of these potential complications and operative consent should include these risks irrespective of the type of hernia or the surgical approach.

  17. Loss of Sirt3 Limits Bone Marrow Cell-Mediated Angiogenesis and Cardiac Repair in Post-Myocardial Infarction

    PubMed Central

    Zeng, Heng; Li, Lanfang; Chen, Jian-Xiong

    2014-01-01

    Sirtuin-3 (Sirt3) has a critical role in the regulation of human aging and reactive oxygen species (ROS) formation. A recent study has identified Sirt3 as an essential regulator of stem cell aging. This study investigated whether Sirt3 is necessary for bone marrow cell (BMC)-mediated cardiac repair in post-myocardial infarction (MI). In vitro, BMC-derived endothelial progenitor cells (EPCs) from wild type (WT) and Sirt3KO mice were cultured. EPC angiogenesis, ROS formation and apoptosis were assessed. In vivo, WT and Sirt3 KO mice were subjected to MI and BMCs from WT and Sirt3 KO mice were injected into ischemic area immediately. The expression of VEGF and VEGFR2 was reduced in Sirt3KO-EPCs. Angiogenic capacities and colony formation were significantly impaired in Sirt3KO-EPCs compared to WT-EPCs. Loss of Sirt3 further enhanced ROS formation and apoptosis in EPCs. Overexpression of Sirt3 or treatment with NADPH oxidase inhibitor apocynin (Apo, 200 and 400 microM) rescued these abnormalities. In post-MI mice, BMC treatment increased number of Sca1+/c-kit+ cells; enhanced VEGF expression and angiogenesis whereas Sirt3KO-BMC treatment had little effects. BMC treatment also attenuated NADPH oxidase subunits p47phox and gp91phox expression, and significantly reduced ROS formation, apoptosis, fibrosis and hypertrophy in post-MI mice. Sirt3KO-BMC treatment did not display these beneficial effects. In contrast, Sirt3KO mice treated with BMCs from WT mice attenuated myocardial apoptosis, fibrosis and improved cardiac function. Our data demonstrate that Sirt3 is essential for BMC therapy; and loss of Sirt3 limits BMC-mediated angiogenesis and cardiac repair in post-MI. PMID:25192254

  18. Surgical results and protocols in the spectrum of tetralogy of Fallot.

    PubMed Central

    Kirklin, J W; Blackstone, E H; Kirklin, J K; Pacifico, A D; Aramendi, J; Bargeron, L M

    1983-01-01

    Between 1967 and July 1982, 1103 operations were performed for the tetralogy of Fallot of all types with 116 (10.5%) hospital deaths. Eighty-eight hospital deaths (10.5%) occurred in the 836 patients undergoing repair. The incremental risk factors for hospital death after repair include pulmonary arterial problems (p = 0.0002), major associated cardiac anomalies (p less than 0.0001), small size (young age) (p less than 0.0001), and more than one previous operation (p = 0.0004). Absent pulmonary valve is a risk factor (p = 0.04). In patients with pulmonary stenosis, the hospital mortality has decreased with time (p = 0.08), but the incremental risk of a high hematocrit (p = 0.0003) and of transannular patching (p = 0.05) has persisted. In the current era, the risk of repair in patients with pulmonary stenosis is estimated to be 1.6% (70% confidence limits [CL] 0.7% to 3.5%) at age 5 years, and at age 12 months to be 4.1% (CL 2.7% to 6.3%) without a transannular patch and 7.7% (CL a5.3% to 11%) with one. When pulmonary atresia is present, the probability of hospital death after repair when a valved extracardiac conduit is used is estimated to be lowest (5%; CL 2% to 8%) between 5 1/2 and 16 years of age. No deaths occurred among 53 patients with pulmonary stenosis receiving a primary palliative Blalock-Taussig or Gore-Tex shunt, and six deaths (12%) occurred in 51 patients with pulmonary atresia. Serious interim complications (sudden death, brain abscess) after these shunts occurred in two (1.9%; CL 0.6% to 4.5%) of the patients operated on. No iatrogenic pulmonary arterial problems have been recognized. Protocols based on these results are presented. Many of these selective recommendations may become unnecessary if the damaging effects of cardiopulmonary bypass are overcome by future research. Images Fig. 2. Fig. 3. PMID:6615049

  19. Glaucoma aqueous drainage device erosion repair with buccal mucous membrane grafts.

    PubMed

    Rootman, Dan B; Trope, Graham E; Rootman, David S

    2009-01-01

    Glaucoma aqueous drainage devices are important and effective in the management of recalcitrant glaucoma. One complication of this procedure is erosion and exposure of the tube or plate. Strategies to re-cover glaucoma aqueous drainage devices in such cases have met with variable success. The majority of these interventions use conjunctiva for superficial coverage. However, conjunctiva can be in limited supply, and subject to reerosion. In this report, we discuss the use of oral buccal mucous membrane in combination with a lamellar corneal patch graft for repair of 3 exposed tubes, 2 plates, and a pars plana clip. Mean time to exposure was 4.8 years. Five eyes from 4 patients are presented and the surgical technique is described. Buccal membrane repairs were considered a surgical success in 5 out of 6 cases (83%) with mean follow-up of 1.5 years. We advocate the use of buccal membrane in the repair of glaucoma aqueous drainage device tube/plate erosions in patients for whom local conjunctiva is of variable quality or limited supply. Advantages of this procedure and tissue option are discussed.

  20. Iatrogenic Diversion of Inferior Vena Cava into Left Atrium after Surgery for a Rare Combination of Congenital Heart Diseases

    PubMed Central

    Sabzi, Feridoun

    2016-01-01

    Atrial septal defect (ASD) is a common congenital anomaly that has low surgical mortality and morbidity. We report a very rare case of a low-lying ASD, combined with the drainage of the inferior vena cava and the left superior vena cava into the left atrium. This combination was associated with an unroofed coronary sinus. We also describe an iatrogenic surgical diversion of the inferior vena cava into the left atrium with its complication. The patient presented with moderate cyanosis and was referred for elective ASD repair. He underwent surgical repair of the ASD after transthoracic echocardiography. Early postoperative right-to-left shunting with cyanosis and hypoxia was associated with abdominal complications. Surgical re-exploration revealed the diversion of the inferior vena cava into the left atrium, which was repaired with a pericardial patch. Peptic ulcer perforation was repaired after abdominal laparotomy. The patient had an uneventful recovery and was discharged home on the 17th postoperative day. One-year follow-up revealed no recurrence of cyanosis or residual ASD on echocardiography. PMID:27928261

  1. [Treatment of Fallot tetralogy with a transannular patch. Six years follow-up].

    PubMed

    Galicia-Tornell, Myriam; Reyes-López, Alfonso; Ruíz-González, Sergio; Bolio-Cerdán, Alejandro; González-Ojeda, Alejandro; Fuentes-Orozco, Clotilde

    2015-01-01

    Primary repair of Fallot tetralogy has been performed successfully for the last 45 years. It has low surgical mortality (< 5%), with excellent long-term results. However, there are delayed adverse effects: progressive right ventricular dilation and dysfunction, arrhythmia, and sudden death. In our centre, Fallot tetralogy is the most common form of cyanotic congenital heart disease (including transannular patch) and accounts for 7.5% of all cardiovascular surgical procedures. The mid-term follow-up results are reported. Case series. The study included patients who had complete repair of Fallot tetralogy with transannular patch from January 2000 to December 2009. An analysis was performed on the clinical variables, morbidity and mortality. There were 52 patients in the study, with mean age 4 ± 2 years. Perioperative mortality in 6 patients, with 5 associated with residual right ventricular obstruction and, 1 associated with further surgery. The survival rate was 88% (46) patients, with a follow-up 75 ± 26 months. Late morbidity occurred in 14, due to right ventricular dysfunction in 11, recurrent distal obstruction in 2, and residual ventricular septal defect in 1. Associated risk factors were severe pulmonary insufficiency (p=0.001); QRS > 160 ms, p=0.001); cardiothoracic > 0.60 index, (p=0.048), and tricuspid regurgitation (p=0.001). There was reasonable long-term survival and excellent quality of life after total correction of Fallot tetralogy; however, progressive right ventricular dysfunction requires continuous monitoring, as well as the choice of optimal timing of pulmonary valve replacement. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  2. Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium.

    PubMed

    Huang, Jing; Zhang, Zhiping; Guo, Jian; Ni, Aiguo; Deb, Arjun; Zhang, Lunan; Mirotsou, Maria; Pratt, Richard E; Dzau, Victor J

    2010-06-11

    Although mesenchymal stem cell (MSC) transplantation has been shown to promote cardiac repair in acute myocardial injury in vivo, its overall restorative capacity appears to be restricted mainly because of poor cell viability and low engraftment in the ischemic myocardium. Specific chemokines are upregulated in the infarcted myocardium. However the expression levels of the corresponding chemokine receptors (eg, CCR1, CXCR2) in MSCs are very low. We hypothesized that this discordance may account for the poor MSC engraftment and survival. To determine whether overexpression of CCR1 or CXCR2 chemokine receptors in MSCs augments their cell survival, migration and engraftment after injection in the infarcted myocardium. Overexpression of CCR1, but not CXCR2, dramatically increased chemokine-induced murine MSC migration and protected MSC from apoptosis in vitro. Moreover, when MSCs were injected intramyocardially one hour after coronary artery ligation, CCR1-MSCs accumulated in the infarcted myocardium at significantly higher levels than control-MSCs or CXCR2-MSCs 3 days postmyocardial infarction (MI). CCR1-MSC-injected hearts exhibited a significant reduction in infarct size, reduced cardiomyocytes apoptosis and increased capillary density in injured myocardium 3 days after MI. Furthermore, intramyocardial injection of CCR1-MSCs prevented cardiac remodeling and restored cardiac function 4 weeks after MI. Our results demonstrate the in vitro and in vivo salutary effects of genetic modification of stem cells. Specifically, overexpression of chemokine receptor enhances the migration, survival and engraftment of MSCs, and may provide a new therapeutic strategy for the injured myocardium.

  3. Therapeutic effect of a novel Wnt pathway inhibitor on cardiac regeneration after myocardial infarction.

    PubMed

    Yang, Dezhong; Fu, Wenbin; Li, Liangpeng; Xia, Xuewei; Liao, Qiao; Yue, Rongchuan; Chen, Hongmei; Chen, Xiongwen; An, Songzhu; Zeng, Chunyu; Wang, Wei Eric

    2017-12-15

    After myocardial infarction (MI), the heart is difficult to repair because of great loss of cardiomyoctyes and lack of cardiac regeneration. Novel drug candidates that aim at reducing pathological remodeling and stimulating cardiac regeneration are highly desirable. In the present study, we identified if and how a novel porcupine inhibitor CGX1321 influenced MI and cardiac regeneration. Permanent ligation of left anterior descending (LAD) coronary artery was performed in mice to induce MI injury. Cardiac function was measured by echocardiography, infarct size was examined by TTC staining. Fibrosis was evaluated with Masson's trichrome staining and vimentin staining. As a result, CGX1321 administration blocked the secretion of Wnt proteins, and inhibited both canonical and non-canonical Wnt signaling pathways. CGX1321 improved cardiac function, reduced myocardial infarct size, and fibrosis of post-MI hearts. CGX1321 significantly increased newly formed cardiomyocytes in infarct border zone of post-MI hearts, evidenced by the increased EdU + cardiomyocytes. Meanwhile, CGX1321 increased Ki67 + and phosphohistone H3 (PH3 + ) cardiomyocytes in culture, indicating enhanced cardiomyocyte proliferation. The mRNA microarray showed that CGX1321 up-regulated cell cycle regulating genes such as Ccnb1 and Ccne1 CGX1321 did not alter YAP protein phosphorylation and nuclear translocation in cardiomyocytes. In conclusion, porcupine inhibitor CGX1321 reduces MI injury by limiting fibrosis and promoting regeneration. It promotes cardiomyocyte proliferation by stimulating cell cycle regulating genes with a Hippo/YAP-independent pathway. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Development and characterization of novel electrically conductive PANI-PGS composites for cardiac tissue engineering applications.

    PubMed

    Qazi, Taimoor H; Rai, Ranjana; Dippold, Dirk; Roether, Judith E; Schubert, Dirk W; Rosellini, Elisabetta; Barbani, Niccoletta; Boccaccini, Aldo R

    2014-06-01

    Cardiovascular diseases, especially myocardial infarction, are the leading cause of morbidity and mortality in the world, also resulting in huge economic burdens on national economies. A cardiac patch strategy aims at regenerating an infarcted heart by providing healthy functional cells to the injured region via a carrier substrate, and providing mechanical support, thereby preventing deleterious ventricular remodeling. In the present work, polyaniline (PANI) was doped with camphorsulfonic acid and blended with poly(glycerol-sebacate) at ratios of 10, 20 and 30vol.% PANI content to produce electrically conductive composite cardiac patches via the solvent casting method. The composites were characterized in terms of their electrical, mechanical and physicochemical properties. The in vitro biodegradability of the composites was also evaluated. Electrical conductivity increased from 0Scm(-1) for pure PGS to 0.018Scm(-1) for 30vol.% PANI-PGS samples. Moreover, the conductivities were preserved for at least 100h post fabrication. Tensile tests revealed an improvement in the elastic modulus, tensile strength and elasticity with increasing PANI content. The degradation products caused a local drop in pH, which was higher in all composite samples compared with pure PGS, hinting at a buffering effect due to the presence of PANI. Finally, the cytocompatibility of the composites was confirmed when C2C12 cells attached and proliferated on samples with varying PANI content. Furthermore, leaching of acid dopants from the developed composites did not have any deleterious effect on the viability of C2C12 cells. Taken together, these results confirm the potential of PANI-PGS composites for use as substrates to modulate cellular behavior via electrical stimulation, and as biocompatible scaffolds for cardiac tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Optimal Surgical Management of Severe Ischemic Mitral Regurgitation: To Repair or to Replace?

    PubMed Central

    Perrault, Louis P.; Moskowitz, Alan J.; Kron, Irving L.; Acker, Michael A.; Miller, Marissa A.; Horvath, Keith A.; Thourani, Vinod H.; Argenziano, Michael; D'Alessandro, David A.; Blackstone, Eugene H.; Moy, Claudia S.; Mathew, Joseph P.; Hung, Judy; Gardner, Timothy J.; Parides, Michael K.

    2013-01-01

    Background Ischemic mitral regurgitation (MR), a complication of myocardial infarction and coronary artery disease more generally, is associated with a high mortality rate and estimated to affect 2.8 million Americans. With 1-year mortality rates as high as 40%, recent practice guidelines of professional societies recommend repair or replacement, but there remains a lack of conclusive evidence supporting either intervention. The choice between therapeutic options is characterized by the trade-off between reduced operative morbidity and mortality with repair versus a better long-term correction of mitral insufficiency with replacement. The long-term benefits of repair versus replacement remain unknown, which has led to significant variation in surgical practice. Methods and Results This paper describes the design of a prospective randomized clinical trial to evaluate the safety and effectiveness of mitral valve repair and replacement in patients with severe ischemic mitral regurgitation. This trial is being conducted as part of the Cardiothoracic (CT) Surgical Trials Network. This paper addresses challenges in selecting a feasible primary endpoint, characterizing the target population (including the degree of MR), and analytical challenges in this high mortality disease. Conclusions The paper concludes by discussing the importance of information on functional status, survival, neurocognition, quality of life and cardiac physiology in therapeutic decision-making. PMID:22054660

  6. Corrosion/Degradation Monitoring Technology for Composite Materials used to Extend Building Service Life

    DTIC Science & Technology

    2014-07-01

    for patching concrete structures that have corroded reinforcing steel , but the Army largely avoids structural composite repair applications because...J. Dunmire (OUSD(AT&L)), Bernie Rodriguez (IMPW-FM), and Valerie D. Hines (DAIM-ODF). The work was performed by the Engineering and Materials...buildings in the Army inventory often have se- verely corroded reinforcing steel that necessitates structural upgrades for conformance to current safety

  7. Mesenchymal Stem Cells in Cardiology

    PubMed Central

    White, Ian A.; Sanina, Cristina; Balkan, Wayne; Hare, Joshua M.

    2017-01-01

    Cardiovascular disease (CVD) accounts for more deaths globally than any other single disease. There are on average 1.5 million episodes of myocardial infarction (heart attack) each year in the United States alone with roughly one third resulting in death. There is therefore a major need for developing new and effective strategies to promote cardiac repair. Intramyocardial transplantation of mesenchymal stem cells (MSCs) has emerged as a leading contender in the pursuit of clinical intervention and therapy. MSCs are potent mediators of cardiac repair and are therefore an attractive tool in the development of pre-clinical and clinical trials. MSCs are capable of secreting a large array of soluble factors, which have had demonstrated effects on pathogenic cardiac remolding, fibrosis, immune activation and cardiac stem cell proliferation within the damaged heart. MSCs are also capable of differentiation into cardiomyocytes, endothelial cells and vascular smooth muscle cells, although the relative contribution of trilineage differentiation and paracrine effectors on cardiac repair remains the subject of active investigation. PMID:27236666

  8. Surgical repair and postoperative course of an infant with infracardiac total anomalous pulmonary venous connection, cor triatriatum sinistrum and transposition of the great arteries.

    PubMed

    Thies, W R; Matthies, W; Minami, K; Pott, U; Meyer, H; Körfer, R

    1990-01-01

    The combination of a d-transposition of the great arteries, cor triatriatum sinistrum and a total anomalous pulmonary venous connection of the infracardiac type is a very rare condition. Up to now, one surgical repair in an adolescent with transposed great arteries and total anomalous pulmonary venous drainage of the supracardiac type has been reported. In this paper, an infant with the above mentioned cardiovascular malformation is presented. The common pulmonary vein drained into the inferior vena cava and was obstructed. There were arborisation abnormalities in both lungs with mild pulmonary hypertension. The infant has been successfully operated upon at the age of 6 months and a weight of 4.5 kg. The membrane within the left atrium was resected, the common pulmonary vein was anastomosed to the left atrium and a Mustard procedure was performed. During the first 6 postoperative weeks, the infant had problems with adaptation. There was both a transient ballooning of the Mustard patch with significant obstruction of the pulmonary venous drainage and a delayed pulmonary recovery. Two months later, the patch was straightened and the child could be discharged from hospital. After 12 months, the child died from an infection of the airways.

  9. Management and outcomes of scoliosis in children with congenital diaphragmatic hernia.

    PubMed

    Antiel, Ryan M; Riley, John S; Cahill, Patrick J; Campbell, Robert M; Waqar, Lindsay; Herkert, Lisa M; Rintoul, Natalie E; Peranteau, William H; Flake, Alan W; Adzick, N Scott; Hedrick, Holly L

    2016-12-01

    The purpose of this study was to evaluate the management and outcomes of CDH patients with scoliosis. From January 1996 to August 2015, 26 of 380 (7%) CDH patients were diagnosed with scoliosis. Six (23%) were prenatally diagnosed by ultrasound, and 9 (35%) were diagnosed postnatally. The remaining 11 (42%) developed scoliosis after discharge. Mean follow-up was 6.6years. Among the 15 patients with congenital scoliosis, there were 2 (13%) perinatal deaths. Five of the 13 (38%) survivors required orthopedic surgery, and 2 have required bracing. The mean age at initial surgery was 7years. These five children underwent an average of 2.8 (range 1-7) expansions or revisions. All surgical patients required supplemental oxygen at 28days of life, and 1 required a tracheostomy. None of the 11 patients who developed scoliosis later in life required surgery, but 3 have required bracing. Six of the 11 (55%) required a patch repair for CDH compared to 158 of 264 (60%) CDH patients without scoliosis (p=0.73). Early diagnosis of scoliosis in CDH patients is associated with a high rate of surgery. There was not a higher incidence of patch repair among patients who developed scoliosis. Prognosis. Retrospective study, level II. Copyright © 2016. Published by Elsevier Inc.

  10. Salvage hypospadias repairs

    PubMed Central

    Sripathi, V.; Satheesh, M.; Shubha, K.

    2008-01-01

    Aim: Review of our experience and to develop an algorithm for salvage procedures in the management of hypospadias cripples and treatment of urethral strictures following hypospadias repair. Methods: This is a retrospective review of hypospadias surgeries over a 41-month period. Out of a total 168 surgeries, 20 were salvage/re-operative repairs. In three children a Duplay repair was feasible, while in four others a variety of single-stage repairs could be done. The repair was staged in seven children – buccal mucosal grafts (BMGs) in five, buccal mucosal tube in one, and skin graft in one. Five children with dense strictures were managed by dorsal BMG inlay grafting in one, vascularized tunical onlay grafting on the ventrum in one, and a free tunical patch in one. Three children were treated by internal urethrotomy and stenting for four weeks with a poor outcome. Results: The age of children ranged from 1.5–15 years (mean 4.5). Follow-up ranged from 3 months to 3.5 years. Excellent results were obtained in 10 children (50%) with a well-surfaced erect penis and a slit-like meatus. Glans closure could not be achieved and meatus was coronal in three. Two children developed fistulae following a Duplay repair and following a staged BMG. Three repairs failed completely – a composite repair broke down, a BMG tube stenosed with a proximal leak, and a stricture recurred with loss of a ventral free tunical graft. Conclusions: In salvage procedures performed on hypospadias cripples, a staged repair with buccal mucosa as an inlay in the first stage followed by tubularization 4–6 months later provides good results. A simple algorithm to plan corrective surgery in failed hypospadias cases and obtain satisfactory results is devised. PMID:20011495

  11. Salvage hypospadias repairs.

    PubMed

    Sripathi, V; Satheesh, M; Shubha, K

    2008-10-01

    Review of our experience and to develop an algorithm for salvage procedures in the management of hypospadias cripples and treatment of urethral strictures following hypospadias repair. This is a retrospective review of hypospadias surgeries over a 41-month period. Out of a total 168 surgeries, 20 were salvage/re-operative repairs. In three children a Duplay repair was feasible, while in four others a variety of single-stage repairs could be done. The repair was staged in seven children - buccal mucosal grafts (BMGs) in five, buccal mucosal tube in one, and skin graft in one. Five children with dense strictures were managed by dorsal BMG inlay grafting in one, vascularized tunical onlay grafting on the ventrum in one, and a free tunical patch in one. Three children were treated by internal urethrotomy and stenting for four weeks with a poor outcome. The age of children ranged from 1.5-15 years (mean 4.5). Follow-up ranged from 3 months to 3.5 years. Excellent results were obtained in 10 children (50%) with a well-surfaced erect penis and a slit-like meatus. Glans closure could not be achieved and meatus was coronal in three. Two children developed fistulae following a Duplay repair and following a staged BMG. Three repairs failed completely - a composite repair broke down, a BMG tube stenosed with a proximal leak, and a stricture recurred with loss of a ventral free tunical graft. In salvage procedures performed on hypospadias cripples, a staged repair with buccal mucosa as an inlay in the first stage followed by tubularization 4-6 months later provides good results. A simple algorithm to plan corrective surgery in failed hypospadias cases and obtain satisfactory results is devised.

  12. Safety and Efficacy of Single Incision Laparoscopic Surgery for Total Extraperitoneal Inguinal Hernia Repair

    PubMed Central

    2011-01-01

    Almost 20 years after the first laparoscopic inguinal hernia repair was performed, single incision laparoscopic surgery (SILS™) is set to revolutionize minimally invasive surgery. However, the loss of triangulation must be overcome before the technique can be popularized. This study reports the first 100 laparoscopic total extraperitoneal hernia repairs using a single incision. The study cohort comprised 68 patients with a mean age of 44 (range, 18 to 83): 36 unilateral and 32 bilateral hernias. Twelve patients also underwent umbilical hernia repair with the Ventralex patch requiring no additional incisions. A 2.5-cm to 3-cm crescentic incision within the confines of the umbilicus was performed. Standard dissecting instruments and 52-cm/5.5-mm/300 laparoscope were used. Operation times were 50 minutes for unilateral and 80 minutes for bilateral. There was one conversion to conventional 3-port laparoscopic repair and none to open surgery. Outpatient surgery was achieved in all (except one). Analgesic requirements were minimal: 8 Dextropropoxyphene tablets (range, 0 to 20). There were no intraoperative or postoperative complications with a high patient satisfaction score. Single-incision laparoscopic hernia repair is safe and efficient simply by modifying dissection techniques (so-called “inline” and “vertical”). Comparable success can be obtained while negating the risks of bowel and vascular injuries from sharp trocars and achieving improved cosmetic results. PMID:21902942

  13. Revealing New Mouse Epicardial Cell Markers through Transcriptomics

    PubMed Central

    Bochmann, Lars; Sarathchandra, Padmini; Mori, Federica; Lara-Pezzi, Enrique; Lazzaro, Domenico; Rosenthal, Nadia

    2010-01-01

    Background The epicardium has key functions during myocardial development, by contributing to the formation of coronary endothelial and smooth muscle cells, cardiac fibroblasts, and potentially cardiomyocytes. The epicardium plays a morphogenetic role by emitting signals to promote and maintain cardiomyocyte proliferation. In a regenerative context, the adult epicardium might comprise a progenitor cell population that can be induced to contribute to cardiac repair. Although some genes involved in epicardial function have been identified, a detailed molecular profile of epicardial gene expression has not been available. Methodology Using laser capture microscopy, we isolated the epicardial layer from the adult murine heart before or after cardiac infarction in wildtype mice and mice expressing a transgenic IGF-1 propeptide (mIGF-1) that enhances cardiac repair, and analyzed the transcription profile using DNA microarrays. Principal Findings Expression of epithelial genes such as basonuclin, dermokine, and glycoprotein M6A are highly enriched in the epicardial layer, which maintains expression of selected embryonic genes involved in epicardial development in mIGF-1 transgenic hearts. After myocardial infarct, a subset of differentially expressed genes are down-regulated in the epicardium representing an epicardium-specific signature that responds to injury. Conclusion This study presents the description of the murine epicardial transcriptome obtained from snap frozen tissues, providing essential information for further analysis of this important cardiac cell layer. PMID:20596535

  14. Chronic stress induced disruption of the peri-infarct neurovascular unit following experimentally induced photothrombotic stroke.

    PubMed

    Zhao, Zidan; Ong, Lin Kooi; Johnson, Sarah; Nilsson, Michael; Walker, Frederick R

    2017-12-01

    How stress influences brain repair is an issue of considerable importance, as patients recovering from stroke are known to experience high and often unremitting levels of stress post-event. In the current study, we investigated how chronic stress modified the key cellular components of the neurovascular unit. Using an experimental model of focal cortical ischemia in male C57BL/6 mice, we examined how exposure to a persistently aversive environment, induced by the application of chronic restraint stress, altered the cortical remodeling post-stroke. We focused on systematically investigating changes in the key components of the neurovascular unit (i.e. neurons, microglia, astrocytes, and blood vessels) within the peri-infarct territories using both immunohistochemistry and Western blotting. The results from our study indicated that exposure to chronic stress exerted a significant suppressive effect on each of the key cellular components involved in neurovascular remodeling. Co-incident with these cellular changes, we observed that chronic stress was associated with an exacerbation of motor impairment 42 days post-event. Collectively, these results highlight the vulnerability of the peri-infarct neurovascular unit to the negative effects of chronic stress.

  15. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs

    PubMed Central

    Wang, Bo; Patnaik, Sourav S.; Brazile, Bryn; Butler, J. Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2016-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications. PMID:27480586

  16. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs.

    PubMed

    Wang, Bo; Patnaik, Sourav S; Brazile, Bryn; Butler, J Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2015-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications.

  17. Point-of-care instrument for monitoring tissue health during skin graft repair

    NASA Astrophysics Data System (ADS)

    Gurjar, R. S.; Seetamraju, M.; Zhang, J.; Feinberg, S. E.; Wolf, D. E.

    2011-06-01

    We have developed the necessary theoretical framework and the basic instrumental design parameters to enable mapping of subsurface blood dynamics and tissue oxygenation for patients undergoing skin graft procedures. This analysis forms the basis for developing a simple patch geometry, which can be used to map by diffuse optical techniques blood flow velocity and tissue oxygenation as a function of depth in subsurface tissue.skin graft, diffuse correlation analysis, oxygen saturation.

  18. Corrosion Potential Monitoring for Polymer Composite Wrapping and Galvanic CP System for Reinforced Concrete Marine Piles

    DTIC Science & Technology

    2010-02-01

    deteriorated – Rebar corrosion – Spalling concrete Repair Options • Patching • Polymeric composite wraps • Pre-fabricated composite shell with CP Objective... Corrosion Potential Monitoring for Polymer Composite Wrapping and Galvanic CP System for Reinforced Concrete Marine Piles David Bailey, Richard...Command DoD Corrosion Problem • Piers and wharves – Critical facilities – $14.5M maintenance costs – Reinforced concrete piles • Aged and

  19. A Feasibility Study into the Active Smart Patch Concept for Composite Bonded Repairs

    DTIC Science & Technology

    2008-08-01

    electrical resistance foil gauges and PVDF (polyvinylidene) piezoelectric film to sense the local strain relaxation that occurs in re- sponse to failure of...structural components, like a wing skin, that are ‘thin’ in comparison to the wavelengths of low frequency ultrasound , and therefore act as efficient...region for the respective excitation frequency. The processed experimental data is compared to theoretical dispersion curves for both Lamb waves and

  20. Pediatric ocular injury secondary to a Burmese python bite.

    PubMed

    Behrens, Alice W; Jones, Maria H; Lowery, R Scott

    2018-03-22

    We report the case of a 6-year-old girl with a penetrating ocular injury caused by a Burmese python. She received intravenous cefazolin before presenting and was treated thereafter with daily topical antibiotics and atropine. Six weeks after injury, she underwent cataract extraction and sulcus implantation of an intraocular lens and iris synechiolysis, with postoperative patching. Final visual outcome was excellent despite no globe repair was performed. Published by Elsevier Inc.

  1. Aeronautical Research Laboratories Structures Division Annual Report 1979-80

    DTIC Science & Technology

    1981-04-01

    8217 :- LLWL 0 > D z cw iLU U Cn C 0 Jojoe ; ou!,sos SSJI 20 12.1.5 Fibre composite patch repair A report has been completea on the design of boron fibre...bl.R.Ae.S., M.I.L.Aust. S.R. Sarrailhe, C.Eng., M.I.Hech.E., M.I.h.Aust. Experimental Officer Class 2 R.P. Carey , B.Hech.E., M.I.E.Aust. R.G. Parker

  2. Neisseria elongata subsp elongata infective endocarditis following endurance exercise

    PubMed Central

    Jenkins, Joanne May; Fife, Amanda; Baghai, Max; Dworakowski, Rafal

    2015-01-01

    A 31-year-old Argentinian woman presented with a 3-week history of fever, night sweats, myalgia and lethargy following a work trip to Uganda where she ran a marathon. Malarial screens were negative but C reactive protein, erythrocyte sedimentation rate and neutrophil count were raised and she was anaemic. A new pansystolic murmur was heard over the mitral valve and the transthoracic echocardiogram showed a large vegetation (>1 cm) with at least moderate mitral regurgitation. Blood cultures grew Neisseria elongata, subsp elongata treated initially with ceftriaxone then oral ciprofloxacin to complete 4 weeks of treatment. CT scan revealed a wedge-shaped area of low attenuation in the spleen in keeping with a splenic infarct. Seven days postadmission, the patient underwent a successful mitral valve repair. Recovery was complicated by a likely embolic infarct in the right frontal lobe, but the patient was discharged 12 days postoperative with no neurological sequelae. PMID:26655669

  3. In utero repair of myelomeningocele: experimental pathophysiology, initial clinical experience, and outcomes.

    PubMed

    Farmer, Diana L; von Koch, Cornelia S; Peacock, Warwick J; Danielpour, Moise; Gupta, Nalin; Lee, Hanmin; Harrison, Michael R

    2003-08-01

    Experimental work raises the possibility that in utero repair of myelomeningocele (MMC) may improve lower extremity, bladder, and bowel function, ameliorate the Arnold-Chiari malformation, and decrease the need for postnatal shunting. We previously developed fetal lamb models to create and reverse lower extremity damage and the Arnold-Chiari malformation in utero. We then applied our extensive experience with fetal surgery, including fetal endoscopic (fetoscopic) surgical manipulation, to develop techniques for MMC repair. A tertiary referral center. All patients treated between 1998 and 2002 for a prenatally diagnosed MMC. Either fetoscopic MMC repair, fetoscopic patch repair, or limited maternal hysterotomy and microsurgical 3-layered fetal MMC repair was performed. Gestational age at delivery, survival, neurologic outcome, and need for ventricular shunting at 1 year. Complete fetoscopic repair was accomplished in 1 fetus. Two other fetuses underwent partial fetoscopic procedures. The remaining 10 patients underwent limited maternal hysterotomy and microsurgical 3-layered fetal MMC repair. Four of 13 patients died, and the mean gestational age at delivery of 11 fetuses born alive was 31 weeks. Five of 9 required ventricular shunting by age 1 year. In 2 patients, lower extremity function improved by more than 2 vertebral levels compared with prenatal ultrasonography. Five of 10 patients who lived longer than 3 weeks required postnatal wound revision within 7 days after birth. Fetoscopic repair, although feasible, does not yet yield optimal surgical results. Open surgical repair before 22 weeks' gestation is physiologically sound and technically feasible. One third of patients appear to be spared the need for a shunt at age 1 year, but improvement in distal neurologic function is less clear. Additionally, fetal mortality is associated with this procedure. Our results complement the data published by groups at Children's Hospital of Philadelphia, in Pennsylvania, and Vanderbilt University, Nashville, Tenn. A National Institutes of Health-sponsored prospective randomized trial is now underway at these 3 centers to compare fetal repair with postnatal repair.

  4. Cardio-supportive devices (VRD & DCC device) and patches for advanced heart failure: A review, summary of state of the art and future directions.

    PubMed

    Naveed, Muhammad; Han, Lei; Khan, Ghulam Jilany; Yasmeen, Sufia; Mikrani, Reyaj; Abbas, Muhammad; Cunyu, Li; Xiaohui, Zhou

    2018-06-01

    Congestive heart failure (CHF) is a complicated pathophysiological syndrome, leading cause of hospitalization as well as mortalities in developed countries wherein an irregular function of the heart leads to the insufficient blood supply to the body organs. It is an accumulative slackening of various complications including myocardial infarction (MI), coronary heart disease (CAD), hypertension, valvular heart disease (VHD) and cardiomyopathy; its hallmarks include hypertrophy, increased interstitial fibrosis and loss of myocytes. The etiology of CHF is very complex and despite the rapid advancement in pharmacological and device-based interventional therapies still, a single therapy may not be sufficient to meet the demand for coping with the diseases. Total artificial hearts (TAH) and ventricular assist devices (VADs) have been widely used clinically to assist patients with severe HF. Unfortunately, direct contact between the patient's blood and device leads to thromboembolic events, and then coagulatory factors, as well as, infection contribute significantly to complicate the situation. There is no effective treatment of HF except cardiac transplantation, however, genetic variations, tissue mismatch; differences in certain immune response and socioeconomic crisis are an important concern with cardiac transplantation suggesting an alternate bridge to transplant (BTT) or destination therapies (DT). For these reasons, researchers have turned to mechanically driven compression devices, ventricular restraint devices (VRD) and heart patches. The ASD is a combination of all operational patches and cardiac support devices (CSD) by delivering biological agents and can restrain or compress the heart. Present study summarizes the accessible peer-reviewed literature focusing on the mechanism of Direct Cardiac Compression (DCC) devices, VRD and patches and their acquaintance to optimize the therapeutic efficacy in a synergistic way. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair.

    PubMed

    Paul, Arghya; Hasan, Anwarul; Kindi, Hamood Al; Gaharwar, Akhilesh K; Rao, Vijayaraghava T S; Nikkhah, Mehdi; Shin, Su Ryon; Krafft, Dorothee; Dokmeci, Mehmet R; Shum-Tim, Dominique; Khademhosseini, Ali

    2014-08-26

    The objective of this study was to develop an injectable and biocompatible hydrogel which can efficiently deliver a nanocomplex of graphene oxide (GO) and vascular endothelial growth factor-165 (VEGF) pro-angiogenic gene for myocardial therapy. For the study, an efficient nonviral gene delivery system using polyethylenimine (PEI) functionalized GO nanosheets (fGO) complexed with DNAVEGF was formulated and incorporated in the low-modulus methacrylated gelatin (GelMA) hydrogel to promote controlled and localized gene therapy. It was hypothesized that the fGOVEGF/GelMA nanocomposite hydrogels can efficiently transfect myocardial tissues and induce favorable therapeutic effects without invoking cytotoxic effects. To evaluate this hypothesis, a rat model with acute myocardial infarction was used, and the therapeutic hydrogels were injected intramyocardially in the peri-infarct regions. The secreted VEGF from in vitro transfected cardiomyocytes demonstrated profound mitotic activities on endothelial cells. A significant increase in myocardial capillary density at the injected peri-infarct region and reduction in scar area were noted in the infarcted hearts with fGOVEGF/GelMA treatment compared to infarcted hearts treated with untreated sham, GelMA and DNAVEGF/GelMA groups. Furthermore, the fGOVEGF/GelMA group showed significantly higher (p < 0.05, n = 7) cardiac performance in echocardiography compared to other groups, 14 days postinjection. In addition, no significant differences were noticed between GO/GelMA and non-GO groups in the serum cytokine levels and quantitative PCR based inflammatory microRNA (miRNA) marker expressions at the injected sites. Collectively, the current findings suggest the feasibility of a combined hydrogel-based gene therapy system for ischemic heart diseases using nonviral hybrid complex of fGO and DNA.

  6. The cardiac regenerative potential of myoblasts remains limited despite improving their survival via antioxidant treatment.

    PubMed

    Beckman, Sarah A; Sekiya, Naosumi; Chen, William C W; Mlakar, Logan; Tobita, Kimimassa; Huard, Johnny

    2014-01-01

    Since myoblasts have been limited by poor cell survival after cellular myoplasty, the major goal of the current study was to determine whether improving myoblast survival with an antioxidant could improve cardiac function after the transplantation of the myoblasts into an acute myocardial infarction. We previously demonstrated that early myogenic progenitors such as muscle-derived stem cells (MDSCs) exhibited superior cell survival and improved cardiac repair after transplantation into infarcted hearts compared to myoblasts, which we partially attributed to MDSC's higher antioxidant levels. To determine if antioxidant treatment could increase myoblast survival, subsequently improving cardiac function after myoblast transplantation into infarcted hearts. Myoblasts were pre-treated with the antioxidant N-acetylcysteine (NAC) or the glutathione depleter, diethyl maleate (DEM), and injected into infarcted murine hearts. Regenerative potential was monitored by cell survival and cardiac function. At early time points, hearts injected with NAC-treated myoblasts exhibited increased donor cell survival, greater cell proliferation, and decreased cellular apoptosis, compared to untreated myoblasts. NAC-treated myoblasts significantly improved cardiac contractility, reduced fibrosis, and increased vascular density compared to DEM-treated myoblasts, but compared to untreated myoblasts, no difference was noted. While early survival of myoblasts transplanted into infarcted hearts was augmented by NAC pre-treatment, cardiac function remained unchanged compared to non-treated myoblasts. Despite improving cell survival with NAC treated myoblast transplantation in a MI heart, cardiac function remained similar to untreated myoblasts. These results suggest that the reduced cardiac regenerative potential of myoblasts, when compared to MDSCs, is not only attributable to cell survival but is probably also related to the secretion of paracrine factors by the MDSCs.

  7. The cardiac regenerative potential of myoblasts remains limited despite improving their survival via antioxidant treatment

    PubMed Central

    Beckman, Sarah A.; Sekiya, Naosumi; Chen, William C.W.; Mlakar, Logan; Tobita, Kimimassa; Huard, Johnny

    2017-01-01

    Introduction Since myoblasts have been limited by poor cell survival after cellular myoplasty, the major goal of the current study was to determine whether improving myoblast survival with an antioxidant could improve cardiac function after the transplantation of the myoblasts into an acute myocardial infarction. Background We previously demonstrated that early myogenic progenitors such as muscle-derived stem cells (MDSCs) exhibited superior cell survival and improved cardiac repair after transplantation into infarcted hearts compared to myoblasts, which we partially attributed to MDSC’s higher antioxidant levels. Aim To determine if antioxidant treatment could increase myoblast survival, subsequently improving cardiac function after myoblast transplantation into infarcted hearts. Materials and Methods Myoblasts were pre-treated with the antioxidant N-acetylcysteine (NAC) or the glutathione depleter, diethyl maleate (DEM), and injected into infarcted murine hearts. Regenerative potential was monitored by cell survival and cardiac function. Results At early time points, hearts injected with NAC-treated myoblasts exhibited increased donor cell survival, greater cell proliferation, and decreased cellular apoptosis, compared to untreated myoblasts. NAC-treated myoblasts significantly improved cardiac contractility, reduced fibrosis, and increased vascular density compared to DEM-treated myoblasts, but compared to untreated myoblasts, no difference was noted. Discussion While early survival of myoblasts transplanted into infarcted hearts was augmented by NAC pre-treatment, cardiac function remained unchanged compared to non-treated myoblasts. Conclusion Despite improving cell survival with NAC treated myoblast transplantation in a MI heart, cardiac function remained similar to untreated myoblasts. These results suggest that the reduced cardiac regenerative potential of myoblasts, when compared to MDSCs, is not only attributable to cell survival but is probably also related to the secretion of paracrine factors by the MDSCs. PMID:28989945

  8. The CD4(+) AT2R(+) T cell subpopulation improves post-infarction remodelling and restores cardiac function.

    PubMed

    Skorska, Anna; von Haehling, Stephan; Ludwig, Marion; Lux, Cornelia A; Gaebel, Ralf; Kleiner, Gabriela; Klopsch, Christian; Dong, Jun; Curato, Caterina; Altarche-Xifró, Wassim; Slavic, Svetlana; Unger, Thomas; Steinhoff, Gustav; Li, Jun; David, Robert

    2015-08-01

    Myocardial infarction (MI) is a major condition causing heart failure (HF). After MI, the renin angiotensin system (RAS) and its signalling octapeptide angiotensin II (Ang II) interferes with cardiac injury/repair via the AT1 and AT2 receptors (AT1R, AT2R). Our study aimed at deciphering the mechanisms underlying the link between RAS and cellular components of the immune response relying on a rodent model of HF as well as HF patients. Flow cytometric analyses showed an increase in the expression of CD4(+) AT2R(+) cells in the rat heart and spleen post-infarction, but a reduction in the peripheral blood. The latter was also observed in HF patients. The frequency of rat CD4(+) AT2R(+) T cells in circulating blood, post-infarcted heart and spleen represented 3.8 ± 0.4%, 23.2 ± 2.7% and 22.6 ± 2.6% of the CD4(+) cells. CD4(+) AT2R(+) T cells within blood CD4(+) T cells were reduced from 2.6 ± 0.2% in healthy controls to 1.7 ± 0.4% in patients. Moreover, we characterized CD4(+) AT2R(+) T cells which expressed regulatory FoxP3, secreted interleukin-10 and other inflammatory-related cytokines. Furthermore, intramyocardial injection of MI-induced splenic CD4(+) AT2R(+) T cells into recipient rats with MI led to reduced infarct size and improved cardiac performance. We defined CD4(+) AT2R(+) cells as a T cell subset improving heart function post-MI corresponding with reduced infarction size in a rat MI-model. Our results indicate CD4(+) AT2R(+) cells as a promising population for regenerative therapy, via myocardial transplantation, pharmacological AT2R activation or a combination thereof. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. The CD4+AT2R+ T cell subpopulation improves post-infarction remodelling and restores cardiac function

    PubMed Central

    Skorska, Anna; von Haehling, Stephan; Ludwig, Marion; Lux, Cornelia A; Gaebel, Ralf; Kleiner, Gabriela; Klopsch, Christian; Dong, Jun; Curato, Caterina; Altarche-Xifró, Wassim; Slavic, Svetlana; Unger, Thomas; Steinhoff, Gustav; Li, Jun; David, Robert

    2015-01-01

    Myocardial infarction (MI) is a major condition causing heart failure (HF). After MI, the renin angiotensin system (RAS) and its signalling octapeptide angiotensin II (Ang II) interferes with cardiac injury/repair via the AT1 and AT2 receptors (AT1R, AT2R). Our study aimed at deciphering the mechanisms underlying the link between RAS and cellular components of the immune response relying on a rodent model of HF as well as HF patients. Flow cytometric analyses showed an increase in the expression of CD4+ AT2R+ cells in the rat heart and spleen post-infarction, but a reduction in the peripheral blood. The latter was also observed in HF patients. The frequency of rat CD4+ AT2R+ T cells in circulating blood, post-infarcted heart and spleen represented 3.8 ± 0.4%, 23.2 ± 2.7% and 22.6 ± 2.6% of the CD4+ cells. CD4+ AT2R+ T cells within blood CD4+ T cells were reduced from 2.6 ± 0.2% in healthy controls to 1.7 ± 0.4% in patients. Moreover, we characterized CD4+ AT2R+ T cells which expressed regulatory FoxP3, secreted interleukin-10 and other inflammatory-related cytokines. Furthermore, intramyocardial injection of MI-induced splenic CD4+ AT2R+ T cells into recipient rats with MI led to reduced infarct size and improved cardiac performance. We defined CD4+ AT2R+ cells as a T cell subset improving heart function post-MI corresponding with reduced infarction size in a rat MI-model. Our results indicate CD4+ AT2R+ cells as a promising population for regenerative therapy, via myocardial transplantation, pharmacological AT2R activation or a combination thereof. PMID:25991381

  10. Stroke Repair via Biomimicry of the Subventricular Zone

    NASA Astrophysics Data System (ADS)

    Matta, Rita; Gonzalez, Anjelica L.

    2018-03-01

    Stroke is among the leading causes of death and disability worldwide, 85% of which are ischemic. Current stroke therapies are limited by a narrow effective therapeutic time and fail to effectively complete the recovery of the damaged area. Magnetic resonance imaging of the subventricular zone (SVZ) following infarct/stroke has allowed visualization of new axonal connections and projections being formed, while new immature neurons migrate from the SVZ to the peri-infarct area. Such studies suggest that the SVZ is a primary source of regenerative cells for the repair and regeneration of stroke-damaged neurons and tissue. Therefore, the development of tissue engineered scaffolds that serve as a bioreplicative SVZ niche would support the survival of multiple cell types that reside in the SVZ. Essential to replication of the human SVZ microenvironment is the establishment of microvasculature that regulates both the healthy and stroke-injured blood brain barrier, which is dysregulated post-stroke. In order to reproduce this niche, understanding how cells interact in this environment is critical, in particular neural stem cells, endothelial cells, pericytes, ependymal cells, and microglia. Remodeling and repair of the matrix-rich SVZ niche by endogenous reparative mechanisms may then support functional recovery when enhanced by an artificial niche that supports the survival and proliferation of migrating vascular and neuronal cells. Critical considerations to mimic this area include an understanding of resident cell types, delivery method, and the use of biocompatible materials. Controlling stem cell survival, differentiation, and migration are key factors to consider when transplanting stem cells. Here, we discuss the role of the SVZ architecture and resident cells in the promotion and enhancement of endogenous repair mechanisms. We elucidate the interplay between the extracellular matrix composition and cell interactions prior to and following stroke. Lastly, we review current cell and neuronal niche biomimetic materials that allow for a tissue- engineered approach in order to promote structural and functional restoration of neural circuitry. By creating an artificial mimetic SVZ, tissue engineers can strive to facilitate tissue regeneration and functional recovery.

  11. Opening of the inward rectifier potassium channel alleviates maladaptive tissue repair following myocardial infarction.

    PubMed

    Liu, Chengfang; Liu, Enli; Luo, Tiane; Zhang, Weifang; He, Rongli

    2016-08-01

    Activation of the inward rectifier potassium current (IK1) channel has been reported to be associated with suppression of ventricular arrhythmias. In this study, we tested the hypothesis that opening of the IK1 channel with zacopride (ZAC) was involved in the modulation of tissue repair after myocardial infarction. Sprague-Dawley rats were subject to coronary artery ligation and ZAC was administered intraperitoneally (15 µg/kg/day) for 28 days. Compared with the ischemia group, treatment with ZAC significantly reduced the ratio of heart/body weight and the cross-sectional area of cardiomyocytes, suggesting less cardiac hypertrophy. ZAC reduced the accumulation of collagen types I and III, accompanied with decrease of collagen area, which were associated with a reduction of collagen deposition in the fibrotic myocardium. Echocardiography showed improved cardiac function, evidenced by the reduced left ventricular end-diastolic dimension and left ventricular end-systolic dimension, and the increased ejection fraction and fractional shortening in ZAC-treated animals (all P < 0.05 vs. ischemia group). In coincidence with these changes, ZAC up-regulated the protein level of the IK1 channel and down-regulated the phosphorylation of mammalian target of rapamycin (mTOR) and 70-kDa ribosomal protein S6 (p70S6) kinase. Administration of chloroquine alone, an IK1 channel antagonist, had no effect on all the parameters measured, but significantly blocked the beneficial effects of ZAC on cardiac repair. In conclusion, opening of the IK1 channel with ZAC inhibits maladaptive tissue repair and improves cardiac function, potentially mediated by the inhibition of ischemia-activated mTOR-p70S6 signaling pathway via the IK1 channel. So the development of pharmacological agents specifically targeting the activation of the IK1 channel may protect the heart against myocardial ischemia-induced cardiac dysfunction. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Modified Eversion Carotid Endarterectomy (mECEA): Analysis of Clinical and Financial Outcomes.

    PubMed

    Musicant, Scott E; Guzzetta, Vincent J; Terramani, Thomas T; Greenwood, Kristina L; Chiodo, Wendy C; Heaney, Karen M; Berthiaume, Shelley J

    2017-07-01

    Several carotid endarterectomy techniques have been described, including conventional carotid endarterectomy (CCEA) performed with patch repair and eversion carotid endarterectomy (ECEA) performed with transection of the internal carotid artery. We describe our simplified technique of modified eversion carotid endarterectomy (mECEA) with longitudinal arteriotomy limited to the carotid bulb, without transection of the internal carotid artery and present our analysis of its safety, efficacy, and cost effectiveness. A retrospective review of all carotid endarterectomies performed by 3 vascular surgeons over a 3-year period was completed. About 197 mECEA were performed during the study period. Follow-up data were obtained on 77.7% of patients. A comparison was made with the contemporary literature with respect to outcomes for both CCEA and ECEA. Between January 2012 and December 2014, a total of 197 mECEA were performed. The perioperative stroke and death rates for those undergoing mECEA was 0.5% and 0.5%, respectively. Late stroke and death rates were 3.0% and 5.1%, respectively. Perioperative rate of myocardial infarction was 1.0%. Early restenosis rates of >70% occurred in 1.4%, whereas late restenosis of >70% occurred in 2.7%. Mean operating time for those undergoing mECEA was 57.9 min. Average costs savings for mECEA compared to CCEA were $5,835. This simplified technique has comparable outcomes to those described in the contemporary literature for both CCEA and ECEA with respect to postoperative neurologic events as well as restenosis rates. In our institution, the short mean operative times with mECEA has led to reduced resource utilization. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Coronary Serum Obtained After Myocardial Infarction Induces Angiogenesis and Microvascular Obstruction Repair. Role of Hypoxia-inducible Factor-1A.

    PubMed

    Ríos-Navarro, César; Hueso, Luisa; Miñana, Gema; Núñez, Julio; Ruiz-Saurí, Amparo; Sanz, María Jesús; Cànoves, Joaquin; Chorro, Francisco J; Piqueras, Laura; Bodí, Vicente

    2018-06-01

    Microvascular obstruction (MVO) exerts deleterious effects following acute myocardial infarction (AMI). We investigated coronary angiogenesis induced by coronary serum and the role of hypoxia-inducible factor-1A (HIF-1A) in MVO repair. Myocardial infarction was induced in swine by transitory 90-minute coronary occlusion. The pigs were divided into a control group and 4 AMI groups: no reperfusion, 1minute, 1 week and 1 month after reperfusion. Microvascular obstruction and microvessel density were quantified. The proangiogenic effect of coronary serum drawn from coronary sinus on endothelial cells was evaluated using an in vitro tubulogenesis assay. Circulating and myocardial HIF-1A levels and the effect of in vitro blockade of HIF-1A was assessed. Compared with control myocardium, microvessel density decreased at 90-minute ischemia, and MVO first occurred at 1minute after reperfusion. Both peaked at 1 week and almost completely resolved at 1 month. Coronary serum exerted a neoangiogenic effect on coronary endothelial cells in vitro, peaking at ischemia and 1minute postreperfusion (32 ± 4 and 41 ± 9 tubes vs control: 3 ± 3 tubes; P < .01). Hypoxia-inducible factor-1A increased in serum during ischemia (5-minute ischemia: 273 ± 52 pg/mL vs control: 148 ± 48 pg/mL; P < .01) being present on microvessels of all AMI groups (no reperfusion: 67% ± 5% vs control: 15% ± 17%; P < .01). In vitro blockade of HIF-1A reduced the angiogenic response induced by serum. Coronary serum represents a potent neoangiogenic stimulus even before reperfusion; HIF-1A might be crucial. Coronary neoangiogenesis induced by coronary serum can contribute to understanding the pathophysiology of AMI. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  14. Role of SDF‐1:CXCR4 in Impaired Post‐Myocardial Infarction Cardiac Repair in Diabetes

    PubMed Central

    Mayorga, Maritza E.; Kiedrowski, Matthew; McCallinhart, Patricia; Forudi, Farhad; Ockunzzi, Jeremiah; Weber, Kristal; Chilian, William; Penn, Marc S.

    2017-01-01

    Abstract Diabetes is a risk factor for worse outcomes following acute myocardial infarction (AMI). In this study, we tested the hypothesis that SDF‐1:CXCR4 expression is compromised in post‐AMI in diabetes, and that reversal of this defect can reverse the adverse effects of diabetes. Mesenchymal stem cells (MSC) isolated from green fluorescent protein (GFP) transgenic mice (control MSC) were induced to overexpress stromal cell‐derived factor‐1 (SDF‐1). SDF‐1 expression in control MSC and SDF‐1‐overexpressing MSC (SDF‐1:MSC) were quantified using enzyme‐linked immunosorbent assay (ELISA). AMI was induced on db/db and control mice. Mice were randomly selected to receive infusion of control MSC, SDF‐1:MSC, or saline into the border zone after AMI. Serial echocardiography was used to assess cardiac function. SDF‐1 and CXCR4 mRNA expression in the infarct zone of db/db mice and control mice were quantified. Compared to control mice, SDF‐1 levels were decreased 82%, 91%, and 45% at baseline, 1 day and 3 days post‐AMI in db/db mice, respectively. CXCR4 levels are increased 233% at baseline and 54% 5 days post‐AMI in db/db mice. Administration of control MSC led to a significant improvement in ejection fraction (EF) in control mice but not in db/db mice 21 days after AMI. In contrast, administration of SDF‐1:MSC produced a significant improvement in EF in both control mice and db/db mice 21 days after AMI. The SDF‐1:CXCR4 axis is compromised in diabetes, which appears to augment the deleterious consequences of AMI. Over‐express of SDF‐1 expression in diabetes rescues cardiac function post AMI. Our results suggest that modulation of SDF‐1 may improve post‐AMI cardiac repair in diabetes. stem cells translational medicine 2018;7:115–124 PMID:29119710

  15. In vivo laser assisted end-to-end anastomosis with ICG-infused chitosan patches

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Matteini, Paolo; Esposito, Giuseppe; Scerrati, Alba; Albanese, Alessio; Puca, Alfredo; Maira, Giulio; Rossi, Giacomo; Pini, Roberto

    2011-07-01

    Laser assisted vascular repair is a new optimized technique based on the use of ICG-infused chitosan patch to close a vessel wound, with or even without few supporting single stitches. We present an in vivo experimental study on an innovative end-to-end laser assisted vascular anastomotic (LAVA) technique, performed with the application of ICGinfused chitosan patches. The photostability and the mechanical properties of ICG-infused chitosan films were preliminary measured. The in vivo study was performed in 10 New Zealand rabbits. After anesthesia, a 3-cm segment of the right common carotid artery was exposed, thus clamped proximally and distally. The artery was then interrupted by means of a full thickness cut. Three single microsutures were used to approximate the two vessel edges. The ICG-infused chitosan patch was rolled all over the anastomotic site and welded by the use of a diode laser emitting at 810 nm and equipped with a 300 μm diameter optical fiber. Welding was obtained by delivering single laser spots to induce local patch/tissue adhesion. The result was an immediate closure of the anastomosis, with no bleeding at clamps release. Thus animals underwent different follow-up periods, in order to evaluate the welded vessels over time. At follow-up examinations, all the anastomoses were patent and no bleeding signs were documented. Samples of welded vessels underwent histological examinations. Results showed that this technique offer several advantages over conventional suturing methods: simplification of the surgical procedure, shortening of the operative time, better re-endothelization and optimal vascular healing process.

  16. Damage tolerance of bonded composite aircraft repairs for metallic structures

    NASA Astrophysics Data System (ADS)

    Clark, Randal John

    This thesis describes the development and validation of methods for damage tolerance substantiation of bonded composite repairs applied to cracked plates. This technology is used to repair metal aircraft structures, offering improvements in fatigue life, cost, manufacturability, and inspectability when compared to riveted repairs. The work focuses on the effects of plate thickness and bending on repair life, and covers fundamental aspects of fracture and fatigue of cracked plates and bonded joints. This project falls under the UBC Bonded Composite Repair Program, which has the goal of certification and widespread use of bonded repairs in civilian air transportation. This thesis analyses the plate thickness and transverse stress effects on fracture of repaired plates and the related problem of induced geometrically nonlinear bending in unbalanced (single-sided) repairs. The author begins by developing a classification scheme for assigning repair damage tolerance substantiation requirements based upon stress-based adhesive fracture/fatigue criteria and the residual strength of the original structure. The governing equations for bending of cracked plates are then reformulated and line-spring models are developed for linear and nonlinear coupled bending and extension of reinforced cracks. The line-spring models were used to correct the Wang and Rose energy method for the determination of the long-crack limit stress intensity, and to develop a new interpolation model for repaired cracks of arbitrary length. The analysis was validated using finite element models and data from mechanical tests performed on hybrid bonded joints and repair specimens that are representative of an in-service repair. This work will allow designers to evaluate the damage tolerance of the repaired plate, the adhesive, and the composite patch, which is an airworthiness requirement under FAR (Federal Aviation Regulations) 25.571. The thesis concludes by assessing the remaining barriers to certification of bonded repairs, discussing the results of the analysis, and making suggestions for future work. The developed techniques should also prove to be useful for the analysis of fibre-reinforced metal laminates and other layered structures. Some concepts are general and should be useful in the analysis of any plate with large in-plane stress gradients that lead to significant transverse stresses.

  17. NEIL3 Repairs Telomere Damage during S Phase to Secure Chromosome Segregation at Mitosis.

    PubMed

    Zhou, Jia; Chan, Jany; Lambelé, Marie; Yusufzai, Timur; Stumpff, Jason; Opresko, Patricia L; Thali, Markus; Wallace, Susan S

    2017-08-29

    Oxidative damage to telomere DNA compromises telomere integrity. We recently reported that the DNA glycosylase NEIL3 preferentially repairs oxidative lesions in telomere sequences in vitro. Here, we show that loss of NEIL3 causes anaphase DNA bridging because of telomere dysfunction. NEIL3 expression increases during S phase and reaches maximal levels in late S/G2. NEIL3 co-localizes with TRF2 and associates with telomeres during S phase, and this association increases upon oxidative stress. Mechanistic studies reveal that NEIL3 binds to single-stranded DNA via its intrinsically disordered C terminus in a telomere-sequence-independent manner. Moreover, NEIL3 is recruited to telomeres through its interaction with TRF1, and this interaction enhances the enzymatic activity of purified NEIL3. Finally, we show that NEIL3 interacts with AP Endonuclease 1 (APE1) and the long-patch base excision repair proteins PCNA and FEN1. Taken together, we propose that NEIL3 protects genome stability through targeted repair of oxidative damage in telomeres during S/G2 phase. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Possible Muscle Repair in the Human Cardiovascular System.

    PubMed

    Sommese, Linda; Zullo, Alberto; Schiano, Concetta; Mancini, Francesco P; Napoli, Claudio

    2017-04-01

    The regenerative potential of tissues and organs could promote survival, extended lifespan and healthy life in multicellular organisms. Niches of adult stemness are widely distributed and lead to the anatomical and functional regeneration of the damaged organ. Conversely, muscular regeneration in mammals, and humans in particular, is very limited and not a single piece of muscle can fully regrow after a severe injury. Therefore, muscle repair after myocardial infarction is still a chimera. Recently, it has been recognized that epigenetics could play a role in tissue regrowth since it guarantees the maintenance of cellular identity in differentiated cells and, therefore, the stability of organs and tissues. The removal of these locks can shift a specific cell identity back to the stem-like one. Given the gradual loss of tissue renewal potential in the course of evolution, in the last few years many different attempts to retrieve such potential by means of cell therapy approaches have been performed in experimental models. Here we review pathways and mechanisms involved in the in vivo repair of cardiovascular muscle tissues in humans. Moreover, we address the ongoing research on mammalian cardiac muscle repair based on adult stem cell transplantation and pro-regenerative factor delivery. This latter issue, involving genetic manipulations of adult cells, paves the way for developing possible therapeutic strategies in the field of cardiovascular muscle repair.

  19. Adult Bone Marrow Cell Therapy for Ischemic Heart Disease: Evidence and Insights from Randomized Controlled Trials

    PubMed Central

    Afzal, Muhammad R.; Samanta, Anweshan; Shah, Zubair I.; Jeevanantham, Vinodh; Abdel-Latif, Ahmed; Zuba-Surma, Ewa K.; Dawn, Buddhadeb

    2015-01-01

    Rationale Notwithstanding the uncertainties regarding the outcomes of BMC therapy for heart repair, further insights are critically needed to improve this promising approach. Objective To delineate the true impact of BMC therapy for cardiac repair and gain insights for future trials through systematic review and meta-analysis of data from eligible randomized controlled trials (RCTs). Methods and Results Database searches through August 2014 identified forty-eight eligible RCTs (enrolling 2602 patients). Weighted mean differences for changes in left ventricular (LV) ejection fraction (EF), infarct size, LV end-systolic volume (LVESV), and LV end-diastolic volume (LVEDV) were analyzed with random-effects meta-analysis. Compared with standard therapy, BMC transplantation improved LVEF (2.92%; 95% confidence interval [CI], 1.91 to 3.92; P<0.00001), reduced infarct size (−2.25%; 95% CI, −3.55 to −0.95; P=0.0007) and LVESV (−6.37 ml; 95% CI, −8.95 to −3.80; P<0.00001), and tended to reduce LVEDV (−2.26 ml; 95% CI, −4.59 to 0.07; P=0.06). Similar effects were noted when data were analyzed after excluding studies with discrepancies in outcomes reporting. The benefits also persisted when cardiac catheterization was performed in control patients as well. Although imaging modalities partly influenced the outcomes, LVEF improved in BMC-treated patients when assessed by MRI. Early (<48h) BMC injection after MI was more effective in reducing infarct size, while BMC injection between 3 and 10 days proved superior toward improving systolic function. A minimum of 50 million BMCs seemed to be necessary, with limited additional benefits seen with increasing cell numbers. BMC therapy was safe and improved clinical outcomes, including all-cause mortality, recurrent MI, ventricular arrhythmia, and cerebrovascular accident (CVA) during follow-up, albeit with differences between acute MI and chronic IHD subgroups. Conclusions Transplantation of adult BMCs improves LVEF, reduces infarct size and ameliorates remodeling in patients with IHD. These effects are upheld in analyses of studies employing MRI, and also after excluding studies with discrepant outcomes reporting. BMC transplantation may also reduce the incidence of death, recurrent MI, ventricular arrhythmia, and CVA during follow-up. PMID:26160853

  20. A new shape for an old function: lasting effect of a physiologic surgical restoration of the left ventricle

    PubMed Central

    Cirillo, Marco; Amaducci, Andrea; Villa, Emmanuel; Tomba, Margherita Dalla; Brunelli, Federico; Mhagna, Zen; Troise, Giovanni; Quaini, Eugenio

    2006-01-01

    Background Long-term morphofunctional outcome may vary widely in surgical anterior left ventricular wall restoration, suggesting variability in post-surgical remodeling similar to that observed following acute myocardial infarction. The aim of this pilot study was to demonstrate that surgical restoration obtained with a particular shape of endoventricular patch leads to steady morphofunctional ventricular improvement when geometry, volume and residual akinesia can be restored as normal as possible. Methods This study involved 12 consecutive patients with previous anterior myocardial infarction, dilated cardiomyopathy and no mitral procedures, who underwent left ventricular reconstruction and coronary revascularization between May 2002 and May 2003 using a small, narrow, oval patch aiming at a volume ≤ 45 mL/m2 with elliptical shape. Eleven geometric parameters were examined preoperatively and at least 3, 12 and 24 months after the operation by serial echocardiographic studies and evaluated by paired t test taking the time of surgery as a starting point for remodeling. Results All patients were in NYHA class 1 at follow-up. Patch geometry obtained a conical shape of the ventricle with new apex, physiologic rearrangement of functioning myocardial wall and small residual akinesia. Ventricular changes at the four time-points showed that all parameters improved significantly compared to preoperative values (end-diastolic volume = 184.2 ± 23.9 vs 139.9 ± 22.0, p = 0.001; vs 151.0 ± 33.8, p = 0.06; vs 144.9 ± 34.0, p = 0.38; end-systolic volume = 125.7 ± 20.6 vs 75.2 ± 14.1, p = 0.001; vs 82.1 ± 23.9, p = 0,18; vs 77.1 ± 19.4, p = 0.41) without further changes during follow-up except for wall motion score index (2.0 ± 0.2 to 1.7 ± 0.2, to 1.4 ± 0.2, to 1.3 ± 0.2) and percentage of akinesia (30.4 ± 7.5 to 29.3 ± 4.2, to 19.8 ± 11.6, to 14.5 ± 7.2) which slowly and significantly improved suggesting a positive post-surgery remodeling. Conclusion Ventricular reconstruction caring of physiological shape, volume, revascularization and residual akinesia obtained a steady geometry. Positive remodeling and equalization of geometrical outcome may persistently prevent long-term redilation. PMID:17083734

  1. Prospective Evaluation of 18F-Fluorodeoxyglucose Uptake in Postischemic Myocardium by Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging as a Prognostic Marker of Functional Outcome.

    PubMed

    Rischpler, Christoph; Dirschinger, Ralf J; Nekolla, Stephan G; Kossmann, Hans; Nicolosi, Stefania; Hanus, Franziska; van Marwick, Sandra; Kunze, Karl P; Meinicke, Alexander; Götze, Katharina; Kastrati, Adnan; Langwieser, Nicolas; Ibrahim, Tareq; Nahrendorf, Matthias; Schwaiger, Markus; Laugwitz, Karl-Ludwig

    2016-04-01

    The immune system orchestrates the repair of infarcted myocardium. Imaging of the cellular inflammatory response by (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography/magnetic resonance imaging in the heart has been demonstrated in preclinical and clinical studies. However, the clinical relevance of post-MI (18)F-FDG uptake in the heart has not been elucidated. The objective of this study was to explore the value of (18)F-FDG positron emission tomography/magnetic resonance imaging in patients after acute myocardial infarction as a biosignal for left ventricular functional outcome. We prospectively enrolled 49 patients with ST-segment-elevation myocardial infarction and performed (18)F-FDG positron emission tomography/magnetic resonance imaging 5 days after percutaneous coronary intervention and follow-up cardiac magnetic resonance imaging after 6 to 9 months. In a subset of patients, (99m)Tc-sestamibi single-photon emission computed tomography was performed with tracer injection before revascularization. Cellular innate immune response was analyzed at multiple time points. Segmental comparison of (18)F-FDG-uptake and late gadolinium enhancement showed substantial overlap (κ=0.66), whereas quantitative analysis demonstrated that (18)F-FDG extent exceeded late gadolinium enhancement extent (33.2±16.2% left ventricular myocardium versus 20.4±10.6% left ventricular myocardium, P<0.0001) and corresponded to the area at risk (r=0.87, P<0.0001). The peripheral blood count of CD14(high)/CD16(+) monocytes correlated with the infarction size and (18)F-FDG signal extent (r=0.53, P<0.002 and r=0.42, P<0.02, respectively). (18)F-FDG uptake in the infarcted myocardium was highest in areas with transmural scar, and the standardized uptake valuemean was associated with left ventricular functional outcome independent of infarct size (Δ ejection fraction: P<0.04, Δ end-diastolic volume: P<0.02, Δ end-systolic volume: P<0.005). In this study, the intensity of (18)F-FDG uptake in the myocardium after acute myocardial infarction correlated inversely with functional outcome at 6 months. Thus, (18)F-FDG uptake in infarcted myocardium may represent a novel biosignal of myocardial injury. © 2016 American Heart Association, Inc.

  2. Damage Tolerant Repair Techniques for Pressurized Aircraft Fuselages

    DTIC Science & Technology

    1994-06-06

    crack patching effectiveness, long cracks ( Erdogan ) 186 Vii Acknowledgments My three years of Ph.D. work would have been impossible without the...fatigue GST, GLARE 2 " " 20 20 static, no fatigue *Unidirectional SP500 carbon/epoxy tape . *Fatigue load did not initiate a crack. The saw cut was...assurnption It further implies zero crack opening under the pat(:r The Erdogan solutior (51 for two Coiinear Ctacks can be expressed as: %A F -. " (621 F

  3. Peripheral Nerve Repair and Prevention of Neuroma Formation

    DTIC Science & Technology

    2014-09-01

    Magee1), ADRB3, β arrestin, Patched 1 (Ptch1) and 2, desert hedgehog (Dhh), smoothen (Smo), Src kinase, and UCP1. (Months 6-36) c. We will also use the...antibody. Figure 9. Representative photomicrographs of desert hedgehog staining in perineurial fibroblasts. A.) C57/BL6 mouse nerve was isolated 3...days after BMP2 induction stained with desert hedgehog (red) and NF (green). P. perineurium; E. endoneurium. Note that the mouse nerve, unlike the

  4. Surgical management of anomalous pulmonary venous connection to the superior vena cava - early results

    PubMed Central

    Chandra, Dinesh; Gupta, Anubhav; Nath, Ranjit K.; kazmi, Aamir; Grover, Vijay; Gupta, Vijay K.

    2013-01-01

    Background The anatomical variability in patients with anomalous pulmonary venous connection to superior vena cava presents a surgical challenge. The problem is further compounded by the common occurrence of postoperative complications like arrhythmias and obstruction of the superior vena cava or pulmonary veins. We present our experience of managing this subset using the two patch and Warden's techniques. Patients and methods Between June 2011 and September 2012, 7 patients with APVC to the SVC were operated in our institute. After delineating the anatomy, five of them had a two patch repair and two were managed with Warden's technique. Results There was no in-hospital mortality or early mortality over a mean follow-up of 9.66 ± 3.88 months (range 6–15 months). All the patients on follow-up had unobstructed pulmonary venous and SVC drainage on echocardiography and all of them were in normal sinus rhythm. Conclusions Anomalous pulmonary venous connection to superior vena cava is a challenging subset of patients in whom the surgical management needs to be individualized. The detailed anatomy must be delineated using echocardiography with or without CT angiography before deciding the surgical plan. This entity can be repaired with excellent immediate and early results. However, these patients must be closely followed up for complications like systemic and pulmonary venous obstruction and sinus node dysfunction. PMID:24206880

  5. STS-121 Mission Patch

    NASA Image and Video Library

    2005-06-01

    STS121-S-001 (June 2005) --- The STS-121 patch depicts the space shuttle docked with the International Space Station (ISS) in the foreground, overlaying the astronaut symbol with three gold columns and a gold star. The ISS is shown in the configuration that it will be in during the STS-121 mission. The background shows the nighttime Earth with a dawn breaking over the horizon. STS-121, ISS mission ULF1.1, is the final Shuttle Return to Flight test mission. This utilization and logistics flight will bring a multipurpose logistics module (MPLM) to the ISS with several thousand pounds of new supplies and experiments. In addition, some new orbital replacement units (ORUs) will be delivered and stowed externally on ISS on a special pallet. These ORUs are spares for critical machinery located on the outside of the ISS. During this mission the crew will also carry out testing of shuttle inspection and repair hardware, as well as evaluate operational techniques and concepts for conducting on-orbit inspection and repair. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  6. Combined open and laparoscopic approach to chronic pain following open inguinal hernia repair.

    PubMed

    Rosen, M J; Novitsky, Y W; Cobb, W S; Kercher, K W; Heniford, B Todd

    2006-03-01

    Chronic groin pain is the most common long-term complication after open inguinal hernia repair. Traditional surgical management of the associated neuralgia consists of injection therapy followed by groin exploration, mesh removal, and nerve transection. The resultant hernia defect may be difficult to repair from an anterior approach. We evaluate the outcomes of a combined laparoscopic and open approach for the treatment of chronic groin pain following open inguinal herniorrhaphy. All patients who underwent groin exploration for chronic neuralgia after a prior open inguinal hernia repair were prospectively analyzed. Patient demographics, type of prior hernia repair, and prior nonoperative therapies were recorded. The operation consisted of a standard three trocar laparoscopic transabdominal preperitoneal hernia repair, followed by groin exploration, mesh removal, and nerve transection. Outcome measures included recurrent groin pain, numbness, hernia recurrence, and complications. Twelve patients (11 male and 1 female) with a mean age of 41 years (range 29-51) underwent combined laparoscopic and open treatment for chronic groin pain. Ten patients complained of unilateral neuralgia, one patient had bilateral complaints, and one patient complained of orchalgia. All patients failed at least two attempted percutaneous nerve blocks. Prior repairs included Lichtenstein (n=9), McVay (n=1), plug and patch (n=1), and Shouldice (n=1). There were no intraoperative complications or wound infections. With a minimum of 6 weeks follow up, all patients were significantly improved. One patient complained of intermittent minor discomfort that required no further therapy. Two patients had persistent numbness in the ilioinguinal nerve distribution but remained satisfied with the procedure. A combined laparoscopic and open approach for postherniorrhaphy groin pain results in good to excellent patient satisfaction with no perioperative morbidity. It may be the preferred technique for the definitive management of chronic neuralgia after prior open hernia repair.

  7. [Where does laparoscopy fit in the treatment of inguinal hernia in 2003?].

    PubMed

    Gainant, A

    2003-06-01

    Meta-analysis of randomized studies has clearly shown that prosthetic repair of inguinal hernias decreases the risk of hernia recurrence when compared with herniorraphy without prosthesis; but the optimal route for insertion of the prosthetic patch (laparoscopic versus open inguinal approach) remains in dispute. Meta-analysis of randomized studies comparing laparoscopic with open prosthetic hernia repair suggest that laparoscopy is associated with less post-operative pain (both early and late), a quicker recovery, and earlier return to work. Yet this is at the price of longer operative time and an incidence of rare but potentially severe complications. On the basis of these randomized studies, the ANAES in France and the NICE in England have put forth recommendations which accept the indication for laparoscopic repair in recurrent and bilateral hernias, if done by surgeons experienced in laparoscopic technique. For unilateral hernia in adults, laparoscopic repair has shown no proof of superiority over open prosthetic repair in terms of mortality, morbidity, or recurrence rate. The principal advantage of the laparoscopic approach seems to be improved patient comfort; its disadvantage is higher cost and technical difficulty with a prolonged learning curve. The excess costs of the laparoscopic approach may be compensated by an earlier return to work. At present, the laparoscopic repair of hernias finds its clinical niche in patients with bilateral or recurrent hernias or in patients with unilateral hernia who desire a minimal period of postoperative disability.

  8. Thymosin β4: multiple functions in protection, repair and regeneration of the mammalian heart.

    PubMed

    Bollini, Sveva; Riley, Paul R; Smart, Nicola

    2015-01-01

    Despite recent improvements in interventional medicine, cardiovascular disease still represents the major cause of morbidity worldwide, with myocardial infarction being the most common cardiac injury. This has sustained the development of several regenerative strategies based on the use of stem cells and tissue engineering approaches in order to achieve cardiac repair and regeneration by enhancing coronary neovascularization, modulating acute inflammation and supporting myocardial regeneration to provide new functional muscle. The actin monomer binding peptide, Thymosin β4 (Tβ4), has recently been described as a powerful regenerative agent with angiogenic, anti-inflammatory and cardioprotective effects on the heart and which specifically acts on its resident cardiac progenitor cells. In this review we will discuss the state of the art regarding the many roles of Tβ4 in preserving and regenerating the mammalian heart, with specific attention to its ability to activate the quiescent adult epicardium and specific subsets of epicardial progenitor cells for repair. The therapeutic potential of Tβ4 for the treatment of cardiac failure is herein evaluated alongside existing, emerging and prospective novel treatments.

  9. Synthetic and degradable patches: an emerging solution for rotator cuff repair

    PubMed Central

    Hakimi, Osnat; Mouthuy, Pierre-Alexis; Carr, Andrew

    2013-01-01

    The use of rotator cuff augmentation has increased dramatically over the last 10 years in response to the high rate of failure observed after non-augmented surgery. However, although augmentations have been shown to reduce shoulder pain, there is no consensus or clear guideline as to what is the safest or most efficacious material. Current augmentations, either available commercially or in development, can be classified into three categories: non-degradable structures, extra cellular matrix (ECM)-based patches and degradable synthetic scaffolds. Non-degradable structures have excellent mechanical properties, but can cause problems of infection and loss of integrity in the long-term. ECM-based patches usually demonstrate excellent biological properties in vitro, but studies have highlighted complications in vivo due to poor mechanical support and to infection or inflammation. Degradable synthetic scaffolds represent the new generation of implants. It is proposed that a combination of good mechanical properties, active promotion of biological healing, low infection risk and bio-absorption are the ideal characteristics of an augmentation material. Among the materials with these features, those processed by electrospinning have shown great promis. However, their clinical effectiveness has yet to be proven and well conducted clinical trials are urgently required. PMID:23837794

  10. The Role of Airborne Proteins in Atopic Dermatitis

    PubMed Central

    Hostetler, Sarah Grim; Kaffenberger, Benjamin; Hostetler, Todd

    2010-01-01

    Atopic dermatitis is a common, chronic skin condition. A subpopulation of patients may have cutaneous exposure to common airborne proteins exacerbating their disease through direct proteolytic activity, direct activation of proteinase-activated receptor-2 itch receptors, and immunoglobulin E binding. The most common airborne proteins significant in atopic dermatitis include house dust mites, cockroach, pet dander, and multiple pollens. The literature on atopy patch testing, skin-prick testing, and specific IgE is mixed, with greater support for the use of atopy patch test. Patients with airborne proteins contributing to their disease typically have lesions predominately on air-exposed skin surfaces including the face, neck, and arms; a history of exacerbations after exposure to airborne proteins; severe disease resistant to conventional therapies; and concurrent asthma. Treatment strategies include airborne protein avoidance, removal of airborne proteins from the skin, and barrier repair. Further research is needed to establish the benefit of allergen-specific immunotherapy. PMID:20725535

  11. "It is about how the net looks": a qualitative study of perceptions and practices related to mosquito net care and repair in two districts in eastern Uganda.

    PubMed

    Scandurra, Leah; Acosta, Angela; Koenker, Hannah; Kibuuka, Daniel Musoke; Harvey, Steven

    2014-12-17

    Prolonging net durability has important implications for reducing both malaria transmission and the frequency of net replacement. Protective behaviour, such as net care and repair, offers promise for improving net integrity and durability. Given the potential cost-savings and public health benefit associated with extending the useful life of long-lasting insecticidal nets (LLINs), prevention and mitigation of damage will become ever more critical to ensuring adequate net coverage at the population level. A qualitative assessment was conducted in two districts in central eastern Uganda in September 2013. Data on household net care and repair behaviour, attitudes and practices were collected from 30 respondents through in-depth interviews (IDIs), observations, photos, and video to gather an in-depth understanding of these behaviours. Net damage was common and the most cited causes were children and rodents. Responses revealed strong social norms about net cleanliness and aesthetics, and strong expectations that others should care for and repair their own nets. Respondents were receptive and able to repair nets, though longer-term repair methods, such as sewing and patching, were not as commonly reported or observed. Self-reported behaviour was not always consistent with observed or demonstrated behaviour, revealing potential misconceptions and the need for clear and consistent net care and repair messaging. Respondents considered both aesthetics and malaria protection important when deciding whether, when, and how to care for and repair nets. BCC should continue to emphasize the importance of maintaining net integrity for malaria prevention purposes as well as for maintaining aesthetic appeal. Additional research is needed, particularly surrounding washing, drying, daily storage routines, and gender roles in care and repair, in order to understand the complexity of these behaviours, and refine existing or develop new behaviour change communication (BCC) messages for net care and repair.

  12. Endovascular repair or open repair for ruptured abdominal aortic aneurysm: a Cochrane systematic review

    PubMed Central

    Badger, S A; Harkin, D W; Blair, P H; Ellis, P K; Kee, F; Forster, R

    2016-01-01

    Objectives Emergency endovascular aneurysm repair (eEVAR) may improve outcomes for patients with ruptured abdominal aortic aneurysm (RAAA). The study aim was to compare the outcomes for eEVAR with conventional open surgical repair for the treatment of RAAA. Setting A systematic review of relevant publications was performed. Randomised controlled trials (RCTs) comparing eEVAR with open surgical repair for RAAA were included. Participants 3 RCTs were included, with a total of 761 patients with RAAA. Interventions Meta-analysis was performed with fixed-effects models with ORs and 95% CIs for dichotomous data and mean differences with 95% CIs for continuous data. Primary and secondary outcome measures Primary outcome was short-term mortality. Secondary outcome measures included aneurysm-specific and general complication rates, quality of life and economic analysis. Results Overall risk of bias was low. There was no difference between the 2 interventions on 30-day (or in-hospital) mortality, OR 0.91 (95% CI 0.67 to 1.22; p=0.52). 30-day complications included myocardial infarction, stroke, composite cardiac complications, renal complications, severe bowel ischaemia, spinal cord ischaemia, reoperation, amputation and respiratory failure. Reporting was incomplete, and no robust conclusion was drawn. For complication outcomes that did include at least 2 studies in the meta-analysis, there was no clear evidence to support a difference between eEVAR and open repair. Longer term outcomes and cost per patient were evaluated in only a single study, thus precluding definite conclusions. Conclusions Outcomes between eEVAR and open repair, specifically 30-day mortality, are similar. However, further high-quality trials are required, as the paucity of data currently limits the conclusions. PMID:26873043

  13. Dexpanthenol enhances skin barrier repair and reduces inflammation after sodium lauryl sulphate-induced irritation.

    PubMed

    Proksch, E; Nissen, H P

    2002-12-01

    Dexpanthenol-containing creams have been widely used for treatment of lesions (superficial wounds) of the skin and mucous membranes. Dexpanthenol is converted in tissues to pantothenic acid, a component of coenzyme A. Coenzyme A catalyses early steps in the synthesis of fatty acids and sphingolipids which are of crucial importance for stratum corneum lipid bilayers and cell membrane integrity. In the present study, the effects were examined of a dexpanthenol-containing cream on skin barrier repair, stratum corneum hydration, skin roughness, and inflammation after sodium lauryl sulphate (SLS)-induced irritation. Irritation was induced by application of SLS in patch test chambers. The dexpanthenol-contaming cream or the vehicle were applied twice daily and barrier repair, hydration, roughness, and inflammation of the skin were determined by using biophysical methods. Significantly accelerated skin barrier repair was found in treatments with the dexpanthenol-containing cream (verum) compared with vehicle-treated (placebo) or untreated skin. Both verum and placebo showed an increase in stratum corneum hydration, but significantly more so with the dexpanthenol-containing cream. Both creams reduced skin roughness, but again the verum was superior. The dexpanthenol-containing cream significantly reduced skin redness as a sign of inflammation in contrast to the vehicle, which produced no effect. Treatment with a dexpanthenol-containing cream showed significantly enhanced skin barrier repair and stratum corneum hydration, while reducing skin roughness and inflammation.

  14. Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells' therapeutic efficacy for myocardial infarction.

    PubMed

    Han, Jin; Kim, Bokyoung; Shin, Jung-Youn; Ryu, Seungmi; Noh, Myungkyung; Woo, Jongsu; Park, Jin-Sil; Lee, Youjin; Lee, Nohyun; Hyeon, Taeghwan; Choi, Donghoon; Kim, Byung-Soo

    2015-03-24

    Electrophysiological phenotype development and paracrine action of mesenchymal stem cells (MSCs) are the critical factors that determine the therapeutic efficacy of MSCs for myocardial infarction (MI). In such respect, coculture of MSCs with cardiac cells has windowed a platform for cardiac priming of MSCs. Particularly, active gap junctional crosstalk of MSCs with cardiac cells in coculture has been known to play a major role in the MSC modification through coculture. Here, we report that iron oxide nanoparticles (IONPs) significantly augment the expression of connexin 43 (Cx43), a gap junction protein, of cardiomyoblasts (H9C2), which would be critical for gap junctional communication with MSCs in coculture for the generation of therapeutic potential-improved MSCs. MSCs cocultured with IONP-harboring H9C2 (cocultured MSCs: cMSCs) showed active cellular crosstalk with H9C2 and displayed significantly higher levels of electrophysiological cardiac biomarkers and a cardiac repair-favorable paracrine profile, both of which are responsible for MI repair. Accordingly, significantly improved animal survival and heart function were observed upon cMSC injection into rat MI models compared with the injection of unmodified MSCs. The present study highlights an application of IONPs in developing gap junctional crosstalk among the cells and generating cMSCs that exceeds the reparative potentials of conventional MSCs. On the basis of our finding, the potential application of IONPs can be extended in cell biology and stem cell-based therapies.

  15. Simulation of heart infarction by laser microbeams and induction of arrhythmias by optical tweezers

    NASA Astrophysics Data System (ADS)

    Perner, Birgit; Monajembashi, Shamci; Rapp, Alexander; Wollweber, Leo; Greulich, Karl Otto

    2004-10-01

    Laser microbeam and optical tweezers were used for micromanipulation of a heart tissue model consisting of embryonic chicken cardiomyocytes and bibroblasts. Using the laser microbeam a would was created, i.e. a sort of artificial heart infarction was generated. The first steps of wound repair were observed by live cell imaging. A complete filling of teh would primarily by migrating fibroblasts but not by cardiomyocytes was detected 18 hours after wounding. In another set of experiments erythrocyte mediated force application (EMFA) by optical tweezers was applied for optomechanical manipulatoin of cardiomyocytes and fibroblasts. Here we demonstrate induction of dramatic distrubances of calcium waves in a group of synchronously beating cardiomyocytes by an optomechanical input that results in cellular deformation. Surprisingly, it was found that putatively non-excitable fibroblasts respond to this mechanical stress with calcium oscillations. The results reported here indicate that the induction of artificial heart infarction can provide insights into healing processes after mycardial injury. EMFA is capable to examine effects of myocardial overload and to provide important information about processes triggered by mechanical stress on the level of single or very few cells. As a perspective, the preseneted techniques may be used to study the influence of drugs on wound healing and coordination of beating in the heart.

  16. New Variable Porosity Flow Diverter (VPOD) Stent Design for Treatment of Cerebrovascular Aneurysms

    PubMed Central

    Ionita, Ciprian; Baier, Robert; Rudin, Stephen

    2012-01-01

    Using flow diverting Stents for intracranial aneurysm repair has been an area of recent active research. While current commercial flow diverting stents rely on a dense mesh of braided coils for flow diversion, our group has been developing a method to selectively occlude the aneurysm neck, without endangering nearby perforator vessels. In this paper, we present a new method of fabricating the low porosity patch, a key element of such asymmetric vascular stents (AVS). PMID:22254507

  17. Finite Element and Analytical Analysis of Cracks in Thick Stiffened Plates Repaired with a Single Sided Composite Patch

    DTIC Science & Technology

    2014-06-01

    DC,Tech. Rep. CG-D-05–00, 2000. [16] S. Kou, Welding Metallurgy , 2nd edition, Hoboken: Wiley Interscience, 2003. [17] C. Poe, “Stress intensity...continuous aluminum superstructure welded to the deck. The shape of the superstructure created numerous stress concentration areas. Of the greatest concern...study as it will help provide a conservative estimate. In marine applications almost all stiffening members are attached by welding . Unlike a

  18. Induction and differentiation of human induced pluripotent stem cells into functional cardiomyocytes on a compartmented monolayer of gelatin nanofibers

    NASA Astrophysics Data System (ADS)

    Tang, Yadong; Liu, Li; Li, Junjun; Yu, Leqian; Wang, Li; Shi, Jian; Chen, Yong

    2016-07-01

    Extensive efforts have been devoted to develop new substrates for culture and differentiation of human induced pluripotent stem cells (hiPSCs) toward cardiac cell-based assays. A more exciting prospect is the construction of cardiac tissue for robust drug screening and cardiac tissue repairing. Here, we developed a patch method by electrospinning and crosslinking of monolayer gelatin nanofibers on a honeycomb frame made of poly(ethylene glycol) diacrylate (PEGDA). The monolayer of the nanofibrous structure can support cells with minimal exogenous contact and a maximal efficiency of cell-medium exchange whereas a single hiPSC colony can be uniformly formed in each of the honeycomb compartments. By modulating the treatment time of the ROCK inhibitor Y-27632, the shape of the hiPSC colony could be controlled from a flat layer to a hemisphere. Afterwards, the induction and differentiation of hiPSCs were achieved on the same patch, leading to a uniform cardiac layer with homogeneous contraction. This cardiac layer could then be used for extracellular recording with a commercial multi-electrode array, showing representative field potential waveforms of matured cardiac tissues with appropriate drug responses.Extensive efforts have been devoted to develop new substrates for culture and differentiation of human induced pluripotent stem cells (hiPSCs) toward cardiac cell-based assays. A more exciting prospect is the construction of cardiac tissue for robust drug screening and cardiac tissue repairing. Here, we developed a patch method by electrospinning and crosslinking of monolayer gelatin nanofibers on a honeycomb frame made of poly(ethylene glycol) diacrylate (PEGDA). The monolayer of the nanofibrous structure can support cells with minimal exogenous contact and a maximal efficiency of cell-medium exchange whereas a single hiPSC colony can be uniformly formed in each of the honeycomb compartments. By modulating the treatment time of the ROCK inhibitor Y-27632, the shape of the hiPSC colony could be controlled from a flat layer to a hemisphere. Afterwards, the induction and differentiation of hiPSCs were achieved on the same patch, leading to a uniform cardiac layer with homogeneous contraction. This cardiac layer could then be used for extracellular recording with a commercial multi-electrode array, showing representative field potential waveforms of matured cardiac tissues with appropriate drug responses. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr04545f

  19. Stroke Induces Nuclear Shuttling of Histone Deacetylase 4.

    PubMed

    Kassis, Haifa; Shehadah, Amjad; Chopp, Michael; Roberts, Cynthia; Zhang, Zheng Gang

    2015-07-01

    Histone deacetylases (HDACs) 4 and 5 are abundantly expressed in the brain and have been implicated in the regulation of neurodegeneration. Under physiological conditions, HDACs 4 and 5 are expressed in the cytoplasm of brain cells where they cannot directly access chromatin. In response to external stimuli, they can shuttle to the nucleus and regulate gene expression. However, the effect of stroke on nuclear shuttling of HDACs 4 and 5 remains unknown. Using a rat model of middle cerebral artery occlusion, we examined the subcellular localization of HDACs 4 and 5 in the peri-infarct cortex during brain repair after stroke. Stroke significantly increased nuclear HDAC4 immunoreactivity in neurons, but not in astrocytes or in oligodendrocytes, of the peri-infarct cortex at 2, 7, and 14 days after middle cerebral artery occlusion. Neurons with nuclear HDAC4 immunoreactivity distributed across all layers of the peri-infarct cortex and were Ctip2+ excitatory and parvalbumin+ inhibitory neurons. These neurons were not TUNEL or BrdU positive. Furthermore, nuclear HDAC4 immunoreactivity was positively and significantly correlated with increased dendritic, axonal, and myelin densities as determined by microtubule-associated protein 2, phosphorylated neurofilament heavy chain, and myelin basic protein, respectively. Unlike HDAC4, stroke did not alter nuclear localization of HDAC5. Our data show that stroke induces nuclear shuttling of HDAC4 in neurons in the peri-infarct cortex, and that increased nuclear HDAC4 is strongly associated with neuronal remodeling but not with neuronal cell death, suggesting a role for nuclear HDAC4 in promoting neuronal recovery after ischemic injury. © 2015 American Heart Association, Inc.

  20. Complete Versus culprit-Lesion only PRimary PCI Trial (CVLPRIT): a multicentre trial testing management strategies when multivessel disease is detected at the time of primary PCI: rationale and design.

    PubMed

    Kelly, Damian J; McCann, Gerald P; Blackman, Daniel; Curzen, Nicholas P; Dalby, Miles; Greenwood, John P; Fairbrother, Kathryn; Shipley, Lorraine; Kelion, Andrew; Heatherington, Simon; Khan, Jamal N; Nazir, Sheraz; Alahmar, Albert; Flather, Marcus; Swanton, Howard; Schofield, Peter; Gunning, Mark; Hall, Roger; Gershlick, Anthony H

    2013-02-22

    Primary percutaneous coronary intervention (PPCI) is the preferred strategy for acute ST-segment elevation myocardial infarction (STEMI), with evidence of improved clinical outcomes compared to fibrinolytic therapy. However, there is no consensus on how best to manage multivessel coronary disease detected at the time of PPCI, with little robust data on best management of angiographically significant stenoses detected in non-infarct-related (N-IRA) coronary arteries. CVLPRIT will determine the optimal management of N-IRA lesions detected during PPCI. CVLPRIT (Complete Versus culprit-Lesion only PRimary PCI Trial) is an open-label, prospective, randomised, multicentre trial. STEMI patients undergo verbal "assent" on presentation. Patients are included when angiographic MVD has been detected, and randomised to culprit (IRA)-only PCI (n=150) or in-patient complete multivessel PCI (n=150). Cumulative major adverse cardiac events (MACE) - all-cause mortality, recurrent MI, heart failure, need for revascularisation (PCI or CABG) will be recorded at 12 months. Secondary endpoints include safety endpoints of confirmed ischaemic stroke, intracranial haemorrhage, major non-intracranial bleeding, and repair of vascular complications. A cardiac magnetic resonance (CMR) substudy will provide mechanistic data on infarct size, myocardial salvage index and microvascular obstruction. A cost efficacy analysis will be undertaken. The management of multivessel coronary artery disease in the setting of PPCI for STEMI, including the timing of when to perform non-culprit-artery revascularisation if undertaken, remains unresolved. CVLPRIT will yield mechanistic insights into the myocardial consequence of N-IRA intervention undertaken during the peri-infarct period.

  1. Heart repair by reprogramming non-myocytes with cardiac transcription factors

    PubMed Central

    Song, Kunhua; Nam, Young-Jae; Luo, Xiang; Qi, Xiaoxia; Tan, Wei; Huang, Guo N.; Acharya, Asha; Smith, Christopher L.; Tallquist, Michelle D.; Neilson, Eric G.; Hill, Joseph A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2012-01-01

    The adult mammalian heart possesses little regenerative potential following injury. Fibrosis due to activation of cardiac fibroblasts impedes cardiac regeneration and contributes to loss of contractile function, pathological remodeling and susceptibility to arrhythmias. Cardiac fibroblasts account for a majority of cells in the heart and represent a potential cellular source for restoration of cardiac function following injury through phenotypic reprogramming to a myocardial cell fate. Here we show that four transcription factors, GATA4, Hand2, MEF2C and Tbx5 can cooperatively reprogram adult mouse tail-tip and cardiac fibroblasts into beating cardiac-like myocytes in vitro. Forced expression of these factors in dividing non-cardiomyocytes in mice reprograms these cells into functional cardiac-like myocytes, improves cardiac function and reduces adverse ventricular remodeling following myocardial infarction. Our results suggest a strategy for cardiac repair through reprogramming fibroblasts resident in the heart with cardiogenic transcription factors or other molecules. PMID:22660318

  2. Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase

    PubMed Central

    Endres, Matthias; Biniszkiewicz, Detlev; Sobol, Robert W.; Harms, Christoph; Ahmadi, Michael; Lipski, Andreas; Katchanov, Juri; Mergenthaler, Philipp; Dirnagl, Ulrich; Wilson, Samuel H.; Meisel, Andreas; Jaenisch, Rudolf

    2004-01-01

    Uracil-DNA glycosylase (UNG) is involved in base excision repair of aberrant uracil residues in nuclear and mitochondrial DNA. Ung knockout mice generated by gene targeting are viable, fertile, and phenotypically normal and have regular mutation rates. However, when exposed to a nitric oxide donor, Ung–/– fibroblasts show an increase in the uracil/cytosine ratio in the genome and augmented cell death. After combined oxygen-glucose deprivation, Ung–/– primary cortical neurons have increased vulnerability to cell death, which is associated with early mitochondrial dysfunction. In vivo, UNG expression and activity are low in brains of naive WT mice but increase significantly after reversible middle cerebral artery occlusion and reperfusion. Moreover, major increases in infarct size are observed in Ung–/– mice compared with littermate control mice. In conclusion, our results provide compelling evidence that UNG is of major importance for tissue repair after brain ischemia. PMID:15199406

  3. Evidence for a Role of FEN1 in Maintaining Mitochondrial DNA Integrity

    PubMed Central

    Kalifa, Lidza; Beutner, Gisela; Phadnis, Naina; Sheu, Shey-Shing; Sia, Elaine A.

    2009-01-01

    Although the nuclear processes responsible for genomic DNA replication and repair are well characterized, the pathways involved in mitochondrial DNA (mtDNA) replication and repair remain unclear. DNA repair has been identified as being particularly important within the mitochondrial compartment due to the organelle’s high propensity to accumulate oxidative DNA damage. It has been postulated that continual accumulation of mtDNA damage and subsequent mutagenesis may function in cellular aging. Mitochondrial base excision repair (mtBER) plays a major role in combating mtDNA oxidative damage; however, the proteins involved in mtBER have yet to be fully characterized. It has been established that during nuclear long-patch (LP) BER, FEN1 is responsible for cleavage of 5′ flap structures generated during DNA synthesis. Furthermore, removal of 5′ flaps has been observed in mitochondrial extracts of mammalian cell lines; yet, the mitochondrial localization of FEN1 has not been clearly demonstrated. In this study, we analyzed the effects of deleting the yeast FEN1 homolog, RAD27, on mtDNA stability in Saccharomyces cerevisiae. Our findings demonstrate that Rad27p/FEN1 is localized in the mitochondrial compartment of both yeast and mice and that Rad27p has a significant role in maintaining mtDNA integrity. PMID:19699691

  4. Mechanisms of atrial tachyarrhythmias associated with coronary artery occlusion in a chronic canine model.

    PubMed

    Nishida, Kunihiro; Qi, Xiao Yan; Wakili, Reza; Comtois, Philippe; Chartier, Denis; Harada, Masahide; Iwasaki, Yu-ki; Romeo, Philippe; Maguy, Ange; Dobrev, Dobromir; Michael, Georghia; Talajic, Mario; Nattel, Stanley

    2011-01-18

    Coronary artery disease predisposes to atrial fibrillation (AF), but the effects of chronic atrial ischemia/infarction on AF-related substrates are unknown. Regional right atrial myocardial infarction (MI) was created in 40 dogs by ligating an artery that supplies the right atrial free wall and not the ventricles; 35 sham dogs with the same artery isolated but not ligated were controls. Dogs were observed 8 days after MI and subjected to open-chest study, in vitro optical mapping, and/or cell isolation for patch-clamp and Ca(2+) imaging on day 8. Holter ECGs showed more spontaneous atrial ectopy in MI dogs (eg, 662±281 on day 7 versus 34±25 ectopic complexes per day at baseline; 52±21 versus 1±1 atrial tachycardia episodes per day). Triggered activity was increased in MI border zone cells, which had faster decay of caffeine-evoked Ca(2+) transients and enhanced (by ≈73%) Na(+)-Ca(2+) exchange current. Spontaneous Ca(2+) sparks (confocal microscopy) occurred under β-adrenergic stimulation in more MI dog cells (66±9%) than in control cells (29±4%; P<0.01). Burst pacing induced long-lasting AF in MI dogs (1146±259 versus 30±14 seconds in shams). Increased border zone conduction heterogeneity was confirmed by both bipolar electrode mapping in vivo and optical mapping. Optical mapping demonstrated stable border zone reentry in all 9 MI preparations but in none of 6 shams. Border zone tissue showed increased fibrous tissue content. Chronic atrial ischemia/infarction creates substrates for both spontaneous ectopy (Ca(2+)-release events, increased Na(+)-Ca(2+) exchange current) and sustained reentry (conduction abnormalities that anchor reentry). Thus, chronic atrial infarction in dogs promotes both AF triggers and the substrate for AF maintenance. These results provide novel insights into potential AF mechanisms in patients with coronary artery disease.

  5. In vitro study of electroactive tetraaniline-containing thermosensitive hydrogels for cardiac tissue engineering.

    PubMed

    Cui, Haitao; Liu, Yadong; Cheng, Yilong; Zhang, Zhe; Zhang, Peibiao; Chen, Xuesi; Wei, Yen

    2014-04-14

    Injectable hydrogels made of degradable biomaterials can function as both physical support and cell scaffold in preventing infarct expansion and promoting cardiac repair in myocardial infarction therapy. Here, we report in situ hydrogels consisting of thermosensitive PolyNIPAM-based copolymers and electroactive tetraaniline (TA). Studies showed that the addition of 2-methylene-1,3-dioxepane (MDO) provided the PolyNIPAM-based gel with biodegradability, and the introduction of tetraaniline endowed these copolymers with desirable electrical properties and antioxidant activities. The encapsulated H9c2 cells (rat cardiac myoblast) remained highly viable in the gel matrices. In vivo gel formation and histological analyses were performed in rats by subcutaneous injection and excellent biocompatibility was observed. Furthermore, the proliferation and intracellular calcium transients of H9c2 cells were also studied with (and without) electrical stimuli. Both in vitro and in vivo results demonstrated that electroactive hydrogel may be used as a promising injectable biomaterial for cardiac tissue engineering.

  6. Designing Acellular Injectable Biomaterial Therapeutics for Treating Myocardial Infarction and Peripheral Artery Disease

    PubMed Central

    Hernandez, Melissa J.; Christman, Karen L.

    2017-01-01

    Summary As the number of global deaths attributed to cardiovascular disease continues to rise, viable treatments for cardiovascular events such as myocardial infarction (MI) or conditions like peripheral artery disease (PAD) are critical. Recent studies investigating injectable biomaterials have shown promise in promoting tissue regeneration and functional improvement, and in some cases, incorporating other therapeutics further augments the beneficial effects of these biomaterials. In this review, we aim to emphasize the advantages of acellular injectable biomaterial-based therapies, specifically material-alone approaches or delivery of acellular biologics, in regards to manufacturability and the capacity of these biomaterials to regenerate or repair diseased tissue. We will focus on design parameters and mechanisms that maximize therapeutic efficacy, particularly, improved functional perfusion and neovascularization regarding PAD and improved cardiac function and reduced negative left ventricular (LV) remodeling post-MI. We will then discuss the rationale and challenges of designing new injectable biomaterial-based therapies for the clinic. PMID:29057375

  7. Aortic valve insufficiency in the teenager and young adult: the role of prosthetic valve replacement.

    PubMed

    Bradley, Scott M

    2013-10-01

    The contents of this article were presented in the session "Aortic insufficiency in the teenager" at the congenital parallel symposium of the 2013 Society of Thoracic Surgeons (STS) annual meeting. The accompanying articles detail the approaches of aortic valve repair and the Ross procedure.(1,2) The current article focuses on prosthetic valve replacement. For many young patients requiring aortic valve surgery, either aortic valve repair or a Ross procedure provides a good option. The advantages include avoidance of anticoagulation and potential for growth. In other patients, a prosthetic valve is an appropriate alternative. This article discusses the current state of knowledge regarding mechanical and bioprosthetic valve prostheses and their specific advantages relative to valve repair or a Ross procedure. In current practice, young patients requiring aortic valve surgery frequently undergo valve replacement with a prosthetic valve. In STS adult cardiac database, among patients ≤30 years of age undergoing aortic valve surgery, 34% had placement of a mechanical valve, 51% had placement of a bioprosthetic valve, 9% had aortic valve repair, and 2% had a Ross procedure. In the STS congenital database, among patients 12 to 30 years of age undergoing aortic valve surgery, 21% had placement of a mechanical valve, 18% had placement of a bioprosthetic valve, 30% had aortic valve repair, and 24% had a Ross procedure. In the future, the balance among these options may be altered by design improvements in prosthetic valves, alternatives to warfarin, the development of new patch materials for valve repair, and techniques to avoid Ross autograft failure.

  8. Early primary repair of tetralogy of fallot in neonates and infants less than four months of age.

    PubMed

    Tamesberger, Melanie I; Lechner, Evelyn; Mair, Rudolf; Hofer, Anna; Sames-Dolzer, Eva; Tulzer, Gerald

    2008-12-01

    The ideal age for correction of tetralogy of Fallot is still under discussion. The aim of this study was to analyze morbidity and mortality in patients who underwent early primary repair of tetralogy of Fallot at the age of less than 4 months and to assess whether neonates, who needed early repair within the first 4 weeks of life, faced an increased risk. From 1995 to 2006, 90 consecutive patients with tetralogy of Fallot and pulmonary stenosis underwent early primary repair. Patient charts were analyzed retrospectively for two groups: group A, 25 neonates younger than 28 days who needed early operation owing to duct-dependent pulmonary circulation or severe hypoxemia; and group B, 65 infants younger than 4 months of age who underwent elective early repair. There was no 30-day mortality; late mortality was 2% after a median follow-up time of 4.7 years. Seven of 88 patients (8%) needed reoperation and twelve of 88 patients (14%) needed reintervention. Groups A and B did not differ significantly in terms of intensive care unit stay, days of mechanical ventilation, overall hospital stay, major or minor complications, or reoperation. Significant differences were found in a more frequent use of a transannular patch (p = 0.045) and more reinterventions (p = 0.046) in group A. Early primary repair of tetralogy of Fallot can be performed safely and effectively in infants younger than 4 months of age and even in neonates younger than 28 days with duct-dependent pulmonary circulation or severe hypoxemia.

  9. Reduced repair capacity of a DNA clustered damage site comprised of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 2-deoxyribonolactone results in an increased mutagenic potential of these lesions

    DOE PAGES

    Cunniffe, Siobhan; O’Neill, Peter; Greenberg, Marc M.; ...

    2014-04-01

    A signature of ionizing radiation is the induction of DNA clustered damaged sites. Non-double strand break (DSB) clustered damage has been shown to compromise the base excision repair pathway, extending the lifetimes of the lesions within the cluster, compared to isolated lesions. This increases the likelihood the lesions persist to replication and thus increasing the mutagenic potential of the lesions within the cluster. Lesions formed by ionizing radiation include 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 2-deoxyribonolactone (dL). dL poses an additional challenge to the cell as it is not repaired by the short-patch base excision repair pathway. Here we show recalcitrant dL repairmore » is reflected in mutations observed when DNA containing it and a proximal 8-oxodGuo is replicated in Escherichia coli. 8-oxodGuo in close proximity to dL on the opposing DNA strand results in an enhanced frequency of mutation of the lesions within the cluster and a 20 base sequence flanking the clustered damage site in an E. coli based plasmid assay. In vitro repair of a dL lesion is reduced when compared to the repair of an abasic (AP) site and a tetrahydrofuran (THF), and this is due mainly to a reduction in the activity of polymerase β, leading to retarded FEN1 and ligase 1 activities. This study has given insights in to the biological effects of clusters containing dL.« less

  10. Comparison of open and endovascular repair of inflammatory aortic aneurysms.

    PubMed

    Stone, William M; Fankhauser, Grant T; Bower, Thomas C; Oderich, Gustavo S; Oldenburg, W Andrew; Kalra, Manju; Naidu, Sailendra; Money, Samuel R

    2012-10-01

    Inflammatory abdominal aortic aneurysms (IAAAs) have been traditionally managed with open repair. Endovascular aneurysm repair (EVAR) was approved September of 1999. Some authors have suggested that EVAR is not an acceptable option for management of an IAAA. However, several recent reports have suggested EVAR is a reasonable management option in these patients. The purpose of our study was to review our experience with the contemporary management of IAAA involving both open and endovascular approaches. A retrospective review of all patients undergoing repair of IAAAs from 1999 to 2011 was conducted at three geographically separate institutions. Basic demographics, diagnostic workup, treatment, and outcomes were reviewed. Between 1999 and 2011, 69 patients underwent surgical repair of IAAAs, 59 by open repair and 10 by EVAR. Eighty-three percent of patients were men with a mean age of 67. Aneurysm size was similar in both groups (6.3 cm open repair vs 5.9 cm EVAR). Follow-up for the open group was a mean of 42.6 months and 33.6 months for the EVAR group. Periaortic fibrosis decreased from a mean of 5.4 mm to 2.7 mm after EVAR. Hydronephrosis was present preoperatively in one patient and did not change after EVAR. Aneurysm size decreased in seven patients (70%) who underwent EVAR. Two patients had no change with one lost to follow-up. Mean aneurysm size decrease after EVAR was 1.12 cm (17.8%). There were no aneurysm-related deaths or major morbidities in the EVAR group. Twenty-two patients (37%) in the open surgical group suffered major complications, including myocardial infarction, renal failure, lower extremity amputation, sepsis, and prolonged ventilation. Endovascular repair for IAAA results in successful management with improvement of periaortic inflammation. EVAR should be considered as first-line therapy in which anatomic parameters are favorable. Copyright © 2012 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  11. Percutaneous fetoscopic closure of large open spina bifida using a bilaminar skin substitute.

    PubMed

    Lapa Pedreira, Denise A; Acacio, Gregório L; Gonçalves, Rodrigo T; Sá, Renato Augusto M; Brandt, Reynaldo A; Chmait, Ramen; Kontopoulos, Eftichia; Quintero, Ruben A

    2018-01-04

    We have previously described our percutaneous fetoscopic technique for the treatment of open spina bifida (OSB). However, approximately 20-30% of OSB defects are too large to allow primary skin closure. We hereby describe a modification of our standard technique using a bilaminar skin substitute to allow closure of such large spinal defects. The aim of this study was to report our clinical experience with the use of a bilaminar skin substitute and a percutaneous fetoscopic technique for the prenatal closure of large spina bifida defects. Surgeries were performed between 24.0 and 28.9 gestational weeks under general anesthesia, using an entirely percutaneous fetoscopic approach with partial CO2 insufflation of the uterine cavity, as previously described. If there was enough skin to be sutured in the midline, only a biocellulose patch was placed over the placode. In cases where skin approximation was not possible, a bilaminar skin substitute (two layers: one silicone and one dermal matrix) was placed over the biocellulose. The surgical site was assessed at birth, and long-term follow-up was performed. Forty-seven consecutive fetuses underwent percutaneous fetoscopic OSB repair. Premature preterm rupture of membranes (PPROM) occurred in 38 (84%), and the mean gestational age at delivery was 32,8 + 2.5 weeks. A bilaminar skin substitute was required in 13 (29%), of which 5 was associated with myeloschisis. In all cases the skin substitute was found at the surgical site, at birth. In 3 (15%) of these cases, postnatal additional repair was needed. In the other 10 cases, the silicone layer detached spontaneously from the dermal matrix (average 25 days after birth), and the lesion healed by secondary-intention. Operating time was significantly longer in cases requiring the bilaminar skin substitute (additional 42 minutes). The subgroup with bilaminar skin substitute had similar PPROM rate and delivery gestational age compared to the one patch group. Complete reversal of hindbrain herniation occurred in 68% of the one patch and in 33% (p < 0.05) of the two patches group. In 4 cases there was no reversal and 3 of them were myeloschisis cases. Large OSB defects may be successfully treated in utero using a bilaminar skin substitute over a biocellulose patch through an entirely percutaneous approach. Although the operating time is longer, surgical outcomes are similar to cases closed primarily. Myeloschisis seems to have a worse prognosis then myelomeningocele cases. PPROM and preterm birth continue to be a challenge. Further experience is needed to assess the risks and benefits of this technique for management of large OSB defects. This article is protected by copyright. All rights reserved.

  12. PROSPECTIVE EVALUATION OF 18F-FDG UPTAKE IN POST-ISCHEMIC MYOCARDIUM BY SIMULTANEOUS PET/MRI AS A PROGNOSTIC MARKER OF FUNCTIONAL OUTCOME

    PubMed Central

    Rischpler, Christoph; Dirschinger, Ralf J.; Nekolla, Stephan G.; Kossmann, Hans; Nicolosi, Stefania; Hanus, Franziska; van Marwick, Sandra; Kunze, Karl P.; Meinicke, Alexander; Götze, Katharina; Kastrati, Adnan; Langwieser, Nicolas; Ibrahim, Tareq; Nahrendorf, Matthias; Schwaiger, Markus; Laugwitz, Karl-Ludwig

    2016-01-01

    Background The immune system orchestrates the repair of infarcted myocardium. Imaging of the cellular inflammatory response by 18F-FDG PET/MRI in the heart has been demonstrated in preclinical and clinical studies. However, the clinical relevance of post-MI 18F-FDG uptake in the heart has not been elucidated. The objective of this study was to explore the value of 18F-FDG-PET/MRI in patients after AMI as a biosignal for left ventricular functional outcome. Methods and Results We prospectively enrolled 49 patients with STEMI and performed 18F-FDG-PET/MRI 5 days after PCI and follow-up cardiac MRI after 6–9 months. In a subset of patients, 99mTc-sestamibi-SPECT was performed with tracer injection prior to revascularization. Cellular innate immune response was analyzed at multiple time points. Segmental comparison of 18F-FDG-uptake and LGE showed substantial overlap (κ=0.66), while quantitative analysis demonstrated that 18F-FDG extent exceeded LGE extent (33.2±16.2 %LV vs. 20.4±10.6 %LV, p<0.0001) and corresponded to the area-at-risk (r=0.87, p<0.0001). The peripheral blood count of CD14high/CD16+ monocytes correlated with the infarction size and 18F-FDG signal extent (r=0.53, p<0.002 and r=0.42, p<0.02, respectively). 18F-FDG uptake in the infarcted myocardium was highest in areas with transmural scar and the SUVmean was associated with left ventricular functional outcome independent of infarct size (ΔEF: p<0.04, ΔEDV: p<0.02, ΔESV: p<0.005). Conclusions In the current study, the intensity of 18F-FDG uptake in the myocardium after AMI correlated inversely with functional outcome at 6 months. Thus, 18F-FDG uptake in infarcted myocardium may represent a novel biosignal of myocardial injury. PMID:27056601

  13. Cardiomyocyte A Disintegrin And Metalloproteinase 17 (ADAM17) Is Essential in Post-Myocardial Infarction Repair by Regulating Angiogenesis.

    PubMed

    Fan, Dong; Takawale, Abhijit; Shen, Mengcheng; Wang, Wang; Wang, Xiuhua; Basu, Ratnadeep; Oudit, Gavin Y; Kassiri, Zamaneh

    2015-09-01

    A disintegrin and metalloproteinase 17 (ADAM17) is a membrane-bound enzyme that mediates shedding of many membrane-bound molecules, thereby regulating multiple cellular responses. We investigated the role of cardiomyocyte ADAM17 in myocardial infarction (MI). Cardiomyocyte-specific ADAM17 knockdown mice (ADAM17(flox/flox)/α-MHC-Cre; f/f/Cre) and parallel controls (ADAM17(flox/flox); f/f) were subjected to MI by ligation of the left anterior descending artery. Post MI, f/f/Cre mice showed compromised survival, higher rates of cardiac rupture, more severe left ventricular dilation, and suppressed ejection fraction compared with parallel f/f-MI mice. Ex vivo ischemic injury (isolated hearts) resulted in comparable recovery in both genotypes. Myocardial vascular density (fluorescent-labeled lectin perfusion and CD31 immunofluorescence staining) was significantly lower in the infarct areas of f/f/Cre-MI compared with f/f-MI mice. Activation of vascular endothelial growth factor receptor 2 (VEGFR2), its mRNA, and total protein levels were reduced in infarcted myocardium in ADAM17 knockdown mice. Transcriptional regulation of VEGFR2 by ADAM17 was confirmed in cocultured cardiomyocyte-fibroblast as ischemia-induced VEGFR2 expression was blocked by ADAM17-siRNA. Meanwhile, ADAM17-siRNA did not alter VEGFA bioavailability in the conditioned media. ADAM17 knockdown mice (f/f/Cre-MI) exhibited reduced nuclear factor-κB activation (DNA binding) in the infarcted myocardium, which could underlie the suppressed VEGFR2 expression in these hearts. Post MI, inflammatory response was not altered by ADAM17 downregulation. This study highlights the key role of cardiomyocyte ADAM17 in post-MI recovery by regulating VEGFR2 transcription and angiogenesis, thereby limiting left ventricular dilation and dysfunction. Therefore, ADAM17 upregulation, within the physiological range, could provide protective effects in ischemic cardiomyopathy. © 2015 American Heart Association, Inc.

  14. Mitochondrially targeted Endonuclease III has a powerful anti-infarct effect in an in vivo rat model of myocardial ischemia/reperfusion.

    PubMed

    Yang, Xi-Ming; Cui, Lin; White, James; Kuck, Jamie; Ruchko, Mykhaylo V; Wilson, Glenn L; Alexeyev, Mikhail; Gillespie, Mark N; Downey, James M; Cohen, Michael V

    2015-03-01

    Recent reports indicate that elevating DNA glycosylase/AP lyase repair enzyme activity offers marked cytoprotection in cultured cells and a variety of injury models. In this study, we measured the effect of EndoIII, a fusion protein construct that traffics Endonuclease III, a DNA glycosylase/AP lyase, to the mitochondria, on infarct size in a rat model of myocardial ischemia/reperfusion. Open-chest, anesthetized rats were subjected to 30 min of occlusion of a coronary artery followed by 2 h of reperfusion. An intravenous bolus of EndoIII, 8 mg/kg, just prior to reperfusion reduced infarct size from 43.8 ± 1.4% of the risk zone in control animals to 24.0 ± 1.3% with no detectable hemodynamic effect. Neither EndoIII's vehicle nor an enzymatically inactive EndoIII mutant (K120Q) offered any protection. The magnitude of EndoIII's protection was comparable to that seen with the platelet aggregation inhibitor cangrelor (25.0 ± 1.8% infarction of risk zone). Because loading with a P2Y12 receptor blocker to inhibit platelets is currently the standard of care for treatment of acute myocardial infarction, we tested whether EndoIII could further reduce infarct size in rats treated with a maximally protective dose of cangrelor. The combination reduced infarct size to 15.1 ± 0.9% which was significantly smaller than that seen with either cangrelor or EndoIII alone. Protection from cangrelor but not EndoIII was abrogated by pharmacologic blockade of phosphatidylinositol-3 kinase or adenosine receptors indicating differing cellular mechanisms. We hypothesized that EndoIII protected the heart from spreading necrosis by preventing the release of proinflammatory fragments of mitochondrial DNA (mtDNA) into the heart tissue. In support of this hypothesis, an intravenous bolus at reperfusion of deoxyribonuclease I (DNase I) which should degrade any DNA fragments escaping into the extracellular space was as protective as EndoIII. Furthermore, the combination of EndoIII and DNase I produced additive protection. While EndoIII would maintain mitochondrial integrity in many of the ischemic cardiomyocytes, DNase I would further prevent mtDNA released from those cells that EndoIII could not save from propagating further necrosis. Thus, our mtDNA hypothesis would predict additive protection. Finally to demonstrate the toxicity of mtDNA, isolated hearts were subjected to 15 min of global ischemia. Infarct size doubled when the coronary vasculature was filled with mtDNA fragments during the period of global ischemia. To our knowledge, EndoIII and DNase are the first agents that can both be given at reperfusion and add to the protection of a P2Y12 blocker, and thus should be effective in today's patient with acute myocardial infarction.

  15. Double-strand break repair and genetic recombination in topoisomerase and primase mutants of bacteriophage T4.

    PubMed

    Shcherbakov, Victor P; Kudryashova, Elena

    2014-09-01

    The effects of primase and topoisomerase II deficiency on the double-strand break (DSB) repair and genetic recombination in bacteriophage T4 were studied in vivo using focused recombination. Site-specific DSBs were induced by SegC endonuclease in the rIIB gene of one of the parents. The frequency/distance relationship was determined in crosses of the wild-type phage, topoisomerase II mutant amN116 (gene 39), and primase mutant E219 (gene 61). Ordinary two-factor (i×j) and three-factor (i k×j) crosses between point rII mutations were also performed. These data provide information about the frequency and distance distribution of the single-exchange (splice) and double-exchange (patch) events. In two-factor crosses ets1×i, the topoisomerase and primase mutants had similar recombinant frequencies in crosses at ets1-i distances longer than 1000 bp, comprising about 80% of the corresponding wild-type values. They, however, differ remarkably in crosses at shorter distances. In the primase mutant, the recombinant frequencies are similar to those in the wild-type crosses at distances less than 100 bp, being a bit diminished at longer distances. In two-factor crosses ets1×i of the topoisomerase mutant, the recombinant frequencies were reduced ten-fold at the shortest distances. In three-factor crosses a6 ets1×i, where we measure patch-related recombination, the primase mutant was quite proficient across the entire range of distances. The topoisomerase mutant crosses demonstrated virtually complete absence of rII(+) recombinants at distances up to 33 bp, with the frequencies increasing steadily at longer distances. The data were interpreted as follows. The primase mutant is fully recombination-proficient. An obvious difference from the wild-type state is some shortage of EndoVII function leading to prolonged existence of HJs and thus stretched out ds-branch migration. This is also true for the topoisomerase mutant. However, the latter is deficient in the ss-branch migration step of the DSB repair pathway and partially deficient in HJ initiation. In apparent contradiction to their effects on the DSB-induced site-specific recombination, the topoisomerase and primase mutants demonstrated about 3-8-fold increase in the recombinant frequencies in the ordinary crosses, with the recombination running exclusively via patches. This implies that most of the spontaneous recombination events are not initiated by dsDNA ends in these mutants. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Outcomes After Operations for Unicuspid Aortic Valve With or Without Ascending Repair in Adults

    PubMed Central

    Zhu, Yuanjia; Roselli, Eric E.; Idrees, Jay J.; Wojnarski, Charles M.; Griffin, Brian; Kalahasti, Vidyasagar; Pettersson, Gosta; Svensson, Lars G.

    2016-01-01

    Background Unicuspid aortic valve is an important subset of bicuspid aortic valve, and knowledge regarding its aortopathy pattern and surgical outcomes is limited. Our objectives were to characterize unicuspid aortic valve patients, associated aortopathy, and surgical outcomes. Methods From January 1990 to May 2013, 149 adult unicuspid aortic valve patients underwent aortic valve replacement or repair for aortic stenosis (n = 13), regurgitation (n = 13), or both (n = 123), and in 91 (61%) the aortic valve operation was combined with aortic repair. Data were obtained from the Cardiovascular Information Registry and medical record review. Three-dimensional imaging analysis was performed from preoperative computed tomography and magnetic resonance imaging scans. The Kaplan-Meier method was used for survival analysis. Results Patients had a mean maximum aortic diameter of 44 ± 8 mm and variably involved the aortic root, ascending, or arch, or both. Patients with valve operations alone were more likely to be hypertensive (p = 0.01) and to have severe aortic stenosis (p = 0.07) than those who underwent concurrent aortic operations. There were no operative deaths, strokes, or myocardial infarctions. Patients undergoing aortic repair had better long-term survival. Estimated survival at 1, 5, and 10 years was 100%, 100%, and 100% after combined operations and was 100%, 88%, and 88% after valve operations alone (p = 0.01). Conclusions Patients with a dysfunctional unicuspid aortic valve frequently present with an ascending aneurysm that requires repair. Combined aortic valve operations and aortic repair was associated with significantly better long-term survival than a valve operation alone. Further study of this association may direct decisions about timing of surgical intervention. PMID:26453423

  17. Use of composite materials, health monitoring and self-healing concepts to refurbish our civil and military infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Dennis Patrick; Delong, Waylon Anthony; White, Scott

    An unavoidable by-product of a metallic structure's use is the appearance of crack, corrosion, erosion and other flaws. Economic barriers to the replacement of these structures have created an aging civil and military infrastructure and placed even greater demands on efficient and safe repair and inspection methods. As a result of Homeland Security issues and these aging infrastructure concerns, increased attention has been focused on the rapid repair and preemptive reinforcement of structures such as buildings and bridges. This Laboratory Directed Research and Development (LDRD) program established the viability of using bonded composite patches to repair metallic structures. High modulusmore » fiber-reinforced polymer (FRP) material may be used in lieu of mechanically fastened metallic patches or welds to reinforce or repair damaged structures. Their use produces a wide array of engineering and economic advantages. Current techniques for strengthening steel structures have several drawbacks including requiring heavy equipment for installation, poor fatigue performance, and the need for ongoing maintenance due to continued corrosion attack or crack growth. The use of bonded composite doublers has the potential to correct the difficulties associated with current repair techniques and the ability to be applied where there are currently no rehabilitation options. Applications include such diverse structures as: buildings, bridges, railroad cars, trucks and other heavy machinery, steel power and communication towers, pipelines, factories, mining equipment, ships, tanks and other military vehicles. This LDRD also proved the concept of a living infrastructure by developing custom sensors and self-healing chemistry and linking this technology with the application of advanced composite materials. Structural Health Monitoring (SHM) systems and mountable, miniature sensors were designed to continuously or periodically assess structural integrity. Such systems are able to detect incipient damage before catastrophic failure occurs. The ease of monitoring an entire network of distributed sensors means that structural health assessments can occur more often, allowing operators to be even more vigilant with respect to flaw onset. In addition, the realization of smart structures, through the use of in-situ sensors, allows condition-based maintenance to be substituted for conventional time-based maintenance practices. The sensitivity and reliability of a series of sensor systems was quantified in laboratory and real-world environments. Finally, self healing methods for composite materials were evolved--using resin modules that are released in response to the onset of delaminations--so that these components can provide a living infrastructure with minimal need for human intervention. This program consisted of four related research elements: (1) design, installation, and performance assessment of composite repairs, (2) in-situ sensors for real-time health monitoring, (3) self healing of in-service damage in a repair, and (4) numerical modeling. Deployment of FRP materials and bonded joints requires proper design, suitable surface preparation methods, and adequate surveillance to ensure structural integrity. By encompassing all 'cradle-to-grave' tasks --including design, analysis, installation, durability, flaw containment, and inspection--this program is designed to firmly establish the capabilities of composite doubler repairs and introduce technology to incorporate self-monitoring and self-healing (living structures) methodologies. A proof-of-concept repair was completed on a steel highway bridge in order to demonstrate the potential of composite doubler technology for critical infrastructure use.« less

  18. Risk factors of early and late mortality after thoracic endovascular aortic repair for complicated stanford B acute aortic dissection.

    PubMed

    Ruan, Zhong-Bao; Zhu, Li; Yin, Yi-Gang; Chen, Ge-Cai

    2014-07-01

    The risk factors associated with death in complicated Stanford B acute aortic dissection (AAD) after thoracic endovascular aortic repair (TEVAR) are poorly understood. The aim of this study was to evaluate the early and late events and mortality of complicated Stanford B AAD associated with TEVAR. Sixty-two patients with complicated Stanford B AAD undergoing TEVAR were included in this study. Primary technical success of TEVAR was achieved in 61 (98.39%) cases. The early mortality rate was 9.68%. Procedural type I endoleak (p = 0.007, OR = 7.71, 95% CI: 1.75-34.01) and cardiac tamponade (p = 0.010, OR = 8.86, 95% CI: 1.70-4 6.14) were the significant predictors of early death in the multivariate model. The late mortality was 16.07%. Cox regression analysis revealed rupture of false lumen (p = 0.001, hazard ratio = 21.96, 95% CI: 3.02-82.12), postoperative myocardial infarction (p = 0.001, hazard ratio = 9.86, 95% CI: 2.12-39.64), and acute renal failure (p = 0.024, hazard ratio = 3.98, 95% CI: 1.26-12.11) to be independent risk factors of late mortality. Type I procedural endoleak and cardiac tamponade were the significant predictors of early death in patients of complicated Stanford B AAD undergoing TEVAR. Rupture of false lumen, postoperative myocardial infarction, and acute renal failure were the independent risk factors for late death after TEVAR. © 2014 Wiley Periodicals, Inc.

  19. Human Fanconi Anemia Complementation Group A Protein Stimulates the 5’ Flap Endonuclease Activity of FEN1

    PubMed Central

    Qian, Liangyue; Yuan, Fenghua; Rodriguez-Tello, Paola; Padgaonkar, Suyog; Zhang, Yanbin

    2013-01-01

    In eukaryotic cells, Flap endonuclease 1 (FEN1) is a major structure-specific endonuclease that processes 5’ flapped structures during maturation of lagging strand DNA synthesis, long patch base excision repair, and rescue of stalled replication forks. Here we report that fanconi anemia complementation group A protein (FANCA), a protein that recognizes 5’ flap structures and is involved in DNA repair and maintenance of replication forks, constantly stimulates FEN1-mediated incision of both DNA and RNA flaps. Kinetic analyses indicate that FANCA stimulates FEN1 by increasing the turnover rate of FEN1 and altering its substrate affinity. More importantly, six pathogenic FANCA mutants are significantly less efficient than the wild-type at stimulating FEN1 endonuclease activity, implicating that regulation of FEN1 by FANCA contributes to the maintenance of genomic stability. PMID:24349332

  20. Engineering biosynthetic excitable tissues from unexcitable cells for electrophysiological and cell therapy studies.

    PubMed

    Kirkton, Robert D; Bursac, Nenad

    2011-01-01

    Patch-clamp recordings in single-cell expression systems have been traditionally used to study the function of ion channels. However, this experimental setting does not enable assessment of tissue-level function such as action potential (AP) conduction. Here we introduce a biosynthetic system that permits studies of both channel activity in single cells and electrical conduction in multicellular networks. We convert unexcitable somatic cells into an autonomous source of electrically excitable and conducting cells by stably expressing only three membrane channels. The specific roles that these expressed channels have on AP shape and conduction are revealed by different pharmacological and pacing protocols. Furthermore, we demonstrate that biosynthetic excitable cells and tissues can repair large conduction defects within primary 2- and 3-dimensional cardiac cell cultures. This approach enables novel studies of ion channel function in a reproducible tissue-level setting and may stimulate the development of new cell-based therapies for excitable tissue repair.

  1. An evaluation of Admedus' tissue engineering process-treated (ADAPT) bovine pericardium patch (CardioCel) for the repair of cardiac and vascular defects.

    PubMed

    Strange, Geoff; Brizard, Christian; Karl, Tom R; Neethling, Leon

    2015-03-01

    Tissue engineers have been seeking the 'Holy Grail' solution to calcification and cytotoxicity of implanted tissue for decades. Tissues with all of the desired qualities for surgical repair of congenital heart disease (CHD) are lacking. An anti-calcification tissue engineering process (ADAPT TEP) has been developed and applied to bovine pericardium (BP) tissue (CardioCel, AdmedusRegen Pty Ltd, Perth, WA, Australia) to eliminate cytotoxicity, improve resistance to acute and chronic inflammation, reduce calcification and facilitate controlled tissue remodeling. Clinical data in pediatric patients, and additional pre-market authorized prescriber data demonstrate that CardioCel performs extremely well in the short term and is safe and effective for a range of congenital heart deformations. These data are supported by animal studies which have shown no more than normal physiologic levels of calcification, with good durability, biocompatibility and controlled healing.

  2. Buccal mucosa ureteroplasty for the treatment of complex ureteric injury.

    PubMed

    Sadhu, Sagar; Pandit, Kuntal; Roy, Manas K; Bajoria, Suresh K

    2011-01-01

    Bowel interposition and auto-transplantation of kidney, thought to be a major undertaking, remain the traditional option for the treatment of major and complex ureteric lesions. Buccal mucosa, a well known tissue for urethral reconstruction, can be used safely for the repair of ureter. However, this has been reported poorly in the literature. Here we report a 59- year-old female who had a major ureteric injury by Dormia basket during ureteroscopic extraction of a 2.6 cm impacted stone at pelvi- ureteric junction. On exploration, a long anterior slit was found in the upper ureter measuring approximately 8 cm. It was successfully repaired by free buccal mucosal patch graft over a Double J stent. Thus, a major surgery was avoided. Intra venous urography at 6-month follow up demonstrated a patent ureter. Our experience is encouraging and merits wider application in complex ureteric lesion.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2005-06-09

    The STS-121 patch depicts the Space Shuttle docked with the International Space Station (ISS) in the foreground, overlaying the astronaut symbol with three gold columns and a gold star. The ISS is shown in the configuration that it was during the STS-121 mission. The background shows the nighttime Earth with a dawn breaking over the horizon. STS-121, ISS mission ULF1.1, was the final Shuttle Return to Flight test mission. This utilization and logistics flight delivered a multipurpose logistics module (MPLM) to the ISS with several thousand pounds of new supplies and experiments. In addition, some new orbital replacement units (ORUs) were delivered and stowed externally on the ISS on a special pallet. These ORUs are spares for critical machinery located on the outside of the ISS. During this mission the crew also carried out testing of Shuttle inspection and repair hardware, as well as evaluated operational techniques and concepts for conducting on-orbit inspection and repair.

  4. How does the motor relearning program improve neurological function of brain ischemia monkeys?☆

    PubMed Central

    Yin, Yong; Gu, Zhen; Pan, Lei; Gan, Lu; Qin, Dongdong; Yang, Bo; Guo, Jin; Hu, Xintian; Wang, Tinghua; Feng, Zhongtang

    2013-01-01

    The motor relearning program can significantly improve various functional disturbance induced by ischemic cerebrovascular diseases. However, its mechanism of action remains poorly understood. In injured brain tissues, glial fibrillary acidic protein and neurofilament protein changes can reflect the condition of injured neurons and astrocytes, while vascular endothelial growth factor and basic fibroblast growth factor changes can indicate angiogenesis. In the present study, we induced ischemic brain injury in the rhesus macaque by electrocoagulation of the M1 segment of the right middle cerebral artery. The motor relearning program was conducted for 60 days from the third day after model establishment. Immunohistochemistry and single-photon emission CT showed that the numbers of glial fibrillary acidic protein-, neurofilament protein-, vascular endothelial growth factor- and basic fibroblast growth factor-positive cells were significantly increased in the infarcted side compared with the contralateral hemisphere following the motor relearning program. Moreover, cerebral blood flow in the infarcted side was significantly improved. The clinical rating scale for stroke was used to assess neurological function changes in the rhesus macaque following the motor relearning program. Results showed that motor function was improved, and problems with consciousness, self-care ability and balance function were significantly ameliorated. These findings indicate that the motor relearning program significantly promoted neuronal regeneration, repair and angiogenesis in the surroundings of the infarcted hemisphere, and improve neurological function in the rhesus macaque following brain ischemia. PMID:25206440

  5. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction

    PubMed Central

    Yoon, Young-sup; Wecker, Andrea; Heyd, Lindsay; Park, Jong-Seon; Tkebuchava, Tengiz; Kusano, Kengo; Hanley, Allison; Scadova, Heather; Qin, Gangjian; Cha, Dong-Hyun; Johnson, Kirby L.; Aikawa, Ryuichi; Asahara, Takayuki; Losordo, Douglas W.

    2005-01-01

    We have identified a subpopulation of stem cells within adult human BM, isolated at the single-cell level, that self-renew without loss of multipotency for more than 140 population doublings and exhibit the capacity for differentiation into cells of all 3 germ layers. Based on surface marker expression, these clonally expanded human BM-derived multipotent stem cells (hBMSCs) do not appear to belong to any previously described BM-derived stem cell population. Intramyocardial transplantation of hBMSCs after myocardial infarction resulted in robust engraftment of transplanted cells, which exhibited colocalization with markers of cardiomyocyte (CMC), EC, and smooth muscle cell (SMC) identity, consistent with differentiation of hBMSCs into multiple lineages in vivo. Furthermore, upregulation of paracrine factors including angiogenic cytokines and antiapoptotic factors, and proliferation of host ECs and CMCs, were observed in the hBMSC-transplanted hearts. Coculture of hBMSCs with CMCs, ECs, or SMCs revealed that phenotypic changes of hBMSCs result from both differentiation and fusion. Collectively, the favorable effect of hBMSC transplantation after myocardial infarction appears to be due to augmentation of proliferation and preservation of host myocardial tissues as well as differentiation of hBMSCs for tissue regeneration and repair. To our knowledge, this is the first demonstration that a specific population of multipotent human BM-derived stem cells can induce both therapeutic neovascularization and endogenous and exogenous cardiomyogenesis. PMID:15690083

  6. Bone-Derived Stem Cells Repair the Heart after Myocardial Infarction Through Transdifferentiation and Paracrine Signaling Mechanisms

    PubMed Central

    Duran, Jason M.; Makarewich, Catherine A.; Sharp, Thomas E.; Starosta, Timothy; Fang, Zhu; Hoffman, Nicholas E.; Chiba, Yumi; Madesh, Muniswamy; Berretta, Remus M.; Kubo, Hajime; Houser, Steven R.

    2013-01-01

    Rationale Autologous bone marrow- or cardiac-derived stem cell therapy for heart disease has demonstrated safety and efficacy in clinical trials but functional improvements have been limited. Finding the optimal stem cell type best suited for cardiac regeneration is key toward improving clinical outcomes. Objective To determine the mechanism by which novel bone-derived stem cells support the injured heart. Methods and Results Cortical bone stem cells (CBSCs) and cardiac-derived stem cells (CDCs) were isolated from EGFP+ transgenic mice and were shown to express c-kit and Sca-1 as well as 8 paracrine factors involved in cardioprotection, angiogenesis and stem cell function. Wild-type C57BL/6 mice underwent sham operation (n=21) or myocardial infarction (MI) with injection of CBSCs (n=67), CDCs (n=36) or saline (n=60). Cardiac function was monitored using echocardiography. Only 2/8 paracrine factors were detected in EGFP+ CBSCs in vivo (basic fibroblast growth factor and vascular endothelial growth factor) and this expression was associated with increased neovascularization of the infarct border zone. CBSC therapy improved survival, cardiac function, regional strain, attenuated remodeling, and decreased infarct size relative to CDC- or saline-treated MI controls. By 6 weeks, EGFP+ cardiomyocytes, vascular smooth muscle and endothelial cells could be identified in CBSC- but not in CDC-treated animals. EGFP+ CBSC-derived isolated myocytes were smaller and more frequently mononucleated, but were functionally indistinguishable from EGFP- myocytes. Conclusions CBSCs improve survival, cardiac function, and attenuate remodeling through two mechanisms:1) secretion of pro-angiogenic factors that stimulate endogenous neovascularization, and 2) differentiation into functional adult myocytes and vascular cells. PMID:23801066

  7. Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration.

    PubMed

    Formiga, Fabio R; Pelacho, Beatriz; Garbayo, Elisa; Imbuluzqueta, Izaskun; Díaz-Herráez, Paula; Abizanda, Gloria; Gavira, Juan J; Simón-Yarza, Teresa; Albiasu, Edurne; Tamayo, Esther; Prósper, Felipe; Blanco-Prieto, Maria J

    2014-01-10

    Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague-Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. © 2013.

  8. Glial scars are permeable to the neurotoxic environment of chronic stroke infarcts

    PubMed Central

    Zbesko, Jacob C.; Nguyen, Thuy-Vi V.; Yang, Tao; Frye, Jennifer Beischel; Hussain, Omar; Hayes, Megan; Chung, Amanda; Day, W. Anthony; Stepanovic, Kristina; Krumberger, Maj; Mona, Justine; Longo, Frank M.; Doyle, Kristian P.

    2018-01-01

    Following stroke, the damaged tissue undergoes liquefactive necrosis, a stage of infarct resolution that lasts for months although the exact length of time is currently unknown. One method of repair involves reactive astrocytes and microglia forming a glial scar to compartmentalize the area of liquefactive necrosis from the rest of the brain. The formation of the glial scar is a critical component of the healing response to stroke, as well as other central nervous system (CNS) injuries. The goal of this study was to evaluate the toxicity of the extracellular fluid present in areas of liquefactive necrosis and determine how effectively it is segregated from the remainder of the brain. To accomplish this goal, we used a mouse model of stroke in conjunction with an extracellular fluid toxicity assay, fluorescent and electron microscopy, immunostaining, tracer injections into the infarct, and multiplex immunoassays. We confirmed that the extracellular fluid present in areas of liquefactive necrosis following stroke is toxic to primary cortical and hippocampal neurons for at least 7 weeks following stroke, and discovered that although glial scars are robust physical and endocytic barriers, they are nevertheless permeable. We found that molecules present in the area of liquefactive necrosis can leak across the glial scar and are removed by a combination of paravascular clearance and microglial endocytosis in the adjacent tissue. Despite these mechanisms, there is delayed atrophy, cytotoxic edema, and neuron loss in regions adjacent to the infarct for weeks following stroke. These findings suggest that one mechanism of neurodegeneration following stroke is the failure of glial scars to impermeably segregate areas of liquefactive necrosis from surviving brain tissue. PMID:29331263

  9. Comparison of parathyroid hormone and G-CSF treatment after myocardial infarction on perfusion and stem cell homing.

    PubMed

    Huber, Bruno C; Fischer, Rebekka; Brunner, Stefan; Groebner, Michael; Rischpler, Christoph; Segeth, Alexander; Zaruba, Marc M; Wollenweber, Tim; Hacker, Marcus; Franz, Wolfgang-Michael

    2010-05-01

    Mobilization of stem cells by granulocyte colony-stimulating factor (G-CSF) was shown to have protective effects after myocardial infarction (MI); however, clinical trials failed to be effective. In search for alternative cytokines, parathyroid hormone (PTH) was recently shown to promote cardiac repair by enhanced neovascularization and cell survival. To compare the impact of the two cytokines G-CSF and PTH on myocardial perfusion, mice were noninvasively and repetitively investigated by pinhole single-photon emission computed tomography (SPECT) after MI. Mobilization and homing of bone marrow-derived stem cells (BMCs) was analyzed by fluorescence-activated cell sorter (FACS) analysis. Mice (C57BL/6J) were infarcted by left anterior descending artery ligation. PTH (80 mug/kg) and G-CSF (100 mug/kg) were injected for 5 days. Perfusion defects were determined by (99m)Tc-sestamibi SPECT at days 6 and 30 after MI. The number of BMCs characterized by Lin(-)/Sca-1(+)/c-kit(+) cells in peripheral blood and heart was analyzed by FACS. Both G-CSF and PTH treatment resulted in an augmented mobilization of BMCs in the peripheral blood. Contrary to G-CSF and controls, PTH and the combination showed significant migration of BMCs in ischemic myocardium associated with a significant reduction of perfusion defects from day 6 to day 30. A combination of both cytokines had no additional effects on migration and perfusion. In our preclinical model, SPECT analyses revealed the functional potential of PTH reducing size of infarction together with an enhanced homing of BMCs to the myocardium in contrast to G-CSF. A combination of both cytokines did not improve the functional outcome, suggesting clinical applications of PTH in ischemic heart diseases.

  10. Combined administration of mesenchymal stem cells overexpressing IGF-1 and HGF enhances neovascularization but moderately improves cardiac regeneration in a porcine model.

    PubMed

    Gómez-Mauricio, Guadalupe; Moscoso, Isabel; Martín-Cancho, María-Fernanda; Crisóstomo, Verónica; Prat-Vidal, Cristina; Báez-Díaz, Claudia; Sánchez-Margallo, Francisco M; Bernad, Antonio

    2016-07-16

    Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are among the most promising growth factors for promoting cardiorepair. Here, we evaluated the combination of cell- and gene-based therapy using mesenchymal stem cells (MSC) genetically modified to overexpress IGF-1 or HGF to treat acute myocardial infarction (AMI) in a porcine model. Pig MSC from adipose tissue (paMSC) were genetically modified for evaluation of different therapeutic strategies to improve AMI treatment. Three groups of infarcted Large White pigs were compared (I, control, non-transplanted; II, transplanted with paMSC-GFP (green fluorescent protein); III, transplanted with paMSC-IGF-1/HGF). Cardiac function was evaluated non-invasively using magnetic resonance imaging (MRI) for 1 month. After euthanasia and sampling of the animal, infarcted areas were studied by histology and immunohistochemistry. Intramyocardial transplant in a porcine infarct model demonstrated the safety of paMSC in short-term treatments. Treatment with paMSC-IGF-1/HGF (1:1) compared with the other groups showed a clear reduction in inflammation in some sections analyzed and promoted angiogenic processes in ischemic tissue. Although cardiac function parameters were not significantly improved, cell retention and IGF-1 overexpression was confirmed within the myocardium. The simultaneous administration of IGF-1- and HGF-overexpressing paMSC appears not to promote a synergistic effect or effective repair. The combined enhancement of neovascularization and fibrosis in paMSC-IGF-1/HGF-treated animals nonetheless suggests that sustained exposure to high IGF-1 + HGF levels promotes beneficial as well as deleterious effects that do not improve overall cardiac regeneration.

  11. Myocardial infarction triggers chronic cardiac autoimmunity in type 1 diabetes.

    PubMed

    Gottumukkala, Raju V S R K; Lv, HuiJuan; Cornivelli, Lizbeth; Wagers, Amy J; Kwong, Raymond Y; Bronson, Roderick; Stewart, Garrick C; Schulze, P Christian; Chutkow, William; Wolpert, Howard A; Lee, Richard T; Lipes, Myra A

    2012-06-13

    Patients with type 1 diabetes (T1D) suffer excessive morbidity and mortality after myocardial infarction (MI) that is not fully explained by the metabolic effects of diabetes. Acute MI is known to trigger a profound innate inflammatory response with influx of mononuclear cells and production of proinflammatory cytokines that are crucial for cardiac repair. We hypothesized that these same pathways might exert "adjuvant effects" and induce pathological responses in autoimmune-prone T1D hosts. Here, we show that experimental MI in nonobese diabetic mice, but not in control C57BL/6 mice, results in a severe post-infarction autoimmune (PIA) syndrome characterized by destructive lymphocytic infiltrates in the myocardium, infarct expansion, sustained cardiac autoantibody production, and T helper type 1 effector cell responses against cardiac (α-)myosin. PIA was prevented by inducing tolerance to α-myosin, demonstrating that immune responses to cardiac myosin are essential for this disease process. Extending these findings to humans, we developed a panel of immunoassays for cardiac autoantibody detection and found autoantibody positivity in 83% post-MI T1D patients. We further identified shared cardiac myosin autoantibody signatures between post-MI T1D patients and nondiabetic patients with myocarditis, which were absent in post-MI type 2 diabetic patients, and confirmed the presence of myocarditis in T1D by cardiac magnetic resonance imaging techniques. These data provide experimental and clinical evidence for a distinct post-MI autoimmune syndrome in T1D. Our findings suggest that PIA may contribute to worsened post-MI outcomes in T1D and highlight a role for antigen-specific immunointervention to selectively block this pathway.

  12. Post-infarct treatment with [Pyr1]apelin-13 exerts anti-remodelling and anti-apoptotic effects in rats' hearts.

    PubMed

    Azizi, Yaser; Imani, Alireza; Fanaei, Hamed; Khamse, Safoura; Parvizi, Mohammad Reza; Faghihi, Mahdieh

    2017-01-01

    Ischaemic heart disease is the main cause of mortality in the world. After myocardial infarction (MI) cardiomyocytes apoptosis and ventricular remodelling have occurred. Apelin is a peptide that has been shown to exert cardioprotective effects. The aim of this study was to investigate the anti-apoptotic and anti-remodelling effects of [Pyr¹]apelin-13 in the rat model of post-MI. Thirty-six male Wistar rats were randomly divided into three groups: (1) sham, (2) MI, and (3) MI treated with [Pyr¹] apelin-13 (MI+Apel). MI animals were subjected to 30-min ligation of the left anterior descending coronary artery (LAD) and 14 days of reperfusion. Twenty-four hours after LAD ligation, [Pyr¹]apelin-13 (10 nmol/kg/day, i.p.) was administered for five consecutive days. Hypertrophic parameters, left ventricular (LV) remodelling, and gene expression of Apel, apelin receptor (Apelr), Bax, caspase-3 (Casp-3), and Bcl-2 by real-time polymerase chain reaction and cardiomyocytes apoptosis by TUNEL immunostaining were assessed on day 14 post-MI. Post-infarct treatment with [Pyr¹]apelin-13 improved myocardial hypertrophic and LV remodelling parameters and led to a significant increase in the expression of Apel, Apelr, and Bcl-2, and a decrease in the expression of Bax and Casp-3. Furthermore, treatment with [Pyr¹]apelin-13 decreased cardiomyocyte apoptosis. [Pyr¹]apelin-13 has anti-hypertrophic, anti-remodelling, and anti-apoptotic effects via overexpression of Apel, Apelr, and Bcl-2 and reduces gene expression of Bax and Casp-3 in the infarcted myocardium, which can in turn lead to repair myocardium.

  13. Acute bithalamic infarct manifesting as sleep-like coma: A diagnostic challenge.

    PubMed

    Honig, Asaf; Eliahou, Ruth; Eichel, Roni; Shemesh, Ari Aharon; Ben-Hur, Tamir; Auriel, Eitan

    2016-12-01

    Bilateral thalamic infarction (BTI) typically presents as a sleep-like coma (SLC) without localizing signs, posing a diagnostic challenge that may lead the treating physician to search for toxic or metabolic causes and delay treatment. We review our experience with BTI of different etiologies, and emphasize the critical role of timely imaging, diagnosis, and management in a series of 12 patients with a presentation of SLC and acute BTI who were managed in our Medical Centers from 2006-2015. In 11/12, urgent head CT scans showed normal brain tissue, while diffusion-weighted (DWI) MRI revealed symmetric bilateral thalamic hyperintense lesions with variable degrees of brainstem involvement. In 1/12, CT scans revealed a contralateral subacute stroke from a thalamic infarct 1month earlier with a unilateral hyperintense lesion on DWI-MRI. From clinical and imaging findings (DWI-MRI, CT angiography and venography), etiology was attributed to embolic causes (cardio-embolism, artery-to-artery mechanism), small vessel disease, or deep sinus vein thrombosis secondary to dural arteriovenous (AV) fistula. Three patients had good outcomes after prompt diagnosis and optimal treatment in <3hours (intravenous tissue plasminogen activator in two patients cardio-embolic etiology and neuro-endovascular repair in one patient with venous infarction due to a dural AV fistula). The diagnosis was made beyond the therapeutic window in seven patients, who were left with significant neurological sequelae. Higher awareness of BTI presenting as SLC is warranted. Optimal patient management includes urgent DWI-MRI. In cases of BTI, further imaging workup is indicated to provide a comprehensive assessment for etiology. Early diagnosis and prompt, targeted intervention are crucial. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Nasal vaccination with troponin reduces troponin specific T-cell responses and improves heart function in myocardial ischemia–reperfusion injury

    PubMed Central

    Frenkel, Dan; Pachori, Alok S.; Zhang, Lunan; Dembinsky-Vaknin, Adi; Farfara, Dorit; Petrovic-Stojkovic, Sanja; Dzau, Victor J.

    2009-01-01

    Myocardial ischemia with subsequent reperfusion (MI/R) can lead to significant myocardial damage. Ischemia initiates inflammation at the blood–microvascular endothelial cell interface and contributes significantly to both acute injury and repair of the damaged tissue. We have found that MI/R injury in mice is associated with a cellular immune response to troponin. Myocardial cells exclusively synthesize troponin and release the troponin into the bloodstream following injury. Mucosally administered proteins induce T cells that secrete anti-inflammatory cytokines such as IL-10 and transforming growth factor β at the anatomical site where the protein localizes. We found that nasal administration of the three subunits of troponin (C, I and T isoforms), given prior to or 1 h following MI/R, decreased infarct size by 40% measured 24 h later. At 1.5 months following MI/R, there was a 50% reduction in infarct size and improvement in cardiac function as measured by echocardiography. Protection was associated with a reduction of cellular immunity to troponin. Immunohistochemistry demonstrated increased IL-10 and reduced IFN-γ in the area surrounding the ischemic infarct following nasal troponin. Adoptive transfer of CD4+ T cells to mice from nasally troponin-treated mice 1 h after the MI/R decreased infarct size by 72%, whereas CD4+ T cells from IL-10−/− mice or nasally BSA-treated mice had no effect. Our results demonstrate that IL-10-secreting CD4+ T cells induced by nasal troponin reduce injury following MI/R. Modulation of cardiac inflammation by nasal troponin provides a novel treatment to decrease myocardial damage and enhance recovery after myocardial ischemia. PMID:19515797

  15. Safety and efficacy of personal care products containing colloidal oatmeal.

    PubMed

    Criquet, Maryline; Roure, Romain; Dayan, Liliane; Nollent, Virginie; Bertin, Christiane

    2012-01-01

    Colloidal oatmeal is a natural ingredient used in the formulation of a range of personal care products for relief of skin dryness and itchiness. It is also used as an adjunctive product in atopic dermatitis. The safety of personal care products used on vulnerable skin is of particular importance and the risk of developing further skin irritations and/or allergies should be minimized. In a series of studies, we tested the safety of personal care products containing oatmeal (creams, cleansers, lotions) by assessing their irritant/allergenic potential on repeat insult patch testing, in safety-in-use and ocular studies using subjects with nonsensitive and sensitive skin. We also tested the skin moisturizing and repair properties of an oatmeal-containing skin care product for dry skin. We found that oatmeal-containing personal care products had very low irritant potential as well as a very low allergenic sensitization potential. Low-level reactions were documented in 1.0% of subjects during the induction phase of repeat insult patch testing; one of 2291 subjects developed a persistent but doubtful low-level reaction involving edema during the challenge phase in repeat insult patch testing. No allergies were reported by 80 subjects after patch testing after in-use application. Sustained skin moisturizing was documented in subjects with dry skin that lasted up to 2 weeks after product discontinuation. Our results demonstrate that colloidal oatmeal is a safe and effective ingredient in personal care products. No allergies were reported by consumers of 445,820 products sold during a 3-year period.

  16. Safety and efficacy of personal care products containing colloidal oatmeal

    PubMed Central

    Criquet, Maryline; Roure, Romain; Dayan, Liliane; Nollent, Virginie; Bertin, Christiane

    2012-01-01

    Background Colloidal oatmeal is a natural ingredient used in the formulation of a range of personal care products for relief of skin dryness and itchiness. It is also used as an adjunctive product in atopic dermatitis. The safety of personal care products used on vulnerable skin is of particular importance and the risk of developing further skin irritations and/or allergies should be minimized. Methods In a series of studies, we tested the safety of personal care products containing oatmeal (creams, cleansers, lotions) by assessing their irritant/allergenic potential on repeat insult patch testing, in safety-in-use and ocular studies using subjects with nonsensitive and sensitive skin. We also tested the skin moisturizing and repair properties of an oatmeal-containing skin care product for dry skin. Results We found that oatmeal-containing personal care products had very low irritant potential as well as a very low allergenic sensitization potential. Low-level reactions were documented in 1.0% of subjects during the induction phase of repeat insult patch testing; one of 2291 subjects developed a persistent but doubtful low-level reaction involving edema during the challenge phase in repeat insult patch testing. No allergies were reported by 80 subjects after patch testing after in-use application. Sustained skin moisturizing was documented in subjects with dry skin that lasted up to 2 weeks after product discontinuation. Conclusion Our results demonstrate that colloidal oatmeal is a safe and effective ingredient in personal care products. No allergies were reported by consumers of 445,820 products sold during a 3-year period. PMID:23204849

  17. Bilateral laparoscopic totally extraperitoneal repair without mesh fixation.

    PubMed

    Dehal, Ahmed; Woodward, Brandon; Johna, Samir; Yamanishi, Frank

    2014-01-01

    Mesh fixation during laparoscopic totally extraperitoneal repair is thought to be necessary to prevent recurrence. However, mesh fixation may increase postoperative chronic pain. This study aimed to describe the experience of a single surgeon at our institution performing this operation. We performed a retrospective review of the medical records of all patients who underwent bilateral laparoscopic totally extraperitoneal repair without mesh fixation for inguinal hernia from January 2005 to December 2011. Demographic, operative, and postoperative data were obtained for analysis. A total of 343 patients underwent simultaneous bilateral laparoscopic totally extraperitoneal repair of 686 primary and recurrent inguinal hernias from January 2005 to December 2011. The mean operative time was 33 minutes. One patient was converted to an open approach (0.3%), and 1 patient had intraoperative bladder injury. Postoperative hematoma/seroma occurred in 5 patients (1.5%), wound infection in 1 (0.3%), hematuria in 2 (0.6%), and acute myocardial infarction in 1 (0.3%). Chronic pain developed postoperatively in 9 patients (2.6%); 3 of them underwent re-exploration. All patients were discharged home a few hours after surgery except for 3 patients. Among the 686 hernia repairs, there were a total of 20 recurrences (2.9%) in 18 patients (5.2%). Two patients had bilateral recurrences, whereas 16 had unilateral recurrences. Twelve of the recurrences occurred after 1 year (60%). Fourteen recurrences occurred among direct hernias (70%). Compared with the literature, our patients had fewer intraoperative and postoperative complications, less chronic pain, and no increase in operative time or length of hospital stay but had a slight increase in recurrence rate.

  18. Performance of an ablator for Space Shuttle inorbit repair in an arc-plasma airstream

    NASA Technical Reports Server (NTRS)

    Stewart, D. A.; Cuellar, M.; Flowers, O.

    1983-01-01

    An ablator patch material performed well in an arc plasma environment simulating nominal Earth entry conditions for the Space Shuttle. Ablation tests using vacuum molded cones provided data to optimize the formulation of a two part polymer system for application under space conditions. The blunt cones were made using a Teflon mold and a state of the art caulking gun. Char stability of formulations with various amounts of catalyst and diluent were investigated. The char was found to be unstable in formulations with low amounts of catalyst and high amounts of diluent. The best polymer system determined by these tests was evaluated using a half tile patch in a multiple High Temperature Reusable surface Insulation tile model. It was demonstrated that this ablator could be applied in a space environment using a state of the art caulking gun, would maintain the outer mold line of the thermal protection system during entry, and would keep the bond line temperature at the aluminum tile interface below the design limit.

  19. Management of war-related vascular injuries: experience from the second gulf war.

    PubMed

    Jawas, Ali; Abbas, Alaa K; Nazzal, Munier; Albader, Marzoog; Abu-Zidan, Fikri M

    2013-07-01

    To study the biomechanism, pattern of injury, management, and outcome of major vascular injuries treated at Mubarak Al-Kabeer Teaching Hospital, Kuwait during the Second Gulf War. This is a descriptive retrospective study. War-related injured patients who had major vascular injuries and were treated at Mubarak Al-Kabeer Teaching Hospital from August 1990 to September 1991 were studied. Studied variables included age, gender, anatomical site of vascular injury, mechanism of injury, associated injuries, type of vascular repair, and clinical outcome. 36 patients having a mean (SD) age of 29.8 (10.2) years were studied. 32 (89%) were males and 21 (58%) were civilians. Majority of injuries were caused by bullets (47.2%) and blast injuries (47.2%). Eight patients (22%) presented with shock.There were 31 arterial injuries, common and superficial femoral artery injuries were most common (10/31). Arterial repair included interposition saphenous vein graft in seven patients, thrombectomy with end-to-end / lateral repair in twelve patients, vein patch in two patients, and arterial ligation in four patients. Six patients had arterial ligation as part of primary amputation. 3/21 (14.3%) patients had secondary amputation after attempted arterial vascular repair of an extremity. There were a total of 17 venous injuries, 13 managed by lateral suture repair and 4 by ligation. The median (range) hospital stay was 8 (1-76) days. 5 patients died (14%). Major vascular injuries occurred in 10% of hospitalized war-related injured patients. Our secondary amputation rate of extremities was 14%. The presence of a vascular surgeon within a military surgical team is highly recommended. Basic principles and techniques of vascular repair remain an essential part of training general surgeons because it may be needed in unexpected wars.

  20. Aortic valve repair using a differentiated surgical strategy.

    PubMed

    Langer, Frank; Aicher, Diana; Kissinger, Anke; Wendler, Olaf; Lausberg, Henning; Fries, Roland; Schäfers, Hans-Joachim

    2004-09-14

    Reconstruction of the aortic valve for aortic regurgitation (AR) remains challenging, in part because of not only cusp or root pathology but also a combination of both can be responsible for this valve dysfunction. We have systematically tailored the repair to the individual pathology of cusps and root. Between October 1995 and August 2003, aortic valve repair was performed in 282 of 493 patients undergoing surgery for AR and concomitant disease. Root dilatation was corrected by subcommissural plication (n=59), supracommissural aortic replacement (n=27), root remodeling (n=175), or valve reimplantation within a graft (n=24). Cusp prolapse was corrected by plication of the free margin (n=157) or triangular resection (n =36), cusp defects were closed with a pericardial patch (n=16). Additional procedures were arch replacement (n=114), coronary artery bypass graft (n=60) or mitral repair (n=24). All patients were followed-up (follow-up 99.6% complete), and cumulative follow-up was 8425 patient-months (mean, 33+/-27 months).Results- Eleven patients died in hospital (3.9%). Nine patients underwent reoperation for recurrent AR (3.3%). Actuarial freedom from AR grade > or =II at 5 years was 81% for isolated valve repair, 84% for isolated root replacement, and 94% for combination of both; actuarial freedom from reoperation at 5 years was 93%, 95%, and 98%, respectively. No thromboembolic events occurred, and there was 1 episode of endocarditis 4.5 years postoperatively. Aortic valve repair is feasible even for complex mechanisms of AR with a systematic and individually tailored approach. Operative mortality is low and mid-term durability is encouraging. The incidence of valve-related morbidity is low compared with valve replacement.

  1. Review of the emerging role of optical polarimetry in characterization of pathological myocardium.

    PubMed

    Ahmad, Iftikhar

    2017-10-01

    Myocardial infarction (MI), a cause of significant morbidity and mortality, is typically followed by microstructural alterations where the necrotic myocardium is steadily replaced with a collagen scar. Engineered remodeling of the fibrotic scar via stem cell regeneration has been shown to improve/restore the myocardium function after MI. Nevertheless, the heterogeneous nature of the scar patch may impair the myocardial electrical integrity, leading to the formation of arrhythmogenesis. Radiofrequency ablation (RFA) offers an effective treatment for focal arrhythmias where local heating generated via electric current at specific spots in the myocardium ablate the arrhythmogenic foci. Characterization of these myocardial pathologies (i.e., infarcted, stem cell regenerated, and RFA-ablated myocardial tissues) is of potential clinical importance. Optical polarimetry, the use of light to map and characterize the polarization signatures of a sample, has emerged as a powerful imaging tool for structural characterization of myocardial tissues, exploiting the underlying highly fibrous tissue nature. This study aims to review the recent progress in optical polarimetry pertaining to the characterization of myocardial pathologies while describing the underlying biological rationales that give rise to the optical imaging contrast in various pathologies of the myocardium. Future possibilities of and challenges to optical polarimetry in cardiac imaging clinics are also discussed. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. Review of the emerging role of optical polarimetry in characterization of pathological myocardium

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar

    2017-10-01

    Myocardial infarction (MI), a cause of significant morbidity and mortality, is typically followed by microstructural alterations where the necrotic myocardium is steadily replaced with a collagen scar. Engineered remodeling of the fibrotic scar via stem cell regeneration has been shown to improve/restore the myocardium function after MI. Nevertheless, the heterogeneous nature of the scar patch may impair the myocardial electrical integrity, leading to the formation of arrhythmogenesis. Radiofrequency ablation (RFA) offers an effective treatment for focal arrhythmias where local heating generated via electric current at specific spots in the myocardium ablate the arrhythmogenic foci. Characterization of these myocardial pathologies (i.e., infarcted, stem cell regenerated, and RFA-ablated myocardial tissues) is of potential clinical importance. Optical polarimetry, the use of light to map and characterize the polarization signatures of a sample, has emerged as a powerful imaging tool for structural characterization of myocardial tissues, exploiting the underlying highly fibrous tissue nature. This study aims to review the recent progress in optical polarimetry pertaining to the characterization of myocardial pathologies while describing the underlying biological rationales that give rise to the optical imaging contrast in various pathologies of the myocardium. Future possibilities of and challenges to optical polarimetry in cardiac imaging clinics are also discussed.

  3. The Human Ligase IIIα-XRCC1 Protein Complex Performs DNA Nick Repair after Transient Unwrapping of Nucleosomal DNA*

    PubMed Central

    Rashid, Ishtiaque; Tomkinson, Alan E.; Pederson, David S.

    2017-01-01

    Reactive oxygen species generate potentially cytotoxic and mutagenic lesions in DNA, both between and within the nucleosomes that package DNA in chromatin. The vast majority of these lesions are subject to base excision repair (BER). Enzymes that catalyze the first three steps in BER can act at many sites in nucleosomes without the aid of chromatin-remodeling agents and without irreversibly disrupting the host nucleosome. Here we show that the same is true for a protein complex comprising DNA ligase IIIα and the scaffolding protein X-ray repair cross-complementing protein 1 (XRCC1), which completes the fourth and final step in (short-patch) BER. Using in vitro assembled nucleosomes containing discretely positioned DNA nicks, our evidence indicates that the ligase IIIα-XRCC1 complex binds to DNA nicks in nucleosomes only when they are exposed by periodic, spontaneous partial unwrapping of DNA from the histone octamer; that the scaffolding protein XRCC1 enhances the ligation; that the ligation occurs within a complex that ligase IIIα-XRCC1 forms with the host nucleosome; and that the ligase IIIα-XRCC1-nucleosome complex decays when ligation is complete, allowing the host nucleosome to return to its native configuration. Taken together, our results illustrate ways in which dynamic properties intrinsic to nucleosomes may contribute to the discovery and efficient repair of base damage in chromatin. PMID:28184006

  4. Critical and subcritical damage monitoring of bonded composite repairs using innovative non-destructive techniques

    NASA Astrophysics Data System (ADS)

    Grammatikos, S. A.; Kordatos, E. Z.; Aggelis, D. G.; Matikas, T. E.; Paipetis, A. S.

    2012-04-01

    Infrared Thermography (IrT) has been shown to be capable of detecting and monitoring service induced damage of repair composite structures. Full-field imaging, along with portability are the primary benefits of the thermographic technique. On-line lock-in thermography has been reported to successfully monitor damage propagation or/and stress concentration in composite coupons, as mechanical stresses in structures induce heat concentration phenomena around flaws. During mechanical fatigue, cyclic loading plays the role of the heating source and this allows for critical and subcritical damage identification and monitoring using thermography. The Electrical Potential Change Technique (EPCT) is a new method for damage identification and monitoring during loading. The measurement of electrical potential changes at specific points of Carbon Fiber Reinforced Polymers (CFRPs) under load are reported to enable the monitoring of strain or/and damage accumulation. Along with the aforementioned techniques Finally, Acoustic Emission (AE) method is well known to provide information about the location and type of damage. Damage accumulation due to cyclic loading imposes differentiation of certain parameters of AE like duration and energy. Within the scope of this study, infrared thermography is employed along with AE and EPCT methods in order to assess the integrity of bonded repair patches on composite substrates and to monitor critical and subcritical damage induced by the mechanical loading. The combined methodologies were effective in identifying damage initiation and propagation of bonded composite repairs.

  5. XRCC1 suppresses somatic hypermutation and promotes alternative nonhomologous end joining in Igh genes.

    PubMed

    Saribasak, Huseyin; Maul, Robert W; Cao, Zheng; McClure, Rhonda L; Yang, William; McNeill, Daniel R; Wilson, David M; Gearhart, Patricia J

    2011-10-24

    Activation-induced deaminase (AID) deaminates cytosine to uracil in immunoglobulin genes. Uracils in DNA can be recognized by uracil DNA glycosylase and abasic endonuclease to produce single-strand breaks. The breaks are repaired either faithfully by DNA base excision repair (BER) or mutagenically to produce somatic hypermutation (SHM) and class switch recombination (CSR). To unravel the interplay between repair and mutagenesis, we decreased the level of x-ray cross-complementing 1 (XRCC1), a scaffold protein involved in BER. Mice heterozygous for XRCC1 showed a significant increase in the frequencies of SHM in Igh variable regions in Peyer's patch cells, and of double-strand breaks in the switch regions during CSR. Although the frequency of CSR was normal in Xrcc1(+/-) splenic B cells, the length of microhomology at the switch junctions decreased, suggesting that XRCC1 also participates in alternative nonhomologous end joining. Furthermore, Xrcc1(+/-) B cells had reduced Igh/c-myc translocations during CSR, supporting a role for XRCC1 in microhomology-mediated joining. Our results imply that AID-induced single-strand breaks in Igh variable and switch regions become substrates simultaneously for BER and mutagenesis pathways.

  6. The nucleosome: orchestrating DNA damage signaling and repair within chromatin.

    PubMed

    Agarwal, Poonam; Miller, Kyle M

    2016-10-01

    DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.

  7. Genetics of human sensitivity to ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Cleaver, James E.

    1994-07-01

    the major human health effects of solar and artificial UV light occur from the UVB and UVC wavelength ranges and involve a variety of short-term and long-term deleterious changes to the skin and eyes. the more important initial damage to cellular macromolecules involves dimerization of adjacent pyrimidines in DNA to produce cyclobutane pyrimidine dimes, (6-4) pyrimidine- pyrimidone, and (6-4) dewar photoproducts. these photoproducts can be repaired by a genetically regulated enzyme system (nucleotide excision repair) which removes oligonucleotides 29-30 nucleotides long that contain the photoproducts, and synthesizes replacement patches. At least a dozen gene products are involved in the process of recognizing photoproducts in DNA, altering local DNA helicity and cleaving the polynucleotide chain at defined positions either side of a photoproduct. Hereditary mutations in many of these genes are recognized in the human genetic disorders xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). Several of the gene products have other functions involving the regulation of gene transcription which accounts for the complex clinical presentation of repair deficient diseases that involve sensitivity of the skin and eyes to UV light, increased solar carcinogenesis (in XP), demyelination, and ganglial calcification (in CS), hair abnormalities (in TTD), and developmental and neurological abnormalities

  8. Myocardial Tissue Engineering With Cells Derived From Human-Induced Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed Scaffold.

    PubMed

    Gao, Ling; Kupfer, Molly E; Jung, Jangwook P; Yang, Libang; Zhang, Patrick; Da Sie, Yong; Tran, Quyen; Ajeti, Visar; Freeman, Brian T; Fast, Vladimir G; Campagnola, Paul J; Ogle, Brenda M; Zhang, Jianyi

    2017-04-14

    Conventional 3-dimensional (3D) printing techniques cannot produce structures of the size at which individual cells interact. Here, we used multiphoton-excited 3D printing to generate a native-like extracellular matrix scaffold with submicron resolution and then seeded the scaffold with cardiomyocytes, smooth muscle cells, and endothelial cells that had been differentiated from human-induced pluripotent stem cells to generate a human-induced pluripotent stem cell-derived cardiac muscle patch (hCMP), which was subsequently evaluated in a murine model of myocardial infarction. The scaffold was seeded with ≈50 000 human-induced pluripotent stem cell-derived cardiomyocytes, smooth muscle cells, and endothelial cells (in a 2:1:1 ratio) to generate the hCMP, which began generating calcium transients and beating synchronously within 1 day of seeding; the speeds of contraction and relaxation and the peak amplitudes of the calcium transients increased significantly over the next 7 days. When tested in mice with surgically induced myocardial infarction, measurements of cardiac function, infarct size, apoptosis, both vascular and arteriole density, and cell proliferation at week 4 after treatment were significantly better in animals treated with the hCMPs than in animals treated with cell-free scaffolds, and the rate of cell engraftment in hCMP-treated animals was 24.5% at week 1 and 11.2% at week 4. Thus, the novel multiphoton-excited 3D printing technique produces extracellular matrix-based scaffolds with exceptional resolution and fidelity, and hCMPs fabricated with these scaffolds may significantly improve recovery from ischemic myocardial injury. © 2017 American Heart Association, Inc.

  9. Laser bonding with ICG-infused chitosan patches: preliminary experiences in suine dura mater and vocal folds

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Matteini, Paolo; Ratto, Fulvio; Pini, Roberto; Iacoangeli, Maurizio; Giannoni, Luca; Fortuna, Damiano; Di Cicco, Emiliano; Corbara, Sylwia; Dallari, Stefano

    2014-05-01

    Laser bonding is a promising minimally invasive approach, emerging as a valid alternative to conventional suturing techniques. It shows widely demonstrated advantages in wound treatment: immediate closuring effect, minimal inflammatory response and scar formation, reduced healing time. This laser based technique can overcome the difficulties in working through narrow surgical corridors (e.g. the modern "key-hole" surgery as well as the endoscopy setting) or in thin tissues that are impossible to treat with staples and/or stitches. We recently proposed the use of chitosan matrices, stained with conventional chromophores, to be used in laser bonding of vascular tissue. In this work we propose the same procedure to perform laser bonding of vocal folds and dura mater repair. Laser bonding of vocal folds is proposed to avoid the development of adhesions (synechiae), after conventional or CO2 laser surgery. Laser bonding application in neurosurgery is proposed for the treatment of dural defects being the Cerebro Spinal Fluid leaks still a major issue. Vocal folds and dura mater were harvested from 9-months old porks and used in the experimental sessions within 4 hours after sacrifice. In vocal folds treatment, an IdocyanineGreen-infused chitosan patch was applied onto the anterior commissure, while the dura mater was previously incised and then bonded. A diode laser emitting at 810 nm, equipped with a 600 μm diameter optical fiber was used to weld the patch onto the tissue, by delivering single laser spots to induce local patch/tissue adhesion. The result is an immediate adhesion of the patch to the tissue. Standard histology was performed, in order to study the induced photothermal effect at the bonding sites. This preliminary experimental activity shows the advantages of the proposed technique in respect to standard surgery: simplification of the procedure; decreased foreign-body reaction; reduced inflammatory response; reduced operating times and better handling in depth.

  10. Myocardial scar segmentation from magnetic resonance images using convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zabihollahy, Fatemeh; White, James A.; Ukwatta, Eranga

    2018-02-01

    Accurate segmentation of the myocardial fibrosis or scar may provide important advancements for the prediction and management of malignant ventricular arrhythmias in patients with cardiovascular disease. In this paper, we propose a semi-automated method for segmentation of myocardial scar from late gadolinium enhancement magnetic resonance image (LGE-MRI) using a convolutional neural network (CNN). In contrast to image intensitybased methods, CNN-based algorithms have the potential to improve the accuracy of scar segmentation through the creation of high-level features from a combination of convolutional, detection and pooling layers. Our developed algorithm was trained using 2,336,703 image patches extracted from 420 slices of five 3D LGE-MR datasets, then validated on 2,204,178 patches from a testing dataset of seven 3D LGE-MR images including 624 slices, all obtained from patients with chronic myocardial infarction. For evaluation of the algorithm, we compared the algorithmgenerated segmentations to manual delineations by experts. Our CNN-based method reported an average Dice similarity coefficient (DSC), precision, and recall of 94.50 +/- 3.62%, 96.08 +/- 3.10%, and 93.96 +/- 3.75% as the accuracy of segmentation, respectively. As compared to several intensity threshold-based methods for scar segmentation, the results of our developed method have a greater agreement with manual expert segmentation.

  11. Passive contribution of the rotator cuff to abduction and joint stability.

    PubMed

    Tétreault, Patrice; Levasseur, Annie; Lin, Jenny C; de Guise, Jacques; Nuño, Natalia; Hagemeister, Nicola

    2011-11-01

    The purpose of this study is to compare shoulder joint biomechanics during abduction with and without intact non-functioning rotator cuff tissue. A cadaver model was devised to simulate the clinical findings seen in patients with a massive cuff tear. Eight full upper limb shoulder specimens were studied. Initially, the rotator cuff tendons were left intact, representing a non-functional rotator cuff, as seen in suprascapular nerve paralysis or in cuff repair with a patch. Subsequently, a massive rotator cuff tear was re-created. Three-dimensional kinematics and force requirements for shoulder abduction were analyzed for each condition using ten abduction cycles in the plane of the scapula. Mediolateral displacements of the glenohumeral rotation center (GHRC) during abduction with an intact non-functioning cuff were minimal, but massive cuff tear resulted in significant lateral displacement of the GHRC (p < 0.013). Similarly, massive cuff tear caused increased superior migration of the GHRC during abduction compared with intact non-functional cuff (p < 0.01). From 5 to 30° of abduction, force requirements were significantly less with an intact non-functioning cuff than with massive cuff tear (p < 0.009). During abduction, an intact but non-functioning rotator cuff resulted in decreased GHRC displacement in two axes as well as lowered the force requirement for abduction from 5 to 30° as compared with the results following a massive rotator cuff tear. This provides insight into the potential biomechanical effect of repairing massive rotator cuff tears with a biological or synthetic "patch," which is a new treatment for massive cuff tear.

  12. Inferior sinus venosus defect: echocardiographic diagnosis and surgical approach.

    PubMed

    Crystal, Matthew A; Al Najashi, Khaled; Williams, William G; Redington, Andrew N; Anderson, Robert H

    2009-06-01

    We sought to define the inferior sinus venosus defect anatomically and document successful surgical approaches. We identified all patients previously given a diagnosis of an inferior sinus venosus defect at the Hospital for Sick Children, Toronto, Canada, between 1982 and 2005 by interrogating the cardiology and cardiac surgery databases. We included those having interatrial communications in which 1 or more of the right pulmonary veins drained to the inferior caval vein but retained connection with the left atrium, the rims of the oval fossa, and the walls of the coronary sinus, both being intact. We identified 11 children who had an interatrial communication meeting the criteria for and undergoing surgical repair of an inferior sinus venosus defect. Median age was 1.2 years; 6 (55%) subjects were male, and none were cyanotic. Transthoracic echocardiographic analysis was performed preoperatively in all children, revealing right ventricular dilation in all. Surgical repair was accomplished with a pericardial patch. A complex baffle was needed in 3 children to maintain unobstructed inferior caval and pulmonary venous return. The echocardiographic diagnosis was complete in only 5 patients, but all diagnoses were correct since the year 2000. In all children the observations at surgical intervention showed that the defect was a venoatrial communication involving drainage of the right pulmonary veins to the inferior caval vein while retaining connection to the left atrium. Transthoracic echocardiographic analysis should remain the modality of choice for diagnosis of the inferior sinus venosus defect. We report excellent surgical results with a patch or baffle, correctly redirecting the anomalous venoatrial connections.

  13. Strict Selection Criteria During Surgical Training Ensures Good Outcomes in Laparoscopic Omental Patch Repair (LOPR) for Perforated Peptic Ulcer (PPU).

    PubMed

    Shelat, Vishal G; Ahmed, Saleem; Chia, Clement L K; Cheah, Yee Lee

    2015-02-01

    Application of minimal access surgery in acute care surgery is limited due to various reasons. Laparoscopic omental patch repair (LOPR) for perforated peptic ulcer (PPU) surgery is safe and feasible but not widely implemented. We report our early experience of LOPR with emphasis on strict selection criteria. This is a descriptive study of all patients operated on for PPU at academic university-affiliated institutes from December 2010 to February 2012. All the patients who were operated on for LOPR were included as the study population and their records were studied. Perioperative outcomes, Boey score, Mannheim Peritonitis Index (MPI), and physiologic and operative severity scores for enumeration of mortality and morbidity (POSSUM) scores were calculated. All the data were tabulated in a Microsoft Excel spreadsheet and analyzed using Stata Version 8.x. (StataCorp, College Station, TX, USA). Fourteen patients had LOPR out of a total of 45 patients operated for the PPU. Mean age was 46 years (range 22-87 years). Twelve patients (86%) had a Boey score of 0 and all patients had MPI < 21 (mean MPI = 14). The predicted POSSUM morbidity and mortality were 36% and 7%, respectively. Mean ulcer size was 5 mm (range 2-10 mm), mean operating time was 100 minutes (range 70-123 minutes) and mean length of hospital stay was 4 days (range 3-6 days). There was no morbidity or mortality pertaining to LOPR. LOPR should be offered by acute care surgical teams when local expertise is available. This can optimize patient outcomes when strict selection criteria are applied.

  14. Factors predicting rotator cuff retears: an analysis of 1000 consecutive rotator cuff repairs.

    PubMed

    Le, Brian T N; Wu, Xiao L; Lam, Patrick H; Murrell, George A C

    2014-05-01

    The rate of retears after rotator cuff repair varies from 11% to 94%. A retear is associated with poorer subjective and objective clinical outcomes than intact repair. This study was designed to determine which preoperative and/or intraoperative factors held the greatest association with retears after arthroscopic rotator cuff repair. Cohort study; Level of evidence, 3. This study retrospectively evaluated 1000 consecutive patients who had undergone a primary rotator cuff repair by a single surgeon using an arthroscopic inverted-mattress knotless technique and who had undergone an ultrasound evaluation 6 months after surgery to assess repair integrity. Exclusion criteria included previous rotator cuff repair on the same shoulder, incomplete repair, and repair using a synthetic polytetrafluoroethylene patch. All patients had completed the modified L'Insalata Questionnaire and underwent a clinical examination before surgery. Measurements of tear size, tear thickness, associated shoulder injury, tissue quality, and tendon mobility were recorded intraoperatively. The overall retear rate at 6 months after surgery was 17%. Retears occurred in 27% of full-thickness tears and 5% of partial-thickness tears (P < .0001). The best independent predictors of retears were anteroposterior tear length (correlation coefficient r = 0.41, P < .0001), tear size area (r = 0.40, P < .0001), mediolateral tear length (r = 0.34, P < .0001), tear thickness (r = 0.29, P < .0001), age at surgery (r = 0.27, P < .0001), and operative time (r = 0.18, P < .0001). These factors produced a predictive model for retears: logit P = (0.039 × age at surgery in years) + (0.027 × tear thickness in %) + (1 × anteroposterior tear length in cm) + (0.76 × mediolateral tear length in cm) - (0.17 × tear size area in cm(2)) + (0.018 × operative time in minutes) -9.7. Logit P can be transformed into P, which is the chance of retears at 6 months after surgery. A rotator cuff retear is a multifactorial process with no single preoperative or intraoperative factor being overwhelmingly predictive of it. Nevertheless, rotator cuff tear size (tear dimensions, tear size area, and tear thickness) showed stronger associations with retears at 6 months after surgery than did measures of tissue quality and concomitant shoulder injuries.

  15. Combined Endoscopic Transorbital and Endonasal Repair of High Flow Orbital Apex/Middle Fossa Cerebrospinal Fluid Leak with a Nasoseptal Flap.

    PubMed

    Lucke-Wold, Brandon; Mendez, Gustavo; Cua, David; Akins, Paul; Gillham, Haley; Ciporen, Jeremy

    2018-01-01

    High flow orbital apex or middle fossa cerebrospinal fluid (CSF) leaks can be life threatening and complex to repair. These leaks associated with large dural defects are most commonly repaired with an open temporalis muscle patch or free flaps, but these flaps do not always stop the leak. A 65-year-old patient presented two years after orbital exenteration and radiation for squamous cell carcinoma. He developed multi-organism meningitis and pneumocephalus secondary to a large high-flow orbital apex/middle fossa CSF leak. To repair the leak, a combined endoscopic transorbital/endonasal approach with pedicled nasospetal flap and dermis fat graft was used. We describe the unique endoscopic technique that was used to treat the life threatening high flow orbital apex/middle fossa CSF leak. The technique allowed the use of the transposed pedicled flap, which is an alternative to the free flap in controlling CSF leak. Cisternogram post-operatively and clinical exam confirmed resolution of CSF leak. Although a critically ill patient at admission with a modified Rankin scale (MRS) of 5, he was discharged home on continued IV antibiotic therapy with a MRS of 3. Endoscopic evaluation at three months after treatment showed the effectiveness of the flap and he continued to improve clinically. This is the first case to describe a combined endoscopic transorbital and endonasal repair of high flow orbital apex/middle fossa CSF leak with a pedicled nasoseptal flap. These techniques can be utilized during initial reconstruction after orbital exenteration or as a salvage flap.

  16. Laparoscopic recurrent inguinal hernia repair during the learning curve: it can be done?

    PubMed

    Bracale, Umberto; Sciuto, Antonio; Andreuccetti, Jacopo; Merola, Giovanni; Pecchia, Leandro; Melillo, Paolo; Pignata, Giusto

    2017-01-01

    Trans-Abdominal Preperitoneal Patch (TAPP) repairs for Recurrent Hernia (RH) is a technically demanding procedure. It has to be performed only by surgeons with extensive experience in the laparoscopic approach. The purpose of this study is to evaluate the surgical safety and the efficacy of TAPP for RH performed in a tutoring program by surgeons in practice (SP). All TAPP repairs for RH performed by the same surgical team have been included in the study. We have evaluated the results of three SP during their learning curve in a tutoring program. Then these results have been compared to those of a highly experienced laparoscopic surgeon (Benchmark). A total of 530 TAPP repairs have been performed. Among these, 83 TAPP have been executed for RH, of which 43 by the Benchmark and 40 by the SP. When we have compared the outcomes of the Benchmark with those of SP, no significant difference has been observed about morbidity and recurrence while the operative time has been significantly longer for the SP. No intraoperative complications have occurred. International guidelines urge that TAPP repair for RH has to be performed only by surgeons with extensive experience in the laparoscopic approach. The results of the present study demonstrate that TAPP for RH could be performed also by surgeons in training during a learning program. We retain that an adequate tutoring program could lead a surgeon in practice to perform more complex hernia procedures without jeopardizing patient safety throughout the learning curve period. Laparoscopy, Learning Curve, Recurrent Hernia.

  17. Surface-modified polymers for cardiac tissue engineering.

    PubMed

    Moorthi, Ambigapathi; Tyan, Yu-Chang; Chung, Tze-Wen

    2017-09-26

    Cardiovascular disease (CVD), leading to myocardial infarction and heart failure, is one of the major causes of death worldwide. The physiological system cannot significantly regenerate the capabilities of a damaged heart. The current treatment involves pharmacological and surgical interventions; however, less invasive and more cost-effective approaches are sought. Such new approaches are developed to induce tissue regeneration following injury. Hence, regenerative medicine plays a key role in treating CVD. Recently, the extrinsic stimulation of cardiac regeneration has involved the use of potential polymers to stimulate stem cells toward the differentiation of cardiomyocytes as a new therapeutic intervention in cardiac tissue engineering (CTE). The therapeutic potentiality of natural or synthetic polymers and cell surface interactive factors/polymer surface modifications for cardiac repair has been demonstrated in vitro and in vivo. This review will discuss the recent advances in CTE using polymers and cell surface interactive factors that interact strongly with stem cells to trigger the molecular aspects of the differentiation or formulation of cardiomyocytes for the functional repair of heart injuries or cardiac defects.

  18. Endovascular repair of traumatic thoracic aortic tears.

    PubMed

    Mansour, M Ashraf; Kirk, Jeffrey S; Cuff, Robert F; Banegas, Shonda L; Ambrosi, Gavin M; Liao, Timothy H; Chambers, Christopher M; Wong, Peter Y; Heiser, John C

    2012-03-01

    Patients with thoracic aorta injuries (TAI) present a unique challenge. The purpose of this study was to review the outcomes of thoracic endovascular aortic repair (TEVAR) in patients with TAI. A retrospective chart review of all patients admitted for TEVAR for trauma was performed. In a 5-year period, 19 patients (6 women and 13 men; average age, 42 y) were admitted to our trauma center with TAI. Mechanism of injury was a motor vehicle crash in 12 patients, motorcycle crash in 2 patients, automobile-pedestrian accident in 2 patients, 1 fall, 1 crush injury, and 1 stab wound to the back. A thoracic endograft was used in 6 patients and proximal aortic cuffs were used in 13 patients (68%). One patient (5%) died. There were no strokes, myocardial infarctions, paraplegia, or renal failure. TEVAR for TAI appears to be a safe option for patients with multiple injuries. TEVAR in young patients is still controversial because long-term endograft behavior is unknown. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Cardiac Nerve Growth Factor Overexpression Induces Bone Marrow-derived Progenitor Cells Mobilization and Homing to the Infarcted Heart.

    PubMed

    Meloni, Marco; Cesselli, Daniela; Caporali, Andrea; Mangialardi, Giuseppe; Avolio, Elisa; Reni, Carlotta; Fortunato, Orazio; Martini, Stefania; Madeddu, Paolo; Valgimigli, Marco; Nikolaev, Evgeni; Kaczmarek, Leszek; Angelini, Gianni D; Beltrami, Antonio P; Emanueli, Costanza

    2015-12-01

    Reparative response by bone marrow (BM)-derived progenitor cells (PCs) to ischemia is a multistep process that comprises the detachment from the BM endosteal niche through activation of osteoclasts and proteolytic enzymes (such as matrix metalloproteinases (MMPs)), mobilization to the circulation, and homing to the injured tissue. We previously showed that intramyocardial nerve growth factor gene transfer (NGF-GT) promotes cardiac repair following myocardial infarction (MI) in mice. Here, we investigate the impact of cardiac NGF-GT on postinfarction BM-derived PCs mobilization and homing at different time points after adenovirus-mediated NGF-GT in mice. Immunohistochemistry and flow cytometry newly illustrate the temporal profile of osteoclast and activation of MMP9, PCs expansion in the BM, and liberation/homing to the injured myocardium. NGF-GT amplified these responses and increased the BM levels of active osteoclasts and MMP9, which were not observed in MMP9-deficient mice. Taken together, our results suggest a novel role for NGF in BM-derived PCs mobilization/homing following MI.

  20. Mesenchymal Stem Cells Induce Expression of CD73 in Human Monocytes In Vitro and in a Swine Model of Myocardial Infarction In Vivo.

    PubMed

    Monguió-Tortajada, Marta; Roura, Santiago; Gálvez-Montón, Carolina; Franquesa, Marcella; Bayes-Genis, Antoni; Borràs, Francesc E

    2017-01-01

    The ectoenzymes CD39 and CD73 regulate the purinergic signaling through the hydrolysis of adenosine triphosphate (ATP)/ADP to AMP and to adenosine (Ado), respectively. This shifts the pro-inflammatory milieu induced by extracellular ATP to the anti-inflammatory regulation by Ado. Mesenchymal stem cells (MSCs) have potent immunomodulatory capabilities, including monocyte modulation toward an anti-inflammatory phenotype aiding tissue repair. In vitro , we observed that human cardiac adipose tissue-derived MSCs (cATMSCs) and umbilical cord MSCs similarly polarize monocytes toward a regulatory M2 phenotype, which maintained the expression of CD39 and induced expression of CD73 in a cell contact dependent fashion, correlating with increased functional activity. In addition, the local treatment with porcine cATMSCs using an engineered bioactive graft promoted the in vivo CD73 expression on host monocytes in a swine model of myocardial infarction. Our results suggest the upregulation of ectonucleotidases on MSC-conditioned monocytes as an effective mechanism to amplify the long-lasting immunomodulatory and healing effects of MSCs delivery.

  1. Left ventricular pseudoaneurysm - a challenging diagnosis.

    PubMed

    Faustino, Mariana; Ranchordás, Sara; Abecasis, João; Freitas, António; Ferreira, Moradas; Gil, Victor; Morais, Carlos; Neves, José Pedro

    2016-06-01

    Left ventricular pseudoaneurysm is a rare complication of acute myocardial infarction, associated with high mortality. However, it can present in a non-specific manner, complicating and delaying the diagnosis. The authors present the case of a 65-year-old patient, hypertensive, with no other known relevant medical history, who presented with chest pain, cough and left pleural effusion, initially attributed to a pulmonary process. However, these were in fact the result of a left ventricular pseudoaneurysm following silent acute myocardial infarction. The diagnosis was suspected on echocardiography and confirmed by cardiac magnetic resonance imaging, and the patient underwent successful surgical pseudoaneurysm repair. This case illustrates an atypical presentation of a left ventricular pseudoaneurysm, in which the manifestations resulted from pericardial and pleural extension of the inflammatory process associated with contained myocardial rupture. The case demonstrates the need for a high index of suspicion, and the value of imaging techniques to confirm it, in order to proceed with appropriate surgical treatment, and thus modify the course of the disease. Copyright © 2015 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  2. Transplantation of marrow-derived cardiac stem cells carried in fibrin improves cardiac function after myocardial infarction.

    PubMed

    Guo, Hai-Dong; Wang, Hai-Jie; Tan, Yu-Zhen; Wu, Jin-Hong

    2011-01-01

    The high death rate of the transplanted stem cells in the infarcted heart and the low efficiency of differentiation toward cardiomyocytes influence the outcome of stem cell transplantation for treatment of myocardial infarction (MI). Fibrin glue (FG) has been extensively used as a cell implantation matrix to increase cell survival. However, mechanisms of the effects of FG for stem cell transplantation to improve cardiac function are unclear. We have isolated c-kit+/Sca-1+ marrow-derived cardiac stem cells (MCSCs) from rat bone marrow; the cells expressed weakly early cardiac transcription factor Nkx2.5, GATA-4, Mef2C, and Tbx5. Effects of FG on survival, proliferation, and migration of MCSCs were examined in vitro. Cytoprotective effects of FG were assessed by exposure of MCSCs to anoxia. Efficacy of MCSC transplantation in FG was evaluated in the female rat MI model. The MCSCs survived well and proliferated in FG, and they may migrate out from the edge of FG in the wound and nature state. Acridine orange/ethidium bromide staining and lactate dehydrogenase analysis showed that MCSCs in FG were more resistant to anoxia as compared with MCSCs alone. In a rat MI model, cardiac function was improved and scar area was obviously reduced in group of MCSCs in FG compared with group of MCSCs and FG alone, respectively. Y chromosome fluorescence in situ hybridization showed that there were more survived MCSCs in group of MCSCs in FG than those in group of MCSCs alone, and most Y chromosome positive cells expressed cardiac troponin T (cTnT) and connexin-43 (Cx-43). Cx-43 was located between Y chromosome positive cells and recipient cardiomyocytes. Microvessel density in the peri-infarct regions and infarct regions significantly increased in group of MCSCs in FG. These results suggest that FG provide a suitable microenvironment for survival and proliferation of MCSCs and protect cells from apoptosis and necrosis caused by anoxia. MCSCs could differentiate into cardiomyocytes after being transplanted in the border of the infarcted myocardium and form connections with native cardiomyocytes. FG is helpful for MCSC transplantation to repair myocardium and improve cardiac function through promoting the survival, migration, and cardiomyogenic differentiation of MCSCs and inducing angiogenesis.

  3. Paracrine Engineering of Human Explant-Derived Cardiac Stem Cells to Over-Express Stromal-Cell Derived Factor 1α Enhances Myocardial Repair.

    PubMed

    Tilokee, Everad L; Latham, Nicholas; Jackson, Robyn; Mayfield, Audrey E; Ye, Bin; Mount, Seth; Lam, Buu-Khanh; Suuronen, Erik J; Ruel, Marc; Stewart, Duncan J; Davis, Darryl R

    2016-07-01

    First generation cardiac stem cell products provide indirect cardiac repair but variably produce key cardioprotective cytokines, such as stromal-cell derived factor 1α, which opens the prospect of maximizing up-front paracrine-mediated repair. The mesenchymal subpopulation within explant derived human cardiac stem cells underwent lentiviral mediated gene transfer of stromal-cell derived factor 1α. Unlike previous unsuccessful attempts to increase efficacy by boosting the paracrine signature of cardiac stem cells, cytokine profiling revealed that stromal-cell derived factor 1α over-expression prevented lv-mediated "loss of cytokines" through autocrine stimulation of CXCR4+ cardiac stem cells. Stromal-cell derived factor 1α enhanced angiogenesis and stem cell recruitment while priming cardiac stem cells to readily adopt a cardiac identity. As compared to injection with unmodified cardiac stem cells, transplant of stromal-cell derived factor 1α enhanced cells into immunodeficient mice improved myocardial function and angiogenesis while reducing scarring. Increases in myocardial stromal-cell derived factor 1α content paralleled reductions in myocyte apoptosis but did not influence long-term engraftment or the fate of transplanted cells. Transplantation of stromal-cell derived factor 1α transduced cardiac stem cells increased the generation of new myocytes, recruitment of bone marrow cells, new myocyte/vessel formation and the salvage of reversibly damaged myocardium to enhance cardiac repair after experimental infarction. Stem Cells 2016;34:1826-1835. © 2016 AlphaMed Press.

  4. Date Palm (Phoenix dactylifera) Fruits as a Potential Cardioprotective Agent: The Role of Circulating Progenitor Cells

    PubMed Central

    Alhaider, Ibrahim A.; Mohamed, Maged E.; Ahmed, K. K. M.; Kumar, Arun H. S.

    2017-01-01

    Context: Date palms, along with their fruits’ dietary consumption, possess enormous medicinal and pharmacological activities manifested in their usage in a variety of ailments in the various traditional systems of medicine. In recent years, the identification of progenitor cells in the adult organ systems has opened an altogether new approach to therapeutics, due to the ability of these cells to repair the damaged cells/tissues. Hence, the concept of developing therapeutics, which can mobilize endogenous progenitor cells, following tissue injury, to enhance tissue repair process is clinically relevant. Objectives: The present study investigates the potential of date of palm fruit extracts in repairing tissue injury following myocardial infarction (MI) potentially by mobilizing circulating progenitor cells. Methods: Extracts of four different varieties of date palm fruits common in Saudi Arabia eastern provision were scrutinized for their total flavonoid, total phenolic, in vitro antioxidant capacity, as well as their effects on two different rodent MI models. Results: High concentrations of phenolic and flavonoid compounds were observed in date palm fruit extracts, which contributed to the promising antioxidant activities of these extracts and the observed high protective effect against various induced in vivo MI. The extracts showed ability to build up reserves and to mobilize circulating progenitor cells from bone marrow and peripheral circulation to the site of myocardial infraction. Conclusion: Date palm fruit extracts have the potential to mobilize endogenous circulating progenitor cells, which can promote tissue repair following ischemic injury. PMID:28928656

  5. Date Palm (Phoenix dactylifera) Fruits as a Potential Cardioprotective Agent: The Role of Circulating Progenitor Cells.

    PubMed

    Alhaider, Ibrahim A; Mohamed, Maged E; Ahmed, K K M; Kumar, Arun H S

    2017-01-01

    Context: Date palms, along with their fruits' dietary consumption, possess enormous medicinal and pharmacological activities manifested in their usage in a variety of ailments in the various traditional systems of medicine. In recent years, the identification of progenitor cells in the adult organ systems has opened an altogether new approach to therapeutics, due to the ability of these cells to repair the damaged cells/tissues. Hence, the concept of developing therapeutics, which can mobilize endogenous progenitor cells, following tissue injury, to enhance tissue repair process is clinically relevant. Objectives: The present study investigates the potential of date of palm fruit extracts in repairing tissue injury following myocardial infarction (MI) potentially by mobilizing circulating progenitor cells. Methods: Extracts of four different varieties of date palm fruits common in Saudi Arabia eastern provision were scrutinized for their total flavonoid, total phenolic, in vitro antioxidant capacity, as well as their effects on two different rodent MI models. Results: High concentrations of phenolic and flavonoid compounds were observed in date palm fruit extracts, which contributed to the promising antioxidant activities of these extracts and the observed high protective effect against various induced in vivo MI. The extracts showed ability to build up reserves and to mobilize circulating progenitor cells from bone marrow and peripheral circulation to the site of myocardial infraction. Conclusion: Date palm fruit extracts have the potential to mobilize endogenous circulating progenitor cells, which can promote tissue repair following ischemic injury.

  6. Endoscopic surgery for the antenatal treatment of myelomeningocele: the CECAM trial.

    PubMed

    Pedreira, Denise A L; Zanon, Nelci; Nishikuni, Koshiro; Moreira de Sá, Renato A; Acacio, Gregório L; Chmait, Ramen H; Kontopoulos, Eftichia V; Quintero, Rubén A

    2016-01-01

    A recent randomized clinical trial named Management of Myelomeningocele Study (MOMS trial) showed that prenatal correction of open spina bifida (OSB) via open fetal surgery was associated with improved infant neurological outcomes relative to postnatal repair, but at the expense of increased maternal morbidity. We sought to report the final results of our phase I trial (Cirurgia Endoscópica para Correção Antenatal da Meningomielocele [CECAM]) on the feasibility, safety, potential benefits, and side effects of the fetoscopic treatment of OSB using our unique surgical technique. Ten consecutive pregnancies with lumbosacral OSB were enrolled in the study. Surgeries were performed percutaneously under general anesthesia with 3 ports and partial carbon dioxide insufflation. After appropriate surgical positioning of the fetus, the neuroplacode was released with scissors and the skin was undermined to place a biocellulose patch over the lesion. The skin was closed over the patch using a single running stitch. Preoperative, postoperative, and postnatal magnetic resonance imaging were performed to assess hindbrain herniation. Neurodevelopmental evaluation was performed before discharge and at 3, 6, and 12 months. All cases were delivered by cesarean delivery, at which time the uterus was assessed for evidence of thinning or dehiscence. The median gestational age at the time of surgery was 27 weeks (range 25-28 weeks). Endoscopic repair was completed in 8 of 10 fetuses. Two cases were unsuccessful due to loss of uterine access. The mean gestational age at birth was 32.4 weeks with a mean latency of 5.6 weeks between surgery and delivery (range 2-8 weeks). There was 1 fetal and 1 neonatal demise, and 1 unsuccessful case underwent postnatal repair. Of the 7 infants available for analysis, complete reversal of hindbrain herniation occurred in 6 of 7 babies. Three babies required ventriculoperitoneal shunting or third ventriculostomy. Functional motor level was the same or better than the anatomical level in 6 of 7 cases. There was no significant maternal morbidity and no evidence of myometrial thinning or dehiscence. However, surgeries were complicated by premature rupture of membrane and prematurity. Our study suggests that the antenatal treatment of OSB using a fetoscopic approach and our unique surgical technique can result in a watertight seal, reversal of the hindbrain herniation, and better than expected motor function. Our technique differs substantially from the classic repair of OSB used in prior open fetal surgery and fetoscopic studies, in which the dura mater is dissected and the defect is closed in multiple layers. Instead, we use a biocellulose patch placed over the lesion and simple closure of the skin. As such, our technique is an alternative to the current paradigms in the antenatal treatment of OSB. Our clinical outcomes are in line with the results of our extensive prior animal work. Maternal benefits of our approach and technique include minimal morbidity and no myometrial legacy. Current limitations of the approach include potential loss of access, premature rupture of membranes, and attendant prematurity. Phase II trials are needed to prevent these complications and to further assess the risks and benefits of our distinct surgical approach and technique. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. S-Nitrosoglutathione Reductase Deficiency Enhances the Proliferative Expansion of Adult Heart Progenitors and Myocytes Post Myocardial Infarction

    PubMed Central

    Hatzistergos, Konstantinos E; Paulino, Ellena C; Dulce, Raul A; Takeuchi, Lauro M; Bellio, Michael A; Kulandavelu, Shathiyah; Cao, Yenong; Balkan, Wayne; Kanashiro-Takeuchi, Rosemeire M; Hare, Joshua M

    2015-01-01

    Background Mammalian heart regenerative activity is lost before adulthood but increases after cardiac injury. Cardiac repair mechanisms, which involve both endogenous cardiac stem cells (CSCs) and cardiomyocyte cell-cycle reentry, are inadequate to achieve full recovery after myocardial infarction (MI). Mice deficient in S-nitrosoglutathione reductase (GSNOR−⁄−), an enzyme regulating S-nitrosothiol turnover, have preserved cardiac function after MI. Here, we tested the hypothesis that GSNOR activity modulates cardiac cell proliferation in the post-MI adult heart. Methods and Results GSNOR−⁄− and C57Bl6/J (wild-type [WT]) mice were subjected to sham operation (n=3 GSNOR−⁄−; n=3 WT) or MI (n=41 GSNOR−⁄−; n=65 WT). Compared with WT,GSNOR−⁄− mice exhibited improved survival, cardiac performance, and architecture after MI, as demonstrated by higher ejection fraction (P<0.05), lower endocardial volumes (P<0.001), and diminished scar size (P<0.05). In addition, cardiomyocytes from post-MI GSNOR−⁄− hearts exhibited faster calcium decay and sarcomeric relaxation times (P<0.001). Immunophenotypic analysis illustrated that post-MI GSNOR−⁄− hearts demonstrated enhanced neovascularization (P<0.001), c-kit+ CSC abundance (P=0.013), and a ≈3-fold increase in proliferation of adult cardiomyocytes and c-kit+/CD45− CSCs (P<0.0001 and P=0.023, respectively) as measured by using 5-bromodeoxyuridine. Conclusions Loss of GSNOR confers enhanced post-MI cardiac regenerative activity, characterized by enhanced turnover of cardiomyocytes and CSCs. Endogenous denitrosylases exert an inhibitory effect over cardiac repair mechanisms and therefore represents a potential novel therapeutic target. PMID:26178404

  8. Endocannabinoids and traumatic brain injury.

    PubMed

    Shohami, Esther; Cohen-Yeshurun, Ayelet; Magid, Lital; Algali, Merav; Mechoulam, Raphael

    2011-08-01

    Traumatic brain injury (TBI) represents the leading cause of death in young individuals. It triggers the accumulation of harmful mediators, leading to secondary damage, yet protective mechanisms are also set in motion. The endocannabinoid (eCB) system consists of ligands, such as anandamide and 2-arachidonoyl-glycerol (2-AG), receptors (e.g. CB1, CB2), transporters and enzymes, which are responsible for the 'on-demand' synthesis and degradation of these lipid mediators. There is a large body of evidence showing that eCB are markedly increased in response to pathogenic events. This fact, as well as numerous studies on experimental models of brain toxicity, neuroinflammation and trauma supports the notion that the eCB are part of the brain's compensatory or repair mechanisms. These are mediated via CB receptors signalling pathways that are linked to neuronal survival and repair. The levels of 2-AG, the most highly abundant eCB, are significantly elevated after TBI and when administered to TBI mice, 2-AG decreases brain oedema, inflammation and infarct volume and improves clinical recovery. The role of CB1 in mediating these effects was demonstrated using selective antagonists or CB1 knockout mice. CB2 were shown in other models of brain insults to reduce white blood cell rolling and adhesion, to reduce infarct size and to improve motor function. This review is focused on the role the eCB system plays as a self-neuroprotective mechanism and its potential as a basis for the development of novel therapeutic modality for the treatment of CNS pathologies with special emphasis on TBI. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  9. Endocannabinoids and traumatic brain injury

    PubMed Central

    Shohami, Esther; Cohen-Yeshurun, Ayelet; Magid, Lital; Algali, Merav; Mechoulam, Raphael

    2011-01-01

    Traumatic brain injury (TBI) represents the leading cause of death in young individuals. It triggers the accumulation of harmful mediators, leading to secondary damage, yet protective mechanisms are also set in motion. The endocannabinoid (eCB) system consists of ligands, such as anandamide and 2-arachidonoyl-glycerol (2-AG), receptors (e.g. CB1, CB2), transporters and enzymes, which are responsible for the ‘on-demand’ synthesis and degradation of these lipid mediators. There is a large body of evidence showing that eCB are markedly increased in response to pathogenic events. This fact, as well as numerous studies on experimental models of brain toxicity, neuroinflammation and trauma supports the notion that the eCB are part of the brain's compensatory or repair mechanisms. These are mediated via CB receptors signalling pathways that are linked to neuronal survival and repair. The levels of 2-AG, the most highly abundant eCB, are significantly elevated after TBI and when administered to TBI mice, 2-AG decreases brain oedema, inflammation and infarct volume and improves clinical recovery. The role of CB1 in mediating these effects was demonstrated using selective antagonists or CB1 knockout mice. CB2 were shown in other models of brain insults to reduce white blood cell rolling and adhesion, to reduce infarct size and to improve motor function. This review is focused on the role the eCB system plays as a self-neuroprotective mechanism and its potential as a basis for the development of novel therapeutic modality for the treatment of CNS pathologies with special emphasis on TBI. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21418185

  10. Bilateral Laparoscopic Totally Extraperitoneal Repair Without Mesh Fixation

    PubMed Central

    Woodward, Brandon; Johna, Samir; Yamanishi, Frank

    2014-01-01

    Background and Objectives: Mesh fixation during laparoscopic totally extraperitoneal repair is thought to be necessary to prevent recurrence. However, mesh fixation may increase postoperative chronic pain. This study aimed to describe the experience of a single surgeon at our institution performing this operation. Methods: We performed a retrospective review of the medical records of all patients who underwent bilateral laparoscopic totally extraperitoneal repair without mesh fixation for inguinal hernia from January 2005 to December 2011. Demographic, operative, and postoperative data were obtained for analysis. Results: A total of 343 patients underwent simultaneous bilateral laparoscopic totally extraperitoneal repair of 686 primary and recurrent inguinal hernias from January 2005 to December 2011. The mean operative time was 33 minutes. One patient was converted to an open approach (0.3%), and 1 patient had intraoperative bladder injury. Postoperative hematoma/seroma occurred in 5 patients (1.5%), wound infection in 1 (0.3%), hematuria in 2 (0.6%), and acute myocardial infarction in 1 (0.3%). Chronic pain developed postoperatively in 9 patients (2.6%); 3 of them underwent re-exploration. All patients were discharged home a few hours after surgery except for 3 patients. Among the 686 hernia repairs, there were a total of 20 recurrences (2.9%) in 18 patients (5.2%). Two patients had bilateral recurrences, whereas 16 had unilateral recurrences. Twelve of the recurrences occurred after 1 year (60%). Fourteen recurrences occurred among direct hernias (70%). Conclusion: Compared with the literature, our patients had fewer intraoperative and postoperative complications, less chronic pain, and no increase in operative time or length of hospital stay but had a slight increase in recurrence rate. PMID:25392633

  11. Hsp20-Engineered Mesenchymal Stem Cells Are Resistant to Oxidative Stress via Enhanced Activation of Akt and Increased Secretion of Growth Factors

    PubMed Central

    Wang, Xiaohong; Zhao, Tiemin; Huang, Wei; Wang, Tao; Qian, Jiang; Xu, Meifeng; Kranias, Evangelia G.; Wang, Yigang; Fan, Guo-Chang

    2009-01-01

    Although heat-shock preconditioning has been shown to promote cell survival under oxidative stress, the nature of heat-shock response from different cells is variable and complex. Therefore, it remains unclear whether mesenchymal stem cells (MSCs) modified with a single heat-shock protein (Hsp) gene are effective in the repair of a damaged heart. In this study, we genetically engineered rat MSCs with Hsp20 gene (Hsp20-MSCs) and examined cell survival, revascularization, and functional improvement in rat left anterior descending ligation (LAD) model via intracardial injection. We observed that overexpression of Hsp20 protected MSCs against cell death triggered by oxidative stress in vitro. The survival of Hsp20-MSCs was increased by approximately twofold by day 4 after transplantation into the infarcted heart, compared with that of vector-MSCs. Furthermore, Hsp20-MSCs improved cardiac function of infarcted myocardium as compared with vector-MSCs, accompanied by reduction of fibrosis and increase in the vascular density. The mechanisms contributing to the beneficial effects of Hsp20 were associated with enhanced Akt activation and increased secretion of growth factors (VEGF, FGF-2, and IGF-1). The paracrine action of Hsp20-MSCs was further validated in vitro by cocultured adult rat cardiomyocytes with a stress-conditioned medium from Hsp20-MSCs. Taken together, these data support the premise that genetic modification of MSCs before transplantation could be salutary for treating myocardial infarction. PMID:19816949

  12. Adult Bone Marrow Mesenchymal Stem Cells Primed for fhe Repair of Damaged Cardiac Tissue After Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Marks, Edward D.

    The burden of cardiovascular disease around the world is growing, despite improvements in hospital care and time to treatment. As more people survive an initial myocardial infarction (MI), the decompensated heart tissue is strained, leading to heart failure (HF) and an increased risk for a second MI. While extensive progress has been made in treating the symptoms after MI, including HF and angina, little success has come from repairing the damaged heart tissue to alleviate the progression to these end- stage symptoms. One promising area of regenerative research has been the use of adult stem cells, particularly from the bone marrow (BMSCs). These cells can differentiate towards the cardiac cell lineage in vitro while producing trophic factors that can repair damaged tissue. When placed in the heart after MI though, BMSCs have mixed results, producing profound changes in some patients but zero or even negative effects in others. In this report, we used BMSCs as a stem cell base for a regenerative medicine system for the repair of damaged cardiac tissue. These cells are seeded on a polycaprolactone nanoscaffolding support system, which provides a growth substrate for in vitro work, as well as a housing system for protected in vivo delivery. When the nanoscaffold is pre-coated with a novel combination of a cardiac protein, thymosin beta4 (Tbeta4), and a small molecule effector of the WNT protein pathway, IWP-2, BMSCs differentiated towards the cardiac lineage in as little as 24hours. When injected into rat hearts that have been given an ischemic MI, the nanoscaffolding system slowly dissolves, leaving the cells in place of the damaged cardiac tissue. After two weeks of monitoring, BMSCs are present within the damaged hearts, as evidenced by immunofluorescence and nanoparticle tracking. Injections of the nanoscaffolding/cell system led to robust healing of the rat hearts that had been given small- and medium- damage heart attacks, outperforming PBS sham and cell culture media injections. Significant improvements in cardiac metrics, including ejection fraction and left ventricular end systolic volume, were seen compared to untreated animals, and were comparable to healthy controls. To our knowledge this is the first side-by-side comparison of cell culture media and stem cells to heal a predefined range of MI damage. We believe this simple, inexpensive treatment option is a new beneficial step towards healing damaged patient tissue after MI.

  13. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair.

    PubMed

    Haider, Husnain Kh; Jiang, Shujia; Idris, Niagara M; Ashraf, Muhammad

    2008-11-21

    We hypothesized that mesenchymal stem cells (MSCs) overexpressing insulin-like growth factor (IGF)-1 showed improved survival and engraftment in the infarcted heart and promoted stem cell recruitment through paracrine release of stromal cell-derived factor (SDF)-1alpha. Rat bone marrow-derived MSCs were used as nontransduced ((Norm)MSCs) or transduced with adenoviral-null vector ((Null)MSCs) or vector encoding for IGF-1 ((IGF-1)MSCs). (IGF-1)MSCs secreted higher IGF-1 until 12 days of observation (P<0.001 versus (Null)MSCs). Molecular studies revealed activation of phosphoinositide 3-kinase, Akt, and Bcl.xL and inhibition of glycogen synthase kinase 3beta besides release of SDF-1alpha in parallel with IGF-1 expression in (IGF-1)MSCs. For in vivo studies, 70 muL of DMEM without cells (group 1) or containing 1.5x10(6) (Null)MSCs (group 2) or (IGF-1)MSCs (group 3) were implanted intramyocardially in a female rat model of permanent coronary artery occlusion. One week later, immunoblot on rat heart tissue (n=4 per group) showed elevated myocardial IGF-1 and phospho-Akt in group 3 and higher survival of (IGF-1)MSCs (P<0.06 versus (Null)MSCs) (n=6 per group). SDF-1alpha was increased in group 3 animal hearts (20-fold versus group 2), with massive mobilization and homing of ckit(+), MDR1(+), CD31(+), and CD34(+) cells into the infarcted heart. Infarction size was significantly reduced in cell transplanted groups compared with the control. Confocal imaging after immunostaining for myosin heavy chain, actinin, connexin-43, and von Willebrand factor VIII showed extensive angiomyogenesis in the infarcted heart. Indices of left ventricular function, including ejection fraction and fractional shortening, were improved in group 3 as compared with group 1 (P<0.05). In conclusion, the strategy of IGF-1 transgene expression induced massive stem cell mobilization via SDF-1alpha signaling and culminated in extensive angiomyogenesis in the infarcted heart.

  14. Acute aortic dissection involving the root: operative and long-term outcome after curative proximal repair†

    PubMed Central

    Urbanski, Paul P.; Lenos, Aristidis; Irimie, Vadim; Bougioukakis, Petros; Zacher, Michael; Diegeler, Anno

    2016-01-01

    OBJECTIVES The aim of the study was to evaluate operative and long-term results after surgery of acute aortic dissection involving the root, in which the proximal repair consisted of curative resection of all dissected aortic sinuses and was performed using either valve-sparing root repair or complete root replacement with a valve conduit. METHODS Between August 2002 and March 2013, 162 consecutive patients (mean age 63 ± 14 years) underwent surgery for acute type A aortic dissection. Eighty-six patients with an involvement of the aortic root underwent curative surgery of the proximal aorta consisting of valve-sparing root repair (n = 54, 62.8%) or complete valve and root replacement using composite valve grafts (n = 32, 37.2%). In patients with root repair, all dissected aortic walls were resected and root remodelling using the single patch technique (n = 53) or root repair with valve reimplantation (n = 1) was performed without the use of any glue. All perioperative data were collected prospectively and retrospective statistical examination was performed using univariate and multivariate analyses. RESULTS The mean follow-up was 5.2 ± 3.5 years for all patients (range 0–12 years) and 6.1 ± 3.3 years for survivors. The 30-day mortality rate was 5.8% (5 patients), being considerably lower in the repair sub-cohort (1.9 vs 12.5%). The estimated survival rate at 5 and 10 years was 80.0 ± 4.5 and 69.1 ± 6.7%, respectively. No patient required reoperation on the proximal aorta and/or aortic valve during the follow-up time and there were only two valve-related events (both embolic, one in each group). Among those patients with repaired valves, the last echocardiography available showed no insufficiency in 40 and an irrelevant insufficiency (1+) in 14. CONCLUSIONS Curative repair of the proximal aorta in acute dissection involving the root provides favourable operative and long-term outcome with very low risk of aortic complications and/or reoperations, regardless if a valve-sparing procedure or replacement with a valve conduit is used. Valve-sparing surgery is frequently suitable, providing excellent outcome and very high durability. PMID:26848190

  15. A Blood-Resistant Surgical Glue for Minimally Invasive Repair of Vessels and Heart Defects

    PubMed Central

    Lang, Nora; Pereira, Maria J.; Lee, Yuhan; Friehs, Ingeborg; Vasilyev, Nikolay V.; Feins, Eric N.; Ablasser, Klemens; O'Cearbhaill, Eoin D.; Xu, Chenjie; Fabozzo, Assunta; Padera, Robert; Wasserman, Steve; Freudenthal, Franz; Ferreira, Lino S.; Langer, Robert

    2014-01-01

    Currently, there are no clinically approved surgical glues that are nontoxic, bind strongly to tissue, and work well within wet and highly dynamic environments within the body. This is especially relevant to minimally invasive surgery that is increasingly performed to reduce postoperative complications, recovery times, and patient discomfort. We describe the engineering of a bioinspired elastic and biocompatible hydrophobic light-activated adhesive (HLAA) that achieves a strong level of adhesion to wet tissue and is not compromised by preexposure to blood. The HLAA provided an on-demand hemostatic seal, within seconds of light application, when applied to high-pressure large blood vessels and cardiac wall defects in pigs. HLAA-coated patches attached to the interventricular septum in a beating porcine heart and resisted supraphysiologic pressures by remaining attached for 24 hours, which is relevant to intracardiac interventions in humans. The HLAA could be used for many cardiovascular and surgical applications, with immediate application in repair of vascular defects and surgical hemostasis. PMID:24401941

  16. Engineering biosynthetic excitable tissues from unexcitable cells for electrophysiological and cell therapy studies

    PubMed Central

    Kirkton, Robert D.; Bursac, Nenad

    2012-01-01

    Patch-clamp recordings in single-cell expression systems have been traditionally used to study the function of ion channels. However, this experimental setting does not enable assessment of tissue-level function such as action potential (AP) conduction. Here we introduce a biosynthetic system that permits studies of both channel activity in single cells and electrical conduction in multicellular networks. We convert unexcitable somatic cells into an autonomous source of electrically excitable and conducting cells by stably expressing only three membrane channels. The specific roles that these expressed channels have on AP shape and conduction are revealed by different pharmacological and pacing protocols. Furthermore, we demonstrate that biosynthetic excitable cells and tissues can repair large conduction defects within primary 2- and 3-dimensional cardiac cell cultures. This approach enables novel studies of ion channel function in a reproducible tissue-level setting and may stimulate the development of new cell-based therapies for excitable tissue repair. PMID:21556054

  17. Simulation of bone resorption-repair coupling in vitro.

    PubMed

    Jones, S J; Gray, C; Boyde, A

    1994-10-01

    In the normal adult human skeleton, new bone formation by osteoblasts restores the contours of bone surfaces following osteoclastic bone resorption, but the evidence for resorption-repair coupling remains circumstantial. To investigate whether sites of prior resorption, more than the surrounding unresorbed surface, attract osteoblasts or stimulate them to proliferate or make new matrix, we developed a simple in vitro system in which resorption-repair coupling occurs. Resorption pits were produced in mammalian dentine or bone slabs by culturing chick bone-derived cells on them for 2-3 days. The chick cells were swept off and the substrata reseeded with rat calvarial osteoblastic cells, which make bone nodules in vitro, for periods of up to 8 weeks. Cell positions and new bone formation were investigated by ordinary light microscopy, fluorescence and reflection confocal laser microscopy, and SEM, in stained and unstained samples. There was no evidence that the osteoblasts were especially attracted to, or influenced by, the sites of resorption in dentine or bone before cell confluence was reached. Bone formation was identified by light microscopy by the accumulation of matrix, staining with alizarin and calcein and by von Kossa's method, and confirmed by scanning electron microscopy (SEM) by using backscattered electron (BSE) and transmitted electron imaging of unembedded samples and BSE imaging of micro-milled embedded material. These new bone patches were located initially in the resorption pits. The model in vitro system may throw new light on the factors that control resorption-repair coupling in the mineralised tissues in vivo.

  18. Preliminary study of the effects of smectite granules (WoundStat) on vascular repair and wound healing in a swine survival model.

    PubMed

    Gerlach, Travis; Grayson, J Kevin; Pichakron, Kullada O; Sena, Matthew J; DeMartini, Steven D; Clark, Beth Z; Estep, J Scot; Zierold, Dustin

    2010-11-01

    WoundStat (WS) (TraumaCure, Bethesda, MD) is a topical hemostatic agent that effectively stops severe hemorrhage in animal models. To the best of our knowledge, no survival study has been conducted to ensure long-term product safety. We evaluated vascular patency and tissue responses to WS in a swine femoral artery injury model with survival up to 5 weeks. Anesthetized swine received a standardized femoral artery injury with free hemorrhage for 45 seconds followed by WS application. One hour after application, the WS was removed, the wound copiously irrigated, and the artery repaired using a vein patch. Six groups of three animals received WS and were killed either immediately after surgery or at weekly intervals up to 5 weeks. Three control animals were treated with gauze packing and direct pressure followed by identical vascular repair and survival for 1 week. At the time of killing, angiograms were performed, and tissue was collected for histopathology. Hemostasis was complete in all WS animals. All animals survived the procedure, and there were no clinically evident postoperative complications. Vascular repairs were angiographically patent in 15 of 18 animals (83%) receiving WS. Histopathologic examination of WS animals revealed severe diffuse fibrogranulomatous inflammation, early endothelial degeneration with subsequent intimal hyperplasia, moderate myocyte necrosis, and fibrogranulomatous nerve entrapment with axonal degeneration. Although an effective hemostatic agent, WS use was associated with a substantial local inflammatory response and neurovascular changes up to 5 weeks postinjury.

  19. ECMO and cytokine removal for bridging to surgery in a patient with ischemic ventricular septal defect - a case report.

    PubMed

    Marek, Stefanie; Gamper, Gunnar; Reining, Georg; Bergmann, Peter; Mayr, Harald; Kliegel, Andreas

    2017-09-15

    Even in the modern era of percutaneous coronary intervention, postinfarction ventricular septal defect (VSD) remains a serious and often lethal complication. Whether or not immediate surgical repair or delaying surgery a few days aided by intra-aortic counterpulsation provides the optimal strategy remains a matter of debate. An interdisciplinary approach of intensivists and cardiac surgeons in this setting is mandatory. We report the use of veno-arterial extracorporeal membrane oxygenation and extracorporeal blood purification therapy (CytoSorb®) as bridging to surgical closure in a patient with an ischemic VSD leading to protracted cardiogenic shock after posterior myocardial infarction.

  20. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Bruce; Nancy Porter; George Ritter

    2005-07-20

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, undermore » congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. In lieu of a field installation on an abandoned pipeline, a preliminary nondestructive testing protocol is being developed to determine the success or failure of the fiber-reinforced liner pipeline repairs. Optimization and validation activities for carbon-fiber repair methods are ongoing.« less

  1. Iatrogenic injuries of the common femoral artery (CFA) and external iliac artery (EIA) during endograft placement: an underdiagnosed entity.

    PubMed

    Hingorani, Anil P; Ascher, Enrico; Marks, Natalie; Shiferson, Alexander; Patel, Nirav; Gopal, Kapil; Jacob, Theresa

    2009-09-01

    Early limb occlusions following endovascular treatment of aorto-iliac aneurysmal disease is not uncommon (4%-13%). To assess whether the femoral artery entry site could potentially cause this complication, we prospectively evaluated the ipsilateral common femoral artery (CFA) and distal external iliac artery (EIA) with intraoperative duplex scans (IDS). There were 134 patients with infrarenal nonruptured abdominal aorto-iliac aneurysms treated with endografts since 2002 at our institution. Age ranged from 65 to 89 years (mean: 77 +/- 7 years). Aneuryx (n = 41), Zenith (n = 50), and Excluder (n = 43) endografts were used for repair. All procedures were performed via open exposure of the CFA. Introducer diameter varied from 12 mm to 22 mm. All patients underwent IDS of the CFA and distal EIA after repair of the arteriotomies. In 34 patients (25%), we documented intimal dissections causing severe (>70%) stenoses. Of the 271 arteries that were examined, 38 (14%) had abnormal findings that demanded intervention. These were repaired with flap excision, tacking sutures revision, or patch angioplasty (n = 36). Repeat IDS confirmed the adequacy of the repair. No statistical difference was noted if the site of larger introducer sheath and the incidence of flap formation. In addition, 10 small flaps or plaques were visualized but did not create significant stenosis. No differences were noted in the incidence of positive duplex exams between each type graft (P = .4). No early or late iliac limb occlusions were noted. Follow-up of 94% was obtained. Completion arterial duplex scans are helpful in detecting a substantial number of clinically unsuspected technical defects caused by introducer sheaths. Timely diagnosis and repair of these defects may decrease the incidence of early limb occlusion following endograft placement.

  2. Contemporary results of surgical repair of recurrent aortic arch obstruction.

    PubMed

    Mery, Carlos M; Khan, Muhammad S; Guzmán-Pruneda, Francisco A; Verm, Raymond; Umakanthan, Ramanan; Watrin, Carmen H; Adachi, Iki; Heinle, Jeffrey S; McKenzie, E Dean; Fraser, Charles D

    2014-07-01

    There is a paucity of data on the current outcomes of surgical intervention for recurrent aortic arch obstruction (RAAO) after initial aortic arch repair in children. The goal of this study is to report the long-term results in these patients. All patients undergoing surgical intervention for RAAO at Texas Children's Hospital from 1995 to 2012 were included. The cohort was divided into four groups based on initial procedure: (1) simple coarctation repair, (2) Norwood procedure, (3) complex congenital heart disease, and (4) interrupted aortic arch. A total of 48 patients age 9 months (range, 22 days to 36 years) underwent 49 procedures for RAAO. All patients had an anatomic repair consisting of either patch aortoplasty (n=27, 55%), aortic arch advancement (n=8, 16%), sliding arch aortoplasty (n=6, 12%), placement of an interposition graft (n=2, 17%), reconstruction with donor allograft (n=4, 8%), extended end-to-end anastomosis (n=1, 2%), or redo Norwood-type reconstruction (n=1, 2%). Most procedures (n=46, 94%) were performed through a median sternotomy using cardiopulmonary bypass. At a median follow-up of 6.1 years (range, 9 days to 17 years), only 2 patients required surgical or catheter-based intervention for RAAO. Hypertension was present in 10% of patients at last follow-up. There were no neurologic or renal complications. There was 1 perioperative death after an aortic arch advancement in group 1. Four other patients have died during follow-up, none of the deaths related to RAAO. Anatomic repair of RAAO is a safe procedure associated with low morbidity and mortality, and low long-term reintervention rates. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Prolene hernia system compared with mesh plug technique: a prospective study of short- to mid-term outcomes in primary groin hernia repair.

    PubMed

    Huang, C S; Huang, C C; Lien, H H

    2005-05-01

    Two types of anterior tension-free hernioplasty, prolene hernia system (PHS) repair and mesh plug technique (MPT), were introduced to Taiwan in 2001. This study compared the short- to mid-term outcomes following primary groin hernia repair with PHS and MPT. From January 2001 to December 2003, 393 patients with 426 primary groin hernias were operated on by a single surgeon using MPT (n=192) and PHS (n=234). Baseline perioperative details and follow-up information were compared. Demographic characteristics of both groups were similar. The laterality, types of anesthesia, postoperative stay, postoperative wound pain scores, wound complications and days to return to activities of daily life were equally distributed between the two groups. However, the distribution of Gilbert types in the PHS group was shifted a little to the right compared with that of the MPT group. PHS repair had longer operative time (34+/-17 vs 25+/-9 minutes, p<0.01). No recurrence was noted in both groups during the follow-up from 5 to 41 months. Chronic non-disabling groin pains were noted in 2.8% (6/218) of patients in the PHS group and 8.9% (14/175) in the MPT group (p=0.01). Our results show that both PHS and MPT repairs can be performed with short operation time, minor wound pain and quick return to activities of daily life without short- to mid-term recurrences, but postoperatively the MPT group had higher incidence of chronic non-disabling groin pain. Although the MPT is less invasive, the additional protective patch in the preperitoneal space of the PHS may provide a further safeguard against recurrences, especially for those patients with attenuated inguinal floor. Long-term follow-up is needed.

  4. Echocardiographic assessment of the aortic root dilatation in adult patients after tetralogy of Fallot repair.

    PubMed

    Cruz, Cristina; Pinho, Teresa; Lebreiro, Ana; Silva Cardoso, José; Maciel, Maria Júlia

    2013-06-01

    Transthoracic echocardiography is an important tool after tetralogy of Fallot repair, of which aortic root dilatation is a recognized complication. In this study we aimed to assess its prevalence and potential predictors. We consecutively assessed adult patients by transthoracic echocardiography after tetralogy of Fallot repair, and divided them into two groups based on the maximum internal aortic diameter at the sinuses of Valsalva in parasternal long-axis view: group 1 with aortic root dilatation (≥38 mm) and group 2 without dilatation (<38 mm). A total of 53 patients were included, mean age 32±10 years, with a mean time since surgery of 23±7 years. An aortopulmonary shunt had been performed prior to complete repair in 25 patients, and a transannular patch was used in 19 patients. Aortic root measurement was possible in all patients. Aortic root dilatation was identified in eight patients (15%), all male. Male gender (p=0.001), body surface area (1.93±0.10 vs. 1.70±0.20 m(2), p=0.03) and increased left ventricular end-diastolic diameter (p=0.005) were predictors of aortic root dilatation. None of the surgical variables studied were predictors of aortic root dilatation. The prevalence of aortic root dilatation in this cohort was low and male gender was a predictor of its occurrence. The type of repair and time to surgery did not influence its occurrence. Quantification of aortic root diameter is possible by transthoracic echocardiography; we suggest indexing it to body surface area in clinical practice. Copyright © 2012 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  5. Management of surgical and radiation induced rectourethral fistulas with an interposition muscle flap and selective buccal mucosal onlay graft.

    PubMed

    Vanni, Alex J; Buckley, Jill C; Zinman, Leonard N

    2010-12-01

    Rectourethral fistulas are a rare but devastating complication of pelvic surgery and radiation. We review, analyze and describe the management and outcomes of nonradiated and radiation/ablation induced rectourethral fistulas during a consecutive 12-year period. We performed a retrospective review of patients undergoing rectourethral fistula repair between January 1, 1998 and December 31, 2009. Patient demographics as well as preoperative, operative and postoperative data were obtained. All rectourethral fistulas were repaired using an anterior transperineal approach with a muscle interposition flap and selective use of a buccal mucosal graft urethral patch onlay. A total of 74 patients with rectourethral fistulas underwent repair with an anterior perineal approach and muscle interposition flap (68 gracilis muscle interposition flaps, 6 other muscle interposition flaps). We compared 35 nonradiated and 39 radiated/ablation induced rectourethral fistulas. Concurrent urethral strictures were present in 11% of nonradiated and 28% of radiated/ablation rectourethral fistulas. At a mean followup of 20 months 100% of nonradiated rectourethral fistulas were closed with 1 procedure while 84% of radiated/ablation rectourethral fistulas were closed in a single stage. Of the patients with nonradiated rectourethral fistulas 97% had the bowel undiverted. Of those undiverted cases 100% were without bowel complication. Of the patients with radiated/ablation rectourethral fistulas 31% required permanent fecal diversion. Successful rectourethral fistula closure can be achieved for nonradiated (100%) and radiation/ablation (84%) rectourethral fistulas using a standard anterior perineal approach with an interposition muscle flap and selective use of buccal mucosal graft, providing a standard for rectourethral fistula repair. Even the most complex radiation/ablation rectourethral fistula can be repaired avoiding permanent urinary and fecal diversion. Copyright © 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. Transposition Complex with Aortic Arch Obstruction: Outcomes of One-Stage Repair Over 10 Years.

    PubMed

    Choi, Kwang Ho; Sung, Si Chan; Kim, Hyungtae; Lee, Hyung Doo; Ban, Gil Ho; Kim, Geena; Kim, Hee Young

    2016-01-01

    The surgical management of transposition complex with aortic arch obstruction remains technically demanding due to anatomic complexity. Even in the recent surgical era, there are centers that address this anomaly with a staged strategy. This report presents our experiences with a one-stage repair of transposition complexes with aortic arch obstructions more than the last 10 years. Since 2003, 19 patients with a transposition of the great arteries (TGA, 2 patients) or a double outlet of the right ventricle (DORV, 17 patients) and aortic arch obstruction have undergone one-stage repair of their anomalies. The mean age was 6.7 ± 2.3 days, and the mean body weight was 3.4 ± 0.3 kg. The 2 patients with TGA exhibited coarctation of the aorta. The 17 patients with DORV all exhibited the Taussig-Bing type. The great artery relationships were anteroposterior in 4 patients (21.1%). The coronary artery anatomies were usual (1LCx; 2R) in 8 patients (42.1%). There were 2 early deaths (10.5%). Seven patients (36.8%) required percutaneous interventions. One patient required re-operation for pulmonary valvar stenosis and left pulmonary artery patch angioplasty. The overall survival was 84.2%. The freedom from mortality was 83.5% at 5 years, and the freedom from intervention was 54.4% at 5 years. The one-stage repair of transposition complexes with aortic arch obstructions resulted in an acceptable survival rate and a relatively high incidence of postoperative catheter interventions. Postoperative catheter interventions are highly effective. Transposition complexes combined with aortic arch obstructions can be managed by one-stage repair with good early and midterm results.

  7. Mechanism for longitudinal growth of rod-shaped bacteria

    NASA Astrophysics Data System (ADS)

    Taneja, Swadhin; Levitan, Ben; Rutenberg, Andrew

    2013-03-01

    The peptidoglycan (PG) cell wall along with MreB proteins are major determinants of shape in rod-shaped bacteria. However the mechanism guiding the growth of this elastic network of cross-linked PG (sacculus) that maintains the integrity and shape of the rod-shaped cell remains elusive. We propose that the known anisotropic elasticity and anisotropic loading, due to the shape and turgor pressure, of the sacculus is sufficient to direct small gaps in the sacculus to elongate around the cell, and that subsequent repair leads to longitudinal growth without radial growth. We computationally show in our anisotropically stressed anisotropic elasticity model small gaps can extend stably in the circumferential direction for the known elasticity of the sacculus. We suggest that MreB patches that normally propagate circumferentially, are associated with these gaps and are steered with this common mechanism. This basic picture is unchanged in Gram positive and Gram negative bacteria. We also show that small changes of elastic properties can in fact lead to bi-stable propagation of gaps, both longitudinal and circumferential, that can explain the bi-stability in patch movement observed in ΔmblΔmreb mutants.

  8. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin Gordon; Bill Bruce; Ian Harris

    2004-12-31

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, undermore » congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. The first round of optimization and validation activities for carbon-fiber repairs are complete. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.« less

  9. Developmental colour agnosia.

    PubMed

    van Zandvoort, Martine J E; Nijboer, Tanja C W; de Haan, Edward

    2007-08-01

    Colour agnosia concerns the inability to recognise colours despite intact colour perception, semantic memory for colour information, and colour naming. Patients with selective colour agnosia have been described and the deficit is associated with left hemisphere damage. Here we report a case study of a 43-year-old man who was referred to us with a stroke in his right cerebellar hemisphere. During the standard assessment it transpired that he was unable to name coloured patches. Detailed assessment of his colour processing showed that he suffers from a selective colour agnosia. As he claimed to have had this problem all his life, and the fact that the infratentorial infarct that he had incurred was in an area far away from the brain structures that are known to be involved in colour processing, we suggest that he is the first reported case of developmental colour agnosia.

  10. Covalent trapping of human DNA polymerase beta by the oxidative DNA lesion 2-deoxyribonolactone.

    PubMed

    DeMott, Michael S; Beyret, Ergin; Wong, Donny; Bales, Brian C; Hwang, Jae-Taeg; Greenberg, Marc M; Demple, Bruce

    2002-03-08

    Oxidized abasic residues in DNA constitute a major class of radiation and oxidative damage. Free radical attack on the nucleotidyl C-1' carbon yields 2-deoxyribonolactone (dL) as a significant lesion. Although dL residues are efficiently incised by the main human abasic endonuclease enzyme Ape1, we show here that subsequent excision by human DNA polymerase beta is impaired at dL compared with unmodified abasic sites. This inhibition is accompanied by accumulation of a protein-DNA cross-link not observed in reactions of polymerase beta with unmodified abasic sites, although a similar form can be trapped by reduction with sodium borohydride. The formation of the stably cross-linked species with dL depends on the polymerase lysine 72 residue, which forms a Schiff base with the C-1 aldehyde during excision of an unmodified abasic site. In the case of a dL residue, attack on the lactone C-1 by lysine 72 proceeds more slowly and evidently produces an amide linkage, which resists further processing. Consequently dL residues may not be readily repaired by "short-patch" base excision repair but instead function as suicide substrates in the formation of protein-DNA cross-links that may require alternative modes of repair.

  11. Simple detection of germline microsatellite instability for diagnosis of constitutional mismatch repair cancer syndrome.

    PubMed

    Ingham, Danielle; Diggle, Christine P; Berry, Ian; Bristow, Claire A; Hayward, Bruce E; Rahman, Nazneen; Markham, Alexander F; Sheridan, Eamonn G; Bonthron, David T; Carr, Ian M

    2013-06-01

    Heterozygous mutations in DNA mismatch repair (MMR) genes result in predisposition to colorectal cancer (hereditary nonpolyposis colorectal cancer or Lynch syndrome). Patients with biallelic mutations in these genes, however, present earlier, with constitutional mismatch repair deficiency cancer syndrome (CMMRD), which is characterized by a spectrum of rare childhood malignancies and café-au-lait skin patches. The hallmark of MMR deficiency, microsatellite instability (MSI), is readily detectable in tumor DNA in Lynch syndrome, but is also present in constitutional DNA of CMMRD patients. However, detection of constitutional or germline MSI (gMSI) has hitherto relied on technically difficult assays that are not routinely applicable for clinical diagnosis. Consequently, we have developed a simple high-throughput screening methodology to detect gMSI in CMMRD patients based on the presence of stutter peaks flanking a dinucleotide repeat allele when amplified from patient blood DNA samples. Using the three different microsatellite markers, the gMSI ratio was determined in a cohort of normal individuals and 10 CMMRD patients, with biallelic germline mutations in PMS2 (seven patients), MSH2 (one patient), or MSH6 (two patients). Subjects with either PMS2 or MSH2 mutations were easily identified; however, this measure was not altered in patients with CMMRD due to MSH6 mutation. © 2013 Wiley Periodicals, Inc.

  12. Reconstitution of Saccharomyces cerevisiae DNA polymerase ε-dependent mismatch repair with purified proteins.

    PubMed

    Bowen, Nikki; Kolodner, Richard D

    2017-04-04

    Mammalian and Saccharomyces cerevisiae mismatch repair (MMR) proteins catalyze two MMR reactions in vitro. In one, mispair binding by either the MutS homolog 2 (Msh2)-MutS homolog 6 (Msh6) or the Msh2-MutS homolog 3 (Msh3) stimulates 5' to 3' excision by exonuclease 1 (Exo1) from a single-strand break 5' to the mispair, excising the mispair. In the other, Msh2-Msh6 or Msh2-Msh3 activate the MutL homolog 1 (Mlh1)-postmeiotic segregation 1 (Pms1) endonuclease in the presence of a mispair and a nick 3' to the mispair, to make nicks 5' to the mispair, allowing Exo1 to excise the mispair. DNA polymerase δ (Pol δ) is thought to catalyze DNA synthesis to fill in the gaps resulting from mispair excision. However, colocalization of the S. cerevisiae mispair recognition proteins with the replicative DNA polymerases during DNA replication has suggested that DNA polymerase ε (Pol ε) may also play a role in MMR. Here we describe the reconstitution of Pol ε-dependent MMR using S. cerevisiae proteins. A mixture of Msh2-Msh6 (or Msh2-Msh3), Exo1, RPA, RFC-Δ1N, PCNA, and Pol ε was found to catalyze both short-patch and long-patch 5' nick-directed MMR of a substrate containing a +1 (+T) mispair. When the substrate contained a nick 3' to the mispair, a mixture of Msh2-Msh6 (or Msh2-Msh3), Exo1, RPA, RFC-Δ1N, PCNA, and Pol ε was found to catalyze an MMR reaction that required Mlh1-Pms1. These results demonstrate that Pol ε can act in eukaryotic MMR in vitro.

  13. The management of perforated gastric ulcers.

    PubMed

    Leeman, Matthew Fraser; Skouras, Christos; Paterson-Brown, Simon

    2013-01-01

    Perforated gastric ulcers are potentially complicated surgical emergencies and appropriate early management is essential in order to avoid subsequent problems including unnecessary gastrectomy. The aim of this study was to examine the management and outcome of patients with gastric ulcer perforation undergoing emergency laparotomy for peritonitis. Patients undergoing laparotomy at the Royal Infirmary of Edinburgh for perforated gastric ulcers were identified from the prospectively maintained Lothian Surgical Audit (LSA) database over the five-year period 2007-2011. Additional data were obtained by review of electronic records and review of case notes. Forty-four patients (25 male, 19 female) were identified. Procedures performed were: 41 omental patch repairs (91%), 2 simple closures (4.5%) and 2 distal gastrectomies (4.5%; both for large perforations). Four perforated gastric tumours were identified (8.8%), 2 of which were suspected intra-operatively and confirmed histologically, 1 had unexpected positive histology and 1 had negative intra-operative histology, but follow-up endoscopy confirmed the presence of carcinoma (1 positive biopsy in 21 follow-up endoscopies); all 4 were managed without initial resection. Median length of stay was 10 days (range 4-68). Overall 7 patients died in hospital (15.9%) and there were 21 morbidities (54.5%). Registrars performed the majority of the procedures (16 alone, 21 supervised) with no significant difference in post-operative morbidity (P = 0.098) or mortality (P = 0.855), compared to consultants. Almost all perforated gastric ulcers can be effectively managed by laparotomy and omental patch repair. Initial biopsy and follow-up endoscopy with repeat biopsy is essential to avoid missing an underlying malignancy. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  14. Strict Selection Criteria During Surgical Training Ensures Good Outcomes in Laparoscopic Omental Patch Repair (LOPR) for Perforated Peptic Ulcer (PPU)

    PubMed Central

    Shelat, Vishal G.; Ahmed, Saleem; Chia, Clement L. K.; Cheah, Yee Lee

    2015-01-01

    Application of minimal access surgery in acute care surgery is limited due to various reasons. Laparoscopic omental patch repair (LOPR) for perforated peptic ulcer (PPU) surgery is safe and feasible but not widely implemented. We report our early experience of LOPR with emphasis on strict selection criteria. This is a descriptive study of all patients operated on for PPU at academic university-affiliated institutes from December 2010 to February 2012. All the patients who were operated on for LOPR were included as the study population and their records were studied. Perioperative outcomes, Boey score, Mannheim Peritonitis Index (MPI), and physiologic and operative severity scores for enumeration of mortality and morbidity (POSSUM) scores were calculated. All the data were tabulated in a Microsoft Excel spreadsheet and analyzed using Stata Version 8.x. (StataCorp, College Station, TX, USA). Fourteen patients had LOPR out of a total of 45 patients operated for the PPU. Mean age was 46 years (range 22−87 years). Twelve patients (86%) had a Boey score of 0 and all patients had MPI < 21 (mean MPI = 14). The predicted POSSUM morbidity and mortality were 36% and 7%, respectively. Mean ulcer size was 5 mm (range 2−10 mm), mean operating time was 100 minutes (range 70−123 minutes) and mean length of hospital stay was 4 days (range 3−6 days). There was no morbidity or mortality pertaining to LOPR. LOPR should be offered by acute care surgical teams when local expertise is available. This can optimize patient outcomes when strict selection criteria are applied. PMID:25692444

  15. Inhibition of Oct 3/4 mitigates the cardiac progenitor-derived myocardial repair in infarcted myocardium.

    PubMed

    Zhao, Yu Tina; Du, Jianfeng; Chen, Youfang; Tang, Yaoliang; Qin, Gangjian; Lv, Guorong; Zhuang, Shougang; Zhao, Ting C

    2015-12-24

    Recent evidence has demonstrated that cardiac progenitor cells play an essential role in the induction of angiomyogenesis in infarcted myocardium. We and others have shown that engraftment of c-kit(+) cardiac stem cells (CSCs) into infarcted hearts led to myocardium regeneration and neovascularization, which was associated with an improvement of ventricular function. The purpose of this study is aimed at investigating the functional role of transcription factor (TF) Oct3/4 in facilitating CSCs to promote myocardium regeneration and preserve cardiac performance in the post-MI heart. c-kit(+) CSCs were isolated from adult hearts and re-introduced into the infarcted myocardium in which the mouse MI model was created by permanent ligation of the left anterior descending artery (LAD). The Oct3/4 of CSCs was inhibited by transfection of Oct3/4 siRNA, and transfection of CSCs with control siRNA serves as control groups. Myocardial functions were evaluated by echocardiographic measurement. Histological analysis was employed to assess newly formed cardiogenesis, neovascularization, and cell proliferations. Terminal deoxynucleotidyltransferase (TdT) nick-end labeling (TUNEL) was carried out to assess apoptotic cardiomyocytes. Real time polymerase chain reaction and Western blot were carried out to evaluate the level of Oct 3/4 in CSCs. Two weeks after engraftment, CSCs increased ventricular functional recovery as shown by a serial echocardiographic measurement, which is concomitant with the suppression of cardiac hypertrophy and attenuation of myocardial interstitial fibrosis. Suppression of Oct 3/4 of CSCs abrogated functional improvements and mitigated the hypertrophic response and cardiac remodeling. Transplantation of c-kit(+) CSCs into MI hearts promoted cardiac regeneration and neovascularization, which were abolished with the knockdown of Oct3/4. Additionally, suppression of Oct3/4 abrogated myocyte proliferation in the CSC-engrafted myocardium. Our results indicate that CSCs-derived cardiac regeneration improves the restoration of cardiac function and is mediated through Oct 3/4.

  16. Primary adipose-derived stem cells enriched by growth factor treatment improves cell adaptability toward cardiovascular differentiation in a rodent model of acute myocardial infarction.

    PubMed

    Chang, Jui-Chih; Lee, Ping-Chun; Lin, Yu-Chun; Lee, Kung-Wei; Hsu, Shan-hui

    2011-01-01

    The heterogeneous cell population in primary adipose-derived adult stem cells (ADAS) and difficulty in keeping their primitive properties have posed certain limitations on using these cells for cell therapy. Therefore, our objective was to generate a population of cells enriched from the adipose stromal-vascular fraction (SVF) with greater differentiation potential than ADAS and to explore the mechanism behind the repair of the injured myocardium in vivo. The distinct population of adipose stromal cells was enriched by immediate treatment of the growth factor cocktail (EGF and PDGF-BB) to the freshly isolated SVF. These cells (ADAS-GFs) had distinct cell morphology from ADAS and in average had a smaller size. They presented co-expression of CD140a (pericytic markers) and CD34 (hematopoietic marker), more obvious mesenchymal (CD13, CD29, CD44, CD90 and CD117) markers, but rare KDR, and were negative for CD45 and CD31. ADAS-GFs not only spontaneously expressed endothelial cell markers and formed capillary-like tubes on Matrigel but also clearly expressed early cardiomyocyte marker genes when embedded in methylcellulose-based medium. In Sprague-Dawley (SD) rats with left anterior descending artery (LAD)-induced myocardial infarction (MI), the ADAS-GFs transplanted group had the left ventricular function significantly improved compared with the ADAS transplanted group or the control group at 12 weeks post transplantation. The immunofluorescence staining revealed that the transplanted ADAS-GFs expressed GATA4, betamyosin heavy chain and troponin T protein but not vWF. More capillaries were also observed around the infarcted zone in the ADAS-GFs transplanted group. These data suggested that ADAS-GFs with a higher proangiogenic potential may restore the cardiac function of infarcted myocardium via the direct cardiomyocyte differentiation as well as angiogenesis recruitment.

  17. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin Gordon; Bill Bruce; Ian Harris

    2004-08-17

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, undermore » congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.« less

  18. T wave alternans threshold late after repair of tetralogy of Fallot

    NASA Technical Reports Server (NTRS)

    Cheung, Michael M H.; Weintraub, Robert G.; Cohen, Richard J.; Karl, Tom R.; Wilkinson, James L.; Davis, Andrew M.

    2002-01-01

    INTRODUCTION: Sustained microvolt-level T wave alternans (TWA) is a marker of increased risk for malignant ventricular arrhythmia. There is a significant risk of arrhythmia and sudden death after repair of congenital heart disease. The aim of this study was to determine the prevalence and characteristics of TWA after repair of tetralogy of Fallot (TOF). METHODS AND RESULTS: TWA was evaluated during bicycle exercise in 49 subjects who had consecutively undergone transatrial-transpulmonary repair. Median values for age, age at repair, and follow-up duration were 14.9 years (11.5-20.8), 1.6 years (0.2-4.9), and 11.6 years (9.4-17.2), respectively. All patients were in New York Heart Association functional class I and were asymptomatic. Median QRS duration was 120 msec (80-150). Sustained TWA was detected in 7 (23%) of 31 subjects with adequate tests. In these 7 subjects, median onset heart rate (HR) was 120 (98-155). Median HR threshold as a percentage of predicted maximum HR (220 - age) was 58% (48-77). Sustained TWA prevalence was not significantly different compared with normal subjects (7/31 vs 9/83; P = 0.1). Onset HR in the TOF group was significantly lower [mean (SD) of 122 (20) vs 139 (12), P < 0.05]. In the TOF group with sustained TWA, the TWA occurred in 4 of 7 at <60% predicted maximum HR versus 1 of 9 normal subjects (P < 0.05); 3 of 7 had onset HR <120 versus 0 of 9 normal subjects (P < 0.03). There was no significant difference in age, gender, transannular patch use, restrictive right ventricular physiology, QRS duration, QTc, QT/QRS dispersion, or nonsustained ventricular tachycardia in subjects with or those without sustained TWA. CONCLUSION: The onset HR for sustained TWA is significantly lower after repair of TOF. Further study is required to determine whether this represents an increased risk for arrhythmia in this patient group.

  19. Can the learning curve of totally endoscopic robotic mitral valve repair be short-circuited?

    PubMed

    Yaffee, David W; Loulmet, Didier F; Kelly, Lauren A; Ward, Alison F; Ursomanno, Patricia A; Rabinovich, Annette E; Neuburger, Peter J; Krishnan, Sandeep; Hill, Frederick T; Grossi, Eugene A

    2014-01-01

    A concern with the initiation of totally endoscopic robotic mitral valve repair (TERMR) programs has been the risk for the learning curve. To minimize this risk, we initiated a TERMR program with a defined team and structured learning approach before clinical implementation. A dedicated team (two surgeons, one cardiac anesthesiologist, one perfusionist, and two nurses) was trained with clinical scenarios, simulations, wet laboratories, and "expert" observation for 3 months. This team then performed a series of TERMRs of varying complexity. Thirty-two isolated TERMRs were performed during the first programmatic year. All operations included mitral valve repair, left atrial appendage exclusion, and annuloplasty device implantation. Additional procedures included leaflet resection, neochordae insertion, atrial ablation, and papillary muscle shortening. Longer clamp times were associated with number of neochordae (P < 0.01), papillary muscle procedures (P < 0.01), and leaflet resection (P = 0.06). Sequential case number had no impact on cross-clamp time (P = 0.3). Analysis of nonclamp time demonstrated a 71.3% learning percentage (P < 0.01; ie, 28.7% reduction in nonclamp time with each doubling of case number). There were no hospital deaths or incidences of stroke, myocardial infarction, unplanned reoperation, respiratory failure, or renal failure. Median length of stay was 4 days. All patients were discharged home. Totally endoscopic robotic mitral valve repair can be safely performed after a pretraining regimen with emphasis on experts' current practice and team training. After a pretraining regimen, cross-clamp times were not subject to learning curve phenomena but were dependent on procedural complexity. Nonclamp times were associated with a short learning curve.

  20. Risk models for mortality following elective open and endovascular abdominal aortic aneurysm repair: a single institution experience.

    PubMed

    Choke, E; Lee, K; McCarthy, M; Nasim, A; Naylor, A R; Bown, M; Sayers, R

    2012-12-01

    To develop and validate an "in house" risk model for predicting perioperative mortality following elective AAA repair and to compare this with other models. Multivariate logistics regression analysis was used to identify risk factors for perioperative-day mortality from one tertiary institution's prospectively maintained database. Consecutive elective open (564) and endovascular (589) AAA repairs (2000-2010) were split randomly into development (810) and validation (343) data sets. The resultant model was compared to Glasgow Aneurysm Score (GAS), Modified Customised Probability Index (m-CPI), CPI, the Vascular Governance North West (VGNW) model and the Medicare model. Variables associated with perioperative mortality included: increasing age (P = 0.034), myocardial infarct within last 10 years (P = 0.0008), raised serum creatinine (P = 0.005) and open surgery (P = 0.0001). The areas under the receiver operating characteristic curve (AUC) for predicted probability of 30-day mortality in development and validation data sets were 0.79 and 0.82 respectively. AUCs for GAS, m-CPI and CPI were poor (0.63, 0.58 and 0.58 respectively), whilst VGNW and Medicare model were fair (0.73 and 0.79 respectively). In this study, an "in-house" developed and validated risk model has the most accurate discriminative value in predicting perioperative mortality after elective AAA repair. For purposes of comparative audit with case mix adjustments, national models such as the VGNW or Medicare models should be used. Copyright © 2012 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

Top